THE INSTITUTE REPORT

September, 1954 Vol. 4, No. 1

All persons from whom contributions have been received during the past year are listed under "acknowledgments". For this select group the Institute Report is prepared since their contributions help make possible our continuous long-range research.

With this Report to our sponsors, our fifth year of work begins. We hope that from the brief summary of studies thus far our long-range objectives can be seen more clearly, and the manner by which seemingly isolated findings fit eventually, just as do individual pieces of a puzzle, into a concise picture. In this picture of infectious disease, large patterns are formed by equally large problems in epizootics, epidemiology, microbiology and immunology, which must be combined by related analytical studies; individual portions are made by each separate finding, in each disease, in each species, which may be isolation of a specific organism, serological studies to identify it, laboratory techniques for growing it, or perhaps causing it to lose pathogenicity and serve as vaccine material.

Nature tends to repeat her patterns, including those of disease, spread of disease, and control of disease. The importance of correlated studies with many diseases and many species, not just in the laboratory, but as they occur first in nature, can be seen. We hope that our staff of workers, trained specifically in the veterinary sciences, may be able to observe and understand some of the little known reasons why each separate creature has its own infinite variations in susceptibility and resistance to each separate disease.

VIRUS RESEARCH INSTITUTE STAFF

General Staff

Administrative:

James A. Baker, B.S., M.S., D.V.M., Ph.D., Director of the Institute
Dudley Baker, Editor
Margaret Hardesty, Bookkeeper
F. Weston Prior, B.S., Assistant Editor and Public Relations
Milda Slater, Secretary
Hadley C. Stephenson, B.S., D.V.M., Assistant Editor and Veterinary Consultant
Marie Wilson, Secretary
Maintenance:
Roy Fields, Farmer
James H. Honness, Building Maintenance Supervisor
Charles Munch, Sr., Animal Technician
Lyle Raymond, Foreman
Austin N. Sears, Farmer
Carl J. Sears, Experimentalist
Frank Sears, Animal Technician
Edson Wheeler, Animal Technician

General Laboratory
James A. Baker, B.S., M.S., D.V.M., Ph.D., Director
Janet Forney, B.S., M.S., Laboratory Technician
Bernice Gale, Histological Technician
Barbara Johnson, Laboratory Assistant
Vincent Marshall, D.V.M., Research Associate
Grayson B. Mitchell, B.S., D.V.M., Visiting Investigator
Joan Sams, B.S., Laboratory Technician
Ben Sheffy, B.S., M.S., Ph.D.

CORNELL RESEARCH LABORATORY FOR DISEASES OF DOGS
Daynemouth Division: (Provided by Colonel and Mrs. Lee Garnett Day)
James H. Gillespie, V.M.D., Director
Arif Celiker, D.V.M., M.S., Ph.D., Visiting Investigator
Jaqueline Horvath, B.S., Laboratory Technician

Giralda Division: (Provided by Mrs. Geraldine Rockefeller Dodge)
George C. Poppensiek, V.M.D., M.S., Director
Barbara Ford, Laboratory Technician
Kyu M. Lee, M.D., Ph.D., Research Associate
Manuel Moro, Jr., D.V.M., M.S., Graduate Assistant

1Captain Mitchell was released from A.U.S. March, 1954, and has returned to his home.
2Dr. Sheffy, Assistant Professor of Animal Husbandry, is cooperating in certain nutritional phases pertaining to viruses.
3Dr. Celiker completed his assignment February, 1954, and has returned to Turkey where he is now Chief of the Bacteriology Laboratory, Pendik Institute, Istanbul.
4Dr. Gillespie, on sabbatic leave at Staats Veeartsenjkundig, Onderzoekingsinstituut, Amsterdam, The Netherlands, returned September, 1954.
5Dr. Moro completed work for M.S. degree February, 1954, and has returned to the Universidad Mayor Nacional de San Marcos, Facultad de Veterinaria, Lima, Peru, and is now Head of the Department of Bacteriology and Virology.
A Message from the Director

To Supporters of the Veterinary Virus Research Institute at Cornell:

Previous reports have dealt with developmental aspects, especially construction of buildings, the establishment of animal colonies, procurement of staff and coordination into an effective working unit. This Annual Report contains information from the laboratories, summarizing some of the more significant results of our work since we began operating as a research unit in 1950. I hope you are pleased with the progress thus far.

In reporting the results of our research, it is not possible to include all the detailed analytical work furnishing the basis for each finding. Indeed, in the brief space allotted to this report all findings are not included—these are found in the scientific publications whose titles are listed later. All findings thought to be of interest to you are discussed but, should you like further information, please let us know.

The Institute consists of two divisions: the Cornell Research Laboratory for Diseases of Dogs dedicated to research for dogs and the General Laboratory which studies diseases of farm animals. Support of research for farm animals is provided by the State of New York whereas research funds for the benefit of dogs must be donated each year in order to continue work the following year. This is being done by individuals, veterinarians, industrial companies, and dog clubs. In the beginning, the thought of undertaking the construction and operation of a permanent research center for dogs was a novel idea and a venture of doubtful outcome. The generosity, interest and cooperation shown by all of you have removed any doubt. With your continued interest, the future looks bright indeed.

I am most grateful for the support each of you has given and especially for the interest you have shown in our work.

Sincerely,

James A. Baker
When work at the Virus Institute began, many problems were considered. All could not be investigated immediately. Final choice was based on urgency of need for information, and availability of suitable space and equipment. Individual reports are given of these specific problems.

CORNELL RESEARCH LABORATORY FOR DISEASES OF DOGS

Distemper. Although the word distemper can mean any disease, to dog owners it means "the disease." For this reason, it was the first one selected for study and our primary aim became an analysis of distemper. We wanted to find whether more than one disease agent was involved or whether the many forms of illness attributed to distemper could be caused by a single virus.

Isolation and comparative studies of many strains of distemper virus have shown that only a single type is involved. We have found that a dog immune to one strain was immune to all others from many parts of the country, including egg-cultivated strains, those from generalized distemper, or from dogs with the nervous form. Distemper virus, therefore, appears to be the primary cause of this disease, but was found to act alone or in combination with either bacteria or another virus. On the basis of work thus far, the following clinical forms of distemper are tabulated and cause given.

<table>
<thead>
<tr>
<th>Form of Illness</th>
<th>Cause</th>
<th>Features of Illness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accompanied by diarrhea</td>
<td>No additional organisms found</td>
<td>Watery fetid stools that may persist. Usually recover.</td>
</tr>
<tr>
<td>Nervous</td>
<td>Distemper virus alone</td>
<td>Epileptiform convulsions or myoclonia. Usually die.</td>
</tr>
<tr>
<td>Accompanied by pneumonia</td>
<td>Distemper virus plus Brucella bronchiseptica, PPL organisms or misc. bacteria such as streptococci, etc.</td>
<td>Cough, distress in breathing. Recovery doubtful.</td>
</tr>
<tr>
<td>With infectious canine hepatitis</td>
<td>Distemper virus plus infectious canine hepatitis virus</td>
<td>Same signs as generalized form but more severe. Usually die.</td>
</tr>
</tbody>
</table>
This table shows that distemper virus alone can cause disease; its typical pattern may be altered if other infectious organisms are present also; the nature of this additional complication depends upon the specific agent involved; we have some evidence that many types of bacteria are found at all times in normal bodies but that these bacteria alone cannot cause illness until after the body's defenses are first attacked and altered in some way by a more powerful agent, such as the virus of distemper. Complications, especially pneumonia, from these secondary invaders may be serious. If caused by *Bacillus bronchisepticus*, the pneumonia often can be treated successfully with antibiotics. An additional bacterial invader may prove of unexpected importance in the pneumonia picture, however, and, like the viruses, it does not respond readily to treatment with any drugs yet known. Isolated in our laboratories from the lungs of dogs with pneumonia, it proved to be a new member of the pleuropneumonia-like organisms (PPLO), a group of minute microbes which seem an intermediate form, between bacteria and viruses. We found that PPLO's isolated from normal lungs did not cause pneumonia in mice, but PPLO's from a dog with distemper did cause pneumonia in mice.

Photograph of lung of a dog that died of distemper. Characteristic intracytoplasmic inclusion bodies in bronchial epithelium are indicated by arrow.
Brain from a dog unaffected by distemper.

Brain from a dog with convulsions. The spaces represent nerve tissue destroyed by distemper virus.
Lung from a dog unaffected by distemper.

Lung from a dog that died from pneumonia. Contrast this with photograph of normal lung; note air spaces filled with cells. These cells are large monocytes of the type associated with PPL organisms.
For years virologists have studied "interference phenomenon", in which the presence of one virus disease automatically excludes another virus. Conversely, some laboratories have induced duplicate infection in mice. We have found dogs in which distemper virus was preceded, or accompanied, or followed by the entirely different virus of infectious canine hepatitis. Here again distemper seems the agent which can alter body defenses most seriously. Animals which had infectious canine hepatitis first were not as ill as those which had distemper first. In dual infection, with both viruses at once, incubation period was cut in half and disease was severe.

In distemper we have found that apparent recovery and convalescence can be complicated by ability of infectious organisms to remain alive. After apparent recovery, and with specific antibodies present in high titer in the blood, we have found that distemper virus can remain latent in the brain for over 6 weeks at least, before suddenly erupting into a condition called "the nervous form of distemper," characterized by epileptiform convulsions, usually followed by death.
In addition to a clinical picture which varies with the disease complications, many individual variations are found in reactions to distemper; some dogs seem to show no visible signs of disease at any time; some die. Similar degrees, ranging from mild to fatal, are found in nearly every infectious disease, and have been studied for years by specialists in epidemiology throughout the world.

Infectious Canine Hepatitis. This disease as seen in dogs was reported by Rubarth in Sweden in 1946. He called it "hepatitis" because a severely damaged liver was found on autopsy of animals that died from the acute form.

Feeling that this disease might prove important in this country, too, it was one of the first chosen for study. We hoped to find its exact effect on the host, how it spread from dog to dog, and what, if anything, could be done to prevent it.

Signs of illness were studied, the pattern of infection established, and comparative studies with distemper virus started, as described under Distemper. Several vital facts about the nature of this disease were recognized. (1) The virus, unlike distemper, is not airborne. (2) This virus does not seem to alter the body in a way that allows the bacterial complications found with distemper. (3) This virus can remain alive, localized in the kidney, for nearly a year after apparent recovery from disease and spread new infection during all of this time through the urine. (4) This can occur also in dogs which had such mild original infection that no signs of disease were ever seen; their urine is just as infectious as that of a dog with severe disease originally. (5) Since the virus is so widespread nearly all dogs are exposed before they become very old; like distemper, it is, therefore, considered a disease of young dogs, and, like distemper, the mortality in young animals is high. (6) We found a mortality rate of 10% in all dogs, and, as did Rubarth, found severe liver damage in this 10% with acute initial disease. (7) In the other 90% of dogs which had apparently recovered we later found nephritis and kidney damage from persistent virus. (8) Considering the unexpected severity of this disease, we felt that a preventive vaccine was imperative.

Knowing that any killed-vaccine can give only temporary immunity, we developed and later perfected a live-virus vaccine to help control this disease. We combined it successfully with distemper virus so that one injection of this dual, live-virus vaccine could give permanent immunity to both of these diseases, if properly used. This product has been field tested extensively and some veterinarians are so enthusiastic that they state they would hate to have to stay in practice without it. It is not yet on the market. We do not, of course, manufacture or sell vaccines.
Leptospirosis. This disease has been recognized as a serious illness in dogs because of the effects on general health from kidney injury. Limited surveys thus far show an incidence of about 10%. Susceptible dogs taken from their home kennel and exposed to others, easily become infected. Dogs that travel to shows, field trials or on hunting trips are always in danger of being exposed to this disease. We have, therefore, developed a vaccine against *Leptospira canicola* that shows excellent promise of giving temporary but necessary protection to dogs that might become exposed. A successful live vaccine can be made in the laboratory but the leptospiras die if shaken violently in shipment; therefore, only a killed vaccine can be shipped; killed vaccines give only temporary immunity, which must be reinforced by booster injections.

Although the dog can be affected by several different species of leptospiras, the one known as *L. canicola* is diagnosed most often, now that methods for its study and identification are becoming more widely known. Many facts about all of the leptospiras remain to be learned. As a direct cause of death they may not seem important, but as a cause of systemic injury, such as nephritis, they are just beginning to be understood. Ultimate effects of such kidney damage may be as serious, although not as immediate, as those from more virulent organisms.

Kidney from dog that died from infectious canine hepatitis. This dog developed a focal interstitial nephritis.
Kidney from a dog with no abnormal pathology.

Kidney from a dog that died from *Leptospira canicola*. Arrow points to interstitial nephritis caused by this organism.
Hog Cholera. Losses from hog cholera amount to $50,000,000.00 some years. Many vaccines have been tried. None has been perfect.

We have developed a new type of modified hog cholera vaccine, passaged in rabbits. In the laboratory it worked perfectly and immunized successfully in every case. Used in the field it seemed to work most of the time, but not always. Studies were made to determine the reason for these failures. When 6 weeks old, the usual age for vaccination of swine, pigs from our disease free herd were given modified virus, followed by tests for the presence of virus in the blood. Virus was found circulating in the blood stream of these young pigs for weeks, and then for months, afterwards. Later we found that if the same amounts of the same virus were given to pigs after they reached 3 months of age, the virus immunized successfully and did not persist. Then we found that if the same amounts of the same virus were given to pigs 6 weeks old from sows immune to hog cholera, it also did not persist and immunized successfully. It became apparent that 2 factors, (1) age and (2) protection against hog cholera provided by the mother determined ability of virus to persist. Pigs in which virus persisted did not grow as well as those in which virus did not persist. Also pigs with persistent virus usually died sometime between 4 and 6 months of age in a manner similar to vaccination failures.

![Chart showing the comparative effects on pigs of virulent hog cholera virus and the same virus after transfer in rabbits. Virulent virus produced a prolonged fever and killed the pig whereas rabbit passed virus produced a slight elevation of temperature as the only sign of infection. Such modified virus makes a good vaccine.](image-url)
This work with hog cholera not only explains hog cholera vaccination failures but broadens our understanding of ability of virus to cause economic loss. Some of the stunting commonly seen in pigs is undoubtedly caused by persistence of hog cholera virus. Other viruses also cause stunting, as was found for transmissible gastroenteritis. Since virus does not persist if pigs get adequate protection from immunized mothers, it is of utmost importance to have highly immune breeding stock. The phenomenon of pigs dying between 4 and 6 months of age from virus acquired before 3 months of age may prove to have general application to other species of animals and other viruses, as for example, the convulsions seen in dogs after distemper.

These two pigs are littermates. The larger pig was given colostrum; the smaller pig was not given colostrum. When 6 weeks of age both pigs were still the same size. At this time both were exposed to hog cholera virus. The pig that had been given colostrum continued to eat normally and showed no signs of illness. No virus was found in its blood; it is immune to hog cholera. The smaller pig, which had no colostrum after it was born, had live hog cholera virus in its blood stream but did not die from the disease. It did not grow normally and remains stunted in size.

Transmissible Gastroenteritis of Swine. We were asked to investigate a disease characterized by diarrhea and high mortality. Our studies soon showed that the disease was transmissible gastroenteritis. Strains of virus
were isolated and studies made of their effects on pigs of various ages, concentration of virus in various organs, and maintenance and spread of virus. We found that the natural route of infection was by way of the mouth. Virus was recovered from feces of infected pigs for intervals of time extending from 2 to 8 weeks after inoculation. Since virus was recovered from the lungs and kidneys of infected pigs for only a short time after inoculation, from the blood during the period of clinical illness and in no instance from the urine, it was concluded that persistence of virus in the intestines accounted for spread. Infected pigs that showed persistence of virus in the intestines were stunted and did not gain weight as well as pigs that did not harbor virus.

When considered with stunting produced by hog cholera virus and, perhaps others, the importance of controlling such viruses to increase swine production can be seen.

Chart shows stunting of pigs caused by persistence of transmissible gastroenteritis virus. Uninfected pigs or pigs in which virus did not persist grew almost twice as fast.
Leptospirosis in Swine. To gain information about the incidence of this disease, a serological survey was made of 285 serums collected in large packing houses; 22% were found positive. *L. pomona* infection is characterized by interstitial nephritis. Since many apparently normal swine coming to market have similar lesions, an attempt was made to correlate positive serological findings for *L. pomona* with the presence of such lesions in swine slaughtered at abattoirs. The results showed that a significant number of swine with lesions also had other evidence of leptospirosis.

L. pomona exists in both cattle and swine; this suggested the possibility that these animals might serve as reservoirs of infection for each other. Leptospirosis was found to spread readily from infected pigs to susceptible ones, and from infected pigs to calves. This ease of transmission is understandable when consideration is given to the tremendous number of organisms eliminated in the urine of carrier pigs. In areas where swine and cattle exist on the same premises, therefore, it seems logical, in outbreaks of bovine leptospirosis, to suspect swine as a possible source of infection, although, of course, the disease is entirely capable of spreading through a herd without the mediation of swine.

This brings up the important question of the natural host for *L. pomona*. Although rodents are the hosts for most known species of leptospiiras, evidence to date has not indicated that this is so for *L. pomona*.

EFFECTS OF L. pomona INFECTION ON CATTLE AND SWINE

<table>
<thead>
<tr>
<th>DAYS</th>
<th>15</th>
<th>30</th>
<th>45</th>
<th>60</th>
<th>75</th>
<th>120</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEPTOSPIRURIA</td>
<td>SWINE</td>
<td>CATTLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEPTOSPIREMIA</td>
<td>CATTLE</td>
<td>SWINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INAPPROPRIATE INFECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEVATED TEMPERATURE - FREQUENT</td>
</tr>
<tr>
<td>DECREASED MILK PRODUCTION - USUAL</td>
</tr>
<tr>
<td>THICKENED MILK - USUAL</td>
</tr>
<tr>
<td>BLOOD IN MILK - RARE</td>
</tr>
<tr>
<td>HEMOGLOBINURIA - RARE</td>
</tr>
<tr>
<td>ICTERUS - RARE</td>
</tr>
<tr>
<td>ABORTIONS - VARIABLE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN YOUNG ANIMALS - RARE</td>
</tr>
</tbody>
</table>

* Only symptom shown

Chart showing clinical features of leptospirosis in cattle and in swine.
Infection by this organism has been reported in other animals, including the dog, rat, horse, and man; either swine or cattle appear to be the probable host for this organism. Unlike swine, the infection in cattle, although important in the United States and Australia, does not seem to be spread throughout the world—yet. If growth and multiplication of leptospira in the host are criteria, the organism is better adapted to pigs, as evidenced by the excessively large numbers excreted in their urine as well as by the duration of the carrier state. Cattle have not been shown to harbor leptospira for longer than 3 months; in swine they may remain alive for over a year; it appears that swine may be the natural hosts for *L. pomona*.

Leptospirosis in Cattle. Following our isolation of a leptospira from cattle in the United States, and recognition that this organism was responsible for serious economic losses in dairy cattle, efforts were made to reduce these losses. In general, information needed for a control program was: (1) an accurate means of diagnosis, (2) a protective vaccine for exposed animals and (3) means to eradicate reservoirs of infection.

For diagnosis, a practical serological test was devised. In order to protect exposed animals, an effective vaccine was made. This vaccine, made from a strain of *L. pomona* propagated only in eggs, is now available from commercial sources, and is proving effective under field conditions. It cannot give permanent immunity, but provides temporary protection, which must be maintained by booster injections.

While vaccination reduces loss, it holds no promise of eradication. Any consideration of eradication must include elimination of all reservoirs of infection. Original studies on cattle indicated that other animals maintained this organism, which later proved true, as described for swine. Antibiotics have been tested and seem promising as eliminators of carrier conditions in swine.

Miyagawanella bovis. From portions of the intestine and from feces of apparently normal calves, a virus that produces elementary bodies was isolated. Comparison of serological, pathogenic, and other properties indicated that this virus from calves is a new member of the psittacosis-lymphogranuloma group and in keeping with classification practices it is provisionally named *Miyagawanella bovis*.

M. bovis produced an infection of the intestinal tract without clinical manifestations in calves 4 to 6 months of age. This virus remained alive for months, and was found to be eliminated in the feces. Studies of *M. bovis* have been extended recently to younger calves. If young calves are not allowed to have colostrum, *M. bovis* produces serious infection
Miyagawanella bovis virus particles (1) as they appear under the ordinary microscope, (2) with electron microscope and (3) with electron microscope but after particles have been shadowed with uranium.

characterized by diarrhea and death, while calves that receive colostrum remain essentially free from signs of illness. These preliminary studies suggest that *M. bovis* may be important in fatal diarrheas of newborn calves; and re-emphasize the importance of colostrum, which many farmers throw away.

Virus Diarrhea. From a cow in New York State and from another in Maine, 2 strains of virus diarrhea (VD) virus were obtained that proved antigenically related in cross immunity tests.

Transfer of virus to rabbits was accomplished. After serial passages in rabbits, the virus became modified and in the 75th transfer produced a slight decrease in the leukocytes and a temperature elevation that lasted for 1 day only. This modified virus immunized against fully virulent virus and should prove useful for vaccine purposes.
Pneumonitis in Cats. Feline pneumonitis is a highly infectious, debilitating disease of unusually long duration, characterized by sneezing and coughing, accompanied by a mucopurulent discharge from the eyes and nose. The organism was isolated and found to produce elementary bodies. It has now been classified with the psittacosis-lymphogranuloma group because of its mode of reproduction and antigenic structure, and is called Miyagawanella felis. Cats, while acutely affected and for long periods afterwards harbor virus in the eyes and respiratory tract. In sneezing, droplets are sprayed into the air, and susceptible cats become infected easily through inhalation.

Recovery from natural disease does not lead to complete immunity, since relapses occur. The virus multiplies in superficial tissues, and whenever the antibody level falls, any disturbance of equilibrium between host cell and parasite results in active disease, although milder in character than the initial attack. Inoculation parenterally with active virus, while not completely immunizing against intranasal instillation of virus, reduces severity of signs of illness; this may offer a means of vaccination.
Cat showing typical feline pneumonitis, featured by mucopurulent discharge from eyes and nose. In addition, this cat sneezed and coughed. The inset shows an electron microscope photograph of the causative organism, a virus called Miyagawanella felis.

Q Fever In Cats. Infection with *Coxiella burnetii* has been studied in cats. No signs of serious illness were seen in infected cats, except lack of appetite, lethargy and elevated temperature. The organism was shown to be present in the blood of some infected cats for at least 1 month and in the urine for at least 2 months. Complement-fixing antibodies and agglutinins were demonstrated in sera from infected cats for 1 to 2 months after infection.
PUBLICATIONS FROM THE CORNELL RESEARCH LABORATORY FOR DISEASES OF DOGS

RECENT

(3) Encephalitis in Dogs Produced by Distemper Virus. Gillespie, J. H., Submitted for publication.

PREVIOUS

PUBLICATIONS FROM THE GENERAL LABORATORY RECENT

PREVIOUS

ACKNOWLEDGMENTS

From September 1, 1953 to August 31, 1954

Including Founding Subscribers

INDIVIDUALS

Mr and Mrs. S. K. Allman, Jr.
Anonymous (2)
Mr. Francis R. Appleton, Jr.
Mr. and Mrs. Philip D. Armour, Jr.
Mr. and Mrs. William L. Austin
Mr. Andrew Lindsay Baker
Mrs. George F. Baker
Mr. William N. Beach
Mr. Joseph W. Beatman
Mr. James F. Bell
Mr. F. J. Benkart
Mr. Henry Berol
Mr. Thomas E. Berry
Mr. and Mrs. Warren Bicknell, Jr.
Mrs. Hortense V. Blakeslee
Mr. Hiram B. D. Blauvelt
Mrs. Fanny H. Bolton
Mrs. William Brinton
Mr. Howes Burton
Mr. and Mrs. Andrew G. Carey
(Inc memory of Carino)
Mr. Harold K. Castle
Mr. C. Merrill Chapin, Jr.
Mrs. Barbara J. Chapple
Mr. Hendon Chubb
Mr. and Mrs. James A. Cole

Mr. Roland T. Cook
Mr. Jack C. Cooke
Mrs. Clement K. Corbin
Mrs. Mary W. Crane
Mr. J. H. Crang
Mrs. R. E. Danielson
Colonel and Mrs. Lee Garnett Day
Mr. Richard R. Deupree
Mrs. Geraldine R. Dodge
Mrs. Filomena Doherty

(In memory of Imp)

Mrs. Gaylord Donnelly
Mr. Francis H. Dorsheimer
Miss Edith Dunham
Mr. John D. Earle
Mrs. W. G. Ebersole
Mr. Walter E. Edge
Mr. E. Irving Eldredge
Mrs. Victor Emanuel

Mr. James A. Farrell, Jr.
Mr. and Mrs. Royal Firman, Jr.
Mr. Edward C. Fleischmann
Mr. H. Herbert Fleishhacker
Mr. and Mrs. William Flemer, Jr.
Mrs. George H. Flinn, Jr.
Miss Marcella Fox
ACKNOWLEDGMENTS

INDIVIDUALS (Cont.)

Mr. Jacob France
Mr. and Mrs. William K. Frank
Mrs. Mildred C. Furst
Mr. Edward H. Gerry
Mrs. William T. Golden
Mr. B. C. Goss
Mr. John S. Gordon
Miss Emma M. Guckes
Mr. and Mrs. Lloyd Hagen
Mr. James G. Hanes
Mrs. John B. Hannum, III
Mr. Andrew E. Hawn
Dr. Harry M. Hayter
Mr. Oliver M. Healey
Mr. Carl Holmes
Mrs. Emilia L. Holmes
Mr. Fraser M. Horn
Mrs. Sherman R. Hoyt
(In memory of Muffin)
Mr. and Mrs. Benjamin S. Hubbell, Jr.
Mr. Denison B. Hull
Mr. and Mrs. George M. Humphrey
Mr. and Mrs. David S. Ingalls
Mr. R. L. Ireland
Mrs. Peter Jay
Miss Marian Ketchum
Mrs. Margaret K. Kilburn
Mr. Leon Kimber (In memory of Edward Von Strelitz, a Doberman Pinscher)
Miss Adele Knight
Mr. Edward Kraning
Dr. Shepard Krech
Mrs. Robert D. Krohn
Mr. Kingsley Kunhardt
Miss Marie J. Leary
Dr. Clark Lemley
Mr. Arthur M. Lewis
Mr. and Mrs. Gerald M. Livingston
Mrs. Albert P. Loening
Mr. B. McCall
Mr. and Mrs. Walter McDade, Jr.
Mr. Donald McMaster
Mr. Hugh McMillan, Jr.
Miss Mary McWain
Miss Rita L. Maher
Mr. and Mrs. Forrest E. Mars
Miss Helena Martinkewiz
Mr. Richard King Mellon
Mr. Thomas W. Merritt
Mr. Raymond C. Milks
Mr. Joseph D. Minogue
Mrs. W. C. Moore
Mrs. H. S. Morgan
Mr. and Mrs. Junius S. Morgan
Mrs. Leonora Mouat (In Memoriam)
Mr. George C. Myer (In Memoriam)
Mr. W. L. Newhall
Mr. Maurice Newton
Miss Laura Niles
Mr. DeLancey Nicoll, Jr.
Mr. Henry W. Norton
Mr. Nicholas H. Noyes
Mr. James P. O'Connor
Mr. John M. Olin
Mr. A. Wells Peck
Mr. and Mrs. Ralph Perkins
Mrs. George W. Perper
Mr. Dewitt Peterkin
Mrs. Susan D. Phillips
Mrs. R. Stuyvesant Pierrepont
Mrs. Collier Platt
Mrs. Parker Poe
Mr. William C. Potter
Mr. Joseph W. Powell
Mrs. Herman E. Prescott
Mr. and Mrs. F. Weston Prior
Mr. Duncan H. Read
Mr. B. Brannan Reath, II
Mrs. J. A. Ritchie
Mr. James M. Roberson
Mr. William A. Rockefeller
Mr. Edward L. Schacht (In Memoriam)
Mr. James H. Schakelton, Jr.
Mr. and Mrs. Peter Schoenster
Mrs. Marion DuPont Scott
Mrs. Brewster Sewall
Mr. Thomas Shorley
Dr. Ralph E. Smiley
Mrs. Richard W. Smith
Miss Alma Spieckerman
Mr. Bradford Stevens
Mr. F. D. M. Strachan, Jr.
Mr. Walter C. Teagle
Mr. L. S. Thompson
Mr. Charles E. Treman, Jr.
Mrs. Mary Ellis Turner
Mrs. Marguerite S. Tyson
Dr. Edward M. Vardon
Mr. G. G. Wade
Mr. William P. Wadsworth
Miss Sylvia Warren
Mr. J. Watson Webb
Mr. F. Carrington Weems
Mrs. Arthur Westa
Mrs. Raymond L. Whitman
Mr. John H. Whitney
Mrs. Vincent F. Wilcox, Jr.
Mr. Edward M. Williamson
Mrs. Marie Wilson
Mr. and Mrs. Merle G. Wilson
Mr. Robert Winthrop
Mr. Robert W. Woodruff
Mrs. E. Grace Young
THE INSTITUTE REPORT

VETERINARIANS

Dr. G. A. Ackerman
Dr. Irving E. Altman
Dr. Peter I. Amsher
Dr. Jacob Antelyes
Dr. Lester B. Barto
Dr. Robert W. Batchelder
Dr. Milford E. Becker
Drs. Kenneth and Jane Benson
Dr. John Bentinck-Smith
Dr. Albert M. Berkelhammer
Dr. Bernad E. Becker
Dr. Meyer Berliner
Dr. Charles E. Bild
Dr. Frank Bloom
Dr. Morris E. Blostein
Dr. John K. Bosshart
Dr. Gordon D. Boyink
Dr. Harry F. Burghardt
Dr. Forbes F. Bushnell
Dr. and Mrs. H. Driscoll Cain
Dr. Huston A. Calldemeier
Dr. Howard F. Carroll
Dr. William Caslick
Dr. David Cheney
Dr. George C. Christensen
Dr. John Thomas Claris
(In Memoriam)
Dr. J. Woodward Claris
Drs. Edgar C. and Howard J. Cleveland
Dr. Normal Cole
Drs. Clarence and Margaret Combs
Dr. Lawrence H. Conlon
Dr. Louis A. Corwin
Dr. Mark R. Crandall
Dr. Albert J. Crane
Dr. Douglas B. Crane
Dr. John E. Crawford
Dr. and Mrs. J. Stuart Crawford
Dr. Edward R. Cushing
Dr. Arthur L. Danforth
Dr. Gordon Danks
Dr. F. Langdon Davis
Dr. Clayton E. DeCamp
Dr. Philip Decktor
Dr. Adolph J. Denk
Dr. Irving O. Denman
Dr. Theodore M. DeVries
Dr. Sam H. Dorfman
Drs. Henry and Helen Doremus
Dr. and Mrs. George T. Dorney
Dr. Arthur B. Douglass
Dr. Reid B. England
Dr. Joseph B. Engle
Dr. and Mrs. Harry J. Fallon
Dr. Harvey L. Fell
Dr. Robert Ferber
Dr. Walter C. Fetherolf
Dr. Myron G. Finch
Dr. Howard F. Fleming
Dr. Charles E. Fletcher

Dr. Dana D. Ford
Dr. Edwin N. Foster
Dr. Martin H. Fremont
Dr. Kenneth S. Friderici
Dr. Irvin W. Frock
Dr. Howard K. Fuller
Dr. Stanley E. Garrison
Dr. Rebecca Gifford
Dr. James H. Gillespie
Dr. Judd T. Gilmour
Dr. Samuel Glenn
Dr. William E. Glindmyer
Dr. Abie Goldberg
Dr. Samuel A. Goldberg
Dr. Lewis A. Goldfinger
Dr. Tevis M. Goldhaft
Dr. Laurence W. Goodman
Dr. Reuben Gordon (In Memoriam)
Dr. Edward T. Greenstein
Dr. and Mrs. Harris H. Groten
Dr. Roger W. Grundish
Dr. William A. Hagan
Dr. Stanwood W. Haigler
Dr. Harry E. Hansen
Dr. Chester Hartenstein
Dr. LeRoy L. Herman
Dr. S. Eugene Herman
Dr. John V. Hills
Dr. Oby J. Hoag
Dr. Charles F. Hoefle
Dr. David Hopkins
Dr. James H. Howard
Dr. Lyman L. Hoy
Dr. Donald V. Hughes
Dr. Du Bois L. Jenkins
Dr. Sydney M. Kessler
Knowles Animal Hospital
Dr. Irene Kraft
Dr. Harold Kopp
Dr. Chester J. Lange
Dr. Howard S. Larson
Dr. David E. Lawrence
Dr. Jacob Lebish
Dr. Edwin Leonard
Dr. Lawrence Leveson
Dr. Gilbert Lewis
Dr. Leo J. Lieberman
Dr. Arthur Lipman
Dr. Bernard Lipman
Dr. George Watson Little
Dr. John L. McAuliff
Dr. Gerald E. McCarthy
Dr. John F. McCarthy
McClelland Veterinary Hospital
Dr. John E. McCormick
Dr. Harold F. McDonald
Dr. Alexander D. MacCallum
Dr. Robert C. Mairs
Dr. Edward A. Majilton
ACKNOWLEDGMENTS

VETERINARIANS (Cont.)

Dr. Walter D. Martin, Jr.
Dr. Merwin H. Matthys
Dr. Morton Meisels
Dr. Raphael Meisels
Dr. Lykergus W. Messer
Dr. Clifford H. Milks
Dr. Howard J. Milks
Dr. Richard V. Milks
Dr. John W. Miller
Dr. Malcolm E. Miller
Dr. Walter R. Miller
Dr. Jack Mindell
Dr. Walter H. Mitchell
Dr. Mark L. Morris
Dr. Hugh R. Mouat
Dr. Sidney Nathanson
Dr. Jacque W. Neff
Dr. Wright I. Newton
Dr. Cyril J. Noonan
Dr. Arthur F. North, Jr.
Dr. Richard C. Olmstead
Dr. Russell B. Oppenheimer
Dr. Webster V. Phillips
Dr. Samuel Pollock
Dr. Morris L. Povar
Dr. Roger W. Prior
Dr. John S. Proper
Dr. John L. Putnam
Dr. Ivan Pyle
Dr. Robert A. Rands
Dr. Jerome H. Ripps
Dr. Maurice H. Ryan
Dr. Albert Schaffer
Dr. Harold G. Scheffler
Dr. William Schwartz
Dr. Wilbur P. Schobel
Dr. Joseph L. Serling (In Memoriam)
Dr. Maurice E. Serling

VETERINARY ASSOCIATIONS

Bronx County Veterinary Society
Catskill Mountains Veterinary Medical Association
Central New York Veterinary Medical Association
Finger Lakes Veterinary Medical Association
Hawaii Veterinary Medical Association
Long Island Veterinary Medical Association
Metropolitan New Jersey Veterinary Medical Association
Michiana Veterinary Medical Association
New York State Veterinary Medical Society
Northern New York Veterinary Medical Association

Dr. Robert F. Shigley
Dr. Morris Siegel
Dr. Harold F. Simon
Dr. Alexander Slawson
Dr. Rollin R. Smith
Dr. Edward H. Sproston
Dr. John H. Stack
Dr. John R. Steele
Dr. Rudolph J. Steffen
Dr. Edward F. Steinfeldt
Dr. William E. Steinmetz
Dr. Hadley C. Stephenson
Dr. Joseph R. Sterling
Dr. C. R. Swearingen, Jr.
Dr. James D. Sweet
Dr. and Mrs. Arthur Trayford
Dr. Matthew A. Troy
Dr. R. Frank Vigue
Dr. George D. Vineyard
Dr. Walter D. Way
Dr. Henry C. Weisheit
Dr. and Mrs. William L. Weitz
Drs. Nathan and Helen Wernicoff
Dr. William J. Westcott
Dr. Floyd H. White
Dr. Harrison J. Wilcox, Jr.
Dr. Horace F. Wilder
Dr. Augusta G. Williams
Dr. Jane L. Williamson
Dr. Louis L. Wilson
Dr. R. George Wiswall
Dr. Lemuel W. Woodworth
Dr. Daniel T. Wolfe
Dr. Alan W. Wright
Dr. and Mrs. H. Grady Young
Dr. Irving Zimmerman
Dr. Manuel Zimmerman

Oregon State Veterinary Medical Association
Post Graduate Veterinary Group (New York City)
Southern Florida Veterinary Medical Association
Southern Tier Veterinary Medical Association
Veterinary Medical Association of New York City, Inc.
Westchester Veterinary Medical Association
Western New York Veterinary Medical Association, Inc.
Women's Auxiliary to the New York State Veterinary Medical Society
COMPANIES

Abbott Laboratories
Albers Milling Company
Anchor Serum Company
Animal Foundation, Inc.
Armour and Company
Dr. Ballard's (Ontario) Animal Foods, Ltd.
Beacon Milling Company, Inc.
Burroughs Wellcome & Company, Inc.
Calo Dog Food Company, Inc.
Corn States Serum Company
Charles M. Cox Company
Cutter Laboratories
Dietrich & Gambrill, Inc.
Farmers Syndicate, Inc.
Fay's Professional Products Co.
Fort Dodge Laboratories, Inc.
Fomm Laboratories, Inc.
Gaines Dog Research Center
General Mills, Inc.
Cooperative G. L. F. Exchange, Inc.
Goshen Laboratories, Inc.
Haver-Glover Laboratories
Hi-Life Packing Company
Hill Packing Company
Jensen-Salsbery Laboratories, Inc.
Kasco Mills, Inc.
Kellogg Company
Lederle Laboratories
Lewis Food Company
Eli Lilly and Company
Ashe Lockhart, Inc.
Merck & Company, Inc.
Miller's Dog Foods
Norden Laboratories
Nutrena Mills, Inc.
Old Trusty Dog Food Co., Inc.
Parke, Davis & Company
Park & Pollard Company
Perk Dog Food Company
Charles Pfizer & Company, Inc.
Pitman-Moore Company
Polk Miller Products Corporation
The Quaker Oats Company
Rival Packing Company
Schenley Laboratories, Inc.
Sharp & Dohme
Spratt's Patent Limited (America)
E. R. Squibb & Sons
Sturdy Dog Food Company
Swift & Company
United States Vitamin Corporation
The Upjohn Company
Western Grain Company
Will Corporation
Wilson & Company, Inc.
Winthrop-Stearns, Inc.

CLUBS

Afghan Hound Club of America, Inc.
Afghan Hound Club of California
Airedale Terrier Club of America
Aldenholme Kennels
All Breed Training Club of Akron, Inc.
American Boxer Club, Inc.
American Chesapeake Club
American Foxhound Club
American Fox Hunters Association
American Shetland Sheepdog Association
American Spaniel Club
American Whippet Club
Association of Obedience Clubs & Judges, Inc.
Atlantic Association of Beagle Clubs
Bar K. Belgian Sheepdogs
Bay State Beagle Club
Bay State German Shepherd Dog Club
Beaglers of Orange Empire
Black Jack Beagle Club
Blue Ridge Beagle Club of Sussex County, Inc.
Boston Terrier Club of America
Boston Terrier Club of Maryland
Breeder's Association for Unretouched Dog Photography
Briard Club of America
Buckeye Retriever Club, Inc.
Burlington County Kennel Club, Inc.
Cahokia Beagle Club
California Boxer Club
Calumet Dog Training Group, Inc.
Camden County Kennel Club
Cannonsburg Sportsmen Association
Cape Cod Kennel Club
Capital City Beagle Club, Inc.
Capital Dog Training Club of Washington, D. C.
Cascade Dachshund Club
Central Jersey Beagle Club
Central Maine Beagle Club
Central Missouri Beagle Club
Central New York Kennel Club
Central Ohio Kennel Club
Central States Collie Club
Chagrin Valley Beagle Club
Chambersburg Beagle Club
Champaign Illinois Kennel Club
Cheshire Kennel Club, Inc.
Chicago Park District Dog Training Association
China Lake Kennel Club
Clearfield Beagle Club, Inc.
Cocker Spaniel Club of Eastern Missouri
CLUBS (Cont.)

Cocker Spaniel Club of Kentucky, Inc.
Cocker Spaniel Club of Southern Illinois
Cocker Spaniel Club of Southern Louisiana.
Columbian County Kennel Club, Inc.
Columbus Collie Club
Companion Dog Training Club of Newburgh
Connecticut Spaniel Field Trial Association
Connecticut Boxer Club
Dachshund Club of America
Dachshund Club of Portland
Dachshund Club of St. Louis
Dayton Kennel Club, Inc.
Delaware County Kennel Club
Del Monte Kennel Club
Detroit Cocker Spaniel Club, Inc.
Devon Dog Show Association, Inc.
Doberman Pinscher Breeders Association of Penn-Jersey
Doberman Pinscher Club of Greater Cleveland
Dog Fanciers Association of Oregon, Inc.
Duluth Retriever Club
Durham Kennel Club, Inc.
Eastern Beagle Club, Inc.
Eastern Boxer Club
Eastern Lake Erie Association of Beagle Clubs
Eastern Massachusetts Beagle Club, Inc.
Elm City Kennel Club
English Setter Association of America, Inc.
Erie Kennel Club
Evergreen State Shetland Sheepdog Club
Finger Lakes Kennel Club
First Training Club for German Shepherd Dogs of Chicago
Fort Wayne Beagle Club, Inc.
Foxcatcher Hounds
Fox River Valley Hunt
Genesee Valley Kennel Club
German Shepherd Dog Club of Canada
German Shepherd Dog Club of Central Ohio, Inc.
German Shepherd Dog Club of L. A. County
German Shepherd Dog Club of Rochester and Area
German Shepherd Dog Club of Western New York
Golden Gate Dachshund Club, Inc.
Gordon Setter Club of America
Great Dane Club of America
Great Dane Club of Arizona
Great Dane Club of California
Great Dane Club of Cleveland
Great Dane Club of Northern California
fornia
Great Dane Club of Oregon
Green Spring Valley Hounds
Greenwich Kennel Club, Inc.
Greyhound Club of America
Heart of Ohio Great Dane Club
Hillsboro Hounds
Hockamock Beagle Club
Hoosier Kennel Club
Ingham County Kennel Club, Inc.
International Beagle Federation, Inc.
Irish Setter Club of America
K-9 Obedience Training Club of Essex Co., N. J., Inc.
Kanadasaga Kennel Club, Inc.
Kennel Club of Buffalo, Inc.
Kennel Club of Northern New Jersey, Inc.
Keystone Collie Club
Labrador Retriever Club, Inc.
Ladies Dog Club
Lake Erie Beagle Club
Lancaster Kennel Club
Liberty Bell Cocker Spaniel Club
Lincolnwood Training Club
Little Rhody Beagle Club
Long Island Kennel Club
Longshore-Southport Kennel Club, Inc.
Los Alamos Dog Obedience Club
Louisville Kennel Club, Inc.
Magic Valley Kennel Club, Inc.
Mahoning-Trumbull Beagle Club
Marin County Dog Training Club
Maryland Boxer Club, Inc.
Maryland Cocker Spaniel Club
Mid-Continent Kennel Club of Tulsa, Inc.
Midwest Fox Hunters' Association, Inc.
Minnesota Field Trial Association
Mohawk Valley Beagle Club
Montgomery County Kennel Club
Morris & Essex Kennel Club
Moskeeter Gun Companions
Myopia Hunt Club
National Retriever Field Trial Club, Inc.
New England Association of Beagle Clubs
New England Dog Training Club, Inc.
New Jersey Beagle Club
New Mexico Kennel Club
New Trier Dog Training Club
North Atlantic Association of Beagle Clubs
North Shore Dog Training Club
Northeastern Indiana Kennel Club
Northern Carolina Association of Beagle Clubs
Norwegian Elkhound Association
The Norwich Terrier Club
In establishing the Institute under its administration, the Board of Trustees authorized the Treasurer's office of Cornell University to act as custodian of all funds given in support of the Institute. Donors, therefore, are assured of maximum benefit from their gifts by this supervision of Cornell University officials. Cornell welcomes any gifts or bequests that will help the work of the Institute. All checks should be made payable to Cornell University.