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ABSTRACT  

VERMICOMPOST SUPPRESSION OF PYTHIUM APHANIDERMATUM SEEDLING 

DISEASE: PRACTICAL APPLICATIONS AND AN EXPLORATION OF THE 

MECHANISMS OF DISEASE SUPPRESSION 

Allison Lara Hornor Jack, PhD 

Cornell University 2012 

 

Composts, vermicomposts and their liquid extracts can suppress plant infections 

caused by a variety of pathogens, however this suppression is highly variable, which 

limits their use in commercial crop production. In addition to the inherent variability of 

these materials, conflicting information abounds in the industry and extension 

educational materials regarding liquid compost extracts which were critically evaluated 

with respect to the existing scientific literature. As a case study, non-aerated liquid 

vermicompost extract was produced that promoted seedling growth, consistently 

suppressed zoospore-mediated infections of Pythium aphanidermatum on cucumber 

and maintained suppressiveness for 60 days at room temperature. As both a liquid 

fertilizer and a cultural practice for the suppression of seedling damping off, this material 

could satisfy multiple needs for organic growers.  

After decades of study, we still lack critical insight into the mechanisms of action 

of suppressive composts. We sought to uncover potential mechanisms by which 

vermicomposted dairy manure suppresses Pythium aphanidermatum infections on 

cucumber by investigating the interactions between seed-associated microbial 

communities and P. aphanidermatum zoospores. We found that vermicompost-derived 



 

 
 

seed-colonizing microbes prevented the arrival of zoospores on the seed surface and 

greatly reduced infection in disease suppression bioassays. When microbially modified 

seed exudates were collected from the bioassay apparatus and exposed to zoospores 

in vitro, fewer zoospores swam towards, encysted on and germinated in response to 

exudates from seeds colonized by a suppressive microbial community than to those 

from seeds sown in sterile sand. Combining control and modified exudates failed to 

restore zoospore response, indicating the presence of a toxin or repellant confirmed by 

the consistent lysis of zoospores in the vermicompost and combined treatment, but not 

the sand controls. Exposing zoospores to control and modified seed exudates that had 

been ethyl acetate fractionated provided evidence that the putative toxin/repellant is 

exclusively present in the organic fraction.  
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Pythia (Πυθία) or The Oracle of Delphi1, after which the genus Pythium is named, 

pictured breathing what are now known to be psychoactive hydrocarbons released from 

a geological fault through a spring2. 

  

                                                           
1 Collier, J (1891) "Priestess of Delphi [Public Domain]." Retrieved May 12, 2012, from 

http://en.wikipedia.org/wiki/File:Collier-priestess_of_Delphi.jpg. 
 
2
 Krajick, K. (2005) "Tracking myth to geological reality." Science 310(5749): 762-764. 

[1] 

http://en.wikipedia.org/wiki/File:Collier-priestess_of_Delphi.jpg
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CHAPTER 1. INTRODUCTION 
 

 

 

 

 

I. The phenomenon of disease suppression 

A majority of plant life relies on soil, not simply as an inert growth substrate, but 

as a dynamic living ecosystem in its own right, one deeply involved in global 

biogeochemical cycling and with more uncharacterized biodiversity that any other 

terrestrial ecosystem (Fitter 2005). One of the functions associated with soil 

microorganisms is disease suppression, or the protection of plants from disease when a 

pathogen is present. Disease suppressive soils play a crucial role in the creation and 

management of self-sustaining agroecosystems. A key goal in the practice of 

sustainable agriculture is to decrease the use of synthetic pesticides which creates an 

increased reliance on natural predators and suppressive soil microbial communities for 

the control of agricultural pests. Many of the soil organic matter management practices 

that are now known to be correlated with suppressive soils such as; cover cropping 

(Grunwald et al. 2000), crop rotations (Peters et al. 2003; Smith et al. 2011) and manure 

and composts amendments (Hoitink and Fahy 1986; Litterick et al. 2004), existed well 

before the advent of modern science. Amending soils with manure appears in ancient 
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Roman (Cato 1998) and medieval Arabic (L-Jayr 1991) texts and was a traditional 

practice across Asia (King 1911). The Aztec chinampas system, still in use today, has 

suppressive soils (Lumsden et al. 1987; Marban-Mendoza et al. 1992) potentially due to 

amendment with canal silt and composted aquatic plants (Thurston 1992).  

During the rise of industrial agriculture with its emphasis on synthetic fertilizers, 

many of these soil organic matter management practices were discontinued. Some 

scientists warned of the unintentional consequences that could arise when organic 

matter was not returned to soils during agricultural production (Howard 1943), and these 

warnings eventually became the philosophical underpinnings of the modern organic 

agriculture (Heckman 2006) and soil health (Doran et al. 1996) movements. Growers 

today are reviving and modernizing many traditional agricultural practices in the context 

of sustainability. As more plant pathologists study these systems, links between soil 

organic matter management practices and the occurrence of suppression have been 

documented. The microbial ecology of suppressive soils and composts has been 

extensively studied (Kowalchuk et al. 2003; Benitez et al. 2007; Hjort et al. 2007; van 

Elsas et al. 2008; Kinkel et al. 2011). However, both a comprehensive understanding of 

how disease suppression occurs, and the ability to manipulate agricultural management 

practices to create consistently suppressive soils, remain elusive (Janvier et al. 2007). 

In fact, attempts to synthesize individual research findings for over 400 studies on 

organic soil amendments failed to find specific predictors of suppression (Bonanomi et 

al. 2010), so the challenge now lies in uncovering commonalities between the 

mechanisms at work among different cases of disease suppression in order to generate 

a deeper understanding of the phenomenon. 



 

3 
 

A complicating factor in translating research in disease suppression into practical 

tools for sustainable agriculture is that only formulations of single species of microbes 

can be registered as biopesticides through the US EPA and marketed legally with 

claims of disease control (USEPA 2005). Legal challenges to pest or pathogen control 

claims made by the manufacturers of unregistered materials are not uncommon (Moran 

2010). This leaves little incentive for the compost industry to invest in the research and 

development of consistently suppressive materials since they would not be able to 

capitalize on that investment by marketing their material as disease suppressive. In 

contrast, the production of biopesticides or biocontrol agents is a major industry. 

However, due to the high cost of registering new biocontrol agents, relatively few fungal 

and bacterial species have been commercialized worldwide and almost all exhibit highly 

variable performance in crop production settings (Nelson 2004).  

A similar regulatory hurdle exists in the medical world. Uncharacterized complex 

microbial communities present in the feces of healthy humans have been found to have 

a 90% efficacy in clinical trials for the treatment of chronic recurring Clostridium difficile 

infections (CDI) via fecal transplant (FT) procedures (Borody and Khoruts 2012). While 

the pharmaceutical industry has focused on individual microbial species formulated as 

probiotics, these introduced taxa seldom persist in the human gut after treatment has 

ceased. In contrast, taxa present in the donor flora can persist in the human gut for 

months after transplant, ostensibly due to the fact that they were introduced in the form 

of a stable microbial community (Borody and Khoruts 2012). Donor material for FT is 

widely available, but suffers the same heterogeneity in microbial community 

composition and lack of predictive factors as composts used for soil and plant health. 
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The rapidly growing field of microbial ecology will continue to contribute to our 

understanding of the role of complex microbial communities in the suppression of 

diseases in both agriculture and human medicine. However, this knowledge will need to 

be applied towards creating regulatory frameworks that can include complex microbial 

communities as amendments and therapeutic treatments in order for the promise of 

disease suppression to be realized. 

II. Research strategies for understanding suppression 

Oomycetes are fungal-like stramenopile eukaryotes that are most closely related 

to photosynthetic algae (Baldauf et al. 2000). Many oomycetes are pathogens of 

animals and plants. Plant pathogens in the genus Pythium are ideally suited for studies 

on disease suppression for several reasons. Many Pythium spp. are pervasive 

generalist pathogens that are ubiquitous in agroecosystems and constitute a major 

impediment to the production of a broad range of crops (Farr et al. 1989; Martin and 

Loper 1999). These organisms are highly susceptible to suppression by single species 

of bacteria (Paulitz 1991; Bowers and Parke 1993; Amer and Utkhede 2000; Bardin et 

al. 2003), fungi (Benhamou and Chet 1997; Georgakopoulos et al. 2002) and 

oomycetes (Paulitz et al. 1990; Abdelzaher et al. 1997), as well as naturally occurring 

assemblages of microbes present in decomposing cover crops (Grunwald et al. 2000; 

Conklin et al. 2002; Smith et al. 2011), soils (van Os and van Ginkel 2001; Kowalchuk et 

al. 2003), composts (Chen et al. 1988; Boehm et al. 1993; Ben-Yephet and Nelson 

1999; Scheuerell et al. 2005) and rockwool used in hydroponic production (Postma et 

al. 2005). Several distinct research strategies have been employed in the investigation 

of Pythium suppressive microbial communities.  
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One strategy for understanding suppressive soils and compost is to search the 

total microbial community for individual microbial taxa that are known to be suppressive 

when tested alone. Certain bacterial taxa like actinomycetes, Bacillus spp. and 

fluorescent pseudomonads are often associated with Pythium suppression (Boehm et 

al. 1993; Grunwald et al. 2000; McKellar and Nelson 2003; Postma et al. 2005). Many 

members of these taxa are effective when used individually to challenge pathogens 

both in vitro (Carisse et al. 2003; de Souza et al. 2003) and in vivo (Ongena et al. 1999; 

Shang et al. 1999). However, we know that an individual bacterium’s production of 

pathogen suppressing chemical compounds changes depending on the presence of 

different microbial competitors (Garbeva et al. 2011), a situation that is complicated to 

untangle (Haruta et al. 2009). The presence of a fluorescent pseudomonad in a 

suppressive soil may not necessarily implicate this bacterium in the observed 

suppression. In fact, one of the often cited examples of ‘specific suppression’, the role of 

antibiotic-producing fluorescent pseudomonads in take-all decline of wheat 

(Gaeumannomyces graminis var. tritici), found that Pseudomonas fluorescens played 

no role in suppression of take all in organically managed soil with high organic matter 

content and high microbial activity (Hiddink et al. 2005). P. fluorescens population 

density was actually higher in the non-suppressive conventionally managed soils 

(Hiddink et al. 2005). In addition, Pseudomonas spp. were thought to be responsible for 

the suppression of Thielaviopsis basicola on tobacco until a comprehensive soil 

microbial ecology study found multiple additional taxa with recognized biocontrol 

abilities at a higher prevalence in the suppressive soil (Kyselkova et al. 2009). Therefore 

assessing microbial communities in their entirety in the search for a core microbiome, 
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as daunting a task as this may be given their complexity, is essential for understanding 

suppression.  

Another approach for identifying microbial taxa or functional genes involved in 

suppression is to compare the microbial communities from suppressive and conducive 

soils. Any taxa or functional genes exclusively present in, or present at a higher 

abundance in the suppressive soil have a high likelihood of participation in suppression. 

This approach has historically been limited by the sensitivity of the methods used for 

community analysis. For example, a comparison of a suppressive and conducive soil 

using Denaturing Gradient Gel Electrophoresis (DGGE) found no measurable 

differences between the microbial communities in the two substrates (Kowalchuk et al. 

2003). Terminal Restriction Fragment Length Polymorphism (T-RFLP) has been used 

effectively to identify bacterial taxa involved in suppression (Benitez et al. 2007). 

However using this technique to link taxa to function, although possible, is highly 

complex because of the relatively short sequences that can be generated from TRFs 

(Benitez and McSpadden-Gardener 2009). Early attempts at using metagenomics to 

explore disease suppressive soils was hampered by the “needle in the haystack” 

approach which made it almost impossible to measure non-housekeeping genes in 

complex communities (van Elsas et al. 2008). Using more sensitive techniques like 

PhyloChip analysis can lead to higher resolution of suppressive and conducive 

communities and significantly narrow the taxa potentially associated with suppression 

(n=17 taxa) (Mendes et al. 2011). However, limitations of using this high resolution 

technique with rhizosphere soil include the logistical constraints of working with such a 
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complex community (> 33,000 OTUs). To date, this technique has only been used with 

one suppressive soil. 

One way to limit the complexity of disease suppressive microbial communities 

and allow broader questions to be asked is to restrict the analysis to only those 

microbes that are present in the infection court at time points relevant to the inhibition of 

pathogenesis. Working with seeds at early time points in germination can drastically 

simplify the plant-associated microbial community since seeds are often the first point of 

contact between the host, the suppressive community and the pathogen. The area 

around germinating seeds, or the spermosphere, is a dynamic habitat for microbes, 

some of which respond rapidly to exudates and colonize the seed surface (Nelson 

2004). Microbes present in the bulk soil that do not respond to seed exudates are 

unlikely to be involved in suppression and it is possible to remove them from the 

analysis via transplant. Transplant experiments where seeds are sown in a suppressive 

substrate for several hours, then transferred to a sterile substrate before inoculation with 

Pythium spp. have documented the important role seed colonizing microbes play in the 

suppression of disease (Yin et al. 2000; McKellar and Nelson 2003; Chen and Nelson 

2008). Recent data show that suppressive seed-colonizing communities can be 

relatively simple with around 350 OTUs (Chen et al. 2012) compared to over 33,000 

OTUs in rhizosphere soil (Mendes et al. 2011). The search for microbes involved in 

suppression can be narrowed even further through selective perturbations of the seed 

colonizing community with antibiotics. This approach identified 29 OTUs responsible for 

the observed difference in microbial communities between a suppressive seed 
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colonizing community and one treated with antibiotics where suppression was disrupted 

(Chen et al. 2012).  

The system used in this study consisted of: cucumber (Cucumis sativus cv 

“Marketmore 76”), vermicomposted dairy manure (Worm Power, Avon NY) and the 

oomycete plant pathogen Pythium aphanidermatum. Transplant experiments were used 

to document a suppressive seed colonizing microbial community and therefore exclude 

the bulk compost microbial community from analysis. However, instead of investigating 

the seed-colonizing microbial community directly, as described above, the pathogen 

was used as a type of biosensor. Both in vivo and in vitro changes in the pre-infection 

behavior of the pathogen’s motile zoospores under different experimental conditions 

were used to make inferences about the nature of suppression in this system. This 

study appears in Chapter 3.   

IV. Pythium zoospores in the spermosphere as a model system  

 Pythium spp. have a complex life cycle with multiple developmental stages 

capable of causing disease (Figure 1). Pythium aphanidermatum hyphae undergo 

sporangiogenesis and the resulting toruloid sporangia germinate directly via the 

production of a germ tube or indirectly via zoosporogenesis (Matthews 1931). Recent 

work in the Nelson lab has called into question the ability of directly germinating 

sporangia to cause infection (Carr and Nelson, unpublished). Once zoospores are 

released they exhibit a chemotactic homing response triggered by chemical compounds 

present in host seed or root exudates which is an essential part of pathogenesis 

(Donaldson and Deacon 1993b) (Figure 2).  
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Figure 1. Life cycle for Pythium aphanidermatum, modified from (Matthews 1931) 

  

 

Figure 2. Schematic of zoospore chemotaxis in response to a germinating cucumber 

seed (swimming and encysted zoospores not to scale).  
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Host-derived signals are received by chemoattractant receptors present on the 

zoospore plasma membrane which covers both the body and flagella (Estrada-Garcia et 

al. 1989) (Figure 3A). Chemoattractant receptors can be species specific (Mitchell and 

Deacon 1986), for example plasma membrane receptors of Aphanomyces cochlioides 

bind attractant cochliophilin A (Sakihama et al. 2004) while those of Phytophthora 

palmivora bind attractant isoveraldehyde (Cameron and Carlile 1981). Signals that bind 

to the flagellar membrane are most likely transported to the main cell via intraflagellar 

transport (IFT), although this intracellular trafficking system has only been well 

characterized in other eukaryotes (Rosenbaum and Witman 2002).  Binding of the 

chemoattractant to the plasma membrane receptor triggers a relatively uncharacterized 

signaling cascade reliant on heterotrimeric G-proteins (Islam et al. 2003; Dong et al. 

2004; Hua et al. 2008). The swimming zoospore then changes direction more frequently 

which results in overall directional movement towards the host. Zoospores are non-

assimilative and are thus limited to the energy stores present in lipid bodies (Figure 3A). 

They lack a cell wall and use a water expulsion vacuole to maintain osmotic regulation 

and lysis of the delicate plasma membrane prior to encystment (Figure 3A).  

Once the swimming zoospore arrives at the host surface, it is thought that there 

is a physical interaction between a different set of plasma membrane receptors and 

glycoproteins on the host surface (Jones et al. 1991) (Figure 3B), although this 

interaction has not been well characterized. Saccharides on the host surface commonly 

act as encystment triggers (Estrada-Garcia et al. 1990); arabinoxylan for P. 

aphanidermatum (Donaldson and Deacon 1993a) and sulfated galactans for P. 
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porphyrea (Uppalapati and Fujita 2000). Once encystment begins, the zoospore docks 

with its ventral groove facing the host surface and sheds its flagella.  

Figure 3. Schematic of zoospore pre-infection events. Key: WEV: water expulsion 
vacuole, N: nucleus, M: mitochondria, V: vacuole. 

 

  

The usually kidney-shaped zoospore begins to become spherical and lay down a cell 

wall. High molecular weight glycoproteins present stored in the large peripheral vesicles 

are broken down as a nutrient source during encystment (Gubler and Hardham 1990) 

(Figure 3C). During encystment dorsal vesicles secrete a mucilaginous cyst coat (Figure 

3C) and ventral vesicles secrete an adhesive which attaches the cyst to the host 

surface (Figure 3D) (Hardham and Gubler 1990). Once the cell wall is full formed, 
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cytoskeletal changes occur and F-actin concentrates at the site of germ tube 

emergence assisting with plant cell wall penetration (Islam 2008) (Figure 3D-E). 

Because of their complex series of pre-infection events, zoospores can be used 

essentially as biosensors in order to dissect the biochemistry of host-pathogen 

interactions during both pathogenesis and suppression. To date, this strategy has been 

implemented exclusively in the study of plant resistance and individual biocontrol 

organisms. Fractioning whole plant extracts into their individual chemical components 

demonstrated that although a non-host species produced zoospore attractants, it also 

produced a “masking signal” that immobilized zoospores on contact (Islam et al. 2004). 

This masking signal was chemically characterized, isolated from the plant’s roots and 

proposed as a component of this plant species’ resistance to Aphanomyces cochlioides 

infection (Islam et al. 2004). In vitro exposure of zoospores to cell free culture 

supernatant can aid in determining the mechanism of suppression (Islam et al. 2005). 

Documenting changes in zoospore response to treated roots in vivo and measuring the 

expression of putative zoosporocidal compounds in the rhizosphere are additional 

important steps in determining mechanisms of biocontrol (Thrane et al. 2000). However, 

measuring zoospore response to exudates collected from microbially treated seeds or 

roots goes a step even further in linking responses from in vitro assays to phenomena 

observed in situ for living plant hosts (Heungens and Parke 2000; Lioussanne et al. 

2008; Islam 2010). Studies of this type are not always designed in a way that can 

distinguish between alternate hypotheses, for example whether a biocontrol agent 

degrades a zoospore attractant present in plant exudates or produces a zoosporocidal 

toxin (Zhou and Paulitz 1993). Chapter 3 contains a combination of two approaches for 



 

13 
 

understanding suppression; 1) focusing on the seed colonizing suppressive microbial 

community and 2) using the zoospore as a biosensor to measure responses to 

microbially modified seed exudates. 

IV. Disease suppressive vermicompost 

 Vermicomposts are distinct from traditional thermogenic composts in that their 

production relies on a high density of epigeic earthworms to process different types of 

organic wastes in a mesophilic process (Jack and Thies 2006). Thermogenic composts 

can take up to 9 months to fully mature and this stage usually takes place outdoors in 

windrows where the material is subjected to variable weather conditions. 

Vermicomposting can shorten curing times to 2 months or less. Due to these higher 

rates of material flow through facilities and the considerable higher market value for 

finished vermicompost, it is possible to conduct the entire process indoors which 

imparts a level of process control not usually associated with the composting of 

agricultural wastes. The integration of thermogenic and vermicomposting, through pre-

composting followed by vermicomposting, can shorten stabilization time and increase 

overall product quality (Ndegwa and Thompson 2001). In addition, in order for 

vermicomposts to be used in USDA National Organic Program certified crop production 

without a 90 day pre-harvest interval, an initial thermogenic composting phase must be 

employed to assure the destruction of potential human and plant pathogens present in 

the initial feedstock (NOSB 2006). Vermicomposted dairy manure used in the projects 

described in Chapters 2 and 3 is manufactured in Avon, Livingston County NY by Worm 

Power, LLC one of the largest indoor vermicomposting facilities in North America 

(Sherman and Bogdanov 2011) which incorporates an initial thermogenic phase with a 
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continuous flow through vermicomposting system (Edwards 2010) and such is listed by 

the Organic Materials Review Institute as an allowable amendment in certified organic 

crop production. Demand for vermicomposts in certified organic greenhouse production 

is expanding as prominent growers demonstrate success in their use as tools for plant 

nutrient management (Yeager 2011). 

 Within the past two decades, interest in vermicompost amendments for plant 

disease suppression has grown considerably as shown by recent literature reviews 

(Dominguez et al. 2010; Jack 2010; Simsek-Ersahin 2011) although a majority of this 

interest has come from developing nations where researchers are highly invested in 

finding low cost effective tools for crop disease management. Efficacy has been 

demonstrated for a variety of plant pathogens, however variability based on feedstock, 

amendment rate, amended substrate and pathosystem exist (Table 1) as is the case for 

thermogenic composts. Very few studies have explored the mechanism of 

vermicompost mediated suppression or their impact on plant-associated microbial 

communities, with some exceptions (Robeldo et al. 2010; Jack et al. 2011). 

Vermicompost was chosen as a research material in the projects described here 

because its small particle size and profile of available plant nutrients make it highly 

useful for large scale use in commercial greenhouses as a transplant media 

amendment. In addition, the high level of process control at the facility provides a higher 

likelihood of the end product containing a consistent microbial community which is 

useful in the study of plant disease suppression.  
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Table 1. Disease suppressive vermicompost results in the literature, modified from Jack 2010 

Reference Feedstock 
Amendment rate (%) / significant suppression  
+ = yes, - = no 

Substrate Crop Pathogen 

(Kannangara et 

al. 2000) 
z
 

dairy 

manure 

separated 

solids 

5 10 20 30 40 

yellow cedar 

sawdust 

cucumber (Cucumis sativa 

cv. ‘Corona’) 

Fusarium 

oxysporum f. sp. 

radicis cucumerinum  
- - - - - 

(Joshi et al. 2009) unspecified 

10 t ha
-1 y

 
soil 

French bean (Phaseolus 

vulgaris L.) 

Rhizoctonia solani 
- (2005) - (2006) 

10 t ha
-1 y

 
soil 

Phaeoisariopsis 

griseola + (2005) + (2006) 

(Rivera et al. 

2004) 

cattle 

manure 

25 50 75 100 
soil 

white pumpkin (Cucurbita 

maxima) 
Rhizoctonia solani 

+ 
x
 + + + 

(Asciutto et al. 

2006) 
unspecified 

25 50 75 100 unspecified 

potting media 

bedding ornamental 

(Impatiens wallerana) 
Rhizoctonia solani 

- 
w
 - - - 

(Rodríguez 

Navarro et al. 

2000) 

cattle 

manure 

10 20 30 40 black earth, 

chicken manure, 

rice husks 

(70:20:10) 

Gerbera daisy (Gerbera 

jamesonii) 

Phytophthora 

dreschleri & 

Fusarium 

oxysporum 

+ + + + 

10 + fert 20 + fert 30 + fert 40 + fert 

- + - - 

(Singh et al. 

2008) 

vegetable 

waste & 

cattle 

manure 

2.5 t a
-1

 5 t a
-1

 7.5 t a
-1

 10 t a
-1

 

soil 
strawberry (Fragaria x 

ananassa cv. 'Chandler') 
Botrytis cinerea 

+ + + + 

(Rivera et al. 

2001) 
unspecified 

25 50 75 100 

soil 

eggplant (Solanum 

melongena cv ‘Florida 

Market’) 

Rhizoctonia solani 
+ + + + 

(Bhadoria et al. 

2003) 
unspecified 

3.2 t ha
-1

 
soil 

rice (Oryza sativa cv. 'Pusa 

Basmati') 
Rhizoctonia solani 

+ 

(Wright et al. 

1999) 
unspecified 

25 50 75 100 

soil 
Autumn squash (Cucurbita 

maxima) 
Rhizoctonia solani 

+ + + + 

(Sahni et al. 

2008) 

vegetable 

waste, leaf 

litter 

10 25 50 
 sterile field soil 

chickpea (Cicer arietinum 

cv. ‘Avrodhi’) 
Sclerotium rolfsii 

+ + + 

(Villa-Briones et 

al. 2008) 
unspecified 

7.5 t ha
-1

 12 t ha
-1

 

  soil 
tomato (Lycopersicon 

esculentum Mill.) 
Nacobbus aberrans 

+ + 
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Reference Feedstock 
Amendment rate / significant suppression  

+ = yes, - = no 
Substrate Crop Pathogen 

(Szczech et al. 

1993) 

cattle 

manure 

10 20 100 

peat 

tomato (Lycopersicon 

esculentum) 

Phytophthora 

nicotianae var. 

nicotianae + + + 

10 100 
tomato (Lycopersicon 

esculentum) 

Fusarium 

oxysporum f. sp. 

lycopersici 
- 

u
 + 

u
 

root dip 
t
 cabbage (Brassica oleracea 

cv. 'Ditmarska') 

Plasmodiophora 

brassicae + 
u
 

(Szczech and 

Smolinska 2001) 

sheep 

manure 

50 100 

peat 
tomato (Lycopersicon 

esculentum cv. 'Remiz') 

Phytophthora 

nicotianae var. 

nicotianae 

+ + 

cattle 

manure 

50 100 

- + 

horse 

manure 

50 100 

+ + 

sewage 

sludge 

50 100 

+ +
 x
 

(Szczech 1999) 
cattle 

manure 

20 100 
peat 

tomato (Lycopersicon 

esculentum cv. 'Remiz') 

Fusarium 

oxysporum f. sp. 

lycopersici 

- + 

15 30 
7:2:1 pine bark 

compost, pine 

sawdust, brown 

coal powder + + 

30 7:3 pine bark 

compost : brown 

coal powder 
+ 

 P. irregulare P. ultimum R. solani   

(Scheuerell et al. 

2005) 

cattle 

manure, 

food waste, 

paper  

50 + + - Sunshine mix # 

1 (Sun Gro) peat 

perlite medium 

cucumber (Cucumis sativus 

cv. "Marketmore 76') 

Pythium irregulare 

50 + + - Pythium ultimum 

dairy 

manure  
50 - + - 

Sphagnum peat, 

vermiculite 

cabbage (Brassica oleracea 

cv. 'Cheers') 
Rhizoctonia solani dairy 

manure, 

straw 

50 + + - 
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Reference Feedstock 
Amendment rate / significant suppression  

+ = yes, - = no 
Substrate Crop Pathogen 

(Robeldo et al. 

2010) 

Dairy 

manure 

50 

rice hulls 
tomato (Lycopersicon 

esculentum cv. 'Loica') 
Rhizoctonia solani 

+ 

Fruit waste 
50 

+ 

(Singhai et al. 

2011) 

vegetable 

waste, leaf 

litter 

20 
sterile soil potato (Solanum tuberosum) 

Streptomyces 

scabies + 

 

z
 In this case a thermophilic compost made from the same feedstock was suppressive towards the pathogen  

y
 Vermicompost applied in conjunction with non-aerated VC extract applied every 15 d 

x
 25 % amendment was only significantly suppressive at 15°C, not 22°C  

w
 25 % amendment had significantly higher disease than the control (non-amended) 

u  
no statistics were run on these trials, however a trend of suppression was seen with vermicompost amendments 

t
 Vermicompost used as a component of a root dip before transplanting, clay: vermicompost: water 3:8:5-6 
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 Given the limited options for plant disease management in certified organic 

production systems, there has been a growing interest in using liquid compost extracts 

as a way to inoculate both below and aboveground plant surfaces with potentially 

beneficial microbes. This practice has not been as thoroughly scientifically investigated 

as have disease suppressive composts, although a significant body of literature does 

exist (Scheuerell and Mahaffee 2002), most of it firmly on the outer fringes of 

mainstream plant pathology. Non-aerated liquid compost extracts were extensively 

investigated in Germany in the 1980s and 90s by respected plant pathologists (Weltzien 

1989), however in the US the first paper on these materials in the field of plant 

pathology’s society journal, Phytopathology, did not appear until 1996 (Yohalem et al. 

1996), with the subsequent paper in 2004 (Scheuerell and Mahaffee 2004). Scheuerell 

and Mahaffee’s recent pioneering work has led to an increase in higher quality papers 

on disease suppressive liquid compost extract in recent years (Larkin 2008; Palmer et 

al. 2010).  

Liquid vermicompost extracts are effective in certain cases in greenhouse and 

field studies, however most of the available studies are of the “spray and pray” variety 

and do not provide the kind of information needed to build a coherent body of 

knowledge around these materials (Table 2). In the US, an overall lack of research and 

extension regarding liquid compost extracts in the past has allowed for the rise of 

commercial entities that filled the information void with a for-profit model. Unfortunately 

some of these entities consistently propagate misinformation about these materials on 

the internet and at grower meetings (Mahaffee and Scheuerell 2006) and provide 

commercial testing services that purport to predict if the material will be disease 
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suppressive with methods that have no correlation to suppression in bioassays 

(Scheuerell and Mahaffee 2004). In addition, most if not all “compost tea” companies 

manufacture and sell expensive aeration systems even though there is no evidence that 

aeration is required to produce a suppressive compost extract (Cronin et al. 1996; Al-

Dahmani et al. 2003; Scheuerell and Mahaffee 2006; Haggag and Saber 2007). 

Because of the rise of pervasive pseudoscience around these materials, some 

extension educators have overreacted by making snake oil comparisons and ignoring 

much of the scientific evidence that they can in some cases suppress plant disease 

(Chalker-Scott 2001; Chalker-Scott 2003; Chalker-Scott 2003b; Chalker-Scott 2007; 

Downer 2011). This has created a confusing situation both for people who want to make 

and sell liquid compost extracts and growers who want to use the material effectively in 

their production systems. Chapter 2 describes an applied study geared to meet compost 

industry and organic grower needs by revisiting the early German work on non-aerated 

liquid compost extracts, developing a low-cost Pythium suppressive non-aerated 

vermicompost extract and providing a rough chemical and microbiological 

characterization of the extraction process and the finished material.  
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Table 2. Suppression of plant pathogens with liquid vermicompost extracts 

Ref Feedstock 

Preparation of vermicompost extract: 

Crop Pathogen S Ratio 

VC: 

water 

Aeration Time Additives Appl. rate 

(Singh et al. 

2003) 
unspecified 1:2 

shaken every 

4 h 
24 h none various

a
 

Pisum sativum Erysiphe pisi + 

Impatiens balsamina Erysiphe cichoracearum + 

(Travis and 

Rytter 2003) 
unspecified 1:69 

aerated 

(unspecified) 
24-36 h yes 

b
 25 gal a

-1
 Vitis spp. Erysiphe necator +

k
 

(Scheuerell 

and 

Mahaffee 

2006) 

food waste, 

paper 1:1 v:v 

1:5 none  7 d none unspecified  

Geranium pelargonium 

x hortorum cv. 'Ringo 

Red 2000' 

Botrytis cinerea +/- 
j
 

1:5 none  7 d 1.2 g powdered kelp, 2.5 ml humic acids, 3 g rock dust (in 10 L total volume) +/- 

1:5 none  7 d 0.3 % molasses, 0.3% hydrolyzed yeast powder - 

1:5 constant  34-36 h No  - 

1:5 constant  34-36 h 1.2 g powdered kelp, 2.5 ml humic acids, 3 g rock dust (in 10 L total volume) + 

1:5 constant  34-36 h 0.3 % molasses, 0.3% hydrolyzed yeast powder - 

(Joshi et al. 

2009) 
unspecified 1:5 initial stirring 10 d none 1000 L ha

-1 c
 Phaseolus vulgaris 

Rhizoctonia solani - 

Phaeoisariopsis griseola + 

(Zaller 

2006)
d
 

fruit, 

vegetable & 

cotton waste 

1:2 none 24 h none unspecified 

Lycopersicon 

esculentum  

cv. ‘Diplom F1' 

Phytophthora infestans 

 

 

+ 
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cv. 'Matina' - 

cv. 'Rheinlands Ruhm' - 

(Utkhede 

and Koch 

2004) 

unspecified ~1:21 15 m h
-1

 2 d 

19.5 g 

soluble kelp 

in 16 L total 

volume 

unspecified 
Lycopersicon 

esculentum 

Clavibacter michiganensis 

subsp. michiganensis 
+ 

Ref Feedstock 

Preparation of vermicompost extract: 

Crop Pathogen S Ratio 

VC: 

water 

Aeration Time Additives Appl. rate 

(Scheuerell 

and 

Mahaffee 

2004) 

vegetable 

waste 
e
 

1:30 continuous 36 h 

non soil drench Cucumis sativus Pythium ultimum +/- 

5 ml bacterial nutrient solution (Soil Soup Inc. proprietary) +/- 

1.2 g seaweed powder, 2.5 mL humic acids, 3 g rock dust (in 15 L total volume) + 

(Budde and 

Weltzien 

1988) * 

unspecified NA none 3 d none unspecified Barley cv. ‘Gerbel’ 
Erisyphe graminis f. sp. 

hordei 
+ 

(Larkin 

2008) 
various 

h
  continuous  

Earth Tea 

Brewer 

proprietary 

blend 
g 

1 L 216 m
2 f

 
Solanum tuberosum cv. 

‘Shepody’ 

Rhizoctonia solani - 

Streptomyces scabies + 
i
 

(Dagostin et 

al. 2011) 
unspecified NA unspecified NA 

none 
spray to run 

off 

Vitis spp. cv. ‘Pinot Gris’ 

and cv. ‘Chasselas’ 
Plasmopara viticola 

- 

clinoptilolite
l
  - 

(Orlikowski 

1999) * 
unspecified 1:5  NA, trade name Antifung 20 SL soil drench 

Gerbera spp. Phytophthora cryptogea + 

Hedera helix (cuttings) Pythium ultimum + 

Cyclamen 
Fusarium oxysporum f. sp. 

+ 
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Carnation cv. “Tanga” dianthi + 

(Nakasone 

et al. 1999) 

dairy 

manure, 

coffee chaff 

1:1 None 10 d None 
In vitro to 

cultures 
NA 

Botrytis cinerea 

Sclerotinia scloerotiorum 

Sclerotium rolfsii 

Rhizoctonia solani 

Fusarium oxysporum f.sp. 

solani 

Hemileia vastatrix 

Alternaria solani 

Colletotrichum sp.  

+ 

+ 

+ 

+ 

+ 

 

+ 
m
 

+ 

- 

 

a
 Extract dried down and resuspended at 1-5 g L

-1 

b
 Seaweed plus HydraHume-AN (118 mL), SP-85 (22 g), molasses (113 g), corn oil (1/4 t), fish hydrolysate (5 mL) to 25 gallons 

c
 Applied in conjunction with soil amendment of VC 10 t ha

-1
 

d
 Small sample size, low level of naturally occurring infection during field season 

e
 The vermicompost itself was not suppressive when amended at 1:3 v:v peat pearlite 

f 
Rate of initial application 1 d prior to planting, additional applications in-furrow as a soil drench and sprays 4 and 8 weeks after planting 

g 
Blend contains clay, blue green algae, sugar, yeast and kelp 

h 
Culled produce, coffee grounds, composted horse manure, paper, straw 

i 
Only in a barley – rye rotation, not in barley – clover or continuous potato 

j
 At least one, but not all replicate batches/trials resulted in significant suppression of disease 
k
 Only significant reduction was in severity of leaf infection, no significant reductions in incidence on leaves and clusters 

l
 Ecosfera proprietary rate 
m Spore germination, all others germ tube emergence rate 
* Not a peer reviewed journal, but “Communications from the Federal Biological Institute for Agriculture and Forestry” in Germany 
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ABSTRACT 

 Liquid extracts of composts and vermicomposts can suppress plant infections 

caused by a variety of pathogens, however this suppression is highly variable, which 

limits the effective use of composts in commercial crop production. In addition to the 

inherent variability of these materials, conflicting information is present in the scientific 

research, industry information and extension educational materials regarding liquid 

compost extracts. These conflicts are explored and compared to the research findings 

reported here and in other scientific publications. Our objective for this project was to 

develop a consistently disease suppressive non-aerated vermicompost extract (NVE) 

that retains its suppressiveness over several weeks in storage. Using a simple seedling 

germination assay to choose the appropriate vermicompost to water ratio was crucial to 

avoid the phytotoxic effects of high salinity. NVE was produced at a 1:60 vermicompost 

to water ratio over an extraction period of 10 days with periodic minimal circulation, but 

not aeration, from a sump pump to re-suspend particulate matter. Dissolved oxygen 

levels declined from 6 to nearly 0 ppm over the extraction period, while viable bacteria 

showed population levels of around 107 cells ml-1. The finished extract promoted 
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seedling growth and had a desirable profile of plant-available nutrients although 

supplementation with additional sources of nitrogen may be required for some crops. 

Fresh and lyophilized-reconstituted NVE consistently suppressed zoospore-mediated 

infections of Pythium aphanidermatum Edson (Fitzp.) on cucumber. Sterile-filtered NVE 

offered no protection compared to sand controls indicating the involvement of microbes 

in the observed suppression. NVE maintained suppressiveness for 60 days at room 

temperature after which efficacy declined significantly. As both a liquid fertilizer and a 

cultural practice for the suppression of seedling damping off, this material could satisfy 

multiple needs for organic growers. Additionally, the production of non-aerated extracts 

is simple, relatively low cost and this particular material has a long shelf life (60 d) 

compared to the 4-6 hours recommended for aerated extracts. With additional research 

the powdered lyophilized NVE could be developed into a seed treatment for the 

biologically-based management of seedling damping off.     

 

INTRODUCTION 

i. Liquid compost extracts 

The use of composts for the maintenance of plant health has been central to the 

modern organic agriculture movement dating back to the early 1900s (Heckman 2006). 

Over the past century, research has shown that composts can suppress plant diseases 

caused by a variety of pathogens, however the high variability of suppression precludes 

their commercial use for biologically-based disease management (Hoitink and Fahy 

1986; Litterick et al. 2004; Jack 2010; Simsek-Ersahin 2011). For management 
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scenarios where it is not feasible to add solid compost, i.e. applications to foliar surfaces 

to manage foliar diseases and as a liquid fertilizer amendment throughout the growing 

season, making a liquid compost extract provides an alternative means of application 

for plant available nutrients and potentially disease suppressive microorganisms.  Like 

solid composts, liquid compost extracts may be disease suppressive (Weltzien 1989; 

Scheuerell and Mahaffee 2002), however the extreme variability along with an inability 

to identify predictive factors for suppression are major impediments to widespread 

adoption of these materials (Mahaffee and Scheuerell 2006). The uniqueness of 

compost feedstocks along with the multitude of methods for extract production, 

including complex proprietary blends of additives, make it is difficult to draw 

comparisons between studies in order to develop a comprehensive understanding of 

how the extraction process and feedstock source affect end product consistency and 

predictability.  

Compost extracts have been prepared either through a non-aerated or aerated 

process (Scheuerell and Mahaffee 2002). Non-aerated compost extracts have a history 

in Biodynamic farming popularized by Rudolf Steiner in the early 1900s (Koepf et al. 

1976) and significant plant disease suppression was documented in Germany in the 

1980s and early 1990s in non-peer reviewed publications, trade journals and 

government research bulletins, and in peer reviewed scientific journals and dissertations 

as summarized in the following reviews (Weltzien 1989; Weltzien 1990; Trankner 1992). 

For the past several decades, non-aerated compost extracts have been shown to 

suppress a wide range of plant diseases (Ketterer and Schwager 1992; McQuilken et al. 

1994; Zhang et al. 1998; Hibar et al. 2006; Kone et al. 2010; Dukare et al. 2011).  
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Approximately 10-20 years ago, actively aerated compost extracts were 

developed and popularized in the US by several companies; Soil Food Web, Inc., 

Growing Solutions Inc., EPM Inc., and Keep It Simple Inc. (Ingham 2005). The 

necessity of sometimes costly aeration systems and the requirements for a variety of 

additives and microbiological testing services was and still is heavily marketed by these 

companies to homeowners as well as commercial growers. However, aeration and 

additives were subsequently shown to be unnecessary in the production of liquid 

compost extracts for crop nutrient management (Pant et al. 2009; Pant et al. 2011). 

Although some aerated compost extracts suppressed plant diseases (Singh et al. 2003; 

Scheuerell and Mahaffee 2004; Scheuerell and Mahaffee 2006; Larkin 2008; Cummings 

et al. 2009; Segarra et al. 2009; Siddiqui et al. 2009; Palmer et al. 2010), comparisons 

of aerated and non-aerated extracts made from the same batch of compost show that 

aeration during the extraction process does not increase the finished extract’s ability to 

suppress disease. Non-aerated extracts were either equal in suppression of disease 

(Al-Dahmani et al. 2003; Scheuerell and Mahaffee 2006; Xu et al. 2012), or offered 

significantly higher suppression of disease (Cronin et al. 1996; Haggag and Saber 

2007) compared to aerated extracts made from the same batch of compost. An 

unfortunate situation has developed where the overall lack of research and extension 

education in this area has allowed much misinformation regarding aeration to be 

proliferated, a sentiment shared by W. Mahaffee, USDA ARS and S. Scheuerell, The 

Evergreen State College,  

“Due to the lack of information from the scientific community on the 

topic of compost tea production and utilization, [growers, 
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homeowners and landscape managers] have sought and utilized 

information from other sources. This information void has been 

filled partially by a few individuals who have created and marketed 

simplistic solutions for plant disease control which are not 

supported by past and current research, but are appealing to the 

producer” (Mahaffee and Scheuerell 2006). 

ii. Educational resources on liquid compost extracts 

 In the informational landscape surrounding compost extracts, much of what is 

produced by commercial entities (aerated compost extraction equipment producers, 

extract producers and extract testing services) has little to no scientific basis. However, 

third party educational resources on compost extracts from sustainable agriculture non-

profits, federal agricultural agencies and university cooperative extension groups can 

contribute to the confusion over what has been scientifically validated and what hasn’t. 

For example, resources from Appropriate Technology Transfer to Rural Areas (ATTRA, 

a project of the federal agency: National Center for Appropriate Technology NCAT) and 

the Northeast Organic Farming Association (NOFA-NY) directly recommend having 

extract samples tested by the commercial laboratory Soil Foodweb Inc. without any 

mention of third party verification of the usefulness this type of testing (Diver 2002; 

Gershuny 2011). The total to active bacterial and fungal ratios promoted as 

measurements of compost extract quality by Soil Food Web Inc. (Ingham 2005) have 

subsequently been shown not to correlate with the ability to suppress disease by 

researchers who attended a training in these techniques taught by the president of the 

company (Scheuerell and Mahaffee 2004). This testing method was listed in an 
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eOrganic resource with the description “Proposed as an index of disturbance and 

nutrient enrichment; inconsistency in methods has made some conclude that the 

method has little-to-no practical relevance” (Wander 2012). Grower resources from 

NOFA-NY parrot the aerated compost extract industry’s disdain for traditional non-

aerated extracts without providing any rationale for the use of aeration;  

“As mentioned, an old burlap sack filled with compost and 

suspended in a bucket, while useful as a source of quick foliar 

nutrients, is a watery compost extract, not the “real deal” of 

fermented compost tea. To make a true fermented compost tea, 

you need some form of equipment and means of aeration” 

(Gershuny 2011). 

At the time the 2011 revision of this book was published, 33 out of 35 existing peer 

reviewed studies on non-aerated compost extracts showed significant suppression of 

disease along with 7 out of 8 of the non-peer reviewed reports from the German Federal 

Biological Institute for Agriculture and Forestry, so the dismissal of this production 

method is not supported by the scientific literature. 

Educational resources from the Rodale Institute have been more balanced and 

present information on both aerated and non-aerated extraction methods pointing out 

that to date more research has been done on non-aerated extracts (Ryan and Ziegler 

2007). While emphasizing the need for more research on disease suppression, Ryan 

and Zeigler encourage growers to experiment on their own with these materials (Ryan 

and Ziegler 2007). On farm trials carried out by the Rodale Institute showed that while 

the incidence of some diseases was diminished by compost extract applications, the 
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incidence of other diseases was actually enhanced, clearly demonstrating the 

challenges of using these materials in the field (Sayre 2003). Similar mixed results for 

disease suppression were found in grower-initiated on-farm trials summarized by the 

Minnesota Department of Agriculture indicating the limitations of this practice, and the 

potential of these materials as valuable disease management tools for organic growers 

(Bailey et al. 2001; Bailey 2003).  

Few university-based cooperative extension educators have tackled the 

complicated topic of compost extracts. Those who have rightly emphasize the 

importance of being skeptical of marketing information. Ventura County, CA cooperative 

extension plant pathologist Jim Downer has this advice,  

“Very often, snake oil products will use jargon relating to the 

chemistry, biology or microbiology of their products in an attempt to 

impress potential users with terms that sound informative but are 

used in a meaningless context. […] Past affiliations with universities 

are no guarantee that products developed after the researcher has 

left the institution are efficacious. Only current, published reports of 

efficacy in peer‐reviewed journals are acceptable references” 

(Downer 2011). 

However, after encouraging healthy skepticism, and pointing out the high 

variability associated with compost extracts, he then points out the existing 

scientific literature and encourages growers to contact their local cooperative 

extension offices and carry out on-farm trials (Downer 2011). Other university-

based educators encourage healthy skepticism of marketing claims, but then in 
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what may be an overreaction to the perceived pseudoscience in this field on the 

internet, end up disregarding the existing scientific literature. Linda Chalker-Scott, 

urban horticulturalist at Washington State University Puyallup Research and 

Extension Center maintains a “horticultural myths” section on her website where 

she has written extensively on compost extracts,     

“Compost teas and extracts are traditionally used as liquid organic 

fertilizers, but recently have been touted as powerful antimicrobial 

agents capable of combating pathogens associated with foliar and 

fruit diseases. Anecdotal evidence abounds, but controlled, 

replicable experiments do not. A quick search of the Internet 

revealed that most of the websites containing the phrase “compost 

tea” are .com sites: most are selling something. The few .edu sites 

that do exist are cautious in regard to the miraculous properties 

associated with compost teas,” (Chalker-Scott 2001). 

At the time in 2001, the peer reviewed literature on compost extracts was extremely 

limited. However, in a 2007 reassessment of the situation Chalker-Scott states that 

Master Gardeners cannot recommend compost tea use because “they are volunteer 

educators who rely on science-based information, they cannot recommend a practice or 

product that lacks a legitimate scientific basis,” (Chalker-Scott 2007). By that time there 

were 41 peer-reviewed scientific articles on aerated and non-aerated compost extracts, 

33 of which showed significant suppression of disease. As it stands now, 14 out of 21 

peer-reviewed scientific articles on the more recently developed aerated compost 

extracts show significant disease suppression in mainstream plant pathology journals 
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like Plant Disease, Soil Biology and Biochemistry, Phytopathology, Canadian Journal of 

Plant Pathology, and Journal of Plant Diseases and Protection. It is true that compost 

extracts have not yet been scientifically evaluated for use in landscaping, but this does 

not mean that no evidence exists of their effectiveness on other plant hosts. 

Many certified organic growers turn to compost extracts due to their limited 

options for biologically based disease management, while in some cases their interest is 

driven by the organic ideology that biological alternatives are superior to synthetic 

conventional inputs (Mahaffee and Scheuerell 2006) or as part of a desire to maximize 

soil biological diversity. Compost extract companies can feed into this ideology by 

making sweeping claims that diseases present in conventionally managed fields will no 

longer occur if compost extracts are used  (Ingham 2005). This creates a situation 

where the “true believers” are ripe for exploitation  

“This is the real problem I see in the world of compost tea, which is 

the selling of a product whose use is based on faith rather than 

science. As one proponent states, “There is no doubt in my mind 

that compost tea has already proven to be beneficial to agriculture.” 

Individuals with this mind-set are not open to having their beliefs 

challenged by scientists or anyone else. However, buying 

expensive “tea brewers”, purchasing ready made “tea” at several 

dollars a gallon, or paying a company to apply ACT in the absence 

of objective data sounds like snake oil rather than science,” 

(Chalker-Scott 2003b). 
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The challenge for researchers, extension educators and growers with an interest in 

compost extracts is to separate out the commercial hype from the scientific evidence. 

Commercial promotion of aerated extracts with no reference to their scientific basis 

seems to have drowned out the actual scientific studies that show these materials can 

in some cases protect plants from disease. However, evidence is growing that aeration 

is not required for the production of disease suppressive extracts. Since traditional non-

aerated compost extracts require minimal equipment to produce on farm and can also 

be disease suppressive, we believe these materials are worth investigating as tools for 

biologically-based disease management. 

 

iii. Case study: Development and characterization of a Pythium suppressive non-

aerated vermicompost extract 

 Based on the expressed needs of the organic grower community via the Organic 

Farming Research Foundation the goal of this study was to develop a non-aerated 

vermicompost extract that is consistently disease suppressive and retains efficacy over 

extended storage periods based on the original protocols of Heinrich Weltzien’s 

research group (Weltzien 1989). We chose to work with a commercially-available dairy 

manure vermicompost that is an allowable material in certified organic production and a 

seed infecting pathogen with limited control options for certified organic growers, 

Pythium aphanidermatum (Edson) Fitzp. (Martin and Loper 1999). Since the non-

aerated extraction process remains for the most part uncharacterized, we aimed to 

document basic chemical and biological features of the process as a reference for 

future work in this field. Additionally, we chose to investigate the impact of freeze drying 
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on the suppressiveness of the extract as the first step in pursuing options for seed 

treatment applications.  

While the production of aerated compost extracts maintains high (6-9 ppm) 

dissolved oxygen levels throughout the entire extraction process (Scheuerell and 

Mahaffee 2004; Kannangara et al. 2006), the availability of oxygen during the non-

aerated extraction process has not been characterized. With this in mind, we felt 

dissolved oxygen along with pH and electrical conductivity or soluble salts would be 

relevant measurements for the characterization of the non-aerated extraction process. 

Under the umbrella term non-aerated compost extracts, a majority have been made with 

initial mixing, but then no additional agitation or stirring throughout the extraction 

process  (Elad and Shtienberg 1994; McQuilken et al. 1994; Cronin et al. 1996; 

Yohalem et al. 1996; Scheuerell and Mahaffee 2004; Scheuerell and Mahaffee 2006; 

Ingram and Millner 2007; Joshi et al. 2009). However some methods have been 

reported that are more similar to the production of biodynamic preparations (Koepf et al. 

1976) and include periodic mixing at different intervals throughout the extraction 

process (Haggag and Saber 2007; Kone et al. 2010). We chose a protocol that included 

periodic mixing as preliminary trials without stirring resulted in a lower extraction 

efficiency measured as the percent of the original dry mass of vermicompost added that 

remains in the finished liquid after straining (T. Herlihy, personal observation).  

 In their popular compost extract production manual, Soil Food Web Inc. does not 

recommend the use of non-aerated extracts where the dissolved oxygen levels fall 

below 1 ppm during production, stating that the resulting extract may be phytotoxic. 
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“Anaerobic organisms are not detrimental in themselves, but their 

metabolic products can be extremely detrimental to plants as well 

as many beneficial microorganisms. Anaerobic metabolites 

produced are volatile organic acids […] that are very detrimental to 

the growth of plants and beneficial bacteria, fungi, protozoa and 

nematodes.” (Ingham 2005). 

To evaluate this claim, we chose to measure the phytotoxicity of finished extracts for a 

variety of vermicompost:water ratios. Additionally the idea, now pervasive in the 

compost extract community, that non-aerated extracts are not capable of supporting a 

large enough population of microorganisms to be suppressive was initiated in the same 

manual,  

“Not-aerated, no-nutrients added tea brews may have such low 

numbers of organisms in a tea that bio-films never develop and the 

liquid never becomes anaerobic, no matter if the liquid is never 

stirred or mixed or aerated. If the tea does not contain many 

organisms, the tea cannot have the benefits that organisms give 

that have been discussed previously,” (Ingham 2005). 

Bacterial CFU mL-1 for finished non-aerated compost extracts range from 1 * 106 to 7 * 

1011 (Haggag and Saber 2007; Kone et al. 2010) however changes in the size of the 

bacterial population over the course of the non-aerated extraction period are poorly 

characterized. 

While non-aerated vermicompost extracts have in some cases been shown to 

inhibit phytopathogen growth (Nakasone et al. 1999) and suppress plant disease 
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(Weltzien et al. 1987; Budde and Weltzien 1988; Scheuerell and Mahaffee 2006; Joshi 

et al. 2009), the shelf life of these materials is an important factor for their effective use. 

Non-aerated compost extracts can be disease suppressive for up to 4 months stored at 

room temperature (Yohalem et al. 1994) while aerated extracts must be used 

immediately after extraction (Ingham 2005). The shelf life of the extract produced in this 

study was also evaluated as this characteristic will impact how growers are able to 

make and use the material. 

MATERIALS AND METHODS 

i. Experimental materials and non-aerated vermicompost extract (NVE) 

production 

Cucumber seeds (Cucumis sativus cv “Marketmore 76”, Johnny’s Seeds) were 

sorted to remove damaged seeds, individually screened to 0.02 – 0.03 g biomass, 

surface disinfested with a bleach solution (0.5% sodium hypochlorite) for 5 minutes, 

rinsed well with sterile water and air-dried before use. Quartz sand was wet sieved to 

0.5 - 1.0 mm diameter, oven dried and autoclaved 40 min for three consecutive days 

before use.  

Pythium aphanidermatum (Edson) Fitzp. (Pa58) (Ben-Yephet and Nelson 1999) 

was cultured on clarified V8 plates at 27⁰C. To maintain virulence and prevent bacterial 

contamination, cucumber seeds were inoculated with Pa58 zoospores weekly, infected 

seeds were overlaid with KWARP (water agar with kanamycin sulfate 0.025 mg mL-1, 

rifampicin 0.015 µg/mL-1 and penicillin G 0.015 µg mL-1) and hyphal tips were 

transferred to clarified V8. For zoospore preparation, a core borer (#15, 20 mm d) was 
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used to remove discs from 7 d Pa58 cultures. Each disk was placed in a 70 mm petri 

dish with 10 mL sterile nanopure water for 17 h at 27⁰C. Liquid was then replaced with 

10 mL sterile nanopure water and discs were incubated at 27⁰C for an additional 7 h. 

Zoospores were enumerated with an Improved Neubauer Haemocytometer and diluted 

with sterile nanopure water if necessary. Zoospore suspensions were used immediately 

after preparation. 

Vermicompost (Worm Power, Avon NY) was collected, stored at -20⁰C and 

thawed at room temperature for 24 h before use in all experiments. Vermicompost was 

prepared from dewatered dairy manure solids which were mixed 7:1:1 with spoiled corn 

and hay silage and cured hot compost from previous batches. This mixture was hot 

composted in a forced air system for up to 2 weeks. Material was then fed to continuous 

flow through vermicomposting systems stocked with the earthworms Eisenia fetida and 

Dendrobaena venata every 3-4 days in 5 cm layers. Finished vermicompost was 

removed from the underside of the continuous flow through system and sieved to 10 

mm 75 days after the initiation of hot composting. Preliminary data show that this 

vermicompost material consistently suppresses P. aphanidermatum on cucumber 

(Chapter 3). 

In order to determine the optimum vermicompost to water ratio, a range of ratios 

were tested starting with 1:5 (m/m) or 20% by mass, which is typical for non-aerated 

extracts (NVE) made from thermogenic compost (Weltzien 1992), and going to 1:60 

(m/m) or 1.6% by mass. Extracts were produced in open 5 gallon buckets with 60 

seconds of mixing twice a day with a paint mixer over a period of 7 days at the Worm 

Power facility. Phytotoxicity results for these extracts (Figure 2) led us to choose the 
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ratio of 1:60 for further investigation and three separate batches of non-aerated 

vermicompost extract were prepared at Cornell by mixing 3 kg vermicompost with 180 L 

deionized water in a food grade plastic container for 10 days, the longer extraction 

period based on previous work (Trankner 1992; Cronin et al. 1996). Extracts were 

circulated via submersible utility pump (SHUR-DRI model SDSU6, 1/6 horsepower, 

Pentair Pump Group, North Aurora, IL) for 5 minutes every 12 hours with a timer. Upon 

completion, liquid was strained through 4 layers of cheesecloth and stored in ventilated 

buckets at room temperature.  

ii. Chemical and biological characterization  

For the characterization of extracts made with a range of initial vermicompost to 

water ratios, extracts produced at the Worm Power facility were transported in ventilated 

containers to Cornell campus within 8 h of straining. Dissolved oxygen, pH, and 

electrical conductivity measurements were taken. Total culturable bacteria counts (CFU 

mL-1) were determined by plating serial dilutions of 3 replicate NVE in 0.1 M potassium 

phosphate buffer (pH 6.8) on 0.1 X trypticase soy agar (TSA) and 0.1 X acidified potato 

dextrose agar (APDA, pH 4 with lactic acid). Phytotoxicity was determined with a 

standard in vitro germination and root elongation protocol; TMECC 05.05-B (Thompson 

et al. 2002) with 10 cucumber seeds per treatment of water, fresh NVE and 0.2 µm 

sterile filtered NVE. Seeds were combined with 5 mL test liquid on a Whatman #1 filter 

paper in a petri dish and incubated at 27°C for 48 h. Cucumber radicle lengths were 

analyzed with a one-way ANOVA and Tukey’s test for separation of means in Minitab 

16 (Mintab Inc. State College, PA). The solubility of vermicompost in water during the 

extraction process was measured at the Worm Power facility by drying down solids that 
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were removed during straining, and weighing them. Percent solubility was defined as: 

[dry biomass vermicompost added to extract]/[dry biomass vermicompost removed from 

extract via straining through 4 layers of cheesecloth].  

For the characterization of three batches of 1:60 NVE, one liter subsamples were 

shipped overnight to the Pennsylvania State University Agricultural Analytical Services 

Lab for nutrient analysis immediately after straining. Dissolved oxygen readings were 

taken from a 0.5 m depth every 10 minutes throughout the extraction period with a DO 

meter and data logging software (Traceable® Dissolved Oxygen Meter, Control 

Company, Friendswood, TX). Samples were removed daily from a depth of 0.5 m for pH 

and electrical conductivity (EC) measurements as well as enumeration of bacteria. 

Bacteria were enumerated and viability was assessed according to manufacturer 

instructions (LIVE/DEAD BacLight™ Bacterial Viability Kit, Molecular Probes Inc., 

Eugene, OR). Samples were syringe filtered to 0.8 µm before staining in order to 

remove particulate organic matter (POM) and protozoa. Significant numbers of POM-

associated bacteria were lost with this filtering step, but without it the images used for 

counting were of poor quality. Stained samples were viewed via fluorescence 

microscopy with a Zeiss 450-490 nm standard fluorescein filter set and digitally imaged 

with 10 fields of view counted for each of 3 subsamples (Olympus DP72 digital camera, 

CellSens® digital imaging software, Center Valley, PA). Data were analyzed with a one 

way ANOVA and Tukey’s means separation in Minitab 16 (Mintab Inc. State College, 

PA). 
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iii. Disease suppression  

 Subsamples of NVE (1200 mL) were lyophilized immediately after the 10 d 

extraction period and stored at -20⁰C on argon gas (Labconco, Kansas City, MO). 

Lyophilized non-aerated vermicompost extract was reconstituted in sterile ultrapure 

water to its original concentration and incubated at room temperature for 24 h before 

use (designated LyNVE). Disease suppression bioassays were carried out in 12-well 

tissue culture plates (3 plates per treatment). Each well contained 6 mL sterile quartz 

sand (0.5 – 1.0 mm d), one surface disinfested cucumber seed and 1.75 mL total liquid. 

For NVE treated wells, 750 µL extract was added. For inoculated wells, 500 µL of a 

Pa58 zoospore suspension (1.2 x 104 zoospores mL-1) was added. Non-inoculated 

controls were included to test seed germination. After the lids were sealed with parafilm, 

12-well tissue culture plates were placed in large clear plastic containers and incubated 

at 27⁰C with a 16 h photoperiod. After 3 days, lids were removed, a thin layer of water 

was added to the secondary container, the lid of the secondary container was replaced 

and sealed with parafilm to create a moist chamber. Incubation was continued for an 

additional 4 d at which time seedlings were removed and shoot height, health rating, 

seedling survival and disease incidence were recorded. Health ratings were designated 

as follows: 0=dead and completely rotted, 1=dead but not completely rotted, 

2=cotelydon and stem lesions, 3=cotelydon lesions only, 4=stem lesions only, 

5=healthy.  The experiment was repeated 3 times with a total of 108 seedlings per 

treatment. Disease suppression bioassay data were analyzed with ANOVA (proc mixed, 

SAS v. 9.3, SAS Institute, Cary, NC). Binary logistic regression was used to measure 

the impact of NVE amendment on the likelihood of seedling survival and disease 
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incidence (proc genmod, SAS v. 9.3, SAS Institute, Cary NC). To determine the effect of 

storage time at room temperature on the disease suppressive properties of NVE, 

samples were tested in the disease suppression bioassay periodically up to 76 days. To 

track changes in suppression over time, the differential health rating was calculated as 

follows: ((health rating for each individual inoculated seed sown in NVE) – (average 

health rating for one replicate 12 well plate of inoculated seeds sown in sand).  Data 

were analyzed using ANOVA with a Bonferroni’s correction for multiple comparisons 

(proc glm, SAS v. 9.3, SAS Institute, Cary, NC). 

RESULTS 

i. Chemical and biological characterization of NVE 

Components of the solid vermicompost were transferred to the liquid extract 

during the extraction process with an average of 30% dry biomass becoming dissolved 

or suspended in water (n=8 batches, mean=30% solubility, standard deviation=12.9%). 

A decrease in vermicompost:water ratio in the starting mixture appeared to correlate 

with a decrease in pH, log bacterial CFU mL-1 and electrical conductivity and an 

increase in dissolved oxygen in the 7 d non-aerated extracts (Figure 1). These trends 

are descriptive in nature as only one batch of each ratio was tested. Cucumber seedling 

radicle emergence was significantly negatively impacted only by the 1:5 

vermicompost:water NVE (ANOVA, Tukey’s  means separation p < 0.0001, mean 

radicle length (mm) water 21.1, 1:5 NVE 9.3). However, a visual inspection of cucumber 

radicles revealed an absence or reduction in length of root hairs for seeds exposed to 

almost all batches tested except for the most dilute 1:60 ratio (Figure 2). Similar 

patterns of radicle emergence and root hair damage were observed when NVE samples 



 

70 
 

were filtered to 0.2 µm (data not shown). In order to avoid potential damage to root hairs 

and minimize soluble salts in the finished extract, the 1:60 ratio was chosen for 

additional experimentation. No fungal colonies were observed on APDA medium for any 

of the samples (data not shown).  

Nutrient analysis showed that 1:60 NVE contained a range of macro- and 

micronutrients. Compared to a commercial synthetic 20-10-20 fertilizer, NVE had lower 

ammonium and nitrate levels, but higher phosphorus, potassium, and many 

micronutrients (Table 1). Initial dissolved oxygen was 6 ppm, which rapidly declined 

over the first day and stayed near 0 ppm for the remainder of the extraction period 

(Figure 3). Sump pump activity briefly spiked DO levels during the extraction period, 

however after the first day dissolved oxygen never rose above 0.2 ppm (Figure 3). 

Electrical conductivity rose slightly but significantly over the extraction period from 0.6 to 

0.8 mmhos cm-1 while pH declined slightly but significantly from 8.7 to 8.3 (data not 

shown, regression p < 0.0001). Compared to the first day of the extraction period, the 

number of live bacterial cells were significantly highest on days 7 and 8 (Table 2, 

ANOVA p = 0.01). Overall, there was no significant change in the active bacterial 

population by the end of the 10 d extraction period compared to the first day. The 

quantity of dead bacterial cells did not change significantly over the extraction period 

(Table 2, ANOVA p=0.067).  

iii. Disease suppression bioassays 

All batches of both non-aerated vermicompost extract (NVE) and lyophilized – 

reconstituted NVE (LyNVE) significantly suppressed the symptoms of P. 

aphanidermatum seedling damping off in cucumber as measured by shoot height, 
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health rating, seedling survival, and seedling disease incidence (Table 3, Figure 4). 

Sterile NVE (StNVE), which had been filtered through a 0.2 µm filter, offered no 

protection from disease compared to the sand control (Table 3, Figure 4). Fresh and 

filter sterilized NVE treatments significantly promoted cucumber seedling growth in non-

inoculated controls (Table 3). When stored at room temperature in 5 gallon ventilated 

buckets, extracts remained suppressive for up to 60 d after which point the level of 

suppression declined significantly (Table 4, ANOVA p<0.0001).  

DISCUSSION 

The non-aerated vermicompost extract developed in this study consistently 

suppresses P. aphanidermatum in cucumber in laboratory bioassays and remains 

suppressive for up to 60 days under storage at room temperature. The 50-gallon food 

grade container, PVC pipe, sump pump and timer used to construct the extraction 

apparatus can be purchased and assembled for under $200, this system requires only 

minimal electricity for periodic circulation and no nutrient additives are required. This is 

relatively inexpensive when compared to the cost of over $2,000 for an aerated 

compost extraction apparatus of a similar volume (25 gallons) plus the electricity to run 

it and the proprietary blend of nutrient additives recommended by the manufacturer, 

Growing Solutions Incorporated (Growing 2011). In addition, the NVE developed in this 

study could be made available to certified organic growers because liquid compost 

extracts made using OMRI-listed composts and without any nutrient additives may be 

used without restriction, whereas extracts made using nutrient additives are subject to 

90 to 120 day pre-harvest intervals unless extensive human pathogen testing is carried 

out (NOSB 2006).  
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With regards to shelf life, Soil Food Web Inc. recommends using aerated 

compost extracts materials within 4-6 hours of production (Ingham 2002). While this 

particular material maintains its disease suppressive properties for up to 60 days at 

room temperature which could potentially ease the complications associated with using 

these materials in a commercial plant production setting, it is important to note that a 

variety of factors can impact their shelf life. Very little is reported in the scientific 

literature on the impacts of compost maturity, compost storage and storage of the 

finished extract on disease suppression. While some non-aerated extracts maintain 

their suppressiveness over 4 months storage at room temperature (Yohalem et al. 

1994), others can lose suppressiveness after 7 days [Ketterer 1990 Dissertation] as 

cited in (Weltzien 1992). Compost maturity impacts the suppressiveness of extracts, 

with internal windrow temperatures below 50°C associated with a decline in 

suppressiveness towards Botrytis cinerea (Palmer et al. 2010) and no clear trend found 

for suppression of Armillaria melea in beech wood (Egwunatum and Lane 2009). 

Compost storage times from 3 months to 1 year reduced the suppressiveness of a non-

aerated compost extract (Winterscheidt et al. 1990). However, this decline in extract 

suppressiveness can vary depending on the type of compost used with some batches 

making suppressive extracts for up to 18 weeks in storage and others steadily losing 

efficacy over time under the same storage conditions (Yohalem et al. 1996). Identifying 

the environmental factors responsible for declining suppressiveness during storage of 

both the compost and finished extracts and the pathosystem specificity of suppression 

will be important research objectives before clear recommendations can be made to 

growers. 
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 The initial compost to water ratio of 1:5 most commonly cited for the production 

of non-aerated compost extracts (Weltzien 1992) was not suitable for this source of 

vermicompost. However a 1:60 ratio produced an extract that was not phytotoxic to 

cucumber. The 1:60 (1.6% vermicompost by volume) batches used in this study had an 

average soluble salts concentration of 1.07 mmhos cm-1 (Table 1), which is similar to 

the range of EC values (0.08 to 1.05 mmhos cm-1) found for five thermogenic composts 

used in a 1:5 compost to water ratio (20% compost by mass) (Kone et al. 2010) which 

indicates that the solid vermicompost is higher in the plant available nutrients that 

contribute to soluble salts than traditional composts. A comparison of vermicomposted 

and thermogenically composted dairy manure at two facilities found that although the 

finished vermicompost and thermogenic compost contained roughly equivalent total 

nitrogen, the vermicompost had 7 – 10 times the nitrate levels (Jack et al. 2011). Highly 

concentrated (1:1) non-aerated vermicompost extracts (Ievinsh 2011) and 1:4 and 1:8 

rinses of vermicompost can negatively impact seedling germination (Warman and 

AngLopez 2010). Depending on the type of feedstock used, a wide range of soil 

amendment rates with solid vermicompost (30%, 10%, 5%) can also inhibit or slow 

germination for a variety of seed types (Simsek-Ersahin et al. 2009). This further 

emphasizes that the high variability in composted materials has downstream impacts on 

liquid compost extracts and the compost to water ratio cannot be considered standard 

for all types of compost. We recommend that growers carry out phytotoxicity screenings 

in order to choose an appropriate compost to water ratio for the production of non-

aerated extracts. The TMECC method 05.05-B is a straightforward phytotoxicity test 

with a minimal requirement for materials that could easily be carried out on-site by 
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growers and home gardeners when developing extract production protocols for new 

batches of compost (Thompson et al. 2002). 

For this particular vermicompost, the nutrient profile of the 1:60 batch shows the 

material is suitable for use in most plant production systems, although supplementing 

with additional nitrogen would likely be necessary depending on the nitrogen 

requirements of the crop and dilution for salt intolerant crops may be necessary due to 

high sodium levels (56.12 ppm). The 1:60 fresh and filter sterilized NVE batches had a 

positive effect on plant growth with up to a 19% increase in cucumber shoot length 

compared to water controls. This result further contradicts the unsubstantiated claims 

found in the popular literature that all non-aerated extracts are inherently phytotoxic 

(Ingham 2005) and supports previous findings of effective nutrient management with 

non-aerated compost extracts (Pant et al. 2009; Pant et al. 2011). Comparisons of 

aerated and non-aerated extract made from the same starting batch of compost found 

that aeration had no impact on phytotoxicity (Xu et al. 2012). The nutrient profiles 

reported for 1:5 compost:water non-aerated compost extracts, not surprisingly vary 

widely based on the type of compost used; nitrate (below detection – 13 ppm), 

phosphorus (0.23 ppm - 72), potassium (195 – 421 ppm) (Kone et al. 2010; Radin and 

Warman 2010). Our results for a 1:60 vermicompost:water non-aerated extract fall 

within the previously reported ranges even with the relatively small amount of 

vermicompost used (1.6% by volume compared to 20% by volume for batches reported 

in the literature); nitrate (13 ppm), phosphorus (67 ppm), potassium (293 ppm). This 

high variability points again to the importance of nutrient testing during the 
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compost:water ratio selection process in order to produce a material suitable for specific 

fertility programs.  

Using a sump pump and a timer allowed for defined and repeatable mixing 

during the extraction process although it is not known if mixing is required to achieve the 

solubility rates observed (30% of vermicompost remaining in solution). Available oxygen 

declined steeply from 6 – 0.1 ppm DO within 24 hours. Reported initial declines of 

dissolved oxygen in non-aerated compost extracts vary from 7.5 – 0 ppm in 30 & 60 

minutes for 1:2 and 1:4 compost:water ratios respectively (Cronin et al. 1996) to 7 – 0.1 

ppm in 20 hours for a 1:77 compost to water ratio (Kannangara et al. 2006). Our extract, 

with 107 cells mL-1, did not meet the standard proposed by SFI for minimum active 

bacteria (150 µg, roughly equivalent to 109 cells mL-1 (Ingham 2005)) however it 

promoted cucumber seedling growth and suppressed Pythium seedling disease. While 

the industry standard involves the presence of fungi (2 µg, roughly equivalent to 107 

cells mL-1 (Ingham 2005), fungi were not observed on PDA plates or during light 

microscopy for any of the NVE batches tested.  

 When used as a soil drench, the NVE developed in this study was consistently 

effective in suppressing P. aphanidermatum on cucumber and retained its efficacy 

through lyophilizing and reconstitution. The physical removal of microorganisms through 

0.2 µm filtration eliminated suppression, indicating that suppression relies on the 

presence of microorganisms. This is not always the case with non-aerated compost 

extracts. For example, in many cases sterile filtered extracts are still fully (Yohalem et 

al. 1994; Cronin et al. 1996; Al-Dahmani et al. 2003) or partially (Elad and Shtienberg 

1994; Haggag and Saber 2007) suppressive, while others completely lose suppression 
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after sterile filtration or autoclaving (McQuilken et al. 1994; Gea et al. 2009; Kone et al. 

2010). These results indicate the likelihood that a variety of mechanisms are involved in 

the suppression of plant pathogens by non-aerated compost extracts.  

 Using compost extracts in organic agriculture provides biologically-based liquid 

fertilizer options and a potentially disease suppressive microbial community for crop 

production while creating economic incentives for livestock manure recycling, all of 

which are important components of sustainable agriculture. Linking a waste product 

from livestock operations with a viable market in crop production could help strengthen 

the regional recycling of nutrients which can cause water and soil pollution if managed 

improperly. However, the substantial promise of liquid compost extracts can only be 

realized if growers, extension educators, researchers and the compost extract industry 

work together to establish a reality based framework for evaluating these highly variable 

materials. Just as biodynamic agriculture has moved from the fringes of the agricultural 

scientific world to the pages of Science (Mader et al. 2002; Turinek et al. 2009), 

research will be an important component for the further development of liquid compost 

extracts.  
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FIGURES AND TABLES 

Figure 1. Electrical conductivity (EC) mmhos cm-1, dissolved oxygen (DO) ppm, pH and 

average log CFU bacteria mL-1 of non-aerated liquid vermicompost extracts for a range 

of initial vermicompost to water ratios. Trends are descriptive in nature as only one 

batch of each ratio was tested. Extracts were strained through 4 layers of sterile 

cheesecloth and stored in ventilated buckets before measurements were taken.  
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Figure 2. Representative 2 d old cucumber seedlings germinated at 27°C in A. water, B. 

1:5 NVE, C. 1:30 NVE, D. 1:60 NVE. Scale bar = 1 cm 
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Table 1. General chemical characteristics and plant available nutrients in a 1:60 non-

aerated vermicompost extract (NVE) compared to leading commercial synthetic fertilizer 

applied at two commonly used rates. Values are averages and ranges of 3 NVE 

batches. 

  Commercial 20-10-20  

Measurement NVE 100 ppm N 200 ppm N Units 

pH 7.9 ± 0.1    

soluble salts 1.07 ± 0.04   mmhos cm-1 

organic matter 0.09 ± 0.01   % 

ammonium N 2.60 ± 1.60 40 80 ppm 

nitrate N 13.31 ± 3.17 60 120 ppm 

P  66.67 ± 24.33 22 44 ppm 

K 293.33 ± 13.33 83 166 ppm 

Ca  46.67 ± 24.33 0 0 ppm 

Mg 10.00 ± 0.0 0.75 1.50 ppm 

S 20.00 ± 0.0 0 0 ppm 

Na 56.12 ± 3.95 0 0 ppm 

Al 2.66 ± 2.44 0 0 ppm 

Fe 7.61 ± 9.37 0.25 0.50 ppm 

Mn 0.27 ± 0.18 0.13 0.25 ppm 

Cu 0.70 ± 0.10 0.06 0.13 ppm 

Zn 1.15 ± 0.35 0.13 0.25 ppm 
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Figure 3. Average dissolved oxygen levels (ppm) at 0.5 m depth over the 10 day 

extraction period for 3 180 L batches of 1:60 non-aerated vermicompost extract (NVE).  
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Table 2. Average log counts of live/dead bacterial cells for non-aerated vermicompost 

extract (NVE) over the 10 d extraction period. Each value represents 10 replicate counts 

from 3 individual sub-samples taken from 3 separate batches of NVE (n=27). Live cells: 

Tukey’s means separation, ANOVA p = 0.01, dead cells ANOVA p = 0.06. 

Day log average live 

cells mL-1 

log average dead cells 

mL-1 

1 6.91   bc 3.48 

2 7.25   abc 3.23 

3 7.25   abc 3.17 

4 7.35   abc 3.08 

5 6.87   c 3.39 

6 7.08   abc 3.10 

7 7.43   a 2.94 

8 7.45   a 3.04 

9 7.30   abc 3.08 

10 7.37   ab 2.99 
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Table 3. Health ratings for 7 day old cucumber seedlings 0 = dead and rotted, 5 = 

healthy. Seedlings were sown in sand and treated with lyophilized and reconstituted 

non-aerated vermicompost extract (LyNVE), non-aerated vermicompost extract (NVE) 

or 0.2 µm filter sterilized non-aerated vermicompost extract (StNVE). Inoculated 

seedlings received 0.5 mL of a 1.2 x 104 mL-1 zoospore solution. Bioassays were carried 

out in 12 well tissue culture plates with 3 plates per treatment and the entire experiment 

was repeated for each of 3 separate batches of NVE. Values followed by the same 

letter in each row are not significantly different at α=0.05 (ANOVA: shoot length, health 

rating; binary logistic regression, survival, incidence: ns = no significant difference 

detected between treatments). 

Treatment Inoculation Shoot 

length 

(mm) 

Health rating  

(0-5) 

% 

survival 

% 

incidence 

Sand + 26.13 B 1.62 b 60 B 98 a 

NVE + 40.00 A 3.93 a 88 A 42 b 

LyNVE + 37.66 A 4.11 a 86 A 28 b 

StNVE + 25.40 B 1.43 b 54 B 98 a 

 

Treatment Inoculation Shoot 

length 

(mm) 

Health rating  

(0-5) ns 

% 

survival 

ns 

% 

incidence 

ns 

Sand - 34.44 z 4.95 99  1  

NVE - 41.71 y 4.95  99  1  

LyNVE - 39.41 z 5.00  100  0  

StNVE - 41.99 y 5.00  100 0  
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Figure 4. Representative 7 day old seedlings from disease suppression bioassays in 12 

well plates. Each inoculated seedling received 0.5 mL of a 1.2 x 104 zoospores mL-1 

suspension. Treated seeds received 750 µL 0.2 µm sterile filtered non-aerated 

vermicompost extract (StNVE), fresh NVE (NVE), or lyophilized-reconstituted NVE 

(LyNVE).  
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Table 4. Change in suppression of P. aphanidermatum over extended storage of 1:60 

non-aerated vermicompost extracts. Health rating differential was calculated as follows: 

((health rating for each individual inoculated seed sown in NVE) – (average health rating 

for one replicate 12 well plate of inoculated seeds sown in sand).  Data were analyzed 

using ANOVA with a Bonferroni’s correction for multiple comparisons (SAS v. 9.2, proc 

glm, p<0.0001). Values followed by the same letter are not significantly different at α= 

0.05. 

Age of extract (d) Least squared 

mean differential 

health rating 

3 2.91 a 

4 2.94 a 

9 2.79 a 

29 2.58 a 

36 2.69 a 

60 2.99 a 

76 1.22 b 
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CHAPTER 3. SEED COLONIZING MICROBES FROM DISEASE 

SUPPRESSIVE VERMICOMPOST ALTER ZOOSPORE CHEMOTAXIS, 

ENCYSTMENT AND GERMINATION OF PYTHIUM APHANIDERMATUM 

 

Allison L. H. Jack and Eric B. Nelson 

 

ABSTRACT 

Disease suppressive composts have been studied for decades, however we still 

lack critical insight into their mechanisms of action, which limits their efficacy as tools for 

biologically based plant disease management. We sought to uncover potential 

mechanisms by which vermicomposted dairy manure suppresses Pythium 

aphanidermatum-incited seedling disease on cucumber by investigating the interactions 

between seed-associated microbial communities and P. aphanidermatum zoospores. In 

situ disease suppression bioassays demonstrated that, when zoospores were forced to 

swim 2 mm to reach the host, vermicompost microbes that colonized seeds within 8 h 

effectively prevented zoospore arrival at the seed surface. This was confirmed by the 

low levels of zoospore DNA detected on the surfaces of seeds pre-germinated in 

vermicompost and transplanted to sand prior to inoculation. Exudates from seeds sown 

in vermicompost for 8 hours then transplanted to sand for 24 hours (microbially modified 

seed exudates: MMSE) were collected, sterile filtered and used for in vitro zoospore 

assays. Modification of seed exudates by vermicompost microbes that colonized seeds 

within 8 h inhibited the chemotaxis and encystment of zoospores relative to these 

responses to exudates from seeds sown in sand. In addition, the germination of 

mechanically encysted zoospores was reduced when exposed to MMSE. Combining 
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non-microbially modified seed exudate with MMSE failed to restore suppression and 

extensive zoospore lysis was observed. Lytic activity and inhibition of cyst germination 

were more prevalent in the ethyl acetate fraction of vermicompost MMSE, providing 

evidence for the presence of a zoosporolytic compound. We hypothesize that the 

observed zoospore lysis and suppression of cyst germination is likely due to a specific 

compound or set of compounds produced in the spermosphere by one or more 

members of the vermicompost-derived microbial community that colonizes seeds within 

the first 8 h of germination, thus protecting the seed from P. aphanidermatum zoospore 

infection.   

INTRODUCTION 

 There has been much interest over the years in understanding the microbial 

mechanisms of pathogen suppression in soils naturally suppressive to disease 

(Mazzola 2002; Weller et al. 2002; Mendes et al. 2011) and also in soils in which 

suppressiveness is induced by compost amendments (van Os and van Ginkel 2001; 

Kowalchuk et al. 2003; Benitez et al. 2007). Although the fact that microbial 

communities are involved in both naturally suppressive and induced suppressive soils is 

clear, an understanding of the mechanisms by which these microbes prevent pathogens 

from infecting their hosts has been elusive (Janvier et al. 2007). One of the more 

common approaches for understanding the role of specific microbes and specific 

microbial activities in disease suppression is the comparative analysis of the bulk 

microbial community from disease-suppressive and non-suppressive soils (Borneman 

and Becker 2007; Kyselkova et al. 2009; Postma et al. 2010). The basic hypothesis 

driving this approach is that microbial taxa that are either present or differentially more 
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abundant in the suppressive soil than in the conducive soil are likely to be involved in 

disease suppression. This approach may provide potential candidate microbes that can 

be studied further for their mechanisms of disease suppression (Borneman and Becker 

2007). However, the problem with this approach is that the presence, absence, or 

differential abundance of one or a few microbes is not likely to explain suppressiveness, 

since the bulk microbial community is often too complex and dynamic to detect clear 

differences between suppressive and conducive communities (Kowalchuk et al. 2003). 

Furthermore, because the infection of plants by pathogens is a spatially and temporally-

dynamic process, focusing solely on the soil or compost itself would fail to detect any 

microbial interactions that are relevant to direct host-pathogen interactions during 

pathogenesis. 

An alternative approach for understanding which microbes may be involved in 

disease suppression and also for understanding how these microbes prevent infection, 

is to focus on a subset of the soil microbial community most likely to interact with the 

pathogen during the time frame in which infection occurs. Focusing on direct microbial 

interactions in the infection court has been valuable in understanding mechanisms by 

which spermosphere bacteria suppress seed infections (Heungens and Parke 2000; 

Windstam and Nelson 2008a; Windstam and Nelson 2008b) as well as in providing 

insight into the mechanisms of compost-induced disease suppression (McKellar and 

Nelson 2003; Chen and Nelson 2008; Chen et al. 2012). For example, the use of this 

approach revealed that the compost microbes most important to the suppression of 

seed infection by Pythium ultimum are those that colonize seeds within the first 8 h after 

sowing (McKellar and Nelson 2003; Chen and Nelson 2008). By focusing on the 
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behavior of the pathogen that may be altered by specific microbial interactions in the 

infection court, we are able to disregard microbes present in the bulk substrate that 

have nothing to do with disease suppressive properties while being led more directly to 

the microbes and their activities that can explain disease suppression.  

In our current work, we have adopted this approach to better understand the 

mechanisms by which Pythium aphanidermatum incited diseases are suppressed when 

seeds are sown in a vermicomposted dairy manure substrate. A number of important 

aspects of this system facilitate the use of this approach. First, vermicomposts, like 

thermogenic composts, are known to be suppressive to diseases caused by a number 

of different major soil-borne pathogens (Szczech 1999; Scheuerell et al. 2005; Simsek-

Ersahin et al. 2009; Jack 2010). Thermogenic composts can be chemically and 

physically quite variable due to the use of mixed feedstocks and the variable conditions 

during the 6 to 9 month long mesophilic maturation period, which usually takes place 

outdoors under ambient weather conditions. For single feedstock composts, post-

thermogenic vermicomposting in a highly engineered flow-through system can reduce 

the maturation period to 60 days and result in a chemically and physically uniform 

disease suppressive substrate. Second, P. aphanidermatum is an especially relevant 

target pathogen for our studies. Aside from being one of the most important seed- and 

root-infecting plant pathogens with a host range of over 650 species (Farr et al. 1989), 

P. aphanidermatum, like other Pythium species, is inherently sensitive to microbial 

competition and interference (Martin and Loper 1999), making it an ideal target for 

microbial-based suppression. Third, P. aphanidermatum is believed to infect seeds and 

roots largely via the formation of zoospores (Deacon and Donaldson 1993; Nelson 
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2006; Walker and van West 2007), which display a complex, but well-characterized 

homing response from the time of zoospore release to plant infection. During 

pathogenesis, zoospores respond to chemical cues from the host (in the form of seed or 

root exudates) to detect and swim to the infection court (Deacon 1996). This 

chemotactic response is rapidly followed by the attachment and encystment of the 

zoospore on the seed, radical, or root surface, followed rapidly by germination of the 

zoospore cyst and host penetration.   

Although the exact chemical cues for the homing response are unknown, they 

appear to be species specific (Donaldson and Deacon 1993a; Donaldson and Deacon 

1993b; Reid et al. 1995) and developmentally-specific (i.e., swimming zoospore, 

encystment, cyst germination) (Donaldson and Deacon 1993a; Donaldson and Deacon 

1993b), and interference with these cues has been shown to be an effective means of 

suppressing infection by zoosporic pathogens. For example, zoospores exhibit a 

weaker chemotactic response to exudates from roots or seeds directly treated with 

microbes than they do towards exudates from untreated roots or seeds (Zhou and 

Paulitz 1993; Shang et al. 1999; Heungens and Parke 2000; Lioussanne et al. 2008; 

Islam 2010). In some cases, altered zoospore behavior appears to be due to 

modification of exudates by host-associated microbes (Lioussanne et al. 2008). 

However, it is not always clear if this chemical modification results from the degradation 

of a zoospore attractant, or the production of a zoospore repellant/toxin (Zhou and 

Paulitz 1993), or a combination of both (Heungens and Parke 2000). Therefore in order 

to fully understand the mechanisms by which compost microbes might interfere with 
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plant infection, it is necessary to examine interactions at each of these stages of 

pathogenic development along with the chemical cues that elicit these responses. 

 Building off of our previous work (McKellar and Nelson 2003; Chen and Nelson 

2008; Chen et al. 2012), the goal of our current work is to understand how compost-

derived microbes protect plants from infections by Pythium aphanidermatum as a 

means of elucidating mechanisms by which composts suppress plant disease. Our 

study attempts to draw a connection between a reduction in the colonization of 

cucumber seeds by P. aphanidermatum after zoospore inoculation with changes in 

zoospore behavior in response to direct microbial alterations of seed exudates that may 

explain the observed disease suppression. Examining interactions between the host, 

pathogen and microbial community in the infection court, we attempt to answer the 

following questions; 1) can the 8-hour seed-colonizing community explain the observed 

suppression?, 2) which stages of the zoospore homing response does the suppressive 

seed-colonizing community alter?, 3) is the altered zoospore response due to the 

modification of seed exudates by the seed-colonizing microbial community?, and if so, 

4) does this modification of seed exudates involve (a) the degradation of a chemotactic 

cue, (b) the production of a zoospore repellant/lytic agent or both? It is our hope that an 

enhanced understanding of the mechanism of suppression will lead to a greater 

predictive capacity and eventually greater efficacy in the use of composts and 

vermicomposts for the biological management of Pythium species. 
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MATERIALS AND METHODS: 

A. Experimental materials: 

Cucumber seeds (Cucumis sativus cv “Marketmore 76”, Johnny’s Seeds) were 

sorted to remove damaged seeds, individually screened to 0.02 – 0.03 g biomass and 

surface disinfested with a mild bleach solution (0.5% sodium hypochlorite) for 5 

minutes. Quartz sand was wet sieved to 0.5 - 1.0 mm diameter, oven dried and 

autoclaved 40 min for three consecutive days before use. Vermicompost (Worm Power, 

Avon NY) was collected, stored at -20⁰C and thawed at room temperature for 24 h 

before use in all experiments. Vermicompost was prepared from dewatered dairy 

manure solids which were mixed 7:1:1 with spoiled corn and hay silage and cured hot 

compost. This mixture was hot composted in a forced air system for up to 2 weeks. 

Material was then fed to continuous flow through vermicomposting systems stocked 

with Eisenia fetida and Dendrobaena venata every 3-4 days in 5 cm layers. Finished 

vermicompost was removed from the underside of the continuous flow through system 

and sieved to 10 mm 75 days after the initiation of hot composting. Sterile 

vermicompost was prepared by autoclaving for 40 min on three consecutive days. 

Before use in bioassays, 500 g of vermicompost was placed in a 0.25 mm sieve and 

soaked in 4 L Nanopure® water for 5 minutes before being allowed to drain. This 

additional step was performed in order to prevent excessive bacterial growth in tubing 

used in the bioassay apparatus.  

Pythium aphanidermatum (Edson) Fitzp (Pa58) (Ben-Yephet and Nelson 1999) 

was cultured on clarified V8 plates at 27⁰C. To maintain virulence and prevent bacterial 

contamination, cucumber seeds were inoculated with Pa58 zoospores weekly, infected 
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seeds were overlaid with KWARP (water agar with kanamycin sulfate 0.025 mg mL-1, 

rifampicin 0.015 µg mL-1 and penicillin G 0.015 µg mL-1) and hyphal tips were 

transferred to clarified V8. For zoospore preparation, a core borer (#15, 20 mm diam) 

was used to remove discs from 7 d Pa58 cultures. Each disk was placed in a 70 mm 

petri dish with 10 mL sterile Nanopure® water for 17 h at 27⁰C. Liquid was then 

replaced with 10 mL sterile nanopure water and discs were incubated at 27⁰C for an 

additional 7 h. Zoospores were enumerated with an Improved Neubauer 

Haemocytometer and diluted with sterile Nanopure® water if necessary. Zoospore 

suspensions were used immediately after preparation. 

B. Disease suppression bioassay  

Bioassays were conducted in an apparatus that held matric potential (Ψm) at a 

constant -3.5 kPa in a growth chamber at 27⁰C and 18 h photoperiod (Dimock growth 

chamber facility, Cornell University). In the apparatus, fritted glass Büchner funnels 

were attached to a water column held under vacuum with one end placed in an open 

reservoir, based on the design of Chen and Nelson (Chen and Nelson 2008). Cucumber 

seeds (10 per funnel) were sown in 150 cm3 of one of three substrates in the funnels; 

sterile sand (0.5 – 1.0 mm d), sterile sand amended with 40% (v:v) vermicompost, and 

sterile sand amended with 40% (v:v) sterile vermicompost. Substrates were flooded for 

30 min and 50 mL zoospore suspension (1.2 x 104 zoospores mL-1) was added to 

inoculated funnels. Substrates were then drained and covered with ventilated Parafilm 

M to create a moist chamber. At 7 days seedlings were harvested and assessed for 

disease symptoms; shoot height, health rating, seedling survival and disease incidence 

were recorded. Health ratings were designated as follows: 0=dead and completely 
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rotted, 1=damped off but not completely rotted, 2=cotelydon and stem lesions, 

3=cotelydon lesions only, 4=stem lesions only, 5=healthy. Disease incidence data 

(presence or absence of symptoms) were analyzed in SAS v9.3 using binary logistic 

regression with Bonferroni’s correction for multiple comparisons. Health ratings were 

analyzed in SAS v9.3 using ANOVA in the general linear model with Tukey’s correction 

for multiple comparisons.  

C. In situ zoospore swimming bioassay  

Point source bioassays based on the design of Heungens and Parke were 

conducted in the Büchner funnel apparatus described for disease suppression 

bioassays (Heungens and Parke 2000). Seeds were embedded into nylon mesh in a 4 

cm diam circle before sowing to ensure their position would not be disturbed during 

flooding. After sowing, Erlenmeyer flasks holding the water column were raised to 

passively flood the substrates through the fritted glass in the Büchner funnels. After 

substrates were saturated (~5 min), flasks were then lowered to allow matric potentials 

(Ψm) to equilibrate at -3.5 kPa. Zoospore suspensions (5 mL, 8 x 104 zoospores mL-1) 

were added to the center of the substrate and the funnel was covered with ventilated 

Parafilm to create a moist chamber. A portion of the seeds were destructively harvested 

at various hours post inoculation (hpi) to test for the presence of Pa58, and the 

remaining seeds were used to assess disease symptoms and survival at 9 days. For 9 d 

old seedlings, disease incidence (presence or absence of symptoms) was analyzed in 

SAS using binary logistic regression with Bonferroni’s correction for multiple 

comparisons. Differences in Pa58 DNA on seed surfaces were analyzed using an 
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ANOVA in the general linear model of SAS with sliced interactions for treatment*hpi to 

generate a means separation. 

i. Mass flow test  

To ensure that zoospores added to the bioassay apparatus must actively swim to 

reach seeds, a 5 mL suspension of either actively swimming or mechanically encysted 

non-motile Pa58 zoospores (8 x 104 zoospores mL-1) were added at a point source in 

the center of the bioassay apparatus based on the design of Kliejunas and Ko 

(Kliejunas and Ko 1974). Cucumber seeds were sown in sand with 4 cm spacing based 

on the design of Duniway (Duniway 1976). The viability of mechanically encysted non-

motile zoospores was tested by adding 5 mL encysted Pa58 zoospores (8 x 104 

zoospores mL-1) to the center of the bioassay apparatus. For this test, cucumber seeds 

were sown at 1 cm spacing. After 24 hours, seeds were transplanted to funnels 

containing sterile sand to prevent potential infections from secondary zoospores. At 48 

hpi half the seeds were removed and plated on KWARP to score for the presence or 

absence of Pa58. Remaining seedlings were harvested 8 d after sowing to assess 

disease symptoms and seedling stand. Disease incidence (presence or absence of 

symptoms) was analyzed in SAS v9.3 using binary logistic regression with Bonferroni’s 

correction for multiple comparisons.  

ii. Transplant bioassays 

To determine whether vermicompost microbes that colonize seeds can protect 

seeds from zoospore infection, a transplant bioassay was carried out similar to that 

described by Chen and Nelson (Chen and Nelson 2008). Seeds were sown in sand and 

in vermicompost-amended sand in Büchner funnels as described above and allowed to 
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germinate 8 h before transplanting to sterile sand and point source inoculated with a 

zoospore suspension. One third of the seeds were assessed for seedling survival and 

disease symptoms at 9 d to assure the viability of zoospore inoculum and two thirds of 

the seeds were destructively harvested 24 h post inoculation for assessments of Pa58 

biomass via quantitative PCR.  

iii. Quantitative assessment of Pa58 on seeds  

Cucumber seeds were removed from their respective substrates at 12, 18 and 24 

hpi and gently tapped to remove adhering sand and vermicompost particles. Ten seeds 

were placed in the initial DNA extraction buffers (UltraClean® Soil DNA Isolation Kit, 

MoBio, USA) and frozen overnight at -20⁰C before sample processing. Manufacturer’s 

protocol for samples with high humic acids was used for DNA extraction. P. 

aphanidermatum-specific primer sets were designed using a consensus sequence 

generated from an alignment of 42 ITS sequences from the NCBI database and our 

laboratory reference strain, Pa58 (Lasergene® Megalign, DNASTAR, USA). Five 

potential primer sets were identified using PrimerSelect (DNASTAR, USA and subjected 

to a melting curve analysis. One primer pair was selected for use in quantitative PCR 

analysis (PaITS-F 5’ AATGTACGTTCGCTCTTTCTTG 3’, PaITS-R 5’ 

GGTTGCTTCCTTTAATGTCCTA 3’). Quantitative PCR (qPCR) was carried out using 

an iQTM5 thermocycler (Bio-Rad, USA). Each 25 µL reaction contained 12.5 µL iQTM 

SYBR® Green Supermix (Bio-Rad, USA), 1.25 µL PaITS4-F and PaITS4-R (500 mM), 1 

µL template and 9 µL DNase, RNase free water. P. ultimum mycelial DNA was used as 

a negative control and water was used as a no template control. Reaction conditions 

were 40 cycles of 95⁰C for 15 s and 50⁰C for 30 s. To generate a standard curve Pa58 
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was cultured on V8 overlaid with sterile cellophane. Mycelia were harvested after 7 d, 

lyophilized and weighed. DNA was extracted (see above) and quantified using a Quant-

iTTM PicoGreen® dsDNA quantification kit (Invitrogen, USA) and a VersaFluorTM 

fluorometer (Bio-Rad, USA). DNA harvested from lyophilized mycelia was used in each 

qPCR plate with a range of 1 fg to 10 ng. To ensure that the presence of the cucumber 

seed and/or the vermicompost substrate did not interfere with DNA extraction or PCR 

amplification, additional treatments were used. Cucumber seeds were sown in sand or 

sand amended with 40% v:v vermicompost for 24 h. Seeds sown in vermicompost for 8 

hours were combined with a known about of lyophilized Pa58 biomass and DNA was 

extracted and used to generate additional standard curves in order to rule out potential 

deleterious effects of residual vermicompost on DNA extraction or PCR efficiency.  

D. Zoospore responses to microbially modified seed exudate (MMSE) 

i. Preparation of Microbially Modified Seed Exudate (MMSE) 

Seeds were sown in fritted glass Büchner funnels as described above for disease 

suppression bioassay and allowed to germinate for 8 h in either sand or vermicompost 

amended sand. Seeds were then transplanted to sterile sand for an additional 12, 18 or 

24 h before being removed. The entire sand matrix of three replicate funnels was then 

harvested, rinsed with 1 L sterile Nanopure®  water, strained through 4 layers of sterile 

cheesecloth, lyophilized, reconstituted in 15 mL Nanopure® water, sterile filtered to 2 

µm with cellulose acetate syringe filters, lyophilized a second time and weighed. The 

resulting powder was stored at -80°C and reconstituted to 35 X the initial concentration 

in the full 150 cm3 sand matrix present in the bioassay apparatus. This reconstitution 

rate was determined empirically as one that would result in high numbers of zoospores 
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responding to sand MMSE. Three separate batches of extracts were prepared and used 

in zoospore assays immediately following reconstitution. 

An ethyl acetate fractionation was carried out on 0.2 µL cellulose acetate filtered 

sand and vermicompost MMSE. MMSE was extracted with two 500 mL portions of ethyl 

acetate per liter of MMSE sample. The organic layers were combined and dried over 

anhydrous Na2SO4 and the solvent removed in vacuo. Residue was transferred to a 

tared vial with ethyl acetate, dried under a N2 stream, and vacuum dried to constant 

weight. The water soluble layer was lyophilized. All samples were stored in -80oC prior 

to use in zoospore assays.  

iii. Zoospore encystment assay  

A zoospore suspension was prepared as described above and 100 mL (1.2 x 104 

zoospores mL-1) was added to a 15 cm diam glass petri dish. Rubber gaskets (Grace 

BioLabs, Bend OR) were adhered to microscope slides, filled with 305 µL 0.01% 

agarose which was allowed to set for 25 minutes. Ten µL of 35x MMSE from each 

treatment was added to the agarose discs and allowed to dry for 3 minutes. Slides were 

then immersed in the zoospore suspension and incubated in the dark at room 

temperature for 30 min. Slides were removed and 4 images were acquired at 10X 

magnification for each treatment and used for zoospore enumeration (DP25 digital 

camera with DP2-BSW software, Olympus, USA). A mixture of exudate samples was 

prepared for an additional assay to determine whether observed differences in zoospore 

encystment were due to the absence of an attractant or the addition of a repellant/lytic 

agent in the vermicompost MMSE samples. Samples were reconstituted to create a 

mixture that consisted of 35 x exudates from seeds germinated in sand combined with 
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35 x vermicompost MMSE. The fate of zoospore cysts was monitored one hour after 

initial imaging at higher magnification (304X) to track the occurrence of lysis. Data were 

analyzed using an ANOVA with a Tukey’s test for means separation (Minitab 16, USA).   

iv. Zoospore germination assay 

Germination rates were calculated for a) pre-encystment and b) post-encystment 

MMSE exposure. For pre-encystment exposure, 10 µL of the test substance was mixed 

with 6 mL swimming zoospore suspension for 15 minutes after which suspensions were 

mechanically encysted via vigorous agitation, and poured into a tissue culture well 

(Nunc 8 well square tissue culture plates, Thermo Scientific, USA) containing a thin 

layer of molecular grade low melt agarose and incubated for 1 hour prior to imaging. For 

post-encystment exposure, 10 µL of the test substance was mixed with 6 mL 

mechanically encysted zoospore suspension, immediately added to the tissue culture 

well and incubated for 1 hour prior to imaging. The proportion of germinated cysts 

(either via germ tubes or secondary zoospores) and germ tube lengths were calculated 

through image analysis (Olympus DP2-BSW software) for a total of 4 fields of view (~4 

mm2) with a water immersion objective (20X 0.5W Ph2, Zeiss). Germination rates were 

analyzed using binary logistic regression and Bonferonni’s adjustment for multiple 

comparisons (SAS v.9.3). Germ tube lengths were analyzed using an ANOVA with 

Tukey’s test for multiple comparisons (Minitab 16). 



 

115 
 

RESULTS: 

A. Disease suppression bioassay  

Inoculated seedlings in sand had 97% mortality after 7 days (Figure 1, Table 2). 

Seedlings sown in sand amended with 40% v:v vermicomposted dairy manure had 

significantly lower seedling mortality at 7 d than seedlings sown in sand with a range of 

11 – 20% mortality for three different batches (Figure 1, Table 2). Seedlings sown in 

sterile vermicompost had a seedling mortality rate of 54% at 7 d which was significantly 

lower than for seeds sown in sand, but significantly higher than for seeds sown in 2 out 

of the 3 batches of vermicompost (Figure 1, Table 2). Mortality for non-inoculated 

seedlings could not be included in the statistical analysis as this measure too 

completely approached 0% which confounds the logistic regression procedure. The only 

non-inoculated treatment with any mortality was sterile vermicompost with a mortality of 

3%. Seedling health rating was highest for all non-inoculated seedlings in every 

treatment followed by the vermicompost batches in descending order (1, 3, 2), sterile 

vermicompost and finally sand with the lowest health rating (Table 1).  

B. In situ zoospore swimming bioassay 

i. Mass flow test  

Mechanically encysting P. aphanidermatum zoospores limited their ability to 

cause infection when added to funnels 2 cm away from germinating seeds. A greater 

number of seedlings survived when seeds were sown 2 cm from the encysted zoospore 

inoculation point than those sown 2 cm from the swimming zoospore inoculation point 

(Table 2) and this pattern was reflected in the proportion of seeds colonized with P. 
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aphanidermatum 48 hpi (data not shown). Mechanically encysted zoospores caused 

86% seedling mortality when added directly to germinating seeds (Table 2).   

ii. Transplant bioassay 

To determine when a suppressive microbial community develops on seed 

surfaces, seeds were pre-germinated in vermicompost for 8, 12 or 24 h. Seeds exposed 

to vermicompost for 8 h had significantly less Pa58 DNA present at 18 and 24 hpi than 

seeds sown in sand for 8 hours prior to transplant and inoculation (Table 3). The 

vermicompost derived seed-colonizing microbial community was associated with 

significantly lower seedling disease incidence at 9 d (Table 3). The highest level of Pa58 

colonization in seeds with the suppressive microbial community is equivalent to 95.3 ug 

dry mycelial biomass and 70 zoospores per seed. The presence of vermicompost on 

the seed surface did not appreciably affect the extraction or amplification of DNA and 

thus did not interfere with our ability to detect Pa58 zoospores on seeds that had been 

pre-germinated in vermicompost. The standard curve equation for DNA extracted from 

Pa58 mycelia (Ct = 28.9 + 3.15 log ng DNA, R2 = 99.7%) and for DNA extracted from 

seeds sown in vermicompost combined with Pa58 mycelia (Ct = 28.2 + 3.13 log ng 

DNA, R2 = 98.9%). 

C. Zoospore responses to microbially modified seed exudate (MMSE) 

i. Zoospore chemotaxis & encystment assay 

Exudates from seeds sown in sand induced chemotaxis and encystment of 

zoospores, with significantly higher numbers of encysted zoospores present in response 

to exudates from later time points compared to those from earlier time points (24 h post 
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transplant > 12 and 18 h post transplant, Table 3). The number of encysted zoospores 

exposed to microbially modified exudates (MMSE) from seeds sown in vermicompost 

did not differ from the number of encysted zoospores in water for any of the time points 

tested (Table 3). Combining exudate from seeds sown in sand with MMSE failed to 

restore zoospore response (Table 4). Zoospores appeared to lyse when exposed either 

to seed exudates modified by the 8 h suppressive seed-colonizing microbial community 

or to a mixture of MMSE and non-modified exudate from sand (Figure 2). A significantly 

greater number of zoospore cysts lysed when cysts were exposed to vermicompost 

MMSE than when exposed to water or non-modified exudates from seeds sown in sand 

(Table 4).  

A simple ethyl acetate fractionation of both the sand and vermicompost MMSE 

significantly impacted zoospore responses. Higher numbers of zoospores swam to and 

encysted on the organic fraction of sand MMSE compared to the aqueous fraction 

(Table 5). No differences were observed in zoospore numbers for both fractions of 

vermicompost MMSE and the water and ethyl acetate controls. The highest percentage 

of zoospore germination was observed in response to the aqueous fraction of sand 

MMSE followed by the aqueous fraction of vermicompost MMSE. The germination rate 

in response to the organic fraction of vermicompost MMSE was significantly lower than 

the ethyl acetate and water controls. A significantly higher proportion of zoospores lysed 

in response to the organic fraction compared to the aqueous fraction of vermicompost 

MMSE. Zoospores exposed to the ethyl acetate fraction of vermicompost MMSE lacked 

germ tubes and showed signs of membrane disruption (Figure 3). This lysis and 

consistent lack of germ tube emergence was not observed in the aqueous fraction of 
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the vermicompost MMSE, either fraction of sand MMSE or in the water or ethyl acetate 

controls (Figure 3).   

iii. Zoospore germination assay 

Pre-encystment incubation of zoospores with exudates from seeds sown in sand 

resulted in a significantly higher germination rate than that observed for zoospores 

exposed to water or MMSE from seeds sown in vermicompost (Table 3). No difference 

in germination percentages was observed between cysts exposed to water or to MMSE 

from seeds sown in vermicompost and no differences were observed among the 12, 18 

and 24 h time points. For post-germination exposure, cyst germination rates declined 

over time for both sand and vermicompost MMSE, however 24 h vermicompost MMSE 

germination rates were significantly lower than those observed in response to 24 h sand 

MMSE indicating a treatment effect at this time point (Table 3). No significant 

differences in germ tube lengths between treatments were observed (data not shown, 

p=0.299). 

DISCUSSION 

 Examining the tripartite interactions among germinating seeds, the seed-

colonizing microbial community recruited from a disease-suppressive substrate, and P. 

aphanidermatum zoospores has offered several insights into the nature of 

vermicompost-mediated disease suppression. First, our results confirm the important 

role the spermosphere microbial community plays in disease suppression and form part 

of the growing body of evidence that microbes with the ability to rapidly colonize host 

surfaces directly modulate the activities of soil pathogens (McKellar and Nelson 2003; 

Chen and Nelson 2008; Chen et al. 2012). Detection of Pa58 DNA on seed surfaces 
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using qPCR indicates that zoospores were able to swim approximately 2 cm in sterile 

sand at -3.5 kPa matric potential and begin to colonize their hosts within 12 hours after 

inoculation. In contrast, the presence of the 8 hour vermicompost spermosphere 

microbial community greatly reduced colonization of germinating seeds within a 24 h 

time period and provided almost complete protection from disease. It is important to 

note here that the qPCR assay cannot distinguish between viable and non-viable 

zoospores. It is possible that the low levels of Pa58 DNA detected in the spermosphere 

of seeds colonized by vermicompost microbes was not an indication of low levels of 

infection but in fact a reflection of DNA from non-viable or lysed zoospores as those 

frequently observed in the zoospore attraction and encystment assays. In addition, it is 

not clear if the documented increase in Pa58 biomass over time on seeds sown in sand 

is due to the arrival of additional zoospores or to the rapid growth of Pa58 mycelia as it 

colonized the host, or a combination of the two. However, taken as a whole, the qPCR 

and transplant bioassay data show that the observed disease suppression in bulk 

vermicompost (61% reduction in disease incidence compared to sand) appears to be 

almost entirely due to the 8 hr seed-colonizing microbial community (67% reduction in 

disease incidence compared to sand). This does not, however, exclude the possibility 

that microbes in the bulk vermicompost also play a role in the suppression of disease. In 

fact, microbial community analyses have shown that many of the same bacterial taxa 

correlated with disease suppression are present in both rhizosphere and bulk soil 

(Benitez et al. 2007) Instead our results validate focusing on plant-associated microbes 

as a way to simplify the search for mechanisms of disease suppression. 
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 A second insight from these results is that assessing suppressive microbial 

communities indirectly via monitoring pathogen response is a viable approach to 

understanding disease suppressive microbial communities. Since chemotaxis and 

encystment of P. aphanidermatum zoospores occur in direct response to chemical 

compounds present in the host seed’s exudates (Donaldson and Deacon 1993a; 

Donaldson and Deacon 1993b), we hypothesized that any reduction in chemotaxis and 

encystment observed with the presence of a suppressive seed colonizing microbial 

community would be due to these microbes somehow modifying the seed exudates. We 

found that zoospores did in fact respond differently to exudates collected from seeds 

colonized by a suppressive microbial community, with fewer encysted zoospores 

observed in the in vitro assays. It’s tempting to conclude that the presence of a lower 

number of encysted zoospores indicates that both chemotaxis and encystment were 

inhibited by vermicompost MMSE. However, it is possible that zoospores actively 

swarmed around the vermicompost MMSE test compound, but did not encyst or attach 

to the agarose and therefore were not present in the final counts for the assay. In 

addition, zoospores may have actively swum towards and clustered around germinating 

seeds in the in situ assays, but then lysed before encysting leaving their DNA to 

degrade before it could be detected via qPCR. So we cannot exclude the possibility that 

the zoospore chemotactic response was not inhibited, however encystment and 

germination were significantly impacted. 

Previously this “pathogen as biosensor” approach has been applied successfully 

to interactions between zoospores, plant hosts and individual biocontrol agents. For 

example, exudates collected from cucumber roots colonized with Pseudomonas spp. 
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attracted fewer P. aphanidermatum zoospores than exudates from untreated roots in 

capillary assays (Zhou and Paulitz 1993). In addition, exudates from roots colonized 

with the arbuscular mycorrhizal fungus Glomus intraradices attracted fewer P. 

nicotianae zoospores than water, indicating the presence of a repellant (Lioussanne et 

al. 2008). HPLC characterization of the control and microbially modified exudates 

identified isocitric acid and proline as potential zoospore repellants in this system 

(Lioussanne et al. 2008). We found evidence of a repellant by exposing P. 

aphanidermatum zoospores to combinations of control and microbially modified 

cucumber seed exudates. Had mixing exudates from both treatments restored zoospore 

attraction and encystment, this would have provided evidence that an important 

chemotaxis and/or encystment cue was missing from the MMSE. Instead, zoospore 

chemotactic and encystment response to the mixture of exudates was no different than 

that to vermicompost MMSE, indicating the presence of a zoosporocidal toxin or 

repellant. 

Microbially modified root exudates can differentially impact the stages of 

zoospore pre-infection events. For example, exudates from Bacillus cereus-treated 

tobacco roots, including both antibiotic-producing (zwittermicin A and kanosamine) and 

antibiotic mutant strains, reduced the number of Pythium torulosum zoospores actively 

swimming towards roots and successfully encysting on roots (Shang et al. 1999). 

However, only the antibiotic producing strain reduced zoospore cyst germination 

indicating that multiple routes of interference with zoospore pathogenesis may be 

present (Shang et al. 1999). Additional evidence for the existence of a dual mechanism 

is the fact that both antibiotic-producing and antibiotic mutant strains of Burkholderia 
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cepacia incubated in vitro with pea seed exudates eliminated attraction for P. 

aphanidermatum zoospores (Heungens and Parke 2000). However only the antibiotic-

producing strain caused zoospore lysis, prevented cyst germination and reduced germ 

tube growth (Heungens and Parke 2000) indicating that B. cereus both reduced 

important attractants and produced a zoosporocidal toxin. We found evidence of this 

type of dual mechanism as zoospores exposed to the aqueous fraction of vermicompost 

MMSE after ethyl acetate fractionation responded with a low level of attraction and 

encystment indicating that attractants may have been degraded during microbial 

modification of cucumber seed exudates. Germlings exposed to the organic fraction of 

vermicompost MMSE had significantly lower rates of germination and lysis than those 

exposed to the aqueous fraction of the same exudate, indicating that the toxin/s or 

repellant/s may be concentrated in the organic fraction. This provides evidence that the 

low levels of chemotaxis and encystment in response to the aqueous fraction of 

vermicompost MMSE are thus due to the absence of an attractant in microbially 

modified exudates which might be an additional mechanism of pathogen suppression. 

Additional evidence for the presence of a zoosporocidal toxin was generated 

through microscopic observation of germinating zoospores in the zoospore encystment 

assay. Zoospores exposed to exudates from seeds sown in sand formed germ tubes 

while a high proportion of those exposed to vermicompost MMSE appeared to lyse 

during the process of encystment, or if encysted did not germinate. Without an in-depth 

chemical analysis of vermicompost MMSE it is impossible to know which lytic 

compound is being produced in the spermosphere of seeds colonized with this 

suppressive community. The observed lysis is morphologically similar to that of 
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Phytophthora cactorum zoospores exposed to the zwittermycin- producing biocontrol 

bacterium Bacillus cereus UW85 (Gilbert et al. 1990), Aphanomyces cochlioides 

zoospores exposed to cell free Lysobacter sp. SB-K88 culture filtrate or its metabolite 

xanthobaccin A (Islam et al. 2005), and Phytophthora capsici zoospores exposed to the 

P. fluorescens metabolite rhamnolipid B (Kim et al. 2000), indicating that a wide range 

of compounds could be responsible for lysis in our pathosystem. In all of these cases, 

lysis is characterized by highly granulated cysts with no visible cell wall whose contents 

appear to spill into the surrounding medium.  

Although a wide range of bacteria could be responsible for the changes in 

zoospore pre-infection events observed in our study, previous work has documented 

the presence of compost-derived bacteria (gammaproteobacteria, Pseudomonas spp.) 

known to produce zoospore lytic compounds in the cucumber spermosphere and 

identified as crucial for the suppression of Pythium ultimum (Chen et al. 2012). In 

addition to lytic activity, vermicompost MMSE reduced the incidence of germination but 

not germ tube length in mechanically encysted zoospores. Not all compounds known to 

reduce zoospore encystment are necessarily also lytic (Folman et al. 2004) so it is 

possible that more than one active compound is present in the spermosphere of seeds 

colonized with the vermicompost-derived suppressive microbial community. While pre-

encystment exposure to vermicompost MMSE did not significantly reduce rates of cyst 

germination compared to a water control as we initially predicted, this assay was not 

sensitive enough to document lysed zoospores, which were only observable under 

304X magnification with the non-immersion objective. Therefore calculating the rate of 

germination as: (the number of germinated cysts) / (the total number of cysts), may 
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have been inaccurate if many more zoospores had initially been present and those that 

had lysed were not included in the total count. Since the only structures of Pythium 

aphanidermatum susceptible to lysis are those lacking a cell wall, i.e. zoospores, 

vesicles formed during zoosporogenesis, and zoospore cysts in early stages of 

development it would be interesting to explore the impact of vermicompost MMSE on 

additional developmental stages of the pathogen. Based on the observed zoospore lysis 

we could hypothesize that the plasma membranes of vesicles formed during 

zoosporogenesis may also be susceptible as has been observed previously for 

Phytophthora spp. (Meyer and Linderman 1986; Norman and Hooker 2000). And based 

on the observation of non-lytic effects, i.e. reduction of germination after the formation of 

a cyst cell wall, sporangiogenesis may also be negatively impacted.  

While the zoosporocidal compounds produced by the vermicompost derived 

spermosphere microbial community may be unique to this particular substrate and 

pathosystem, this study demonstrates the usefulness of our experimental approach in 

uncovering mechanisms of suppression. The strategy of focusing exclusively on the 

spermosphere microbial community while using the pathogen’s zoospores as 

biosensors to make inferences about changes in that community could be applied to the 

investigation of suppression for other soil-borne oomycete pathogens. This approach 

documented the general mechanism involved in vermicompost-mediated suppression of 

Pythium aphanidermatum on cucumber and provided clear directions for additional 

investigation, including follow-up chemical analyses of vermicompost MMSE. Given the 

demonstrated relative simplicity of early seed-colonizing microbial communities; 350 

bacterial OTUs (Chen et al. 2012) compared to over 33,000 bacterial OTUs in 
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rhizosphere soil (Mendes et al. 2011), this microbial habitat is a good candidate for 

metagenomic analysis in the continued study of disease suppression. 
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FIGURES AND TABLES 

Figure 1. Representative 7 day old cucumber (Cucumis sativus cv. “Marketmore 76”) 

seedlings from disease suppression bioassays. Surface disinfested cucumber seeds 

were sown in A) sand amended with vermicomposted dairy manure (40% v:v), B) sterile 

quartz sand, and C) sand amended with sterile vermicompost (40% v:v). Each group of 

10 inoculated seedlings received 6 x 105 Pythium aphanidermatum zoospores. Matric 

potential (Ψm) was held constant at -3.5 kPa. Scale bar = 5 cm. 
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Table 1. Mortality (%) of cucumber seedlings from disease suppression bioassays at 7 d 

(n=90 seeds for all treatments except for sterile vermicompost n=60 seeds). Seedling 

mortality means followed by the same letter are not significantly different (binomial 

logistic regression with Bonferonni’s correction for multiple comparisons p<0.0001). 

Health ratings least squared means followed by the same letter are not significantly 

different (ANOVA with Tukey’s correction for multiple comparisons, p<0.0001). Health 

ratings for individual seedlings were designated as follows: 0=dead and completely 

rotted, 1=damped off but not completely rotted, 2=cotelydon and stem lesions, 

3=cotelydon lesions only, 4=stem lesions only, 5=healthy. 

 

Treatment Inoculation Seedling mortality 

(%) at 7 d 

lsmeans health 

rating at 7 d 

Vermicompost Batch 1 - 0 5.00 A 

+ 11 C  4.38 B 

Vermicompost Batch 2 - 0 5.00 A 

+ 20 B 4.05 C 

Vermicompost Batch 3 - 0 5.00 A 

+ 11 C 4.25 BC 

Sand - 0  5.00 A 

+ 97 A 0.78 E 

Sterile vermicompost - 3 4.83 AB 

+ 28 B 3.35 D 
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Table 2. Seedling mortality (%) at 8 days. Surface sterilized cucumber seeds were point 

source inoculated with 6x104 zoospores that were either actively swimming, or had 

been mechanically encysted. At 48 hpi seedlings were transplanted to sterile sand to 

avoid contact with secondary inoculum produced from encysted zoospores. Means 

followed by the same letter are not significantly different (binomial logistic regression 

with Bonnferoni’s correction for multiple comparisons, p<0.0001). 

Type of 

inoculum 

Inoculum to seed distance 

(cm) 

Mortality (%) 

Swimming 2 96 A 

Encysted 2 27 C 

Encysted 0 93 B 
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Table 3. In vitro and in vivo responses of Pythium aphanidermatum zoospores to 

cucumber seed exudates that have been modified by the seed-colonizing microbial 

community developed after 8 h of germination in vermicompost. Values followed by 

the same letter in each column are not significantly different (α=0.05). 

Treatment  

in vitro in situ 

Chemotaxis/ 

encystmenta 

Germination b 

(exposure 

pre-

encystment) 

Germinationb 

(exposure 

post-

encystment) 

Arrival/ 

colonizationc 
Infectiond 

Average # 

encysted 

zoospores 

per 1 mm2    

Germination 

rate (%) 

Germination 

rate (%) 

Pa DNA pg 

10 seeds-1 

Disease 

incidence 

at 9 d (%) 

S 

12 h 16.58 BC 

55 A  

63 A 8.49 ABC 

98.8 A 18 h 20.78 B 59 AB 14.43 AB 

24 h 39.77 A 52 B 16.37 A 

V 

12 h   9.74 CD 

46 B 

55 AB   1.07 C 

31.1 B 18 h   7.07 D 51 B   0.36 C 

24 h   5.08 D 35 C   0.63 C 

Water    2.26 D 43 B 27 D na  na 

 
a Zoospore chemotaxis and encystment response to seed exudates modified by the 8 hour seed 

colonizing microbial community derived from vermicompost and harvested 12, 18 or 24 h after 

colonized seeds were transplanted to sterile sand. Each value is an average of 4 fields of view 

from 1, 2 and 3 replications respectively for 3 different MMSE batches (n=6, p<0.0001).  

b Binary logistic regression for: pre-encystment exposure (n=3, p < 0.0001, post-encystment 

exposure (n=3, p<0.0001). An average of 400 total zoospores from 4 fields of view and 3 

replications were used to calculate germination percentages for each treatment – time point 

combination with a total of over 9,000 individual zoospores scored. 



 

137 
 

c Least squared means of Pa DNA for seeds removed from point source bioassay experiment at 

12, 18 and 24 h. Each point is an average of 2 funnels within 3 full repetitions of the qPCR 

assay (n=6). (treatment p< 0.0001, total treatment*hpi p=0.101, significant individual 

treatment*hpi interactions all p<0.001). 

d Seedling disease incidence for seeds sown in vermicompost or sand, transplanted to sand at 8 

h, point-source inoculated with 6x104 zoospores, and incubated at a matric potential (Ψm) of -3.5 

kPa for 9 d with 16 h photoperiod at 27⁰C (n=30). (p<0.0001) 
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Table 4. Zoospore encystment assay results of 24 h MMSE from seeds originally sown 

in sand and vermicompost and a mixture of the two types of exudates. Means were 

calculated by counting 4 fields of view for 2, 3 and 3 replicates respectively of 3 different 

batches of MMSE. Means followed by the same letter in each column are not 

significantly different (n=8, ANOVA p<0.0001). Over 1,000 total zoospores were scored 

for lysis. 

Seed exudate treatments  Mean encysted 

zoospores per 1 

mm2 

Proportion of 

lysed zoospores 

(%) 

Sand  31.1 A 15 B 

Vermicompost  13.1 B  34 A 

Mixture of sand and 

vermicompost  

13.1 B  44 A 

Water (no seed)    2.7 C    2 B 
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Figure 2. Representative P. aphanidermatum zoospore germlings exposed to microbially modified seed exudate (MMSE) 

in the zoospore encystment assay. A) 24 h MMSE from seeds sown in sand, B) 24 h MMSE from seeds sown in 

vermicompost amended sand, C) a 1:1 mixture of A & B (304X magnification). 
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Table 5. Zoospore encystment assay results for different chemical fractions (extracted 

with ethyl acetate and water) of 24 h MMSE from seeds originally sown in vermicompost 

or sand for 8 h. Means followed by the same letter in a single column are not 

significantly different (n=5, ANOVA p < 0.0001). Over 1,200 zoospores were scored for 

germination and lysis (n=5, binary logistic regression p < 0.0001). 

 

Seed exudate treatments  lsmeans 

encysted 

zoospores 

per 1 mm2 

Proportion of 

germinated 

zoospores 

(%)   

Proportion of 

lysed 

zoospores 

(%) 

Sand - organic fraction 30.2 A 66 C   6 B 

Sand - aqueous fraction 10.9 B 94 A   5 B 

Vermicompost - organic fraction   3.0 C 35 D 16 A 

Vermicompost - aqueous fraction   4.6 C 81 B   2 B 

EtOAc (no seed)    7.5 C 58 C   6 AB 

Water (no seed)    1.6 C 86 AB   6 AB 
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Figure 3. Representative Pythium aphanidermatum zoospore germlings exposed to 

fractionated microbially modified seed exudate (MMSE) in the zoospore encystment 

assay. A) EtOAc fraction of sand MMSE, B) aqueous fraction of sand MMSE, C) EtOAc 

fraction of vermicompost MMSE, D) aqueous fraction of vermicompost (304X 

magnification).  

 

 


