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  Presence of pharmaceuticals and endocrine disrupting compounds (EDCs) in the environment 

is of growing concern due to their potential ecological impacts and constant release. 

Conventional treatment plants are inefficient in removing such compounds, driving the need for 

innovative treatment methods. Oxidation processes are attractive options because structure 

alterations by oxidation can lead to reduced biological activity, increased biodegradability and 

mineralization.  

  Three oxidation treatment methods, Anodic Fenton treatment (AFT), crypomelane-type 

manganese oxides and biogenic manganese oxides were evaluated using pharmaceutical and 

EDCs probes. Ciprofloxacin (CIP), a widely used fluoroquinolone, was degraded in the AFT 

system. Fast removal was observed in minutes. The degradation kinetics were found to deviate 

from the classical AFT model. This change in kinetic pattern is because speciation distribution 

changes as the solution pH self-optimizes to acidic conditions, and reaction affinity of the CIP 

species toward the hydroxyl radical is protonation dependent. Modification was made to the AFT 

model to account for the pH induced change in reaction affinity. Process condition was 

optimized at pH 3.2, giving a Fenton reagent delivery ratio of [H2O2]:[Fe2+] between 10 to15. 

Analysis on structures and evolution pattern of degradation products indicated elimination of the 

antibiotic activity of the solution after AFT treatment. Cryptomelane is a framework type 

manganese oxide whose synthetic counterpart has gained wide industry application. Oxidative 



 

 
 

degradation of CIP by synthetic cryptomelane (OMS-2) was not successful. Doping V or Mo 

into the framework of OMS-2 increased its oxidative reactivity significantly. 9% Mo doping was 

found to give the best performance. Structure characterization results indicated that the 

improvement was mainly due to increased surface area upon doping. Response surface 

methodology was applied to find the optimal treatment condition: pH 3 and [Oxidant]:[Substrate] 

molar ratio ≥ 50. Analysis of degradation products suggested that the oxidation mainly takes 

place at the piperazine ring of CIP. Lower biological activity of the products is expected since 

the piperazine ring is an important substituent on the quinolone core structure that affects 

antibiotic potency. Biogenic manganese oxide (BioMnOx) is formed by Leptothrix discophora 

SS-1. Successful removal of CIP and BPA by BioMnOx can be achieved, but the reaction rates 

were slower by BioMnOx, compared to that by synthetic MnO2. This is probably due to a larger 

particle size, smaller surface area and lower average oxidation states of BioMnOx. The bleaching 

procedure improved the reactivity of BioMnOx significantly. Generally, lower solution pH is 

favorable for the oxidation reaction. Presence of cations can slow down the oxidation process 

even more by competing for the reactive sites. Humic acid can affect the oxidative degradation 

via two countering effects: blocking of surface reactive sites which reduces reactivity and 

binding inhibitory MnII ion released during the reaction which accelerates the reaction. The 

BioMnOx system yielded fewer degradation products than the synthetic MnO2 systems as well as 

different product distributions. The mechanism for the preference of degradation pathways 

remains unclear. The applicability of BioMnOx as a water treatment technology is still 

questionable and requires more evaluation. 
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CHAPTER 1 

INTRODUCTION TO THESIS RESEARCH 

The release of trace organic contaminants into the environment from wastewater effluents has 

gained recent attention for their wide occurrence in the aquatic environment and potential 

harmful impacts on wildlife and human health (1-4). Two major groups of contaminants of 

growing concern are pharmaceuticals and endocrine disrupting compounds (EDCs). Unlike 

conventional pollutants, pharmaceuticals and EDCs are unlikely to exert overt and acute toxic 

effects on organisms at environmentally relevant concentrations. However, subtle, unintended 

and chronic effects may occur due to low and consistent exposure. In addition, for contaminants 

that have U or V shaped dose-response relationships, such as steroid compounds, low 

concentration exposure is more toxicologically relevant (5).   

Despite limited understanding of the ecological risks posed by the presence of such trace 

contaminants, adverse effects have been observed on aquatic organisms in both laboratory and 

field studies (5-12, 14-16). Abnormal concentrations of sex steroid hormones, elevated 

concentrations of the estrogen-dependent blood protein vitellogenin (VTG), and gonadal 

malformations have been found in fish associated with estrogenic WWTP effluents (6-8). 

Moreover, incidence and severity of intersex fish in wild roach populations were found to be 

correlated with their estimated exposure to steroidal estrogens (9). Xenoestrogens that do not 

have a steroid structure, such as bisphenol A (BPA), and octylphenol, can also mimic the action 

of hormones and cause alterations in development and reproduction in wildlife (10, 11).  

Another major concern about pharmaceuticals in the environment is antibiotic exposure, which 

may assist in development and spread of microbial resistance. Prolonged exposure to low doses 

of antibiotics leads to selective proliferation of resistant bacteria, as evidenced by detection of 
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several antibiotic resistant bacteria or genes in municipal wastewater discharge and their 

downstream receiving waters (12, 13). What is worse, the resistant genes may be transferred 

within and between microbial populations, posing a potential threat to public health (14).  

Unexpected effects on untargeted organisms may also occur. Aquatic microcosm studies have 

revealed that fluoroquinolone antibiotics can perturb photosynthetic species although they were 

originally designed to target bacterial DNA gyrase or topoisomerase II enzyme and inhibit 

bacterial DNA replication and repair (15, 16). Ciprofloxacin (CIP), a widely used 

fluoroquinolone(FQ) antibiotic, was found to affect the structure and richness of algal 

communities exposed to environmentally relevant concentrations (15). Structure-activity analysis 

indicates that the quinolone ring and secondary amino group known to be representative in most 

FQ antibiotic structures may function as quinine site inhibitors in photosystem II (PSII) and thus 

interfere with the enzyme (17).   

It is noteworthy that contaminants exist in a complicated mixture in wastewater. Additive or 

synergistic toxic effects of co-existing contaminants should be factored in when evaluating the 

ecological risks. For example, beta-blockers have low toxicity when in pure solution but are 

much more toxic in a wastewater matrix at environmentally relevant concentrations (18). 

Another scenario for consideration is exposure to multiple contaminants that share the same 

mode of action, as often seen in antibiotic families that share similar structures, resulting in a 

higher effective exposure due to additive effects.  

A primary source of the trace organic contaminants in the aquatic environment is sewage 

effluent (5). Thus wastewater treatment plants (WWTPs) represent a critical control point to 

prevent low levels of pharmaceuticals and EDCs from entering the aquatic environment. 

However, conventional treatment methods in WWTP are not specifically designed to treat these 
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specialized organic contaminants and are often not very effective (19-21). The treatment 

efficiency depends on the design and operation parameters of the treatment process as well as the 

intrinsic chemical properties and structures of the contaminants (22-24). Generally, two main 

elimination mechanisms are responsible for removal in conventional WWTPs: <1> sorption and 

<2> biodegradation. Sorption to suspended solids by hydrophobic interaction or electrostatic 

attraction and later precipitation as primary sludge or secondary sludge works well for 

hydrophobic or positively charged compounds, such as fluoroquinolones and tetracyclines 

(25,26). However, sorption of highly polar and negatively charged pharmaceuticals, such as 

clofibric acid, is negligible (27). The other important process is biodegradation. In the presence 

of sufficient nutrients, co-metabolism of low concentration organic contaminants may occur. For 

example, ibuprofen can be removed by biodegradation to a significant extent (28). However, the 

biodegradation process may be slow and require an adaptation period for such unconventional 

substrates. In addition, some compounds, such as antibiotics, have a very limited 

biodegradability (29). It is also noteworthy that during the biological process some 

microorganisms can convert the bioactive metabolites (glucuronide or sulfate conjugates) back to 

the parent compounds, leading to a lower apparent removal rate (30,31).  

Due to the incomplete removal of trace contaminants, detection of pharmaceuticals and EDCs 

has been frequently reported in the effluent of WWTPs, typically in the µg/L-ng/L concentration 

range (21, 24, 27). Efforts have been made to improve the treatment efficiency, including 

optimization of plant design and application of post treatment technology (19, 28, 32). Processes 

that have undergone investigation include granular activated carbon, membrane separation and 

oxidation. While the former two techniques utilize physical separation and yield waste that 

requires further treatment, oxidation processes can alter the structure of chemicals and therefore 
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their bioactivity. Typical oxidation processes include ozonation, chlorination, UV/H2O2, and the 

Fenton reaction. Precautions should be taken when applying these methods because each method 

has its specific experimental conditions, appropriate targets, and limitations. For example, ozone 

is a selective oxidant that works well for some functional groups, such as aromatic rings, C=C, 

thiols and amines (33). Compounds without those functional groups may be refractory to 

ozonation, such as halogenated X-ray contrast media and some acidic pharmaceuticals (34). On 

the contrary, advanced oxidation processes, characterized by the hydroxyl radical, give non-

selective oxidation, resulting in contaminant mineralization and improved biodegradability (35, 

36). It is noteworthy that sometimes more toxic compounds can be formed after the treatment. 

Such phenomena have been observed in chlorination studies of acetaminophen, which created 

more toxic compounds (37). Moreover, degradation of the parent compound does not guarantee 

removal of pharmaceutical activity of the solution since functional groups that are responsible 

for biological activity may remain unaffected. Therefore, it is necessary to study treatment 

methods in detail and understand the specifications and limitations.  

Among different oxidation processes, Fenton and manganese oxide systems are attractive 

options due to their low cost, environmental friendliness and high oxidizing potential. Three 

oxidation systems, the anodic Fenton system, cryptomelane-type manganese oxides and biogenic 

manganese oxides (BioMnOx), are evaluated for their potential in treating pharmaceuticals and 

EDCs in the following chapters. 

The anodic Fenton system (AFT) consists of an electrolytic cell with an iron plate as the anode 

and a graphite electrode as the cathode. A scheme of the reactor is shown in Figure 1.1. The two 

half cells are separated by an ion exchange membrane for the purpose of pH optimization. 
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Hydrogen peroxide is pumped into the anodic half cell to initiate the reaction. The mechanism of 

the AFT system is shown as below:  

Anode: Fe – 2e- -> Fe2+ 

Cathode: 2H2O + 2e- -> 2OH- + H2 

Fenton reaction: Fe2+ + H2O2 -> Fe3+ + OH- + OH. 

 

    Figure 1.1 Scheme of membrane anodic Fenton Treatment System 

Compared to the classical Fenton system, AFT has the advantages of self-optimized pH and 

sludge reduction (38). This treatment has been successfully applied to remove various pesticides 

in aqueous and sediment systems (39-41). Generally the degradation is very fast and the 

treatment is completed in minutes. Kinetic models have been discussed and developed to 

describe the process (38). Extending application of AFT to sulfamide antibiotics has also been 

successful. Reduced antibiotic activity of the treated solution was demonstrated by an algal 

growth assay (42). It is noteworthy that in addition to system condition parameters, such as 

electrolysis current and H2O2 delivery rates, the structure of target pollutants also affect the 

H2O2

Contaminants + 
NaCl solution
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degradation kinetics. For example, aromatic N containing compounds like triazine may chelate 

with the iron and change the amount of available catalytic iron for the Fenton reaction, leading to 

a change in the kinetic pattern (42, 43). Considering the vast variety of structures presented by 

pharmaceuticals and EDCs, it is not possible to make a generalization for those compounds in 

the AFT system. Therefore using compounds with representative structures may be helpful for 

evaluating treatment efficiency, optimizing process parameters and understanding the 

mechanisms.   

Manganese is another abundant transition metal in the earth that shares great chemical 

similarity with iron. The most common oxidation states of manganese in the environment are +2, 

+3 and +4. In the absence of a chelator, Mn(III) and Mn(IV) are sparingly soluble and exist in 

the oxide form. The structures of manganese dioxides can be categorized into two types, 

depending on the connection pattern of the MnO6 octahedral units: 1. framework structure, 

where MnO6 octahedral chains formed different sizes of tunnel by sharing corners and edges, 

such as cryptomelane; 2. Layered type structure, where MnO6 units form a layer, and cations sit 

in the interlayer space to balance the charge, such as birnessite.   

 

  Figure 1.2 Two types of manganese oxide structures 

K+

Cryptomelane Birnessite
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Due to the wide distribution in the environment and the highly reactive surface, manganese 

oxides have been recognized as an important environmental oxidant. The research interest of 

exploring the potential of manganese oxides for treating organic contaminants is the result of 

numerous laboratory and field studies that demonstrate the oxidative versatility of manganese 

oxides (44 - 48). Interestingly, the reactivity of manganese oxides varies significantly, depending 

on factors such as mineral phases, average oxidation states of Mn and surface areas (49).  

It is generally believed that a biological Mn(II) oxidation process is the predominant pathway 

for Mn(III/IV) oxide formation in the natural environment due to limited rates of abiotic 

oxidation of Mn(II) at circum-neutral conditions (50, 51). In addition, various microorganisms 

are found to perform Mn(II) oxidation directly or indirectly (52). The importance of microbial 

contributions to Mn(II) oxidation is also confirmed in a few field studies (53-55).  

Manganese oxides have been synthesized and used in the laboratory to understand the 

environmental roles of natural manganese oxides. Birnessite type manganese oxides, the 

structural analog of neoformed BioMnOx, have gained considerable research interest. High 

oxidizing reactivity of this type of manganese oxides has been reported, where phenols, amines 

and small organic acids are degraded in minutes (45, 56, 57). Emerging contaminants that have 

reactive functional groups, such as triclosan and fluoroquinolones, are also found susceptible to 

oxidation (46, 58). Based on the above findings, it is reasonable to hypothesize that BioMnOx 

may play a key role in environmental fates of trace organic contaminants and, further, be a 

potential oxidant for water treatment application. However, it is worth noting that the reactivity 

of BioMnOx cannot be reliably predicted from prior knowledge of its synthetic analogs despite 

the structural similarity (59-61). One major difference between BioMnOx and its synthetic 

counterpart is the content of organic materials. The organic debris in BioMnOx, such as cell 
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material, may serve as a ligand for Mn(II) and other metal ions. This chelating process is 

especially important during redox reactions where Mn(II) is released, leading to auto-inhibition 

of the reaction by blocking of the reactive sites (62). Similarly, inhibition due to co-existing 

metal ions in the water matrix can be mitigated by such chelation. BioMnOx may also differ from 

the synthetic ones in particle size distribution, surface areas and average oxidation states. All of 

those factors can affect the reactivity of BioMnOx, leading to different degradation rates and 

even pathways. Therefore research efforts are needed to obtain such information for evaluating 

environmental roles of natural manganese oxides and utilizing them for water treatment.  

Cryptomelane is a naturally occurring framework type manganese oxide that has gained 

considerable interest regarding its potential application in environmental pollution control (63-

65). The synthetic counterpart of cryptomelane is called octahedral molecular sieve-2 (OMS-2), 

where 2 stands for the dimension size of the tunnel formed by MnO6 octahedral units. OMS-2 

has been successfully applied for heavy metal immobilization, volatile organic compounds 

reduction and dye wastewater treatment (64, 66, 67). Despite the effectiveness of OMS-2 in 

treating dye wastewater, there are limited data on the OMS-2 application as a water treatment 

process. Generally, the reaction between manganese oxides and organic contaminants is 

considered to be a two step surface reaction with formation of a complex precursor followed by 

electron transfer (46). Thus modification of manganese oxides that leads to a larger surface area 

or faster electron transfer rates can result in an improvement of treatment efficiency. Doping 

OMS-2 with certain transition metals has been reported to give better dye pollutant removal rates 

which may be partially due to the surface area change (67). Based on the above discussion, it is 

scientifically interesting to evaluate the performance of OMS-2 and its derivatives for treating 

emerging contaminants.  
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The main objectives of this study are to evaluate the effectiveness of three oxidation processes: 

anodic Fenton treatment, cryptomelane-type manganese oxides and BioMnOx, for treating 

representative pharmaceuticals and EDCs in aqueous solution. Degradation kinetics are modeled 

for each system and process conditions are optimized. Efforts are made to identify degradation 

products for each oxidation process; changes of biological activity after the treatments are 

discussed. Chapter 2 describes degradation of CIP in the anodic Fenton treatment system. Effects 

of initial solution pH, Fenton reagent delivery rates and CIP initial concentration on degradation 

kinetics are investigated. Degradation of reference compounds and density functional calculation 

are conducted to understand the treatment process. Chapter 3 describes degradation of CIP by 

cryptomelane-type manganese oxides: OMS-2 and doped OMS-2. Effects of doping on structure 

and reactivity of cryptomelane-type manganese oxides are investigated. Process parameters such 

as pH, oxidant load, are optimized by surface response methodology. Chapter 4 focuses on 

describing and understanding the formation of BioMnOx by Leptothrix discophora SS-1, a model 

Mn(II) oxidizing bacterium. Optimal conditions for manganese oxide formation are discussed. 

Chapter 5 utilizes pre-formed BioMnOx as the oxidant to degrade CIP and BPA. The oxidation 

kinetics by BioMnOx is compared to those by its synthetic analog. Effects of solution conditions 

on the kinetics are also discussed. Degradation products in BioMnOx are discussed and compared 

to the findings in synthetic analog systems.  
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Abstract 

The anodic Fenton treatment method (AFT) was successfully applied to the removal of 

Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, from aqueous solution. 

Degradation kinetics were found to be species dependent. At initial pH 3.2, CIP remained in its 

cationic form and the kinetics followed a previously developed AFT model. At an initial near-

neutral pH, CIP speciation changed during the degradation, due to pH changes over the process, 

and no obvious model fit the data. Density functional theory (DFT) calculations indicated a 

protonated species-dependent reaction affinity toward hydroxyl radicals. A new model was 

derived based on the AFT model with the addition of species distribution during the degradation, 

and it was shown to describe the degradation kinetics successfully. Degradation of reference 

compounds further confirmed that the free carboxylic acid group, which contributes to the 

species changes, plays a key role in the observed degradation pattern. Furthermore, degradation 

of reference ciprofloxacin-metal complexes confirmed that the formation of these complexes 

does not have a major effect on the degradation pattern. Optimization of CIP degradation was 

carried out at pH 3.2 with an optimal H2O2:Fe2+ ratio found between 10:1 and 15:1. Three 

degradation pathways were also proposed based on mass spectrometry data: <1> hydroxylation 

and defluorination on the aromatic ring; <2> oxidative decarboxylation; and <3> oxidation on 

the piperazine ring and dealkylation. By the end of the AFT treatment, neither CIP nor its 

degradation products were detected, indicating successful removal of antibacterial properties.  
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Introduction 

 Based on their annual global sale and therapeutic versatility, fluoroquinolones represent one of 

the most important classes of antibiotics (1, 2). They are active against a wide spectrum of 

bacteria and are considered as “drugs of last resort”. Ciprofloxacin (CIP) is one member of the 

second-generation of fluoroquinolone derivatives. It is also a primary degradation product of 

enrofloxacin, another widely used fluoroquinolone drug. The structure of CIP is shown in Figure 

2.1. CIP possesses a carboxylic acid group in the quinolone moiety (C-3, pKa1 = 6.1) and an 

amine group in the piperazine moiety (C-7, pKa2 = 8.7). Depending on the pH of the solution, 

CIP can exist as different species: anionic, cationic or zwitterionic form. Speciation of CIP 

affects its sorption in soil, its photo degradation, and its reaction affinity toward ozone (3-5).   
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Figure 2.1 Speciation of CIP, pKa1= 6.1, pKa2 = 8.8.   

Antibiotics and their metabolites are ultimately discharged into wastewater treatment plants 

(WWTPs). However, there is a potential for releasing residual compounds into the aquatic 

environment within the treated effluents due to limited removal efficiency. In fact, CIP has been 

detected in WWTP effluents in the µg/L concentration range and in the ng/L concentration range 

in surface water after dilution (6, 7). The presence and accumulation of fluoroquinolone 

antibiotics, even at low concentrations, may still pose threats to the ecosystem and human health 

by inducing development and spread of drug resistance in bacteria due to long term exposure. In 
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addition, high concentrations of CIP, up to 31 mg/L, have been found in waste effluents from 

pharmaceutical manufacturers (8). In terms of precaution, it is necessary to explore effective 

treatment methods for removing contaminants before discharge. 

Advanced oxidation processes (AOPs), characterized by hydroxyl radical generation, are 

attractive options for removing pharmaceuticals due to their capacity to rapidly and completely 

destroy organic compounds. One of the most employed and studied AOPs is the Fenton/ Fenton-

like system. Anodic Fenton treatment (AFT) has been developed in our laboratory and has 

shown great effectiveness in degrading organic pollutants (9, 10). This treatment system is 

separated into two half-cells, which are connected by an anion exchange membrane. Sodium 

chloride is used as background electrolyte with a higher concentration in the cathodic cell.  

The ferrous ion is delivered into the anodic half-cell via electrolysis of a sacrificial iron 

electrode, as shown in the following: 

Anode:   eFeFe 22 .        (1) 

Cathode:   OHHeOH 222 22 .      (2) 

Hydrogen peroxide solution is pumped into the anodic half-cell to initiate the Fenton reaction.  

Fenton Reaction: OHOHFeOHFe   3
22

2 .     (3)  

The concentration gradient of Cl- in the two half cells is beneficial for Cl- to compete with OH- 

in movement across the anion exchange membrane to the anodic cell, exerting less effect on the 

anodic pH and assisting in development of an optimized acidic pH. A decrease of three pH units 

from initial circum-neutral pH value has been observed in the anode.  

The AFT kinetic model has been developed to simulate pollutant degradation in aqueous 

systems (9). While the model has been successfully applied to several contaminants, it has not 

been tested for a compound with changing speciation during the AFT process. Since the pKa1 of 
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CIP falls in the typical working pH range of AFT, species distribution will change due to pH 

changes during the process. In addition, in a Fenton system CIP may complex with the ferric ion. 

The extent of complexation depends on solution pH and may affect the degradation process. The 

purpose of the present study is to: 1) document degradation of CIP in AFT; 2) determine the 

effect of pH-dependent speciation changes on the degradation process of CIP; 3) develop a 

kinetic model for CIP degradation; 4) Identify degradation products of CIP and propose 

degradation pathways in this system.  

Materials and methods 

 Chemicals. All reagents were used without further purification. CIP (98%), 1-phenyl 

piperazine (99%) and hydrogen peroxide (30%) were purchased from Sigma-Aldrich Chemicals 

(Milwaukee, WI). 1,6-dimethyl-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (>95%) was 

purchased from Chembridge Corporation (San Diego, CA). All solutions were prepared from de-

ionized water.  

Anodic Fenton Treatment. The AFT apparatus consisted of two 400 mL glass half-cells 

separated by an anion exchange membrane (Electrosynthesis, Lancaster, NY). Typically, 200 mL 

of CIP solution with a NaCl concentration of 0.05 M and the same volume of 0.20 M NaCl 

solution were added to the anodic and cathodic half-cells, respectively. The reaction was initiated 

by turning on the power supply when the first drop of hydrogen peroxide entered the solution in 

the anodic half-cell. Unless specified otherwise, electric current was kept at 0.040 A, with a Fe2+: 

H2O2 delivery ratio of 1:10. At given time intervals, 1 mL of anodic effluent was collected and 

transferred to a 2 ml HPLC vial containing 0.1 mL of methanol which quenches hydroxyl 

radicals. Each treatment was done with three replicates. AFT degradation of CIP-metal 

complexes (CIP-Al, CIP-Fe), and reference compounds was conducted similarly. CIP-Al and 
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CIP-Fe complexes were synthesized by addition of excess metal ions into the CIP solution at pH 

~ 4. The methyl ester of CIP was synthesized in methanol catalyzed by concentrated sulfuric acid 

with 4 hours refluxing and was confirmed by mass spectrometry. Esterification of the reference 

compound 1,6-dimethyl-4-oxo-1,4-dihydroquinoline-3-carboxylic acid was conducted similarly. 

The pH was adjusted to the desired level before the anodic Fenton treatment.  

Analytical methods. The concentrations of CIP, reference compounds and their degradation 

products were analyzed by a reverse-phase high-performance liquid chromatograph (HPLC) with 

a diode array UV-Vis detector (HP series 1200, Agilent Technology) and a Restek ultra C18 (5 

μm) reverse phase column (4.6 × 150 mm). The detector wavelength was set at 230-280 nm. 

Gradient elution was used with the mobile phase containing 0.1% formic acid (eluent A) and 

acetonitrile (eluent B). Degradation products were identified by an Agilent G1978B Multimode 

source for 6100 series Single Quadropole MS in the positive ES mode with a full scan from m/z 

= 50 to m/z = 350.  

Kinetic Modeling. The derivation of the AFT kinetic model was established in previous work 

(9). The degradation kinetics of the target organic compound can be described by the following 

equation:   

2

0 2

1
ln tωνK=

[C]

[C] 2
0

t  ,         (4)   

where K = kk1 (µM-2min-2), k (µM-1min-1) and k1 (µM-1min-1) are the second order rate constants 

of the Fenton reaction and the reaction between hydroxyl radical and target compound, 

respectively; [C]0 (µM) and [C]t (µM) are the concentrations of the target compound at 0 and t 

min, respectively; λ (min) and π (min) are the average lifetime of the hydroxyl radical and the 

ferrous ion respectively; ω is a constant related to the delivery ratio of hydrogen peroxide to 
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ferrous ion and to the consumption ratio of hydrogen peroxide; ν0 (µM min-1) is the delivery rate 

of ferrous ion by electrolysis and t (min) is time. 

Density Functional Theory (DFT) Calculation. The hybrid method B3LYP with the 

standard 6-31G (d) basis set was used to calculate the potential energies of the compounds 

involved during the reaction of CIP and hydroxyl radicals (Gaussian 03 software). All structures 

involved in the reaction were located on the potential energy surface by performing full 

geometry optimization, and their natures were identified by performing frequency calculations. 

Experimental Data Analysis. All experiments were carried out in triplicate and all of the 

figures and statistical analyses were completed using SigmaPlot 9.0.   

Results and Discussion 

Degradation of CIP at different initial pH values.  CIP was degraded at two different initial 

pH conditions, 3.2 and 6.2-6.8. These two pH ranges were chosen for several reasons. The acidic 

pH (3.2) is a favorable condition for the Fenton reaction, and it is also an unfavorable condition 

for complex formation between CIP and ferric ion. Thus, CIP should exist mainly in the cationic 

form.  The pH range of 6.2-6.8 is near the pKa1 of CIP. With this starting pH, CIP species ratios 

will change continuously during the self-acidifying AFT process. This range also gives pH 

values similar to the natural environment. Over the pH range of this study, the piperazinyl 4'-N, 

which corresponds to pKa2, remains protonated. Thus, we refer to protonated or deprotonated 

CIP according to the speciation of the carboxylic acid group (Figure 2.1).  

AFT treatment worked efficiently to remove CIP at both pH conditions, where a total removal 

was observed within 4 minutes (Figure 2.2). CIP degradation showed different patterns at 

different initial pH values. At initial pH 3.2, the solution pH remained almost stable during the 

process and the AFT model fitted the degradation kinetics well with R2 >0.99. At initial pH 6.2-
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6.8, the solution pH changed from above 6 to around 3.7. The degradation data deviated from a 

typical AFT-type curve with a much faster degradation in the first minute. Neither a first order 

kinetic model, the AFT model, nor the modified AFT model gave a good fit to the data at this 

initial pH. (The modified model accounts for a weak interaction between the ferric ion and a 

heterocyclic nitrogen.) 

  

Figure 2.2 Degradation of CIP in AFT system at pH0 = 3.2 and 6.2-6.8. Current delivery = 

0.04A, [H2O2]:[Fe2+] =10:1, [CIP]0 = 55 μM. 

Degradation of reference compounds.  In order to confirm the role of the carboxylic acid 

functional group in the degradation kinetics observed at the initial pH of 6.2-6.8, a series of 

reference compounds, 1-phenyl piperazine (PP), 1,6-dimethyl-4-oxo-1,4-dihydroquinoline-3-

carboxylic acid (QA), and the methyl ester of CIP (CIPM) were studied with AFT, similar to the 
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CIP experiments (Figure 2.3). These compounds were chosen to represent the two structural 

parts of CIP, which correspond to the two protonation sites, and also susceptible sites for 

ozonation and hydroxyl radical attack (11). The reference compound PP has a piperazinyl 

substituent on the benzene ring, and reference compound QA maintains the quinolone core 

structure. CIPM was synthesized via methylation of the carboxylic acid. CIPM and PP exist only 

in the cationic form while QA speciation changes with pH changes during AFT.  

  

Figure 2.3 Structure of Reference compounds: 1-Phenyl Piperazine, 1,6-dimethyl-4-oxo-1,4 

dihydroquinoline-3-carboxylic acid and ciprofloxacin methyl ester. 

AFT effectively degraded all of the reference compounds, although different kinetic patterns 

were observed. At pH 3.2, all of the compounds followed the AFT model, indicating that the 

model worked well for this optimized, simplified condition (Figure 2.4A). At pH 6.2-6.8, the 

degradation kinetics of PP and CIPM followed the modified AFT model, indicating a weak 

interaction between the probe chemicals and iron, possibly via the heterocyclic nitrogen. The 

degradation profile of QA gave an interesting curve that looks similar to CIP-type kinetics at the 

initial pH, though subtler during the first minute. (Figure 2.4B).  
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Figure 2.4 Degradation of reference compounds in AFT system. [H2O2]:[Fe2+]=10:1, (A) Current delivery = 0.04A, pH = 3.2, [PP]0 = 

[QA]0 = [CIPM]0 = 55µM. (B) Current delivery = 0.03A, pH = 6.2-6.8, [H2O2]:[Fe2+] =10:1, [PP]0 = [QA]0 = [CIPM]0 = [QAM]0 = 55 

µM.  
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The results indicate that the carboxylic acid group may play a key role in the kinetics of 

degradation, because absence of this functional group (as in PP) and methylation of CIP gave 

different degradation patterns. In contrast, QA, a structural analog with a free carboxylic acid, 

followed a degradation pattern similar to that of CIP. To further confirm the role of the 

carboxylic acid on the quinolone structure, QA was esterified and degraded by AFT. The 

degradation kinetics shifted from a CIP-type curve to a typical AFT curve, further supporting the 

essential role of the free carboxylic acid group (Figure 2.4 B). 

In addition to protonation at the acidic pH, the carboxylic acid group may complex with iron 

easily when it is in a deprotonated form at a higher pH. Thus, two hypotheses were proposed as 

to how the carboxylic acid group might affect the degradation kinetics: (I) CIP undergoes 

protonation during the treatment, leading to a change in distribution of CIP species, which have 

different reactivities with hydroxyl radicals, and the resulting degradation pattern is a hybrid of 

the two kinetic degradation patterns, one from each species; (II) CIP may complex with iron at 

near neutral initial pH and this complex formation may affect either the Fenton reaction or the 

CIP reaction affinity toward the OH radical, resulting in a shift in kinetics during the first minute. 

CIP protonation/deprotonation effect on degradation. A buffer system at neutral pH, which 

assists in maintaining CIP speciation, cannot be used in the AFT system due to strong 

interference with the Fenton reaction. In order to test the first hypothesis of speciation-dependent 

reactivity of CIP with hydroxyl radicals due to protonation, DFT calculations of potential 

energies during the reaction were carried out. Since the change in kinetics took place during the 

first minute, it was assumed that the first major reaction determined the kinetic pattern. Based on 

the mass spectrometric data of the CIP degradation products, the first reaction is hydroxyl 

addition to the aromatic ring. Therefore, the potential energy surface profiles of CIP, the 
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hydroxyl radical, and 5-hydroxylated CIP were calculated and are shown in Figure 2.5. For the 

deprotonated CIP and OH radical, a lower transition state energy was found compared to that of 

protonated CIP, with a significant energy difference of 26.16 kJ mol-1 for the transition states. An 

observable difference in reaction rates is expected, supporting our first hypothesis, that the 

difference in reaction affinity of the different CIP species with hydroxyl radicals is an 

explanation for the kinetic degradation pattern. This result is consistent with the hydroxyl radical 

being a strong electrophile with greater affinity for and reactivity with the neutral deprotonated 

CIP than the positively charged protonated CIP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Calculated potential energy surface profiles for reaction between deprotonated and 

protonated CIP with hydroxyl radical by Gaussian 03 (B3LYP/6-31G). 
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CIP-metal complex effect on degradation. Another possible cause for the change in kinetics 

is the complexation between CIP, a carboxylate Lewis base, and iron, a strong Lewis acid. 

Various studies have shown the formation of CIP-metal complexes, most likely in a bidentate 

mode via the 3-carboxylate and 4-carbonyl groups (12, 13). The complex formation between 

metal ions and fluoroquinolones depends on pH due to the competition between polyvalent ions 

and protons (14).  

To investigate the complex formation hypothesis, AFT was carried out on a CIP-Al complex 

and a CIP-Fe complex (Figure 2.6A). Since Al has a CIP binding affinity similar to ferric ion, 

pre-addition of excess Al ion before AFT should cause the formation of a CIP-Al complex and 

minimize CIP-ferric complexation. Degradation data of the CIP-Al complex at pH 6.2-6.8 

overlapped with that of CIP during the first minute, indicating a negligible effect of this complex 

on the Fenton reaction. There is a slower degradation of CIP-Al after 1.5 minute with the 

remainder of the degradation pattern appearing to follow a first-order curve. This phenomenon 

might be due to the buffering capacity of Al(OH)4
- at the starting pH, thus preventing a shift to 

the ideal, lower pH for Fenton systems and a consequent slowing of the reaction (Figure 2.6B) 

(15). The pH buffering effect of humic acid that slows degradation has been observed in a 

previous study where a similar first-order like curve was found (16).  

To further test how complex formation affects reaction affinity of CIP toward the hydroxyl 

radical, AFT was run in a system with pre-addition of excess ferric ion, thus causing formation 

of a CIP-ferric complex before AFT treatment. If the complex has a major effect on the reaction 

affinity of CIP, we would expect to see a change in the degradation curve, especially during the 

first minute because this is the critical period when ferric ion accumulates (from oxidation of 

ferrous ion) and begins to bind with CIP. Interestingly, a degradation pattern similar to that of 
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CIP was observed, indicating no effect of excess ferric ion on CIP degradation (Figure 2.7A).  

   

   

Figure 2.6 (A) Degradation of CIP and CIP-Metal complex in AFT system; (B) pH profiles 

during degradation of ciprofloxacin and ciprofloxacin-metal complex in AFT system; Current 

delivery = 0.04A; [H2O2]:[Fe2+ ] = 10:1;  [CIP]0, [CIP-Al]0, [CIP-Fe]0 = 55 µM, initial pH 6.2-

6.8;  
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Based on the degradation kinetics of both the CIP-metal complexes, it can be concluded that 

the complex formation with metal ion is too weak to cause effects, if any, on the degradation 

kinetics. Therefore the observed kinetics are caused by protonation/ deprotonation, generating 

two species of CIP that react differently with OH radicals. 

Development of the AFT′ model. A model based on the protonation/ deprotonation 

hypothesis (the AFT model) was developed that accounts for the change of species distribution 

during degradation. The goal was not to develop a generalized model but to simulate the CIP 

degradation in the AFT system. Successful model fitting further provides a confirmation of the 

hypothesis.  

The pH was monitored throughout the degradation (Figure 2.7A), and a distribution of CIP 

species was calculated according to the following acid-base equilibrium and Henderson-

Hasselbalch Equation.  

  HcinCiprofloxaacinHCiproflox        (5) 

Ratio
acinHCiproflox

cinCiprofloxa
pH

pka

 



 10

10

][

][
.       (6) 

1
%100*%





  Ratio

Ratio

acinHCiprofloxcinCiprofloxa

cinCiprofloxa
cinCiprofloxa   (7) 

Species distribution curves were obtained by plotting the percentage of deprotonated CIP as a 

function of time (Figure 2.7B). Of several mathematical models tried, the Gaussian model 

provided the best fit for the distribution curves (R2 > 0.98). This function can be represented by 

CIP % = a + c*exp(-b*t2),            (8) 

where t is reaction time, and a, b, and c are coefficients used in the Gaussian Model. 
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Figure 2.7 (A) pH profiles during Ciprofloxacin degradation in AFT system, with current 

delivery rates from 0.03-0.06 A. (B) Deprotonated Ciprofloxacin percentage during AFT process 

at different current delivery rates [H2O2]/[Fe2+] =10:1, [Ciprofloxacin]0 =55 µM, pH = 6.5-6.8.  

Assuming each species has a different reaction rate with the hydroxyl radical and each species 
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and hydroxyl radicals follow second order kinetics, a new model can be derived, which we call 

the AFT´ model, the derivation process is shown below:  

][*][*][*][* 21

 acinHCiprofloxOHkcinCiprofloxaOHk
dt

dc
    (9)            

)*exp(*% 2tbcacinCiprofloxa        (10) 
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,2

0kwhereK   

    k′1 and k′2 are the second order reaction rate constants of deprotonated and protonated CIP 

with hydroxyl radicals, respectively. 

To test the validity of the AFT′ model, concentration profiles of CIP degradation at various 

currents (iron delivery rates) at initial pH 6.2-6.8 were fitted (Figure 2.8A). Compared to the 

previous AFT model (R2 ~0.9), the AFT′ model showed a major improvement in describing the 

kinetics (R2 > 0.97, Figure 2.8B). The AFT′ model worked best for degradation at the higher 

Fenton reagent delivery rates (≥0.04A). At lower delivery rates, the model cannot capture the 

changes of CIP concentration well in the first few seconds. This observation may indicate a 

larger error in estimating distribution of CIP species at lower iron deliveries or other 

complicating factors that may need to be taken into consideration.   
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Figure 2.8 (A) Degradation of CIP with current delivery = 0.04A-0.06; [H2O2]:[Fe2+]= 10:1; 

initial pH= 6.2-6.8; [CIP]0 = 55 µM. The data were fit by the AFT′ model. (B) Comparison of 

AFT model and AFT′ model by fitting degradation data at current delivery = 0.04A. 

Optimization of CIP degradation. The experimental conditions of CIP degradation by AFT 

were optimized at pH 3.2. A series of experiments were carried out with various Fenton reagent 
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delivery rates, H2O2:Fe2+ ratios, and initial CIP concentrations (Figure 2.9, Figure 2.10).  
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Figure 2.9 Degradation of Ciprofloxacin under different current delivery rates at pH = 3.2. 

[H2O2]:[Fe2+] = 10:1, [Ciprofloxacin]0 = 55 µM 
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Figure 2.10 Degradation of Ciprofloxacin at current delivery = 0.04 A with different 

[H2O2]:[Fe2+] ratios, [Ciprofloxacin]0 = 55 µM. 
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   All degradation kinetics followed the AFT model. The degradation rate was faster with 

increased Fenton reagent delivery rates, where a faster generation of hydroxyl radicals would be 

expected, and slower with increased initial CIP concentration. Due to hydroxyl radical quenching 

by iron and hydrogen peroxide, the ratio of ferrous ion to hydrogen peroxide is seldom 

stoichiometric. An optimal ratio between 10 and 15 was found, consistent with previous results 

that showed an optimal ratio of 11 (Figure 2.10) (9).  

Identification of CIP degradation products and proposed pathways. In order to understand 

the degradation pathways of CIP, degradation products obtained at two initial pH conditions 

were identified by HPLC-MS. Representative chromatograms are shown in Appendix A.  

Degradation mixtures at 2.5 minutes at both conditions were chosen for analysis due to the 

relatively high concentrations of major products. The products were identified by the [M+H]+ ion 

in the positive mode. Four major products with molecular ions of m/z 348, 362, 330, 263 were 

found at both pHs, although slight differences in degradation pattern were observed. A trace 

amount of m/z 334 was seen at neutral condition while a much higher concentration of m/z 334 

was detected at acidic condition. This observation may indicate a species-dependent preference 

in pathways. In addition, a different pathway may occur with a neutral initial pH because the 

product m/z 328 was detected only at this condition. Several minor products were also observed 

at both pH conditions, including m/z 291, m/z 304, m/z 302, and m/z 261. Due to their low 

concentrations, it is hard to determine if the degradation products were preferentially formed at a 

given pH. The fragmentation patterns of products were also compared with those reported in the 

literature. Several similar products have been found in previous studies where CIP was oxidized 

by various methods (17-19).  

The mass spectrum profiles of the peaks are summarized in Table 2.1 and proposed pathways 
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are shown in Figure 2.11. Most product profiles show peaks at a mass increase of 22 Da and a 

mass loss of 18 Da, corresponding to the ions [M-H+Na]+ and [M-H2O]+ , respectively. 

The aromatic ring of CIP has been observed to be a susceptible site for hydroxylation (19, 20); 

thus, m/z 348 is believed to be the product of such hydroxylation. The reaction can take place at 

C-5 or C-8.  Under the LC conditions used, the two products cannot be separated efficiently, and 

a mixture is expected. The observed fast formation of m/z 348 supports hydroxyl addition on the 

aromatic ring, a well known fast reaction (20).  

  Table 2.1 Mass spectrum profiles of peaks for CIP degradation intermediates. 

Pseudo-
molecular 

Ion(M+H+) 
Mass 

difference Mass spectrum profile 

 Retention   

   Time(min) 

Observed 
reaction system 

pH 

332 0 
354(29), 332(83), 314(32), 

288(1.2)   (CIP) 9.46 
------- 

263 -69 285(13), 263(39), 245(100) 13.49 Both 

348 16 370(31), 348(54), 330(85), 9.01 Both 

330 -2 352(33), 330(65), 312(24), 8.22 Both 

304 -28 326(4), 304(15), 286(14) 7.619 Both 

302 -30 302(16) 7.811 Both 

362 30 384(61), 362(100), 344(51), 8.53 Both 

334(1) 2 356(26), 334(64), 316(57) 8.73 Mainly Acidic 

334(2) 2 356(17), 334(78), 316(41) 12.34 Mainly Acidic 

291 -41 291(20), 273(56) 13.063 Acidic 

328 -4 350(11), 328(69), 310(32) 8.682 Neutral 
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   Figure 2.11 Proposed degradation pathways of CIP in the AFT system 

  Another well known degradation pathway is defluorination (11, 19, 20). During 

defluorination, the attack of the hydroxyl radical at the carbon-fluorine position leads to a 

geminal fluorohydrin intermediate that undergoes HF elimination. The m/z 330 product is 

consistent with this pathway. Multiple hydroxylation is also likely to happen which may explain 
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the formation of m/z 362. Its relatively late formation time also supports this multiple step 

reaction pathway (Figure 2.12).  
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 Figure 2.12 Evolution of CIP degradation products. Current delivery = 0.04A; [H2O2]:[Fe2+] 

= 10:1; [CIP] = 55 µM. (A) Initial pH = 6.2-6.8; (B) initial pH = 3.2.    

Previous studies on CIP degradation suggest that the piperazinyl substituent is a likely 

susceptible site to hydroxyl radical attack (11, 18, 19).  The m/z 263 species is believed to form 
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via the complete dealkylation of the piperazine ring. A trace amount of m/z 261 was also 

observed. This compound may be formed via a similar pathway to that of m/z 263, except for a 

further defluorination step. The m/z 263 and 261 species were the final products observed which 

is consistent with their late formation time (Figure 2.12). Intermediates of dealkylation reported 

in other studies, such as desethylene CIP, were not observed. This result may be due to a short 

half-life or very low concentration of the intermediates in AFT. The m/z 334 and m/z 291 

species are believed to be derived from oxidation of the piperazine ring of CIP and are upstream 

products of m/z 263. Two m/z 334 isomers were observed with a large difference in LC retention 

time. This may be explained by the different polarities of the secondary and tertiary amines.  

The m/z 328 species has not been reported before. It may be formed by OH radical attack at 

both the piperazine ring and the C-6 of the quinolone ring, resulting in a C-N double bond 

formation in the piperazine ring and defluorination on the quinolone core (22). Oxidative 

decarboxylation is also a likely mechanism for degradation of CIP although it occurs to a lesser 

extent. This pathway may account for the trace amounts of m/z 302 and m/z 304 observed.  

It is believed that destruction of piperazinyl substituents only partially remove the antibiotic 

activity of CIP (23). Also, most of the modifications on the quinolone ring observed here cannot 

alter the antibiotic properties to a great extent since the structures still share considerable 

similarity to CIP (24). In addition, the antibiotic properties of m/z 328 are not well understood. 

Therefore, we monitored the CIP reaction mixtures during the entire process to study the 

evolution of the products (only primary products are shown in Figure 2.12). All the peak areas 

show an increase in area (qualitatively correlated with concentration) followed by a general trend 

toward decrease in area at 3-5 minutes. By the end of the treatment, not only was CIP completely 

removed, but the degradation products were degraded to below the LC-MS detection limit, 
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indicating successful removal of antibacterial intermediates.  
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Abstract 

  The objective of this study is to investigate and understand the oxidizing properties of a 

manganese oxide, specifically synthetic cryptomelane (KMn8O16) and its derivatives, in 

aqueous solution. Ciprofloxacin (CIP), a commonly used fluoroquinolone antibiotic was used 

as the probe. Synthetic cryptomelane, known as octahedral molecular sieves (OMS-2), was 

synthesized, and its derivatives were prepared by adding transition metal oxides, V2O5 or 

MoO3, as dopants during synthesis. The solids were characterized by XRD, SEM-EDX, XPS, 

FTIR, Raman and N2-BET. Degradation of CIP by different doped OMS-2 was carried out. 

Process conditions were optimized using response surface methodology (RSM). XRD 

patterns indicated the crystal phase of regular and doped OMS-2 as the cryptomelane type. 

Presence of the dopants in doped cryptomelane was confirmed by SEM-EDX and XPS. FTIR 

and Raman results suggested that the dopants were substituted into the framework in place of 

manganese. SEM images, XRD analysis, and surface area analysis of doped OMS-2 indicated 

decreased particle size, decreased crystallinity and increased surface area compared to regular 

OMS-2. Higher oxidizing reactivity of doped OMS-2 was also observed with increased CIP 

removal rates from aqueous solution. The enhancement of reactivity may be due to the 

increase of surface areas. 9% Mo/OMS-2, the most effective oxidant of all synthesized 

derivatives, was selected for optimization study. Favorable treatment conditions were 

obtained using RSM at pH 3 with molar ratio [9% Mo/OMS-2]:[CIP] ≥ 50. Under such 

conditions, more than 90% CIP can be removed in 30 minutes. The degradation kinetics was 

modeled by a modified first order rate with introduction of a retardation factor α (R2> 0.98). 

Analysis of degradation products indicated that oxidation takes place mainly on the 

piperazine ring of CIP.  
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Introduction 

  Manganese (III/IV) oxides are naturally occurring minerals that are widely distributed in 

surface water, sediment and soil. With their abundance in the environment, they are potential 

oxidizing agents of natural and xenobiotic compounds. Oxidative transformation of a variety 

of natural organics and xenobiotics, such as phenols and amines, by manganese (III/IV) 

oxides has been reported (1-6). Recognized as an important participant in environmental 

oxidation-reduction reactions, manganese (III/IV) oxides have a potential for water treatment 

application. 

 

Figure 3.1 Crystal structure of cryptomelane 

  Cryptomelane is a type of manganese (III/IV) oxide with a 2 × 2 tunnel structure formed 

by edge and corner sharing of MnO6 octahedral units (Figure 3.1). Potassium ions are 

situated in the tunnel of cryptomelane to balance the charge of the manganese oxide 

framework. The synthetic counterpart of cryptomelane is known as octahedral molecular 

sieve OMS-2, where “2” denotes the dimension of the tunnel size. Good catalytic activity of 

OMS-2 has been reported, and its synthesis, characterization and application have recently 
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gained considerable research interest (7-10). Doping cryptomelane with foreign metals 

changes its electronic, structural and catalytic properties and enhancement of activity has 

been achieved (8, 11-12). The metal dopants can either enter the tunnel and replace some of 

the potassium ions or be substituted into the framework of OMS-2 and replace the 

manganese. The coordination and crystal radii of the dopant cations determine where the 

doping occurs (8, 13).  

Fluoroquinolones are a group of potent antibiotics and have been used widely in human and 

veterinary medicine. Like most pharmaceuticals, they are not completely metabolized in the 

body and can be released into the environment. Detection of fluoroquinolones has been 

reported in wastewater effluent in the range of µg/l and surface water in the range of ng/L 

(14-15). Fluoroquinolones share great similarity in their structures and modes of reaction and 

may have additive effects on untargeted organisms, resulting in increased environmental risk. 

In addition, adverse effects of fluoroquinolones at environmentally relevant concentrations 

have been reported in toxicity studies (16-17). Therefore, effective treatment methods for 

fluoroquinolones need to be explored. In this study, ciprofloxacin (CIP), a commonly used 

second generation fluoroquinolone antibiotic, was selected as the probe.  

The objectives of this study are to: evaluate the effectiveness of synthetic cryptomelane and 

its doped derivatives for CIP removal from aqueous solution; determine the effects of doping 

on structure and morphology of cryptomelane type manganese oxides; optimize treatment 

conditions using central composite design (CCD) and response surface methodology (RSM); 

model the kinetic process and propose the degradation pathways of CIP.  

Materials and methods 

Chemicals. All reagents were used without further purification. Ciprfloxacin (CIP) (98%) 

was purchased from Sigma-Aldrich Chemicals (Milwaukee, WI). 1, 6-dimethyl-4-oxo-1,4-

dihydroquinoline-3-carboxylic acid (QA) (>95%) was purchased from Chembridge Corp 
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(San Diego, CA). Manganese sulfate monohydrate, vanadium pentoxide, molybdenum 

trioxide, potassium permanganate, and nitric acid (63%) were purchased from Fisher 

Scientific. All solutions were prepared from distilled deionized (DDI) water. 

Synthesis of OMS-2 and doped OMS-2. Cryptomelane (OMS-2) was synthesized by 

refluxing potassium permanganate (KMnO4) and manganese sulfate (MnSO4) in the presence 

of nitric acid in aqueous solution for 24h (18). For doped cryptomelanes, similar procedures 

were used except that 3% and 6% (V:Mn molar ratio) vanadium pentoxide and 3%, 6% and 

9% (Mo:Mn molar ratio) molybdenum trioxide were added to the mixture. Doped 

cryptomelanes were denoted as V/OMS-2 or Mo/OMS-2. The obtained solids were washed 

with distilled and deionized (DDI) water, dried at 120˚C overnight and ground in an agate 

mortar.  

Characterization of OMS-2 and doped OMS-2. The X-ray powder diffraction (XRD) 

spectra were collected with a Scintag Theta Theta X-ray diffractormeter equipped with Cu 

Kα radiation (λ=1.5418 Å). The scanning angles (2θ) ranged from 1.5˚ to 60˚, with a 0.02˚ 

step size and a collecting time of 0.24s per point.  

Morphological studies were carried out using a field emission scanning electron 

microscope (LEO 1550 FESEM). The surface chemical composition was analyzed by both x-

ray photoelectron spectroscopy (XPS) and energy dispersive spectrometry (EDX). XPS 

spectra were recorded at room temperature with an aluminum anode for Kα radiation (Model 

SSX-100). The instrument is calibrated to Au 4f7/2 peak at 84ev. A wide scan ranging from 

0-1000ev was obtained for surface chemical composition analysis. Mn3s spectra were 

collected at narrower scan ranges for valence information. All data were analyzed by 

CasaXPS v2.3.15.  

The Brunaue-Emmett-Teller (BET) surface area measurements were carried out using a 

micromeritics ASAP 2010. Prior to the analysis, the samples were degassed at 120˚C for 12h. 
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Fourier-transform infrared spectra (FTIR) were recorded on a Mattson Galaxy 5020 FTIR 

spectrometer in the range of 4000 - 400 cm-1 with a resolution of 4 cm-1 for samples in KBr 

pellets at room temperature. Raman spectra were obtained using a Renishaw inVia confocal 

Raman microscope with an Ar+ laser (488nm).  

Batch experiments of CIP degradation. Degradation of CIP by regular and doped OMS-2 

was investigated. In a 50 ml aluminum foil covered conical tube, the desired amount of 

manganese oxides was added to 40ml of CIP solution. The suspension was constantly shaken 

at room temperature, and the solution pH was adjusted to the desired value before each 

reaction. One-milliliter samples were taken at desired time intervals, and 0.1ml 1N ascorbic 

acid was added to the sample to dissolve manganese oxides and quench the reaction. The 

total amount of CIP in the system was measured as aqueous CIP + adsorbed CIP.  

The concentration of CIP was analyzed by a reverse phase high performance liquid 

chromatography (HPLC) with a diode array UV-Vis detector (HP series 1200, Agilent) and a 

Restek ultra C18 (5 μm) reverse phase column (4.6 × 150 mm) thermostated at 30°C. 0.1ml 

of 1N H3PO4 was added to each sample to stabilize CIP (Zhang and Huang 2005). The 

detector wavelength was set at 278 nm. Gradient elution was used with the mobile phase 

containing 0.1% formic acid (eluent A) and acetonitrile (eluent B). The eluent A/eluent B 

ratio was changed from 95:5 to 85:15 over 1 min, and then to 72:28 over 3 min, and to 0:100 

over 14min, and from 0:100 back to 95:5 over 2 min.  

Degradation products were analyzed by HPLC-UV/MS. The HPLC condition for 

degradation products separation was the same as that of CIP analysis. The degradation 

products were found to have similar UV spectra to that of CIP. Therefore the concentration of 

degradation products was monitored at the same UV wavelength as that of CIP. For MS 

spectral analysis, a different quenching method, filtration by a 0.22 μm nylon filter, was used 

for sample preparation due to the limitation of MS instrumentation. Filtration may lead to 
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fewer by-products detected due to the adsorption of by-products on the solid surface. The MS 

spectra were obtained using an Agilent G1978B Multimode source for the 6100 series single-

quadruple MS in the positive ES mode with a full scan from m/z 50 to m/z 700 and a 

fragmentor of 180. The specific parameters set up for the mass detector was as follows: 

drying gas flow, 12 L min−1; nebulizer pressure, 40 Psig; drying gas temperature, 300 °C; 

vaporizer temperature, 250 °C; capillary voltage, 2000 V; corona current, 4.0 μA; and 

charging voltage, 2000 V. 

Release of MnII into aqueous solution was measured by atomic absorption spectrometry 

(Buck Scientific 210 VGP) with air acetylene flame at 279.5 nm.  

Process optimization by RSM. The experimental design of CIP degradation by OMS-2 

type manganese oxide was carried out using response surface methodology (RSM) coupled 

with central composite design (CCD). RSM-CCD is a collection of mathematical and 

statistical techniques that are beneficial for modeling and analyzing a complex system where 

a response of interest is influenced by several variables. The objective of this method is to 

search and determine the optimal conditions of variables for the predicted response. In the 

present study a four-factorial five-level central composite experimental design with six 

replicas at the center point, resulting in a total number of thirty experiments, was employed 

for response surface modeling. A further ten experiments were carried out to validate the 

developed model. The variables (independent factors) used in this study were: initial load of 

oxidant (X1), initial pH of CIP solution (X2), initial concentration of CIP (X3), and reaction 

time (X4). CIP removal efficiency (Y) was considered as the dependent factor (response). The 

actual values and coded values of the independent factors are shown in Table 3.1.  
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Table 3.1 Variable ranges and values of central composite design for degradation of CIP by 

OMS-2 type manganese oxides 

Process variables Symbol Actual Values of the coded variable levels 

-2 -1 0 1 2 

Oxidant (mg/L) X1 50 100 150 200 250 

pH X2 3 4 5 6 7 

Ccip (mg/L) X3 5 10 15 20 25 

T (min) X4 15 45 75 105 135 

 

Data analysis. The experimental data were analyzed by using Design-Expert software. The 

response variable was fitted by an empirical second-order polynomial model in the form 

given below: 

Y= b0 + ∑biXi + ∑biiXi
2 + ∑bijXiXj 

where Y is the predicted response, Xi (i= 1, 2, 3, and 4) are the independent factors and b0, 

bi ( i=1, 2, 3 and 4), bii and bij ( i=1, 2, 3 and 4, j=1, 2, 3 and 4) are the model coefficients, 

respectively. Two-dimensional contour plots and three-dimensional curves of the response 

surfaces were developed using the same program. Degradation kinetic data were analyzed 

and modeled by Sigma Plot software.  

Results and Discussion 

Characterization of OMS-2 and doped OMS-2. The XRD patterns of OMS-2 and doped 

OMS-2 are shown in Figure 3.2. The diffraction peaks of OMS-2 (curve a) can be indexed to 

reported data of cryptomelane (JCPDS 44-1386). All doped OMS-2 samples showed similar 

diffraction patterns to that of OMS-2, and no additional peaks attributed to vanadium or 

molybdenum species were found. This implies that only the cryptomelane type crystal phase 

was formed. With increased doping amount, the intensity of the peaks decreased and the peak 
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width broadened. Such observations indicate the loss of long range order, reduced 

crystallinity and decreased particulate sizes. 

   

Figure 3.2 XRD patterns of regular and doped OMS-2: (a) OMS-2; (b) 3% V/OMS-2; (c) 6% 

V/OMS-2; (d) 3% Mo/OMS-2; (e) 6% Mo/OMS-2; (f) 9% Mo/OMS-2. 

SEM micrographs of OMS-2 and doped OMS-2 are shown in Figure 3.3. OMS-2 has a 

fibrous morphology, with a fiber diameter of 50-100 nm and fiber length of a few 

micrometers (19). Upon doping, manganese oxide particles lose their distinct needle shape 

morphology and the formation of pseudo-flakes is observed. Similar morphology has been 

reported for multi-doped manganese oxides (13). The inhibitory effects of doping on the 

nanofiber length are due to distortion of octahedral units after V/Mo substitution and 

subsequent introduction of defects (20-21). Aggregations of both fibrous and flaky particles 

were observed to form microspheres with an average diameter of 0.2-2 μm (Figure 3.3).  
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Figure 3.3 SEM images of regular and doped OMS-2: (a) OMS-2; (b) 3% V/OMS-2; (c) 6% 

V/OMS-2; (d) 3% Mo/OMS-2; (e) 6% Mo/OMS-2; (f) 9% Mo/OMS-2. 

The surface areas were measured by the N2-BET method (Table 3.2). OMS-2 has a 

moderate surface area of 70.5 m2/g. The lowest percentage doping with Mo (3%) does not 

have much effect on surface area. However, the same percentage doping with V resulted in 

an increase in surface area, from 70.5 to 101.4 m2/g. A further increase in surface area was 

observed with higher percentage doping of either Mo or V (≥ 6%). For instance, 6% Mo 

doping gave a surface area 3.6 times larger than that of undoped OMS-2. Such high surface 

areas are consistent with the previously observed phenomenon that high-valent metal 

(VV/MoVI) doping can increase surface areas effectively (13).  
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Table 3.2 Surface characterization of regular and doped OMS-2  

Sample Surface 
Area (m2/g) 

Std Error Dopant 
(M/Mn) 

Mn 3s Spliting 
(ev) 

OMS-2 70.51 0.71 -- 5.1845 

3% V/OMS-2 101.45 0.9 3.1% 5.1473 

6% V/OMS-2 180.97 1.9 8.3% 5.1302 

3% Mo/OMS-2 74.33 0.74 6.4% 5.1751 

6% Mo/OMS-2 232.51 4.56 12.5% 5.1972 

9% Mo/OMS-2 285.92 3.32 16.6% 5.1672 

 

 

Figure 3.4 Representative energy dispersive X-ray spectra of doped OMS-2: (a) 6%V/OMS-

2; (b) 9% Mo/OMS-2; The silicon signal is from the Si substrate. 

Elemental composition analysis by EDX confirmed the presence of V and Mo (Figure 3.4). 

The ratios of dopants to Mn were quantified by XPS (Table 3.2). Since XPS is a surface 

characterization tool, the results only indicate surface conditions. As shown in Table 3.2, the 

ratio of dopants/Mn increased with the increase of doping percentage. It is noteworthy that 

the dopant/Mn ratios on the surface are larger than the corresponding values in reaction 

mixtures, implying that more dopants are situated on the surface than in the bulk. A study by 
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others on vanadium doped cryptomelane also found more vanadium cations present on the 

surface than in the bulk phase (21). 

Oxidation states of manganese were analyzed by the energy splitting of Mn3s spectra 

(Table 3.2, Appendix B). For MnIV, an energy splitting at 4.6-4.7ev is expected, and for 

MnIII, an energy splitting of ~5.3ev is expected (22-23). Energy splittings observed for 

regular and doped OMS-2 ranged from 5.13-5.2ev. Thus Mn oxidation states of all OMS-2 

type manganese oxides are primarily in the MnIII form. Presence of dopants during synthesis 

does not seem to cause a shift in MnIII/MnIV compostion in doped OMS-2 samples.  

Due to the similar crystal radii of six coordinated VV and MoVI ions with that of 

MnIV/MnIII, these two dopants are expected to enter the framework of OMS-2 (13). To 

understand the doping process, IR and Raman spectra were collected to provide 

complementary structural information to XRD results through vibrational spectroscopy.  

FTIR spectra are shown in Figure 3.5 A. OMS-2 shows spectral features similar to those 

reported in the literature, with vibrational peaks close to 470 cm-1, 530 cm-1, and 720 cm-1 

(13, 24). Upon doping, the position and intensity of peaks changed. The spectral change for 

3%V/OMS-2 is relatively subtle, with a shoulder peak occurring at 580 cm-1. More distinct 

changes were observed for all other doped OMS-2 samples. The peaks at 470 cm-1, 530 cm-1 

in OMS-2 shifted to higher frequency and the intensity of the 720cm-1 peak decreased. 

Meanwhile, there is a small peak at 930 cm-1 for molybdenum doping and at 980 cm-1 for 

vanadium doping. The intensity of these two peaks becomes stronger with increased doping 

amount. The two peaks are proposed to correspond to the Mo-O and V-O stretching modes 

respectively (25-26). Bands corresponding to V=O stretching modes at 1020cm-1 and the 

Mo=O stretching mode at 990 cm-1 are expected if out-of-framework vanadium or 

molybdenum species are present (Appendix C). However, no peaks were found at these 

positions. The above observations indicate that the dopants were substituted into the 
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framework of the manganese oxides, leading to a change in the local environment of the 

oxygen coordinating around the octahedral sites and subsequently to a change in the 

vibrational patterns observed.  

Figure 3.5B shows the Raman spectra of all OMS-2 samples. The Raman spectrum of 

OMS-2 is characterized by two sharp peaks at 570 cm-1 and 640cm-1, indicating a well-

developed tetragonal structure with (2×2) tunnels (19). The Mo/OMS-2 spectra exhibit 

features similar to that of OMS-2 with a peak positioned at ~640 cm-1. In addition, no other 

peaks that match crystalline or amorphorous molybdenum trioxide are observed (Appendix 

C). For vanadium doped cryptomelane, an additional peak at 840cm-1 occurs, which can be 

assigned to the V-O vibrational band (13, 27). Absence of a terminal V=O vibrational band is 

consistent with the framework substitution hypothesis (Appendix C) (28). Based on the 

FTIR and Raman results, the dopants are believed to have been well dispersed into the 

framework of OMS-2. 

It is expected that the degradation to be studied will take place on the surface of the OMS-2 

oxides. Since the dopants are well dispersed in the framework and are higher on the surface 

than in the initial reaction mixture, as discussed above, it was concluded that this set of 

results gives the important characterization necessary for the proposed study of CIP 

degradation in this system. 
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Figure 3.5 A IR and B Raman spectra of regular and doped OMS-2: (a) OMS-2; (b) 3% 

V/OMS-2; (c) 6% V/OMS-2; (d) 3% Mo/OMS-2; (e) 6% Mo/OMS-2; (f) 9% Mo/OMS-2 
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CIP degradation by different doped OMS-2. The oxidative reactivity of the OMS-2 type 

oxides was studied by comparing their ability to remove CIP from aqueous solution. The 

degradation curves are shown in Figure 5A. OMS-2 is not an effective oxidant, with only 

10% degradation achieved after 200 minutes. Relatively low oxidative activity of 

cryptomelane has been reported previously in comparison studies of different 

manganese(III/IV) (hydro)oxides (29 - 30). Doping with either 3% Mo or V gave limited 

improvement to the reaction rates. However, upon 6% doping, reaction rates increased 

significantly, with the 6% Mo/OMS-2 removing CIP faster than the 6% V/OMS-2 (Figure 

3.6A). This improvement is consistent with the larger surface area of 6% Mo/OMS-2 (Table 

3.2). In a following study, the effects of doping percentages of the molybdenum trioxide were 

examined (Figure 3.6B). Degradation rates increased as doping percentage increased up to 

9%; 12% doping did not give any further improvement (data not shown). Therefore 9% 

Mo/OMS-2 was selected as the oxidant to be studied.  
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Figure 3.6 A Degradation of CIP by different doped OMS-2; B Degradation of CIP by 

Mo/OMS-2 with different Mo doping amount, Ccip = 50μM, [M/OMS-2] = 0.1g/L, pH=3.0. 

  

Time (min)

0 50 100 150 200

C
/C

0

0.0

0.2

0.4

0.6

0.8

1.0

OMS-2
3% Mo/OMS-2
3% V/OMS-2
6% V/OMS-2
6% Mo/OMS-2
Retarded first order

A

Time (min)

0 50 100 150 200

C
/C

0

0.0

0.2

0.4

0.6

0.8

1.0

0% Mo/OMS-2
3% Mo/OMS-2
6% Mo/OMS-2
9% Mo/OMS-2
Retarded first order

B



62 

 

Optimization of CIP degradation by 9% Mo/OMS-2. A central composite design 

coupled with response surface methodology was used for the optimization study. This 

statistical approach allowed for studying interactions between different factors in a complex 

system and obtaining the optimal conditions while greatly reducing the number of 

experiments. The degradation efficiency of CIP was modeled as the response of four 

independent factors: initial load of oxidant 9% Mo/OMS-2 (X1), initial pH of CIP solution 

(X2), initial concentration of CIP (X3), and reaction time (X4).  The form of the empirical 

second order equation obtained is shown below: 

Y (%) = 144.83 + 0.34X1 – 42.3X2 – 3.83X3 + 0.84X4 – 0.00038X1
2 + 3.26X2

2 + 0.091X3
2 - 

0.0031X4
2 + 0.0076X1X2 – 0.0015X1X3– 5E-5X1X4 – 0.043X2X3 + 0.0049X2X4 – 

0.0067X3X4  

The statistical analysis for the model is shown in Table 3.3. All four factors are significant 

for the response (p < 0.0001), while there are no significant interactions between the factors. 

Lack of fit analysis is insignificant, indicating that the model is sufficient to describe the 

treatment process. Validation of the model is further shown in Figure 3.7. The predicted 

degradation efficiency of CIP agrees well with the experimental values, confirming that the 

model is a robust fit.  

  

Figure 3.7 Predicted values of CIP removal efficiency versus experimental values. 
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Table 3.3 ANOVA analysis of the derived response surface model 

Source 

 

Sum of 

Squares Df 

Mean 

Square 

F 

Value 

p-value 

Prob > 
F 

Model 10536.02  1 4 752.57 30.96 < 0.0001 Significant 

X1: Oxidant  3519.89 1 3519.89 144.79 < 0.0001 

X2: pH 1868.66 1 1868.66 76.87 < 0.0001 

X3: Ccip 2524.08 1 2524.08 103.83 < 0.0001 

X4: T 1831.38 1 1831.38 75.34 < 0.0001 

X1X2 2.33 1 2.33 0.096 0.76 

X1X3 2.27 1 2.27 0.093 0.76 

X1X4 0.10 1 0.10 0.0041 0.95 

X2X3 0.75 1 0.75 0.031 0.86 

X2X4 0.34 1 0.34 0.014 0.91 

X3X4 15.94 1 15.94 0.66 0.43 

X1
2 24.37 1 24.37 1.00 0.33 

X2
2 291.74 1 291.74 12.00 0.0035 

X3
2 141.29 1 141.29 5.81 0.029 

X4
2 211.80 1 211.80 8.71 0.0099 

Residual 364.64 15 24.31 

Lack of Fit 326.26 10 32.63 4.25 0.062 not significant 

Pure Error 38.39 5 7.68 

Cor Total 10900.66 29 

 

Based on the developed polynomial model, the three dimensional (3D) response surface of 

degradation efficiency is plotted as a function of two independent factors (Figure 3.8, 

Appendix D). Figure 3.8A shows the effects of pH and 9% Mo/OMS-2 dosage on CIP 
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degradation at a fixed Ccip and reaction time. At a fixed oxidant load, pH 3 is always the 

preferred condition. Even at the lowest oxidant load, more than 60% removal of CIP can be 

achieved. The observed pH-dependent activity may be due to increased oxidizing potential of 

9% Mo/OMS-2 at low pH. The contour is steeper at pH 3-5 and approaches a plateau at pH 

5-7. This implies that when pH is larger than 5, the degradation efficiency is not much 

affected by pH. A positive relation between degradation efficiency and 9% Mo/OMS-2 

concentration is also shown in this graph. At a fixed pH, the degradation efficiency increases 

as the oxidant load increases. Such improvement is more drastic at pH 7 where degradation 

efficiency increases from ~20% to 75% over the oxidant dosage range studied.  

A response surface as a function of Ccip and oxidant loads is shown in Figure 3.8B. A 

similar positive relation between degradation efficiency and oxidant load was observed. In 

addition, the degradation efficiency has a negative relation with CIP initial concentration. At 

low Ccip concentrations, 100% CIP removal can be achieved at high oxidant loads. However, 

at high Ccip concentrations, removal rates can only go up to ~80%, indicating a total 

consumption of reactive sites. Therefore the minimal oxidant to substrate ratio to achieve 

acceptable CIP removal rates was determined for optimization purposes. A contour plot of 

degradation efficiency as a function of Ccip and 9% Mo/OMS-2 is shown in Figure 3.8 C. As 

degradation efficiency increases, the slopes of the linear part of the contour become steeper. 

At removal rates equal to or above 90%, the contours become nearly parallel. 90% removal 

rate is set as the boundary. A minimal molar ratio of [9% Mo/OMS-2, as MnO2]:[CIP] at 50 was 

obtained by calculating the molar ratios along this boundary. Therefore, to treat CIP 

effectively, the preferred working condition is at pH 3 with an oxidant:substrate ratio equal to 

or larger than 50.  
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Figure 3.8 A Response surface of degradation efficiency as a function of pH and 9% 

Mo/OMS-2, Ccip = 15mg/L, RT = 75min; B Response surface of degradation efficiency as a 

function of Ccip and 9% Mo/OMS-2, pH = 3, RT = 30min; C Contour plot of degradation 

efficiency as a function of Ccip and 9% Mo/OMS-2, pH = 3, RT = 30min. 
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Kinetics of CIP degradation by 9% Mo/OMS-2. The kinetic process of CIP degradation 

was modeled at different pH conditions, with release of MnII ions monitored by atomic 

absorption spectrometry (AAS). At pH 3, a pseudo first order model fits the degradation data 

well. However, at pH 4 and 5.5, the reaction slows down with time and the kinetics change 

(Figure 3.9). Therefore an empirical model with the introduction of a retardation factor α was 

used to describe the process, as shown below: 

C = C0(1+αt)-kapp/α  

where kapp = k/(1+αt) and is the apparent rate constant that depends on α, the retardation 

factor which accounts for all the reasons that cause retardation of the reaction, such as shift of 

surface reaction sites and competition for reactive sites from by-products formed and from 

released MnII during the process (31 - 32) . When α=0, the model becomes a first order 

reaction model. Further validation of the model was carried out with different 9% Mo/OMS-2 

loads at each pH condition. All the data were fitted well by the retarded first order model (R2 

> 0.98) and obtained apparent rate constants kapp are summarized in Table 3.4.    

Table 3.4 Fitted kapp of CIP degradation under various pH conditions and different 9% 

Mo/OMS-2 dosage, Ccip= 50μM 

9% Mo/OMS-2 pH3 pH4 pH5 

(μM) kapp R2 kapp R2 kapp R2 

1000 0.0327 0.9894 -- -- -- -- 

1500 0.0694 0.9934 0.0357 0.9862 0.0261 0.9929 

2000 0.101 0.9919 -- -- -- -- 

2500 0.187 0.9954 0.049 0.9935 0.0468 0.9938 

4000 0.419 0.9987 0.0923 0.9915 0.0594 0.9939 
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Figure 3.9 Degradation of CIP by 9% Mo/OMS-2 and MnII release into solution, [9% 

Mo/OMS-2] = 0.22 g/L, Ccip = 50μM, A pH = 3; B pH = 4 and 5.5. 
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Release of MnII ions into the solution along the reaction is also shown in Figures 3.9. 

Accumulation of aqueous MnII with time confirms the occurrence of reductive dissolution of 

the reactive Mn center of the oxide by CIP. In addition, at the same percentage CIP removal, 

aqueous MnII concentration is pH dependent: [MnII]pH=5.5 < [MnII]pH=4 < [MnII]pH=3, indicating 

that adsorption of MnII heavily depends on pH. Auto-inhibition of redox reactions by MnII 

has been observed in the birnessite system (5, 33). To examine the effects of MnII ions on the 

degradation process in the OMS-2 system, different amounts of MnII were added before the 

reaction, with the experiments carried out at pH 5.5, the high adsorption scenario. Inhibition 

of the reaction kinetics was observed, but was less severe compared to that in the δ-MnO2 

system, a commonly used birnessite analog (Figure 3.10, Table 3.5) (5, 32). This can be one 

advantage of Mo/OMS-2 over birnessite in water treatment applications.    

 

Figure 3.10 Effects of Pre-added MnII ion on CIP degradation. [9%Mo/OMS-2] = 0.22 g/L, 

pH=5.5, Ccip = 50 μM. 
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Table 3.5 Inhibition of MnII on oxidative reactivity of manganese(III/IV) oxides  

MnII/Manganese oxides * 
(%) 

Inhibition of rate constant kapp 
(%) 

100 (OMS-2) 62.8 

2000 (OMS-2) 78.6 

10 (δ-MnO2)
a 69.9 

125 (δ-MnO2)
b 100 

a: calculated from Zhang and Huang 2003 (3) b: estimated from Lin et al. 2009 (32) 

* manganese (II) is added to the reaction at an amount of  % of initial Manganese oxide  

  concentration (molar ratio) 

Degradation products and mechanism. The treatment conditions for the degradation by-

products study were set at the optimal conditions obtained using RSM. The degradation 

products were analyzed by HPLC-UV/MS. The detected MS peaks match well with their 

corresponding UV peaks in terms of relative intensity and retention time. Because of better 

signal intensity, evolution of degradation products was analyzed using UV absorption area 

changes. The MS spectral data obtained in this study provide preliminary results for possible 

structures of CIP degradation products by 9% Mo/OMS-2.   

The products were analyzed by identifying the [M + H]+ molecular ions in the positive 

ionization mode. The molecular ion of CIP is m/z 332. Five major peaks with [M + H]+ 

molecular ions of m/z 364, 362, 334(b), 306, 263 were observed, corresponding to products 

with a mass change of + 32, +30, +2, -26, -69 units respectively (Table 3.6). A minor peak 

with [M + H]+ molecular ion of m/z 334(a) was also observed at a different retention time 

from that of the major peak m/z 334(b). All detected products exhibited similar fragmentation 

patterns to that of CIP, indicating a similarity in structure and possible conservation of the 

quinolone core structure. For example, all of the products detected by MS have the [M+H-
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H2O]+ fragmentation ion which is likely formed by loss of H2O from the carboxylate group of 

the quinolone ring. 

Table 3.6 CIP degradation products analysis 

Retention 
Time (min) 

Mass spectrum Profiles Mass difference 

(Da) 

[MH]+ [M+Na]
+ 

[MH-H2O]+ [MH-
CO2]

+ 
 

8.98 334a(35) 356(53) 316(100) 288(22) +2 

9.85 306(46) 328(16) 288(100)  -26 

10.24 332(100) 354(47) 316(64)  0 (CIP) 

11.36 364(100) 386(25) 346(82)  +32 

12.64 362(62) 384(18) 344(100)  +30 

14.15 334b(62) 356(18) 316(100) 246(12) +2 

14.4 263(18) 285(5) 245(100)   -69 

  

To further test the hypothesis that the quinolone ring is retained in the structures of 

degradation products, reactivity of the quinolone ring toward 9% Mo OMS-2 was studied 

using a reference compound, 1, 6-dimethyl-4-oxo-1, 4-dihydroquinoline-3-carboxylic acid 

(QA). QA is a CIP analog except for the piperazine moiety (Figure 3.11). Degradation of QA 

by 9% Mo/OMS-2 was carried out at the same conditions as CIP degradation. Less than 5% 

degradation occurred after 24 hour reaction, confirming that the quinolone ring is relatively 

inert to oxidation in the manganese (III/IV) oxide system (data not shown). Such an 

observation is consistent with the previous literature where only fluoroquinolone antibiotics 

with piperazine substituents are reactive (6, 34). Therefore the piperazine ring is indentified 

as the reactive site and the structures of degradation products are proposed accordingly.  
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Figure 3.11 Structures of CIP and reference compound QA 

Combining the above information with the degradation products evolution pattern (Figure 

3.12), the plausible reaction pathways and possible structures of degradation products are 

proposed (Figure 3.13).   

 

Figure 3.12 Evolution of CIP degradation by-products by 9% Mo/OMS-2 
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electrons are proposed to be transferred from the N1' atom to the reactive Mn(III/IV) centers, 

leading to the formation of an iminium species as the reactive intermediate (6). Hydrolysis of 
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transfer can take place at the N4' atom, another identified reactive site, forming a second 

iminium species. Subsequent hydrolysis of this N4' iminium species generates the 

desethylene CIP, the species m/z 306 (6). This pathway is named the N-dealkylation 

pathway. The species m/z 306 is the first product detected in the system. Its concentration 

accumulated fast in the first fifteen minutes, indicating that dealkylation may be a favorable 

pathway (Figure 3.12). Rapid decrease of the species m/z 306 concentration indicates that it 

undergoes a further degradation, likely another dealkylation process. Simultaneous 

accumulation of the species m/z 263 suggests it as a downstream product of the species m/z 

306. The abundance of the species m/z 263 increased over the reaction, suggesting it is a final 

product (Figure 3.12). The species m/z 263 has been unambiguously reported as a fully 

dealkylated product (6, 35-36). Therefore the species m/z 263 is proposed to be a primary 

amine with the other two alky substitutes of N1' eliminated (Figure 3.13).  

It is also possible that a “double iminium ion” species is formed as a reactive intermediate 

(6). Electrons are transferred from both the N1' atom and the N4' atom to a reactive 

Mn(III/IV) center to form this intermediate. The species m/z 364 is suggested to be formed 

via alpha-carbon hydroxylation from this “double iminium ion” species (Figure 3.13). 

Concentration analysis of the species m/z 364 indicates that it is a reaction intermediate 

because as the reaction progressed the concentration decreased below detection (Figure 

3.12). Oxidation of the species m/z 364 may lead to formation of the species m/z 362 a 

dialdehyde compound and two monoaldehyde compounds with m/z 334. The stability of the 

three products in the presence of 9% Mo/OMS-2 seems to be different (Figure 3.12). While 

the concentration of the species m/z 362 and m/z 334a reached a plateau at the end of the 

reaction, the concentration of the species m/z 334b gradually decreased. During degradation 

of the species m/z 334b, the species m/z 263 accumulated at the same time. Thus 

transformation of the species m/z 334b is believed to be another source for the species m/z 



73 

 

263. The oxidative N-dealkylation process is likely to be the reaction mechanism. Based on 

this assumption, the species m/z 334b is proposed to be a N4' formamide with the N1' atom 

available to oxidation. And the species m/z 263 is suggested to form via a N1' iminium 

species (Figure 3.13).  

 
 

Figure 3.13 Proposed degradation products and pathways of CIP by 9% Mo/OMS-2 
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Unlike the Fenton system where degradation products are unselectively degraded, the 

species m/z 263, m/z 362 and m/z 334a were relatively stable in the 9% Mo/OMS-2 system 

(Figure 3.12) (36). Similar persistence of degradation products was also observed in a δ-

MnO2 system (6). A substantial amount of m/z 263 is still present after extending the reaction 

time to 16 hours. This may be due to the total consumption of reactive sites or recalcitrance 

of this species toward 9% Mo/OMS-2 or a combination of both. Slow removal of the species 

m/z 263 was observed by increasing initial oxidant dosage and extending the reaction time to 

days (data not shown). This transformation of the species m/z 263 may be via a radical 

coupling pathway similar to degradation of anilines, generating dimeric products (6, 37).  

Based on the above discussion, the transformation of CIP by 9% Mo/OMS-2 is mainly 

occurring at the piperazine ring. The piperazine ring is the substitute at the C7 position for the 

quinolone antibiotic family. This position controls the potency and pharmacokinetics of the 

antibiotic, and five or six membered rings are considered to be the most reactive (38). 

Therefore, the products with an opened piperazine ring may be less potent compared to the 

parent compound. However, the quinolone core structure with its essential functional groups 

for Gyrase binding remained unattacked (38). The possibility of residual antibacterial activity 

cannot be ruled out. In addition, the degradation products not identified by HPLC/MS may 

also be biologically active (Section 2.3). For further study, biological activity tests will be 

conducted to give further evaluation of the treatment. 

Conclusion 

Doping cryptomelane with vanadium pentoxide and molybdenum trioxide increased its 

oxidative reactivity. Successful removal of CIP from aqueous solution can be achieved. Such 

improvement positively correlates with the increased surface areas of the doped derivatives. 

9% Mo/OMS-2 is found to be the most effective oxidant. Optimal treatment conditions were 

obtained by response surface methodology at pH 3 and the [9% Mo/OMS-2, as MnO2]:[CIP] 
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molar ratio ≥ 50. Under such conditions, more than 90% CIP can be degraded within 30 

minutes. Release of MnII was observed during the reaction, indicating that the redox reaction 

is occurring between the Mn(III/IV) reactive site and CIP. The presence of MnII ion slows 

down the reaction. Therefore, the kinetics was modeled by an empirical model which 

includes a retardation factor. Analysis of degradation products suggests that degradation of 

CIP mainly takes place on its piperazine ring. If by-products removal is also considered, 

higher ratios of oxidant to substrate and longer reaction time are suggested.  
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CHAPTER 4  

CHARACTERIZATION OF Mn(II) OXIDATION PROCESS BY LEPTOTHRIX 

DISCOPHORA SS-1 MANGANESE OXIDIZING FACTOR  
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Introduction  

The environmental significance of the Mn(II) oxidation process has been well recognized for 

decades because the solid-phase products oxidize various organic and inorganic compounds, 

scavenge many metals, and serve as electron acceptors for anaerobic respiration (1-6). Many 

phylogenetically diverse microorganisms are known to deposit manganese oxides in cultures or 

the natural environments (7-11). Microbial Mn(II) oxidation processes have gained considerable 

interest because it is generally believed that the biological oxidation pathway is the predominant 

pathway for Mn(III/IV) oxide formation in the natural environment (8, 12, 13). 

Due to their oxidative versatility, natural and synthetic manganese oxides have been applied to 

water treatment (14, 15). One great challenge in this technology is the release and accumulation 

of Mn(II) during the redox reaction since Mn(II) reoxidation by aeration is slow, limiting its 

application. It has now been recognized that Mn(II) oxidizing microorganisms may provide a 

prospective solution (16).  

Enzymes, including a multi copper oxidase (MCO) from Bacillus spp. and heme-containing 

Mn(II)-oxidizing peroxidases (MOP) from Aurantimonas and Erythrobacter species, have been 

identified by tandem mass spectrometry and linked to Mn(II) oxidation in bacteria (17, 18). 

Genetic approaches to identifying the microbial Mn(II) oxidation mechanism have been less 

successful so far. Deletion of the MCO gene (cumA) and the MOP gene in P. putida GB-1 does 

not impair its Mn(II) oxidation ability (19). Temporal variation of mofA transcript level, a MCO 

gene of L. discophora SS-1, did not correlate with the change of its manganese oxidizing activity 

(20). In addition, cloning and co-expression of the mof operon of L. discophora SS-1 in E. Coli 

did not yield any manganese oxidizing activity (21). In addition to the direct Mn(II) oxidation by 

enzymes, indirect enzymatic processes may also contribute to the Mn(II) oxidation, such as 
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bacterially generated superoxide mediated Mn(II) oxidation, which was discovered recently in a 

marine bacterium (22). In this scenario, Mn(III/IV) oxides are formed as a combination of abiotic 

and biotic process.  

Despite numerous research efforts as mentioned above, the mechanism and ecological role of 

Mn(II) oxidation by microorganisms remain unclear and are still under active research. 

Advancing the understanding of these mechanisms will provide insights on the Mn cycle in the 

environment and its ecological impacts and facilitate development of a feasible biotechnology 

for pollution control and remediation.   

It should be noted that solution conditions, such as presence of certain co-solutes, can have a 

significant effect on biological Mn (II) oxidation processes (23, 24). The consideration of matrix 

effects is especially important when utilizing this biotechnology method for water treatment 

because wastewater matrices are often complicated and may have potential chemical inhibitors 

for Mn(II) oxidation (16). While previous research focused on the effects of co-solutes on 

biogenic manganese oxide (BioMnOx) oxidative reactivity, potential interference with biological 

Mn(II) oxidation and re-oxidation, crucial processes for initiating oxidation and controlling 

secondary pollution due to Mn(II) release, has been long neglected (16, 25, 26). Gaining 

knowledge of the biochemical aspect of Mn(II) oxidation is helpful for developing and 

optimizing the treatment process.  

 Leptothrix discophora SS-1, a well studied model Mn(II) oxidizing microorganism, was 

selected in this study. The main objectives of this study are: 1. develop a method that describes 

kinetics of Mn(II) oxidation process by L. discophora SS-1; 2. evaluate the contribution of 

superoxide mediated abiotic Mn(II) oxidation to BioMnOx formation; 3. evaluate the effects of 

co-solutes on Mn(II) oxidation in batch experiments. 
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Materials and Methods  

Bacterial growth and filtrate preparation. L. discophora SS-1 is a sheathless variant of the 

gram-negative bacterium L. discophora SP-6. The bacterium was grown at room temperature 

under 100 rpm shaking in PYG medium as described previously by Adams et al. (23). 

Specifically, the medium contained 0.25g each of peptone, yeast extract, and glucose, plus 0.60g 

MgSO4.7H2O and 0.07g CaCl2.2H2O per liter Milli-Q water. The pH of the medium was 

adjusted with 1M NaOH to 7.6 prior to autoclaving. Cell growth was monitored by determining 

the optical density at 600 nm.  

During growth, the manganese oxidizing factor (MOF) was excreted to the culture medium by 

the bacterium. In the culturing condition used in this study, the majority of Mn(II) oxidation 

activity was in this excreted form and only 10% of the total activity was associated with the cell 

material (23). Although a minor portion of the manganese oxidizing activity was associated with 

the cells, only extracellular fluid was used to avoid interference on cell growth and other 

metabolic process. Cell free filtrate was prepared by growing L. discophora SS-1 without MnCl2 

to early stationary phase (OD600 ~ 0.25) and centrifuging at 3000g for 10 min. The supernatant 

was passed through a 0.22 µm filter (Millipore, USA) and the resulting solution was the cell free 

filtrate.  

Determination of Mn(II) – oxidizing activity. The oxidation reaction was started by adding 

the desired amount of MnCl2 to the cell free filtrate in HEPEs buffer (pH = 7.4). The Mn(II)  

oxidizing activity of MOF was determined quantitatively by both turbidity measurement and 

Leucoberbelin blue (LBB) assay (23, 27). Upon oxidation of Mn(II), a fine yellow or light brown 

suspension formed. The turbidity was measured as the optical density at 600 nm, a wavelength at 

which no significant interference would be expected from proteins, nucleic acids or other organic 
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material. A serial dilution of BioMnOx was used to make the standard curve, giving linearity up 

to 200µM. LBB, a reducing reagent, is oxidized by Mn with valences of +3 or higher, resulting 

in a blue product with a peak absorption at 618nm. Since the manganese in BioMnOx was likely 

to be a mixture of Mn(II), Mn(III) and Mn(IV), KMnO4 was used as the standard. In the LBB 

assay, 40µM KMnO4 was equivalent to 100µM MnO2. All Mn(II) oxidation assays were 

performed at room temperature. Since the Mn(II) oxidizing activity of cells differed slightly from 

batch to batch, effects of variation in oxidizing activity were eliminated by using the same batch 

of cell culture to investigate a single factor.  

Test of superoxide hypothesis. Super oxide dismutase (SOD) (0.5-5 µM) was added to the 

cell free filtrate and Mn(II) oxidation kinetics were monitored in two hours. The oxidation 

kinetics was compared to a positive control which is done in absence of SOD. In addition, effects 

of a superoxide quencher (Cu2+) (0.2-20 µM) and a substrate for superoxide production (NADH, 

200 µM) on Mn(II) oxidation kinetics were studied as well at the same time range.  

Inhibition of MnII oxidiation. Before the chemical inhibitor screening test for the co-solutes, 

an optimal range of initial Mn(II) concentration was established. Then a desired amount of co-

solutes, including a ligand (pyrophosphate), and trace organic contaminants (antibiotics), were 

added to the cell-free filtrate. The mixture was incubated for 5 minutes and then Mn2+ was added 

to initiate the oxidation process. Since certain reductive organic contaminants will cause 

interference in the LBB measurement by competing for the oxidant (BioMnOx) observed in 

preliminary experiments, only turbidity measurement was used to quantify MOF activity.  

Results and Discussion  

Measurement of MOF activity. Mn(II) oxidation was conducted at room temperature in 

HEPEs buffer at pH 7.4, an optimal pH for the process (28, 29). The oxidation took place in 30-
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50 minutes with formation of a brown suspension. The oxides were quantified by the LBB 

method and turbidity measurement. The LBB assay is a more established method for Mn(III/IV) 

quantification (22, 27). Thus turbidity measurement was compared with the results from the LBB 

assay. Both methods gave standard curves which were linear up to 200 µM, and the two 

measurements correlate well with each other (Appendix E). Thus, turbidity measurement was 

justified to give a reasonably accurate measurement (4-200µM), and, in the following kinetic 

study, it was used as the quantification method unless stated otherwise.  

A typical growth curve of L. discophra SS-1 in the PYG medium in the 1L flask culture is 

shown in Figure 4.1. The cells reached stationary phase after 96 hours growth. The MOF 

activity seems to correlate closely with cell density: Mn(II) oxidation was negligible in the first 

24 hours when cell density was very low; as cells grew to log phase, the MOF activity increased 

and reached a plateau at the stationary phase. Decrease of MOF activity was observed when cells 

began to decay in the death phase. The MOF activity is similar to that cultured in minimum 

mineral salt (MMS) medium (27). However, the growth curve is slower in this study which may 

be due to a smaller initial inoculation percentage. Compared to a delay of peak MOF activity in 

MMS medium and a steep drop of the activity in the death phase, the intensity of MOF activity 

correlates with the cell density until the stationary phase and remains almost the same through 

the early death phase (27). This observed difference in MOF activity – growth phase relationship 

may be due to a difference in the testing method (whole cell suspension versus cell free filtrate 

tested) and the culturing medium (MMS vs PYG). Since MOF activity becomes stable from the 

late log phase, filtrate was prepared from cells at an early stationary phase for the further studies.  
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Figure 4.1 Cell growth and MOF activity of L. discophora SS-1.  

Test of superoxide hypothesis. Recently, a novel indirect enzymatic oxidation pathway 

involving extracellular superoxide was discovered in a marine bacterium Roseobacter sp. AzwK-

3b. The process is shown below.  

Mn(II) + 2H++O2
- -> Mn(III) + H2O2  

The abiotically oxidized Mn(III) intermediate is further oxidized by an unknown oxidant or 

undergoes disproportionation, generating the Mn(III/IV) oxides. The role of superoxide in Mn(II) 

oxidation by L. discohpora SS-1 was studied. Compared to the Roseobacter sp. AzwK-3b system, 

a different response to the superoxide quenchers and production promoter was observed.  

As shown in Table 4.1, the presence of superoxide dismutase (SOD) did not affect Mn(II) 

oxidation. Cu2+, a known superoxide quencher, was added to the filtrate to further evaluate the 

effects of superoxide. Presence of Cu2+ up to 20 µM did not affect the oxidation rates (Table 4.1). 

Interestingly, on the contrary, MOF seems to be more sensitive to Zn2+, an analog to Cu2+ 

without catalytic superoxide dismutation activity. A similar trend was observed in a previous 
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study reported in the literature, where Zn2+ was more inhibitory than Cu2+ (30). The none-

inhibitory effect of Cu2+ observed in this study may be due to the chelating effect of organic 

ligands in the filtrate, leading to a reduced effective Cu2+ concentration.  

A link between NADH oxidoreductase and bacterial extracellular superoxide production has 

been observed by others (31, 32). Addition of NADH, a substrate for superoxide production, 

inhibited BioMnOx formation significantly while the oxidized form (NAD+) does not affect the 

oxidation rate. This indicates that either superoxide is not involved in Mn(II) oxidation or NADH 

oxidoreductase is not involved for extracellular superoxide production. The observed inhibition 

caused by NADH may be due to a redox reaction between NADH and the reactive intermediate 

Mn(III) or neo-formed BioMnOx. A test can be performed to confirm the occurrence of the redox 

reaction in the future by incubating preformed BioMnOx and NADH and monitoring reductive 

dissolution of BioMnOx or formation of NAD+. Based on the discussions above, unlike 

Roseobacter sp. AzwK-3b, indirect oxidation by superoxide is not likely to be an important 

pathway in the L. discophora SS-1 system.  

Table 4.1 Evaluation the effects of superoxide on Mn(II) oxidation* 

Test Reagent Mn(II) oxidation activity 

  Superoxide Dismutase (SOD) (5µM) 100% 

Cu2+  (20µM) 100% 

Zn2+ (20µM) 71.3% 

NAD+ (200 µM) 100% 

NADH(200 µM) 31.2% 

   *Concentration of each reagent was selected based on literature (22, 30). 
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Effects of MnII on oxidation kinetics. Initial Mn(II) concentration is an important process 

parameter in a bioreactor that uses Mn(II) oxidizing bacteria because of the strong inhibitory 

effects of residual Mn(II) on the reactivity of BioMnOx and the potential toxicity on the 

microorganisms (24). The effect of initial Mn(II) concentration on oxidation kinetics was 

explored to find the optimal concentration range for MOF. The initial oxidation rate increased as 

the Mn(II) initial concentration increased up to 75 µM and reached a plateau from 75 to125 µM 

(Figure 4.2). An inhibition of the oxidation was observed when the initial Mn(II) concentration 

was increased to 200 µM, and complete elimination was observed at [Mn(II)] = 800 µM. A 

similar trend was reported in the Adams’ study although the optimal concentration range is much 

narrower here (30). For the following studies, Mn(II) was added at 100 µM where MOF is 

saturated with the substrate and has the maximum oxidation rate.  

  

Figure 4.2 Effect of Mn(II) on MOF activity.  
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Effects of chemical inhibitors. MOF is generally believed to be an enzyme or enzyme 

complex sensitive to certain chemicals, such as cyanide and o-phenanthroline (23). Wastewater 

represents a complex water matrix with a variety of chemicals that can be potential inhibitors for 

MOF. Such adverse effects on Mn(II) oxidation can lead to retarded removal and reduced 

treatment efficiency in a Mn oxidizing bacteria-based bioreactor. A screening study for potential 

inhibitors gives valuable information for defining the treatment specification and limitations. The 

results of the screening study are listed in Table 4.2.  

Table 4.2 Effect of chemical inhibitors on MOF activity 

Compound and Concentration (µM) MOF Activity/Control (%) * 

Pyrophosphate (2 mM ) 0% 

Kanamycin (50 µM) 0.5% 

Tetracycline (50 µM) 42.8% 

Oxytetracycline (50 µM) 52.4% 

Chlortetracycline (50 µM) 13.1% 

Ampicillin (50 µM) 100% 

Ciprofloxacin (20 µM) 100% 

* The MOF activity is quantified by turbidity measurement. 

Pyrophosphate is found to inhibit manganese oxide formation significantly. When 

pyrophosphate concentration is higher than 2mM, no precipitates formed. Bacterial Mn(II) 

oxidation is suggested to be a two step electron transfer process with Mn(III) as an intermediate 

(33). Know as a good chelator for Mn(III), pyrophosphate is hypothesized to stabilize Mn(III) in 

solution and prevents it from further oxidation by MOF.  

Thus Mn(II) oxidation was studied in the presence of a range of pyrophosphate concentrations. 

Oxidized Mn was analyzed by the LBB assay in both whole BioMnOx suspension and filtered 
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suspension. LBB is a reductive dye that can be oxidized by both Mn(III) and Mn(IV), giving a 

measurement of total reactive Mn. In the low pyrophosphate concentration range (0-500 µM), no 

reactive Mn was observed in the filtered suspension, indicating the absence of chelated Mn(III) 

in solution (Figure 4.3 A). At the high pyrophosphate concentration range (>2 mM), the same 

reactive Mn amount was found in filtered and whole suspension, suggesting that all the oxidized 

Mn(II) is in the form of chelated Mn(III) (Figure 4.3 C). This result is consistent with the 

observation of negligible manganese oxide precipitation. Thus Mn(II) is still oxidized by MOF 

but trapped in the Mn(III) form. At an intermediate pyrophosphate concentration (1mM), an 

interesting Mn(II) oxidation pattern was observed (Figure 4.3 B). Mn(II) oxidation is delayed 

since no reactive Mn is formed until after 2 hours. The first reactive Mn species seems to appear 

in aqueous solution in the form of Mn(III), as indicated by the same amount of LBB-reactive Mn 

detected in filtered and whole suspension. As reaction progressed, precipitates started to form 

and accumulate. Meanwhile, reactive Mn in the aqueous form declined. Such observation 

indicates that MOF is capable of transforming Mn(III) to Mn(IV). Therefore inhibition of 

manganese oxide formation by pyrophosphate is mainly due to chelating effects that may work at 

two different steps: (1) limit the Mn(II) availability to the enzyme, as indicated by the lag phase; 

(2) competitively bind Mn(III) and prevent its further oxidation (Figure 4.3 C).   
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Figure 4.3 Effect of pyrophosphate on Mn(II) oxidation, measured by the LBB assay.
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The presence of certain antibiotics also affects BioMnOx formation. Since antibiotics are 

reductive at the acidic condition used in the LBB assay, only the turbidity measurement was 

suitable for manganese oxide quantification. Of the antibiotics screened, the tetracycline family 

and the aminoglycoside family were observed to cause significant inhibition of BioMnOx 

formation (Table 4.1). For example, tetracycline caused 57.2 % reduction in the initial oxidation 

rate. The dose and response relationship was further studied using a sigmoidal mode, giving an 

IC50 of 3.6 µM for kanamycin and 450.5 µM for tetracycline (Figure 4.4, BioDataFit 1.02).  

 

Figure 4.4 Effect of kanamycin and tetracycline on Mn(II) oxidation  
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(2) chelating with Mn(II) or Mn(III), thus reducing their accessibility to MOF; (3) poisoning the 

enzyme, such as changing its conformation.  

The first hypothesis was tested by monitoring the concentration of both BioMnOx and 

antibiotics during incubation of preformed BioMnOx and antibiotics. Reductive dissolution of 

BioMnOx, determined by turbidity measurement, was negligible in the time range studied (2 - 4 

hours) (data not shown). Using tetracycline as the probe, the change in antibiotic concentration 

was not obvious (Figure 4.5). Thus, reductive dissolution is unlikely to be the major reason for 

the inhibition. 

 

Figure 4.5 Transformation of tetracycline by BioMnOx. [BioMnOx] = 200µM, pH = 7.3, 

Tetracycline = 50 µM 
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signature of multiple –OH functional groups which can be a potential chelating site for the metal 

ions. A pyrophosphate-like mechanism might take place. Interestingly, adding Mg2+ to the 

antibiotic solution to block the chelating sites and increase Mn availability did not eliminate the 

inhibition.   

The third hypothesis is also difficult to test. Efforts have been made to compare the activity of 

exposed and unexposed MOF by ultrafiltration. However, the MOF lost a major portion of its 

activity during the process in a preliminary test. It is worth noting that even the antibiotic 

inhibitors changed the initial kinetics; given a long enough time (a few days), precipitates were 

observed to form. However, it is not clear if the oxidation is due to recovered enzyme activity or 

a combination of biological and abiotic processes, i.e, enzyme initiated oxidation followed by 

surface catalyzed oxidation.  

Conclusion  

Mn(II) oxidation is catalyzed by MOF excreted by L. discophora SS-1. An optimal initial 

Mn(II) concentration range is between 75-125 µM. The abiotic oxidation of Mn(II) by 

superoxide does not seem to be an important pathway in this bacterium. Low concentration of 

ligand (pyrophosphate) does not affect manganese oxide formation significantly. In high 

concentration of pyrophosphate, Mn(II) is only oxidized to Mn(III) without any precipitate 

formation. The Mn(II) oxidation kinetic pattern changed in the presence of the tetracycline and 

aminoglycoside antibiotic family; yet the reason remains to be investigated. This study serves as 

a preliminary study for developing water treatment biotechnology that makes use of Mn(II) 

oxidizing bacteria. Precautions should be taken since co-solutes in the water matrix may cause a 

lag in Mn(II) oxidation or inhibition of Mn(II) oxidation and reoxidation, leading to a reduction 

in treatment efficiency. Moreover, this study is only conducted in a single-chemical exposure 
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mode. Multiple chemical exposures should be factored in due to possible additive or synergistic 

effects. The next chapter focuses on the chemical aspect of BioMnOx using the optimal 

conditions discussed above to preform the oxides.  
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CHAPTER 5 

DEGRADATION OF CIPROFLOXACIN AND BISPHENOL A BY BIOGENIC 

MANGANESE OXIDES 
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Abstract  

Natural Mn(III/IV) oxides are recognized as important strong oxidants in environment, 

affecting the environmental fate of many micropollutants. The biological Mn(II) oxidation 

process is believed to be the predominant pathway for natural Mn(III/IV) oxide formation. In this 

study, Leptothrix discophora SS-1, a Mn(II) oxidizing bacterium, was used to produce biogenic 

manganese oxides (BioMnOx). The structure and oxidative reactivity of BioMnOx were 

characterized and compared to that of its synthetic analog (a birnessite type MnO2). XRD results 

indicated that BioMnOx is poorly crystallized, similar to δ-MnO2 (c-disordered birnessite). XPS 

and TGA results indicated a considerable amount of organic residual present in BioMnOx. The 

oxidative reactivity of BioMnOx was investigated by degradation of ciprofloxacin (CIP) and 

bisphenol A (BPA), and oxidation rates with BioMnOx were much slower than with its synthetic 

analog. Smaller surface area, larger particle sizes, lower average oxidation states (AOS) and 

blocking of reactive sites by organic residual may explain the lower reactivity of BioMnOx. 

Despite the slower reaction kinetics, successful removal of CIP and BPA was achieved in the 

BioMnOx system. Solution conditions played a key role in determining degradation kinetics. Co-

solutes (metal cations and humic acid) inhibited the oxidation by competitively binding with the 

reactive surface sites. The pH effect was more complicated since both oxidant and substrate can 

be affected, and a net effect resulted from a combination of several processes. Compared to the 

synthetic MnO2 system, the BioMnOx system yielded fewer degradation products. Degradation 

of CIP was mainly via N-dealkylation. BPA oxidation underwent a radical fragmentation and 

complicated radical couplings, yielding an olefin product and polymerized precipitate. Generally, 

lower biological activity of the degradation products is expected based on the proposed 

structures. 
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Introduction 

Mn(III/IV) oxides are naturally occurring minerals that widely distributed in environment. 

They are known to play key roles in elemental biogeochemical cycles due to high sorptive and 

oxidative capacity (1-4). Recently, the influence of Mn(III/IV) oxides on the environmental fate 

of xenobiotics has gained considerable research interest (5-8). It is generally believed that the 

biological Mn(II) oxidation process is the predominant pathway for Mn(III/IV) oxide formation 

in the natural environment due to limited rates of abiotic oxidation of Mn(II) at circum-neutral 

conditions (9, 10). Field studies also confirmed the importance of biological Mn(II) oxidation 

(11, 12). 

Structural studies suggest that biogenic Mn(III/IV) oxides (BioMnOx) from different bacteria 

are layer type manganese oxides similar to δ-MnO2 (c-disordered birnessite) , a widely used 

model Mn(III/IV) oxide (10, 13-16). Despite the structural similarity, the reactivity of BioMnOx 

may be quite different from that of its synthetic analog, and a higher adsorption capacity of 

BioMnOx, generated by L. discophora SS-1 and a fungus KR 21-2, has been reported (17, 18). 

However, little is known about the oxidative reactivity of BioMnOx, especially with respect to 

the degradation of organics. Research on the properties of BioMnOx on this aspect will provide 

further understanding on the environmental role of BioMnOx. 

Lepthorix discophora SS-1 is a well studied model Mn(II) oxidizing organism. During growth 

in batch culture, this sheathless bacterium releases a manganese oxidizing factor (MOF) into the 

medium. High affinity of MOF for Mn(II) has been reported (19). With prior knowledge of 

Mn(II) oxidation kinetics and optimal conditions, this organism is ideal for producing BioMnOx.     

The main objectives of this study were to: investigate the oxidizing capacity of BioMnOx 

toward the emerging contaminants ciprofloxacin (CIP) and bisphenol-A (BPA); compare the 
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structure and reactivity of biologically and chemically produced Mn(III/IV) oxide; evaluate the 

effects of solution conditions such as pH and co-solutes on the reaction kinetics; analyze the 

major degradation products and propose pathways. 

Materials and Methods 

Chemicals. All chemicals used in this research were of analytical grade or above. Deionized 

water (18.3 MΩ-cm resistivity) was employed to prepare the reaction solutions. Ciprofloxacin 

(CIP) and Bisphenol A (BPA) were purchased from Sigma. All chemical reagents were used 

directly without further purification.  

Preparation of biogenic manganese oxides and its synthetic analoge. L. discophora SS-1, 

the Mn(II) oxidizing model organism, was grown in 400ml of PYG medium in 1000-ml 

Erlenmeyer flasks at 21 ºC under constant orbital shaking at 100 rpm (19). During growth, the 

manganese oxidizing factor (MOF) was found in the culture medium. The cell free filtrate was 

prepared as described in Chapter 4, with cell material removal by centrifugation followed by 

filtration using a 0.22 µm membrane filter.  

BioMnOx was produced post culture upon addition of MnSO4 (100µM) to the filtrate. The 

BioMnOx solids were collected and washed twice with DI water. To remove the Mn(II) adsorbed 

on the surface, the oxides were further washed by diluted HCl (pH = 3) three times followed by 

washing three times by DI water. MOF and other organic molecules in the filtrate co-precipitate 

with BioMnOx during the formation. To remove the organic debris, a bleach procedure was 

carried out. After removal of surface adsorbed Mn(II), the BioMnOx was washed with 0.17% 

NaClO (pH = 10), giving BioBleMnOx (20).  

Synthetic MnO2 was synthesized according to Murray et al. (21). Specifically, 16 mL of 0.1 M 

KMnO4 was added to 328 mL of N2-sparged deionized water, and the solution was made basic 
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by addition of 32 mL of 0.1 M NaOH. Precipitation of manganese oxides was initiated by adding 

24 mL of 0.1 M MnCl2 dropwise to the basic permanganate solution under constant stirring. The 

precipitate was collected by centrifugation and washed by deionized water several times. All 

three types of Mn(III/IV) oxide suspensions were stored at 4 ºC and were diluted to appropriate 

concentration prior to use.  

Characterization of BioMnOx and its synthetic analog. Biogenic and synthetic Mn(III/IV) 

oxide were freeze dried and ground in an agate mortal. Powder X-ray powder diffraction (XRD) 

analysis was conducted on a Scintag Theta-Theta X-ray diffractometer with Cu Kα radiation 

(λ=1.5418 Å).  

The surface chemical composition was analyzed by x-ray photoelectron spectroscopy (XPS). 

The surface areas were determined by the Brunauer-Emmett-Teller method of N2 adsorption on a 

Micromeritics ASAP 2010 system. Prior to the analysis, the samples were degassed at 110˚C for 

12h. The thermal gravimetric analysis was conducted using TA Q500. The temperature was 

equilibrated at 25 ºC for five minutes and then increased at 10 ºC per minute up to 800 ºC.  

For the morphology study, a drop of Mn(III/IV) oxide suspension was deposited on a silicon 

wafer. After water evaporation, the samples were studied using a field emission scanning 

electron microscope (LEO 1550 FESEM).  

Batch Experiments. Degradation of CIP and BPA was carried out in aluminum covered 20ml 

screw-top glass bottles under constant shaking at room temperate (22±1ºC). Reaction pH was 

maintained with 10mM acetic acid/ sodium acetate for pH 5, and 4-morpholinepropanesulfonic 

acid (MOPS) and its sodium salt for pH 6 and 7, respectively. NaCl (0.01M) was also added to 

the solution. Reaction was initiated by adding the appropriate amount of Mn(III/IV) oxide 

suspension to the buffered solution with or without co-solutes and spiked with probes. Aliquots 
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were periodically withdrawn and reactions were quenched by ascorbic acid (0.1 M) addition 

which dissolves Mn(III/IV) oxide. All samples were analyzed within 24h. Control experiments 

with probe chemicals alone were conducted simultaneously with each batch of reaction. All 

experiments were carried out with replicates. 

Chemical Analysis. Decrease in the concentrations of probe chemicals over time were 

determined using a reverse-phase high performance liquid chromatography (HPLC) equipped 

with a Restek ultra C18 (5 μm) reverse phase column (4.6 × 150 mm). The mobile phase was a 

mixture of methanol and water in ratios of 80:20 for BPA. A gradient elution was used for CIP 

analysis with the mobile phase consisting of methanol (eluent A) and 0.1% Formic Acid solution 

(eluent B) at a flow rate of 1ml / min. The injection volume was 25 µl and the elution program 

was as follows: linear gradient from 85% B to 0% B in 12 minutes, 2 minute isocratic at 0% B, 

linear gradient to 85% B in 4 minute, followed by 2 minute isocratic at 85%B.  

BPA and CIP were monitored with a fluorescence detector (HP series 1100, Agilent 

Technology). The excitation wavelengths (λex) and emission wavelength (λem) were 278 and 450 

nm for CIP, and 220 and 310 nm for BPA. 

 Degradation products of CIP were separated under the same gradient elution as described 

above and analyzed by HPLC-UV/MS. The MS spectra were obtained using an Agilent G1978B 

Multimode source for the 6100 series single-quadruple MS in the positive ES mode with a full 

scan from m/z 100 to m/z 400 and a fragmentor of 120. The specific parameters set up for the 

mass detector were as follows: drying gas flow, 12 L min−1; nebulizer pressure, 40 Psig; drying 

gas temperature, 300 °C; vaporizer temperature, 250 °C; capillary voltage, 2000 V; corona 

current, 4.0 μA; and charging voltage, 2000 V. 
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Degradation products of BPA were analyzed by both HPLC-UV/MS and GC/MS. The LC 

elution was performed at 30 °C and a flow rate of 1 ml/min with solvent A (100% methanol) and 

solvent B (MilliQ + 0.1% formic acid). The injection volume was 25 µl and the elution program 

was as follows: 3 min isocratic at 80% B, linear gradient to 55% B in 9 min, followed 3min 

isocratic at 55% B, linear to 0% B in 15 min, linear to 80% B in 5 min and isocratic at 80% for 3 

min. The MS spectra were obtained in the APCI positive mode with a full scan from m/z 100-

500. All the other parameters for MS detector were set the same as that in the CIP experiment. 

For GC/MS analysis, the products in solution were extracted and enriched by solid phase 

extraction (SPE) via a C18 cartridge (C18 Sep Pak, waters). The cartridge was pre-conditioned 

by 3ml hexane, 3ml dichloromethane, followed by 6 ml methanol and 6 ml DI water. Elution 

was performed with pure methanol. Aliquots (5 µL) of the extract were analyzed on an Agilent 

6890 gas chromatograph (GC) coupled with an Agilent 5973 mass spectrometer (MS) (Agilent 

Technologies, Wilmington, DE) for chemical structural analysis. A DB-5 capillary column (30 m 

× 0.25 mm × 0.25 μm; Agilent Technologies) was employed for separation. The inlet 

temperature was 310 °C, and the detector temperature was 310 °C. The oven temperature was 

initiated at 50 ºC and held for 1 min, then increased to 140 ºC at 10 ºC/min and held for 3 min, 

then increased to 310 ºC at 10 ºC/min and held for 5min. The MS detector was operated in the 

electron impact mode with 70 eV of ionization energy, and the mass spectra were acquired in the 

scan mode with m/z ranging from 40 to 600.    

Data Analysis. All of the figures and statistical analyses were completed using SigmaPlot 9.0.   

Results and discussion  

Characterization of Biogenic MnOx and synthetic MnO2.   XRD analysis indicates that all 

three types of Mn(III/IV) oxide are poorly crystallized. The two biogenic Mn(III/IV) oxides 
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displayed two broad signature δ-MnO2 peaks, with 2θ around 37º and 65º (Figure 5.1) (22). δ-

MnO2 is a hexagonal birnessite with the most extreme c axis disordering (23). The synthetic 

MnO2 has two additional peaks that can be assigned to birnessite, at 2θ ~ 43º and 56º, which may 

be due to the increase of stacking order along the c axis (24). Diffraction peaks of BioMnOx have 

the weakest intensity and removal of organic material by bleaching improved the intensity and  

shapes of the diffraction peaks.  

 

Figure 5.1 A XRD analysis of synthetic and biogenic Mn(III/IV) Oxides. 

A morphological study by SEM showed that BioMnOx is irregularly shaped with twisted 

sheets and a particle size of 2-3 µM. Synthetic MnO2 appears to be randomly stacked plates and 

has a much smaller particle size at ~ 200 nm (Figure 5.2). The bleaching process changed 

neither the morphology nor the particle size of BioMnOx. N2-BET surface area measurement 

demonstrated that synthetic MnO2 has a much larger surface area than BioMnOx, regular or 

bleach cleaned (Table 5.1). This measurement is consistent with the SEM observation on the 

particle size distribution.  
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Figure 5.2 SEM micrographs of synthetic and biogenic Mn(III/IV) Oxides, (a) synthetic MnO2; 

(b) BioMnOx (c) BioBleMnOx. 

Table 5.1 Surface analysis of Mn(III/IV) oxides 

Sample Elemental composition Surface Area 

(m2/g) 

C(%) N(%) Mn(%) O(%) Na(%)  

BioMnOx 46.65 7.14 9.25 37.17 - 57.37 

BioBleMnOx 22.75 -- 21.39 51.73 4.13 54.74 

Synthetic MnO2 29.15 -- 19.45 51.39 - 155.35 

 

The elemental composition of synthetic MnO2, BioMnOx and BioBleMnOx was analyzed 

using XPS. The carbon content in BioMnOx is much larger than that of the bleached oxide and 

the synthetic MnO2. Another distinct difference is the presence of a significant fraction of N 

element in the BioMnOx, which is expected to be from the MOF proteins and other organic 

metabolites. Bleaching of BioMnOx leads to a total loss of the N element peak, indicating 

effective removal of organic debris in BioMnOx.  

1µm
1µm 1µm1µm
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The presence of a large fraction of organic materials is also confirmed by thermal gravimetric 

analysis (Figure 5.3). While synthetic MnO2 and BioBleMnOx had <15% weight loss, BioMnOx 

lost >40% of the weight during the heating process. This much larger total weight loss in 

BioMnOx is due to organic residue removal by heat. The weight loss curves also seem to have 

different patterns. BioBleMnOx has a very similar curve to that of synthetic MnO2 with two 

drops in weight. The first weight drop is probably due to loss of physical and chemically 

adsorbed water while the second drop is due to a mineral phase transition. For BioMnOx, the 

weight loss stages are less distinct and the phase transition weight drop is masked by the gradual 

organic decomposition. 

 

Figure 5.3 Thermal gravimetric analysis of biogenic and synthetic Mn(III/IV) oxides. 

Efficacy of Contaminant removal by Biogenic MnOx. In the absence of BioMnOx, both the 

contaminants, CIP and BPA, remained stable in water and no degradation was observed. When 

BioMnOx was added to the solution, contaminant removal was observed.                     
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Figure 5.4 Degradation of CIP and BPA at pH 5 and different BioMnOx dosages: (A) [CIP] = 

5µM, [BioMnOx] = 200, 400, 600 µM; (B) [BPA] = 4.4 µM, [BioMnOx] = 220, 440, 800 µM;  

Typical time courses of CIP and BPA degradation at different BioMnOx dosages are shown in 

Figure 5.4. For example, almost complete removal of CIP and BPA was achieved in hours. 

Increasing BioMnOx dosage resulted in increased reaction rates and improved removal efficiency. 

Slow and limited removal rates were observed at lower BioMnOx dosage which may be due to 
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the saturation of surface reactive sites on the oxidant. Generally, disappearance of CIP and BPA 

in presence of BioMnOx indicates that biogenic manganese oxides can affect environmental fates 

of such xenobiotics and have a potential application for treating them in aqueous solution. 

Kinetic comparison of BioMnOx with synthetic MnO2. The layer type synthetic MnO2 is a 

justified structural model for BioMnOx as suggested by X-ray absorption and X-ray diffraction 

studies (10, 14-17). Degradation kinetics of CIP and BPA by BioMnOx were compared with that 

by synthetic MnO2 (Figure 5.5). As shown in Figure 5.5, degradation rates are faster in the 

synthetic MnO2 system over the pH range studied. For example, at the same oxidant to substrate 

ratio at pH 5, CIP was removed completely in 20 minutes by synthetic MnO2 compared to 85% 

removal in 8 hours by BioMnOx (Figure 5.5). The degradation data were fitted by pseudo first 

order kinetics and the rate constants were summarized in Table 5.2. Generally, discrepancy in 

reaction rates is more obvious toward the neutral pH condition, which was demonstrated in CIP 

degradation experiments. Acidifying the solution to pH 3, a condition that is favorable for 

oxidative reaction, did not eliminate the difference in reaction rates (data not shown).  

However, different observations were reported in a diclofenac study with BioMnOx produced 

by P. putida MnB6, another layer type BioMnOx: comparing to the synthetic MnO2, similar 

oxidation rates were found at pH 4.7 and a 10-fold faster oxidation rate by BioMnOx was 

observed at neutral condition (5). The discrepancy between the results of the two studies may be 

explained by the difference in surface areas, average oxidation states (AOS) and the extent of 

microbial Mn(II) oxidizing activity. In the diclofenac study, the BioMnOx has a surface area of 

98 m2/g, close to that of synthetic MnO2 (Table 5.1) (5). In contrast, the BioMnOx produced by L. 

Discophora has a much smaller surface area at 57 m2/g (Table 5.1).  
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Figure 5.5 Degradation of CIP and BPA by Mn(III/IV) Oxides at pH 5-7, [HAc/NaAc]= [MOPS] = 10mM, A - C: CIP = 5 µM, 

[BioMnOx] = [synthetic MnO2] = [BioBleMnOx] = 0.24 mM; D – F: BPA = 4.4 µM, [BioMnOx] = [synthetic MnO2] = [BioBleMnOx] 

= 0.8 mM; 
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Table 5.2 Rate constants of CIP and BPA degradation by biogenic and synthetic Mn(III/IV) 

oxides at different pH conditions. 

 kBioMnOx kBioBleMnOx kSynthetic MnO2 
kBioMnOx / 

 kSynthetic MnO2 

kBioBleMnOx /  

kSynthetic MnO2 

CIP 
 
 

 
 

 
 

 
 

 

pH = 5 7.60e-3 4.8e-1 4.17e-1 1.82% 115% 

pH =6 2.70e-4 3.6e-2 3.93e-1 0.0687% 9.16% 

pH = 7 4.01e-4 6.4e-3 1.22e-1 0.329% 5.25% 

BPA      

pH =5 6.55e-2 3.74e-1 3.02e-1 21.7% 124% 

pH =6 2.15e-2 7.43e-2 7.87e-2 27.3% 94.4% 

pH = 7 4.98e-3 1.18e-2 3.82e-2 13% 30.9% 
 

*[CIP] = 5µM, [BioMnOx] = [BioBleMnOx] = 240µM; [BPA] = 4.4µM, [BioMnOx] = [BioBleMnOx] = 

800 µM; R2 = 0.96-0.99, relative standard deviation (RSD) = 2.36 – 18.83% for CIP data and RSD = 6.1-

11.4% for BPA data. 

 

The average oxidation state (AOS) of manganese is a known important factor that affects the 

reactivity of manganese oxides (25). Generally, higher AOS is favorable for the oxidation 

process. It has been proposed that bacterial Mn(II) oxidation is a two step electron transfer 

process and Mn(III) is an intermediate (26). Considering the possibility of Mn(II) adsorption on 

the surface, the BioMnOx is likely to be a mixture of Mn(II), Mn(III) and Mn(IV). A previous 

study indicated that newly formed BioMnOx by L. Discophora has an AOS close to the oxidation 

state of Mn(III) (27). On the contrary, synthetic MnO2 and BioMnOx reported in the diclofenac 

study have an AOS close to 4 (13). Thus the lower activity of BioMnOx observed in this study 

may be partially attributed to its lower AOS. 
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Lower microbial Mn(II) oxidizing activity in BioMnOx in this study may also partially explain 

the lower oxidative reactivity. It is believed that microbial activity can remove inhibitory Mn(II) 

released during contaminant degradation and enhance the oxidative reaction (5). While microbial 

Mn(II) oxidizing activity is still present and highly active in the BioMnOx pellets in the 

diclofenac study, it is likely to be negligible in this study due to either BioMnOx coating on MOF, 

thus blocking the reactive enzyme center, or inactivation of MOF during the clean up step. 

It is noted that surface adsorbed Mn(II) can also lead to an inhibition of oxidation due to its  

binding with the surface reactive sites (5, 8). Such inhibitory effect is reported to be partially the 

reason for instability of treatment efficiency observed in a Mn(II) oxidizing bioreactor (28). 

However, Mn(II) adsorption seems to be a very minor reason in the current BioMnOx system 

because the percentage of adsorption on BioMnOx is small (< 7%) and the cleaning step using 

diluted HCl  further removes adsorbed Mn(II) by a cation exchange process (29).   

Particle size is another important factor that determines oxidative reactivity of manganese 

oxide. Much faster Cr (III) oxidation was reported in the presence of colloidal MnO2 compared to 

the bulker counterpart (30). The colloidal fraction, defined as the suspension that passes through 

a 0.22µm membrane filter, was measured by an LBB assay for both BioMnOx and synthetic 

MnO2 (minimal quantification amount is 4 µM MnO2).  While a significant fraction of reactive 

Mn in synthetic MnO2 exists in colloidal form (~30%) there is negligible colloidal reactive Mn 

in BioMnOx (< 2%) either during formation or after cleaning. Therefore, the presence of an 

appreciable colloidal fraction in synthetic MnO2 may be a major reason for the significantly 

faster reaction rate.  

The mechanism of how organic residuals affect BioMnOx reactivity is not clear. It may play a 

dual role in the reaction. It may bind with the oxide and limit the accessibility of the reactive 
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sites to the substrate, resulting in retarded reaction rates. Bleaching was used to remove the 

organic fraction in BioMnOx, generating BioBleMnOx. The BioMnBleOx seems to be similar to 

synthetic MnO2, as indicated by XRD and TGA results. Degradation experiments were also 

carried out using BioBleMnOx. A significant improvement in reaction rates was observed 

(Figure 5.5, Table 5.2). The still slower degradation rates compared to synthetic MnO2 may be 

due to the smaller surface area of BioBleMnOx (Table 5.1). It should be noted that bleaching 

may also have changed the AOS of BioMnOx since both BioBleMnOx and synthetic MnO2 are 

expected to have an AOS close to 4 (13). Thus the improvement in initial oxidation rates by 

bleaching is likely to be a combination effect of AOS increase and organic debris removal.  

The organic residual may also act as a ligand and chelate with the Mn(II), preventing it from 

competing for the reactive sites. The ligand binding effect is suggested by the observation that 

CIP was slowly yet completely removed by BioMnOx at pH 7 whereas the removal was halted at 

85% by BioBleMnOx despite the much faster initial reaction rate. The inhibition observed in the 

BioBleMnOx system, as the reaction progressed, may be due to the accumulation of adsorbed 

Mn(II). On the contrary, in BioMnOx system, organic chelating may help to reduce the inhibition 

and leads to a more complete oxidation. 

Based on the above observation and discussion, caution should be taken when making 

predictions of BioMnOx oxidative reactivity based on the results from the synthetic MnO2 model. 

Effects of pH. Removal rates of CIP and BPA were examined at different environmentally 

relevant pH conditions, ranging from pH 5 to pH 7. Generally the degradation rate constants are 

always higher in the BioBleMnOx system at each pH condition studied. Given the same substrate 

and oxidant, fastest rate constants were observed at pH 5. This is expected because a proton is a 
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constituent of the reaction and increase of proton concentration will increase the driving force for 

the reaction.  

MnO2+2e-+4H+ Mn2++2H2O 

Unidirectional pH dependence of rate constants was observed in CIP degradation by 

BioBleMnOx and in the BPA degradation in both the BioMnOx and BioBleMnOx systems, where 

the oxidizing potential of Mn(III/IV) oxides may be the dominant factor.  

It is interesting to note that a different pH dependence pattern was observed in CIP degradation 

experiments by BioMnOx at near neutral pH conditions, with kpH=7, BioMnOx > kpH=6, BioMnOx. 

Another two separate experiments with replicates also demonstrated similar pH dependence 

pattern with more removal of CIP at pH7. This indicates other factors other than manganese 

oxidizing potential may play a role in the degradation process. In contrast, rate constants of CIP 

degradation by both BioBleMnOx and synthetic MnO2 still follow the decreasing trend of k as 

pH increases: kpH=7 < kpH=6 (Table 5.2) (31).  Thus the change of k order at pH 6-7 by BioMnOx 

treatment is likely due to the interaction between the biological component and Mn(II) although 

the mechanism remains unclear. Possible explanations include residual microbial activity which 

is more active at pH 7 than 6 or stronger chelating with Mn(II) at pH 7.  

Effects of co-solutes. The degradation rate constants of both CIP and BPA in the presence of 

co-solutes are summarized in Table 5.3. Generally, degradation of CIP and BPA are inhibited by 

co-existing metal cations. At the pH range studied, the manganese oxide surface is expected to 

be negative (5, 32). Thus metal cations can bind to the surface by electrostatic interaction and 

compete for the reactive sites. The inhibitory extent correlates with the adsorption affinity of the 

cations reported in the literature with [Mg2+] > [Ca2+] > [Cu2+] > [Mn2+] (33, 34).Similar 

inhibitory trends have also been reported in synthetic manganese oxide systems (35, 36). 
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Interestingly, it seems that oxidation rates by BioMnOx were suppressed to a less extent, 

compared to those by BioBleMnOx. This may be due to chelating of the added metal cations by 

organic residual in BioMnOx.  

Humic acid (HA) is naturally occurring organic matter in the aquatic environment that may 

affect oxidation reactivity of BioMnOx. Humic acid can adsorb on the oxidant surface and block 

the reactive site, leading to a lower removal efficiency. However, enhancement of the oxidative 

reaction may also occur, which is demonstrated in the 17β-estradiol oxidation study (36).  The 

facilitation of oxidative degradation is due to the chelating of the released Mn(II) ion during the 

reaction and subsequently reduced auto-inhibition. Therefore the net effects of HA on the 

degradation kinetics is a result of the combination of those two countering effects and no general 

trend can be concluded. As shown in Table 5.3, low concentration of HA (1mg/L) does not seem 

to cause a significant change in the rate constants except for that of CIP degradation by 

BioBleMnOx. Further increasing HA concentration (10mg/L) resulted in more significant change 

in oxidation rate constants, and effects vary among each treatment group.  
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Table 5.3 Rate constants of CIP and BPA degradation in presence of co-solutes by BioMnOx and 

BioBleMnOx* 

 BioMnOx BioBleMnOx 

 k  k/kctrl k k/kctrl 

CIP(Ctrl) 7.60e-3 100% 4.80e-1 100% 

Ca2+ 2.93e-3 38.6% 3.36e-2 7% 

Mg2+ 4.55e-3 59.9% 1.36e-1 28.3% 

Mn2+ 1.74 e-4 2.29% 3.78e-4 0.0788% 

Cu2+ 9.13e-4 12.0%  3.95e-4 0.0823% 

1mg/L HA 7.15e-3 94.1% 8.79e-1 183% 

10 mg/LHA 3.18e-3 41.8% 9.62e-1 200% 

 

BPA(Ctrl) 

 

   7.05e-3 

 

100% 

 

4.84e-1 

 

100% 

Ca2+ 7.01e-3 99.4% 3.24e-1 66.9% 

Mg2+ 6.87e-3 97.4% 2.95e-1 61% 

Mn2+ 2.97e-3 42.1% 6.36e-2 13.1% 

Cu2+ 6.4e-3 90.8% 1.48e-1 30.6% 

1 mg/L HA 7.58e-3 108% 3.68e-1 76% 

10mg/L HA 8.41e-3 119% 2.88e-1 59.5% 
 

*[CIP] = 5µM, [BioMnOx] = [BioBleMnOx] = 240µM; [BPA] = 4.4µM, [BioMnOx] = [BioBleMnOx] = 

800 µM; pH = 5; [Ca2+] = [Mg] = [Cu] =10 mM, [Mn2+] = 1mM. R2
 = 0.83 - 0.99 except for data fitting of 

CIP degradation with addition of Cu2+ and Mn2+ (R2= 0.61-0.71). RSD = 4.23-33.4% for CIP data and 

RSD = 6.27 – 19.7% for BPA data.  
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Degradation products and mechanisms. Degradation products of CIP were analyzed by 

identifying the [M+H+] molecular ions in the positive mode using HPLC/MS. Compared to the 

synthetic MnO2 system, fewer degradation products were observed, with two major peaks with 

[M+H+] ions of m/z 306 and 263 and two minor peaks with [M+H+] ions of m/z 364 and 362 

(31). The retention time and spectrum of degradation products detected in this study were 

compared to those discussed and reported in the AFT and cryptomelane systems (37, 38). 

Proposed structures are shown in Table 5.4.  

The piperazine ring of fluroquinolone antibiotics is believed to be the site susceptible to 

oxidation (31, 39). A kinetic study in the synthetic MnO2 system further points out that the two 

nitrogen atoms (N1' and N4') are reactive sites that control the reaction rates (31). The iminium 

ion species forms after the electron transfer from the N atom to the Mn(III/IV) reactive center. 

Hydrolysis of the iminium species leads to the opening of the piperazine ring and loss of alkyl 

groups on the N atoms (Figure 5.6). Thus, this pathway is known as the N-dealkylation pathway. 

The species m/z 306 is believed to be formed via this hydrolysis-dealkylation process by loss of 

the ethylene group. The same product m/z 306 also appears as the first product in the 

cryptomelane system (discussed in Chapter 3), indicating that the N-dealkylation process is 

favorable in the manganese oxide system. The two nitrogen atoms (N1' and N4') in 

desethylene CIP can undergo similar electron transfer, leading to the formation of another 

iminium species that is susceptible to hydrolysis. As a result, a complete dealkylated product will 

be formed, which is expected to be the species m/z 263.  

In addition to the hydrolysis and piperazine ring opening of the iminium species, 

hydroxylation on the carbon atom of the C=N bond can also take place, yielding the species m/z 

364 (Figure 5.6). This pathway is known as C-hydroxylation. The species m/z 362 is likely to be 
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a downstream product of the species m/z 364 via further oxidation. It appeared later than the 

species m/z 364 in the system and seemed to exist in even smaller amounts as indicated by both 

UV and MS intensity (data now shown). The two other degradation products reported in δ-MnO2 

and cryptomelane systems, the species m/z 334, were not observed in this study, although the 

possibility of presence in trace amount cannot be ruled out (31).  

Generally, all the transformation takes place in the piperazine ring of CIP by BioMnOx 

oxidation while the quinolone core structure remains. While destruction of the piperazine ring is 

expected to reduce the potency of the antibiotic activity, residual biological activity may still 

exist (40). Bioassays using sensitive organisms are suggested to further evaluate this treatment 

method.  
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Table 5.4 Proposed structures of degradation products of CIP  

Retention Time Molecular 
Ion(M+H+) 

Proposed Molecule Structure  

 

9.81 

 

306 

 

 

10.1 

 

CIP 

332 

 

 

11.41 

 

364 

 

 

12.62 

 

362 

N

O

OH

N

NH

F
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14.3 

 

263 
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Figure 5.6 Degradation pathways of CIP by BioMnOx 
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Degradation products of BPA were analyzed by both LC/MS and GC/MS. To obtain the 

maximum amount of products, BioMnOx was totally dissolved by ascorbic acid and any products 

adsorbed were released into the solution. Silylation was also performed with the solid phase 

extract to improve the detection. Despite all these efforts, only one product, with an apparent 

molecular weight of 134, was found by both LC/MS and GC/MS. Silylation derivative of this 

product was not observed, indicating absence of reactive H in this species. The mass spectrum 

and proposed structure is given in Figure 5.7. The same degradation product was also reported in 

a δ-MnO2 system (41).  

 

Figure 5.7 Mass spectrum of BPA degradation product analyzed by GC/MS 

As proposed in Figure 5.8, BPA oxidation is initiated by transferring an electron to the oxide, 

forming a BPA radical. The unpaired electron can be delocalized by resonance, forming BPA 

radical 2. Further radical fragmentation via beta scission yields product m/z 134 (41). This 

product is likely to be less estrogenic due to loss of the phenolic group, a key structural feature 

for mimicking estrogen, and increase of polarity (42). 

RT=10.08min
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It is interesting to note that a yellow precipitate was observed to form as the oxidation 

progressed. The precipitate was probably formed via polymerization by radical coupling. Yet the 

nature and structure of such products remains unclear.  

 

Figure 5.8 Proposed degradation pathway of BPA by BioMnOx 

This is the first study that compares degradation products in biogenic and synthetic manganese 

oxide systems. Generally, fewer degradation products were observed in the BioMnOx system. 

Future research is needed to explain the preference of degradation pathways and different 

product distribution in the BioMnOx system.  

Conclusion 

Successful removal of CIP and BPA can be achieved in the BioMnOx system although 

degradation kinetics is generally slower than in synthetic MnO2 system. The lower oxidative 

reactivity may be attributed to a smaller surface area, larger particle size, lower AOS and 

blocking of reactive sites by organic residual. The pH condition was found to affect the oxidation 

kinetics significantly. Generally lower pH is favorable for the oxidative degradation. Metal 

cations inhibited the oxidation by competitively binding with the reactive surface sites. Humic 

acid can affect oxidative degradation via two countering effects: blocking of surface reactive 
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sites which reduces reactivity and binding inhibitory MnII ion released during the reaction which 

accelerates the reaction. Oxidative degradation of CIP by BioMnOx was mainly via N-dealkylation. 

BPA underwent a radical fragmentation and further complicated radical couplings, yielding an 

olefin product and polymerized precipitate. Generally, based on the proposed structure of 

degradation products, lower biological activity of the solution is expected after the treatment. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 

This thesis aimed to explore effective oxidation treatment methods for removing emerging 

contaminants from aqueous solution. Ciprofloxacin, a widely used fluoroquinolone antibiotic and 

bisphenol A, a known endocrine disrupter, were selected as the probe chemicals. Three types of 

oxidation treatment, anodic Fenton treatment (AFT), cryptomelane and its doped derivatives, and 

biogenic manganese oxides produced by L. discophora SS-1, were investigated.  

Degradation kinetics were discussed and modeled in each oxidation system. In the AFT system, 

removal of CIP was generally fast, with complete removal in minutes. However, previous well 

established kinetic models in AFT systems were found to be deficient in characterizing the 

kinetics. Since a fitted kinetic model is important for predicting the treatment efficiency and 

determining the treatment time, efforts were made to understand the kinetic deviation and 

develop a new model for improved fitting. It was found that the speciation distribution of CIP 

changed over the AFT process, since pH is self-optimized to an acidic condition, leading to a 

change in apparent reaction affinity toward the OH radicals. Reduced reaction affinity due to 

protonation has also been observed by others in ozonation and manganese oxide studies (1, 2). 

The AFT process was optimized at pH 3.2, a favorable condition for the Fenton reaction, and an 

optimal [H2O2]: [Fe2+] ratio was found between 10 and 15. In the cryptomelane and biogenic 

manganese oxide systems, it was found that the kinetics can be approximated by a pseudo-first 

order at the initial reaction stage. As the reaction progresses, due to the shift in the Mn reactive 

site distribution, the oxidation slows down and deviates from first order. Optimization studies 

indicated that lower pH is favorable for the oxidation. This is because the proton is participating 

in the oxidation and the oxidizing potential of the oxide surface increases at lower pH. It is 
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noteworthy that the pH effects on degradation kinetics may not be linear in manganese oxide 

systems at circum-neutral conditions. This result could be due to reaction affinity changes due to 

some complicating factors in the system, such as the chelating of organic residual in the 

BioMnOx.  

Degradation products were analyzed, and the mechanisms involved in each system were 

discussed. In the AFT system, CIP was attacked by OH radicals and both the quinolone ring core 

structure and the piperazine ring were susceptible to oxidation. Various degradation products 

were observed and the degradation pathways are summarized as: <1> hydroxylation and 

defluorination on the aromatic ring; <2> oxidative decarboxylation; and <3> oxidation on the 

piperazine ring and N-dealkylation. The OH radical is such a strong non-selective oxidant that by 

the end of AFT treatment, CIP and its degradation products were removed to below detection 

level. Therefore, it is expected that antibacterial activity of the solution was successfully treated. 

Selective oxidation takes place in the cryptomelane and BioMnOx systems. Only the piperazine 

ring of CIP, more specifically, the two N atoms on the ring, are the susceptible sites. Electron 

transfer from the N atom to reactive Mn(III/IV) center leads to formation of the iminium species 

which can undergo either hydroxylation or hydrolysis and dealkylation. The quinolone ring was 

found to be retained in the structure of the degradation products. Similar products were found in 

the BioMnOx system except for the difference in product distribution. The N-dealkylation 

pathway seems to be favored in the BioMnOx system. Degradation of BPA in the BioMnOx 

system also yields fewer products than in the synthetic manganese oxide system. Meanwhile, 

yellow precipitates were observed, which is likely due to polymerization.  

It should be noted that since manganese oxide is a selective oxidant, the treatment may leave 

the biologically functional groups unattacked, as seen in CIP degradation experiments, resulting 
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in a possible reduction of treatment efficiency. In addition, for biologically active contaminants, 

such as pharmaceuticals and EDCs, structure analysis is not sufficient to evaluate the treatment 

efficiency. Bioassays that target for the sensitive endpoints should be used for more thorough 

evaluation.  

Attention should also be paid to avoiding potential secondary pollution when designing a water 

treatment process. For example, the classic Fenton system generates ferric sludge that requires 

further treatment while the AFT system efficiently reduces waste generation by its self-

developed acidic condition. Precautions should be taken when using manganese oxides for 

treatment due to the potential release of Mn(II) during the redox reaction. Mn(II) oxidizing 

bacteria seem to open a prospective window for this application where Mn(II) oxidation and 

reoxidation can be coupled with the contaminant degradation. However, it is still very 

challenging to build a reliable bioreactor for water treatment based on current knowledge.  

The Mn(II) oxidation mechanism is still under active research and not well understood. Efforts 

were made in this study to provide some perspectives on Mn(II) oxidation in the L. discophora 

SS-1 system using biochemical approaches. Peak MOF activity was found to be in the early 

stationary phase and optimal Mn(II) concentration for MOF activity was between 75 and 125 

µM. The indirect enzymatic oxidation pathway via superoxide found in a marine bacterium does 

not seem to be involved here. The Mn(II) oxidation by MOF is sensitive to various chemical 

inhibitors that are likely to be present in the complicated wastewater matrix. A screening study 

revealed that MOF is sensitive to the presence of pyrophosphate, tetracycline and 

aminoglycoside antibiotics. While pyrophosphate may inhibit BioMnOx formation via trapping 

Mn(III) and limiting the accessibility of Mn(II) and Mn(III) to the enzyme site, the inhibition 

mechanisms of the antibiotics remains unclear. A redox reaction between antibiotics and 
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BioMnOx does not seem to be the major reason for the inhibition observed.  Further research that 

utilizes a reliable genetic system of L. discophora SS-1 will assist in understanding MOF 

properties and its mechanisms. 

Another challenge for making use of the Mn(II) oxidizing bacteria for water treatment is the 

lower reactivity of BioMnOx compared to its synthetic counterparts as observed in this and other 

studies (3). In addition, aging of BioMnOx may lead to changes in oxidative reactivity as well, 

raising another question regarding the reliability of the BioMnOx-bacteria system (4). Long-term 

real wastewater tests instead of batch experiments on Mn oxidizing bacteria and BioMnOx may 

advance our understanding of the potential application of this technology.   
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Appendix A 

Representative chromatograms of CIP degradation products 

 

 

Figure A.1. Total Ion chromatogram of CIP degradation products. Current delivery = 0.04 A; 

[H2O2]:[Fe2+] = 10:1; [CIP]0 = 55 µM; pH0 = 3.2; t =2.5 min. (A) pH0 =3.2  (B) pH0 = 6.2  
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Appendix B 

         

                

Figure B.1 A. Mn 3s spectra of OMS-2: (a) OMS-2; (b) 3% V/OMS-2; (c) 6% V/OMS-2; (d) 3% 

Mo/OMS-2; (e) 6% Mo/OMS-2; (f) 9% Mo/OMS-2; B. Representative fitting of Mn 3s spectrum 

(K-OMS-2) by Casa XPS 
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Appendix C 

 

 

Figure C.1 IR spectra of A. MoO3 and B. V2O5. 
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Figure C.2  Raman spectra of A. MoO3 and B. V2O5. 
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Appendix D 

 

 

 

Figure D.1 A. Response surface of degradation efficiency as a function of Ccip and pH, reaction 

time = 45min, [9% Mo/OMS-2] = 150mg/L; B. Response surface of degradation efficiency as a 

function of Ccip and reaction time, pH = 3, [9% Mo/OMS-2] = 150mg/L. 
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Appendix E 

Comparison of turbidity and LBB measurement 

 

Figure E.1 BioMnOx standard curve by turbidity measurement (OD600) 

 

Figure E.2 BioMnOx standard curve by LBB assay (ABS618) 
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Figure E.3 Correlation of turbidity and LBB assay measurement 
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