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As Moore’s law predicted, transistor scaling has continued unabated for more

than half a century, resulting in significant improvement in speed, efficiency,

and integration level. This has led to rapid growth of diverse computing and

communications technologies, including the Internet and mobile telephony.

Nevertheless, we still face the fundamental limit of noise from transistors and

passive components. This noise limit becomes more critical at higher frequen-

cies due to the decrease in intrinsic transistor gain as well as with voltage scal-

ing that accompanies the transistor scaling. On the other hand, insufficient

transistor gain and breakdown in silicon limits high-power signal generation

at sub-millimeter frequencies that is essential in many security and medical ap-

plications, including detection of concealed weapons and bio/molecular spec-

troscopy for drug detection and breath analysis for disease diagnosis.

To go beyond these limits, we propose a new circuit design methodology

inspired by nonlinear wave propagation. This method is closely related to in-

triguing phenomena in other disciplines of physics such as nonlinear optics,

fluid mechanics, and plasma physics. Based on this, in the first part of this

study, we propose a passive 20-GHz frequency divider for the first time imple-

mented in CMOS. This device has close to ideal noise performance with no DC

power consumption, which can potentially reduce overall system power and

phase noise in high-frequency synthesizers. Next, to achieve sensitivity toward



the thermal noise limit, we propose a 10-GHz CMOS noise-squeezing amplifier.

This amplifier enhances sensitivity of an input signal in one quadrature phase

by 2.5 dB at the expense of degrading the other quadrature component. Lastly,

we introduce an LC lattice to generate 2.7 Vp−p, 6 ps pulses in CMOS using con-

structive nonlinear wave interaction. The proposed lattice exhibits the sharpest

pulse width achieved for high-amplitude pulses (>1 V) in any CMOS processes.



BIOGRAPHICAL SKETCH

Wooram Lee received his B.Sc. and M.S. degrees in electrical engineering from

the Korea Advanced Institute of Science and Technology (KAIST) in 2001 and

2003, respectively, and is currently working towards his Ph.D degree at Cornell

University. He has held a summer internship at the IBM T. J. Watson Research

Center, NY, where he worked on a millimeter-wave frequency multiplier in a

90 nm SiGe process. Before joining Cornell, he was a research engineer at the

Electronics and Telecommunications Research Institute (ETRI), Korea, where he

worked on optical transceivers and links from 2003 to 2007. His research inter-

ests include high performance RF IC design exploiting nonlinear electronics for

low noise amplification and oscillation.

Mr. Lee received the IEEE Solid-State Circuits Predoctoral Fellowship for

2010-2011 and the Samsung Graduate Fellowship for 2007-2012. He was a re-

cipient of the Best Paper Award of the IEEE Radar Conference in 2009 and the

IEEE Workshop on Passive Microwave Circuits in 2010, and the Silver Medal at

the National Physics Competition in 1996

iii



To my Wife and my Mother

for their endless love, patience and support

and to my Son

who has brightened up my life

iv



ACKNOWLEDGEMENTS

As my five-year-long journey on the road to my PhD is nearing the end and

I look back time at Cornell, I realize how blessed I am to have experienced such

a great environment and such wonderful people. Ithaca has shown me in dif-

ferent form of natural beauty season by season, and Cornell has provided ev-

erything that I have needed for my studies. However, the greatest blessing that

I have here is that I have been able to interact with so many nice and bright

individuals. At times, they have challenged me and thereby helped me to take

one step further in my career, and at other times they have warmly encouraged

me to stand up when it felt like I had hit bottom.

I would like to thank Prof. Ehsan Afshari, my great teacher and role model.

His endless pursuit of creativity and excellence as well as his broad understand-

ing of seemingly everything from pure science to engineering have set a stan-

dard for me to reach in my life. In addition, he has always been supportive and

patient without losing his high expectations of my academic capacity. Without

his valuable inspiration and guidance, this thesis would not have been possible.

I would like to show my deep gratitude to Prof. Alyssa Apsel. I learned

every fundamental of analog circuits from her classes, which provided me with

a solid background for this thesis. Her technical feedback on my research was

essential to completing this thesis. She has been a friendly and warm advisor

with a great smile that I will never forget. It is also a great honor for me to

have had Prof. Clifford Pollock and Prof. Alexander Gaeta on my committee.

They helped me pursue interesting research that lies at the intersection of optics

and electronics. Their deep insight inspired me to carry my research beyond

electronics.

I would like to thank my friends at the UNIC, with whom I have spent most

v



of my time for the past five years. I appreciate Prof. Omeed Momeni, who

helped me build fundamental knowledge of circuit design and gave me valu-

able feedback on my research. I also want to thank Dr. Guansheng Li and Dr.

Yahya Tousi, who joined the UNIC in the same year and hopefully will leave

in the same year. We were like brothers and I could not have survived without

them from many tough tape-outs. I would also like to thank Dr. Georgios Lilis,

Muhammad Adnan, Ruonan Han, Jihyuck Park, and Erdal Yilmaz for helping

to make my experience at the UNIC so productive. I also thank our new mem-

bers, Hamidreza Aghasi, Vahnood Pourahmad, and Hamid Khatibi.

I offer many thanks also to my friends in the ECE. I especially appreciate Dr.

Rajeev Dokania, a master of Cadence, who saved me several times whenever

I struggled with Cadence. I would like to thank Dr. Xiao Wang, who always

challenged me intellectually; his energetic attitude towards his own research

encouraged me to work harder. I also appreciate Dr. Fan Yu, Dr. Silvia Zhang,

Dr. Mustansir Mukadam, Dr. Bo Xiang, Carlos Dorta, Wacek Godycki, and Bo

Sun for enriching my experience at the ECE.

I appreciate my Korean friends in the ECE. Dr. Sanghyun Lee and Dr. Jinsub

Kim, who helped make my life at Cornell a lot of fun. I also thank my best mate

at Cornell, Joonyoung Kwak, who has been always with me. I also appreci-

ate JuHyung Cho, YoonHo Lee, SeungYol Lee, Taeung Sung, Seun-Geun Yoon,

Eugene Hwang, and Sung-yoon Park.

Lastly, I owe my deepest gratitude to my wife, Hyeyon Yu. With her pres-

ence, my life has become splendid and full of joy and happiness. Due to her

support, I was able to focus solely on my research and successfully complete

this thesis. It was my great pleasure that my first son, Sejun, was born in Ithaca.

After his birth, I found even greater understanding of love and happiness. I

vi



would like to thank my Mom, who has supported me in a hard situation, pro-

vided me her unconditional love, and guided me in the right direction. I also

thank my proud brother, Woojin.

vii



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Bibliography 14

2 Fundamentals of Parametric Amplification 15
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Traveling-Wave Parametric Amplification . . . . . . . . . . . . . . 19

2.2.1 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Phase Matching Technique . . . . . . . . . . . . . . . . . . 28
2.2.3 Pump Loss Effect . . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliography 34

3 Distributed Parametric Resonator: A Passive CMOS Frequency Di-
vider 36
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Parametric Oscillator for Frequency Division . . . . . . . . . . . . 38

3.2.1 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Stability Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Comments on Phase Noise Performance . . . . . . . . . . . . . . . 47
3.4 Design and Measurement . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.1 Comparison with Digital Frequency Dividers . . . . . . . 60
3.5.2 Application in a Phase-Locked Loop . . . . . . . . . . . . . 61
3.5.3 Extension to Divide-by-4 Frequency Divider . . . . . . . . 61

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography 64

4 Low Noise Parametric Resonant Amplifier with Noise Squeezing 68
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Noise of a Degenerate Parametric Amplifier . . . . . . . . . . . . . 70

4.2.1 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . 70

viii



4.2.2 Pump Loss Effect . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 Resonant Parametric Amplifier . . . . . . . . . . . . . . . . . . . . 78

4.3.1 Review of Reflective Parametric Oscillator . . . . . . . . . 79
4.3.2 Regenerative Amplifier with Parametric Resonator . . . . 81
4.3.3 Analogy with a Conventional Regenerative Amplifier . . . 85
4.3.4 Squeezing Factor . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Design and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Bibliography 113

5 A Nonlinear Lattice for High-Amplitude Picosecond Pulse Generation
in CMOS 116
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2 Distributed Harmonic Generation Theory . . . . . . . . . . . . . . 118

5.2.1 Dispersion Effect . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 Nonlinear Lattice for Sharp Pulse Generation . . . . . . . . . . . . 127
5.4 Lattice Design in CMOS . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4.1 Passive Elements . . . . . . . . . . . . . . . . . . . . . . . . 132
5.4.2 Optimization and Simulation . . . . . . . . . . . . . . . . . 134
5.4.3 Distribution Network . . . . . . . . . . . . . . . . . . . . . 138

5.5 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.6.1 High-order Harmonics Consideration . . . . . . . . . . . . 148
5.6.2 Half-size Triangular Lattice . . . . . . . . . . . . . . . . . . 148

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Bibliography 152

6 Conclusion 155

ix



LIST OF TABLES

3.1 Comparison with prior art . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Comparison with prior art . . . . . . . . . . . . . . . . . . . . . . 147

x



LIST OF FIGURES

1.1 Noise of an RF frontend system consisting of a LNA, a mixer,
and an oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Recently-published CMOS LNA performance. . . . . . . . . . . . 2
1.3 Sub-millimeter and THz signal source application for (a) skin tu-

mor detection (red), (b) airport security, and (c) molecular spec-
troscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Recently-published Solid-State THz Source [6]. . . . . . . . . . . 6
1.5 Examples of nonlinear phenomena in (a) solitary wave in the sea

and (b) green light generation [10]. . . . . . . . . . . . . . . . . . . 7
1.6 1-D and 2-D nonlinear electrical medium consisting of voltage-

dependent capacitors and inductors. . . . . . . . . . . . . . . . . . 9
1.7 (a) a simple model of an accumulation-mode NMOS varactor

and (b) its physical structure. . . . . . . . . . . . . . . . . . . . . . 11

2.1 A swing as an example of degenerate parametric amplification.
The center of mass moves with an appropriate phase at twice the
swing frequency to swing higher. . . . . . . . . . . . . . . . . . . 16

2.2 (a) Pendulum model of a swing and (b) an LC resonator with
variable capacitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Voltage amplification in an LC resonator using a degenerate
parametric process where the pump at twice the resonance fre-
quency adds energy to or extracts energy from the signal. . . . . 18

2.4 Parametric amplification in an LC transmission line with varactors. 19
2.5 A uniform nonlinear transmission line for parametric amplification 20
2.6 Simulated varactor capacitance versus bias voltage in a 0.13 µm

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Calculated gain versus the initial phase difference between

pump and signal for different nonlinearity factors. (l=630 pH,
c0=250 fF, ω=10 GHz) . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 An intuitive model to explain the degenerate parametric ampli-
fication over a nonlinear transmission line. . . . . . . . . . . . . . 27

2.9 Dispersion relation of an artificial transmission line when pump
frequency (20 GHz) is comparable to the cut-off frequency (25
GHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10 Calculated gain versus the section number for different propaga-
tion constant mismatches between pump and signal. (l=630 pH,
c0=250 fF, ω=10 GHz) . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.11 Proposed phase matched line: Cc compensates the decrease in
the pump propagation velocity due to the dispersion . . . . . . . 31

2.12 The effect of the dispersion compensation capacitor, Cc, for phase
matching (ω = 10 GHz, n = 20, l = 630 pH, c0 = 250 fF, CC = 1.2 pF) 32

xi



2.13 Simulated in-phase and quadrature gain of traveling-wave para-
metric amplifier with and without the dispersion compensation
capacitor, Cc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Distributed resonator with two reflective ends and different
standing wave formation for pump and signal . . . . . . . . . . 38

3.2 Calculated output amplitude versus input amplitude: (a) the ef-
fect of loss represented by different quality factors at 10 GHz (b)
the effect of nonlinearity represented by C/V slope, b. ( fc=25
GHz, fin=20 GHz, Zo=50 Ω, Zout=50 Ω, n=4) . . . . . . . . . . . . . 42

3.3 Simulated phase noise for a input frequency of 20 GHz using
Spectre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Schematic of the frequency divider with buffer and control volt-
age for frequency tuning. . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Die photograph of the chip . . . . . . . . . . . . . . . . . . . . . . 50
3.6 Measured input matching for different control voltages from -0.4

V to 0.2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.7 Measured single-ended output spectrum for the input amplitude

of (a) Vin = 300 mV (< Vth) (b) Vin = 440 mV (� Vth) (c) Vin = 600
mV (> Vth) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Output amplitude at fin/2 versus input amplitude at fin . . . . . . 53
3.9 Simulated pump depletion ratio for investigation of the fre-

quency conversion efficiency . . . . . . . . . . . . . . . . . . . . . 54
3.10 Measured second and third harmonic suppression ratio at the

single-ended output . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.11 Measured output waveform for a 20-GHz input . . . . . . . . . . 56
3.12 Measured threshold versus input frequency for different control

voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.13 Measured phase noise for signal generator and frequency di-

vider output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.14 Extension to a divide-by-4 frequency divider . . . . . . . . . . . . 62

4.1 Observation of squeezed output noise by phase-sensitive ampli-
fication in a time and phase domain compared to linear amplifi-
cation: (a) input signal, (b) output signal through linear amplifi-
cation, and (c) output signal through phase-sensitive amplifica-
tion. To simplify the notations, the phase of the pump is shifted
by π/2. In (2.23) the signal has its maximum and minimum at
φ = 0 and φ = π/2, respectively. . . . . . . . . . . . . . . . . . . . . 73

4.2 Calculated squeezing factor versus (a) nonlinear factor for dif-
ferent transmission line loss, (b) initial phase difference between
pump and signal for different nonlinear factors, and (c) section
number for different nonlinear factors (l=630 pH, c0=250 fF,ω=10
GHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xii



4.3 Simulated pump loss effect on (a) gain and (b) squeezing fac-
tor versus section number for different pump losses (l=630 pH,
c0=250 fF, Qs=10, ω=10 GHz). . . . . . . . . . . . . . . . . . . . . . 77

4.4 Reflective distributed parametric oscillator and its standing
wave formation for signal and pump frequencies. . . . . . . . . . 79

4.5 Differential parametric resonant amplifier with output buffer. . . 80
4.6 Calculated (a) gain enhancement ratio and (b) noise reduction

ratio with respect to the phase difference for different pump am-
plitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7 (a) Amplification using a parametric resonator with a pump
level below the oscillation threshold (b) A conventional resonant
amplifier with a negative resistor. . . . . . . . . . . . . . . . . . . 86

4.8 Schematic of the pump generation block consisting of active
balun, frequency doubler, and buffer. . . . . . . . . . . . . . . . . 89

4.9 Accumulation-mode MOS varactor characteristic in a 65 nm pro-
cess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.10 Simulated frequency-doubled output of the pump generation
block versus input amplitude. . . . . . . . . . . . . . . . . . . . . 93

4.11 Calculated and simulated gain and squeezing factor versus sig-
nal phase in the proposed amplifier for a fixed pump amplitude
(500 mV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.12 Cadence simulation of gain versus frequency for different pump
amplitudes for (a) maximum gain and (b) minimum gain. . . . . 95

4.13 Cadence simulation of squeezing factor versus frequency for dif-
ferent pump amplitudes for (a) maximum gain and (b) minimum
gain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.14 Cadence simulation of noise squeezing effect for (a) zero pump
amplitude and (b) a pump amplitude of 500 mV. . . . . . . . . . . 97

4.15 Simulated noise histogram for (a) zero pump amplitude and (b)
a pump amplitude of 500 mV using Cadence. . . . . . . . . . . . 98

4.16 The fabricated amplifier in a 0.13-µm CMOS process. . . . . . . . 101
4.17 Measured and simulated S-parameters for different control volt-

ages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.18 Phase-sensitive gain measurement setup. . . . . . . . . . . . . . . 102
4.19 Measured and simulated phase-sensitive gain vs. signal phase. . 104
4.20 Measured and simulated in-phase and quadrature gain vs.

pump power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.21 Measured and simulated quadrature gain difference GI/GQ for

different control voltages. . . . . . . . . . . . . . . . . . . . . . . . 106
4.22 Measured and simulated phase-sensitive gain vs. frequency for

the in-phase and quadrature components compared to gain in
the absence of the pump. . . . . . . . . . . . . . . . . . . . . . . . 107

4.23 Measured and simulated NF in the absence of the pump. . . . . . 108
4.24 NF and noise gain measurement setup. . . . . . . . . . . . . . . . 108

xiii



4.25 Measured and simulated noise gain compared with the calcula-
tion using the results of Fig. 4.22. . . . . . . . . . . . . . . . . . . . 109

4.26 Measured and simulated input-referred noise normalized to Ni

for in-phase and quadrature compared with when the pump is off.110
4.27 Measured and simulated gain saturation characteristics with and

without the pump. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.28 Measured and simulated IIP3 with and without the pump (* are

the simulation results). . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1 Nonlinear transmission line for harmonic generation and pulse
sharpening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 (a) Distributed harmonic generation principle similar to (b) dis-
tributed amplification. . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Simulated 2nd and 3rd harmonic generation on the nonlinear
transmission line in comparison with the analysis. . . . . . . . . . 125

5.4 Proposed nonlinear LC lattice as a two-dimensional extension of
a nonlinear transmission line. . . . . . . . . . . . . . . . . . . . . . 126

5.5 Simulated voltage amplitude of different points of a 12×12 non-
linear lattice driven by a plane wave propagating from the left to
the right. The top, bottom, and right boundaries are terminated
with matched loads. . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.6 Simulated amplitude and phase response of the lattice compared
with the line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.7 Nonlinear constructive interference in a 12×12 nonlinear lattice. . 130
5.8 Simulated output spectrum for (a) the transmission line and (b)

the lattice, and time-domain response for (c) the transmission
line and (d) the lattice. . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.9 Varactor capacitance and quality factor vs. bias voltage . . . . . . 133
5.10 Quality factor of the employed inductor and varactor vs. frequency134
5.11 Lattice size optimization in (a) a frequency spectrum and (b) a

time domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.12 Output is connected to two symmetric adjacent nodes to the cen-

ter of the lattice to minimize the output loading. . . . . . . . . . . 137
5.13 Simulated boosting ratio and pulse width vs. input amplitude

for the 16 ×16 lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.14 Distribution network from input to the lattice. . . . . . . . . . . . 138
5.15 Simulated S-parameter of the distribution network. . . . . . . . . 139
5.16 Die photograph of the chip. . . . . . . . . . . . . . . . . . . . . . . 140
5.17 Experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.18 Measured loss of the output test setup and its model. . . . . . . . 141
5.19 Measured output waveforms (a) before and (b) after de-

embedding the loss of the measurement setup and (c) their fre-
quency spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

xiv



5.20 Measured output amplitude versus input amplitude for differ-
ent frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.21 Measured boosting ratio versus input amplitude for different
frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.22 Measured pulse width suppression versus input amplitude for
different frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.23 (a)Frequency and (b)time domain lattice output when we take
into account up to fourth harmonics and tenth harmonics. . . . . 149

5.24 A full lattice (a) can be half-sized by folding it diagonally as
shown in (b) due to diagonal symmetry without degrading the
performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.25 Amplitude profile in (a) a full-size lattice and (b) a half-size lat-
tice (we only plot the upper half even for a full-size lattice.) . . . 151

xv



CHAPTER 1

INTRODUCTION

1.1 Motivation

Ever since the first transistor was invented at Bell Laboratories in 1947, transis-

tors have become the basis of integrated circuits design. As Moore’s law pre-

dicted, transistor scaling in silicon has continued unabated for more than half a

century, and has resulted in significant improvement in speed, efficiency, and in-

tegration level. In 2011, for instance, Intel announced its 22 nm technology with

a 3-D transistor structure [1]. This 22-nm-process-based CPU was expected to

run 4000 times faster and with about 5000 times less energy than Intel’s first

microprocessor (the 4004), released in 1971. Along with the significant perfor-

mance improvement, the price per transistor has dropped by a factor of about

5000. Such transistor scaling has led to the rapid growth of diverse computing

and communications technologies.

Nevertheless, we still face fundamental performance limits that include

noise, power, and frequency in the integrated circuits. First, noise remains one

of the key challenges in many cutting-edge applications. For example, Fig. 1.1

shows how noise degrades the system performance in an RF-receiver front end.

In this system, the total noise generated from the entire receiver chain, mostly

caused by a low noise amplifier at the first stage, determines sensitivity. Shan-

non’s theorem in eq. (1.1) states that the minimum received signal power (sensi-

tivity) is determined by receiver noise power for a given bandwidth to achieve
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a required channel capacity [3].

C = B · log2(1 +
S
N

) (1.1)

where C is the channel capacity, B is the bandwidth of the channel, S is total

received signal power over bandwidth, and N is total noise power over band-

width. Here, the receiver noise can be represented by input-referred noise de-

fined as the total output noise divided by the entire signal gain [2].

Still, it is very challenging to improve noise performance in a CMOS process

due to excess transistor noise (e.g., channel noise and flicker noise) as well as

high loss of passive elements. Fig. 1.2 reports recently-published CMOS LNA

performance. As operation frequency approaches transistor cut-off frequency

fT , the noise figure becomes more degraded due to higher loss of passive ele-

ments, mainly caused by skin effect and substrate coupling, along with reduced

transistor gain. Therefore, this noise limit becomes more critical at higher fre-

quencies.

On the other hand, the phase noise of an oscillator makes a ”skirt” around

its ideal output signal, represented as a delta function in the frequency domain,

as shown in Fig. 1.1. An adjacent interferer mixed with the ”skirt” of the LO

can fall on a weak IF signal from the desired channel. In other words, phase

noise determines frequency selectivity, the minimum frequency spacing with

adjacent channels in an RF frontend system. Phase noise L(∆ω) can be predicted

from the semi-empirical model, also known as the Lesson-Culter phase noise

model [4, 5], as follows,

L(∆ω) = 10 · log
[
2FkT

Ps
· [1 + (

ω0

2Q∆ω
)2](1 +

∆ω1/ f 3

|∆ω|
)
]
, (1.2)
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(a) (b) (c)

Figure 1.3: Sub-millimeter and THz signal source application for (a) skin
tumor detection (red), (b) airport security, and (c) molecular
spectroscopy.

where F is a device’s excess noise factor, k is Boltzmann’s constant, T is absolute

temperature, Ps is the average power dissipated in the tank, Q is the effective

quality factor including all loadings, ω0 is oscillation frequency, and ∆ω is offset

from the carrier. Equation (1.2) indicates that the phase noise is a strong function

of quality factor Q and excess noise factor F. However, both parameters Q and

F do not have much room to improve further in a CMOS process. For instance,

the excess noise factor increases even more due to hot electrons and the velocity

saturation effects in short-channel devices. In addition, scaling down the supply

voltage, which comes with transistor scaling, limits the maximum Ps, thereby

making improvement more difficult.

Next, generating high-power signals in sub-millimeter frequencies for sil-

icon remains challenging due to insufficient transistor gain and breakdowns

along with lossy passive components. As shown in Fig. 1.3, high-power signal

generation in sub-millimeter frequencies is essential for many security and med-
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ical applications, including detection of concealed weapons and bio/molecular

spectroscopy for drug detection and breath analysis for disease diagnosis. For

security and medical applications, sub-millimeter frequency has advantages

over X-rays because it provides excellent penetration properties and high reso-

lution with minimal health risks due to its non-ionizing characteristics. More-

over, due to the the wealth of molecular resonances in this band, sub-millimeter

and THz radar signal sources have led to new radar science applications for

detecting and sensing particles, chemical compositions, molecular structures,

bio-particles, and bacteria detection as well as aiding in characterizing the cold

(10-20K) dust found in the interstellar medium in the Milky Way.

Fig. 1.4 shows the maximum power that can be generated from an electrical

or an optical source versus frequency, based on recent publications [6]. Elec-

tronic technology using frequency multipliers, resonant tunneling diodes, and

Impatts and Gunn oscillators, is progressing upward, while optical technology

using quantum cascade lasers is progressing downward from higher frequen-

cies. As shown in Fig. 1.4, it is clear that the maximum generation power of

electronic technology is degraded for higher frequencies, which is due to para-

sitic circuit elements like series resistance and shunt capacitance as well as elec-

tron transport limited by transit and scattering time. For optical approaches, as

the generation frequency becomes lower, the generation power also decreases

due to the parametric relationship. A significant gap exists between these two

approaches around THz frequencies; thus, a new solution is required to bridge

the gap.

In addition, transistor scaling in silicon has almost reached the end of its

physical dimensions in approaching atomic and quantum mechanical bound-
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aries, and the fabrication techniques are also hitting their physical and economic

limits. Reducing gate dielectric thickness and channel length increases tunnel-

ing and leakage current, and the small device size requires lithography-based

fabrication techniques that can provide a resolution below the wavelength of

light. Along with device scaling, scaling down the power supply causes several

critical issues in conventional analog circuit design [7]
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(a) (b)

Figure 1.5: Examples of nonlinear phenomena in (a) solitary wave in the
sea and (b) green light generation [10].

1.2 Proposed Solution

To overcome these limits, we propose a new circuit design methodology in-

spired by wave propagation in a nonlinear medium. In conventional CMOS

circuit designs, transistors, which convert energy from DC to RF, are mainly

used for signal amplification, generation, and processing. Such an energy con-

version process in transistors is restricted by excess noise and parasitics, as dis-

cussed in the previous section. Instead of relying on transistors, in the proposed

methodology, energy transfer among different frequencies through nonlinear

wave interaction will be exploited.

We can find out several examples of nonlinear phenomena in different fields

with a similar concept to the proposed methods. Fig. 1.5(a) shows solitary wave

generation in the sea. Because nonlinearity compensates the dispersion that a

sea wave tends to spread out due to gravity and surface tension, the sea wave

can propagate like a particle with a well-defined shape. This phenomenon was

initially discovered in 1834 by Scott Russell, and is know as “solitary wave”

7



or “soliton” [8], a discovery that has been significant in physics, electronics,

biology, and fiber optics. For instance, using a nonlinear electrical medium de-

scribed in Fig. 1.6, an electrical soliton was demonstrated to generate a 2.5-

ps pulse in a standard CMOS process beyond the cut-off frequency of transis-

tors [9].

The second example is a green light generation from the injection of red light

in silicon exploiting the third order harmonic generation enhanced by slow-

light pulses in a photonic crystal waveguide, as shown in Fig. 1.5(b) [10]. Be-

cause an optical gain medium is rarely available in silicon at the wavelength of

green light; thus, a nonlinear optical material is exploited to move energy at the

wavelength of input red light into that of green light. Here, a nonlinear optical

material means that the response of a material system, represented as induced

polarization P̃(t), depends on the strength of an applied optical field strength

Ẽ(t) in a nonlinear manner. Hence, the optical response can be expressed as a

power series of an applied electric field given by

P̃(t) = ε0[χ(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + ...] (1.3)

The third order harmonic generation mainly results from the P̃(3)(t) = ε0χ
(3)Ẽ3(t)

term in eqn. (1.3). In addition to harmonic generation, in nonlinear optics, para-

metric processes are also studied such as sum-and-difference frequency gener-

ation and optical parametric amplification and oscillation, when lights at differ-

ent wavelengths propagate together in a nonlinear optical material. These op-

tical nonlinear phenomena have provided important insights for the proposed

research in extending the concepts to CMOS circuit design.

As a platform of our circuit implementation of various nonlinear processes

in the proposed research, a nonlinear propagation medium has been designed
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Figure 1.6: 1-D and 2-D nonlinear electrical medium consisting of voltage-
dependent capacitors and inductors.

in electrical circuits as shown in Fig. 1.6. This medium is formed with voltage-

dependent capacitors (varactors) along with inductors in one-dimensional or

two-dimensional space. An applied voltage across a varactor generates electric

current at new frequencies in a nonlinear manner, as an applied electric field

induces polarization at new frequencies in a nonlinear optical material.

Lattices can be characterized in terms of the characteristic impedance Z0 and

the propagation constant β. For instance, in a one-dimensional low-pass trans-

mission line as shown in Fig. 1.6(a), the characteristic impedance and propa-

gation constant are given by Z0 =
√

L/C and β =
√

LC, respectively. By defin-

ing these two parameters at different spaces and conditions, electrical nonlinear

medium can be easily engineered to implement the desired propagation and

reflection properties. For instance, we have built a new electrical nonlinear

medium simply by using a differential structure with additional capacitors to

9



achieve phase-matching, in which waves at different frequencies should prop-

agate at the same velocities for the maximum nonlinear process. This struc-

ture enables perfect phase matching in the presence of dispersion by increasing

propagation velocity at higher frequencies, whereas perfect phase matching in

optics is still challenging.

As a nonlinear source in the proposed medium, voltage-dependent capaci-

tors can be implemented with accumulation-mode MOS varactors or Schottky

diodes fabricated in a standard CMOS process. Fig. 1.7 shows a model of an

accumulation-mode NMOS varactor along with its physical structure. The var-

actor capacitance is a series combination of Cox and Cvar, where Cox is oxide ca-

pacitance and Cvar is depletion capacitance under the gate oxide that changes

with the bias voltage. In a positive bias voltage, electrons are accumulated un-

der the gate for the maximum Cvar, while a negative bias enlarges a depletion

region and decreases Cvar. Because the variable capacitance is based on physical

movement of electrons, MOS varactors can operate at very high frequencies. For

instance, in our recent work, we demonstrated a dynamic cut-off frequency of

around 870 GHz for a 480-GHz frequency doubler design in a standard 65-nm

CMOS process [11].

Based on a nonlinear electrical medium with voltage-dependent capacitors,

this study focuses primarily on different nonlinear phenomena including para-

metric oscillation and amplification, noise squeezing, and harmonic generation

to design high-performance integrated circuits in the following areas:

I. A Passive CMOS Frequency Divider Using a Distributed Parametric Res-

onator

II. A Low Noise Parametric Resonant Amplifier with Noise Squeezing

10
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Figure 1.7: (a) a simple model of an accumulation-mode NMOS varactor
and (b) its physical structure.

III. A Nonlinear Lattice for High-amplitude Picosecond Pulse Generation in

CMOS.

These research contributions prove that the proposed approach not only results

in superior noise and frequency performance, but also adds new dimensions to

the circuit design such as phase-sensitive gain and noise squeezing. We describe

our contributions regarding each of these topics in the following sections.

1.3 Organization

In Chapter 2, we provide an overview of the fundamentals of parametric am-

plification in different physical systems. Then, we extend the concept to trav-

eling wave parametric amplification in a nonlinear transmission line, and theo-

retically analyze the principle starting from Kirchhoff’s law to nonlinear wave

equations and coupled-mode equations. We also discuss the performance lim-

its of parametric amplification due to dispersion and loss effect in a standard
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CMOS technology. To compensate for the dispersion, we propose a new method

based on a differential nonlinear transmission line with common-mode capaci-

tors.

In Chapter 3, we introduce the concept of parametric oscillation to design

the first passive 20 GHz CMOS frequency divider, which consists of two paral-

lel nonlinear transmission lines using MOS-varactors, forming a reflective dis-

tributed resonator. In this circuit, the oscillation at half the input frequency is

sustained by energy injection from an input signal through parametric ampli-

fication. Its operational principle is the electronic analogue to that of the op-

tical parametric oscillator. The distributed structure enables a stable start-up

condition and a broad range of frequency tunability. Moreover, the reflective

resonator minimizes the number of components and forms a standing wave,

which suppresses the pump signal at the output while maintaining a large out-

put signal amplitude. In addition to zero static power consumption, the pro-

posed frequency divider shows better phase noise performance even at high

offset frequencies, since it is free of the channel noise from the transistors.

In Chapter 4, we propose a parametric amplifier based on the distributed

nonlinear resonator, and develop the theory of classical noise squeezing in the

proposed system. The distributed nonlinear resonator operates as a regenera-

tive amplifier by supplying pump amplitude below the oscillation threshold.

As a result, the amplifier achieves a high close-loop gain using a less-than-unity

open-loop gain. An important property of the proposed amplifier is its phase-

sensitive gain, resulting in noise squeezing. One of the quadrature input noise

components, e.g., out-of-phase, is suppressed when the input noise consists of

two quadrature components: in-phase and out-of-phase relative to the pump

12



signal. This noise squeezing reduces the amplifier output noise by almost 3

dB compared with the phase-insensitive amplifier with the same gain. In other

words, while a conventional amplifier increases the input noise of both quadra-

tures, the noise-squeezing amplifier increases the noise of one quadrature and,

at the same time, decreases the other one. To the best of our knowledge, our

work is the first demonstration of noise squeezing for a low-noise amplifier in

a CMOS process. In the measurement, we demonstrate that sensitivity for an

in-phase component is improved by 2.5 dB after noise squeezing with a gain of

21 dB at 8.75 GHz in a standard 0.13-µm CMOS process, nearly approaching the

ideal noise limit. For the quadrature, the sensitivity is degraded by 6.4 dB, with

a gain of 12 dB, respectively.

In Chapter 5, we demonstrate high-amplitude picosecond generation

method that goes beyond the cut-off frequency of transistors using a nonlin-

ear lattice. When two waves collide orthogonally in the nonlinear lattice, they

combine in a nonlinear fashion: The amplitude of the outgoing wave is greater

than the sum of the incoming waves with much higher frequency components.

As a result, we have implemented an integrated nonlinear lattice in a standard

0.13-µm CMOS process to demonstrate 2.7-Vpp, 6.3-ps pulses from a 22-GHz si-

nusoidal input. To the best of our knowledge, regarding the high-amplitude

pulses (>1 V), this work shows the sharpest pulse in a CMOS process. We

also show that the proposed structure exploits spatial power combining, higher

cut-off frequency, and two-dimensional nonlinear interference to significantly

enhance both the amplitude and pulse width, compared with results using a

one-dimensional nonlinear transmission line.
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CHAPTER 2

FUNDAMENTALS OF PARAMETRIC AMPLIFICATION

Parametric amplification has been actively studied in various fields such as

optics, quantum mechanics, plasma physics, and electronics [1–4]. Paramet-

ric amplification is based on nonlinear interaction between signal and pump,

which results in signal gain through energy transfer. In the 1960s, considerable

attention had been paid to electrical parametric amplification due to its low

noise performance before the transistor technology dominated the integrated

circuit design [5]. Recently, several interesting works have revisited parametric

amplification for CMOS technology. Discrete-time parametric amplification has

been implemented with a MOS varactor to achieve low power and low noise

performance for low sampling frequencies [6–8]. The parametric process was

also exploited for frequency conversion of a continuous signal [9–11].

In this chapter, we mainly discuss parametric amplification in a nonlinear

transmission line in a standard CMOS process. This chapter is organized as fol-

lows. Section 2.1 is an overview of parametric amplification in an LC resonator

and a nonlinear transmission line. Section 2.2 theoretically analyzes traveling

wave parametric amplification and discusses the dispersion effect, phase match-

ing techniques, and the pump loss effect.

2.1 Overview

Parametric amplification can be explained with a swing as shown in Fig. 2.1.

There are two ways to swing higher. The first method is to push the swing

with an external force at the resonance frequency of the swing. Alternatively,
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Figure 2.1: A swing as an example of degenerate parametric amplification.
The center of mass moves with an appropriate phase at twice
the swing frequency to swing higher.

x
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Figure 2.2: (a) Pendulum model of a swing and (b) an LC resonator with
variable capacitor.

the person on the swing can move up and down at twice the swing frequency.

In this method, the relative phase of the body movement and swing is critical:

The person should lower the center of mass on the downswing and raise it on

the upswing. This example shows that we can pump energy into a system to

amplify a signal by changing one of the system parameters (e.g., effective length

of the swing).

When the pump frequency is exactly twice the signal frequency, this pro-
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cess is called degenerate parametric amplification. The swing can be modeled as a

simple pendulum as shown in Fig. 2.2(a). Under the assumption of small dis-

placement x, the governing differential equation of the pendulum can be written

as
d2x(t)

dt2 = −
g
l

x(t) = −ω2
swingx(t), (2.1)

where x is the swing amplitude, g is the acceleration of gravity, l is the length

of the pendulum, and ωswing is the natural oscillation frequency of the swing. A

similar harmonic oscillation occurs in an LC resonator as shown in Fig. 2.2(b).

In this case, the governing equation is

d2V(t)
dt2 = −

1
LC

V(t) = −ω2
LCV(t), (2.2)

where L and C are the inductance and the capacitance of the resonator, ωLC is

the resonance frequency, and V is the voltage across the resonator. Equations

(2.1) and (2.2) show an intriguing duality between the pendulum and the LC

resonator by switching x with V and l with C. This analogue implies that the

voltage V can be amplified by changing the capacitance C (e.g., by changing the

distance d between two capacitor plates) at twice the resonance frequency with

an appropriate phase.

Figure 2.3 shows the parametric amplification inside an LC resonator. As-

sume that initially the circuit is oscillating at its natural frequency. When the

voltage is maximum, we decreases the capacitance by increasing d. Due to

charge conversation, this results in increasing the voltage. It is noteworthy

that pulling the two capacitor plates requires pumping energy into the system.

When the voltage is zero, we return the capacitor plates to their original posi-

tion. Since the voltage and charge of the capacitor are zero, no energy is required

in this phase. By repeating the same process, we can keep increasing the voltage
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Figure 2.3: Voltage amplification in an LC resonator using a degenerate
parametric process where the pump at twice the resonance fre-
quency adds energy to or extracts energy from the signal.

magnitude by transferring the energy from pump to the signal. As illustrated in

Fig. 2.3, the frequency of the capacitance change is twice the signal frequency.

More importantly, the phase relation between the pump and signal is vital for

amplification. If the signal phase is shifted by 90◦ (shown in dotted line in Fig.

2.3), the oscillation is damped out and the signal energy is transferred to the

pump.
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Figure 2.4: Parametric amplification in an LC transmission line with var-
actors.

2.2 Traveling-Wave Parametric Amplification

The amplification process in an LC resonator can be extended to an LC trans-

mission line, as shown in Fig. 2.4. The wave equation of an LC transmission

line using phasor notation is

d2V(z)
dz2 = −ω2LCV(z) = −β2V(z), (2.3)

where V(z) is the voltage on the line with respect to the ground, L and C are unit

length inductance and capacitance, and β is the propagation constant. We can

see an interesting duality between (2.3) and (2.2) by switching β with ωLC and

length z with time t. Therefore, without rigorous derivation, it is straightforward

to predict amplification over distance (instead of time) along the transmission

line. To do so, we need to periodically perturb the propagation constant β (in-

stead of the resonance frequency) at different points on the line (instead of at

different times). In other words, Figure 2.3 also explains traveling-wave para-

metric amplification by replacing time with distance on the horizontal axis. To

change β periodically along the transmission line, we use voltage-dependent ca-

pacitors and apply a large amplitude pump at twice the signal frequency, which

co-propagates with the signal. Depending on an initial phase between the pump
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Figure 2.5: A uniform nonlinear transmission line for parametric amplifi-
cation

and the signal, the parametric process can amplify or attenuate the signal.

2.2.1 Theoretical Analysis

Assume a uniform artificial transmission line consisting of inductors and

voltage-dependent (and hence nonlinear) capacitors shown in Fig. 2.5. By ap-

plying KCL at node k, whose voltage with respect to ground is Vk, and applying

KVL across the two inductors connected to this node, one can easily show the

voltages of adjacent nodes on this transmission line are related via:

l
d
dt

[
c(Vk)

dVk

dt

]
= Vk+1 − 2Vk + Vk−1. (2.4)

The nonlinear capacitor is approximated with a first-order function:

c(V) = c0(1 + bV) (2.5)

where c0 is the capacitance at zero bias and b is the C/V slope. This first-

order approximation is validated around zero-bias voltage in a conventional

accumulation-mode NMOS varactor as shown in Fig. 2.6.

For now, we neglect the loss of the transmission line. Equation (2.4) can
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be written as a partial differential equation (2.6) by approximating the node

voltage as a continuous variable over distance: Vk = V(kh) ' V(x). Here, h is

the spacing between two adjacent nodes and k is the section number. We also

introduce a unit length inductance, L = l/h, and a unit length capacitance, C =

c/h. For simplicity, we assume that the dispersion effect caused by discreetness

is negligible, due to a small h compared to the signal wavelength.

Vk+1 − 2Vk + Vk−1

h2 =

[
(Vk+1 − Vk)

h
−

(Vk − Vk−1)
h

]
1
h

'
∂2V
∂x2 = L

∂

∂t

[
C(V)

∂V
∂t

]
(2.6)

Next, pump and signal are applied to the left end of the transmission line,
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and the pump frequency (ωp = 2ω) is set to be twice the signal frequency (ω).

By inserting V = Vs + Vp and (2.5) into (2.6), equation (2.6) becomes:

∂2(Vs + Vp)
∂x2 = LC0

∂2(Vs + Vp)
∂t2 + LC0b

∂2(Vs · Vp)
∂t2 +

LC0b
2

[
∂2(Vs · Vs)

∂t2 +
∂2(Vp · Vp)

∂t2

]
(2.7)

where Vs and Vp are signal and pump voltages, respectively. The first term on

the right corresponds to the linear wave propagation, and the second term rep-

resents the nonlinear coupling between pump and signal, which results in the

parametric amplification. The third term on the right corresponds to the second-

order harmonic generation (SHG) for signal and pump. We assume the signal

amplitude is so small that the SHG for the signal is negligible, and that the SHG

for the pump is sufficiently suppressed since the cut-off frequency of the trans-

mission line is set to be lower than the second harmonic of the pump frequency.

Under these assumptions, we simplify equation (2.7) as:

∂2(Vs + Vp)
∂x2 = LC0

∂2(Vs + Vp)
∂t2 + LC0b

∂2(Vs · Vp)
∂t2 . (2.8)

After equation (2.8) is rearranged at a signal frequency and transmission line

loss αs is included, we can obtain

∂2Vs

∂x2 = LC0
∂2Vs

∂t2 + LC0b
∂2(Vs · Vp)

∂t2 + 2
√

LC0αs
∂Vs

∂t
(2.9)

where

αs =
1
2

(
GZ0 +

R
Z0

)
(2.10)

and L, C, G, and R are unit length inductance, capacitance, parasitic conduc-

tance, and parasitic resistance, respectively. Z0 is the characteristic impedance

defined by
√

L/C0. αs is the transmission line loss for the signal frequency.
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From coupled-mode theory [3, 12, 13], the signal can be written as:

Vs(x, t) = Vs(x)e jωt + V∗s (x)e− jωt (2.11)

Vs(0, t) = As cos(ωt + φ) (2.12)

where Vs(x) = A(x)e− jβx, V∗s (x) = A∗(x)e jβx, β is the signal propagation constant,

and φ is the initial phase difference between signal and pump at x=0. Here, “∗”

denotes the complex conjugate. A(x) and A∗(x) are slowly varying functions over

x which means ∂A/∂x � βA.

Assume that the pump is a sinusoidal function at a frequency of ωp = 2ω.

Then, the pump can be written as:

Vp(x, t) = Ap(x) cos(ωpt − βpx) (2.13)

=
1
2

Ap(x)
[
e j(ωpt−βp x) + e− j(ωpt−βp x)

]
(2.14)

where Ap(x) is the amplitude of the pump, which is a slowly varying function

over x, and βp is the pump propagation constant.

By substituting (2.11) and (2.14) into (2.9) and by approximating β as β '

ω
√

LC0 (small dispersion assumption) and βp as βp = 2β − ∆β (the dispersion

might not be negligible for the pump, which is at twice the input frequency), we

derive the active coupled-mode equations for A(x) and A∗(x) as:

∂A
∂x

= −
jβbAp

4
A∗e j∆βx − αsA (2.15)

∂A∗

∂x
=

jβbA∗p
4

Ae− j∆βx − αsA∗ (2.16)

For now, Ap is assumed to be constant over x to obtain an analytic solution

of (2.15) and (2.16). This assumption means that we neglect the pump loss in

the transmission line and the transferred pump energy to the signal frequency.
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Under this assumption, the general solution for (2.15) and (2.16) is:

A = e(−αs+ j∆β/2)x(A1esx + A2e−sx) (2.17)

where

s =

√(
βbAp

4

)2

−

(
∆β

2

)2

(2.18)

and A1 and A2 are constants over x.

By applying the boundary condition of (2.12) to (2.15), the complete solution

is obtained as:

Vs(x, t) = Ase−αs x [C1 cos(ωt − βx) + S 1 sin(ωt − βx)
]

(2.19)

where

C1(x, φ) = cosh(s0x) cos φ − sinh(s0x) sin φ (2.20)

S 1(x, φ) = sinh(s0x) cos φ − cosh(s0x) sin φ (2.21)

and s0 = βbAp/4 is the first term on the right side of (2.18). It is noteworthy that

in (2.19) we have assumed no dispersion for the pump (∆β = 0). At the end of

this section, we will introduce a method to compensate the dispersion for the

pump, validating this assumption.

From (2.19), the parametric gain is:

G(x) =
|Vs(x)|

As
= e−αs x

√
cosh(2s0x) − sinh(2s0x) sin 2φ (2.22)

For the maximum and minimum gains, the signal is exponentially growing

or decaying over x:

G(x) =


e(s0−αs)x for φ = −π4 (max.)

e−(s0+αs)x for φ = π
4 (min.)

(2.23)
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Eq. (2.22) can be converted into the gain equation for the section number, k,

of the discrete transmission line by inserting L = l/h, C0 = c0/h, G = g/h, R = r/h,

and x = kh where h is the spacing between two adjacent LC sections. l, c0, g, and

r are inductance, average varactor capacitance, conductance, and resistance for

one LC section, respectively. Using

s0x =
bAp

4
· ω

√
(

l
h

)(
c0

h
) · kh =

bApω
√

lc0

4
· k (2.24)

αsx =
1
2

(
gZ0 +

r
Z0

)
· k, (2.25)

the parametric gain for the k−section nonlinear transmission line is presented

by

Gk = G(kh) = e−α̃sk
√

cosh(2s̃0k) − sinh(2s̃0k) sin 2φ, (2.26)

where

s̃0 =
bApω

√
lc0

4
(2.27)

α̃s =
1
2

(
gZ0 +

r
Z0

)
(2.28)

Fig. 2.7 is the plot of calculated parametric gain for 20 LC sections based on

(2.26) to show the effect of initial phase differences between pump and signal

for different nonlinear factors, defined by bAp. The input and pump frequen-

cies are 10 GHz and 20 GHz, respectively. The cut-off frequency, defined by

ωc = 2/
√

lc0, is set to be 25 GHz and the characteristic impedance is 50 Ω. We

assume that the quality factor of the transmission line for a signal frequency is

10, which corresponds to α̃s = 0.04/section. As the nonlinear factor increases,

the gain plot shows a higher amplification and attenuation depending on the

phase difference. The phase difference between the maximum and minimum is

π/2, which clearly shows the phase-sensitive gain for quadrature signals.
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Note that the exponent, s0, in (2.23) is proportional to the propagation con-

stant, β, as well as the varactor C/V slope and the pump amplitude. This is

because the increase in the propagation constant is equivalent to the increase in

the effective transmission line length. However, the increase in the propagation

constant also lowers the cut-off frequency and decreases the pump amplitude.

Therefore, the propagation constant should be carefully selected.

The parametric amplification on the transmission line can be intuitively ex-

plained using the distributed mixing principle illustrated in Fig. 2.8. As shown

in this figure, the input signal at ω interacts with the pump at 2ω through the

varactor nonlinearity, generating harmonics at 3ω (= ω + 2ω) and ω (= 2ω − ω).
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Figure 2.8: An intuitive model to explain the degenerate parametric am-
plification over a nonlinear transmission line.

The cut-off frequency of the line is selected between 2ω and 3ω so that 3ω and

higher-order harmonics are suppressed. The harmonic component at ω has the

same frequency as the input, which can be added constructively or destructively

to the signal depending on the phase. This means that the energy can be trans-

ferred from pump to signal or vice versa. Since this process occurs at every LC

section of the line, we get an exponential gain or attenuation as a function of

section number in a long transmission line.
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2.2.2 Phase Matching Technique

When the pump and the signal propagate along the nonlinear transmission line,

they should exhibit the same propagation delay (tp = ts in Fig. 2.8) to maintain

their initial phase condition. To satisfy this condition, the pump and the signal

should be phase-matched: 
ωp = 2ωs

βp = 2βs,
(2.29)

where ωp and ωs are the pump and signal frequencies, respectively, and βp and

βs are the pump and signal propagation constants, respectively.

However, it is impossible to meet these conditions in a homogeneous dis-

crete transmission line due to dispersion. This is especially the case since the

cut-off frequency is close to the pump frequency. For a discrete, homogeneous

transmission line, the dispersion relation is given by [14]:

ω = ωc sin(
β

2
), (2.30)

where ωc is the cut-off frequency of the transmission line defined by ωc =

2/
√

LC.

As shown in Fig. 2.9, for frequencies closer to the cut-off frequency, the slope

of the dispersion plot (i.e., phase velocity) decreases. This results in a phase

mismatch of ∆β between the signal and the pump. Unfortunately, we cannot

increase the cut-off frequency to alleviate the dispersion, since a higher cut-off

frequency corresponds to lower β, which translates to lower gain according to

(2.23). Fig. 2.10 shows how the propagation constant mismatch degrades the

parametric gain. In addition to the drop in the exponential constant in (2.18),

an even more serious effect comes from accumulating the phase mismatch due
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to differences in the propagation constant. A small phase mismatch is accumu-

lated over multiple sections to reach a certain amount of phase difference be-

tween pump and signal, causing attenuation instead of amplification and lead-

ing to the curve of the gain plot having a limited maximum gain over the section

number. This phase-mismatch effect can be also shown in eqs. (2.15) and (2.16)

as exp( j∆βx) term in the left-hand side continuously changes the phase relation

between pump (Ap) and signal (A).

In optics, birefringence property of propagation medium, which provides

different refractive index for different polarization, is used to resolve this prob-
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lem [15]. On the other hand, for isotropic materials, quasi-phase matching tech-

nique was proposed by changing polarity of the nonlinearity periodically over

the propagation distance [16]. This technique can be easily explained using eqs.

(2.15) and (2.16). When a nonlinear coefficient b has a sinusoidal spatial varia-

tion over x with a period of 2π/∆β, b can be written as b = b0
e j∆βx+e− j∆βx

2 . Inserting

this into eqs. (2.15) and (2.16) results in

∂A
∂x

= −
jβb0Ap

8
A∗ −

jβb0Ap

8
A∗e j2∆βx − αsA (2.31)

∂A∗

∂x
=

jβb0A∗p
8

A +
jβb0A∗p

8
Ae− j2∆βx − αsA∗. (2.32)

Then, the left-hand side of eqns. (2.31) and (2.32) has a phase-matched pump-

signal interaction in the first term, which can keep contributing to signal gain
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Figure 2.11: Proposed phase matched line: Cc compensates the decrease in
the pump propagation velocity due to the dispersion

regardless of phase-mismatched part in the second term. However, it is chal-

lenging to apply this method to an electrical nonlinear medium since the spatial

variation of the nonlinearity reduces the effective nonlinearity, which signifi-

cantly degrades the performance in a highly lossy environment.

Here, we propose a simpler but effective solution based on two parallel non-

linear transmission lines with dispersion compensation capacitors as shown in Fig.

2.11. In this scheme, the signal is applied differentially to two parallel lines

while the pump is a common-mode signal. For differential signals, the net av-

erage capacitance is C0 due to the virtual ground. However, the net average

capacitance for the pump drops to C0 in series with (Cc/2) due to the disper-

sion compensation capacitor. This decreases the pump propagation delay with-

out changing the signal propagation, canceling the dispersion of the nonlinear

transmission line. Fig. 2.12 shows the effect of proposed phase matching on

parametric amplification using Spectre in Cadence.
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2.2.3 Pump Loss Effect

The previous sections examined the signal gain in the absence of pump attenu-

ation for an analytical solution. However, pump loss is critical since the signal

gain is an exponential function of the pump amplitude. We simulate the gain

of the traveling-wave parametric amplifier depending on the presence of dis-

persion compensation capacitor Cc as shown in Fig. 2.13. For this simulation,

we use real models of varactors and inductors in a 0.13-µm CMOS process. The

signal and pump frequencies are 10 GHz and 20 GHz, respectively. The cut-off

frequency of the transmission line is 25 GHz, and the common-mode pump am-

plitude is 500 mV. The quality factors of the transmission line are 11.3 and 10 at

the signal and pump frequencies, respectively. Although the proposed disper-
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sion compensation improves the parametric gain, the maximum in-phase gain

is only 4.3 dB after 16 sections. This shows that a simple traveling-wave design

is not efficient for parametric amplification in terms of gain and chip area, es-

pecially in CMOS, where low quality factor of inductors and capacitors results

in high attenuation for both signal and pump. For instance, if the pump power

falls below a certain level and the loss per unit length is higher than the gain ex-

ponent (parameter S in (2.23)), overall the structure shows attenuation instead

of amplification.
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CHAPTER 3

DISTRIBUTED PARAMETRIC RESONATOR: A PASSIVE CMOS

FREQUENCY DIVIDER

3.1 Introduction

The frequency divider is an essential block in phase-locked loops (PLLs) and

frequency synthesizers. The design of the frequency divider block in any system

is critical, since it consumes a large portion of the overall system power and it

is one of the key contributors to the phase noise. The design of the frequency

divider becomes even more challenging at high frequencies due to the limited

speed of digital gates in a conventional digital frequency divider [1]. At these

frequencies an injection-locked frequency divider has been a good candidate

due to its high speed and low power consumption [2–4]. Although there have

been several works to further minimize the power consumption of the injection-

locked frequency divider, the use of transistors for sustaining oscillation limits

these efforts. Moreover, the channel noise caused by transistors degrades the

output phase noise at a large offset frequency or near the edge of the locking

range [5–8].

To overcome these limits, we propose to use parametric oscillator, which is a

harmonic oscillator sustained by the parametric amplification. The oscillation

frequency in the parametric oscillator is synchronized to one of the subharmon-

ics of the pump signal. This phenomenon can be exploited to make a frequency

divider. There have recently been a few works on parametric frequency dividers

on printed circuit boards (PCB). However, the operation frequency is limited up

to 2 GHz and it is non-integrable in a CMOS process [11–13].
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In this chapter, we use the concept of parametric oscillation to design the

first passive 20 GHz CMOS frequency divider. It consists of two parallel non-

linear transmission lines using MOS-varactors, forming a reflective distributed

resonator. Its operation principle is the electronic analogue to that of the op-

tical parametric oscillator [14], [15]. This distributed structure enables a stable

start-up condition and a broad range of frequency tunability. Moreover, the

reflective resonator minimizes the number of components and forms a stand-

ing wave, which suppresses the pump signal at the output while maintaining

a large output signal amplitude. In addition to zero static power consumption,

the proposed frequency divider shows better phase noise performance even at

high offset frequencies since it does not have the channel noise from the transis-

tors.

The rest of the chapter is organized as follows. Section 3.2.1 discusses the

theoretical analysis of parametric oscillation, the standing wave formation of

the reflective resonator, and a unique input matching characteristic. Section

3.3 discusses the phase noise performance and compares it with the injection-

locked frequency divider. Section 3.4 summarizes the design procedure and the

measurement results. Finally, section 3.5 compares the proposed divider with

other dividers with no static power consumption and its applications.
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3.2 Parametric Oscillator for Frequency Division

3.2.1 Theoretical Analysis

Parametric oscillation occurs when the parametric amplification compensates

the loss of a resonator at the resonance frequency. Here, we use this concept to

demonstrate a frequency divider by considering the pump as the input signal.

Fig. 3.1 shows the structure of the proposed parametric oscillator. It consists

of two transmission lines with four phase-matched LC sections that are tied at

both ends. Oscillation starts from the ambient thermal noise of the resonator
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when the pump is strong enough to compensate the loss. Any arbitrary thermal

noise pair on the differential transmission lines can be represented as the sum

of common-mode and differential components. However, only differential com-

ponent grows by traveling back and forth between two reflective ends through

the degenerate parametric amplification since the phase match is achieved as

shown in Fig. 2.11. On the other hand, the common-mode component is sup-

pressed due to the resonator loss. The amplitude of the differential component

will increase up to the point where the gain and the loss are equal due to the gain

saturation. The gain saturation occurs through pump depletion which means that

the pump level is depleted due to the large energy flow from the pump to the

signal frequency.

In order to calculate the steady-state output amplitude, we start with the

coupled-mode equations (2.15) and (2.16) in section 2.2 for φ = π/2. After

adding the transmission line loss and the pump depletion in these equations,

the coupled-mode equations can be modified to:

∂A
∂x

= −αsA +
βbAp

4
A∗ (3.1)

∂A∗

∂x
= −αsA∗ +

βbA∗p
4

A (3.2)

∂Ap

∂x
= −αpAp − βb|A|2 + κApin (3.3)

where αs and αp are the attenuation constants of the transmission line at sig-

nal and pump frequencies, respectively. Apin is the input amplitude into each

transmission line of the resonator. κApin represents the increase in the pump am-

plitude inside the resonator due to the input signal. The significance of this term

will be seen for the standing wave resonator when reflections are taken into ac-

count, which will be presented in (3.10). In equation (3.3), the second term on

the right corresponds to the pump depletion. This term can be easily obtained
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by adding the second harmonic generation of the signal in (2.7) to (2.8).

For the steady state solution where gain and loss are equal, so that the signal

amplitude is constant over the propagation, ∂A/∂x, ∂A∗/∂x, ∂Ap/∂x are set to be

zero. In this case, combining (3.1) and (3.2) results in:

|A|steady = 0 or Ap|steady =
4αs

βb
. (3.4)

Non-zero output condition leads us to choose Ap|steady = 4αs/βb in (3.4) and to

insert this into (3.3), which can be rearranged as1:

|A|2steady =
1
βb

(
κApin − αpAp|steady

)
(3.5)

=
κ2

4αsαp
Apin|

2
th

(
Apin

Apin|th
− 1

)
for Apin > Apin|th , (3.6)

where a threshold input pump amplitude is given by:

Apin|th =
αp

κ
Ap|steady. (3.7)

At the resonator end where the pump is injected, the relation between mth

and (m + 1)th round-tripped pump amplitudes, Apm and Apm+1 , is:

Apm+1 = Apm exp(−2αpd) + Apin (3.8)

where 2d is the round-trip length of the resonator. In the steady state,

Apm+1=Apm=Ap|steady, Ap|steady linearly increases with Apin for Apin ≤ Apin|th by in-

serting |A|steady = 0 into (3.3). However, Ap|steady becomes constant with Apin once

a parametric oscillation starts for Apin > Apin|th. Hence, beyond an oscillation

threshold, equation (4.23) becomes:

Apin|th = Ap|steady(1 − exp(−2αpd)). (3.9)

1The steady state solution turns out to be unconditionally stable from nonlinear stability
theory.
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Combining (3.7) and (3.9), κ is reduced to:

κ =
αp

(1 − exp(−2αpd))
. (3.10)

From (3.6) and (3.10), the steady state amplitude of the output signal be-

comes:

|A|steady =
Apin|th

2(1 − exp(−2αpd))

√
αp

αs

√
Apin

Apin|th
− 1 (3.11)

where

Apin|th =
4αs(1 − exp(−2αpd))

βb
=

2(1 − exp(−2αpd))
Qsb

. (3.12)

Note that |A|steady is a steady-state amplitude of a traveling wave in one di-

rection, and that the measured voltage at output node is the superposition of

forward and backward waves, forming a standing wave. Therefore, the output

voltage measured at xout is γ|A|steady where γ ' 2| sin(βxout)| for a resonator length

of d = λs/2.

So far, we assumed that pump is perfectly reflected back at both ends of the

resonator. However, we connect the external signal source with a finite output

impedance, Zout, at one end of the resonator to supply a pump. This finite out-

put impedance makes the input-side reflection coefficient, Γ1, smaller than 1,

thereby resulting in additional loss of pump. As a result we need to introduce

an effective pump loss, αpe, to replace αp which solely comes from the transmis-

sion line loss. The pump round-trip loss including the additional loss due to

imperfect reflection can be expressed by:

exp(−2αped) = Γ1 exp(−2αpd) (3.13)

αpe = αp −
ln Γ1

2d
, (3.14)
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Figure 3.2: Calculated output amplitude versus input amplitude: (a) the
effect of loss represented by different quality factors at 10 GHz
(b) the effect of nonlinearity represented by C/V slope, b.
( fc=25 GHz, fin=20 GHz, Zo=50 Ω, Zout=50 Ω, n=4)

where Γ1 is the input-side reflection coefficient given by:

Γ1 =
2Zout − Z0

2Zout + Z0
(3.15)

and Z0 is the characteristic impedance of each transmission line. It is noted that

the differential oscillation signal does not see the signal source impedance due

to the virtual ground.

Fig. 3.2 shows the calculated output amplitude versus the input amplitude

based on (3.11) after replacing αp with αpe. To investigate the effect of the loss

and the nonlinearity, we change the quality factor of the transmission line and

varactor C/V slope, b. As expected from (3.12), the oscillation threshold de-

creases as the resonator loss decreases and the nonlinearity of the varactor in-

creases. However, the slope of the output amplitude versus input amplitude

varies in a different way: while lower loss still gives higher slope, the high non-

linearity results in lower slope due to the higher pump depletion. In a real sys-

tem, additional losses from vias and interconnects decrease the effective qual-
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ity factor of the line, and the parasitic capacitance around transmission lines

decreases the nonlinearity. These non-ideal effects require careful attention to

layout.

The lower part of Fig. 3.1 shows different standing wave formations inside

the resonator for pump and signal. The differential signal sees the resonator

ends as shorts due to the virtual ground, while the common-mode pump sees

the ends as open nodes. With the reflection at both ends, the signal forms a λs/2

standing wave with minimum amplitudes at both ends. On the other hand, the

pump forms a λp standing wave with maximum amplitudes at both ends. The

higher modes for pump and signal are suppressed by the cut-off frequency of

the resonator.

The oscillation frequency is determined by the standing wave formula:

d = nh =
λs

2
=
π

β
=

1
2 fosc

√
(l/h)(c0/h)

(3.16)

where d is the physical length of the transmission line, h is the spacing between

two adjacent nodes, and n is the number of sections of the resonator. The varac-

tor capacitance per unit section is approximated by its average value, c0. Equa-

tion (3.16) can be rearranged to:

fosc =
1

2n
√

lc0
. (3.17)

The loop gain at a given oscillation frequency in a resonator with n sections is

roughly:

Gloop = exp(
bApωosc

√
lc0

4
· 2n) = exp(

πbAp

2
). (3.18)

This equation shows that the loop gain at a fixed oscillation frequency does

not depend on the number of sections. In our design, we set n to be four for
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small footprint and reasonable attenuation especially for the pump signal. An-

other reason for having four sections is that we can exploit the different stand-

ing wave formations for pump and signal to suppress the pump frequency at

the output.

There are three possible nodes for taking the signal out of the resonator as

shown in Fig. 3.1. “A” provides the maximum amplitude for both pump and

signal, and the pump signal will be filtered out only if the output signal is taken

differentially from the two transmission lines. However, we need an extra low-

pass filter for a single-ended output at “A.” On the other hand, “B” or “B̂” can

suppress the pump even for the single-ended output thanks to the standing-

wave formation. The down side is a lower signal amplitude compared to “A.”

“B” is more appropriate for the suppression of the pump than “B̂,” because the

amplitude imbalance between forward and backward waves due to the loss is

smaller in this node. In addition, the external connection for the output adds a

parastic conductance to the resonator, resulting in extra loss. The power dissi-

pation caused by the additional conductance is Pdiss = 1/2GV2
p, which is propor-

tional to the square of the pump amplitude. Therefore, connecting the output

port at “A” leads to the maximum loss in the pump amplitude, and it raises the

threshold voltage and decreases the amplitude of the signal.

The remaining challenge is to inject pump power into the resonator effec-

tively. For pump, the resonator is simply two parallel open-ended transmission

lines with a length of λp. The input impedance looking into one end of the res-
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onator is [27]:

Zin =
Z0

2
1

tanh(αp + jβp)λp
(3.19)

'
Z0

2

 αpλp − j cos(βpλp) sin(βpλp)

(αpλp cos(βpλp))2 + sin2(βpλp)


ω=ωp

(3.20)

=
Z0

2αpλp
=

QpZ0

2π
(3.21)

where Z0 is the characteristic impedance of each transmission line and Qp is the

resonator quality factor at the pump frequency. The input impedance becomes

purely real at the resonance frequency and its harmonics. By selecting the right

value for the characteristic impedance for a given quality factor, one can achieve

the input matching without an additional matching network. Considering that

Qp in our design is around 7 in 0.13 µm CMOS process, Z0 of 50 Ω provides a

good input match to 50 Ω source according to (3.21).

3.2.2 Stability Test

In the previous section, it was assumed that eqs.(3.1)−(3.3) have a stable steady-

state solution of eq.(3.11). This section will validate this stability assump-

tion [24]. First, we introduce new variables P and Q to obtain fixed points in

eqs.(3.1)−(3.3), where A = P + jQ. We also set S = βbAp/4 and E = βκbApin/4 for

simplification. Then, equations (3.1)−(3.3) can be rewritten as

∂P
∂x

= −αsP + S P (3.22)

∂Q
∂x

= −αsQ − S Q (3.23)

∂S
∂x

= −αpS − (
βb
2

)2(P2 + Q2) + E. (3.24)

By putting ∂P/∂x = ∂Q/∂x = ∂S /∂x = 0, we can obtain two fixed points given by

(P,Q, S )1 = (0, 0, E/αp) for E < αsαp
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(P,Q, S )2 = ( 2
βb

√
E − αsαp, 0, αs) for E > αsαp.

Next, when a small perturbation (δ1, δ2, δ3) is applied around (P,Q, S )1,

eqs.(3.22)−(3.24) can be rewritten and approximated to the first order of δ as

∂δ1

∂x
�

(
E − αpαs

αp

)
δ1 (3.25)

∂δ2

∂x
� −

(
E
αp

+ αs

)
δ2 (3.26)

∂δ3

∂x
� −αpδ3 (3.27)

The left-hand side of eqs. (3.25)−(3.27) shows ∂δ1/∂x < 0, ∂δ2/∂x < 0, and

∂δ3/∂x < 0 for E < αsαp, which proves that (P,Q, S )1 is stable. For the other

fixed point (P,Q, S )2, we can take the same step as we did for (P,Q, S )1, which

gives

∂δ1

∂x
�

2
βb

√
E − αpαsδ3 (3.28)

∂δ2

∂x
� −2αsδ2 < 0 (3.29)

∂δ3

∂x
� −αpδ3 − βb

√
E − αpαsδ1. (3.30)

Combining eqs. (3.28) and (3.30) results in

∂2δ3

∂x2 + αp
∂δ3

∂x
+ 2(E − αsαp)δ3 = 0. (3.31)

Equation (3.31) exhibits a damped oscillation for αp > 0 and E > αsαp, which is

stable. we can also obtain a damped oscillation equation for δ1.

Therefore, when E < αsαp, the fixed points at (P,Q, S )1 = (0, 0, E/αp) is stable.

This means that there is no output at half of an input frequency. As E increases
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higher than αpαs, (P,Q, S )1 loses stability and a new stable fixed point appears

at (P,Q, S )2 = ( 2
βb

√
E − αsαp, 0, αs), corresponding to parametric oscillation.

3.3 Comments on Phase Noise Performance

One of the main advantages of our design is a better phase noise performance

than the conventional injection-locked frequency dividers. In an LC oscillator

where transistors are used for sustaining oscillation, the channel noise makes

the main contribution to the phase noise [22]. Although the phase noise of the

injection-locked frequency divider tracks that of the injected signal at low offset

frequencies, the excess noise from the divider degrades the phase noise back

to the level of a free-running LC oscillator at higher offset frequencies [6]. Our

design does not have any transistors, thus guaranteeing that it has a low phase

noise floor [23].

The other interesting point is that our frequency divider has high spectral

purity because of its phase selection property as shown in equation (2.23). Start-

up noise such as a thermal noise grows by the degenerate parametric amplifi-

cation for a pump power over the threshold. The degenerate parametric ampli-

fication picks a limited noise component to be amplified in terms of phase and

frequency. This is because the degenerate parametric amplification works only

for ω = ωp/2 and a specific initial phase difference between signal and pump as

we discussed in the section 2.2.

Fig. 3.3 shows the simulated phase noise performance using Spectre in a 0.13

µm CMOS process. The phase noise difference between input and output is 6

dB over simulation frequencies, which agrees with an ideal value, 20log10N dB,
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Figure 3.3: Simulated phase noise for a input frequency of 20 GHz using
Spectre

for a divide-by-N frequency divider [25].

3.4 Design and Measurement

We design a 20 GHz frequency divider based on the parametric oscillator in a

0.13 µm CMOS process. First, we set the cut-off frequency of the resonator for

maximum gain as discussed in Section 2.2. In our design, this optimum value

is 25 GHz that determines the product of the inductance and capacitance. The

number of sections is set to four as discussed before. These values for the section

number and the cut-off frequency guarantee a resonant frequency of 10 GHz.

Then, the dispersion compensation capacitor is determined by phase-matching
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Figure 3.4: Schematic of the frequency divider with buffer and control
voltage for frequency tuning.

condition between the pump and the signal. The phase matching can be verified

by making sure that the resonance frequency of S 11 is exactly at 20 GHz. Without

the dispersion compensation, S 11 has a resonance frequency lower than 20 GHz.

Finally, depending on the magnitude of the input matching, the characteristic

impedance can be selected which gives the ratio of inductance and capacitance.

A buffer is added to the output node as shown in Fig. 3.4. Note that the buffer

is only needed for testing purposes using a 50 Ω load. The Cgs of the buffer

transistor adds parasitic capacitance to the nonlinear transmission line, thereby

decreasing the nonlinearity of an LC section where the output node is placed.

However, the use of multiple LC sections alleviates this effect. Moreover, the

buffer capacitance does not affect the operation frequency since it is absorbed

into the transmission line. There are two output ports, which give us the option

to have single-ended or differential outputs. The oscillation frequency can be

tuned by controlling Vcon through the bias tee at the input port.
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Figure 3.5: Die photograph of the chip

We use ground-shielded spiral inductors with quality factors of around

20 at 20 GHz. In this design, the inductors are around 510pH and occupy

100µm × 100µm. Accumulation-mode NMOS varactors are used as voltage-

dependent capacitors. The ratio of minimum-to-maximum capacitances is

around 3.5, which represents the nonlinearity of the system. The varactors use

the multi-finger gate structure to optimize the nonlinearity and the quality fac-

tor simultaneously [28]. For dispersion compensation capacitors, vertical natu-

ral capacitors(VNCAP) are used due to their high quality factor [29].

Fig. 3.5 shows the chip photograph implemented in a 0.13 µm CMOS pro-

cess. The core area of the die is 0.75 × 0.32 mm2, not including pads. As the

design frequency increases, the sizes of the inductors are scaled down and the

whole structure can be made of two parallel transmission lines without spiral
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Figure 3.6: Measured input matching for different control voltages from
-0.4 V to 0.2 V

inductors. In other words, this frequency divider can easily fit in the entire sys-

tem layout with great flexibility.

The frequency divider is measured using an Agilent E8257D signal genera-

tor for the pump signal and an Agilent 8564EC spectrum analyzer. To measure

the input matching, an Agilent E8364B network analyzer is used. We de-embed

the loss of all cables, adapters, bias tees, and probes for a more accurate mea-

surement. The bias current for the buffer is set to be 8 mA from a 1.2 V power

supply.

S 11 is measured to investigate the input matching while changing the control

voltage. As shown in Fig. 3.6, our frequency divider has a reasonable matching

performance of S 11 < −10dB over 18 GHz to 22 GHz.
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Figure 3.7: Measured single-ended output spectrum for the input ampli-
tude of (a) Vin = 300 mV (< Vth) (b) Vin = 440 mV (� Vth) (c) Vin =
600 mV (> Vth)

Next, the single-ended output spectrum is measured against the input

(pump) amplitude as shown in Fig. 3.7. For an input amplitude below the

threshold, the output spectrum only shows the input frequency, fin. However,

as the input amplitude increases beyond the threshold, the fin/2 component ap-

pears and grows with the input amplitude. Note that the output spectrum at the

input frequency stays almost constant as the input amplitude increases, which

means that most of the input energy over the threshold is transferred to the fin/2
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Figure 3.8: Output amplitude at fin/2 versus input amplitude at fin

component. This can be also predicted by equation (3.4). In addition, the pro-

posed standing wave formation leads to the suppression of the input frequency

at the single-ended output. A 3 fin/2 component is also generated by nonlinear

coupling between fin/2 and fin components. The harmonics higher than 3 fin/2

are negligible due to the resonator cut-off frequency.

The output amplitude versus the input amplitude is simulated and mea-

sured in Fig. 3.8. The measured input threshold is around 400 mV, while the

simulated value is 300 mV. The slope of the output amplitude versus input am-

plitude in the measurement is higher than that of the simulation. This difference

can be explained by Fig. 3.2(b). The drop in the nonlinearity caused by the par-

asitic capacitances (which are linear) increases both the threshold and the slope

simultaneously, while some additional loss also contributes to the increase in
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Figure 3.9: Simulated pump depletion ratio for investigation of the fre-
quency conversion efficiency

the threshold. The output amplitude increases with the input amplitude over

the threshold following a square-root relation as explained in (3.11). The 600

mV input amplitude results in a 300 mV single-ended output amplitude (600

mV differential output) due to its high frequency conversion efficiency as well

as the standing wave formation. The calculation result is also plotted in Fig. 3.8

to verify the analysis in section III. All the parameters for calculation, including

quality factors and varactor nonlinearity, are extracted from the Cadence sim-

ulation and the simulated transfer function of the output buffer is included for

accurate comparison.

The efficiency of the frequency conversion is simulated in terms of pump

depletion ratio, which is defined as the ratio of the drop in the pump power to
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Figure 3.10: Measured second and third harmonic suppression ratio at the
single-ended output

the injected pump power after parametric oscillation. Pump depletion occurs

because parametric oscillation results in power transfer from the pump to the

signal. As the power is transferred, the level of the pump amplitude on the

resonator decreases. Therefore, the higher pump depletion means more effi-

cient frequency conversion. However, there are some backconversion processes

which drop the efficiency. The sufficiently grown signal at fin/2 generates the

second harmonic at fin, which returns the power back to the pump. Besides the

backconversion by the second harmonic generation, the interaction between sig-

nal and pump generates 3 fin/2 component. Then, the interaction between 3 fin/2

and fin/2 components increases the fin component through nondegenerate para-
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Figure 3.11: Measured output waveform for a 20-GHz input

metric amplification [31]. In Cadence simulation, the pump depletion is found

to be 45 % as shown in Fig. 3.9. To exclude the nonlinearity of the buffer, the

pump amplitude is simulated before the buffer. The harmonic suppression ratio

at the single-ended output is also measured as shown in Fig. 3.10. The suppres-

sion ratio for the second ( fin) and third (3 fin/2) harmonics are more than 16 dB

due to the standing wave formation and the resonator cut-off frequency that is

lower than 3 fin/2. Transient signals are also measured for single-ended and dif-

ferential outputs using an Agilent 86100C digital communication analyzer with

80-GHz bandwidth as shown in Fig. 3.11.

We measure the threshold voltages over input frequencies for different con-

trol voltages to find the tunability as shown in Fig. 3.12. This result demon-
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Figure 3.12: Measured threshold versus input frequency for different con-
trol voltages

strates a wide tuning range from 18.5 GHz to 23.5 GHz (24%). As the control

voltage departs from zero, the C/V slope of the varactor reduces due to the

change of the varactor operation regime as shown in Fig. 2.6. As a result, the

effective nonlinearity decreases, thereby increasing the threshold voltage. In

addition, the dispersion compensation capacitor is still fixed with the change of

the varactor, resulting in some phase mismatch. This is another reason for the

increased threshold voltage. The increased threshold voltage might limit the

use of the proposed frequency divider for low power applications. However,

this can be addressed by optimizing the resonator structure and/or increasing

the nonlinearity of the varactor: A standing wave formation can be exploited to

maximize the quality factor of the resonator by spatially manipulating the char-

acteristic impedance [27]. In addition, we can increase the varactor nonlinearity
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by increasing Cox since the varactor capacitance is the series combination of the

Cox and voltage-dependent channel capacitance [28]. The CMOS process scaling

can result in this desired increase.

For a fixed varactor bias, the operation bandwidth is relatively small, which

is another limiting factor of the proposed frequency divider. Basically, the pro-

posed structure is a wave-based oscillator and the round-trip phase is equal to

2π at the oscillation frequency which is half of the pump frequency. When this

frequency is the resonant frequency of the structure, the oscillation signal and

its nonlinear interaction term with the pump should have the same phase to

maintain the round-trip phase of 2π. This leads to φ = π/2 in (2.23), which gives

the maximum parametric gain. However, when the divide-by-two frequency is

deviated from the resonant frequency, the pump selects a signal phase for os-

cillation that is different from the nonlinear interaction term. The vector sum

of the signal and the nonlinear interaction term results in a certain phase shift

to satisfy the round-trip phase condition. The deviation from φ = π/2 leads to

lower parametric gain, thereby increasing the threshold.

Fig. 3.13 shows the measured phase noise. The phase noise difference be-

tween input and output is around 6 dB over a wide range of the offset frequency,

which agrees with the simulation result shown in Fig. 3.3. Above 1-MHz off-

set frequency, the noise floor of the spectrum analyzer becomes dominant and

the measured phase noise difference decreases. Table 3.1 shows the compari-

son with state of the art of CMOS frequency dividers at an input frequency of

around 20 GHz. As depicted in Table 3.1, our proposed frequency divider shows

the comparable performance while it consumes the zero static power consump-

tion.
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Figure 3.13: Measured phase noise for signal generator and frequency di-
vider output

3.5 Discussion

In this section, we provide comparisons between the proposed frequency di-

vider and a digital frequency divider with no static power consumption in terms

of the operation speed. Additionally, we discuss the application of the proposed

frequency divider in a phase locked loop (PLL) and its advantages over other

types of the frequency dividers. We also discuss the possibility of extending the

proposed concept to design a divide-by-4 frequency divider.
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Table 3.1: Comparison with prior art

Frequency
(GHz)

PDC

(mW)
Operation
Range (%)

Pin j

(dBm)
Chip
Area(mm2)

Technology
(CMOS)

[34] 20.8-22.6 0.39 8.3 3 0.27 0.18-µm
CMOS

[35] 19.5-22 6.4* 18.1 4 0.03 90-nm
CMOS

[36] 19.3-23.4 1.5 19.5 10 0.23 0.13-µm
CMOS

[37] 20.5-26 1.5 23.6 0 0.22 0.18-µm
CMOS

This work 20-21.5 0 7.2 8.6 0.26 0.13-µm
CMOS

PDC only includes the core power consumption. * includes the power for
quadrature generation.

3.5.1 Comparison with Digital Frequency Dividers

Digital frequency dividers can be also implemented using dynamic latches to

achieve no static power consumption. However, the dynamic latch has a long

time constant due to the switching resistance, 1/gds, and parasitic capacitance

of the MOSFET, requiring a rail-to-rail input to minimize the resistance [30].

This is why “current-mode logic” (CML) latches are commonly used for high-

frequency frequency division above 10 GHz despite their high power consump-

tion [31]. Therefore, the proposed frequency divider can operate at higher fre-

quencies than a dynamic latch frequency divider although both of them have no

static power consumption. In addition, the fan-out capacitance, which comes

from the buffer or the next stage, can slow down the digital frequency di-

vider [30]. On the other hand, the proposed structure can absorb the fan-out ca-

pacitances to the transmission line structure to increase the operation frequency.

However, the digital frequency divider, which does not use the resonator struc-
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ture, provides broader operation bandwidth than the proposed structure.

3.5.2 Application in a Phase-Locked Loop

Comparing to Miller frequency dividers and injection-locked frequency di-

viders, which support a high frequency division, the proposed frequency di-

vider has simpler structure with no static power consumption. This is critical

since the overall power consumption of a PLL is dominated by the first few di-

viders above 10 GHz [1]. Moreover, the absence of active devices alleviates the

phase noise contribution in a PLL, caused by the flicker noise and white noise

floor [32].

The distributed structure of the proposed frequency divider is also advanta-

geous for its use in a PLL to cover a large area of clock distribution network.

Wiring differential transmission lines in a clock distribution network can be

turned into the proposed frequency divider simply by placing the varactors

with appropriate spacing and by connecting both ends. However, the narrow

input bandwidth for a fixed varactor bias should be improved for reliable oper-

ation while the proposed frequency divider can be still useful as one of the first

few frequency dividers in a PLL [33].

3.5.3 Extension to Divide-by-4 Frequency Divider

A divide-by-4 frequency division can be achieved simply by opening one end

of the resonator as shown in Fig. 3.14. The open end does not change the pump

standing wave formation. However, it only allows λs/4 and 3λs/4 modes for the
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Figure 3.14: Extension to a divide-by-4 frequency divider

signal, not λs/2 (higher modes than 3λs/4 are suppressed by cut-off frequency

of the resonator). Therefore, 1/4ωp and 3/4ωp are generated by the parametric

oscillation. Since the input frequency is not twice of the generated frequencies,

parametric amplification process is no longer degenerate. The non-degenerate

parametric gain is smaller than the degenerate case especially for small number

of sections, resulting in a higher threshold than a divide-by-2 frequency divider.
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3.6 Conclusion

We propose the first passive CMOS frequency divider based on the parametric

amplification process using a reflective distributed resonator. The input sig-

nal injected into the resonator transfers the energy into a divide-by-2 frequency

component through degenerate parametric amplification. By traveling back and

forth in the resonator, the signal grows and finally achieves the steady state os-

cillation at a divide-by-2 frequency. Not having any active devices to sustain os-

cillation has two important advantages: no static power consumption and low

phase noise. Furthermore, the reflective distributed resonator forms different

standing waves for signal and pump, which is exploited to suppress the pump

at the output as well as to increase the signal amplitude. Finally, the proposed

divider occupies more chip area compared to the conventional designs unless it

is implemented as part of the clock distribution network.
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CHAPTER 4

LOW NOISE PARAMETRIC RESONANT AMPLIFIER WITH NOISE

SQUEEZING

4.1 Introduction

In an RF receiver front end, a low noise amplifier (LNA) is a critical block

since it mainly determines the noise figure (NF) of the entire system. There

have been many previous efforts to minimize the NF of LNAs in a CMOS pro-

cess. A source-degenerated CMOS LNA is one of the most prevalent structures,

which achieves input matching without a real resistor and exploits an input res-

onant network for signal amplification [1, 2]. A gm−boosted LNA and positive

feedback LNA are also attractive modifications of a conventional common-gate

CMOS LNA [3, 4]. A sub-0.2-dB NF CMOS LNA was implemented with a non-

50 Ω signal-source impedance [5].

A more exotic approach is to use parametric amplification, in which the gain

comes from nonlinear interaction between signal and pump without using tran-

sistors. Parametric amplification was actively studied in the 1960s before the

transistor technology dominated the integrated circuit design [6]. However, the

parametric amplification cannot provide enough gain for high frequency signals

due to low quality factors of inductors and capacitors on a CMOS process.

In this chapter, we propose a parametric amplifier based on a distributed

nonlinear resonator to overcome the limitation of low quality factor elements.

The distributed nonlinear resonator operates as a regenerative amplifier by sup-

plying the pump amplitude below the oscillation threshold. As a result, the am-
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plifier achieves a high close-loop gain using a less-than-unity open-loop gain [7].

An important property of the proposed amplifier is its phase-sensitive gain, re-

sulting in noise squeezing. One of the quadrature input noise components, e.g.,

out-of-phase, is suppressed when the input noise consists of two quadrature

components: in-phase and out-of-phase relative to the pump signal. This noise

squeezing reduces the amplifier output noise by almost 3 dB compared to the

phase-insensitive amplifier with the same gain. In other words, while a con-

ventional amplifier increases the input noise of both quadratures, the noise-

squeezing amplifier increases the noise of one quadrature and, at the same time,

decreases the other one.

The noise squeezing was originally studied in optics for precise measure-

ments constrained by the uncertainty principle, which sets a fundamental limit to

the simultaneous observation of two conjugate parameters, such as the photon

number and its phase [8,9]. Since the uncertainty principle preserves the multi-

plication of the variances of two conjugate parameters, the degenerate paramet-

ric amplifier can suppress one of the quadrature noise components at the ex-

pense of amplifying the other quadrature component through phase-sensitive

amplification. The noise squeezing was also demonstrated in the mechanical

systems as classical analogues of optical systems to beat the thermal noise limi-

tation [10, 11]. Finally, Josephson’s parametric amplifier using a superconduct-

ing quantum interference device (SQUID) was designed to implement noise

squeezing in an electrical system [12–14]. However, this amplifier requires a

very low operation temperature (around 0 K) and is not integrable. To the best

of our knowledge, our work is the first demonstration of noise squeezing for a

low-noise amplifier in a CMOS process.

69



The rest of the chapter is organized as follows. Section 4.2 discusses the noise

squeezing effect to enhance the noise performance. Section 4.2.2 explains the

pump loss effect, which poses fundamental limits for gain and noise squeezing

in a traveling parametric amplifier. Section 4.3 proposes a resonant paramet-

ric amplifier to overcome the limits mentioned in section 4.2.2 and analyzes its

phase-sensitive gain and noise squeezing performance. Section 4.4 summarizes

the design procedure and the simulation results. Finally, section 4.5 discusses

the measurement results.

4.2 Noise of a Degenerate Parametric Amplifier

4.2.1 Theoretical Analysis

Since degenerate parametric process uses only reactive components, potentially

it can achieve a better noise figure (NF) than the conventional transistor-based

amplifiers. In addition, its phase-sensitive gain shows an interesting property:

noise squeezing. The equi-partition theorem suggests that the input noise, usu-

ally thermal noise, is circularly symmetric for two quadrature components in

a thermal equilibrium and can be written as a narrow-band representation for

carrier (signal) frequency, ω [19] [20]:

n(t) = nI(t) cosωt + nQ(t) sinωt (4.1)

n2
I (t) = n2

Q(t) � σ2 (4.2)

where nI(t) and nQ(t) are slowly varying functions compared to a sinusoidal

function at ω.

70



When n(t) is injected into a degenerate parametric amplifier with k-section

lossless nonlinear transmission line (α̃s = 0) pumped at 2ω and the pump has

the right phase so that nI(t) experiences the maximum gain, then nQ(t) has the

maximum attenuation based on (2.23):

n2
I (t)out = |Gk,φ=−π/4|

2n2
I (t) = Fkσ

2 (4.3)

n2
Q(t)out = |Gk,φ=π/4|

2n2
Q(t) =

1
Fk
σ2 (4.4)

where in-phase power gain for k-section lossless NLTL, Fk, is defined as:

Fk = e2s̃0k. (4.5)

The multiplication of the standard deviations of nI(t)out and nQ(t)out is given

by: √
n2

I (t)out ·

√
n2

Q(t)out =
√

Fkσ ·
1
√

Fk
σ = σ2 (4.6)

=

√
n2

I (t) ·
√

n2
Q(t). (4.7)

Eq. (4.7) shows that the multiplication of two quadrature noise components is

preserved since one quadrature noise component (out-of-phase) is suppressed

at the expense of amplifying the other quadrature noise component (in-phase)

through phase-sensitive amplification.

Here we introduce a noise squeezing factor, S F , which is equal to NF when

the information is placed only in the single quadrature phase. This needs to be

differentiated with the general NF, which usually considers information in two

quadrature phases. Assuming that thermal noise caused by power dissipation

on the transmission line is negligible and that the signal information is only in
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the in-phase direction, the noise squeezing factor of the parametric amplifier is

defined as:

S F =
S NRIN

S NROUT
=

v2
s

n2
I +n2

Q

Fkv2
s

Fkn2
I +1/Fkn2

Q

=
1
2

(
1 +

1
F2

k

)
(4.8)

where n2
I = n2

Q � σ
2 and vs is a signal amplitude.

Eq. (4.8) shows that the squeezing factor approaches −3 dB as Fk increases.

In other words, the noise is redistributed from a circular to an oval shape

through parametric amplification to have a higher SNR in one quadrature di-

rection. Fig. 4.1 shows the time-domain effect of the noise squeezing and the

noise distribution over the phase. The output of the parametric amplifier can be

written as:

vout(t) =
√

Fkvs(t) cos(ωt − θ) + nout(t) (4.9)

=
√

Fk[vs(t) + nI(t)] cos(ωt − θ − ζ) (4.10)

where

ζ = tan−1
(
nQ(t)
Fkvs

)
�

nQ(t)
Fkvs

(4.11)

and θ is the phase shift due to propagation delay over the transmission line.

Eq. (4.10) shows that nI(t) contributes to the amplitude fluctuation whereas

nQ(t) contributes to the phase fluctuation. Eqs. (4.10) and (4.11) explain how

the squeezing suppresses the phase (timing) fluctuation at the output by in-

creasing the amplitude fluctuation with the same ratio as shown in Fig. 4.1(c).

This is fundamentally different from a linear amplifier (phase insensitive ampli-

fier) that provides the same amount of amplification for two quadrature com-

ponents, resulting in a circularly symmetric output noise distribution as shown

in Fig. 4.1(b).
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Figure 4.1: Observation of squeezed output noise by phase-sensitive am-
plification in a time and phase domain compared to linear am-
plification: (a) input signal, (b) output signal through linear
amplification, and (c) output signal through phase-sensitive
amplification. To simplify the notations, the phase of the pump
is shifted by π/2. In (2.23) the signal has its maximum and min-
imum at φ = 0 and φ = π/2, respectively.
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Next, we take into account the effect of transmission line loss in the para-

metric amplifier squeezing factor, S F . The parametric amplifier consists of two

transmission lines that generate two independent noises, vn1i and vn2i, at the ith

node. Because only the differential signal is amplified, the output noise con-

tributed by the power dissipation at the ith node is:

v2
nout|i =

e−2α̃s(k−i)

2

(
Fk−i +

1
Fk−i

)
(v2

n1i + v2
n2i) (4.12)

= 2e−2α̃s(k−i) cosh[2s̃0(k − i)]v2
n1i (4.13)

The thermal noise power generated at the ith node that travels toward output

is:

v2
n1i = kT Br + kT BgZ2

0 (4.14)

= 2kT BZ0

(
r

2Z0
+

gZ0

2

)
= 2kT BZ0α̃s (4.15)

where B is the bandwidth over which the noise is measured. r and g are par-

asitic series resistance and parallel conductance which represent inductor and

varactor loss, respectively. Combining (4.13) and (4.15), the total output noise

associated with transmission line loss is given by:

v2
nout = 4kT BZ0α̃s

k∑
i=1

e−2α̃si cosh(2s̃0i). (4.16)

From (4.8) and (4.16), the noise squeezing factor becomes:

S F =
1
2

(
1 +

1
F2

k

)
+

2α̃s

Fk

k∑
i=1

e2α̃s(k−i) cosh(2s̃0i) (4.17)

where the input signal source impedance is matched with the characteristic

impedance, Z0. In the absence of the pump (Fk = 1), from (4.17) the noise figure,

or the squeezing factor, is simply approximated with e2α̃sk, which is the recipro-

cal of transmission line loss and is expected from a conventional transmission

line.
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Fig. 4.2 shows the calculated squeezing factor based on (4.17). The signal

and pump frequencies are 10 GHz and 20 GHz, respectively. The cut-off fre-

quency is set to be 25 GHz. When the transmission line is lossless, the amplifier

squeezing factor approaches -3 dB for large nonlinear factors as shown in Fig.

4.2(a). However, the transmission line loss significantly degrades the squeez-

ing factor. The phase sensitivity of the squeezing factor is also investigated, as

shown in Fig. 4.2(b). Since the input noise distribution is assumed to be circu-

larly symmetric and independent of input signal, the variation of the squeezing

factor is caused only by change in the signal gain. The squeezing factor is also

calculated as a function of the section number, as shown in Fig. 4.2(c). As the

section number increases, the squeezing effect exponentially increases, result-

ing in a better squeezing factor. However, in the presence of transmission loss,

the number of noise sources also increases with section number. Therefore, for

a given nonlinearity, an optimum number of sections will result in a minimum

squeezing factor.

4.2.2 Pump Loss Effect

The previous sections examined the signal gain and noise performance in the

absence of pump attenuation for an analytical solution. However, pump loss is

critical since the signal gain is an exponential function of the pump amplitude,

as shown in (2.23).

Fig. 4.3 shows the simulated pump loss effect on the gain and squeezing

factor based on (2.15) and (2.16) when the phase difference between signal and

pump is −π/4 for a maximum gain. When pump loss is negligible, the log-scale
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Figure 4.3: Simulated pump loss effect on (a) gain and (b) squeezing fac-
tor versus section number for different pump losses (l=630 pH,
c0=250 fF, Qs=10, ω=10 GHz).
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gain is linearly proportional to the section number following (2.23). However,

as the pump loss increases, the amplifier gain reaches a peak for a certain num-

ber of sections. Before this point, since the pump amplitude is large, the gain

increases as the signal propagates. After this point, the pump amplitude is too

low to compensate the loss of the transmission line, resulting in a lower gain.

For a higher pump loss, this optimal number of sections also decreases, thereby

resulting in lower gain peak. Considering that the typical value of the quality

factor of the transmission line is around 10 for a pump frequency of 20 GHz,

the maximum gain is only 5 dB with 22 sections. One might consider injecting

pump frequency at multiple points of the transmission line to compensate the

loss. Unfortunately, this method would require higher pump power and also

results in a more complex design and higher footprint.

Pump loss also degrades squeezing factor: loss results in pump attenuation

which ,in turn, translates to a lower squeezing effect. This is shown in Fig.4.3(b)

where the squeezing factor increases with the section number.

4.3 Resonant Parametric Amplifier

To overcome the challenges of traveling-wave structures associated with a large

number of lumped LC elements and pump loss due to limited quality factor,

we propose a resonant regenerative amplifier based on a parametric oscillator

structure.
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Figure 4.4: Reflective distributed parametric oscillator and its standing
wave formation for signal and pump frequencies.

4.3.1 Review of Reflective Parametric Oscillator

Fig. 4.4 shows the reflective parametric oscillator and its standing wave forma-

tion for signal and pump frequencies. Parametric oscillation occurs when the

parametric amplification compensates the loss of a resonator at the resonance

frequency. The resonator consists of two transmission lines with four phase-

matched LC sections that are connected at both ends. Oscillation starts from

the ambient thermal noise of the resonator when the pump is strong enough

to compensate for the loss. The noise component grows by traveling back and

forth between two reflective ends through the degenerate parametric amplifica-

tion, finally generating a stable oscillation signal at a half-pump frequency.
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Figure 4.5: Differential parametric resonant amplifier with output buffer.

The upper part of Fig. 4.4 shows different standing wave formations in-

side the resonator for both pump and signal. The differential signal sees the

resonator ends as shorts due to the virtual ground, while the common-mode

pump sees the ends as open nodes. The effective length of the four-LC-section

resonator is equal to a pump wavelength, λp, which is half of the signal wave-

length, λs. With the reflection at both ends, the signal forms a λs/2 standing

wave with minimum amplitudes at the two boundaries. On the other hand,

the pump forms a λp standing wave with maximum amplitudes at both ends.

The higher modes for pump and signal are suppressed by the resonator cut-

off frequency. The output port is selected at “3/4λp” location to suppress the

pump signal by exploiting the different standing wave formations for signal

and pump.
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4.3.2 Regenerative Amplifier with Parametric Resonator

By operating the parametric oscillator with a pump below the oscillation thresh-

old, another form of degenerate parametric amplification can be achieved, as

shown in Fig. 4.5. Based on the resonator structure in Fig. 4.4, the input signal

is applied to the middle of the resonator through the drain of a common source

low noise amplifier. The source followers are simply used as output buffers to

drive a 50 Ω output load. The control voltage, Vcon, enables to tune the resonant

frequency.

For theoretical analysis, we consider the coupled-mode equations of (2.15)

and (2.16). Adding terms that represent the injection of the input signal and

pump into the resonator, these coupled-mode equations are modified to:

∂A
∂x

= −
jβbAp

4
A∗ − αsA + κs

As

2
e jφ (4.18)

∂A∗

∂x
=

jβbAp

4
A − αsA∗ + κs

As

2
e− jφ (4.19)

∂Ap

∂x
= −αpAp + κpApin, (4.20)

where κs and κp represent the increase ratios in the signal and pump amplitude

inside the resonator due to the injected signal and pump, respectively. The sig-

nificance of this term will be seen when reflections are taken into account inside

the resonator, which will be presented in (4.24) and (4.25). As and Apin are the

signal and pump amplitudes that enter the resonator, respectively.

By the structural symmetry of the resonator, we can only consider the left-

half of the resonator for the following analysis. It is noteworthy that even

though the pump is only applied to the left end of the resonator, for our analysis

we can imagine a virtual pump injection from the right end. This is due to the

fact that the resonator length is λp, which means the two ends are in phase for
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the pump frequency.

For steady state response, ∂A/∂x, ∂A∗/∂x, ∂Ap/∂x = 0. Combining (4.18) and

(4.19) to eliminate A∗, the signal amplitude on the resonator, |A|, becomes:

|A| =
κsAs

2(α2
s − s2

0)

√
s2

0 + α2
s − 2s0αs sin 2φ, (4.21)

where

s0 =
βbAp

4
=
βbκp

4αp
Apin. (4.22)

At the resonator end where the pump is injected, the relation between mth

and (m + 1)th round-tripped pump amplitudes, Apm and Apm+1 , is:

Apm+1 = Apm exp(−2αpd) + Apin (4.23)

where 2d is the round-trip length of the resonator. Inserting Apm+1=Apm=Ap|steady

and Ap|steady = κpApin/αp into (4.23), κp is reduced to:

κp =
αp

(1 − exp(−2αpd))
. (4.24)

In a similar way, κs can be obtained as below,

κs =
αs

1 − exp(−αsd)
. (4.25)

By rearranging (4.21),

Gφ =
|A|
As

=
κs

√
( Apin

Ath
)2 − 2( Apin

Ath
) sin 2φ + 1

2αs[1 − (Apin/Ath)2]
(4.26)

where

Ath =
4αsαp

βbκp
=

2(1 − exp(−2αpd))
Qpb

. (4.27)

82



From (4.26), when the pump amplitude is below the oscillation threshold,

Apin < Ath, the maximum and minimum gain are:

Gφ =


κs

2αs
(1 − Apin/Ath)−1 for φ = −π4 (max.)

κs
2αs

(1 + Apin/Ath)−1 for φ = π
4 (min.)

(4.28)

Based on (4.28), when the pump power is just below the threshold, the ampli-

fier has the lowest gain (i.e., maximum attenuation for φ = π/4), which is half

the gain in the absence of the pump. This sets a fundamental limit of a max-

imum squeezing ratio of 6 dB in the proposed system. Next, we are going to

calculate the total gain of the parametric amplifier. The voltage gain of a source-

degenerated amplifier that injects the signal into the resonator, shown in Fig.

4.5, is [1]:

G0 =
As

VIN
=
ωT Z0

2ωRs
(4.29)

where VIN is the input amplitude, ωT is the cut-off frequency of M1, Z0 is the

characteristic impedance of the resonator, Rs is the signal source impedance,

and ω is the signal frequency, assuming that the input matching is achieved

using a source-degenerated inductor, Ls.

Combining (4.26) and (4.29), the total gain of the parametric resonant ampli-

fier becomes:

GT =
As

VIN
·
|A|
As
· γ = G0Gφγ (4.30)

= GT0

√
( Apin

Ath
)2 − 2( Apin

Ath
) sin 2φ + 1

[1 − (Apin/Ath)2]
(4.31)

where γ is the voltage increase ratio due to the standing wave formation, de-

fined by γ = 2| sin(βx)| (γ � 1.41 for output taken out at 3/4λp) [27]. GT0 is the

gain without the pump injection defined by GT0 = κsγG0/2αs.
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Fig. 4.6(a) shows the calculated gain enhancement ratio, GT/GT0, due to

parametric amplification with respect to the phase difference between signal

and pump for different pump amplitudes based on (4.31). As the pump ampli-

tude approaches the oscillation threshold, the gain plot shows higher amplifica-

tion and attenuation depending on the phase difference. The phase difference

between the maximum and minimum is π/2, which clearly shows the phase-

sensitive gain for quadrature signals. Fig. 4.6(a) is similar to Fig. 2.7, which is

obtained from a traveling-wave type parametric amplifier. However, the reso-

nant amplifier uses only four LC sections and provides much higher gain due

to resonance, resulting from the robustness to the pump loss effect compared to

Fig. 4.3.

4.3.3 Analogy with a Conventional Regenerative Amplifier

To intuitively understand the parametric amplification on the resonator, we use

the analogy with a simplified LC resonant amplifier shown in Fig. 4.7. The in-

ductance and the capacitance in Fig. 4.7(b) are Ld = 4Lr/π and Cd = 4Cr0/π, to

provide the same resonance frequency as that of the distributed resonator in Fig.

4.5. Here, Lr and Cr0 are the inductance and average capacitance of each induc-

tor and varactor used in the distributed resonator, respectively. The distributed

resonator loss can be modeled as a series resistor rind, and the parametric ampli-

fication can be represented as a negative resistor, −r(φ), which is a function of

the phase difference between the pump and the signal φ. The value of the series

resistance rind can be obtained from the quality factor relation

Q =
ωLd

rind
=

β

2αs
=
ω
√

LrCr0

2αs
, (4.32)
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where αs is the loss of transmission line per unit length. From (4.32) and Z0 =

√
Lr/Cr0, we can obtain rind = 8αsZ0/π.

In the absence of pump (r(φ) = 0), the load impedance in Fig. 4.7(b) is

ZL = Q2rind. When the pump is applied to the resonator with the right phase

with respect to the signal (φ = −π/4 in (2.23)), the negative resistor increases the

quality factor of the resonator. This provides a larger load impedance around

the resonance frequency given by

Z′L = Q′2r′ind =

(
ω0Ld

rind − r(φ)

)2

(rind − r(φ)) (4.33)

= ZL/(1 − r(φ)/rind). (4.34)

The increased load impedance results in a higher gain of

G = GmZ′L =
G0

1 − r(φ)/rind
for r(φ) < rind, (4.35)

where G0 = GmZL is the gain without the pump and Gm is the effective transcon-

ductance. On the other hand, when the phase difference between signal and

pump is out of phase, −r(φ) becomes positive, causing additional signal attenu-

ation due to the parametric process. In other words, the signal phase determines

the polarity and magnitude of r(φ) and changes the amplifier gain.

Equation (4.28) has the same form as (4.35), which demonstrates that our

simplified model in Fig. 4.7(b) explains the effect of the parametric process. By

equating (4.35) and (4.28), r(φ) can be expressed into

|r(φ = ±π/4)| =
bQAe f f

2
rind, (4.36)

where Ae f f is the pump amplitude inside the resonator, given by Ae f f = Apin/(1−

exp(−2αpd)). Equation (4.36) suggests that the phase-dependant resistance is

proportional to the pump amplitude, the nonlinearity factor, and the resonator
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quality factor. It is noteworthy that parametric amplification beyond the res-

onator loss (r(φ) > rind or Apin > Ath) results in parametric oscillation, which can

be exploited for low-noise frequency division discussed in Chapter 3.

However, the proposed amplifier does not use the extra transistor to com-

pensate for the resonator loss since the gain comes from the parametric ampli-

fication. More importantly, the proposed amplifier provides the phase sensitive

gain for the noise squeezing at the cost of its complicated structure.

4.3.4 Squeezing Factor

Finally, the minimum squeezing factor can be simply calculated based on the

squeezing effect, assuming that the noise of the resonator itself is negligible.

This is similar to calculating the NF of a conventional LNA where we assume

that the effect of resonator loss is negligible and the NF is dominated by the

channel noise1. Under this assumption the squeezing factor is:

S F = Ks · NF0, (4.37)

where Ks is the noise reduction ratio and NF0 is the NF of the source-

degenerated common-source amplifier. The noise reduction ratio, Ks, can be

calculated using (4.8) and (4.28):

Ks =
1
2

1 +

(
GT |min

GT |max

)2 =
(Apin/Ath)2 + 1
(Apin/Ath + 1)2 (4.38)

When Apin approaches Ath, the reduction ratio, Ks, approaches 1/2.

1For typical losses of on-chip passive components, this assumption is valid. Interested read-
ers can use a similar approach shown in (4.17) to calculate NF when the resonator loss cannot
be neglected.
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Figure 4.8: Schematic of the pump generation block consisting of active
balun, frequency doubler, and buffer.

Fig. 4.6(b) shows the calculated squeezing factor with respect to the phase

difference between signal and pump for different pump amplitudes based on

(4.37). As expected in the gain plot, higher pump amplitude provides higher

noise squeezing ratio for in-phase component, whereas it degrades the noise

performance of out-of-phase component.

4.4 Design and Simulation

We designed and simulated the proposed amplifier at around 10 GHz in a 65 nm

CMOS technology. The chip consumes 30 mW from a 1.2-V supply. This power

includes the pump generation circuit, which consumes 14.5 mW. The estimated

area of the entire chip is 1.5 mm×0.9 mm.

89



4.4.1 Design

The design of the proposed amplifier consists of three parts: a nonlinear res-

onator for phase-sensitive gain, a low noise amplifier for input stage, and a fre-

quency doubler to generate a pump frequency that has exactly twice the input

frequency. To design the resonator, we use the fact that its resonant frequency,

which should be around 10 GHz, is closely related to the propagation constant,

β, defined by β = ω
√

lc0 = 2(ω/ωc). Also, as explained in Section 2.2, the cut-

off frequency of the LC-ladder sets the maximum gain of the amplifier. The

optimum cut-off frequency can be obtained from the trade-off between s̃0 in

(2.26) and the pump loss due to the cut-off frequency which is comparable to

the pump frequency. Using the optimum cut-off frequency of around 25 GHz

for maximum gain, we need a fine adjustment to satisfy the resonant frequency

of 10 GHz. The resonant frequency is determined from

d = nh =
λs

2
=
π

β
=

1
2 fosc

√
(l/h)(c0/h)

, (4.39)

where d is the length of the resonator, h is the spacing between two adjacent

nodes, and n is the number of resonator sections. The varactor capacitance per

unit section is approximated by its average value, c0. Equation (4.39) can be

rearranged to:

fosc =
1

2n
√

lc0
=
π fc

2n
. (4.40)

Inserting the cut-off frequency into (4.40), the section number is around 3.9.

Because we can only have positive integers, the section number is set to be four,

which requires the minor adjustment of the cut-off frequency to keep the res-

onant frequency at 10 GHz (For accurate adjustment, the resonant frequency

should be verified with Cadence simulation since eqs. (4.39) and (4.40) is based
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on the small dispersion assumption.) Knowing the cut-off frequency of the line

and the number of sections, we can determine the LC product. To pick the val-

ues of inductors and varactors, we need to select the characteristic impedance of

the LC line. Since the resonator is driven with an LNA and the output is taken

out using a buffer, the impedance does not have to be 50 Ω. As a result, we

select the characteristic impedance to minimize the loss of the resonator, which

is around 40 Ω. In this process, the optimized inductor and varactor value to

achieve the maximum gain, i.e. optimum cut-off frequency, and minimum loss

are 470 pH and 270 fF, respectively.

The inductor is implemented as a spiral whose inductance is 380 pH and

dimension is 145 µm × 145 µm, including the guard ring. The quality factors

of the spiral are 16 and 19 at 10 GHz and 20 GHz, respectively. The copla-

nar waveguide with a ground-shielded plane is employed to connect inductors.

The inductance of these interconnects is around 90 pH. The transmission line

structure is carefully simulated in an E/M simulator, SONNET.

We use an accumulation-mode MOS varactor as a voltage-dependent capac-

itor. Its capacitance versus voltage characteristic is shown in Fig. 4.9. The aver-

age capacitance is 270 fF and the linearized C/V slope, b, is approximated to be

1.4 around zero bias voltage. The quality factors of the varactor are 31 and 15 at

10 GHz and 20 GHz, respectively. The varactors use the multi-finger gate struc-

ture to optimize the nonlinearity and the quality factor simultaneously [28].

Metal-insulator-metal capacitors (MIMCAPs) are used for dispersion compen-

sation capacitors.

The design of the low-noise amplifier for input stage follows a general

source-degenerated amplifier for an input frequency of 10 GHz. The input
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Figure 4.9: Accumulation-mode MOS varactor characteristic in a 65 nm
process.

impedance is matched to 50 Ω. The main transistor (M1 in Fig. 4.5) has a width

of 96 µm for optimum NF and input matching with a bias current of 3 mA.

The width of the cascode transistor (M2) is selected considering the trade-off be-

tween the amount of parasitic capacitances and its noise contribution. In our

design, the width of M2 is 80 µm. Both M1 and M2 have the minimum channel

length of 60 nm.

To generate the pump at twice the signal frequency, the frequency doubler

is implemented as shown in Fig. 4.8. It consists of an active balun, a frequency

doubler, and a buffer. Since the frequency doubler is designed for a differential

input signal, an active balun is employed. The active balun (M1-M2 in Fig. 4.8) is
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Figure 4.10: Simulated frequency-doubled output of the pump generation
block versus input amplitude.

the combination of common-gate and common-source amplifiers to simultane-

ously generate a non-inverting and inverting output [28]. In addition, the com-

mon gate amplifier located in the input port provides a broadband input match-

ing. The frequency doubler (M3-M6) uses the nonlinearity of the transistor. The

even-order harmonics of the differential input signal, mainly the second-order

harmonic, is picked at the common node through the resonant network. The last

stage (M7-M9) is a two-stage amplifier as a buffer. The first stage amplifies the

signal with a high gain, and the second stages drives the nonlinear resonator.

Fig. 4.10 shows the simulated output amplitude of the pump generation block

versus an input amplitude for different input frequencies in Cadence.
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Figure 4.11: Calculated and simulated gain and squeezing factor versus
signal phase in the proposed amplifier for a fixed pump am-
plitude (500 mV)

4.4.2 Simulation

Using Cadence, we simulated our designed amplifier, which consists of the in-

put stage amplifier and the nonlinear resonator. The input of the amplifier is

a 10 GHz signal (carrier) with bandwidth of 500 MHz (data). The pump fre-

quency is fixed at 20 GHz, which is twice the carrier frequency. The outputs are

connected to 50-Ω loads using source follower buffers. The simulation is car-

ried out at a schematic level including an interconnects transmission line model

verified by SONNET. We use Periodic Noise analysis (Pnoise) and Periodic S-

parameter analysis (PSP) in Spectre to simulate the gain and squeezing factor of

the proposed design.
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Fig. 4.11 shows both calculated and simulated gain and squeezing factor

versus the signal phase for a fixed pump amplitude of 500 mV. For the calcula-

tion, we insert GT0=11.5 dB and NF0=1.6 dB into (4.31) and (4.37) based on the

Cadence simulation. Apin/Ath is set to be 0.65 for best fit with the simulation.

Note that the accurate calculation of Ath is difficult due to the voltage-sensitive

drain node impedance of the input amplifier. This is because the standing wave

formation of the pump signal doubles the input pump voltage swing on the

drain node, as shown in Fig. 4.5.

The gain ranges from 7 dB to 20 dB depending on the phase difference be-

tween signal and pump. The difference between maximum and minimum gains

is around 13 dB, which determines the magnitude of the noise squeezing ratio

in (4.37). As expected in (4.31), the plots are periodic with a period of π, and the

signal phase difference between maximum and minimum gain is π/2, imply-

ing a quadrature squeezing. The simulated gain includes 6-dB loss due to the

output buffer, which is not calibrated. (The maximum gain is 26 dB before the

buffer whereas the graph in Fig. 4.11 shows 20 dB at its maximum.) The squeez-

ing factor plot is the flip-down image of the gain plot, as we observed in Section

III. Assuming that all the signal is in-phase component, the noise squeezing ef-

fect suppresses the squeezing factor even below 0 dB, resulting in the minimum

squeezing factor of −0.37 dB when the gain is maximum. From (4.37) and (4.38),

the theoretical squeezing factor is suppressed up to 3 dB below the NF of the

input LNA as the pump input gets close to the oscillation threshold. However,

the simulation result shows 2-dB suppression of the squeezing factor from 1.6

dB to −0.37 dB. This is because the additional loss from the drain node of the

input amplifier increases the threshold voltage beyond the varactor saturation

region, where the capacitance does not change with the voltage, as shown in

99



Fig. 4.9.

We also simulated the gain and squeezing factor for different pump ampli-

tudes with a fixed signal phase, particularly for the maximum and minimum

gain cases, as shown in Figs. 4.12 and 4.13. In the maximum gain case, the in-

crease in pump amplitude boosts the gain by increasing the quality factor of the

resonator. The increase in the quality factor can also be verified in Fig. 4.12(a),

as well as by observing that the bandwidth becomes narrower with pump am-

plitude. Fig. 4.13(a) shows that the squeezing factor is more suppressed as the

difference between maximum and minimum gain increases with pump ampli-

tude due to the squeezing effect. On the other hand, Fig. 4.12(b) shows that the

increase in pump amplitude decreases the signal gain for a phase at minimum

gain. The destructive adding process causes more signal attenuation inside the

resonator with the pump amplitude, degrading the quality factor. The squeez-

ing factor also becomes worse due to signal loss, as shown in Fig. 4.13(b).

The noise squeezing effect is also clearly observed using the transient noise

option in the transient analysis in Cadence, as shown in Fig. 4.14. In the simula-

tion setup, two independent noise voltages, whose bandwidth is 500 MHz, are

generated and combined though I/Q modulation at 10 GHz LO frequency. The

combined noise signal is injected to the resonant parametric amplifier. After

passing through the proposed amplifier, the output is demodulated to extract

I/Q components and sampled for statistical analysis. In the transient simula-

tion, it is noted that the intrinsic device noise is neglected due to a large-signal

input noise source. Fig. 4.14 shows the simulated noise squeezing, depending

on the presence of the pump. Before the pump injection, the output noise dis-

tribution is still circularly symmetric for in-phase and out-of-phase components
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Figure 4.16: The fabricated amplifier in a 0.13-µm CMOS process.

(and hence phase-insensitive). However, the out-of-phase noise component is

suppressed in the presence of the pump signal, whereas the in-phase noise com-

ponent is amplified. Note that the input signal is also equally amplified with the

in-phase noise component. To analyze the suppressed out-of-phase noise com-

ponent quantitatively, the histogram is plotted for 960 samples, as shown in Fig.

4.15. We clearly observe that the standard deviation of the out-of-phase noise

component is significantly suppressed with pump injection.

4.5 Measurement Results

The proposed amplifier is fabricated in a 0.13-µm CMOS process, as shown in

Fig. 4.16. The chip occupies 1.5 mm × 0.83 mm including pads. The total power

consumption is 44 mW from a 1.2-V power supply, where the differential LNA,

the pump generation block, and the output buffer consume 16 mW, 20 mW, and
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8 mW, respectively. Figure 4.17 shows measured differential |S 21| without the

pump for different varactor bias voltages (VBIAS = VDD − VC). The change in

the bias voltage tunes the resonant frequency from 7.5 GHz to 10.5 GHz. The

peak gain increases with the bias voltage since positive bias voltages force the

varactors to operate in a depletion regime that provides higher quality factors.

The measured quality factors of the resonator are 5.2, 6.3, and 8 for varactor bias

voltages of −0.5 V, 0 V, and 0.5 V, respectively. Input matchings for the amplifier

and the pump-generation block are also plotted in Fig. 4.17.

The phase-sensitive gain is measured using a fully differential setup, as de-

picted in Fig. 4.18. The input signal is generated using an external passive

mixer and two sources: an Agilent E8257D for carrier generation at 8-to-10 GHz

and an HP 8648C for data signal generation at 0-to-500 MHz. The input of the

pump-generation block is also from the same source used for carrier generation.

Power levels into the amplifier and pump-generation circuits can be indepen-

dently controlled by adjusting the input power and a variable RF attenuator.

The signal phase can be adjusted with a variable phase shifter, which provides

0-to-720◦ at the carrier frequency. The output spectrum is measured by the spec-

trum analyzer.

Figure 4.19 shows the simulated and measured phase-sensitive gain normal-

ized to the gain in the absence of the pump (G0). This measurement was per-

formed with the input-carrier frequency of 8.75 GHz that gives the maximum

squeezing factor. We also modulate the input carrier with a 1-MHz sinusoid to

distinguish the signal from undesired harmonics at the output. Here, the in-

jected power to the pump-generation block is kept constant at Pin = 1 dBm for

the maximum squeezing factor. For simulation, this injected power is set at -2
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Figure 4.19: Measured and simulated phase-sensitive gain vs. signal
phase.

dBm for the maximum squeezing factor. The measured maximum gain differ-

ence between in-phase and quadrature (GI/GQ) is around 9 dB, which results

in the squeezing factor of 2.5 dB. For accurate simulation, parasitic inductance

and capacitance, especially at the connection between the input amplifier and

the resonator, are extracted using E/M simulator, Sonnet.

The in-phase and quadrature gains, GI and GQ, are also measured with re-

spect to Pin as shown in Fig. 4.20. The increase in Pin boosts in-phase gain GI and

reduces quadrature gain GQ according to (4.28) and (4.36). For Pin of 1 dBm, the

in-phase gain GI and gain difference GI/GQ have the maximum values of 21 dB

and 9 dB, respectively. For Pin’s higher than 1 dBm, GI drops since a large pump

swing pushes the transistors of the input LNA into operating in the triode re-
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gion. Compared with the simulation, the measured optimum injection power is

3-dB higher due to the center frequency shift and the conversion gain difference

between simulation and measurement in the pump generation block. For Fig.

4.20, the input carrier frequency and data frequency are again set at 8.75 GHz

and 1 MHz, with a bias voltage of 0 V.

To investigate the operation frequency range, the quadrature gain difference

GI/GQ is measured for different carrier frequencies and bias voltages, as shown

in Fig. 4.21. When the bias voltage of varactors VBIAS is 0 V, the quadrature

gain difference is at the maximum. As the control voltage is deviated from 0

V, the nonlinearity of the varactor decreases, as shown in Fig. 2.6. This lowers

the parametric gain of the amplifier. The phase-sensitive gain is also measured
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Figure 4.21: Measured and simulated quadrature gain difference GI/GQ

for different control voltages.

vs. data frequency for the fixed carrier frequency of 8.75 GHz as shown in Fig.

4.22. As data frequency increases, the phase relation between the signal and the

pump is not maintained, decreasing the quadrature gain difference.

To measure sensitivity, we first measure the noise figure in the absence of

the pump, NF0, using the Y-factor method [29], as shown in Fig. 4.23. Using

this result, we can calculate the input-referred noise power in the absence of the

pump as Nin0 = NF0 · Ni. It is noteworthy that the pump-generation block is

turned on (with no Pin) in order to include the noise from the pump-generation

circuit in NF0. Next, to see how the output noise power is changed after pump

injection, we measure noise gain GN using a high-power broadband noise source

(Agilent 346C), as shown in Fig. 4.24. Since the power of the noise source is large
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for the in-phase and quadrature components compared to
gain in the absence of the pump.

enough, we can ignore the contribution of the amplifier to the output noise.

The measured noise gain is shown in Fig. 4.25. The noise gain is equal to the

average of in-phase and quadrature gains (i.e., (G2
I + G2

Q)/2) according to the

equi-partition theorem. Using this principle and the results of Fig. 4.22, we

also calculate the noise gain from the signal gain, as shown in Fig. 4.25. The

measured and calculated noise gain agree well within frequencies of interest,

which proves that the phase-sensitive gain also works for noise input. From the

measured noise gain, the output noise power can be estimated as N′out = G2
N Nin0.

Finally, the input-referred noise in the presence of the pump can be estimated by

dividing the output noise power by the measured signal gain. Figure 4.26 shows

the ratio of the measured input-referred noise (Nin) to input noise (Ni). This noise
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ratio is equal to NF when the information is placed only in the single quadrature

phase. For the in-phase input signal, the measured minimum detectable power

is around 0.1 dB below Ni at the expense of degrading the quadrature sensitivity.

This demonstrates that sensitivity below the thermal noise limit can be achieved

by the proposed amplifier.

Linearity performance is measured in terms of a 1-dB gain-compression

point and input-referred IP3 with/without a pump. Figure 4.27 shows the mea-

sured 1-dB gain-compression point. P1dB is around -2.1 dBm in the absence of

the pump. After the pump injection, P1dB is changed to -5 dBm for in-phase gain

GI and 1.1 dBm for quadrature gain GQ. Figure 4.28 shows the measured IIP3

with/without the pump. IIP3 is -10.5 dBm in the absence of the pump and is
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Figure 4.26: Measured and simulated input-referred noise normalized to
Ni for in-phase and quadrature compared with when the
pump is off.

decreased to -12.5 dBm for GI when the pump is applied. To investigate how

the nonlinear resonator affects the linearity performance, we simulated the per-

formance after replacing the varactors with constant capacitors. The 1-dB com-

pression point and IIP3 of the amplifier with linear resonator are less than 1 dB

better than the nonlinear case. This proves that the varactors mainly generate

the second-order nonlinearity and have minimal effect on the 1-dB compression

point and IIP3, which capture the odd order nonlinearities.
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4.6 Conclusion

We propose a resonant parametric amplifier with a low noise performance using

the noise squeezing effect. The phase-sensitive amplification process suppresses

one of the quadrature noise components and achieves around 3-dB noise reduc-

tion for single phase information compared to the phase-insensitive amplifica-

tion. The resonant structure of the amplifier, which resembles the Fabry-Perot

laser amplifier, enables parametric amplification for narrow-band signals with

a small number of lumped LC elements. The signal gain and squeezing factor

are analyzed theoretically based on the continuous transmission line approxi-

mation and the steady state assumption. In the measurement, we proved that
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the implemented parametric resonant amplifier provides a gain difference of 9

dB between in-phase and quadrature at 8.75 GHz. This quadrature gain differ-

ence results in a 2.5-dB improvement of the sensitivity for one quadrature at the

expense of the degradation of the other quadrature. For linearity performance,

P1dB and IIP3 were measured to be -5 dBm and -12.5 dBm, respectively, which

are comparable to a linear resonant amplifier.
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CHAPTER 5

A NONLINEAR LATTICE FOR HIGH-AMPLITUDE PICOSECOND PULSE

GENERATION IN CMOS

5.1 Introduction

Recently, there has been growing interest in generating picosecond pulses for

high-speed sampling, time-domain reflectometry, sensing and imaging, radar,

and pulse-based wireless communication [1–5]. To generate a sharp pulse, a

special form of nonlinear wave known as a soliton has been extensively studied

in optics and electronics [6–12]. To implement an electrical nonlinear medium,

a transmission line periodically loaded with voltage-dependent capacitors, e.g.,

Schottky diodes, was proposed in a GaAs technology in the early 1990s [11,

12]. Recently, a nonlinear transmission line in a CMOS technology has been

proposed using accumulation-mode MOS varactors [13]. However, generating

sharper pulses in CMOS is more challenging due to the high loss of passive

components, lowering the effect of nonlinearity. For instance, the quality factor

of varactors is less than 5 above 100 GHz in a typical CMOS technology.

To overcome this limit, the concept of the nonlinear transmission line has

been extended to a two-dimensional nonlinear lattice to boost the harmonic gen-

eration resulting in higher-amplitude, narrower pulses [14–17]. Our prior work

in [14] analyzed the optimum input frequency for the maximum harmonic gen-

eration based on numerical analysis, and the lattice was fabricated on a printed

circuit board (PCB) for an input frequency of around 20 MHz. We also numeri-

cally analyzed a lossless nonlinear lattice based on a discrete model using a per-

turbative method [15, 16]. Although our recent work in [17] showed promising
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simulation results of the nonlinear lattice in a CMOS process, there are several

implementation challenges that need to be addressed, including the selection

of an output node without pulse distortion as well as input power distribution

with high enough power level to fully exploit nonlinearity.

In this chapter, by addressing the above issues, we implement an integrated

nonlinear lattice in a standard 0.13-µm CMOS process to demonstrate 2.7-Vpp,

6.3-ps pulses from a 22-GHz sinusoidal input. To the best of our knowledge,

among the high-amplitude pulses (>1 V), this work shows the sharpest pulse

in a CMOS process. This chapter also has a significant theoretical extension to-

wards the insightful understanding of a nonlinear lattice. First, we develop a

continuous model of a nonlinear transmission line to obtain an analytical form

of harmonic generation based on coupled wave equations in the presence of loss

and dispersion. Based on this result, we analyze the limitation of a lossy nonlin-

ear transmission line in a CMOS process and introduce a nonlinear lattice as an

alternative. We show that the proposed structure exploits spatial power com-

bining, higher cut-off frequency, and two-dimensional nonlinear interference to

significantly enhance both the amplitude and pulse width, compared with a 1-D

nonlinear transmission line.

The rest of the chapter is organized as follows. Section 5.2 explains the the-

ory of the harmonic generation in a nonlinear transmission line. Then, Section

5.3 proposes a two-dimensional nonlinear lattice as an extension of the trans-

mission line and discusses its operation principle. Section 5.4 presents the de-

sign, simulation results, and the implementation details. Section 5.5 presents the

measurement results. Section 5.6 discusses the effect of high-order harmonics

and presents a half-size triangular lattice.
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Figure 5.1: Nonlinear transmission line for harmonic generation and pulse
sharpening.

5.2 Distributed Harmonic Generation Theory

Fig. 5.1 shows a 1-D transmission line consisting of inductors l and voltage-

dependant capacitors c(V). As a sinusoid of frequency ω0 travels along the line,

the nonlinearity causes input energy at ω0 to be transferred into multiple har-

monics of the signal. This process results in sharpening the signal in the time

domain, generating a narrow pulse. If the ratio of the energy of the higher-

order harmonics to the total energy of the signal is larger, the resulting pulse

becomes sharper. To describe the harmonic generation in a low-loss nonlinear

transmission line, soliton propagation can be a useful model, which is reduced

to the Burgers equation (zero-dispersion case) or the KdV equation (dispersion

case) [8, 9]. However, the problem with this method is that it presents only the

steady-state solution. In this paper, to capture the harmonic generation as the

signal propagates along the transmission line, we use coupled-wave equations.

The basic principle of harmonic conversion along the nonlinear transmission

line is illustrated in Fig. 5.2. We conceptually model a nonlinear transmission

line as multiple coupled transmission lines, each for a different harmonic. The

generated harmonic component at each section is constructively added on the
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tributed amplification.
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upper lines during the propagation only if the fundamental and harmonic com-

ponents are phase-matched. This is very similar to the principle of distributed

amplification, in which phase matching between the two lines is necessary to

achieve a gain that is proportional to the section number [20].

To analyze the harmonic generation on the nonlinear transmission line, we

apply Kirchhoff’s law at one section of the line and use approximated partial

derivatives with respect to distance x from the beginning of the line, as shown

in Fig. 5.1 [13]. This results in the wave equation for the voltage on the line

V(x, t) as
∂2V
∂x2 = L

∂

∂t

[
C(V)

∂V
∂t

]
+ 2

√
LC0α

∂V
∂t

(5.1)

where

α =
1
2

(
GZ0 +

R
Z0

)
(5.2)

and L, C, G, and R are unit length inductance, capacitance, parasitic conduc-

tance, and parasitic resistance, respectively. Z0 is the characteristic impedance

for zero-biased varactors, which is
√

L/C0. We also approximate the nonlinear

capacitors with a first-order function C(V) = C0(1 + bV) where b is the slope of

C/V characteristic. Next, we apply a sinusoidal signal at ω0 to the left end of the

transmission line and use the Fourier series to find the steady-state solution as

V(x, t) =

3∑
n=1

[Vn(x)e jnω0t + V∗n(x)e− jnω0t], (5.3)

where “∗” represents complex conjugate and Vn is the voltage of the nth har-

monic. In (5.3), for simplicity it is assumed that the maximum generated har-

monic component is the third. This assumption is valid if we introduce an ideal

dispersion-less low-pass filter with the cut-off frequency around the fourth har-

monic in each section of the line. In a real scenario, this filtering can be done
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by adjusting the Bragg frequency of the transmission line. However, this intro-

duces dispersion into the line, which will be discussed in Section 5.2.1.

Substituting (5.3) into (5.1), we obtain three traveling-wave equations for

Vn’s as

∂2V1

∂x2 − γ
2
1V1 = −bω2

0LC0[V2V∗1 + V3V∗2] (5.4a)

∂2V2

∂x2 − γ
2
2V2 = −bω2

0LC0[2V2
1 + 4V3V∗1] (5.4b)

∂2V3

∂x3 − γ
2
3V3 = −bω2

0LC0[9V1V2], (5.4c)

where γn is the complex propagation constant for nω0, given by

γ2
n = 2 j

√
LC0α(nω0) − (nω0)2LC0. (5.5)

Equation (5.5) can be approximated as

γn =

√
−β2

n(1 − j2α/βn) ' jβn(1 − j
2Qn

), (5.6)

where βn = nω0
√

LC0 is the propagation constant for the nth harmonic in the

absence of dispersion, and Qn = βn/2α � 1 is the quality factor of the line for the

nth harmonic. The propagation velocity for the nth harmonic is

vp,n =
nω0

βn
=

1
√

LC0
. (5.7)

Equation (5.7) shows that all harmonics are phase-matched, since the prop-

agation velocity is the same for all frequencies due to the continuous line ap-

proximation. In other words, we have neglected the dispersion of the line due

to discreteness, which will be discussed in the next section.

To solve (5.4), we use the perturbation theory and expand Vn in terms of b

using coefficients Vnm up to the second order:

Vn =

2∑
m=0

bmVnm = Vn0 + bVn1 + b2Vn2 (5.8)
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By substituting (5.8) into (5.4) and sorting by the powers of b

For b0,

∂V2
10

∂x2 − γ
2
1V10 = 0 (5.9)

For b1,

∂V2
21

∂x2 − γ
2
2V21 = −2β2

1V2
10 (5.10)

For b2,

∂V2
32

∂x2 − γ
2
3V32 = −9β2

1V10V21, (5.11)

where we applied boundary condition V2(x = 0) = V3(x = 0) = 0 which results in

V20(x) = V22(x) = V30(x) = V31(x) = 0. From (5.9), we can obtain a traveling-wave

solution given by

V10(x) = V10(0)e−γ1 x (5.12)

and plug this into the equation for V21 in (5.10) to study the second order har-

monic generation:

∂V2
21

∂x2 − γ
2
2V21 = −2β2

1V2
10(0)e−2γ1 x, (5.13)

which shows that the square of the voltage at the fundamental frequency is a

forcing function for the wave equation of the second harmonic.

Using the boundary conditions V2(x = 0) = V2(x = ∞) = 0 (beginning of the

line and the effect of loss at infinity), the solution of (5.13) is calculated as

V21(x) = −
2β2

1V2
10(0)

2γ1 + γ2

[
e−(2γ1−γ2)x − 1

2γ1 − γ2

]
e−γ2 x. (5.14)
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Based on (5.6), (5.14) can be simplified to

|V21(x)| =
β1V2

10(0)
2

xe−α2 x. (5.15)

Equation (5.15) shows that the coherent addition at each section results in

a linear increase of the second harmonic component with respect to distance x,

while the transmission line loss causes an exponential decay. The maximum

amplitude of the second harmonic is

V2|max = b|V21(xopt)| =
bQ2

2e
V2

10(0), (5.16)

where xopt = 1/α2 is the length of transmission line that maximizes the second

harmonic. We can also calculate the equivalent optimum phase shift as φ2,opt =

β2xopt = 2Q2, which is a function only of the line quality factor.

Similarly, we calculate the third order harmonics from (5.11). It is interesting

that the forcing function is the mixing term between V10 and V21, which shows

that cascading second-order nonlinearity generates the third-order harmonics

without the third-order nonlinearity. By inserting (5.12) and (5.14) into (5.11)

with the boundary condition V3(x = 0) = V3(x = ∞) = 0, we have

|V32(x)| =
3β2

1V3
10(0)

8
x2e−α3 x. (5.17)

This result shows that the third-order harmonics are proportional to x2. When

x = xopt = 2/α3 or the propagation phase shift is φ3,opt = β3xopt = 4Q3, (5.17) has

its maximum of

V3|max = b2|V32(xopt)| = −
2(bQ3)2V3

10(0)
3e2 . (5.18)

Equation (5.18) shows greater dependence on the nonlinearity, loss, and input

amplitude, compared with the second harmonic generation in (5.16).

123



5.2.1 Dispersion Effect

So far, we have approximated the line with a continuous line and neglected the

effect of dispersion that arises from the discreteness of the line. However, in

a real transmission line with lumped varactors, the dispersion changes phase

velocity with respect to frequency, especially close to the cut-off frequency. In

the presence of the dispersion, equation (5.14) for the second harmonic becomes

V21(x) = −
β1V2

10(0)
2

e− j∆β2 x/2sinc(∆β2x/2)xe−γ2 x, (5.19)

where 2γ1 − γ2 is approximated as j∆β2 = j(2β1 − β2) using (5.6). Here, β2 , 2β1

due to the phase mismatch caused by dispersion. Equation (5.19) is proportional

to the sinc function of the accumulated phase mismatch ∆β2 · x. When ∆β2 · x

increases, the sinc function decreases from unity, decreasing the amplitude of

the second harmonic. If ∆β2 · x = 2π, the amplitude of the second harmonic

becomes zero. The dispersion degrades the third harmonic generation even

more severely since the third harmonic is closer to the cut-off frequency.

5.2.2 Simulation Results

Fig. 5.3 shows the Cadence simulation of harmonic generation on the nonlin-

ear transmission line, compared with our analysis in the presence of disper-

sion. The simulations are performed using a standard 0.13-µm CMOS process.

Accumulation-mode MOS varactors and ground-shielded coplanar waveguides

are used as varactors and inductors, respectively. For the input frequency of 25

GHz, the line is designed to have a cut-off frequency of 80 GHz to suppress any

harmonics that are higher than the third one. In this simulation, the character-
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Figure 5.3: Simulated 2nd and 3rd harmonic generation on the nonlinear
transmission line in comparison with the analysis.

istic impedance of the line is around 20 Ω and the input power at 25 GHz is 3.5

dBm.

As shown in Fig. 5.3, the optimum length of the transmission line for max-

imum harmonic generation is only around 6 sections. Furthermore, the best

conversion losses at the second and third harmonics are higher than 10 dB. This

is because of two major challenges. First, since the quality factor of the CMOS

nonlinear transmission line is low, the optimum length is short according to

(5.16) and (5.18). In other words, before enough harmonic power is generated,

the effect of loss becomes dominant. The second challenge is dispersion that de-

grades the harmonic generation due to the phase mismatch. As we can see from

Fig. 5.3, the loss and phase mismatch have greater influence on the third har-
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Z0

Z0

Z0

Figure 5.4: Proposed nonlinear LC lattice as a two-dimensional extension
of a nonlinear transmission line.

monic, as it is closer to the cut-off frequency. This example demonstrates that the

high loss and phase mismatch of the nonlinear transmission line in CMOS low-

ers the efficiency of the harmonic conversion. This limits the minimum pulse

width and amplitude that can be generated using this structure.
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5.3 Nonlinear Lattice for Sharp Pulse Generation

For a given quality factor, input amplitude, and varactor nonlinearity, we can

significantly increase harmonic generation by extending a nonlinear transmis-

sion line to a two-dimensional nonlinear lattice as shown in Fig. 5.4. A series of

in-phase sinusoidal sources are applied to the left and bottom of the lattice, gen-

erating two incident perpendicular plane waves. The top and right boundaries

are terminated with matched resistors. These two waves interact diagonally

to produce high-amplitude, sharp pulses at the center of the lattice. The lattice

improves the harmonic generation by three mechanisms: (a) spatial power com-

bining, (b) higher cut-off frequency, and (c) nonlinear constructive interference

to generate more harmonics from each traveling wave. Next, we discuss these

three effects that result in sharper and higher-amplitude pulses.

Figure 5.5 shows the simulated voltage amplitude of different points of the

lattice as a plane wave propagates from the left to the right in a 12×12 lattice.

The input amplitude is 1 Vpp at 20 GHz, and the inductors and capacitors are

80 pH and 200 fF, respectively. The propagation of the plane wave in the lattice

is similar to wave propagation in a transmission line. However, the simulation

results show that the plane wave has the maximum amplitude of 1.5 Vpp after

six sections, which is 25-% larger than the maximum amplitude in a nonlinear

transmission line with the same component values.

Spatial Power Combining This voltage increase is partly due to the spatial

combining mechanism inside the lattice. In the previous simulation in Fig. 5.5,

since the top and bottom boundaries are terminated with matched resistors, the

effective shunt impedance of the lattice closer to its boundaries is lower. As
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Figure 5.5: Simulated voltage amplitude of different points of a 12×12 non-
linear lattice driven by a plane wave propagating from the left
to the right. The top, bottom, and right boundaries are termi-
nated with matched loads.

shown in Fig. 5.5, this results in higher characteristic impedance at the top and

bottom, which pushes some of the signal to the center of the lattice where the

characteristic impedance is relatively lower.

Higher Cut-Off Frequency In addition, the lower characteristic impedance at

the center of the lattice creates some diagonal wave component. For a plane

wave that propagates diagonally, the cut-off frequency of the lattice is

ωc,diagonal =
2
√

2
√

LC
, (5.20)
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Figure 5.6: Simulated amplitude and phase response of the lattice com-
pared with the line.

which is higher than the cut-off frequency of the transmission line with the same

L and C by a factor of
√

2 [21]. This higher cut-off frequency improves the phase

matching and loss for higher frequency components.

To summarize these two effects, Fig. 5.6 shows the small-signal response

of the lattice and a transmission line with the same values of L and C. The

amplitude and propagation phase shift are simulated at the middle node when

the input is applied only to the left. As shown in Fig. 5.6, the signal amplitude

in the lattice is higher than the transmission line for frequencies higher than

20 GHz due to the power-combining effect. After 70 GHz, the lattice shows

significantly larger voltage amplitude due to its higher cut-off frequency. This

higher cut-off frequency also results in better phase matching in the lattice at

above 70 GHz.
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Nonlinear Constructive Interference Next, we add the second plane wave to

the bottom of the lattice as shown in Fig. 5.7. The two waves interact non-

linearly, which means that the amplitude of the generated pulse is more than

the sum of two incoming waves despite its passive structure. This is because

the nonlinear interaction focuses the energy both in time and space, resulting

in higher localized power. This phenomenon has been observed in plasma and

fluid mechanics [22] and more recently in the simulation of the discrete LC lat-

tices [15]. Figure 5.7 shows the maximum amplitude of 3.6 Vpp, which is more

than twice of the maximum amplitude of each plane wave.

To compare the lattice performance to a nonlinear transmission line, we sim-
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Figure 5.8: Simulated output spectrum for (a) the transmission line and (b)
the lattice, and time-domain response for (c) the transmission
line and (d) the lattice.

ulate both structures with different cut-off frequencies for a given propagation

phase shift (i.e., the same effective electrical length) as shown in Fig. 5.8. The

input frequency and amplitude are set at 20 GHz and 500 mV, respectively. The

input source impedance and termination resistance are matched to the char-

acteristic impedance. Figures 5.8(a) and (b) show the spectrum of the output

normalized to the amplitude of the input frequency for the transmission line

and the lattice, respectively. As shown here, the lattice has significantly higher

harmonic components due to the spatial combining, better phase matching, and

nonlinear wave interaction. Figures 5.8(c) and (d) show the output waveforms
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of the transmission line and the lattice, respectively. The lattice has higher am-

plitude at all harmonics that results in a much sharper pulse with higher am-

plitude. The output amplitude of the lattice is around four-times higher than

that of the transmission line. Finally, since the lattice output has more high fre-

quency components, it approaches a single pulse.

5.4 Lattice Design in CMOS

In this section, we overview the design of a nonlinear lattice in a standard 0.13-

µm CMOS technology.

5.4.1 Passive Elements

Accumulation-mode MOS varactors are employed as voltage-dependent capac-

itors that generate nonlinearity in the lattice. The nonlinearity is determined

by Cmax/Cmin and the slope of the capacitance-voltage curve. In parallel with a

bias-dependent capacitance and Cox, parasitic capacitances exist due to fringing

fields and poly and drain/source overlap, degrading the capacitance nonlinear-

ity. Hence, the channel length Lch and width Wch should be sufficient to mini-

mize the portion of parasitics to the total capacitance. On the other hand, the

varactors are the dominant source of loss in the lattice for frequencies higher

than 50 GHz, and hence their quality factor needs to be maximized.

Figure 5.9 shows the simulated varactor capacitance as well as its quality

factor as a function of the bias voltage for different channel lengths. In this

simulation, the signal frequency is 20 GHz, and the capacitance at zero bias
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Figure 5.9: Varactor capacitance and quality factor vs. bias voltage

(C0) is kept constant. When Lch increases, Cmax/Cmin increases due to the lower

portion of parasitics. However, the increase in Lch also decreases the quality

factor since the bias-dependent channel resistance Rch is proportional to Lch, as

illustrated in Fig. 1.7. From the simulation, we found that the optimum channel

width and length are 1.5 µm and 0.3 µm, respectively. These values result in

nonlinearity of b ' 2 V−1 and a quality factor of ∼ 10 at 50 GHz.

The lattice inductors are implemented using a coplanar waveguide with

ground shielding [26]. The signal and ground lines are on the top metal layer (a

4-µm aluminum layer), and the ground shield is made of the bottom metal. The

individual inductors as well as their coupling are simulated using an E/M sim-

ulator, SONNET. Figure 5.10 shows the simulated quality factors of stand-alone

inductors and varactors for a range of frequencies.
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5.4.2 Optimization and Simulation

The design parameters of the lattice are the cut-off frequency, the size, and the

characteristic impedance. For a given input frequency of 20 GHz, the cut-off

frequency of 110 GHz is selected from Fig. 5.8, considering the trade-off among

the pulse width, the amplitude, and the side peak. Then, to determine the op-

timum size, we simulate the lattice for different sizes as shown in Fig. 5.11. As

the lattice size increases, the signal travels longer, resulting in higher harmonic

generation. On the other hand, for lattices larger than 16×16, the loss becomes

dominant, and the harmonic generation is degraded, as discussed in Section 5.2.

Consequently, we select a 16×16 lattice for this design.
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To determine the optimum characteristic impedance of the lattice, we ob-

serve that the output pulse is a result of interference between the two plane

waves and is not a traveling wave. This means that ideally the load impedance

at the center of the lattice should be much higher than the characteristic

impedance to avoid the disturbance of the flow of two incoming waves. For

values of inductors and capacitors that are integrable in CMOS, our simulation

shows that the output pulse is narrower than 5 ps if the characteristic impedance

is lower than 10 Ω for a 50-Ω load. This low characteristic impedance requires

higher input power for a fixed input voltage amplitude to the lattice. To alle-

viate this effect, two nodes of the lattice are connected to the output instead of

the center of the lattice, as shown in Fig. 5.12. Since these two symmetric points

have the same voltage, the effective output load for each one of them is 100 Ω.

This means that the characteristic impedance of the lattice can be increased to

20 Ω. This output configuration also halves the effective output parasitic capac-

itance Cp, which reduces the loading effect of the output pad. To easily probe

the output and to reduce the chip area, the upper left quarter of the lattice is cut

off, as shown in Fig. 5.16. With proper termination, this has no significant effect

on the lattice performance.

Figure 5.13 shows the simulated boosting ratio and the pulse width with re-

spect to the input amplitude for the designed 16 × 16 lattice and a 20-GHz input

signal. The amplitude of the steady-state output signal nonlinearly depends on

the amplitude of the input signal. We characterize this effect using the boosting

ratio, defined as the ratio of output amplitude to input amplitude. As shown

in Fig. 5.13, the higher input amplitude boosts the harmonic generation, result-

ing in higher boosting ratio and narrower pulse width. However, as the input

amplitude becomes larger than ∼ 0.5 V, the boosting ratio and the pulse width
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saturate to 4.1 V/V and 3.8 ps, respectively. This saturation occurs due to the

varactor saturation, as shown in Fig. 5.9.

5.4.3 Distribution Network

Figure 5.14 shows the power divider that distributes input power into 32 ports

in the left and bottom boundaries of the 16×16 lattice. The input impedance of

50 Ω is also transformed to 20 Ω, which is the characteristic impedance of the lat-

tice. The power divider has a tree structure that consists of different L-matches

at each division point. The impedance transformation ratios of all L-matches are

not higher than three for the broad bandwidth. The input pad capacitance and

the inductance of transmission lines of the distribution network are absorbed
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into the matching network. Transmission lines are implemented with a copla-

nar waveguide to minimize the loss for a given inductance. The vertical natu-

ral capacitors (VNCAPs) are used as the matching capacitors [29]. Figure 5.15

shows the simulated S-parameter of the designed power divider when the out-

put ports are connected to 20-Ω terminations. The |S 21| is around −18.5 dB at

around 20 GHz. Since the ideal loss for 32 divisions is −20log(32) = −15 dB,

each L-match has an insertion loss of around 0.5 dB, considering that the signal

passes through seven L-match networks. The power divider also has |S 11| of

below −10 dB at around 20 GHz.
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Figure 5.16: Die photograph of the chip.

5.5 Measurement

A 15×15 lattice is fabricated in a standard 0.13-µm CMOS technology as shown

in Fig. 5.16. The size of the chip is 3 mm×3 mm, including the distribution

network and the lattice. As mentioned, to probe the center of the lattice, the

upper left quarter of the lattice is cut off.

Fig. 5.17 shows the experimental setup to measure the output waveform of
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the lattice. An external power amplifier, which has a 1-dB compression point

of 34 dBm, is placed after the signal source to provide enough power into the

distribution network. The input power level is controlled using the signal gen-

erator. Both input and output are connected using GSG probes. The output sig-

nal is attenuated and connected to an 80-GHz sampling oscilloscope. The loss of

cables, connectors, and the attenuator is measured by a broadband signal gener-

ator, a spectrum analyzer, and the oscilloscope. The response of the oscilloscope

is estimated from its user manual, which is based on the measurement by a

wideband power meter [33]. The total loss of the output measurement setup

including the oscilloscope is shown in Fig. 5.18. Since this loss is due mainly

to the skin effect and limited bandwidth, we model the transfer function of the

test setup as

H( jω) = 10−A/20e−α
√
ω/(1 + jω/ωB), (5.21)

where ωB is the bandwidth of the system, and α is a parameter that represents

the loss of the cable, connectors, and pads. “A” is a frequency-independent at-

tenuation that mainly results from the 10-dB attenuator in Fig. 5.17. To fit the

measured loss with |H( jω)|, A and α are estimated to be 10.6 dB and 1.1×10−7, re-

spectively. Due to the limited bandwidth of the measurement setup, capturing

the output pulse without distortion is very challenging. In simulation, the lattice

output pulse has a significant power even at the 9th harmonic frequency around

180 GHz. For a conservative estimation of the output pulse amplitude, we first

perform the Fourier analysis of directly measured waveform from the oscillo-

scope, and neglect the harmonic components beyond the electrical bandwidth

of the oscilloscope. Then, output loss measured in Fig. 5.18 is compensated at

each harmonic frequency in terms of magnitude and phase. Finally, we perform
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the inverse Fourier transform to recover the waveform in the time domain.

When a 20-GHz sinusoid is applied into the lattice and its amplitude at the

lattice input is around 1.3 Vpp, the measured output waveforms are shown in

Figs. 5.19(a) and (b), before and after de-embedding the loss of the measurement

setup, respectively. The lattice input amplitude is calculated from the input

power and the simulated loss of the distribution network. Fig. 5.19(c) shows

the measured frequency spectrum of the output pulse.

Next, we change both input frequency and amplitude, and measure the am-

plitude of the output pulse as shown in Fig. 5.20. For comparison, we also sim-

ulate the same lattice with linear capacitors. Since the nonlinearity is a function

of signal amplitude, the output amplitude increases nonlinearly with the input

amplitude. To quantify this nonlinear behavior, the boosting ratio, i.e., the ratio

of output and input amplitudes, is also measured, as shown in Fig. 5.21. When

the input amplitude is low and harmonic generation rarely occurs, the nonlinear

lattice behaves much like the simulated linear lattice with the boosting ratio of

1.4 V/V. However, as the input amplitude increases, the boosting ratio increases

up to 2.3 V/V. The increase in the boost ratio is saturated at an input amplitude

of around 0.9 Vpp to 1 Vpp since the varactors saturate, as shown in Fig. 5.9.

Another reason for this saturation is the bandwidth limitation of the test setup

shown in Fig. 5.18. As the input amplitude increases, the generated signal has

a higher portion of its energy above the cut-off frequency of the measurement

setup.

The pulse width is also measured in Fig. 5.22. As the input amplitude in-

creases, the measured pulse width is reduced to 8 ps for an input frequency of

22 GHz. To investigate the minimum pulse width that can be measured with
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Figure 5.19: Measured output waveforms (a) before and (b) after de-
embedding the loss of the measurement setup and (c) their
frequency spectrum
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Figure 5.20: Measured output amplitude versus input amplitude for dif-
ferent frequencies.

our experimental setup, the 10-% - 90-% rise time is calculated based on the

loss equation in (5.21). The calculated rise time is 7.2 ps, and, under the as-

sumption that the waveform is symmetric, the minimum pulse width that can

be measured in our setup is also around 7.2 ps. The actual pulse width can

be estimated from the measured pulse width and the bandwidth of the setup

as [34]

tmeas =

√
t2
pulse + t2

system, (5.22)

where tmeas = 9.6 ps is the minimum measured pulse width before de-embedding

the loss, tsystem = 7.2 ps is the response of the system to an ideal impulse, and tpulse
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Figure 5.21: Measured boosting ratio versus input amplitude for different
frequencies.

is the actual pulse width. Based on the measured results and (5.22), the actual

pulse width is around 6.3 ps. To the best of our knowledge, this is the sharpest

pulse with amplitude higher than 1 V in a CMOS process, as depicted in Table

5.1.

5.6 Discussion

In this section, we discuss the effect of high-order harmonics in a nonlinear lat-

tice, which were neglected in the measurement. We also discuss a triangular

lattice with a half size and the same performance using diagonal symmetry.
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Table 5.1: Comparison with prior art

Pulse
width (ps)

Duty cycle
(%)

Amplitude
(Vpp) Technology Type

[12] 5.5 4.4 3.9 GaAs Transmission
line

[13] 23 21 0.95 0.18-µm BiCMOS Transmission
line

[18] 293 33 1.5 0.18-µm CMOS Oscillator
[19] 16 30 0.5 GaAs Oscillator

This
work 9.6 (6.3*) 21 (14*) 2.7 0.13-µm CMOS Lattice

Pulse width and duty cycle are measured directly from sampling-circuit or
oscilloscope without de-embedding the bandwidth of the measurement setup.

* is the estimated value after de-embedding.
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5.6.1 High-order Harmonics Consideration

We estimated the lattice performance based on the measurement that neglects

higher harmonics than the fourth because of the equipment bandwidth limit.

However, the simulation showed that a considerable portion of pulse power

still exists beyond the fourth harmonics, which predicts that the amplitude is

underestimated and the pulse width is overestimated in the measurement. To

investigate the difference depending on the number of harmonics taken into ac-

count, Fig. 5.23 shows the simulation results when the input amplitude is 1Vp−p

at 20 GHz. As more harmonics is taken into account, the amplitude increases

and the pulse width decreases. As shown in Fig. 5.23, the boost ratio is in-

creased by 0.9 V/V and the pulse width is significantly decreased from 8.6 ps to

4.8 ps when we include up to the tenth harmonics for the waveform recovery.

Based on this analysis, we can estimate the pulse width of less than 4.8 ps from

the measured pulse width of 8 ps when the input frequency and amplitude are

22 GHz and 1.3 Vp−p.

5.6.2 Half-size Triangular Lattice

Using diagonal symmetry, we can reduce the size of a rectangular lattice by

folding it in the diagonal direction as shown in Fig. 5.24. After folding, induc-

tance and capacitance at each node are changed into L/2 and 2C due to parallel

combination except for diagonal boundary capacitors. Therefore, the character-

istic impedance is reduced by half, while the cut-off frequency does not change.

This means that the total input energy into a half-sized lattice is the same as

a full-sized one, since input energy into each port is doubled to maintain the
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Figure 5.23: (a)Frequency and (b)time domain lattice output when we take
into account up to fourth harmonics and tenth harmonics.

same input voltage amplitude but the number of input ports is halved. Fig. 5.25

shows the simulation result of amplitude profile in a 12×12 lattice for full-size

and half-size ones. These two graphs demonstrate that a half-size triangular

lattice exhibits the same amplitude as well as the same interference pattern as a

full-size rectangular lattice for a given input energy.
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Figure 5.25: Amplitude profile in (a) a full-size lattice and (b) a half-size
lattice (we only plot the upper half even for a full-size lattice.)

5.7 Conclusion

In this chapter, we have demonstrated the generation of very narrow and high-

amplitude pulses using a nonlinear 2-D lattice in a lossy CMOS process. This

has been accomplished by exploiting the constructive interference of two plane

waves traveling perpendicular to each other in an optimally-designed nonlinear

medium. Despite its large chip area, the nonlinear lattice enables picosecond

pulse generation in a standard CMOS process, opening a new door to several

new applications, such as millimeter-wave imaging, spectroscopy, and ultra-

wideband systems.
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CHAPTER 6

CONCLUSION

In this study, we have applied interesting nonlinear phenomena, mostly studied

in optics and physics, to CMOS analog circuit design in order to overcome the

performance limit in noise, speed, and power. Using this concept, we have

demonstrated passive frequency division, noise squeezing, and nonlinear pulse

generation.

To reduce the overall system power and phase noise in high-speed frequency

synthesizers, we have proposed a new frequency divider that can operate at

high frequencies with very low noise without any DC power consumption. In

this circuit, the oscillation at target frequency is sustained by the energy injec-

tion from input signal through parametric amplification, instead of noisy and

power-consuming transistors. Based on this concept, a passive 20-GHz fre-

quency divider with close to ideal noise performance was implemented in a

CMOS process for the first time. In terms of power efficiency and phase noise,

this is better than the widely used injection-locked frequency division.

Next, to achieve sensitivity toward the thermal noise limit, we have demon-

strated noise squeezing in electrical circuits for the first time. By exploiting

degenerate parametric amplification, in which a pump at twice the signal fre-

quency supplies energy to or extracts energy from the signal depending on

the phase difference, we proposed a method to trade the amplitude and phase

noise, squeezing the circular noise portrait into an oval shape. In other words,

we can enhance the sensitivity of one signal aspect (e.g., the phase or in-phase

component) at the expense of degrading the other orthogonal aspect (e.g., the

amplitude or quadrature component). The first prototype was a 10-GHz CMOS
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low-noise amplifier with a sensitivity enhancement factor(i.e., squeezing factor)

of 2.5 dB for one quadrature phase.

Lastly, we have demonstrated the generation of very narrow and high-

amplitude pulses using a nonlinear lattice in a lossy CMOS process. Narrow

pulse generation with a sufficient power level is essential in high data rate

sampling, time-domain reflectometry, sensing and imaging, spectroscopy, and

pulse-based wireless communication. For high-amplitude sharp pulse genera-

tion, we proposed to use the nonlinear wave interaction in a two-dimensional

electrical medium. In this system, when two waves collide orthogonally, they

combine in a nonlinear fashion: The amplitude of the outgoing wave is greater

than the sum of the incoming waves with much higher frequency components.

After analyzing this concept, we demonstrated a 2.7-V pulse generation with

a 6-ps pulse width from a 22-GHz input in a standard 130-nm CMOS process.

To the best of our knowledge, regarding the high-amplitude pulses, this work

shows the sharpest pulse in any CMOS process.
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