
SELECTED TOPICS IN NONPARAMETRIC
TESTING AND VARIABLE SELECTION FOR

HIGH DIMENSIONAL DATA

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Pengsheng Ji

August 2012



c© 2012 Pengsheng Ji

ALL RIGHTS RESERVED



SELECTED TOPICS IN NONPARAMETRIC TESTING AND VARIABLE

SELECTION FOR HIGH DIMENSIONAL DATA

Pengsheng Ji, Ph.D.

Cornell University 2012

Part I:

The Gaussian white noise model has been used as a general framework for

nonparametric problems. The asymptotic equivalence of this model to density

estimation and nonparametric regression has been established by Nussbaum

(1996), Brown and Low (1996).

In Chapter 1, we consider testing for presence of a signal in Gaussian white

noise with intensity n−1/2, when the alternatives are given by smoothness ellip-

soids with an L2-ball of radius ρ removed. It is known that, for a fixed Sobolev

type ellipsoid Σ(β,M) of smoothness β and size M, the radius rate ρ � n−4β/(4β+1)

is the critical separation rate, in the sense that the minimax error of second kind

over α-tests stays asymptotically between 0 and 1 strictly (Ingster, 1982). In ad-

dition, Ermakov (1990) found the sharp asymptotics of the minimax error of

second kind at the separation rate. For adaptation over both β and M in that

context, it is known that a log log-penalty over the separation rate for ρ is neces-

sary for a nonzero asymptotic power. Here, following an example in nonpara-

metric estimation related to the Pinsker constant, we investigate the adaptation

problem over the ellipsoid size M only, for fixed smoothness degree β. It is

established that the Ermakov type sharp asymptotics can be preserved in that

adaptive setting, if ρ → 0 slower than the separation rate. The penalty for ada-

pation in that setting turns out to be a sequence tending to infinity arbitrarily



slowly.

In Chapter 2, motivated by the sharp asymptotics of nonparametric estima-

tion for non-Gaussian regression (Golubev and Nussbaum, 1990), we extend Er-

makov’s sharp asymptotics for the minimax testing errors to the nonparametric

regression model with nonnormal errors. The paper entitled “Sharp Asymp-

totics for Risk Bounds in Nonparametric Testing with Uncertainty in Error Dis-

tributions” is in preparation.

This part is joint work with Michael Nussbaum.

Part II:

Consider a linear model Y = Xβ + z, z ∼ N(0, In). Here, X = Xn,p, where

both p and n are large but p > n. We model the rows of X as iid samples from

N(0, 1
nΩ), where Ω is a p × p correlation matrix, which is unknown to us but is

presumably sparse. The vector β is also unknown but has relatively few nonzero

coordinates, and we are interested in identifying these nonzeros.

We propose the Univariate Penalization Screeing (UPS) for variable selec-

tion. This is a Screen and Clean method where we screen with Univariate

thresholding, and clean with Penalized MLE. It has two important properties:

Sure Screening and Separable After Screening. These properties enable us to

reduce the original regression problem to many small-size regression problems

that can be fitted separately. The UPS is effective both in theory and in compu-

tation.

We measure the performance of a procedure by the Hamming distance, and

use an asymptotic framework where p → ∞ and other quantities (e.g., n, s-

parsity level and strength of signals) are linked to p by fixed parameters. We

find that in many cases, the UPS achieves the optimal rate of convergence. Al-



so, for many different Ω, there is a common three-phase diagram in the two-

dimensional phase space quantifying the signal sparsity and signal strength. In

the first phase, it is possible to recover all signals. In the second phase, it is

possible to recover most of the signals, but not all of them. In the third phase,

successful variable selection is impossible. UPS partitions the phase space in the

same way that the optimal procedures do, and recovers most of the signals as

long as successful variable selection is possible.

The lasso and the subset selection are well-known approaches to variable

selection. However, somewhat surprisingly, there are regions in the phase space

where neither of them is rate optimal, even in very simple settings such as Ω is

tridiagonal, and when the tuning parameter is ideally set.

This part is joint work with Jiashun Jin, and has appeared in Annals of S-

tatistics.
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CHAPTER 1

SHARP ADAPTIVE NONPARAMETRIC HYPOTHESIS TESTING FOR

SOBOLEV ELLIPSOIDS

1.1 Introduction and main result

Consider the Gaussian white noise model in sequence space, where observa-

tions are

Y j = f j + n−1/2ξ j, j = 1, 2, ..., (1.1.1)

with unknown, nonrandom signal f = ( f j)∞j=1, and noise variables ξ j which are

i.i.d. N(0, 1). It can also be written in the form of the stochastic differential

equation

dY(t) = f (t)dt + n−1/2dW(t), t ∈ [0, 1],

where W is a standard Wiener process on [0, 1], given an orthonormal basis. The

asymptotic equivalence to nonparametric regression and density estimation has

been established by Brown and Low (1996), and Nussbaum (1996).

We intend to test the null hypothesis of “no signal” against nonparametric

alternatives described as follows. For some β > 0 and M > 0, let Σ(β,M) be the

set of sequences

Σ(β,M) = { f = ( f j)∞j=1 :
∞∑
j=1

j2β f 2
j ≤ M};

this might be called a Sobolev type ellipsoid with smoothness parameter β and

size parameter M. Consider further the complement of an open ball in the se-

quence space l2: if ‖ f ‖22 =
∑∞

j=1 f 2
j is the squared norm then

Bρ = { f ∈ l2 : ‖ f ‖22 ≥ ρ}.

1



Here ρ1/2 is the radius of the open ball; by an abuse of language we call ρ itself

the “radius”. We study the hypothesis testing problem

H0 : f = 0 against Ha : f ∈ Σ(β,M) ∩ Bρ.

Assuming that n→ ∞, implying that the noise size n−1/2 tends to zero, we expect

that for a fixed radius ρ, consistent α-testing in that setting is possible. More

precisely, there exist α-tests with type II error tending to zero uniformly over

the nonparametric alternative f ∈ Σ(β,M) ∩ Bρ. If now the radius ρ = ρn tends

to zero as n→ ∞, the problem becomes more difficult and if ρn → 0 too quickly,

all α-tests will have the trivial asymptotic (worst case) power α. According to

fundamental results of Ingster (1982, 1984), there is a critical rate for ρn, the so-

called separation rate

ρn � n−4β/(4β+1) (1.1.2)

at which the transition in the power behaviour occurs. More precisely, consider

a (possibly randomized) α-test φn in the model (1.1.1) with respect to H0 : f = 0,

that is, a test fulfilling En,0φn ≤ α where En, f (·) denotes expectation in the model

(1.1.1). For given φn, we define the worst case type II error over the alternative

f ∈ Σ(β,M) ∩ Bρ as

Ψ(φn, ρ, β, M) := sup
f∈Σ(β,M)∩Bρ

(
1 − En, fφn

)
.

The search for a best α-test in this sense leads to the minimax type II error

πn(α, ρ, β, M) := inf
φn:En,0φn≤α

Ψ(φn, ρ, β, M).

An α-test which attains the inf above for a given n is minimax with respect to

type II error. Ingster’s separation rate result can now be formulated as follows:

if ρn � n−4β/(4β+1) and 0 < α < 1 then

0 < lim
n
πn(α, ρn, β,M) and lim

n
πn(α, ρn, β,M) < 1 − α.

2



Moreover, if ρn � n−4β/(4β+1) then πn(α, ρn, β,M) → 0, and if ρn � n−4β/(4β+1) then

πn(α, ρn, β,M)→ 1 − α.

These minimax rates in nonparametric testing, presented here in the sim-

plest case of an l2-setting, have been extended in two ways. Firstly, Ermakov

(1990) found the exact asymptotics of the minimax type II error πn(α, ρ, β, M) (e-

quivalently, of the maximin power) at the separation rate. The shape of that

result and its derivation from an underlying Bayes-minimax theorem on ellip-

soids exhibit an analogy to the Pinsker constant in nonparametric estimation.

Secondly, Spokoiny (1996) considered the adaptive version of the minimax non-

parametric testing problem, where both β and M are unknown, and showed

that the rate at which ρn → 0 has to be slowed by a log log n-factor if nontriv-

ial asymptotic power is to be achieved. Thus an “adaptive minimax rate” was

specified, analogous to Ingster’s nonadaptive separation rate (1.1.2), where the

additional log log n-factor is interpreted as a penalty for adaptation. However a

corresponding sharp adaptive type II error asymptotics in the sense of Ermakov

(1990) has not been obtained.

It is noteworthy that in nonparametric estimation over f ∈ Σ(β,M) with l2-

loss (as opposed to testing), where the risk asymptotics is given by the Pinsker

constant, there is a multitude of results showing that adaptation is possible with

neither a penalty in the rate nor in the constant, cf. Efromovich and Pinsker

(1984), Golubev (1987, 1992), Tsybakov (2009). The present paper deals with

the question of whether the sharp risk asymptotics for testing in the sense of

Ermakov (1990) can be reproduced in an adaptive setting, in the context of a

possible rate penalty for adaptation.

Let us first present the well known results on sharp risk asymptotics for

3



testing in the nonadaptive setting. Let Φ be the distribution function of the

standard normal, and for α ∈ (0, 1) let zα be the upper α-quantile, such that

Φ(zα) = 1−α. Write an � bn (or bn � an) iff bn = o(an), and an ∼ bn iff limn an/bn = 1.

Proposition 1. (Ermakov, 1990) Suppose α ∈ (0, 1),and that the radius ρn tends to

zero at the separation rate, more precisely

ρn ∼ c · n−4β/(4β+1),

for some constant c > 0.

(i) For any sequence of tests φn satisfying En,0φn ≤ α+o(1), we have the following lower

bound

Ψ(φn, ρn, β,M) ≥ Φ(zα −
√

A(c, β,M)/2) + o(1) as n→ ∞,

where

A(c, β,M) = A0(β)M−1/(2β)c2+1/(2β)

and A0(β) is Ermakov’s constant

A0(β) =
2(2β + 1)

(4β + 1)1+1/(2β) . (1.1.3)

(ii) For given β and M > 0 there exists a sequence of tests φn satisfying En,0φn ≤ α+o(1)

such that

Ψ(φn, ρn, β,M) ≤ Φ(zα −
√

A(c, β,M)/2) + o(1).

This gives the sharp asymptotics for the minimax type II error at the separa-

tion rate, analogous to the Pinsker constant for nonparametric estimation. The

optimal test attaining the bound of (ii) above, as given by Ermakov (1990), de-

pends on β and M. As regards adaptivity in both of these unknown parameters,

a test can not depend on them and the following result is known.

4



Proposition 2. (Spokoiny, 1996). Let T be a subset of (0,∞) × (0,∞) such that there

exist M > 0, β2 > β1 > 0 and

T ⊇ {(β,M) : β1 ≤ β ≤ β2}.

(i) If tn � (log log n)1/2 and ρn ∼ c · (n/tn)−4β/(4β+1), then for any constant c > 0 and any

adaptive test φn satisfying En,0φn ≤ α + o(1), we have

sup
(β,M)∈T

Ψ(φn, ρn, β,M) ≥ 1 − α + o(1).

(ii) For any β∗ > 1/2 and 0 < M1 ≤ M2, let

T = {(β,M) : 1/2 < β ≤ β∗,M1 ≤ M ≤ M2}.

Then there exist a constant c1 = c1(β∗,M1,M2) and an adaptive test φn satisfying

En,0φn = o(1), such that, if

ρn ∼ c1

(
n

(log log n)1/2

)−4β/(4β+1)

(1.1.4)

then

sup
(β,M)∈T

Ψ(φn, ρn, β,M) = o(1). (1.1.5)

Here the criterion to evaluate a test sequence has changed, to include the

worst case type II error over a whole range of β,M. Hence the critical ra-

dius rate (1.1.4) has to be interpreted as an adaptive separation rate. It differs

by a factor (log log n)2β/(4β+1) from the nonadaptive separation rate (1.1.2); this

factor is an example of the well-known phenomenon of a penalty for adapta-

tion. Furthermore, as noted in Spokoiny (1996), a degenerate behaviour oc-

curs here, in that both error probabilities at the critical rate tend to zero. Thus

any sequence φn of tests fulfilling (1.1.5) should be seen as adaptive rate optimal,

5



comparable to rate optimal tests in the nonadaptive case (that is, tests fulfilling

limn Ψ(φn, ρn, β,M) < 1 − α at ρn given by (1.1.2)). In Ingster and Suslina (2003),

chap. 7, the worst case adaptive error (1.1.5) is further analyzed, with a view to a

sharp asymptotics, but the results are not conclusive with regard discriminating

between different adaptive rate optimal sequences of tests.

In this paper we address the question of whether an exact type II error

asymptotics in the sense of Ermakov(1990) is possible in an adaptive setting. In

our approach β is kept fixed and known, while we aim for adaptation over the

ellipsoid size M. First, we present a negative result for adaptation at Ingster’s

separation rate.

Theorem 1. Suppose c > 0, 0 < M1 < M2 < ∞ and ρn ∼ c · n−4β/(4β+1). Then there is

no adaptive test φn satisfying En,0φn ≤ α + o(1), such that

Ψn(φn, ρn, β,Mi) ≤ Φ(zα −
√

A(c, β,Mi)/2) + o(1),

for i = 1, 2.

This result states sharp adaptation even just for M at the separation rate is

impossible, and the adaptation for even just M is not trivial as some might think.

Instead, we enlarge the radius slightly and examine how the minimax error

approaches zero. To be specific, we replace the constant c in ρn ∼ c · n−4β/(4β+1)

by a sequence cn tending to infinity slowly. In that case the minimax type II

error bound of Proposition 1, namely Φ(zα −
√

A(c, β,M)/2) will tend to zero.

To this error probability we apply a log-asymptotics as in moderate and large

deviation theory and show that in this sense, adaptation to Ermakov´s constant

is possible.

Theorem 2. Assume cn → ∞ and cn = o(nK) for every constant K > 0. If ρn =

6



cn · n−4β/(4β+1), there exists a test φn not depending on M such that

En,0φn ≤ α + o(1),

and for all M > 0,

lim
n

1

c2+1/(2β)
n

log Ψ(φn, ρn, β,M) ≤ −
A0(β)M−1/(2β)

4

However now, since the optimality criterion has been changed, a formal ar-

gument is needed that no α-test can be better in the sense of the log-asymptotics

for the error of second kind. Such a result is implied by Theorem 3 in Ermakov

(2008), where the nondaptive sharp asymptotics was studied in a setting where

ρn = cn · n−4β/(4β+1) with cn → ∞, hence error probabilities tending to zero. Since

the nonadaptive minimax lower risk bound for fixed c is based on a Gaussian

limit argument, the case of cn → ∞ (sufficiently slowly) should be treated with

the methodology of moderate deviations.

Theorem 3. Under the same assumptions as in the last theorem, if ρn = cn · n−4β/(4β+1),

then for any test φn (possibly depending on M) satisfying En,0φn ≤ α + o(1), we have

lim
n

1

c2+1/(2β)
n

log Ψ(φn, ρn, β,M) ≥ −
A0(β)M−1/(2β)

4
.

This result is implied by Theorem 3 in Ermakov (2008), and hence the proof

is omitted.

We have a few remarks to address the relation to the literature.

1.) Ermakov (2008) also shows that, for nonadaptive testing, these asymp-

totics of moderate deviation probabilities are valid in a sharper sense, i.e., there

7



are tests φn depending on M such that

Ψ(φn, ρn, β,M) = (1 + o(1)) · Φ
(
zα −

√
A0M−1/(2β)c2+1/(2β)

n /2
)
.

This is in the same spirit of the Cramer type of moderate deviation, as discussed

for the central limit theorem by Chen et al. (2011), chap. 11. The question

whether this sharper asymptotics can be replicated in the adaptive setting is

open.

2.) Ingster(1993a, 1993b, 1993c, 1998) discussed the “detection” problem for

`p ball using the sum of the type I error and the maximum type II error. The

conditions for which the sum of is bounded away from 0 and 1 are given. But

no sharp or adaptive asymptotics is obtained.

3.) Golubev(1987) studied the adaptive estimation with β fixed, but incorpo-

rates local aspects (twofold, both local with respect to x ∈ [0, 1] and smoothness

class) to construct the optimal test. In the current paper, we do not use the local

aspects.

4.) In the literature, the testing problem considered here has sometimes

been connected with the estimation problem of the quadratic functional Q( f ) =∑∞
i=1 f 2

j , Ibragimov and Hasminskii(1980), Bickel and Ritov(1988) found that

when the unknown function is sufficiently smooth, quadratic functionals can

be estimated with parametric
√

n rate, otherwise the rate is slower. More pre-

cisely, the minimax rate with the parameter space Σ(β,M) is n−r with an exponent

r =
4β

4β+1 < 1
2 when 0 < β < 1/4, but when β ≥ 1/4, the minimax rate becomes

n−1/2. Efromovich(1994) showed that at the point β = 1/4 the optimal adap-

tive rate is n−1/2cn where cn → ∞ slower than any power function of n, and for

β > 1/4, the optimal adaptive rate is n−1/2. Efromovich and Low(1996) showed

that, in the case β < 1/4, the optimal adaptive rate is (n log
√

n)−r, which is larger

8



than the nonadaptive rate by a logarithmic factor. See Tsybakov (1998) for more

discussion of the adaptive rates and of the boundary effects. Klemela (2006)

found sharp adaptive estimators for the irregular case β < 1/4. That is, first, the

constant Kβ,M is found such that

lim
n→∞

inf
Q̂

sup
(β,M)∈B

(
Kβ,M(n log

√
n)−r

)−p
sup

f∈Σ(β,M)
|Q̂ − Q( f )|p = 1,

where B = [β1, β2] × [M1,M2], β2 < 1/4 and p ≥ 1. Second, the estimators which

do not depend on (β,M) and achieve the infimum are obtained.

The rest of the paper is organized as follows. In Section 2, we show that the

minimax quadratic test is asymptotically minimax over all tests, and provide

the idea of the proofs in Sections 3, 4 and 5. Finally, in the appendix, we re-

cap the ideas for adaptive estimation of Golubev (1992) to help the readers to

understand the idea of adaptive testing.

1.2 The Bayes-minimax problem for nonparametric testing

The purpose of this expository section is to elucidate the analogy between the

Pinsker constant for L2-estimation over ellipsoids and the constant found by

Ermakov (1990) for nonparametric testing over ellipsoids with an L2-ball re-

moved. We draw on the backgound explanation given in Ingster and Suslina

(2003), sec. 4.1, but we focus specifically on the fact that very similar Bayes-

minimax problems are at the root of the estimation and testing variants. For the

theory underlying the Pinsker constant cf. Belitser and Levit (1995), Nussbaum

(1999), Tsybakov (2009).

For this exposition, we shall assume that observations (1.1.1) are for j =

9



1, . . . , n; we will thus assume f ∈ Rn and understand the sets Σ(β,M) and Bρ

accordingly, i.e. they refer only to the first n coefficents of f . By ‖·‖ and 〈·, ·〉 we

denote euclidean norm and inner product in Rn. Since most expressions will

depend on n, for this discussion we shall often suppress dependence on n in

the notation. Assume that the radius ρ tends to zero at the critical rate, that

is ρ � n−4β/(4β+1). Let Rn
+ = [0,∞)n; for a certain d ∈ Rn

+, consider a quadratic

statistic of the form T̃ = n
∑n

j=1 d jY2
j . Under H0, we have En,0T̃ =

∑n
j=1 d j and

Var0,nT̃ = 2 ‖d‖2. Since we will work with the normalized test statistic, obtained

by centering and dividing by the standard deviation, it is obvious that we need

only consider coefficients d fulfilling ‖d‖2 = 1. Accordingly define, for such co-

efficients d, the statistic

T =
1
√

2

T̃ − n∑
j=1

d j

 . (1.2.6)

Under H0, we now have E0T = 0 and Var0T = 1. We will consider quadratic tests

ψd = 1 {T > zα} . (1.2.7)

A further condition on d is imposed by requiring d ∈ D, a set which is defined

for a given sequence δ =
(
log n

)−1 as

D = {d ∈ Rn
+ : ‖d‖2 = 1 and sup

j
d2

j ≤
δ

nρ
}. (1.2.8)

For any test, we are interested in the worst case type II error under the constraint

f ∈ Σ(β,M) ∩ Bρ. A monotonicity argument shows that for every ψd, this is

attained when ‖ f ‖2 is minimal, i.e. at ‖ f ‖2 = ρ. It follows that for quadratic tests

ψd, we may replace the restriction f ∈ Bρ by f ∈ B′ρ where

B′ρ = { f ∈ Rn : ρ ≤ ‖ f ‖2 ≤ 2ρ}.

For f ∈ Rn we set f 2 :=
(

f 2
j

)n

j=1
. For d ∈ D and g ∈ Rn

+ define the functional

L(d, g) =
n
√

2
〈d, g〉 .

10



Lemma 1.2.1. (a) Under H0, we have T  N(0, 1) uniformly over d ∈ D.

(b) The statistic T given by (1.2.6) fulfills

T − L(d, f 2) N(0, 1)

uniformly over d ∈ D and f ∈ B′ρ.

(c) Suppose f is random such that f j ∼ N
(
0, σ2

j

)
for a certain σ ∈ Rn. Then the statistic

T given by (1.2.6) fulfills

T − L(d, σ2) N(0, 1)

uniformly over d ∈ D and σ ∈ B′ρ.

Denote the expectation under the model of (c) by E∗σ. The lemma implies

that for uniformly over d ∈ D and f ∈ {0} ∪
(
Σ(β,M) ∩ B′ρ

)
E f (1 − ψd) = Φ(zα − L(d, f 2)) + o(1) (1.2.9)

= E∗f (1 − ψd) + o(1). (1.2.10)

In particular, all quadratic tests ψd with d ∈ D are aymptotic α-tests un-

der H0 : f = 0. To characterize the worst case error under the alternative

Ha : f ∈ Σ(β,M)∩ Bρ, we use (1.2.9) and the strict monotonicity of Φ and look for

a saddlepoint of the functional L(d, f 2).

Lemma 1.2.2. For n large enough, there exists a saddlepoint d0 ∈ D, f0 ∈ Σ(β,M) ∩ B′ρ

of the functional L(d, f 2) such that

L(d, f 2
0 ) ≤ L(d0, f 2

0 ) ≤ L(d0, f 2)

for all d ∈ D and all f ∈ Σ(β,M) ∩ B′ρ.
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The normal distribution on the signal f postulated in (c) will be interpreted

as a prior distribution. The next result shows that the Bayesian tests in this con-

text are quadratic tests ψd, and in particular, if the σ2 is taken at the saddlepoint

(σ2
0 = f 2

0 ) then d ∈ D, i.e. it fulfills the infinitesimality condition d2
j ≤ δ/nρ.

Lemma 1.2.3. (a) For any σ2 ∈ Rn
+, the Neyman-Pearson α-test for simple hypotheses

H0 : Y j ∼ N(0, n−1), j = 1, . . . , n

H∗a : Y j ∼ N(0, σ2
j + n−1), j = 1, . . . , n

is equivalent to a quadratic test pof form ψd = 1 {T > t} where T =
∑n

j=1 d jY2
j , d ∈ Rn

+,

‖d‖ = 1.

(b) If σ2 = f 2
0 then the pertaining d is inD for n large enough, and t → zα.

Part (b) implies that

inf
φ:E0φ≤α

E∗f0(1 − φ) = inf
d∈D

E∗f0(1 − ψd) + o(1). (1.2.11)

We are now ready to present the essence of the argument underlying the result

of Ermakov (1990). Recall that πn(α, ρ, β, M) denotes the minimax type II error

over all α-tests. Denote the value of L(d, f 2) at the saddlepoint

L0 := L(d0, f 2
0 ) = sup

d∈D
inf

f∈Σ(β,M)∩B′ρ
Ln(d, f 2) = inf

f∈Σ(β,M)∩B′ρ
sup
d∈D

Ln(d, f 2). (1.2.12)

We begin with an α′ > α such that asymptotic α-tests are α′-tests for n large
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enough. Then

πn(α′, ρ, β, M) = inf
φ:E0φ≤α′

sup
f∈Σ(β,M)∩Bρ

E f (1 − φ) ≤ inf
d∈D

sup
f∈Σ(β,M)∩Bρ

E f (1 − ψd) (1.2.13)

= inf
d∈D

sup
f∈Σ(β,M)∩B′ρ

E f (1 − ψd)

= inf
d∈D

sup
f∈Σ(β,M)∩B′ρ

Φ(zα − Ln(d, f 2)) + o(1) [relation (1.2.9)]

= Φ(zα − Ln(d0, f 2
0 )) + o(1) [monotonicity of Φ and (1.2.12)]

= inf
d∈D

E∗f0(1 − ψd) + o(1) [relation (1.2.10)]

= inf
φ:E0φ≤α

E∗f0(1 − φ) + o(1) [relation (1.2.11)].

The main term of the last expression is the Bayes risk for a prior distribution

f j ∼ N(0, f 2
0 j) in the original model Y j ∼ N

(
f j, n−1

)
. Since f0 ∈ Σ(β,M) ∩ B′ρ and is

extremal there, it fulfills

n∑
j=1

f 2
0 j j2β = M,

n∑
j=1

f 2
0 j = ρ

(see the precise description of the saddlepoint (d0, f0) in Lemma 1.5.1 below).

It can therefore be shown that (as in the original Pinsker [1980] result) that this

prior distribution asymptotically concentrates on every set of the form Σ(β,M(1+

ε))∩B′ρ(1−ε) for ε > 0. A standard reasoning by truncation shows that in this case,

for a certain probability measure G strictly concentrated on Σ(β,M(1+ε))∩B′ρ(1−ε)

inf
φ:E0φ≤α

E∗f0(1 − φ) ≤ inf
φ:E0φ≤α

∫
E f (1 − φ)dG( f ) + o(1).

However, by the relation between Bayes and minimax risk

inf
φ:E0φ≤α

∫
E f (1 − φ)dG( f ) ≤ πn(α, ρ(1 − ε), β,M(1 + ε)). (1.2.14)

Summarizing (1.2.13)-(1.2.14) we have obtained for every ε > 0

πn(α(1 + ε), ρ, β, M) ≤ Φ(zα − Ln(d0, f 2
0 )) + o(1) ≤ πn(α, ρ(1 − ε), β,M(1 + ε)) + o(1)
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Below in Lemma 8, it is shown that if ρ = c · n−4β/(4β+1), where c is constant, then

L(d0, f 2
0 ) ∼

√
A0M−1/(2β)c2+1/(2β)/2.

Since the right side is continuous in M and c , the result of Proposition 1 follows.

1.3 Proof of Theorem 1

For brevity we write Ai = A(c, β,Mi), i = 1, 2 in this section. Assume there exists

a test φn not depending on i such that

En,0φn ≤ α + o(1), (1.3.15)

sup
f∈Σ(β,Mi)∩Bρ

En, f (1 − φn) ≤ Φ(zα −
√

Ai/2) + o(1), (1.3.16)

for i = 1 or 2. Let Gn,Mi be the Gaussian prior for f with f j ∼ N(0, σ∗2j ) indepen-

dently, where

σ∗2j (Mi) = (λ − µ j2β)+, j = 1, 2, . . .

and where λ and µ are determined by∑
j2βσ∗2j = Mi and

∑
σ∗2j = ρ.

It can be shown that Gn,Mi asymptotically concentrates on Σ(β,Mi). Then

sup
f∈Σ(β,Mi)∩Bρ

En, f (1 − φn) ≥ (1 + o(1)) ·
∫

En, f (1 − φn) Gn,Mi(d f ). (1.3.17)

p Recall Y j = f j + n−1/2ξ j. Let the joint distributions of (Y j)∞0 under the priors

Gn,0,Gn,M1 and Gn,M2 be Q0,n,Q1,n and Q2,n, respectively, i.e.,

Q0,n : Y j ∼ N(0, n−1), j = 1, 2, . . .

Q1,n : Y j ∼ N(0, n−1 + σ∗2j (M1)), j = 1, 2, . . .

Q2,n : Y j ∼ N(0, n−1 + σ∗2j (M2)), j = 1, 2, . . .
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Therefore,

EQ0,nφn = En,0φn,

EQi,n(1 − φn) =

∫
En, f (1 − φn) Gn,Mi(d f ), i = 1, 2.

Combining these with (1.3.16) and (1.3.17) gives

EQ0,nφn ≤ α + o(1), (1.3.18)

EQi,n(1 − φn) ≤ Φ(zα −
√

Ai/2) + o(1), i = 1, 2. (1.3.19)

The likelihood ratio of Qi,n against Q0,n is

dQi,n

dQ0,n
= exp

−1
2

∑
j

 Y2
j

n−1 + σ∗2j (Mi)
−

Y2
j

n−1


 ·∏

j

 n−1

n−1 + σ∗2j (Mi)

1/2

= exp

1
2

∑
j

n2σ∗2j (Mi)

1 + nσ∗2j (Mi)
Y2

j

 ·∏
j

 n−1

n−1 + σ∗2j (Mi)

1/2

.

Therefore, by the factorization theorem, it is seen that the bivariate vector

Tn =


∑

j

n2σ∗2j (M1)(Y2
j − n−1)

(1 + nσ∗2j (M1))
√

2n2 ∑
k σ
∗4
k (M1)

,
∑ n2σ∗2j (M2)(Y2

j − n−1)

(1 + nσ∗2j (M2))
√

2n2 ∑
k σ
∗4
k (M2)


is a sufficient statistic for the family of distributions {Q0,n,Q1,n,Q2,n}. Write the

induced family for Tn as {QT
0,n,Q

T
1,n,Q

T
2,n} and take the conditional expectation

φ∗n(Tn) = EQi,n(φn|Tn). By sufficiency (Bahadur´s theorem, cf. Lehmann and Ro-

mano, 2005, chap. 11), the (possibly randomized) test φ∗n(Tn) for {QT
0,n,Q

T
1,n,Q

T
2,n}

is as good as φn, i.e.,

EQT
0,n
φ∗n = En,0φn ≤ α + o(1), (1.3.20)

EQT
i,n

(1 − φ∗n) = EQ1,nφn ≤ Φ(zα −
√

Ai/2) + o(1), i = 1, 2. (1.3.21)

Then we have the following lemma, which is proved later.
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Lemma 1.3.1. Under {Q0,n,Q1,n,Q2,n}, the law of the statistic Tn converges in total

variation to N(0,Σ), N(µ1,Σ) and N(µ2,Σ) respectively, where

µ1 = (
√

A1/2, r
√

A1/2)′,

µ2 = (r
√

A2/2,
√

A2/2)′,

Σ =

 1 r

r 1

 ,
r =

(
M1

M2

)1/(4β)

·
4β + 1 − M1/M2

4β
. (1.3.22)

Then by the weak compactness theorem (c.f. Lehmann and Romano, 2005,

Appendix), there exists a test φ∗ and a subsequence φ∗nk
such that φ∗nk

converges

weakly to φ∗. Thus

EQT
0,n
φ∗ ≤ α,

EQT
i,n

(1 − φ∗) ≤ Φ(zα −
√

Ai/2), i = 1, 2.

By the Neyman-Pearson lemma and some direct calculations, the right hand

side of the previous inequality is the type II error of the uniformly most pow-

erful test for N(0,Σ) against N(µi,Σ), for i = 1, 2, respectively. Therefore, φ∗ is a

uniformly most powerful test for N(0,Σ) against {N(µ1,Σ),N(µ2,Σ)}.

On the other hand , note that r in Lemma 1.3.1 is monotone increasing with

respect to M1/M2, and then 0 < r < 1 for M2 > M1 > 0. Thus, µ1, µ2 and the

origin are not on the same line. For i = 1, 2 respectively, the log-likelihood

ratio for N(µi,Σ) against N(0,Σ) is T ′−1µi = Ti · Ai. Then by the necessity part

of the Neyman-Pearson lemma, (cf. Lehmann and Romano, 2005, chap. 3), the

uniformly most powerful test for N(0,Σ) against N(µi,Σ) has the form of 1{Ti >

ki}. But since these two types of tests can never coincide, there is no uniformly
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most powerful test for N(0,Σ) against {N(µ1,Σ),N(µ2,Σ)}. By this contradiction,

Theorem 1 is proved.

Proof of Lemma 1.3.1. For simplicity, we only show the result for the first coordi-

nate of Tn. The proof can be extended to Tn naturally. Under Q0,n, the character-

istic function of
n(Y2

j −1/n)
√

2
∼ N(0, 1) is g(t) = exp(−t2/2). Note g(t) = 1− 1

2 t2 + o(t2), as

t → 0 and
∫
|g(t)| < ∞. The density of Tn,1 can be written as

pn(x) =
1

2π

∫
e−itx

∏
g

 σ∗2j (M1) · t

(1 + nσ∗2j (M1))
√∑

k σ
∗4
k (M1)

 ,
where, by the central limit theorem and Levy’s continuity theorem, the inte-

grand converges to e−itx exp{−t2/2}. By splitting the integral into two parts and

using dominated convergence, it can be shown that the integral converges to

1
2π

∫
e−itxe−t2/2 dt =

e−x2/2

√
2π

.

Then an application of Scheffé’s theorem (c.f. van der Vaart, 1998) establishes

convergence in total variation. The correlation r can be calculated directly. �

1.4 Proof of Theorem 2

Choose Ñ and γn = o(1) such that

γ1/2β
n · n2/(4β+1) � Ñ � c−1/(2β)

n · n2/(4β+1), (1.4.23)
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e.g. γn = c−1/2
n , Ñ = c−1/(3β)

n · n2/(4β+1). Define

M0 = M0( f ) =

Ñ∑
j=1

j2β f 2
j + γn,

N = N(M0) =

(
(4β + 1)M0

ρ

)1/(2β)

,

λ̃ = λ̃(M0) =
2β + 1

2β

(
1

M0(4β + 1)

)1/(2β)

ρ(2β+1)/(2β),

d̃ j = d̃ j(M0) = λ̃[1 − ( j/N)2β]+,

which all depend on the unknown f . Define the oracle statistic

T ∗n =
n2 ∑

j d̃ j(M0)Y2
j − n

∑
j d̃ j(M0)√

2n2 ∑
j d̃2

j (M0)
,

and the oracle test φ∗n = 1{T ∗n > zα}. The following lemma holds; it is proved later.

Lemma 1.4.1. Under the assumptions of Theorem 2, the oracle test φ∗n is an asymptotic

α-test and

lim
n

1

c2+1/(2β)
n

log Ψ(φ∗n, ρn, β,M) ≤ −
A0(β)M−1/(2β)

4

Define

M̂ =

Ñ∑
j=1

(Y2
j − 1/n) j2β + γn

and introduce the statistic

Tn =
n2 ∑

d̃ j(M̂)Y2
j − n

∑
d̃ j(M̂)√

2n2 ∑
d̃2

j (M̂)

and also the test

φn = 1{Tn > zα}.

For M̂, we have the following lemma, which is proved later.

18



Lemma 1.4.2. Under the assumptions of Theorem 2, we have

M̂
M0( f )

− 1 = op(1),

uniformly for f ∈ Σ(β,M) ∩ Bρ.

Now rewrite

Tn =
∑

j

d̃ j(M̂)√∑
d̃2

j (M̂)
·

Y2
j − 1/n
√

2n−2
,

where d̃ j(M̂) = λ̃(1 − ( j/N(M̂))2β)+. Since λ̃ in the last display can be canceled, for

simplicity we write d̃ j(M̂) = (1 − ( j/N(M̂))2β)+ from now on in this section. First,

since N(M̂) ≥ N(γn), we have

∑
d̃2

j (M̂) =
∑1 − (

j
N(M̂)

)2β2

+

∼ N(M̂)
∫ 1

0
(1 − t2β)2

+ dt

= N(M̂)K(β).

Therefore,

Tn = (1 + o(1))
∑ d̃ j(M̂)√

N(M̂)K(β)
·

Y2
j − 1/n
√

2n−2
.

By Lemma 1.4.2,

Tn = (1 + o(1))
∑

j

d̃ j(M̂)√
N(M0( f ))K(β)

·
Y2

j − 1/n
√

2n−2
.

At this point, make M̂ independent of Y2
j by sample splitting. Set n = τn+(1−τ)n,

where τ is close to 1 but fixed, and n1 = τn, n2 = (1 − τ)n. Assume two sets of

observations

Y1 j = f j + n−1/2
1 ξ1 j, j = 1, 2, . . . (1.4.24)

Y2 j = f j + n−1/2
2 ξ2 j, j = 1, 2, . . . (1.4.25)
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Use {Y2 j} to obtain M̂, and now replace Tn by

T s
n = (1 + o(1))

∑
j

d̃(M̂)√
N(M0( f ))K(β)

·
Y2

1 j − n−1

√
2n−1

.

Denote the difference of coefficients by ∆ j = d̃ j(M̂) − d̃ j(M0( f )). Note the largest

difference is obtained at j ≈ min{N(M̂),N(M0( f ))}. Then

|∆ j| ≤
|M̂ − M0( f )|

γn

uniformly for all j. Note in T1 there are at most C2c−1/(2β)
n n2/(4β+1) nonzero coeffi-

cients. Then

T s
n = (1 + o(1))

C2c−1/(2β)
n n2/(4β+1)∑

j=1

d̃ j(M0( f ))√
N(M0( f ))K(β)

η j + rn

where η j =
Y2

1 j−n−1
1

√
2n−1

1
, and

rn =

C2c−1/(2β)
n n2/(4β+1)∑

j=1

∆ jη j√
N(M0( f ))K(β)

.

Under H0, the r.v.´s η j are independent of M̂ and Eη j = 0, Var(η j) = 1. Thus

Var(rn) = Er2
n = EE(r2

n |{Y2 j}) and

E(r2
n |{Y2 j}) = E

C2c−1/(2β)
n n2/(4β+1)∑

j=1

∆2
j

N(M0( f ))K(β)
≤
|M̂ − M0( f )|2

γ
2+1/(2β)
n

.

Therefore, by the result for Var(M̂) in the proof of Lemma 1.4.2,

Var(rn) ≤
E|M̂ − M0( f )|2

γ
2+1/(2β)
n

=
Var(M̂)

γ
2+1/(2β)
n

≤
2K(β)Ñ4β+1

n2γ
2+1/(2β)
n

+
4Ñ2βM

nγ2+1/(2β)
n

,

where the last two terms converge to 0 by the first inequality in (1.4.23). Hence,

under H0, the r.v.´s Tn and T s
n converge to N(0, 1) in law.

Next, we consider Tn or T s
n under the alternative. The worst case type II error

is determined by the following quantity

Ln =
n
√

2
inf

f∈Σ(β,M)∩Bρ

∑Ñ
j=1 f 2

j d̃ j(M̂)(∑
d̃ j(M̂)

)1/2 .
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First, since N(M̂) ≥
(
γn
cn

)1/(2β)
· n2/(4β+1) → ∞,

d̃2
j =

Ñ∑
j=1

(
1 − ( j/N)2β

)2

+

= (1 + o(1))N
∫ 1

0
(1 − t2β)2dt

= (1 + o(1))N ·
8β2

(2β + 1)(4β + 1)
. (1.4.26)

Second, consider
Ñ∑

j=1

f 2
j d̃ j(M̂) =

Ñ∑
j=1

f 2
j (1 − ( j/N)2β)+.

Note

Ñ∑
j=1

f 2
j =

∞∑
j=1

f 2
j −

∞∑
j=Ñ+1

f 2
j

≥ ρ − Ñ−2βM

= ρ

(
1 −

M
ρÑ2β

)
= ρ(1 + o(1)), (1.4.27)

where the last step is refers to the second inequality of (1.4.23). On the other

hand, since Ñ � N and N(M̂) = [(4β + 1)M̂ρ−1]1/(2β),

N∑
j=1

f 2
j ( j/N)2β +

Ñ∑
j=N+1

f 2
j ≤

Ñ∑
j=1

f 2
j ( j/N)2β

≤ N−2βM0( f )

= ρ(1 + 4β)−1. (1.4.28)

Combining (1.4.30)-(1.4.32) gives

Ñ∑
j=1

f 2
j d̃ j ≥ (1 + o(1))λ̃ρ ·

4β
4β + 1

.
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Combining this with (1.4.29) gives

n
∑Ñ

j=1 f 2
j d̃ j

(2
∑

d̃2
j )1/2

≥ (1 + o(1))
n
√

2

√
2(2β + 1)

4β + 1
ρ2/N

≥ (1 + o(1))

√
(2β + 1)c2+1/(2β)

n

(4β + 1)1+1/(2β)(M + γn)1/(2β)

≥ (1 + o(1))

√
1
2

A0(β)c2+1/(2β)
n M−1/(2β)

Theorem 2 is proved.

Proof of Lemma 1.4.1. Rewrite

T ∗n =
∑

j

d̃ j(M0( f ))√∑
d̃2

j (M0( f ))
·

Y2
j − 1/n
√

2n−2
.

Under H0, we have f = 0, and M0( f ) = γn. Since

∑
[1 − ( j/N)2β]2

+ ∼ N ·
∫ 1

0
(1 − t2β)2 dt = K(β) · (γn/cn)1/2βn2/(4β+1),

then ∣∣∣∣∣∣∣∣∣
d̃ j(M0( f ))√∑

d̃2
j (M0( f ))

∣∣∣∣∣∣∣∣∣ ≤
1√

K(β) · (γn/cn)1/2βn2/(4β+1)
= o(1),

uniformly for all j. It can be shown that T ∗n converges to N(0, 1) in law.

By similar arguments, the worst type II error is (1 + o(1))Φ(z − Ln) where

Ln = inf
f∈Σ(β,M)∩Bρ

n
∑

f 2
j d̃ j

(2
∑

d̃2
j )1/2

.

Note d̃ j = d̃ j(M0( f )) depending on f . By the second inequality of (1.4.23), we

have Ñ � N(M0( f )) and d̃ j = 0, for j ≥ Ñ,

Ln =
n
√

2
inf

f∈Σ(M)∩Bρ

∑Ñ
j=1 f 2

j d̃ j

(
∑

d̃2
j )1/2

.
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First, since N(M0( f )) ≥
(
γn
cn

)1/(2β)
· n2/(4β+1) → ∞ uniformly for f ∈ Σ(β,M) ∩ Bρ,

d̃2
j = λ̃2

Ñ∑
j=1

(
1 − ( j/N)2β

)2

+

= (1 + o(1))λ̃2N
∫ 1

0
(1 − t2β)2dt

= (1 + o(1))λ̃2N ·
8β2

(2β + 1)(4β + 1)
, (1.4.29)

uniformly for f ∈ Σ(β,M) ∩ Bρ. Second, consider

Ñ∑
j=1

f 2
j d̃ j = λ̃

Ñ∑
j=1

f 2
j (1 − ( j/N)2β)+ = λ̃

 Ñ∑
j

f 2
j −

 N∑
j

f 2
j ( j/N)2β +

Ñ∑
j=N+1

f 2
j


 . (1.4.30)

Note

Ñ∑
j=1

f 2
j =

∞∑
j=1

f 2
j −

∞∑
j=Ñ+1

f 2
j

≥ ρ − Ñ−2βM

= ρ

(
1 −

M
ρÑ2β

)
= ρ(1 + o(1)), (1.4.31)

where the last step is due to the second inequality of (1.4.23). On the other hand,

since Ñ � N and N = [ρ−1(4β + 1)M0( f )]1/(2β),

N∑
j=1

f 2
j ( j/N)2β +

Ñ∑
j=N+1

f 2
j ≤

Ñ∑
j=1

f 2
j ( j/N)2β

≤ N−2βM0( f )

= ρ(1 + 4β)−1 (1.4.32)

Combining (1.4.30)-(1.4.32) gives

Ñ∑
j=1

f 2
j d̃ j ≥ (1 + o(1))λ̃ρ ·

4β
4β + 1
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uniformly for f ∈ Σ(β,M) ∩ Bρ. Combining this with (1.4.29) gives

n
∑Ñ

j=1 f 2
j d̃ j

(2
∑

d̃2
j )1/2

≥ (1 + o(1))
n
√

2

√
2(2β + 1)

4β + 1
ρ2/N

≥ (1 + o(1))

√
(2β + 1)c2+1/(2β)

n

(4β + 1)1+1/(2β)(M + γn)1/(2β)

≥ (1 + o(1))

√
(2β + 1)c2+1/(2β)

n

(4β + 1)1+1/(2β)M1/(2β) ,

uniformly for f ∈ Σ(β,M) ∩ Bρ. Therefore,

Ln ≥ (1 + o(1))

√
1
2

A0(β)c2+1/(2β)
n M−1/(2β),

and the result follows. �

Proof of Lemma 1.4.2. Since

Var(M̂) =

Ñ∑
j=1

 2
n2 +

4 f 2
j

n

 j4β

≤ (1 + o(1))
2K(β)Ñ4β+1

n2 +
4Ñ2βM

n
,

by the first inequality of (1.4.23),

Var(M̂)
γ2

n
= o(1)

uniformly for f ∈ Σ ∩ Vρ. Combining with EM̂ = M0( f ) and using Chebyshev’s

inequality give ∣∣∣M̂ − M0( f )
∣∣∣

γn
= op(1),

and then ∣∣∣∣∣∣ M̂
M0( f )

− 1

∣∣∣∣∣∣ ≤
∣∣∣M̂ − M0( f )

∣∣∣
γn

= op(1),

uniformly for f ∈ Σ ∩ Vρ. �
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1.5 Appendix

1.5.1 Ideas on adaptive estimation

Consider the estimation problem for the Gaussian sequence model

Y j = f j + n−1/2ξ j

with
∑

j2β f 2
j ≤ M. It is known, for given M, the optimal filter is (1− µ jβ)+, where

µ is determined by
1
n

∑
jβ(1 − µ jβ)+ = µM.

Since

µ ∼

(
β · n−1

M(β + 1)(2β + 1)

)β/(2β+1)

,

the optimal truncation is of the order n1/(2β+1).

Choose n1/(2β+1/2) � Ñ � n1/(2β+1) and 1 � γn � Ñ2β+1/2/n, and define

M0, f =

Ñ∑
j=1

j2β f 2
j + γn.

Define N = N(M0, f ) = α · n1/(2β+1)M1/(2β+1)
0, f , where α is a constant to be chosen.

Define

d j = d( j/N) =
(
1 − ( j/N)β

)
+
.

Consider the oracle estimator (d jY j)∞1 . Its risk is

∑
(1 − d j)2 f 2

j +
1
n

∑
d2

j

=

Ñ∑
j=1

(1 − d j)2 f 2
j +

∑
j>Ñ

(1 − d j)2 f 2
j +

1
n

∑
d2

j

:=A1 + A2 + A3.
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First,

A1 ≤ sup
j≤Ñ

(1 − d j)2 j−2βM0, f ≤ N−2βM0, f = α−2βn−2β/(2β+1)(M + γn)1/(2β+1)

Second, A2 =
∑

j>Ñ f 2
j ≤ Ñ−2βM = o(n−2β/(2β+1)). Third,

A3 =
N
n

1
N

∑
(1 − ( j/N)β)2

+

≤ αn−2β/(2β+1)(M + γn)1/(2β+1)
∫ ∞

0
(1 − tβ)2

+dt

= αn−2β/(2β+1)(M + γn)1/(2β+1) ·
2β2

(β + 1)(2β + 1)

These results hold uniformly over f . Combine these and choose α =(
(β+1)(2β+1)

β

)1/(2β+1)
, and we have the supremum risk of the oracle estimator over

f is at most

c(m) · n−2β/(2β+1)M1/(2β+1),

where

c(m) =

(
β

β + 1

)2β/(2β+1)

· (1 + 2β)1/(2β+1)

is the Pinsker constant.

Let M̂n =
∑Ñn

j=1 j2β f̂ 2
j + γn, where f̂ 2

j = y2
j − n−1. Then

E(M̂) =

Ñn∑
j=1

j2β f 2
j = M0, f ≤ M + γn

and

Var(M̂) =

Ñ∑
j=1

j4βVar(Y2
j )

=

Ñ∑
j=1

j4βn−2(2 + 4n f 2
j )

= 2n−2
Ñ∑

j=1

j4β + 4n−1
Ñ∑

j=1

j4β f 2
j

= J1 + J2,
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where the first term

J1 = 2n−2Ñ4β+1 ·
1
Ñ

Ñ∑
j=1

(
j/Ñ

)4β
∼ 2n−2Ñ4β+1 · K = o(1)

since Ñ = o(n1/(2β+1/2)), and the second term

J2 ≤ 4n−1Ñ2β
Ñ∑

j=1

j2β f 2
j = 4n−1Ñ2βM0, f . 4KMn−2Ñ4β+1 ·

n
Ñ2β+1

= o(J1)

uniformly for f ∈ Σ(β,M) since Ñ � n1/(2β+1). Combining these gives Var(M̂) =

o(1) uniformly for f ∈ Σ(β,M). Recalling γn � Ñ2β+1/2/n gives

Var
 M̂ − M0, f

γn

 ∼ 2Kn−2Ñ4β+1

γ2
n

= o(1),

and then ∣∣∣∣∣∣ M̂
M0, f

− 1

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ M̂ − M0, f

γn

∣∣∣∣∣∣ = op(1) (1.5.33)

uniformly.

The last result is crucial for the next step, i.e. showing that the difference

between oracle estimator
(
d jY j

)∞
1

and the estimator
(
d( j

N(M̂)
)Y j

)∞
1

is negligible. Re

call that N = N(M0, f ); now (1.5.33) is used to replace M0, f by estimate M̂. The

remainder of the proof consists of showing

E
∑(

d( j/N(M0, f )) − d( j/N(M̂))
)2

Y2
j = o(n−2β/(2β+1)).

1.5.2 Proofs for Section 1.2

Proof of Lemma 1.2.1. (a) Under the null hypothesis we have Y2
j = n−1ξ2

j , hence

T =
∑

d j

(
ξ2

j − 1
)
/
√

2. Then it follows from (1.2.8) and nρ → ∞ that the CLT

infinitesimality condition

sup
j

d2
j = o(1)
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holds uniformly over d ∈ D, proving the assertion.

(b) Since Y2
j = f 2

j + 2n−1/2 f jξ j + n−1ξ2
j , we have

T =
1
√

2

∑
d j

(
n f 2

j + 2n1/2 f jξ j +
(
ξ2

j − 1
))
, (1.5.34)

T − L(d, f ) =
1
√

2

∑
d j

(
2n1/2 f jξ j +

(
ξ2

j − 1
))
. (1.5.35)

An easy calculation gives

Var f T =
1
2

∑
d2

j

(
4n f 2

j + 2
)

= 1 + 2n
∑

d2
j f 2

j

where in view of (1.2.8) we have for f ∈ B′ρ

n
∑

d2
j f 2

j ≤ δρ
−1

∑
f 2

j ≤ 2δ = o(1).

Consequently, Var f T → 1 uniformly. Now the CLT infinitesimality condition on

the sum (1.5.35) amounts to

sup
j

d2
j

(
n f 2

j + 1
)

= o(1). (1.5.36)

For f ∈ B′ρ we have f 2
j ≤ 2ρ, hence in view of (1.2.8)

d2
j

(
n f 2

j + 1
)
≤ d2

j (2nρ + 1) ≤ 2δ

for n sufficiently large. Hence (1.5.36) is fulfilled uniformly over d ∈ D and

f ∈ B′ρ, and the claim follows.

(c) Set f j ∼ N(0, σ2
j); then in view of (1.5.34)

T − L(d, σ) =
1
√

2

∑
d j

(
2n1/2 f jξ j +

(
ξ2

j − 1
))

+
n
√

2

∑
d j

(
f 2

j − σ
2
j

)
. (1.5.37)

An easy calculation gives

Var f T =
1
2

∑
d2

j

(
4nσ2

j + 2
)

+ n
∑

d2
j

= 1 + n
∑

d2
j

(
2σ2

j + σ4
j

)
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where in view of (1.2.8) we have for σ ∈ B′ρ

n
∑

d2
jσ

2
j ≤ δρ

−1
∑

σ2
j ≤ 2δ = o(1),

n
∑

d2
jσ

4
j ≤ 2ρn

∑
d2

jσ
2
j ≤ 4ρδ = o(1).

Consequently, Var f T → 1 uniformly. Now the infinitesimality condition on the

sum (1.5.37) amounts to

sup
j

d2
j

(
1 + nσ2

j + nσ4
j

)
= o(1). (1.5.38)

For σ ∈ B′ρ we have σ2
j ≤ 2ρ, hence in view of (1.2.8)

d2
j

(
1 + nσ2

j + nσ4
j

)
≤ d2

j

(
1 + nρ + nρ2

)
≤ 3δ

for n sufficiently large. Hence (1.5.38) is fulfilled uniformly over d ∈ D and

σ ∈ B′ρ, and the claim follows. �

Proof of Lemma 1.2.2 . Let D̃ be defined asD in (1.2.8) but with condition ‖d‖2 = 1

replaced by ‖d‖2 ≤ 1. Then, since L(d, f ) is linear in d, for every d̃ ∈ D̃ there is a

d ∈ D such that L(d̃, f 2) ≤ L(d, f 2) for every f . Hence it suffices to prove the claim

for D replaced by the compact convex set D̃. The restriction f ∈ Σ(β,M) ∩ B′ρ is

equivalent to f 2 being in the set

{
g ∈ Rn

+ :
∑

g j j2β ≤ M, ρ ≤
∑

g j ≤ 2ρ
}

(1.5.39)

which is convex and compact (and nonempty for large enough n since ρ → 0).

The functional L is bilinear in d and f 2; the standard minimax theorem now

furnishes the result. �
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Lemma 1.5.1. For n large enough, the saddlepoint d0, f0 of Lemma 1.2.2 is given by

d0 =
f 2
0∥∥∥ f 2
0

∥∥∥ , f 2
0, j =

(
λ − µ j2β

)
+

, j = 1, . . . , n

where λ, µ are the unique positive solutions of the equations

n∑
j=1

j2β
(
λ − µ j2β

)
+

= M,
n∑

j=1

(
λ − µ j2β

)
+

= ρ. (1.5.40)

The value of L at the saddlepoint is

L0 = L(d0, f0) =
n
√

2

∥∥∥ f 2
0

∥∥∥ . (1.5.41)

Proof. Ignore initially the restriction sup j d2
j ≤ δ/nρ and consider maximizing

L(d, f 2) in d for given f . Under the sole restriction ‖d‖ = 1, by Cauchy-Schwartz

the solution is found as

d( f ) =
f 2∥∥∥ f 2

∥∥∥ .
It remains to minimize L(d( f ), f ) = n

∥∥∥ f 2
∥∥∥ /√2 under the restrictions on f 2. Set-

ting g j = f 2
j , one has to minimize ‖g‖ on the convex set (1.5.39). This is solved

using Lagrange multipliers λ, µ.

To show that the solution d0 fulfills the restriction sup j d2
j ≤ δ/nρ, we note that

f 2
0, j =

(
λ − µ j2β

)
+

= λ
(
1 − µλ−1 j2β

)
+
≤ λ; (1.5.42)

below (cf. (1.5.49), Lemma 1.5.2) it is shown that λ � n−1−1/(4β+1) and n
∥∥∥ f 2

0

∥∥∥ �
Ln,0 � 1. This implies

nρd2
0,n, j = nρ · O

(
n2λ2

)
,

n3ρλ2 � n · n−4β/(4β+1) · n−2/(4β+1) = n−1/(4β+1; (1.5.43)

thus for δ =
(
log n

)−1 we have that d0 ∈ D for n large enough. �
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Proof of Lemma 1.2.3. The log-likelihood ratio is

log

(
n−1

)n/2(
σ2

j + n−1
)n/2 exp

−1
2

n∑
j=1

 Y2
j

σ2
j + n−1

−
Y2

j

n−1




=
1
2

n∑
j=1

nY2
j

 nσ2
j

nσ2
j + 1

 − n
2

n∑
j=1

log
(
nσ2

j + 1
)
.

This shows (a) by setting d = d̃/
∥∥∥d̃

∥∥∥ for d̃ j =
nσ2

j

nσ2
j +1 . Now for σ2

j = f 2
0 j we have, as

λ � n−1−1/(4β+1),

n f 2
0 j = nλ

(
1 − λ−1µ j2β

)
+
≤ nλ � n · n−1−1/(4β+1) = n−1/(4β+1) = o(1),

hence d̃ j ∼ n f 2
0 j uniformly over j = 1, . . . , n. This implies

∥∥∥d̃
∥∥∥ ∼ n

∥∥∥ f 2
0

∥∥∥ � n and

d j =
d̃ j∥∥∥d̃
∥∥∥ � f 2

0 j

uniformly in j ≤ n. The proof of nρd2
0,n, j ≤ δ now exactly follows (1.5.42), (1.5.43)

(CHECK). The convergence t → zα now is a consequence of Lemma 1.2.1 (a). �

Lemma 1.5.2. Suppose ρ = c · n−4β/(4β+1), c constant. Then the saddlepoint value L0 of

(1.2.12) fulfills

L0 = L(d0, f 2
0 ) ∼

√
A0M−1/(2β)c2+1/(2β)/2.

Proof. The proof of Lemma 1.5.1 shows that L(d0, f 2
0 ) is also the saddlepoint val-

ue under the weaker restrictions ‖d‖2 ≤ 1, f ∈ Σ(β,M) ∩ Bρ. Let us sketch a

derivation of the asymptotics by a renormalization technique. Suppose that

d j = h1/2d(h j), j ≤ n where h is a bandwidth parameter tending to 0, and the

continuous function d : [0,∞)→ [0,∞) satisfies∫ ∞

0
d2(x) dx ≤ 1. (1.5.44)

Consider another continuous function σ : [0,∞)→ [0,∞) satisfying∫ ∞

0
x2βσ2(x) dx ≤ 1 and

∫ ∞

0
σ2(x) dx ≥ 1 (1.5.45)
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and set σ2
j = Mh2β+1σ2(h j), j ≤ n . Choose h = (ρ/M)1/(2β). The coefficient vector

d =
(
d j

)n

j=1
satisfies

‖d‖2 = h
n∑

j=1

d(h j)→
∫ ∞

0
d(x)dx ≤ 1.

Identifying f 2 ∈ Rn
+ with (σ2

j)
n
j=1, the restriction f ∈ Σ(β,M) is asymptotically

satisfied since

∞∑
j=1

j2βσ2
j = Mh

∞∑
j=1

( jh)2βσ2( jh)→ M
∫ ∞

0
x2βσ2(x) dx ≤ M, h→ 0.

The restriction f ∈ Bρ is also asymptotically satisfied since

∞∑
j=1

σ2
j = Mh2β+1

∞∑
j=1

σ2( jh) = ρh
∞∑
j=1

σ2( jh) ∼ ρ
∫ ∞

0
σ2(x) dx ≥ ρ.

Therefore,

n
√

2

n∑
j=1

d jσ
2
j =

n
√

2
Mh2β+1/2h

∞∑
j=1

d( jh)σ2( jh)

∼
c1+1/(4β)M−1/(4β)

√
2

∫ ∞

0
d(x)σ2(x) dx.

The saddle point problem (1.2.12) for each n is thus asymptotically expressed in

terms of a fixed continuous problem with constraints (1.5.44) and (1.5.45). There

is unique positive solution (λ∗, µ∗) for the equations (cp. Golubev, 1982),∫ ∞

0
x2β(λ − µx2β) dx = 1, (1.5.46)∫ ∞

0
(λ − µx2β) dx = 1. (1.5.47)

Let ‖·‖2 and 〈·, ·〉2 denote norm and scalar product in L2 (R+). Then the saddle

point (d∗, σ∗2) is given by

d∗ =
σ∗2∥∥∥σ∗2∥∥∥

2

, σ∗2(x) = (λ∗ − µ∗x2β)+. (1.5.48)
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Then the value of the game is

sup
d in (1.5.44)

inf
σ in (1.5.45)

〈
d, σ2

〉
2

= inf
σ in (1.5.45)

sup
d in (1.5.44)

〈
d, σ2

〉
2

=
〈
d∗, σ∗2

〉
2

=
∥∥∥σ∗2∥∥∥

2
=

√
A0(β),

where the sup is taken for d satisfying (1.5.44), the inf is taken for σ satisfy-

ing (1.5.45), and A0(β) is Ermakov’s constant in (1.1.3). The continuous sad-

dlepoint problem arises naturally in a continuous Gaussian white noise setting

and a parameter space described by the continuous Fourier transformation, e.g.

a Sobolev class of functions on the whole real line (cf. Golubev 1982, 1987).

The above argument provides the guideline for a more rigourous proof,

based on calculating the sharp asymptotics of λ and µ directly from (1.5.40).

The rough order of λ can be found as follows. By equating f 2
0 = σ∗2j , we find

(
λ − µ j2β

)
+

= Mh2β+1σ∗2(h j),

= λ
(
1 −

(
(µ/λ)1/2β j

)2β
)
+

we find λ � h2β+1 , h � (µ/λ)1/2β and thus

λ � h2β+1 � (ρ)(2β+1)/(2β) � n−1−1/(4β+1. (1.5.49)

�

Remark 1.5.1. The paper of Ermakov (1990), when calculating the asymptotics of λ, µ

in (1.5.40) and of A = 2L2
0 (in a more general framework where

∑
a j f 2

j ≤ P0,
∑

b j f 2
j ≥

ρ), contains an error for λ. Here is the correction using the notations therein. Let

a j = L j2γ, b j = M j2ν, where γ > ν ≥ 0, L and M are positive constants, and set

ε = n−1/2. Then as ε → 0 we have that

λ ∼
(2γ + 2ν + 1)

2(γ − ν)

(
L

P0(4γ + 1)

) 4ν+1
2(γ−ν)

(
1
M

) 4γ+1
2(γ−ν) [

ρ(4ν + 1)
] 2(γ+ν)+1

2(γ−ν) ,
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µ ∼
(4ν + 1)ρλ
P0(4γ + 1)

, A ∼ ε−4ρλ
4γ − 4ν
4γ + 1

.
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CHAPTER 2

SHARP ASYMPTOTICS FOR RISK BOUNDS IN NONPARAMETRIC

TESTING WITH UNCERTAINTY IN ERROR DISTRIBUTIONS

2.1 Introduction

We are interested in the hypothesis testing problems for nonparametric regres-

sion. Consider the observations

yi = f (xi) + ξi, xi ∈ [0, 1], i = 1, 2, ..., n, (2.1.1)

where {ξi,n} are independent random variables with zero expectation, and the

function f is to be tested. The nonradom points xi are assumed to be generated

by a density g on [0, 1] such that∫ xi,n

0
g(t)dt = i/n.

We define some smoothness class of functions. Let L2 = L2(0, 1) be the Hilbert

space of square integrable functions on [0, 1] and let ‖ · ‖ denote the usual norm

therein. Let, for natural m and f ∈ L2, Dm f denote the derivative of order m in

the distributional sense and let

W(m) = { f ∈ L2 : Dm f ∈ L2}

be the corresponding Sobolev space on the unit interval. The Sobolev class of

order m and radius M is defined by

W(m,M) = { f ∈ W(m) : ‖Dm f ‖2 ≤ M}

for given m and M > 0. The periodic Sobolev class is

W̃(m,M) = { f ∈ W(m,M) : D j f (0) = D j f (1), j = 0, 1, ...,m − 1}.
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Let {ψ j, j = 1, ...} be a orthonormal basis such that

W̃(m,M) = { f : f =

∞∑
j=1

f jψ j,

∞∑
j=1

a j f 2
j ≤ M},

where a j ∼ (π j)2m.

Define the complement of an open ball in L2

Bρ = { f ∈ L2 : ‖ f ‖2 ≥ ρ}.

We consider the hypothesis testing problem of

H0 : f = 0 against Ha : f ∈ W(m,M) ∩ Bρ.

If the radius ρn tends to zero too quickly, all tests will have tivial asymptotic

power; if it tends to zero too slowly, there exists an α-test such that the type

II error tends to zero and consistent testing is possible. Brown and Low [3]

established the asymptotic equivalence of the regression model to the Gaussian

white noise model,

dY = f (t)dt + σdW(t),

where W(t) is the Browning motion. In the more general framework of the Gaus-

sian white noise model, Ingser [7, 6] established the separation rate of

ρn � n−4m/(4m+1)

for Sobolev ellipsoids, for which the asymptotic type II error is bounded away

from 0 and 1. More precisely, define the minimax type II error as

πn(α, ρn,m,M) := inf
φn:En,0φn≤α

sup
f∈W(m,M)∩Bρ

(1 − En, fφn).

If ρn � n−4β/(4β+1) then

0 < lim
n
πn(α, ρn,m,M) and lim

n
πn(α, ρn, β,M) < 1 − α.
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Ermakov [4] found the exact asymptotics of the minimax type II error at the

separation rate. More precisely, if

ρn ∼ c · n−4β/(4β+1),

for some c > 0, then

πn(α, ρn,m,M) = Φ(zα −
√

A(c, β,M)/2) + o(1) as n→ ∞,

where A(c, β,M) = A0(β)M−1/(2β)c2+1/(2β) and A0(β) is the Ermakov’s constant

A0(β) =
2(2β + 1)

(4β + 1)1+1/(2β) . (2.1.2)

In the present paper we consider the sharp asymptotics of the minimax type

II error for the model (2.1.1) with uncertain error distributions. This notation

of uncertainty is related with robustness, e.g. [2]. As shown below, the mod-

el giving meaning meaningful results here is one the nonidentical distributed

errors. The distributions of ξi will still vary in a small neighborhood of some

(unknown) central measure Q0, but will in general be different.

In contrast, it is noteworthy that substantial attention has been devoted to

asymptotically minimax estimation for integrated mean square error. For the

Sobolev class of problems, it has been possible to improve the results on best

obtainable rates of convergence by find the exact asymptotic value of the mini-

max risk in the class of all estimators. The key original result is due to Pinkser

[9] for a filtering problem over ellipsoids in Hilbert space. Nussbaum [8] and

Speckman [10] considered the regression model with Gaussian errors. Golubev

and Nussbaum [5] extended the sharp asymptotics to non-Guassian regression

for which the error distributions are from a neighborhood of some central mea-

sure, and may be nonidentical.
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2.2 The lower bound

Our main interest is the testing problem for regression with uncertain error dis-

tributions. We adopt the same formulation for the uncertain error distributions

as in [5].

Let, for distributions Q0 and Q,

H(Q0,Q) =

(∫ (
(dQ0)1/2 − (dQ)1/2

)2
)1/2

be the Hellinger distance. Consider a sequence τn such that

τn → 0, τnn1/2 → ∞ as n→ ∞.

Introduce the set of probability measures on the real line:

QH
n = {Q; H(Q0,Q) ≤ τn, EQξ = 0}. (2.2.3)

The central measure Q0 has zero expectation, second moment σ2 and fulfills the

following regularity condition: If Q0t denotes the shifted measure Q0t = Q0(·+ t),

then

H(Q0t,Q0) = O(t) as t → 0. (2.2.4)

We assume α ∈ (0, 1).

Theorem 2.2.1. Assume in the model (2.1.1), ξi are independent with distribution

Q ∈ QH
n , where the central measure Q0 has zero expectation, second moment σ2 and

fulfills (2.2.4).

(i) If δ2 = c · n−4m/(4m+1), then, for any test φn satisfying E0φn = α + o(1),

lim
n
β(φn) ≥ Φ(zα − (A/2)1/2),
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where

A = A(M,m, c, σ) =
A0(m)c2+1/(2m)

σ4M1/(2m) , (2.2.5)

and A0(m) =
2π(1+2m)

(1+4m)1+1/(2m) is Ermakov’s constant.

(ii) If δ2 = o(n−4m/(4m+1)). Then for any test φn satisfying E0φn = α + o(1), we have

limn β(φn) = 1 − α.

2.3 Attainment

A complete argument for attainment is beyond the scope of the paper, but we

provide theoretical backings for our claim that the lower bounds are indeed

attainable.

Consider first the regression model (2.1.1) with g ≡ 1 and normal noise with

variance σ2. It is known that the error bound in Theorem 2.2.1 is attained by a

quadratic statistic given in the frequency domain, [4]. In the time domain 2.1.1,

this corresponds to a quadratic statistic given by some linear spline smoothing

procedure.

In the nonnormal case, when the noise in 2.1.1 is uncorrelated with zero

expectation and variance σ2, the risk behavior of the quadratic statistics men-

tioned above remains valid. Actually, the proofs show that the error II error

depends only on the first two moments of the noise. The noise distribution

model in Theorem 2.2.1 ensures that Varξ ∼ σ2. Indeed, for Q ∈ QH
n ∩ Q

M
c , we
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have

|EQx2 − σ2|2 = |

∫
x2 d(Q − Q0)|2 (2.3.6)

≤

(∫
x4((dQ)1/2 + (dQ0)1/2)2

)
H2(Q0,Q) (2.3.7)

≤ 4cH2(Q0,Q) = o(1). (2.3.8)

Thus it obvious that the bound of Theorem 2.2.1 is attainable for g ≡ 1 and

known M and σ2.

For adaptation for unknown M, we conjecture the plug-in-type method de-

veloped in the last chapter still works, and some sharp asymptotics can be es-

tablished by an adaptive smoother. But we leave this study to the future.

2.4 Proofs

Consider the Sobolev space W̃m
2 with boundary conditions on [0, 1]:

W̃m
2 = { f ∈ Wm

2 ; (Dk f )(0) = (Dk) f (1) = 0, k = 0, ...,m − 1}.

It is a Hilbert subspace of Wm
2 with respect to the norm (‖ f ‖2 + ‖Dm f ‖2)1/2. We

will make use of the results on the spectral theory of differential operators; see,

e.g., Agmon [1].

There exists a basis ϕ j, j = 1, 2, ..., in W̃m
2 such that, if (·, ·) denotes the inner

product in L2(0, 1),

(ϕi, ϕ j) = δi j, (2.4.9)

(Dmϕi,Dmϕ j) = λ jδi j, i, j = 1, 2, ..., (2.4.10)
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where

0 < λ1 < λ2 < · · ·

and the asymptotics of the eigenvalues λ j is given by

λ j ∼ (π j)2m, j→ ∞.

The boundary conditions ensure that, when the functions ϕ j are continued by

zero outside [0,1], the functions belong to the Sobolev space of order m on any

interval containing [0,1]. Furthermore, this property allows the construction of

another orthogonal system in W̃m
2 which is obtained by a change of scale. Fix a

natural number q. Later we will let q tend to infinity with n. Define functions

ϕ jkq = q1/2ϕ j(qx − k + 1), k = 1, ..., q, j = 1, 2....

Each function ϕ jkq is in W̃m
2 , has support [(k − 1)q−1, kq−1] and

(ϕ jkq, ϕikq) = δi j (2.4.11)

(Dmϕikq,Dmϕ jkq) = q2mλ jδi j. (2.4.12)

Furthermore, fix a natural s and define W(q, s,M) as the intersection of the linear

span of ϕ jkq, j = 1, ..., s, k = 1, ..., q, with W̃m
2 (M). From (2.4.12), we obtain that for

f ∈ W(q, s,M),

‖Dm f ‖2 =

s∑
j=1

q∑
k=1

q2mλ j(ϕ jkq, f )2

and obviously W(q, s, p) is nonempty. Restricting f to this set, we reduce the

problem to the one of testing the local Fourier coefficients f jkq = (ϕ jkq, f ). The

indices q and n will frequently be dropped from the notation in the sequel.

By restricting f to the subset W(q, s,M), we achieve that the observations yi

have a structure

yi =

s∑
j=1

ϕ jk(xi) f jk + ξi, i = 1, 2, ..., n, (2.4.13)
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where k is uniquely defined by i ∈ F (k) := {i; xi ∈ q−1(k − 1, k]}. This may be

constructed as a collection of q linear regression models, each accounting for

observations in the interval q−1(k−1, k] and having s parameters. The parameters

f jk satisfy
s∑

j=1

q∑
k=1

q2mλ j f 2
jk ≤ M,

and
s∑

j=1

q∑
k=1

f 2
jk ≥ δ

2.

Let

δ2 = c · n−4m/(4m+1),

λ = a · n−1/(4m+1),

q = [b · n2/(4m+1)],

where a and b do not depend on n and will be selected later.

Introduce the column vectors, for k = 1, 2, ..., q,

hk = n1/2( f1k, ..., fsk)′, (2.4.14)

ϕ̄i = n−1/2(ϕ1k(xi), .., ϕsk(xi))′. (2.4.15)

Then the model (2.4.13) transforms to

yi = ϕ̄′ihk + ξi, i ∈ F (k), (2.4.16)

for k = 1, 2, ..., q. Now we will select the disturbance distributions in QH ∩ QM
L in

accordance with the method of least favorable parametric subfamilies. Consider

a bounded function ψ on R such that, if u is the identity map in R,∫
ψdQ0 = 0,

∫
uψdQ0 = 1.
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Set hk = λ1/2gk. For g ∈ Rs, let Qi(g) be the measure defined by

dQi(g) = (1 + λ1/2ϕ̄′igψ)dQ0.

Let Q∗i (g) be the shifted measure

Q∗i (g)(·) = Qi(g)(· + λ1/2ϕ̄′ig).

Lemma 2.4.1. Let τn be the sequence in the definition QH
n and let tn be such that tn →

∞, tn = o(τnn(1−r)/2) as n → ∞. Then for sufficiently large n, the set of measures

{Q∗i (g); ‖g‖ ≤ tn, i ∈ {1, 2, ..., n}} is contained in QH
n ∩ Q

M
L .

Define

κ2
j =

(
1 − ( j/s)2m

)
+
, j = 1, 2, ...

and introduce the prior distribution on g jk as independent N(0, κ2
j ), j = 1, 2, ...,.

Let νk be the product prior on gk. Obviously νk, k = 1, 2, ..., q are iid. The induced

product prior on all f jk, j = 1, 2, ..., q = 1, 2, ..., q will be denoted by Πn.

Lemma 2.4.2. For given c > 0 and a small number τ > 0, set

a =

(
c(1 + τ)

K1

)(2m+1)/(2m)

·

(
K2

M(1 − τ)

)1/(2m)

, (2.4.17)

b =
1
s

(
MK1(1 − τ)
cK2(1 + τ)

)1/(2m)

, (2.4.18)

where K1 = 2m
2m+1 and K2 = 2m

(2m+1)(4m+1) . Then, for sufficiently large s, we have

Πn(W̃(m,M) ∩ Bρ)→ 1 as n→ ∞.

Consider the corresponding Bayesian testing problem

H∗0 : yi ∼ Q0, iid.

H∗1 : yi ∼ Qi(gk), where gk ∼ νk, i ∈ F (k), k = 1, 2, ..., q.
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We have the log likelihood ratio

Λ =

q∑
k=1

log
∫ ∏

i∈F (k)

(1 + λ1/2ϕ̄′igψ(yi))dν(g).

Lemma 2.4.3. Under the previous assumptions, Λ converges to N(−∆/2,∆) weakly

under H∗0, and to N(∆/2,∆) under H∗a, where

∆ = ∆(s, τ, σ,m,M, c)→
A
2
, as τ→ 0 and s→ ∞,

and A is as defined in (2.2.5).

The limit experiments give the lower bound for the minimax type II error

and concludes the proof.

2.4.1 Proof of Lemma 2.4.1

For the expectation, ∫
u dQ∗i (g) =

∫
u dQi(g) − φ̄i′g = 0.

Let Q∗∗(g) be the shifted measure Q0(· + φ̄′ig). Then for the Hellinger distance,

H(Q∗i (g),Q0) ≤ H(Q∗)i(g),Q∗∗i (g)) + H(Q∗∗( g),Q0) (2.4.19)

Here the first term on the right hand side equals H(Qi(g),Q0) and can be bound-

ed by

O
(
(λφ̄ig)1/2

)
= O

(
(λtnn(r−1)/2)1/2

)
= o(τ1/2

n ).

The second term on the right hand side of (2.4.19) can be bounded similarly

in view of condition (2.2.4). Hence all Q∗i (g) are in QH
n , for n sufficiently large,

‖g‖ ≤ tn.
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For the fourth moment, we have∫
u4 dQ∗i (g) =

∫
(u − φ̄i(g))4(1 − +λφ̄′ig dQ0 =

∫
u4dQ0 + O(φ̄′ig)),

so that all Q∗i (g) are in QM
c for sufficiently large n. �

2.4.2 Proof of Lemma 2.4.2

First, we show for for sufficiently large s,

P(
s∑

j=1

q∑
k=1

f 2
jk < δ

2)→ 0, as n→ ∞.

We have

E
s∑

j=1

q∑
k=1

f 2
jk = qλn−1

s∑
j=1

(
1 − ( j/s)2m

)
+

(2.4.20)

= abs · n−4m/(4m+1) ·
1
s

s∑
j=1

(
1 − ( j/s)2m

)
+

(2.4.21)

(2.4.22)

Since

lim
s→∞

1
s

s∑
j=1

(
1 − ( j/s)2m

)
+

=

∫ ∞

0
(1 − t2m)+dt = K1,

we have, for sufficiently large s,

1
s

s∑
j=1

(
1 − ( j/s)2m

)
+
> (1 −

τ

2
)K1.

Then plugging (2.4.17) and (2.4.18) in gives

E
s∑

j=1

q∑
k=1

f 2
jk > (1 + τ)(1 − τ/2)δ2 > (1 + τ/4)δ2. (2.4.23)
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The variance is

Var

 s∑
j=1

q∑
k=1

f 2
jk

 = 2qλ2n−2
s∑

j=1

(
1 − ( j/s)2m

)2

+
) = O(n−2),

where we used the fact

lim
s→∞

1
s

s∑
j=1

(
1 − ( j/s)2m

)2

+
) =

∫ ∞

0
(1 − t2m)2

+dt = K.

Therefore, by Chebyshev’s inequality, we have

P(
s∑

j=1

q∑
k=1

f jk < δ
2) <

O(n−2)
δ4(1 + τ/4)2 = O(n−2/(4m+1))→ 0.

Second, we show for sufficiently large s

P(
s∑

j=1

q∑
k=1

q2mλ j f 2
jk > M)→ 0.

For the mean, we have

E
s∑

j=1

q∑
k=1

q2mλ j f 2
jk = q2m+1λn−1

s∑
j=1

λ j

(
1 − ( j/s)2m

)
+

(2.4.24)

= ab2m+1s2m+1 ·
1
s

s∑
j=1

λ j

s2m

(
1 − ( j/s)2m

)
+
. (2.4.25)

Since λ j ∼ ( jπ)2m and it is seen that

lim
s→∞

1
s

s∑
j=1

λ j

s2m

(
1 − ( j/s)2m

)
+

=

∫ ∞

0
t2m

(
1 − t2m

)
+

dt = K2,

we have for sufficiently large s

1
s

s∑
j=1

λ j

s2m

(
1 − ( j/s)2m

)
+
< (1 + τ/2)K2.

Combining these with (2.4.17) and (2.4.18) gives

E

 s∑
j=1

q∑
k=1

q2mλ j f 2
jk

 < (1 − τ)(1 + τ/2)M < (1 − τ/2)M.
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The variance is

Var

 s∑
j=1

q∑
k=1

q2mλ j f 2
jk

 = 2λ2n−2q4m+1s4m+1 1
s

∑
j=1

λ2
j

s4m

(
1 − ( j/s)2m

)2

+

= O(a2b4m+1s4m+1n−2/(4m+1))

= o(1),

where we used the fact

lim
s→∞

1
s

∑
j=1

λ2
j

s4m

(
1 − ( j/s)2m

)2

+
=

∫ ∞

0
(πt)4m(1 − t2m)2

+dt = K.

Then by Chebyshev’s, we have

P(
s∑

j=1

q∑
k=1

qmλ j f 2
jk > M)→ 0.

�

2.4.3 Proof of Lemma 2.4.3

Without loss of generality, assume d = n/q is an integer.

Recall the logarithm likelihood ratio is

Λ =

q∑
k=1

log
∫

ΠiF (k)

(
1 + λ1/2φ(yi)ϕ̄′ig

)
dν(g) (2.4.26)

=

q∑
k=1

log
∫ 1 +

∑
i∈F (k)

λ1/2φ(yi)ϕ̄′ig +
∑

i> j,F (k)

λψ(yi)φ(y j)ϕ̄′igg′ϕ̄i + Rem

 dν(g).

(2.4.27)

Write Φ = (ϕ̄1, . . . , ϕ̄d)′ as a matrix, and rewrite the quadratic term above as∑
i> j,F (k)

∫
λψ(yi)φ(y j)ϕ̄′igg′ϕ̄i dν(g)

:=
λ

2
(J1,k − J2,k),
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where

J1,k = ψ(yk)′Φ
(
Eνgg′

)
Φ′ψ(yk) and J2,k =

∑
i∈F (k)

ψ(yi)2ϕ̄′i
(
Eνgg′

)
ϕ̄i.

Recall Eνg = 0 and Eνgg′ = Rs = diag{κ1, . . . , κs}. Then the log likelihood can be

expanded further as

Λ =

q∑
k=1

log
(
1 +

λ

2
(J1,k − J2,k) + Rem

)
=

q∑
k=1

(
λ

2
(J1,k − J2,k) −

λ2

4
(J1,k − J2,k)2 + Rem

)
. (2.4.28)

Consider the means and variances of J1,k and J2,k under H∗0. As n→ ∞,

EJ1,k = (1 + o(1)) · tr(ΦRsΦ
′)

= (1 + o(1))
∑

i∈F (k)

s∑
j=1

1
n
φ2

jk(xi)κ j,

= (1 + o(1))
s∑

j=1

κ j,

Var(J1,k) = (1 + o(1))2tr(ΦRsΦ
′ΦRsΦ

′)

= 2tr(ΦR2
sΦ
′)

= 2(1 + o(1))
s∑

j=1

κ2
j ,

EJ2,k =
∑

i∈F (k)

s∑
j=1

1
n
φ2

jk(xi)κ j,

=

s∑
j=1

1
n

∑
i∈F (k)

φ2
jk(xi)κ j

= (1 + o(1))
s∑

j=1

κ j,
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Var(J2,k) = O(d · (
s∑

j=1

1
n
φ jk(x)κ j)2)

= O(dq2/n2)

= O(1/d) = o(1).

Therefore, by the law of large numbers and the central limit theorem (cf. [11]),

under H∗0 the log likelihood ratio converges weakly to N(−∆/2,∆), and under H∗a

to N(∆/2,∆), where

∆ =
1
2

a2b
s∑

j=1

κ2
j

=
1
2

c2+1/(2m) · (1 + τ)2−1/(2m)

M1/(2m) · (1 − τ)−1/(2m) ·
1
s

s∑
j=1

κ2
j .

Letting s→ ∞ and τ→ 0 gives

∆→
1
2

A0(m)c2+1/(2m)

σ4M1/(2m)

as claimed. �
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CHAPTER 3

UPS DELIVERS OPTIMAL PHASE DIAGRAM IN HIGH DIMENSIONAL

VARIABLE SELECTION

3.1 Introduction

Consider a sequence of regression problems:

Y (p) = X(p)β(p) + z(p), z(p) ∼ N(0, In), n = np. (3.1.1)

Here, X(p) is an np × p matrix, where both p and np are large but p > np. The

p × 1 vector β(p) is unknown to us, but is sparse in the sense that it has sp nonze-

ros where sp � p. We are interested in variable selection: determining which

components of β(p) are nonzero. For notational simplicity, we suppress the su-

perscript (p) and subscript p whenever there is no confusion.

A well-known approach to variable selection is subset selection, also known as

the L0-penalization method (e.g., AIC [2], BIC [24], and RIC [13]). This approach

selects variables by minimizing the following functional:

1
2
‖Y − Xβ‖22 +

(λss)2

2
‖β‖0, (3.1.2)

where λss > 0 is a tuning parameter and ‖ ·‖q denotes the Lq-norm. The approach

has good properties, but the optimization problem (3.1.2) is known to be NP

hard, which prohibits the use of the approach when p is large.

In the middle 90’s, Tibshirani [26] and Chen et al. [6] proposed a trail-

breaking approach which is now known as the lasso or the Basis Pursuit. This

approach selects variables by minimizing a similar functional, but ‖β‖0 is re-
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placed by ‖β‖1:
1
2
‖Y − Xβ‖22 + λlasso‖β‖1. (3.1.3)

A major advantage of the lasso is that (3.1.3) can be efficiently solved by the In-

terior Point method [6] even when p is relatively large. Additionally, in a series

of papers (e.g. [9, 10]), it was shown that in the noiseless case (i.e. z = 0), the

lasso solution is also the subset selection solution, provided that β is sufficient-

ly sparse. For these reasons, the lasso procedure is passionately embraced by

statisticians, engineers, biologists, and many others.

With that being said, an obvious shortcoming of these methods is that the

penalization term does not reflect the correlation structure in X, which prohibits

the method from fully capturing the essence of the data (e.g. Zou [33]). How-

ever, this shortcoming is largely due to that these methods are one-stage proce-

dures. This calls for a two-stage or multi-stage procedure.

3.1.1 Screen and Clean

An idea introduced in the 1960’s, Screen and Clean has seen a revival recently

[30, 12]. This is a two-stage method, where at the first stage, we remove as many

irrelevant variables as possible while keeping all relevant ones. At the second

stage, we reinvestigate the surviving variables in hope of removing all false

positives. The screening stage has the following advantages, some of which are

elaborated in the literature:

• Dimension reduction. We remove many irrelevant variables, reducing the

dimension from p to a much smaller number [12, 30].
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• Correlation complexity reduction. A variable may be correlated to many oth-

er variables, but few of which will survive the screening; it is only corre-

lated with a few other surviving variables.

• Computation complexity reduction. Under some conditions (e.g. Section 3.2),

surviving variables can be grouped into many small units, each has a size

≤ K, and correlation between units is weak. These units can be fitted sep-

arately, with computational cost ≤ # of units ×2K .

Despite the perceptive vision and philosophical importance in these works [12,

30], substantial vagueness remains: How to screen? How to clean? Is Screen

and Clean really better than the lasso and the subset selection? This is where

the Univariate Penalization Screening (UPS) comes in.

3.1.2 UPS

The UPS is a two-stage method which contains an U-step and a P-step. In the

U-step, we screen with Univariate thresholding [9] (also known as marginal

regression [16] and Sure Screening [12]). Fix a threshold t > 0 and let x j be the

j-th column of X. We remove the j-th variable from the regression model if and

only if |(x j,Y)| < t. The set of surviving indices is then Up(t) = Up(t; Y, X) = { j :

|(x j,Y)| ≥ t, 1 ≤ j ≤ p}.

Despite its simplicity, the U-step can be effective in many situations. The key

insight is that,Up(t) has the following important properties.

• Sure Screening (SS). With overwhelming probability,Up(t) includes all but

a negligible proportion of the signals (i.e. nonzero coordinates of β). The
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terminology is slightly different from that in [12].

• Separable After Screening (SAS). Define a graph where {1, 2, . . . , p} is the set

of nodes, and nodes j and k are connected if and only if |(x j, xk)| is large (i.e.,

columns j and k are “significantly” correlated). The SAS property refers to

as that, with overwhelming probability,Up(t) splits into many disconnect-

ed small-size components (a component is a maximal connected subgraph

ofUp(t)).

We now explain how these properties pave the way for the P-step. Let I0 =

{i1, . . . , iK} and J0 = { j1, . . . , jL} be two subsets of {1, 2, . . . , p}, 1 ≤ K, L ≤ p. We

have the following definition.

Definition 3.1.1. For any p × 1 vector Y , YI0 denotes the K × 1 vector such that

YI0(k) = Yik , 1 ≤ k ≤ K. For any p × p matrix Ω, ΩI0,J0 denotes the K × L matrix such

that ΩI0,J0(k, `) = Ω(ik, j`), 1 ≤ k ≤ K, 1 ≤ ` ≤ L.

Note that the regression model is closely related to the model X′Y = X′Xβ +

X′z. Restricting the attention toU = Up(t), we have

(X′Y)U = (X′Xβ)U + (X′z)U = (X′X)U,Vβ + (X′z)U,

where V = {1, 2, . . . , p}. Three key observations are the following: (a) s-

ince z ∼ N(0, In), (X′z)U ∼ N(0, (X′X)U,U), (b) by the Sure Screening property,

(X′X)U,Vβ ≈ (X′X)U,UβU, and (c) by the SAS property, (X′X)U,U approximately e-

quals a block diagonal matrix, where each block corresponds to a maximal con-

nected subgraph contained inUp(t). As a result, the original regression problem

reduces to many small-size regression problems that can be solved separately,

each at a modest computational cost.
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In detail, fix two parameters λups and uups. Let I0 = {i1, i2, . . . , iK} ⊂ Up(t) be

a component, and let µ be a K × 1 vector the coordinates of which are either 0

or uups. Write A = (X′X)I0,I0 for short. Let µ̂(I0) = µ̂(I0; Y, X, t, λups, uups, p) be the

minimizer of the functional:

1
2
(
(X′Y)I0 − Aµ

)′A−1((X′Y)I0 − Aµ
)

+
1
2

(λups)2‖µ‖0. (3.1.4)

Combining all such estimates across different components of Up(t) gives the

UPS estimator, denoted by β̂ups = β̂ups(Y, X; t, λups, uups, p):

β̂
ups
j =


(µ̂(I0))k, if j = ik ∈ I0 for some I0 = {i1, i2, . . . , iK} ⊂ Up(t),

0, if j < Up(tp).

The UPS uses three tuning parameters (t, λups, uups). In many cases, the per-

formance of the UPS is relatively insensitive to the choice of t, as long as it falls

in a certain range. The parameter λups has a similar role to those of the lasso and

the subset selection, but there is a major difference: the former can be conve-

niently estimated using the data, whereas how to set the latter remains an open

problem. See Section 3.2 for more discussion.

We are now ready to answer the questions raised in the end of Section 3.1.1:

UPS indeed has advantages over the lasso and the subset selection. In Sections

3.1.3-3.1.7, we establish a theoretic framework and investigate these procedures

closely. The main finding is the following: for a wide range of design matrices

X, the Hamming distance of the UPS achieves the optimal rate of convergence.

In contrast, the lasso and the subset selection may be rate non-optimal, even for

very simple design matrices.
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3.1.3 Sparse signal model and universal lower bound

We model β by

β j
iid
∼ (1 − ε)ν0 + επ, 0 < ε < 1, 1 ≤ j ≤ p, (3.1.5)

where ν0 is the point mass at 0 and π is a distribution that has no mass at 0. We

use p as the driving asymptotic parameter, and allow (ε, π) to depend on p. Fix

0 < ϑ < 1 and recall that sp is the number of signals. We calibrate

ε = εp = p−ϑ, so that sp ∼ pεp = p1−ϑ. (3.1.6)

For any variable selection procedure β̂ = β̂(Y |X), we measure the loss by the

Hamming distance

hp(β̂, β|X) = hp(β̂, β; εp, πp, np|X) = Eεp,πp

[ p∑
j=1

1
(
sgn(β̂ j) , sgn(β j)

)]
,

where sgn(0) = 0. In the context of variable selection, the Hamming distance is

a natural choice for loss function. While the focus of this paper is on selection

error where we use L0-loss, the idea can be extended to the estimation setting

where we use Lq-loss (0 < q < ∞), but we have to perform an additional step of

least square fitting after the selection.

Somewhat surprisingly, there is a lower bound for the Hamming distance

that holds for all sample size n and design matrix X (and so “universal lower

bound”). The following notation is frequently used in this paper.

Definition 3.1.2. Lp > 0 is a multi-log(p) term which may change from occurrence to

occurrence, such that for any fixed δ > 0, limp→∞ Lp · pδ = ∞ and limp→∞ Lp p−δ = 0.

Now, fixing r > 0, we introduce

τp = τp(r) =
√

2r log p, (3.1.7)
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and λp = λp(εp, τp) = 1
τp

[
log( 1−εp

εp
) +

τ2
p

2

]
. Let Φ̄ = 1 − Φ be the survival function of

N(0, 1). The following theorem is proved later.

Theorem 3.1.1. (Lower bound). Fix ϑ ∈ (0, 1), r > 0, and a sufficiently large p. Let

εp, sp, and τp be as in (3.1.6)-(3.1.7), and suppose the support of πp is contained in

[−τp, 0)∪ (0, τp]. For any fixed n and matrix X = X(p) such that X′X has unit diagonals,

hp(β̂, β|X) ≥ sp · [(1 − εp)Φ̄(λp)/εp + Φ(τp − λp)].

Note that as p→ ∞,

1 − εp

εp
Φ̄(λp) + Φ(τp − λp) ≥


Lp · p−(r−ϑ)2/(4r), r > ϑ,

(1 + o(1)), r < ϑ.
(3.1.8)

It may seem counter-intuitive that the lower bound does not depend on n, but

this is due to the way we normalize X. In the case of orthogonal design (i.e.,

coordinates of X and iid from N(0, 1/n)), the lower bound can be achieved by

either the lasso or marginal regression [16]. Therefore, the orthogonal design is

among the best in terms of the error rate.

Theorem 3.1.1 says that if we have p1−ϑ signals and the maximal signal

strength is slightly smaller than
√

2ϑ log(p), then the Hamming distance of any

procedure can not be substantially smaller than sp, and so successful variable

selection is impossible. In the sections below, we focus on the case where the

signal strength is larger than
√

2ϑ log(p), so that successful variable selection is

possible.

The universality of the lower bound hints it may not be tight for nonorthog-

onal X. Fortunately, it turns out that in many interesting cases, the lower bound

is tight. To facilitate the analysis, we invoke the random design model.
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3.1.4 Random design, connection to Stein’s normal means mod-

el

Write X = (x1, x2, . . . , xp) = (X1, X2, ..., Xn)′. We model Xi as iid samples from a

p-variate zero-mean Gaussian distribution,

Xi
iid
∼ N(0,

1
n

Ω). (3.1.9)

The p × p matrix Ω = Ω(p) is unknown but for simplicity we assume it has unit

diagonals. The normalizing constant 1/n is chosen so that the diagonals of the

Gram matrix X′X are approximately 1. Fixing θ ∈ (1 − ϑ, 1), we let

n = np = pθ. (3.1.10)

Note that sp � np � p as p → ∞. For successful variable selection, it is almost

necessary to have sp � np [9]. Also, denoting the distribution of X by F = Fp,

note that for any variable selection procedure, the overall Hamming distance is

Hammp(β̂, β) = EF[hp(β̂|X)].

Model (3.1.9) is called the random design model which may be found in the

following application areas.

• Compressive Sensing. We are interested in a p-dimensional sparse vector

β. We measure n general linear combinations of β and then reconstruct it.

For 1 ≤ i ≤ n, choose a p × 1 coefficient vector Xi and observe Yi = X′iβ + zi,

where zi ∼ N(0, σ2) is noise. For computational and storage concerns, one

usually chooses Xi’s as simple as possible. Popular choices of Xi include

Gaussian design, Bernoulli design, Circulant design, etc. [9, 3]. Model

(3.1.9) belongs to Gaussian design.
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• Privacy-preserving data mining. The vector β may contain some confidential

information (e.g. HIV-diagnosis results of a community) that we must

protect. While we can not release the whole vector, we must allow data

mining to some extent, because, for example, the study is of public interest

and is supported by federal funding. To compromise, we allow queries as

follows. For each query, the database randomly generates a p × 1 vector

Xi, and releases both Xi and Yi = X′iβ + zi to the querier, where zi ∼ N(0, σ2)

is a noise term. For privacy concern, the number of allowed queries is

much smaller than p. Popular choices of Xi include Gaussian design and

Bernoulli design [8].

Random design model is closely related to a Stein’s normal means model

W ∼ N(β,Σ), where Σ = Ω−1. To see the point, recall that Model (3.1.1) is closely

related to the model X′Y = X′Xβ + X′z. Since the rows of X are iid samples

from N(0, 1
nΩ) and sp � np � p, we expect to see that X′Xβ ≈ Ωβ and X′z ≈

N(0,Ω), and so that X′Y ≈ N(Ωβ,Ω). Therefore, Stein’s normal means model can

be viewed as an idealized version of the random design model. This suggests

that solving variable selection problem opens doors for solving Stein’s normal

means problem, and vice versa.

3.1.5 Optimality of the UPS

The main results of this paper are Theorems 3.2.1-3.2.2 in Section 3.2. To state

such results, we need relatively long preparations. Therefore, we sketch these

results below, but leave the formal statements to later. In Model (3.1.1), (3.1.5),

and (3.1.9), let (sp, τp, np) be as in (3.1.6), (3.1.7), and (3.1.10). Suppose

61



• Each row of Ω satisfies a certain summability condition, so it has relatively

few large coordinates.

• The support of πp is contained in [τp, (1 + η)τp], where τp =
√

2r log(p) and

η is a constant to be defined later. We suppose r > ϑ, so that successful

variable selection is possible; see Theorem 3.1.1.

• Either all coordinates of Ω are positive, or that r/ϑ ≤ 3 + 2
√

2 (so that we

won’t have too many “signal cancellations” [30]).

Fix 0 < q ≤ (ϑ + r)2/(4r), and set the tuning parameters (t, λups, uups) by

t∗p = t∗p(q) =
√

2q log p, λups = λups
p =

√
2ϑ log(p), uups = uups

p = τp.

The main result is that, as p → ∞, the ratio between the Hamming error of the

UPS and sp is no grater than Lp p−(ϑ−r)2/(4r). Comparing this with Theorem 3.1.1

gives that, the lower bound is tight and the UPS is rate optimal.

3.1.6 Phase diagram for high dimensional variable selection

The above results reveal a watershed phenomenon as follows. Suppose we have

roughly sp = p1−ϑ signals. If the maximal signal strength is slightly smaller than√
2ϑ log p, then the Hamming distance of any procedure can not be substantially

smaller than sp, hence successful variable selection is impossible. If the minimal

signal strength is slightly larger than
√

2ϑ log p, then there exist procedures (UPS

is one of them) whose Hamming distances are substantially smaller than sp, and

they manage to recover most signals.

The phenomenon is best described in the special case where πp = ντp is the

point mass at τp, with τp =
√

2r log p as in (3.1.7). If we call the two-dimensional
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domain {(ϑ, r) : 0 < ϑ < 1, r > 0} the phase space, then the theorems say that the

phase space is partitioned into three regions:

• Region of No Recovery (0 < ϑ < 1, 0 < r < ϑ). In this region, the Ham-

ming distance of any procedure & sp, and successful variable selection is

impossible.

• Region of Almost Full Recovery (0 < ϑ < 1, ϑ < r < (1 +
√

1 − ϑ)2). In this

region, there are procedures (e.g. UPS) whose Hamming errors are much

larger than 1 but are also much smaller than sp. In this region, it is possible

to recover most of the signals, but not all of them.

• Region of Exact Recovery (0 < ϑ < 1, r > (1 +
√

1 − ϑ)2). In this region, there

are procedures (e.g., UPS) that recover all signals with probability ≈ 1.

See Figure 3.1 (left panel) for these regions. Note that the partitions are the same

for many choices of Ω. Because of the partition of the phases, we call this the

phase diagram. The UPS is optimal in the sense that it partitions the phase space

in exactly the same way as do the optimal procedures.

The phase diagram provides a benchmark for variable selection. The lasso

would be optimal if it partitions the phase space in the same way as in the left

panel of Figure 3.1. Unfortunately, this is not the case, even for very simple Ω.

Below we investigate the case where X′X is a tridiagonal matrix, and identify

precisely the regions where the lasso is rate optimal and where it is rate non-

optimal. More surprisingly, there is a region in the phase space where the subset

selection is also rate non-optimal.
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Figure 3.1: Left: Phase diagram. In the yellow region, the UPS recovers all
signals with high probability. In the white region, it is possible
(i.e., UPS) to recover almost all signals, but impossible to recov-
er all of them. In the cyan region, successful variable selection
is impossible. Right: partition of the phase space by the lasso
for the tridiagonal model (3.1.11)-(3.1.12) (a = 0.4). The lasso
is rate non-optimal in the Non-optimal region. The Region of
Exact Recovery by the lasso is substantially smaller than that
displayed on the left.

3.1.7 Non-optimal region for the lasso

In Section 3.1.7-3.1.8, we temporarily leave the random design model and con-

sider a Stein’s normal means model, which is an idealized version of the for-

mer. Using an idealized version is mainly for mathematical convenience, but the

gained insight is valid in much broader settings: if a procedure is non-optimal

in simple cases, we should not expect them to be optimal in more complicated

cases.

In this spirit, we consider a Stein’s normal means model

Ỹ ≡ X′Y ∼ N(Ωβ,Ω), (3.1.11)

where β is as in (3.1.5) with τp = νπp and πp =
√

2r log(p). To further simplify the
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study, we fix a ∈ (0, 1/2) and take Ω as the tridiagonal matrix T (a):

T (a)(i, j) = 1{i = j} + a · 1{|i − j| = 1}, 1 ≤ i, j ≤ p. (3.1.12)

Note that in this case, the UPS partitions the phase space optimally.

We now discuss the phase diagram of the lasso. The region {(ϑ, r) : 0 < ϑ <

1, r > ϑ} is partitioned into three regions as follows (see Figure 3.1).

• Non-optimal region: 0 < ϑ < 2a(1 + a)−1 and 1
a (1 +

√
1 − a2)ϑ < r <(

1 +

√
1+a
1−a

)2(1 − ϑ). In this region, the lasso is rate non-optimal (i.e., the

Hamming distance is Lp · pc with constant c > 1− (ϑ+ r)2/(4r)), even when

the tuning parameter is set ideally.

• Optimal region: 0 < ϑ < 1 and ϑ < r < 1
a (1 +

√
1 − a2)ϑ and r < (1 +

√
1 − ϑ)2.

In this region, if additionally a ≥ 1/3, then the lasso may be rate optimal if

the tuning parameter is set ideally. The discussion on the case 0 < a < 1/3

is tedious so we skip it.

• Region of Exact Recovery: 0 < ϑ < 1 and r > (1 +
√

1 − ϑ)2 and r >
(
1 +√

1+a
1−a

)2(1 − ϑ). In this region, if the tuning parameter is set ideally, the

lasso may yield exact recovery with high probability. Region of Exactly

Recovery by the lasso is substantially smaller than that of the UPS. There

is a sub-region in the phase space where the UPS yields exact recovery, but

the lasso could not even when the tuning parameter is set ideally.

For discussions in the case where Ω is the identity matrix, compare [16, 28].

The above results are proved in Theorem 3.4.1, where we derive a lower bound

for the Hamming errors by the lasso. In a manuscript, we show that the lower

bound is tight for properly large ϑ, but is not when ϑ is small. It is, however,
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tight for all ϑ ∈ (0, 1) if we replace Model (3.1.5) by a closely related model,

namely (2.2)-(2.3) in [17]. For these reasons, the non-optimal region of the lasso

may be larger than that illustrated in Figure 3.1. The discussion on the exact

optimal rate of convergence for the lasso is tedious and we skip it.

Why the lasso is non-optimal? To gain insight, we introduce the term of fake

signal, a noise coordinate that may look like a signal due to correlation.

Definition 3.1.3. We say that Ỹ j is a signal if β j , 0, is a fake signal if (Ωβ) j , 0 and

β j = 0, and is a (pure) noise if β j = (Ωβ) j = 0.

With the tuning parameter set ideally, the lasso is able to distinguish signals

from pure noise, but it does not filter out fake signals efficiently. In the opti-

mal region of the lasso, the number of falsely kept fake signals is much smaller

than the optimal rate, so it is negligible; in the non-optimal region, the num-

ber becomes much larger than the optimal rate, and so is non-negligible. This

suggests that when X′X moves away from the tridiagonal case, the partitions

of the regions by the lasso may change, but the non-optimal region of the lasso

continues to exist in rather general situations.

The non-optimality of the lasso is largely due to that it is a one-stage method.

An interesting question is whether UPS continues to work well if we replace the

univariate thresholding by the lasso in the screening stage. The disadvantage of

this proposal is that, compared to the univariate thresholding, the lasso is both

slower in computation and harder to analyze in theory. Still, one would hope

the lasso could perform well in screening.

With that being said, we note that the implementation of the lasso only needs

minimal assumption on the model, which makes it very attractive, especially
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in complicated situations. In comparison, we need both signal sparsity and

graph sparsity to implement the UPS, and how to extend it to more general

settings remains unknown. The exploration along this line is continued in our

forthcoming manuscripts [20, 21, 11]; see details therein.

3.1.8 Non-optimal region for the subset selection

The discussion on the subset selection is similar to that for the lasso so we keep

it brief. Introduce v1(a) = 2−
√

1−a2
√

1−a2(1−
√

1−a2)
and v2(a) = 2

√
1 − a2 − 1. Similarly, the

phase space partitions into three regions as follows.

• Non-optimal region: 0 < ϑ < 4v1(a)
(v1(a)+1)2 and v1(a)ϑ < r <

[ 1
v2(a)

(√
1 − 2ϑ +

√
1 − 2ϑ + ϑv2(a)

)]2.

• Optimal region: 0 < ϑ < 1 and ϑ < r < v1(a)ϑ and r < (1 +
√

1 − ϑ)2.

• Exact Recovery region: 0 < ϑ < 1, r > (1 +
√

1 − ϑ)2 and r >
[ 1

v2(a)

(√
1 − 2ϑ +

√
1 − 2ϑ + ϑv2(a)

)]2.

See Theorem 3.4.2 for proofs and Figure 3.2 for illustration. Similar to the re-

marks in Section 3.1.7, the Region of Exact Recovery and the optimal region of

the subset selection may be smaller than those illustrated in Figure 3.2.

The reason why the subset selection is non-optimal is almost the opposite

to that of the lasso: the lasso is non-optimal for it is too loose on fake signal-

s, but the subset selection is non-optimal for it is too harsh on signal clusters

(pairs/triplets, etc.). With the tuning parameter set ideally, the subset selection

is effective in filtering out fake signals, but it also tends to kill one or more signal-
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Figure 3.2: Left: a re-display of the left panel of Fig 3.1. Right: partition
of the phase space by the subset selection in the tridiagonal
model (3.1.11)-(3.1.12) (a = 0.4). The subset selection is not rate
optimal in the Non-optimal region. The Exact Recovery region
by the subset selection is substantially smaller than that of the
optimal procedure, displayed on the left.

s when the true signals appear in clusters. These falsely killed signals account

for the non-optimality. See Section 3.4.2 for details.

3.1.9 Connection to recent literature

This work is related to recent literature on oracle property [33, 23], but is dif-

ferent in important ways. A procedure has the oracle property if it yields ex-

act recovery. However, exact recovery is rarely seen in applications, especially

when p � n. In many applications (e.g. genomics), a large p usually means that

signals are sparse or rare, and a small n usually means signals are weak. For

rare and weak signals, exact recovery is usually impossible. Therefore, it is both

scientifically more relevant and technically more challenging to compare error

rates of different procedures than to investigate when they satisfy the oracle

property.
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The work is also related to [5, 31] on asymptotic minimaxity, where the lasso

was shown to be asymptotic rate optimal in the worst-case scenario. While their

results seem to contradict with that in this paper, the difference can be easily rec-

onciled. In the minimax approach, the asymptotic least favorable distribution

of β is given by β j
iid
∼ (1 − εp)ν0 + εpντp , where εp = p−ϑ, τp =

√
2r log p and notably

ϑ = r, which corresponds the boundary line of the Region of No Recovery in the

phase space (e.g. [31, Page 18-19], [1, Section 3]). This suggests that the minimax

approach has limitations: it reduces the analysis to the worst-case scenario, but

the worst-case scenario may be outside the range of interest. In our approach,

we let (ϑ, r) range freely, and evaluate a procedure based on how it partitions

the phase space. Our approach has a similar spirit to that in [10].

The work is also related to the adaptive lasso [33]. The adaptive lasso is

similar to the lasso, but the L1-penalty λlasso‖β‖1 is replaced by the weighted L1-

penalty
∑p

j=1 w j|β j|, where w = (w1, . . . ,wp)′ is the weight vector. Philosophically,

we can view the adaptive lasso as a Screen and Clean method. Still, the pro-

posed approach is different from the adaptive lasso in important ways. First,

Zou [33] suggested weight choices by the least squares estimate, which is only

feasible when p is small. In fact, when p � n, our results suggest that feasible

weights should be very sparse, while the weights suggested by the least squares

estimates are usually dense. Second, for the surviving indices, we first partition

them into many disjoint units of small sizes, and then fit them individually. The

adaptive lasso fits all surviving variables together, which is computationally

more expensive. Last, we use Penalized MLE in the clean step while the adap-

tive lasso uses L1-penalty. As pointed out before, the L1-penalty in the clean

step is too loose on fake signals, which prohibits the procedure from being rate

optimal.
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The work is also related to other multi-stage methods, e.g., the threshold las-

so [32] or the LOL [22]. These methods first use the lasso and the OLS for vari-

able selection, respectively, followed by an additional thresholding step. How-

ever, by similar argument as in Sections 3.1.7-3.1.8, it is not hard to see that these

procedures do not partition the phase diagram optimally.

3.1.10 Contents

In summary, we propose the UPS as a two-stage method for variable selection.

We use Univariate thresholding in the screening step for its exceptional conve-

nience in computation, and we use Penalized MLE in the cleaning step because

it is the only procedure we know so far that yields the optimal rate of con-

vergence. On the other hand, the lasso and even the subset selection do not

partition the phase space optimally.

The remaining sections are organized as follows. Section 3.2 discusses the

UPS procedure and the upper bound for the rate of convergence. The section al-

so addresses how to estimate the tuning parameters of the UPS, and the conver-

gence rate of the resultant plug-in procedure. Section 3.3 discusses a refinement

of the UPS for moderately large p. Section 3.4 discusses the behavior of the lasso

and the subset selection. Section 3.5 discusses numerical results where we com-

pare the UPS with the lasso (the subset selection is computationally infeasible

for large p so is not included for comparison).

The corresponding paper [19] is to appear in Annals of Statitics with the sup-

plementary material for proofs [18].
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Below are some notations we use in this paper. Fix 0 < q < ∞. For a p × 1

vector x, ‖x‖q denotes the Lq-norm of x and we omit the subscript when q = 2.

For a p × p matrix M, ‖M‖q denotes the matrix Lq-norm, and ‖M‖ denotes the

spectral norm.

3.2 UPS and upper bound for the Hamming distance

In this section, we establish the upper bound for the Hamming distance and

show that the UPS is rate optimal. We begin by discussing necessary notations.

We then discuss the U-step and its Sure Screening and SAS properties. Next,

we show how the regression problem reduces to many separate small-size re-

gression problems, and explain the rationale of using the Penalized MLE in the

P-step. We conclude the section by the rate optimality of the UPS, where the

tuning parameters are either set ideally or estimated.

Since different parts of our model are introduced separately in different sub-

sections, we summarize them as follows. The model we consider is

Y = Xβ + z, z ∼ N(0, In), (3.2.1)

where

Xi
iid
∼ N(0,

1
n

Ω), β j
iid
∼ (1 − εp)ν0 + εpπp, 1 ≤ i ≤ n, 1 ≤ j ≤ p. (3.2.2)

Fixing θ > 0, ϑ > 0, and r > 0, we calibrate

εp = p−ϑ, τp =
√

2r log p, np = pθ, (3.2.3)

assuming that

θ < (1 − ϑ). (3.2.4)
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Recall that the optimal rate of convergence is Lp p1−(ϑ+r)2/(4r). In this section, we

focus on the case where the exponent 1− (ϑ+ r)2/(4r) falls between 0 and (1−ϑ),

or equivalently,

ϑ < r < (1 +
√

1 − ϑ)2. (3.2.5)

In the phase space, this corresponds to the Region of Almost Full Recovery. The

case r < ϑ corresponds to the Region of No Recovery and is studied in Theorem

3.1.1. The case r > (1 +
√

1 − ϑ)2 corresponds to the Region of Exact Recovery.

The discussion in this case is similar but is much easier, so we omit it.

Next, fixing A > 0 and γ ∈ (0, 1), introduce

Mp(γ, A) = {Ω: p × p correlation matrix,
p∑

j=1

|Ω(i, j)|γ ≤ A, ∀ 1 ≤ i ≤ p}.

For any Ω, let U = U(Ω) be the p× p matrix satisfying U(i, j) = Ω(i, j)1{i < j}, and

let d(Ω) = max{‖U(Ω)‖1, ‖U(Ω)‖∞}. Fixing ω0 ∈ (0, 1/2), introduceM∗
p(ω0, γ, A) =

{Ω ∈ Mp(γ, A): d(Ω) ≤ ω0}, and a subset ofM∗
p(ω0, γ, A),

M+
p(ω0, γ, A) = {Ω ∈ M∗

p(ω0, γ, A) : Ω(i, j) ≥ 0 for all 1 ≤ i, j ≤ p}.

For any Ω ∈ M∗
p(ω0, γ, A), the eigenvalues are contained in (1 − 2ω0, 1 + 2ω0), so

Ω is positive definite (when ω0 > 1/2, Ω may not be positive definite).

Last, introduce a constant η = η(ϑ, r, ω0) by

η =

√
ϑr

(ϑ + r)
√

1 + 2ω0
min

{2ϑ
r
, 1 −

ϑ

r
,
√

2(1 − ω0) − 1 +
ϑ

r

}
. (3.2.6)

We suppose the support of signal distribution πp is contained in

[τp, (1 + η)τp], (3.2.7)

where τp =
√

2r log(p) as in (3.1.7). This assumption is only needed for proving

the main lemma of the P-step (Lemma 3.6.5), and can be relaxed for proving
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other lemmas. Also, we assume the signals are one-sided mainly for simplicity.

The results can be extended to the case with two-sided signals.

We now discuss the U-step. As mentioned before, the benefits of the U-

step are threefold: dimension reduction, correlation complexity reduction, and

computation cost reduction. The U-step is able to achieve these goals simulta-

neously because it satisfies the Sure Screening property and the SAS property,

which we now discuss separately.

3.2.1 The Sure Screening property of the U-step

Recall that in the U-step, we remove the j-th variable if and only if |(x j,Y)| < t

for some threshold t > 0. For simplicity, we make a slight change and remove

the j-th variable if and only if (x j,Y) < t. When the signals are one-sided, the

change makes negligible difference. Fixing a constant q ∈ (0, (ϑ + r)2/(4r)), we

set the threshold t in the U-step

t∗p = t∗p(q) =
√

2q log(p). (3.2.8)

Lemma 3.2.1. (Sure Screening). In Model (3.2.1)-(3.2.2), suppose (3.2.3)-(3.2.7) hold,

and t∗p is as in (3.2.8). For sufficiently large p, if Ω(p) ∈ M+
p(ω0, γ, A), then as p → ∞,∑p

j=1 P(x′jY < t∗p, β j , 0) ≤ Lp p1− (ϑ+r)2
4r . The claim remains true if alternatively Ω(p) ∈

M∗
p(ω0, γ, A) but r/ϑ ≤ 3 + 2

√
2.

This says that the Hamming errors we make in the U-step are not substan-

tially larger than the optimal rate of convergence, and thus negligible.
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3.2.2 The SAS property of the U-step

We need some terminology in graph theory (e.g. [7]). A graph G = (V, E) consists

of two finite sets V and E, where V is the set of nodes, and E is the set of edges. A

component I0 of V is a maximal connected subgraph, denoted by I0 CV . For any

node v ∈ V , there is a unique component I0 such that v ∈ I0 C V .

Fix a p × p symmetric matrix Ω0 which is presumably sparse. If we let V0 =

{1, 2, . . . , p} and say nodes i and j are linked if and only if Ω0(i, j) , 0, then we

have a graph G = (V0,Ω0). Fix t > 0. Recall that Up(t) is the set of surviving

indices in the U-step:

Up(t) = Up(t,Y, X) = { j : (x j,Y) ≥ t, 1 ≤ j ≤ p}. (3.2.9)

Note that the induced graph (Up(t),Ω0) splits into many components.

Definition 3.2.1. Fix an integer K ≥ 1. We say that Up(t) has the Separable After

Screening (SAS) property with respect to (V0,Ω0,K) if each component of the graph

(Up(t),Ω0) has no more than K nodes.

Note that if Up(t) has the SAS property with respect to (V0,Ω0,K), then for

all s > t,Up(s) also has the SAS property with respect to (V0,Ω0,K).

Return to Model (3.2.1)-(3.2.2). We hope to relate the regression setting to

a graph (V0,Ω0), and use it to spell out the SAS property. Towards this end,

we set V0 = {1, 2, . . . , p}. As for Ω0, a natural choice is the matrix Ω in (3.2.2).

However, the SAS property makes more sense if Ω0 is sparse and known, while

Ω is neither. In light of this, we take Ω0 to be regularized empirical covariance

matrix.
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In detail, let Ω̂ = X′X be the empirical covariance matrix. Recall that X =

(X1, X2, . . . , Xn)′ and Xi ∼ N(0, 1
nΩ). It is known [4] that there is a constant C > 0

such that with probability 1 − o(1/p2), for all 1 ≤ i, j ≤ p,

|Ω̂(i, j) −Ω(i, j)| ≤ C
√

log(p)/
√

n. (3.2.10)

For large p, Ω̂ is a noisy estimate for Ω, so we regularize it by

Ω∗(i, j) = Ω̂(i, j)1{|Ω̂(i, j)|≥log−1(p)}. (3.2.11)

The threshold log−1(p) is chosen mainly for simplicity and can be replaced by

log−a(p), where a > 0 is a constant. The following lemma is a direct result of

(3.2.10); we omit the proof.

Lemma 3.2.2. Fix A > 0, γ ∈ (0, 1), and ω0 ∈ (0, 1/2). As p → ∞, for any Ω ∈

M∗
p(ω0, γ, A), with probability of 1 − o(1/p2), each row of Ω∗ has no more than 2 log(p)

nonzero coordinates, and ‖Ω∗ −Ω‖∞ ≤ C(log(p))−(1−γ).

Taking Ω0 = Ω∗, we form a graph (V0,Ω
∗). The following lemma is proved

later, which says that except for a negligible probability,Up(t∗p) has the SAS prop-

erty.

Lemma 3.2.3. (SAS). Consider Model (3.2.1)-(3.2.2) where (3.2.3)-(3.2.7) hold. Set t∗p

as (3.2.8). As p→ ∞, there is a constant K such that with probability 1−Lp p−(ϑ+r)2/(4r),

Up(t∗p) has the SAS property with respect to (V0,Ω
∗,K).

3.2.3 Reduction to many small-size regression problems

Together, the Sure Screening property and the SAS property make sure that

the original regression problem reduces to many separate small-size regres-

sion problems. In detail, the SAS property implies that Up(t∗p) splits into many
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connected subgraphs, each is small in size, and different ones are disconnect-

ed. Given two disjoint connected subgraphs I0 and J0 where I0 C Up(t) and

J0 CUp(t),

Ω∗(i, j) = 0, ∀ i ∈ I0, j ∈ J0. (3.2.12)

Recall that the regression model (3.1.1) is closely related to the model X′Y =

X′Xβ+ X′z. Fixing a connected subgraph I0 CUp(t∗p), we restrict our attention to

I0 by considering (X′Y)I0 = (X′Xβ)I0 + (X′z)I0 . See Definition 1.1 for notations. S-

ince Xi
iid
∼ N(0, 1

nΩ) and I0 has a small size, we expect to see (X′Xβ)I0 ≈ (Ωβ)I0 and

(X′z)I0 ≈ N(0,ΩI0,I0). Therefore, (X′Y)I0 ≈ N((Ωβ)I0 ,ΩI0,I0). A key observation is

(Ωβ)I0 ≈ ΩI0,I0βI0 . (3.2.13)

In fact, letting Ic
0 = { j : 1 ≤ j ≤ p, j < I0}, it is seen that

(Ωβ)I0 −ΩI0,I0βI0 = (Ω∗)I0,I
c
0βI

c
0 + (Ω −Ω∗)I0,I

c
0βI

c
0 = I + II. (3.2.14)

First, by Lemma 3.2.2, |II| ≤ C‖Ω−Ω∗‖∞‖β‖∞ = o
( √

log(p)
)

coordinate-wise, hence

II is negligible. Second, by the Sure Screening property, signals that are false-

ly screened out in the U-step are fewer than Lp p1−(ϑ+r)2/(4r), and therefore have a

negligible effect. To bring out the intuition, we assume Up(t∗p) contains all sig-

nals for a moment (see Lemma 3.6.4 for formal treatment). This, with (3.2.12),

implies that I = 0, and (3.2.13) follows.

As a result, the original regression problem reduces to many small-size re-

gression problems of the form

(X′Y)I0 ≈ N(ΩI0,I0βI0 , ΩI0,I0) (3.2.15)

that can be fitted separately. Note that ΩI0,I0 can be accurately estimated by

(X′X)I0,I0 , due to the small size of I0. We are now ready for the P-step.
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3.2.4 P-step

The goal of the P-step is that, for each fixed connected subgraph I0 CUp(t∗p), we

fit Model (3.2.15) with an error rate ≤ Lp p−(ϑ+r)2/(4r). This turns out to be rather

delicate, and many methods (including the lasso and the subset selection) do

not achieve the desired rate of convergence.

For this reason, we proposed a Penalized-MLE approach. The idea can be

explained as follows. Given that I0 CUp(t∗p) as a priori, the chance that I0 con-

tains k signals is ∼ εk
p. This motivates us to fit Model (3.2.15) by maximizing

the likelihood function εk
p · exp

[
−1

2 [(X′Y)I0 − Aµ]′ A−1 [(X′Y)I0 − Aµ]
]
, subject to

‖µ‖0 = k. Recalling A = (X′X)I0,I0 ≈ ΩI0,I0 , this is proportional to the density

of (X′Y)I0 in (3.2.15), hence the name of Penalized MLE. Recalling εp = p−ϑ and

λ
ups
p =

√
2ϑ log p, it is equivalent to minimizing

[
(X′Y)I0 − Aµ

]′ A−1 [
(X′Y)I0 − Aµ

]
+ (λups

p )2 · ‖µ‖0. (3.2.16)

Unfortunately, (3.2.16) does not achieve the desired rate of convergence as

expected. The reason is that we have not taken full advantage of the informa-

tion provided: given that all coordinates in I0 survive the screening, each signal

in I0 should be relatively strong. Motivated by this, for some tuning parameter

uups > 0, we force all nonzero coordinates of µ to equal uups. This is the UPS pro-

cedure we introduced in Section 3.1. In Theorem 3.2.1 below, we show that this

procedure obtains the desired rate of convergence provided that uups is properly

set.

One may think that forcing all nonzero coordinates of µ to be equal is too

restrictive, since the nonzero coordinates of βI0 are unequal. Nevertheless, the

UPS achieves the desired error rate. The reason is that, knowing the exact values
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of the nonzero coordinates is not crucial, as the main goal is to separate nonzero

coordinates of βI0 from the zero ones.

Similarly, since knowing the signal distribution πp may be very helpful, one

may choose to estimate πp using the data first, then combine the estimated distri-

bution with the P-step. However, this has two drawbacks. First, Model (3.2.15)

is very small in size, and can be easily over fit if we introduce too many degrees

of freedom. Second, estimating πp usually involves deconvolution, which gen-

erally has relatively slow rate of convergence (e.g. [29]); a noisy estimate of πp

may hurt rather than help in fitting Model (3.2.15).

3.2.5 Upper bound

We are now ready for the upper bound. To recap, the proposed procedure is as

follows.

• With fixed tuning parameters (t, λups, uups), obtain Up(t) = { j : 1 ≤ j ≤

p, (x j,Y) ≥ t}.

• Obtain Ω∗ as in (3.2.11), and form a graph (V0,Ω0) with V0 = {1, 2, . . . , p},

and Ω0 = Ω∗.

• SplitUp(t) into connected subgraphs where different ones are disconnect-

ed. For each connected subgraph I0 = {i1, i2, . . . , iK}, obtain the minimizer

of (3.2.16), where each coordinate of µ is either 0 or uups. Denote the esti-

mate by µ̂(I0) = µ̂(I0; Y, X, t, λups, uups, p).

• For any 1 ≤ j ≤ p, if j < Up(t), set β̂ j = 0. Otherwise, there is a unique

I0 = {i1, i2, . . . , iK} C Up(t), where i1 < i2 < . . . < iK , such that j is the k-th
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coordinate of I0. Set β̂ j = (µ̂(I0))k.

Denote the resulting estimator by β̂(Y, X; t, λups, uups). We have the following the-

orem.

Theorem 3.2.1. Consider Model (3.2.1)-(3.2.2) where (3.2.3)-(3.2.7) hold, and fix 0 <

q ≤ (ϑ+ r)2/(4r). For sufficiently large p, if Ω(p) ∈ M+
p(ω0, γ, A), and we set the tuning

parameters of the UPS at

t = t∗p =
√

2q log(p), λups = λups
p =

√
2ϑ log p, uups = uups

p = τp,

then as p → ∞, Hammp(β̂ups(Y, X; t∗p, λ
ups
p , uups

p ), ϑ, r,Ω(p)) ≤ Lp · sp · p−
(r−ϑ)2

4r . The claim

remains valid if r/ϑ ≤ 3 + 2
√

2 and Ω(p) ∈ M∗
p(ω0, γ, A) for sufficiently large p.

Except for the Lp term, the upper bound matches the lower bound in Theo-

rem 3.1.1. Therefore, both bounds are tight and the UPS is rate optimal.

3.2.6 Tuning parameters of the UPS

The UPS uses three tuning parameters (t∗p, λ
ups
p , uups

p ). In this section, we show

that under certain conditions, the parameters (λups
p , uups

p ) can be estimated from

the data.

In detail, recall that Ỹ = X′Y . For t > 0, introduce F̄p(t) = 1
p

∑p
j=1 1{Ỹ j > t} and

µp(t) = 1
p

∑p
j=1 Ỹ j · 1{Ỹ j > t}. Denote the largest off-diagonal coordinate of Ω by

δ0 = δ0(Ω) = max{1≤i, j≤p,i, j} |Ω(i, j)|. Recalling that the support of πp is contained in

[τp, (1 + η)τp], we suppose

2δ0(1 + η) − 1 ≤ ϑ/r, so that δ2
0(1 + η)2r <

(ϑ + r)2

4r
. (3.2.17)

Let µ∗p(πp) be the mean of πp. The following is proved later.
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Lemma 3.2.4. Fix q such that max{δ2
0(1 + η)2r, ϑ} < q ≤ (ϑ + r)2/(4r), and let t∗p =√

2q log p. Suppose the conditions in Theorem 3.2.1 hold. As p → ∞, with probability

of 1 − o(1/p),

|[F̄p(t∗p)/εp] − 1| = o(1), and |[µp(t∗p)/(εpµ
∗
p(πp))] − 1| = o(1). (3.2.18)

Motivated by Lemma 3.2.18, we propose to estimate (λups, uups) by

λ̂ups
p = λ̂ups

p (q) =

√
−2 log(F̄p(t∗p)), ûups

p = ûups
p (q) = µp(t∗p)/F̄p(t∗p). (3.2.19)

Theorem 3.2.2. Fix q such that max{δ2
0(1 + η)2r, ϑ} < q ≤ (ϑ + r)2/(4r), and let t∗p =√

2q log p. Suppose the conditions of Theorem 3.2.1 hold. As p → ∞, if additionally

µ∗p(πp) ≤ (1 + o(1))τp, then Hammp(β̂ups) ≤ Lp · sp · p−(r−ϑ)2/(4r).

As a result, t∗p is the only tuning parameter needed by the UPS. By Theorem

3.2.2, the performance of the UPS is relatively insensitive to the choice of t∗p, as

long as it falls in a certain range. Numerical studies in Section 3.5 confirm this

for finite p. The numerical study also suggests that the lasso is comparably more

sensitive to its tuning parameter λlasso.

3.2.7 Discussions

While the conditions in Theorems 3.2.1-3.2.2 are relatively strong, the key idea

of the paper applies to much broader settings. The success of UPS attributes to

the interaction of the signal sparsity and graph sparsity, which can be found in

many applications (e.g. Compressive Sensing, Genome-wide Association Study

(GWAS)).
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In the forthcoming papers [11, 20, 21], we revisit the key idea of this paper,

and extend our results to more general settings. However, the current paper is

different from [11, 20, 21] in important ways. First, the focus of [11] is on ill-

posed regression models and change-point problems, and the focus of [21] is

on Ising model and network data. Second, the current paper uses the so-called

“phase diagram” as a new criterion for optimality (e.g., [10]), and [20] uses the

more traditional “asymptotic minimaxity” as the criterion for optimality. Due

to the complexity of the problem, one type of optimality usually does not imply

the other. The current paper and [20] have very different targets, objectives, and

underlying mathematical techniques, and the results in either one can not be

deduced from the other.

The current paper is new in at least two aspects. First, given that marginal

regression is a widely used method but is not well justified, this paper shows

that marginal regression can actually work, provided that an additional clean-

ing stage is performed. Second, it shows that L0-penalization method—the tar-

get of many relaxation methods—is non-optimal, even in very simple settings

and even when the tuning parameter is ideally set.

3.3 A refinement for moderately large p

We introduce a refinement for the UPS when p is moderately large. We begin by

investigating the relationship between the regression model and Stein’s normal

means model.
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Recall that the Model (3.1.1) is closely related to the following model:

X′Y = X′Xβ + X′z, z ∼ N(0, In), (3.3.1)

which is approximately equivalent to Stein’s normal means model as follow:

X′Y ≈ Ωβ + N(0,Ω) ⇐⇒ Ω−1X′Y ≈ N(β,Ω−1). (3.3.2)

In the literature, Stein’s normal means model has been extensively studied, but

the focus has been on the case where Ω is diagonal (e.g. [29]). When Ω is not

diagonal, Stein’s normal means model is intrinsically a regression problem. To

see how close Models (3.3.1) and (3.3.2) are, write

X′Y =
[
Ωβ +

√
n
‖z‖

X′z
]
+

[
(X′X −Ω)β + (

‖z‖
√

n
− 1)

√
n
‖z‖

X′z
]

= I + II. (3.3.3)

First, note that I ∼ N(Ωβ,Ω). For II, we have the following lemma.

Lemma 3.3.1. Consider Model (3.2.1)-(3.2.2) where (3.2.2)-(3.2.4) hold. As p → ∞,

there is a constant C > 0 such that except for a probability of o(1/p),

∣∣∣ ‖z‖√
n
− 1

∣∣∣ ≤ C(
√

log p)p−θ/2, ‖(X′X −Ω)β‖∞ ≤ C‖Ω‖(
√

2 log p)p−
θ−(1−ϑ)

2 .

It follows that |II| ≤ C
√

2 log(p) · p−[θ−(1−ϑ)]/2 coordinate-wise. Therefore,

asymptotically, Models (3.3.1) and (3.3.2) have negligible difference. However,

when p is moderately large, the difference between Models (3.3.1) and (3.3.2)

may be non-negligible. In Table 3.1, we tabulate the values of
√

2 log(p) ·

p−[θ−(1−ϑ)]/2, which are relatively large for moderately large p.

p 400 5 × 400 52 × 400 53 × 400 54 × 400 55 × 400
(θ, ϑ) = (0.91, 0.65) 0.65 0.46 0.33 0.22 0.15 0.10
(θ, ϑ) = (0.91, 0.5) 1.01 0.82 0.65 0.51 0.39 0.30

Table 3.1: The values of
√

2 log(p)p−[θ−(1−ϑ)]/2 for different p and (θ, ϑ).
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This says that, for moderately large p, the random design model is much

noisier than Stein’s normal means model. As a result, in the U-step, we tend

to falsely keep more noise terms in the former than in the latter; some of these

noise terms are large in magnitude, and it is hard to clean all of them in the

P-step. To see how the problem can be fixed, we write

X′Xβ = (X′X −Ω∗)β + Ω∗β. (3.3.4)

On one hand, the term (X′X −Ω∗)β causes the random design model to be much

noisier than Stein’s normal means model. On the other hand, this term can be

easily removed from the model if we have a reasonably good estimate of β. This

motivates a refinement as follows.

For any p × 1 vector y, let S 2(y) = 1
p−1

∑p
j=1(y j − ȳ)2 where ȳ = 1

p

∑p
j=1 y j. We

propose the following procedure: (1) Run the UPS and obtain an estimate of

β, say, β̂. Let W (0) = X′Y and β̂(0) = β̂. (2) For j = 1, 2, 3, respectively, let W ( j) =

X′Y−(X′X−Ω∗)β̂( j−1). If S (W ( j))/S (W ( j−1)) ≤ 1.05, run the UPS with X′Y replaced by

W ( j) and other parts unchanged, and let β̂( j) be the new estimate. Stop otherwise.

Numerical studies in Section 3.5 suggest that the refinement is beneficial for

moderately large p. When p is sufficiently large (e.g.
√

2 log(p) · p−[θ−(1−ϑ)]/2 ≤

0.4), the original UPS is usually good enough. In this case, refinements are not

necessary, but may still offer improvements.

3.4 Understanding the lasso and the subset selection

In this section, we show that there is a region in the phase space where the las-

so is rate non-optimal (similarly for subset selection). We use a Stein’s normal
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means model instead of the random design model (as the goal is to understand

the non-optimality of these methods, focusing on a simpler model enjoys math-

ematical convenience, yet is also sufficient; see Section 3.1.7).

To recap, the model we consider in this section is Ỹ ∼ N(Ωβ,Ω), where Ỹ is

the counterpart of X′Y in the random design model. Fix a ∈ (−1/2, 1/2). As in

Section 3.1.7, we let Ω be the tridiagonal matrix as in (3.1.12), and πp be the point

mass at τp =
√

2r log p. In other words,

β j
iid
∼ (1 − εp)ν0 + εpντp , εp = p−ϑ, τp =

√
2r log p. (3.4.1)

Throughout this section, we assume r > ϑ so that successful variable selection is

possible. Somewhat surprisingly, even in this simple case and even when (εp, τp)

are known, there is a region in the phase space where neither the lasso nor the

subset selection is optimal. To shed light, we first take a heuristic approach

below. Formal statements are given later.

3.4.1 Understanding the lasso

The vector Ỹ consists of three main components: true signals, fake signals, and

pure noise (see Definition 1.3). According to (3.4.1), true signals may appear as

singletons, pairs, triplets, etc., but singletons are the most common and there-

fore have the major effect. For each signal singleton, since Ω is tridiagonal,

we have two fake signals, one to the left and one to the right. Given a site j,

1 ≤ j ≤ p, the lasso may make three types of errors:

• Type I. Ỹ j is a pure noise, but the lasso mistakes it as a signal.

• Type II. Ỹ j is a signal singleton, but the lasso mistakes it as a noise.
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• Type III. Ỹ j is a fake signal next to a signal singleton, but the lasso mistakes

it as a signal.

There are other types of errors, but these are the major ones.

To minimize the sum of these errors, the lasso needs to choose the tuning

parameter λlasso carefully. To shed light, we first consider the uncorrelated case

where Ω is the identity matrix. In this case, we do not have fake signals and it is

understood that the lasso is equivalent to the soft-thresholding procedure [29],

where the expected sum of Type I and Type II errors is

p
[
(1 − εp)Φ̄(λlasso) + εpΦ(λlasso − τp)

]
. (3.4.2)

Here, Φ̄ = 1 −Φ is the survival function of N(0, 1). In (3.4.2), fixing 0 < q < 1 and

taking λlasso = λlasso
p =

√
2q log(p), the expected sum of errors is

∼


Lp

[
p1−q + p1−(ϑ+(

√
q−
√

r)2)], if 0 < q < r,

p1−q + p1−ϑ, if q > r.

The right-hand side is minimized at q = (ϑ + r)2/(4r) at which λlasso
p = ϑ+r

2r τp, and

the sum of errors is Lp p1−(ϑ+r)2/(4r), which is the optimal rate of convergence. For

a smaller q, the lasso keeps too many noise terms. For a larger q, the lasso kills

too many signals.

Return to the correlated case. The vector Ỹ is at least as noisy as that in the

uncorrelated case. As a result, to control the Type I errors, we should choose

λlasso
p to be at least ϑ+r

2r τp. This is confirmed in Lemma 3.4.2 below.

In light of this, we fix q ≥ (ϑ+r)2/(4r) and let λlasso
p =

√
2q log(p) from now on.

We observe that except for a negligible probability, the support of β̂lasso, denoted

by Ŝ lasso
p , splits into many small clusters (i.e. block of adjacent indices). There
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is an integer K not depending on p that has the following effects: (a) If Ỹ j is

a pure noise, and there is no signal within a distance of K from it, then either

β̂lasso
j = 0, or β̂lasso

j , 0 but β̂lasso
j±1 = 0, and (b) If Ỹ j is a signal singleton, and there is

no other signal within a distance of K from it, then either β̂lasso
j = 0, or β̂lasso

j , 0

but β̂ j±2 = 0 and at least one of {β̂lasso
j+1 , β̂

lasso
j−1 } is 0. These heuristics are justified in

[] (we use such heuristics to provide insight, but not for proving results below).

At the same time, let I0 = { j − k + 1, . . . , j} ⊂ Ŝ lasso
p be a cluster, so that β̂lasso

j−k =

β̂lasso
j+1 = 0. Since Ω is tridiagonal, (β̂lasso)I0 , the restriction of β̂lasso to I0, is the

solution of the following small-size minimization problem:

1
2
µ′(ΩI0,I0)µ − µ′ỸI0 + λlasso‖µ‖1, where µ is a k × 1 vector. (3.4.3)

See Definition 1.1. Two special cases are noteworthy. First, I0 = { j}, and the

solution of (3.4.3) is given by β̂lasso
j = sgn(Ỹ j)(|Ỹ j| − λ

lasso)+, which is the soft-

thresholding [29]. Second, I0 = { j − 1, j}. We call the solution of (3.4.3) in this

case the bivariate lasso. We have the following lemma, where all regions I-IIId

are illustrated in Figure 3.3 (x-axis is Ỹ j−1, y-axis is Ỹ j).

Lemma 3.4.1. Denote λ = λlasso. The solution of the bivariate lasso (β̂lasso
j−1 , β̂

lasso
j ) is

given by (β̂lasso
j−1 , β̂

lasso
j ) = (sgn(Ỹ j−1)(|Ỹ j−1| − λ)+, sgn(Ỹ j)(|Ỹ j| − λ)+) if (Ỹ j−1, Ỹ j) is in

Regions I, IIa-IId, and (β̂lasso
j−1 , β̂

lasso
j ) = 1

1−a2 (Z j−1 − aZ j, Z j − aZ j−1) if (Ỹ j−1, Ỹ j) is in

Regions IIIa-IIId. Here, Z j−1 = Ỹ j−1 − λ if (Ỹ j−1, Ỹ j) is in Regions IIIa, IIId, and Z j−1 =

Ỹ j−1 + λ otherwise; Z j = Ỹ j − λ if (Ỹ j−1, Ỹ j) is in Regions IIIa, IIIb, and Z j = Ỹ j + λ

otherwise.

In the white region of Figure 3.3, both β̂lasso
j−1 and β̂lasso

j are 0. In the blue re-

gions, exactly one of them is 0. In the yellow regions, both are nonzero. Lemma

3.4.1 is proved later.
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As a result, the following hold except for a negligible probability.

• Type I. There are O(p) indices j where Ỹ j is a pure noise, and no signal

appears within a distance of K from it. For each of such j, the lasso acts on

Ỹ j as (univariate) soft-thresholding, and β̂lasso
j , 0 if and only if |Ỹ j| ≥ λ

lasso
p .

• Types II-III. There are O(pεp) indices where Ỹ j is a signal singleton, and no

other signal appears within a distance of K from it. The lasso either acts

on Ỹ j as soft-thresholding, or acts on both Ỹ j and one of its neighbors as

the bivariate lasso. As a result, β̂lasso
j = 0 if and only if |Ỹ j| ≤ λ

lasso
p (Type II),

and both β̂lasso
j and β̂lasso

j−1 are nonzero if and only if (Ỹ j−1, Ỹ j)′ falls in Regions

IIIa-IIId, with IIIa and IIIb being the most likely (Type III).

Noting that Ỹ j ∼ N(0, 1) if it is a pure noise and Ỹ j ∼ N(τp, 1) if it is a signal single-

ton, the sum of Type I and Type II errors is Lp p
[
P(N(0, 1) ≥ λlasso

p ) + εpP(N(τp, 1) <

λlasso
p )

]
= Lp p

[
Φ̄(λlasso

p ) + εpΦ(λlasso
p − τp)

]
. Also, when Ỹ j is a signal singleton,

(Ỹ j−1, Ỹ j)′ is distributed as a bivariate normal with means aτp and τp, variances

1, and correlation a. Denote such a bivariate normal distribution by W for short.

The Type III error is Lp p · P
(
β j−1 = 0, β j = τp, (Ỹ j−1, Ỹ j)′ ∈ Regions IIIa or IIIb

)
∼

Lp pεp · P
(
W ∈ Regions IIIa or IIIb

)
. Therefore, the sum of three types of errors is

Lp p ·
[
Φ̄(λlasso

p ) + εpΦ(λlasso
p − τp) + εpP

(
W ∈ Regions IIIa or IIIb

)]
, (3.4.4)

which can be conveniently evaluated. Note that the sum of Type I and Type II

errors in the correlated case is the same as that in the uncorrelated case, which

is minimized at λlasso
p = (ϑ + r)/(2r)τp. Therefore, whether the lasso is optimal

or not depends on whether the Type III error is smaller than the optimal rate

of convergence or not. Unfortunately, in certain regions of the phase space, the

Type III error can be significantly larger than the optimal rate. In other words,
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provided that the tuning parameters are properly set, the lasso is able to sepa-

rate the signal singletons from the pure noise. However, it may not be efficient

in filtering out the fake signals, which is the culprit for its non-optimality.

For short, write Hammp(β̂lasso(λlasso
p )) = Hamm(β̂lasso(λlasso

p ); εp, τp, a). The fol-

lowing lemma confirms the above heuristics.

Lemma 3.4.2. Fix ϑ ∈ (0, 1), r > ϑ, q > 0 and a ∈ (−1/2, 1/2). Set the lasso tuning

parameter as λlasso
p =

√
2q log p. As p→ ∞,

Hamm(β̂lasso(λlasso
p ))

sp
≥


Lp p−min{ 1−|a|

1+|a|q, q−ϑ}, if 0 < q < (ϑ+r)2

4r ,

Lp p−min{ 1−|a|
1+|a|q, (

√
r−
√

q)2}, if (ϑ+r)2

4r < q < r,

(1 + o(1)), i f q > r.

The exponent on the right-hand side is minimized at q = (ϑ + r)2/(4r)

when r < [(1 +
√

1 − a2)/|a|]ϑ and q = (1 + |a|)(1 −
√

1 − a2)r/(2a2) when

r > [(1 +
√

1 − a2)/|a|]ϑ, where we note that r < [(1 +
√

1 − a2)/|a|]ϑ and

r > [(1 +
√

1 − a2)/|a|]ϑ correspond to the optimal and non-optimal regions

of the lasso, respectively. This shows that in the optimal region of the lasso,

λlasso
p = (ϑ+ r)/(2r)τp remains the optimal tuning parameter, at which the sum of

Type I and Type II errors is minimized, and the Type III error has a negligible

effect. In the non-optimal region of the lasso, at λlasso
p = (ϑ + r)/(2r)τp, the Type

III error is larger than the sum of Type I and Type II errors, so the lasso needs

to raise the tuning parameter slightly to minimize the sum of all three types of

errors (but the resultant Hamming error is still larger than that of the optimal

procedure). Combining this with Lemma 3.4.2 gives the following theorem, the

proof of which is omitted.

Theorem 3.4.1. Set λlasso
p =

√
2q log p. For all choices of q > 0, the error rate of the

lasso satisfies Hammp(β̂lasso(λlasso
p )) ≥ Lp · sp · p−

(ϑ−r)2
4r when r/ϑ < (1 +

√
1 − a2)/|a| and
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Figure 3.3: Partition of regions as in Lemma 3.4.1 (left) and in Lemma 3.4.3
(right).

Hammp(β̂lasso(λlasso
p )) ≥ Lp · sp · p

ϑ− (1−|a|)(1−
√

1−a2)
2a2 r when r/ϑ > (1 +

√
1 − a2)/|a|.

In [] we show that when r/ϑ ≤ 3 + 2
√

2, the lower bound in Theorem 3.4.1 is

tight. The proofs are relatively long, so we leave the details to [].

3.4.2 Understanding subset selection

The discussion is similar, so we keep it brief. Fix 1 ≤ j ≤ p. The major errors that

subset selection makes are the following (Type III is defined differently from

that in the preceding section):

• Type I. Ỹ j is a pure noise, but subset selection takes it as a signal.

• Type II. Ỹ j is a signal singleton, but subset selection takes it as a noise.

• Type III. (Ỹ j−1, Ỹ j) is a signal pair, but subset selection mistakes one of them

as a noise.

Suppose that Ỹ j is either a pure noise or a signal singleton, and for an ap-

propriately large K, no other signal appears within a distance of K from it. In
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this case, except for a negligible probability, β̂lasso
j±1 = 0, and the subset selec-

tion acts on site j as hard thresholding [29]: β̂ss
j = Ỹ j · 1{|Ỹ j| ≥ λss}. Recall that

Ỹ j ∼ N(0, 1) if it is a pure noise, and Ỹ j ∼ N(τp, 1) if it is a signal singleton. Take

λss = λss
p =

√
2q log p as before. Similarly, the expected sum of Type I and Type II

errors is

Lp p[Φ̄(λss
p ) + p−ϑΦ(λss

p − τp)] =


Lp(p1−q + p1−ϑ−(

√
q−
√

r)2
), if 0 < q < r,

Lp(p1−q + p1−ϑ), if q > r.
(3.4.5)

On the right-hand side, the exponent is minimized at q = (ϑ + r)2/4r, at which

the rate is Lp p1−(ϑ+r)2/(4r), which is the optimal rate of convergence.

Next, consider the Type III error. Suppose (Ỹ j−1, Ỹ j) is a signal pair and no

other signal appears within a distance of K for a properly large K. Similarly,

since Ω is tridiagonal, (β̂ss
j−1, β̂

ss
j )′ is the minimizer of the functional 1

2β
2
j−1 + 1

2β
2
j +

aβ j−1β j − (Ỹ j−1β j−1 + Ỹ jβ j) +
(λss

p )2

2

(
I{β j−1 , 0} + I{β j , 0}

)
. We call the resultant pro-

cedure bivariate subset selection. The following lemma is proved later, with the

regions illustrated in Figure 3.3.

Lemma 3.4.3. The solution of the bivariate subset selection is given by (β̂ss
j−1, β̂

ss
j ) =

(0, 0) if (Ỹ j−1, Ỹ j) is in Region I, (β̂ss
j−1, β̂

ss
j ) = (Ỹ j−1, 0) if (Ỹ j−1, Ỹ j) is in Regions IIa, IIc,

(β̂ss
j−1, β̂

ss
j ) = (0, Ỹ j) if (Ỹ j−1, Ỹ j) is in Regions IIb, IId, and (β̂ss

j−1, β̂
ss
j ) = ( Ỹ j−1−aỸ j

1−a2 ,
Ỹ j−aỸ j−1

1−a2 )

if (Ỹ j−1, Ỹ j) is in Regions IIIa-IIId.

When (Ỹ j−1, Ỹ j) falls in Regions I, IIa or IIb, either β̂ss
j−1 or β̂ss

j is 0, and

the subset selection makes a Type III error. Note there are O(pε2
p) signal

pairs, and that (Ỹ j−1, Ỹ j)′ is jointly distributed as a bivariate normal with

means (1 + a)τp, variances 1 and correlation a. The Type III error is then

Lp p1−(2ϑ+min
{
[(
√

r(1−a2)−
√

q)+]2,2[(
√

r(1+a)−
√

q)+]2
}
. Combining with (3.4.5) and Mills’ ra-

tio gives the sum of all three types of errors. Formally, writing for short
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Hammp(β̂ss(λss
p )) = Hammp(β̂ss(λss

p ); εp, τp, a), we have the following lemma

proved later.

Lemma 3.4.4. Set the tuning parameter λss
p =

√
2q log p. The Hamming error for the

subset selection Hammp(β̂ss(λss
p )) is at least

Lp · sp · p−min{q−ϑ, ϑ+[(
√

r(1−a2)−
√

q)+]2}, if 0 < q < (ϑ+r)2

4r ,

Lp · sp · p−min{(
√

r−
√

q)2, ϑ+[(
√

r(1−a2)−
√

q)+]2}, if (ϑ+r)2

4r < q < r,

sp · (1 + o(1)), if q > r.

The exponents on the right-hand side are minimized at q = (ϑ + r)2/(4r) if

r/ϑ < [2−
√

1 − a2]/[
√

1 − a2(1−
√

1 − a2)], and at q = [2ϑ+ r(1− a2)]2/[4r(1− a2)]

if r/ϑ > [2 −
√

1 − a2]/[
√

1 − a2(1 −
√

1 − a2)]. As a result, we have the following

theorem, the proof of which is omitted.

Theorem 3.4.2. Set the tuning parameter λss
p =

√
2q log p. Then for all q > 0, the

Hamming error of the subset selection satisfies

Hammp(β̂ss(λss
p ))

sp
≥


Lp p−(ϑ−r)2/(4r), if r

ϑ
< 2−

√
1−a2

√
1−a2(1−

√
1−a2)

,

Lp p−
[2ϑ+r(1−a2)]2

4r(1−a2)
+ϑ
, if r

ϑ
> 2−

√
1−a2

√
1−a2(1−

√
1−a2)

.

This gives the phase diagram in Figure 3.2, where (ϑ, r) satisfying r/ϑ <

[2 −
√

1 − a2]/[
√

1 − a2(1 −
√

1 − a2)] defines the optimal region, and (ϑ, r) with

r/ϑ > [2 −
√

1 − a2]/[
√

1 − a2(1 −
√

1 − a2)] defines the non-optimal region. Simi-

lar to the lasso, the subset selection is able to separate signal singletons from the

pure noise provided that the tuning parameter is properly set. But the subset s-

election is too harsh on signal pairs, triplets, etc., which costs its rate optimality.

In []we further show that in certain regions of the phase space, the lower bound

in Theorem 3.4.1 is tight.
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3.5 Simulations

We have conducted a small-scale empirical study of the performance of the UPS.

The idea is to select a few interesting combinations of (ϑ, θ, πp,Ω) and study the

behavior of the UPS for finite p. Fixing (p, πp,Ω, ϑ, θ), let np = pθ and εp = p−ϑ.

We investigate both the random design model and Stein’s normal means model.

In the former, the experiment contains the following steps: (1) Generate a

p × 1 vector β by β j
iid
∼ (1 − εp)ν0 + εpπp, and an np × 1 vector z ∼ N(0, Inp). (2)

Generate an np × p matrix X the rows of which are samples from N(0, 1
np

Ω); let

Y = Xβ + z. (3) Apply the UPS and the lasso. For the lasso, we use the glmnet

package by Friedman et al. [14] (Ω is assumed unknown in both procedures).

(4) Repeat 1–3 for 100 independent cycles, and calculate the average Hamming

distances.

In the latter, the settings are similar, except for (i) np = p, (ii) Y ∼ N(Ω1/2β, Ip)

in Step 2, and (iii) Ω is assumed as known in Step 3 (otherwise valid inference

is impossible). We include Stein’s normal means model in the study for it is the

idealized version of the random design model.

Experiment 1. In this experiment, we use Stein’s normal means model to in-

vestigate the boundaries of Region of Exact Recovery by the UPS and that by the

lasso. Fixing p = 104 and Ω as the tridiagonal matrix in (3.1.12) with a = 0.45,

we let ϑ range in {0.25, 0.5, 0.65}, and let πp = ντp with τp =
√

2r log p, where r is

chosen such that τp ∈ {5, 6, . . . , 12}. For both procedures, we use the ideal thresh-

old introduced in Section 3.2 and Section 3.4, respectively. That is, the tuning

parameters of the UPS are set as (t∗p, λ
ups
p , uups

p ) = (ϑ+r
2r τp,

√
2ϑ log(p), τp), and the

tuning parameter of the lasso is set as λlasso
p = max{ϑ+r

2r , (1 +
√

(1 − a)/(1 + a))−1}τp.
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The results are reported in Table 3.2, where the UPS outperforms consistently

over the lasso, most prominently in the case of ϑ = 0.25. Also, for ϑ = 0.25, 0.5,

or 0.65, the Hamming errors of the UPS start to fall below 1 when τp exceeds 8, 7

or 7, respectively, but that of the lasso won’t fall below 1 until τp exceeds 12, 8 or

7, respectively. In Section 3.1, we show that the UPS yields exact recovery when

τp > (1+
√

1 − ϑ)
√

2 log p, where the right-hand side equals (8.01, 7.32, 7.01) with

the current choices of (p, ϑ). The numerical results fit well with the theoretic

results.

τp 5 6 7 8 9 10 11 12

ϑ = 0.25
UPS 49 11.1 1.79 0.26 0.02 0 0 0
lasso 186.7 99.35 58.26 38.53 25.97 18.18 12.94 10.57

ϑ = 0.50
UPS 10.06 2.11 0.37 0.09 0 0 0 0
lasso 16.36 5.11 1.47 0.51 0.28 0.33 0.26 0.09

ϑ = 0.65
UPS 5.49 1.29 0.33 0.06 0 0 0 0
lasso 7.97 2.43 0.69 0.18 0.07 0.03 .02 .01

Table 3.2: Hamming errors (Experiment 1). UPS needs weaker signals for
exact recovery.

Experiment 2. We use a random design model where (p, ϑ, θ) = (104, 0.65,

0.91), and τp ∈ {1, 2, . . . , 7}. The experiment contains three parts, 2a–2c. In 2a, we

take Ω to be the penta-diagonal matrix Ω(i, j) = 1{i = j} + 0.4 · 1{|i − j| = 1} + 0.1 ·

1{|i − j| = 2}. Also, for each τp, we set πp as Uniform(τp − 0.5, τp + 0.5). In 2b, we

generate Ω in a way such that it has 4 nonzero off-diagonal elements on average

in each row and each column, at locations randomly chosen. Also, for each τp,

we take πp to be Uniform(τp − 1, τp + 1). In 2c, we use a non-Gaussian design for

X. In detail, first, we generate an n× p matrix M the coordinates of which are iid

samples from Uniform(−
√

3,
√

3). Second, we generate Ω as in 2b. Last, we let

X = (1/
√

n)MΩ1/2. Also, for each τp, we take πp to be the mixture of two uniform

distributions 1
2Uniform(τp − 0.5, τp + 0.5) + 1

2Uniform(−τp − 0.5,−τp + 0.5). In all
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these experiments, the tuning parameters are set the same way as in Experiment

1. The results are reported in Table 3.3, suggesting that the UPS outperforms the

lasso almost over the whole range of τp.

τp 1 2 3 4 5 6 7
2a 1.01 1.02 .96 1.04 .82 .97 .51 .64 .24 .28 .09 .10 .04 .04
2b 1.00 1.00 .98 1.04 .84 .96 .55 .67 .26 .32 .10 .12 .05 .05
2c .94 .95 .90 .91 .89 .95 .48 .60 .18 .27 .05 .11 .01 .03

Table 3.3: Ratios between Hamming errors and pεp (Experiment 2a-2c).
Bold: UPS. Plain: lasso.

Experiment 3. The goal of this experiment is twofold. First, we investigate

the sensitivity of the UPS and the lasso with respect to their tuning parameters.

Second, we investigate the refined UPS introduced in Section 3.3. Fix q > 0.

For the lasso, we take λlasso
p =

√
2q log(p). For the UPS, set the U-step tuning

parameter as t∗p =
√

2q log(p) and let the P-step tuning parameters be estimated

as in (3.2.19). Theorem 3.2.2 predicts that the UPS performs well provided that

q ∈ (max{ϑ, δ2
0(1 + η)2r}, (ϑ + r)2/(4r)), so both the lasso and the UPS are driven

by one tuning parameter q. We now investigate how the choice of q affects the

performances of the UPS and the lasso. The experiment contains three sub-

experiments 3a–3c.
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Figure 3.4: Experiment 3a. x-axis: q. y-axis: Hamming error. Left to right:
ϑ = 0.2, 0.5, 0.65.

In 3a, we use a Stein’s normal means model where (p, r) = (104, 3), πp = ντp

with τp =
√

2r log p, Ω is the penta-diagonal matrix satisfying Ω(i, j) = 1{i= j} +
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0.45 · 1{|i− j|=1} + 0.05 · 1{|i− j|=2}, and ϑ ∈ {0.2, 0.5, 0.65}. Note that when ϑ = 0.65,

(max{ϑ, δ2
0(1 + η)2r}, (ϑ + r)2/(4r)) = (0.65, 1) (similarly for other ϑ), so we let q ∈

{0.7, 0.8, . . . , 1.1}.

In 3b, we use a random design model where (p, r, πp,Ω, q) and the tuning

parameters are the same as in 3a, but θ = 0.8 and ϑ ∈ {0.5, 0.65} (the case ϑ = 0.2 is

relatively challenging in computation so is omitted). We compare the lasso with

the refined UPS where in each iteration, we use the same tuning parameters as

in 3a.
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Figure 3.5: Experiment 3b. x-axis: q. y-axis: Hamming error. Left: ϑ = 0.5.
Right: ϑ = 0.65.

In 3c, we use the same setup as in 3b, except that we fix q = 1 and let τp range

in {6, 6.5, . . . , 9}.

The results of 3a–3c are reported in Figures 3.4-3.6, correspondingly. These

results suggest that, first, the UPS consistently outperforms the lasso, and, sec-

ond, the UPS is relatively less sensitive to different choices of q.

Experiment 4. In this experiment, we investigate the effect of larger p and n,

respectively. The experiment includes two sub-experiments 4a and 4b.

In 4a, we use a Stein’s normal means model where (ϑ, r) = (0.5, 3), Ω as in Ex-

periment 2c, πp = ντp with τp =
√

2r log p, and we let p = 100×{1, 10, 102, 103, 104}.

The lasso and the UPS are implemented as in Experiment 3a, where q = 1. The
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results are reported in the left part of Table 3.4, where the second line displays

the ratios between the Hamming errors by the lasso and that by the UPS. The-

oretic results (Sections 3.1.7 and 3.4) predict that for (ϑ, r) in the non-optimal

region of the lasso, such ratios diverge as p tends to∞. The numerical results fit

well with the theory.
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Figure 3.6: Experiment 3c. The x-axis is τp, and the y-axis is the ra-
tio between the Hamming error and pεp. Left to right: ϑ =

0.65, 0.5, 0.2.

In 4b, we illustrate that in a random design model, if we fix p and let n

increase, then the random design models get increasingly close to a Stein’s nor-

mal means model. In detail, we take a random design model where (p, ϑ, r) =

(104, 0.5, 3), Ω and πp as in Experiment 2c, and np = 300 × {1, 3, 32, 33, 34}. We

also take a Stein’s normal means model with the same (p, ϑ, r,Ω, πp). The per-

formance of the UPS in both models is reported in the right part of Table 3.4,

where the last line is the ratios between the Hamming errors by the UPS for the

random design model and that for the Stein’s normal means model. The ratios

effectively converge to 1 as n increases.

p 102 103 104 105 106 n 300 900 2700 8100 24000
2.43 5.81 6.25 8.80 10.37 479.25 54.04 12.66 1.08 1.01

Table 3.4: Left: Ratios between the Hamming errors by the UPS and that
by the lasso (Experiment 4a). Right: Ratios between the Ham-
ming errors by the UPS for the random design model and that
for Stein’s normal means model (Experiment 4b).
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3.6 Proofs

3.6.1 Proof of Theorem 1.1

Fixing 1 ≤ j ≤ p, by basic algebra,

P
(
sgn(β̂ j) , sgn(β j)

)
≥ P(β j = 0, β̂ j , 0) + P(β j , 0, β̂ j = 0). (3.6.1)

Consider the hypothesis testing

H0, j : β j = 0, vs. H1, j : β j , 0.

Note that any variable selection procedure β̂ can be viewed as a test which re-

jects H0, j if and only if β̂ j , 0. Let f ( j)
0 (y) and f ( j)

1 (y) be the joint densities of Y

under H0, j and H1, j, respectively. The superscript ( j) is tedious, so we suppress

it. Recall that P(β j , 0) = εp. By Neyman-Pearon’s fundamental lemma,

P(β j = 0, β̂ j , 0) + P(β j , 0, β̂ j = 0) ≥
1
2
[
1 − ‖(1 − εp) f0 − εp f1‖1

]
, (3.6.2)

where ‖ · ‖1 denotes the L1 distance. Combining (3.6.1) and (3.6.2) gives

P
(
sgn(β̂ j) , sgn(β j)

)
≥

1
2
[
1 − ‖(1 − εp) f0 − εp f1‖1

]
. (3.6.3)

We now study ‖(1 − εp) f0 − εp f1‖1. For any realization of the mean vector β,

let β̃ = β − β je j, where e j is j-th basis of Rp. Let h(y; β̃, α) be the joint density of

Y ∼ N(X(β̃ + αe j), In). It follows that

h(y; β̃, α) = h(y, β̃, 0) · eαx′j(y−Xβ̃)−α2 x′j x j/2, (3.6.4)

and that

f0(y) =

∫
h(y; β̃, 0)dF(β̃), f1(y) =

∫
h(y; β̃, α)dπp(α)dF(β̃), (3.6.5)
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where F(β̃) denotes the cdf of β̃. Using elementary calculus and Fubini’s Theo-

rem,

‖(1 − εp) f0 − εp f1‖1 =

∫ ∣∣∣∣∣∫ (
(1 − εp)h(y, β̃, 0) − εph(y, β̃, α)

)
dπp(α)dF(β̃)

∣∣∣∣∣dy

≤

∫ ∫ ∣∣∣(1 − εp)h(y, β̃, 0) − εph(y, β̃, α)
∣∣∣dπp(α)dF(β̃)dy

=

∫ [∫ ∣∣∣(1 − εp)h(y, β̃, 0) − εph(y, β̃, α)
∣∣∣dy

]
dπp(α)dF(β̃)

=

∫
H(β̃, α)dπp(α)dF(β̃), (3.6.6)

where H(β̃, α) = H(β̃, α; εp) =
∫ ∣∣∣(1 − εp)h(y, β̃, 0) − εph(y; β̃, α)

∣∣∣dy. For any fixed β̃,

it is seen that H(β̃, α) = H(β̃,−α) and that H(β̃, α) is monotonely increasing in

α ∈ (0,∞). Therefore, for all α ∈ [−τp, 0) ∪ (0, τp],

H(β̃, α) ≤ H(β̃, τp). (3.6.7)

Recall that the support of πp is contained in [−τp, 0)∪ (0, τp]. Inserting (3.6.7) into

(3.6.6) gives

‖(1 − εp) f0 − εp f1‖1 ≤

∫
H(β̃, τp)dF(β̃). (3.6.8)

The following lemma is proved in Section 3.6.1.

Lemma 3.6.1. Suppose the same conditions as in Theorem 1.1 hold. For any realization

of β̃,

1
2
[
1 −

∫ ∣∣∣(1 − εp)h(y, β̃, 0) − εph(y, β̃, τp)
∣∣∣dy

]
= (1 − εp)Φ̄(λp) + εpΦ(λp − τp),

where λp is defined as in λp = λp(εp, τp) = 1
τp

[
log(1−εp

εp
) +

τ2
p

2

]
.

Using Lemma 3.6.1, it follows from (3.6.8) and definitions that

1
2
[
1 − ‖(1 − εp) f0 − εp f1‖1

]
≥ (1 − εp)Φ̄(λp) + εpΦ(λp − τp). (3.6.9)

Inserting (3.6.9) into (3.6.3) and noting sp = pεp give the first claim.
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Additionally, plugging in εp = p−ϑ and τp =
√

2r log p and using Mills’ ratio

[29] give that as p→ ∞,

1 − εp

εp
Φ̄(λp) = Lp p−

(r−ϑ)2
4r , Φ(λp − τp) =


Lp p−

(r−ϑ)2
4r , r > ϑ,

(1 + o(1)), r < ϑ,
(3.6.10)

and the second claim follows. �

Proof of Lemma 3.6.1

For any realization of β̃, let Dp(β̃) = Dp(β̃; εp, τp, X) = {y : εpeτp x′j(y−Xβ̃)−τ2
p/2 > (1−εp)}.

By (3.6.4), y ∈ Dp(β̃) if and only if εph(y, β̃, τp) > (1 − εp)h(x, β̃, 0). It follows that∫ ∣∣∣(1 − εp)h(y, β̃, 0) − εph(y, β̃, τp)
∣∣∣dy

= −

∫
Dp(β̃)

[(1 − εp)h(y, β̃, 0) − εph(y, β̃, τp)]dy +

∫
Dc

p(β̃)
[(1 − εp)h(y, β̃, 0) − εph(y, β̃, τp)]dy.

At the same time,

1 =

∫
[(1 − εp)h(y, β̃, 0) + εph(y, β̃, τp)]dy

=

∫
Dp(β̃)

[(1 − εp)h(y, β̃, 0) + εph(y, β̃, τp)]dy +

∫
Dc

p(β̃)
[(1 − εp)h(y, β̃, 0) + εph(y, β̃, τp)]dy.

Combining these gives

1
2
[
1−

∫ ∣∣∣(1−εp)h(y, β̃, 0)−εph(y, β̃, τp)
∣∣∣dy

]
= (1−εp)

∫
Dp(β̃)

h(y, β̃, 0)dy+εp

∫
Dc

p(β̃)
h(y, β̃, τp)dy.

(3.6.11)

Let W j(β̃) = x′j(Y − Xβ̃). Note that Y ∈ Dp(β̃) if and only if W j(β̃) > λp. It follows

that∫
Dp(β̃)

h(y, β̃, 0)dy = P0(W j > λp),
∫

Dc
p(β̃)

h(y, β̃, τp)dy = P1(W j ≤ λp), (3.6.12)

where P0 and P1 denote the law Y ∼ N(Xβ̃, In) and Y ∼ N(X(β̃ + τpe j), In), respec-

tively. Recall that X′X has unit diagonals. It follows that W j ∼ N(0, 1) under P0
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and W j ∼ N(τp, 1) under P1. Combining these with (3.6.12) gives∫
Dp(β̃)

h(y, β̃, 0)dy = Φ̄(λp),
∫

Dc
p(β̃)

h(y, β̃, τp)dy = Φ(λp − τp). (3.6.13)

The claim follows by inserting (3.6.13) into (3.6.11). �

3.6.2 Proof of Lemma 2.1

Let Dp be the event

{‖(X′X −Ω)β‖∞ ≤ C‖Ω‖
√

log(p) p−(θ−(1−ϑ))/2, |
‖z‖
√

n
− 1| ≤ C

√
log(p)p−θ/2}. (3.6.14)

By Lemma 3.1, P(Dc
p) ≤ o(1/p) for a properly large constant C > 0.

Consider the first claim. In this case, Ω(i, j) ≥ 0 for all 1 ≤ i, j ≤ p. It is

sufficient to show for each 1 ≤ j ≤ p,

P(x′jY < t∗p, β j , 0,Dp) ≤ Lp p−(ϑ+r)2/(4r).

Let e j be the j-th basis of the Rp. It is seen that over the event Dp, x′jY ≈ e′jΩβ +

√
nx′jz/‖z‖, where the error is algebraically small (i.e. O(p−c) for some constant c).

Note that
√

nx′jz/‖z‖ ∼ N(0, 1), and that when β j , 0, e′jΩβ ≥ β j ≥ τp. It follows

that

P(x′jY < t∗p, β j , 0,Dp) . p−ϑP(e′jΩβ +
√

nx′jz/‖z‖ < t∗p|β j ≥ τp) ≤ p−ϑΦ(t∗p − τp).

Recall that t∗p ≤ ((ϑ + r)/(2r))τp and τp =
√

2r log p. The claim follows from Mills’

ratio [29].

Consider the second claim. In this case, r/ϑ ≤ 3 + 2
√

2. Fix 1 ≤ j ≤ p, let

S j = S j(Ω) = {k : 1 ≤ k ≤ p, |Ω(k, j)| ≥ log−1(p)},
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and let B j be the event {βk = 0 for all k , j and k ∈ S j}. By the definition of

M∗
p(ω0, γ, A), |S j| ≤ 2 log(p), so

P(β j , 0, Bc
j) ≤

∑
k∈S j,k, j

P(β j , 0, βk , 0) ≤ 2 log(p)ε2
p = 2 log(p)p−2ϑ. (3.6.15)

Since r/ϑ ≤ 3 + 2
√

2, 2ϑ ≥ (ϑ + r)2/(4r). Compare (3.6.15) with the desired claim,

it is sufficient to show

P(x′jY < t∗p, β j , 0, B j) ≤ Lp p−(ϑ+r)2/(4r). (3.6.16)

Towards this end, write e′jΩβ =
∑p

k=1 Ω( j, k)βk =
∑

k∈S j
Ω( j, k)βk +

∑
k<S j

Ω( j, k)βk.

Over the event {β j , 0} ∩ B j, note that first,
∑

k∈S j
Ω( j, k)βk = β j ≥ τp, and second,

|
∑
k<S j

Ω( j, k)βk| ≤ C
√

log(p)
∑
k<S j

|Ω( j, k)| ≤ C
√

log(p)(log−1(p))1−γ
∑
k<S j

|Ω( j, k)|γ,

where by the summability condition of Ω, the right-hand side = o(
√

2 log p). It

follows that e′jΩβ & τp over the event {β j , 0} ∩ B j. By similar argument as in the

proof of the first case, (3.6.16) follows. �

3.6.3 Proof of Lemma 2.2

Write for short δp = log−1(p). Let Dp be the event {|Ω̂(i, j) − Ω(i, j)| ≤ C
√

log p ·

p−θ/2, for all 1 ≤ i, j ≤ p}. By (2.10), for an appropriately large constant C > 0,

P(Dc
p) ≤ o(1/p2). It is sufficient to show that for sufficiently large p, both claims

hold over Dp.

Consider the first claim. By the definition of M∗
p(ω0, γ, A), each row of Ω

has at most 2 log(p) coordinates exceeding (1/2 + ω0)δp in magnitude, where

(1/2 + ω0) < 1. It follows that for sufficiently large p, each row of Ω̂ has at most
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2 log(p) coordinates exceeding δp in magnitude over the event Dp. The claim

follows from the definition of Ω∗.

Consider the second claim. The goal is to show that over the event Dp,∑p
j=1 |Ω(i, j) −Ω∗(i, j)| ≤ Cδ(1−γ)

p , for all 1 ≤ i ≤ p. Write

p∑
j=1

|Ω(i, j) −Ω∗(i, j)| = I + II, (3.6.17)

where I =
∑
{ j: |Ω∗(i, j)|>δp}

|Ω(i, j)−Ω∗(i, j)|, and II =
∑
{ j: |Ω∗(i, j)|≤δp}

|Ω(i, j)|. First, by the

definition of Dp and the first claim,

I ≤ 2 log(p) max
1≤i, j≤p

{|Ω̂(i, j) −Ω(i, j)|} ≤ Lp p−θ/2. (3.6.18)

Second, note that over the event Dp, |Ω(i, j)| ≥ 2δp whenever |Ω∗(i, j)| ≥ δp. It

follows that

II ≤
∑

{ j: |Ω(i, j)|≤2δp}

|Ω(i, j)| ≤
∑

{ j: |Ω(i, j)|≤2δp}

(|Ω(i, j)|γ)(|Ω(i, j)|1−γ), (3.6.19)

where by the definition of M∗
p(ω0, γ, A), the last term ≤ (2δp)1−γ ∑p

j=1 |Ω(i, j)|γ ≤

Cδ1−γ
p . Inserting (3.6.18)-(3.6.19) into (3.6.17) gives the claim. �

3.6.4 Proof of Lemma 2.3

Denote all size ` Connected sub-Graph (CG) with respect to (V0,Ω
∗) that contain

j by

N j(`) = {I0 =
{
i1, i2, . . . , i`} is a CG : i1 < i2 < . . . < i`, j ∈ I0

}
.

The following lemma is proved in Frieze and Molloy [15].

Lemma 3.6.2. Fix 1 ≤ j ≤ p and 1 ≤ k ≤ p − 1. If each row of Ω∗ has at most (k + 1)

nonzeros, then |N j(`)| ≤ (ek)`−1.
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For any ` ≥ 1, since a CG with size (` + 1) always contains a CG with size `,

P(Up(t∗p) contains a CG with size ≥ `) ≤ P(Up(t∗p) contains a CG with size `).

To show the claim, it is sufficient to show that for a constant `0 to be determined,

P(Up(t∗p) contains a CG with size `0) ≤ o(1/p). (3.6.20)

Recall Ω̂ = X′X. Introduce events D(1)
p = {|Ω̂(i, j) − Ω(i, j)| ≤ C

√
log(p)p−θ/2, 1 ≤

i, j ≤ p}, D(2)
p = {

∣∣∣ √n
‖z‖ − 1

∣∣∣ ≤ C(
√

log p)p−θ/2, ‖(X′X − Ω)β‖∞ ≤ C(
√

log p)p−(θ−(1−ϑ))/2},

and Dp = D(1)
p ∩ D(2)

p . By (2.10) and Lemma 3.1, P(Dc
p) ≤ o(1/p) for a properly

large constant C > 0. So to show (3.6.20), it is sufficient to show

P(Up(t∗p) contains a CG with size `0, Dp) ≤ o(1/p). (3.6.21)

Recall that by Lemma 2.2, each row of Ω∗ has at most 2 log(p) nonzero coor-

dinates. Using Lemma 3.6.2, there are at most p(2e log(p))`0 CG with size `0.

So to show (3.6.21), it is sufficient to show for any fixed CG of size `0, say

I0 = {i1, i2, . . . , i`0},

P(I0 ⊂ Up(t∗p),Dp) ≤ o(1/p2). (3.6.22)

We now show (3.6.22). Let J0 = {1, 2, . . . , p}, and write for short M = ΩI0,J0 ,

W = (X′Y)I0 , η = (
√

nX′z/‖z‖)I0 , and Ω0 = ΩI0,I0 . Note that η is independent of β

and η ∼ N(0,Ω0), so

η′Ω−1
0 η ∼ χ

2(`0). (3.6.23)

Note that W ≈ Mβ + η, or more precisely, by definitions and Schwarz inequality,

‖η‖2 ≥
1
2
‖W‖2 − ‖Mβ‖2 − rem, over the event Dp, (3.6.24)

where the reminder term rem is non-stochastic and algebraically small, and so

has a negligible effect. Since the largest eigenvalue of Ω0 does not exceed that of
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Ω, where the latter ≤ 2,

η′Ω−1
0 η ≥

1
2
‖η‖2. (3.6.25)

Recall t∗p =
√

2q log(p). By definitions, if I0 ⊂ Up(t∗p), then

‖W‖2 ≥ `0t∗2p ≥ 2q`0 log(p). (3.6.26)

Combining (3.6.24)-(3.6.26) gives that over the event {I0 ⊂ Up(t∗p)} ∩ Dp,

η′Ω−1
0 η ≥

1
2
‖η‖2 ≥

1
2

[q`0 log(p) − ‖Mβ‖2 − rem]. (3.6.27)

The following lemma is proved in Section 3.6.4.

Lemma 3.6.3. Fix k ≥ 1. As p→ ∞, there is a constant C > 0 such that

P(‖Mβ‖2 ≥ (1 + η)2(4k + C`0(log(p))−2(1−γ))τ2
p, Dp) ≤ 2(2`0 logγ(p))k p−ϑk.

Let k0 = k0(`0; q, γ, η, r, p) be the largest k satisfying (1 + η)2(4k +

C`0(log(p))−2(1−γ))τ2
p ≤

1
2q`0 log(p). Denote the event {‖Mβ‖2 ≥ (1 + η)2(4k0 +

C`0(log(p))−2(1−γ))τ2
p} by D̃p. By Lemma 3.6.3 and (3.6.27),

P(Dp ∩ D̃p) ≤ Lp p−ϑk0 , and η′Ω−1
0 η &

1
4q`0 log(p) over Dp ∩ D̃c

p. (3.6.28)

As a result,

P(I0 ⊂ Up(t∗p),Dp) ≤ P(η′Ω−1
0 η &

1
4

q`0 log(p)) + P(D̃p ∩ Dp).

Using (3.6.23) and (3.6.28), it follows from basic statistics that

P(I0 ⊂ Up(t∗p),Dp) ≤ Lp(p−
1
8 q`0 + p−ϑk0). (3.6.29)

By definitions, (k0 + 1)/`0 & q/(16(1 + η)2r). Choosing `0 sufficiently large en-

sures the existence of k0, the right-hand side of (3.6.29) ≤ o(1/p2) and then gives

(3.6.22). �
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Proof of Lemma 3.6.3

Let S = { j : 1 ≤ j ≤ p, Ω∗(i, j) , 0 for some i ∈ I0}. Recall that over the event Dp,

each row of Ω∗ has at most 2 log(p) nonzero coordinates. Since |I0| = `0,

|S | ≤ 2`0 log(p). (3.6.30)

Denote for short M1 = ΩI0,S and ξ = βS . Note that Mβ − M1ξ = ΩI0,S c
βS c

=

(Ω −Ω∗)I0,S c
βS c . By Lemma 2.2 and assumptions, ‖Ω∗ −Ω‖∞ ≤ C(log(p))−(1−γ) and

‖β‖∞ ≤ (1 + η)τp. Therefore, ‖Mβ − M1ξ‖∞ ≤ C(1 + η)(log(p))−(1−γ)τp, and

‖Mβ − M1ξ‖
2 ≤ C(1 + η)2`0(log(p))−2(1−γ)τ2

p. (3.6.31)

At the same time, by basic algebra, the largest eigenvalue of M′
1M1 does not

exceed that of Ω2, where the latter ≤ 4. By ‖ξ‖∞ ≤ ‖β‖∞ ≤ (1 + η)τp,

‖M1ξ‖
2 ≤ 4‖ξ‖2 ≤ 4‖ξ‖0(1 + η)2τ2

p. (3.6.32)

Combining (3.6.31)–(3.6.32) gives

‖Mβ‖2 ≤ (1 + η)2(4‖ξ‖0 + C`0(log(p))−2(1−γ))τ2
p.

Recall that εp = p−ϑ and ‖ξ‖0 is distributed as Binomial(|S |, εp) (see (2.2)). Using

(3.6.30),

P(‖ξ‖0 ≥ k) =

|S |∑
j=k

(
|S |
j

)
ε j

p(1 − εp)|S |− j ≤

|S |∑
j=k

(2`0 log(p)) j p−ϑ j ≤ 2(2`0 log(p))k p−ϑk.

(3.6.33)

Combining (3.6.33)-(3.6.32), the claim follows by recalling τp =
√

2r log p. �

3.6.5 Proof of Theorem 2.1

By (2.2), with probability at least 1 − o( 1
p ),

|(X′X)(i, j) −Ω(i, j)| ≤ Lp p−θ/2, ∀ 1 ≤ i, j ≤ n. (3.6.34)
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Fix K ≥ 1. It is seen that for all connected subgraph I0 of size ` ≤ K,

‖(X′X)I0,I0 −ΩI0,I0‖∞ ≤ Lp p−θ/2. (3.6.35)

Write for short β̂ = β̂ups(Y, X; t∗p, λ
ups
p , uups

p ). By definitions, Hammp(β̂, β) =

E[hp(β̂|X)], where hp(β̂|X) ≤ p for all X. So the event where X does not satisfy

either (3.6.34) or (3.6.35) only has a negligible effect on the claim. All we need to

show is that, for any X satisfying (3.6.34)-(3.6.35), hp(β̂|X) ≤ Lp p1−(ϑ+r)2/(4r), where

the right-hand side does not depend on X.

We now show the last inequality. Given X satisfying (3.6.34) and (3.6.35),

write hp(β̂|X) =
∑p

j=1 P(sgn(β̂ j) , sgn(β j)|X) = I + II, where I =
∑p

j=1 P(sgn(β̂ j) ,

sgn(β j), j < Up(t∗p)|X) and II =
∑p

j=1 P(sgn(β̂ j) , sgn(β j), j ∈ Up(t∗p)|X). The depen-

dence on X is tedious and we drop the “|X” part below. Consider I. When

j < Up(t∗p), x′jY < t∗p, and β̂ j = 0. Combining this with Lemma 2.1 gives

I ≤
∑p

j=1 P(x′jY < t∗p, β j , 0) ≤ Lp p1−(ϑ+r)2/(4r). It remains to show II ≤ Lp p1−(ϑ+r)2/(4r).

By Lemma 2.3, there are constant K > 0 and event Ap such that P(Ac
p) ≤

Lp p−(ϑ+r)2/(4r) and thatUp(t∗p) has the SAS property with respect to (V0,Ω
∗,K) over

the event Ap. It is sufficient to show that for all 1 ≤ j ≤ p, P(sgn(β̂ j) , sgn(β j), j ∈

Up(t∗p), Ap) ≤ Lp p−(ϑ+r)2/(4r). By the definition of the SAS property, over the event

{ j ∈ Up(t∗p)} ∩ Ap, there exists a unique component I0 = {i1, i2, . . . , i`}with size ` ≤

K satisfying j ∈ I0 CUp(t∗p). In other words, P(sgn(β̂ j) , sgn(β j), j ∈ Up(t∗p), Ap) ≤∑
I0

P(sgn(β̂ j) , sgn(β j), j ∈ I0 C Up(t∗p), Ap), where the summation is over all

connected subgraphs I0 of (V0,Ω
∗) that contains j and that has a size ≤ K. By

Lemma 2.2, each row of Ω∗ has no more than 2 log(p) nonzero coordinates. It

follows from Lemma 3.6.2 that there are at most C(2e log(p))K of such I0. It

remains to show for any fixed connected subgraph I0 of (V0,Ω
∗) that contains j,

P(sgn(β̂ j) , sgn(β j), j ∈ I0 CUp(t∗p)) ≤ Lp p−(ϑ+r)2/(4r).
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Introduce the event Bp(I0) = Bp(I0, β; X, j) through its complement

Bc
p(I0) = {There are indices i < I0 and k ∈ I0 such that βi , 0, Ω∗(i, k) , 0}. In the

event Bc
p(I0)∩{ j ∈ I0CUp(t∗p)}∩Ap, we must have i < Up(t∗p) and so that X′i Y < t∗p.

In other words, the event Bc
p(I0) ∩ { j ∈ I0 C Up(t∗p)} ∩ Ap is contained in the

following event:

{There are indices i < I0 and k ∈ I0 such that βi , 0, Ω∗(i, k) , 0, and x′iY < t∗p}.

It follows that P( j ∈ I0 C Up(t∗p), Bc
p ∩ Ap) ≤

∑
i P(βi , 0, x′iY < t∗p), where the

summation is over all indices i satisfying that Ω∗(i, k) , 0 for some index k ∈ I0.

Since each row of Ω∗ has at most 2 log(p) nonzero coordinates, there are at most

2K log(p) such indices i. Additionally, for any fixed i, by the Sure Screening

property, P(βi , 0, x′iY < t∗p) ≤ Lp p−(ϑ+r)2/(4r). Combining these gives that P( j ∈

I0 C Up(t∗p), Bc
p ∩ Ap) ≤ Lp p−(ϑ+r)2/(4r). Comparing this with what remains, it is

sufficient to show P(sgn(β̂ j) , sgn(β j), j ∈ I0 CUp(t∗p), Bp ∩ Ap) ≤ Lp p−(ϑ+r)2/(4r).

A key fact is that, over the event { j ∈ I0 CUp(t∗p)} ∩ Bp∩Ap, (Ωβ)I0 ≈ ΩI0,I0βI0 .

This is the following lemma, which is proved in Section 3.6.5.

Lemma 3.6.4. Over the event { j ∈ I0 CUp(t∗p)} ∩ Ap ∩ Bp, ‖(Ωβ)I0 − ΩI0,I0βI0‖∞ ≤

Cτp(log(p))−(1−γ).

We now relate the event Qp = {sgn(β j) , sgn(β̂ j), j ∈ I0 CUp(t∗p)} ∩ Bp ∩ Ap to

the P-step. Let µ̂(I0) = µ̂(I0; Y, X, t∗p, λ
ups
p , uups

p , p) be the minimizer of the Penalized

MLE

[
ỸI0 − (X′X)I0,I0µ

]′((X′X)I0
)−1[ỸI0 − (X′X)I0µ

]
/2 + (λups

p )2‖µ‖0/2,

where the coordinates of µ take values from {0, uups
p }, λ

ups
p =

√
2ϑ log p, and uups

p =

τp =
√

2r log p. By the definition of the UPS, the event Qp is contained in the
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event {sgn(µ̂(I0)) , sgn(βI0), j ∈ I0 CUp(t∗p), Bp ∩ Ap}, where sgn(β) is the vector

of signs of β. The claim follows from the following lemma, which is proved in

Section 3.6.5.

Lemma 3.6.5. Suppose the conditions of Theorem 2.1 hold. For the event Q∗p =

{sgn(µ̂(I0; Y, X, t∗p, λ
ups
p , uups

p , p)) , sgn(βI0), j ∈ I0 CUp(t∗p)} ∩ Bp ∩ Ap. Fix 1 ≤ j ≤ p.

As p→ ∞, for any fixed I0 with size ≤ K that contains j, P
(
Q∗p

)
≤ Lp p−(ϑ+r)2/(4r) + p−2ϑ.

If furthermore all coordinates of ΩI0,I0 are non-negative, then P(Q∗p) ≤ Lp p−(ϑ+r)2/(4r).

�

Proof of Lemma 3.6.4

Let Ic
0 = { j : 1 ≤ j ≤ p, j < I0}. It is seen that

(Ωβ)I0 −ΩI0,I0βI0 = ΩI0,I0βI0 + ΩI0,I
c
0βI

c
0 −ΩI0,I0βI0 = ΩI0,I

c
0βI

c
0 . (3.6.36)

Since I0CUp(t∗p), and over the event Bp, k ∈ I0 and i ∈ Ic
0 imply that either βi = 0

or Ω∗(k, i) = 0, we have

(Ω∗)I0,I
c
0βI

c
0 = 0. (3.6.37)

Combining (3.6.36)-(3.6.37) gives

(Ωβ)I0 −ΩI0,I0βI0 = (Ω −Ω∗)I0,I
c
0βI

c
0 .

By assumptions and Lemma 2.2,

‖(Ω −Ω∗)I0,I
c
0βI

c
0‖∞ ≤ ‖(Ω −Ω∗)I0,I

c
0‖∞ · ‖β

Ic
0‖∞ ≤ Cτp(log(p))−(1−γ). (3.6.38)

The claim follows. �
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Proof of Lemma 3.6.5

Write for short µ̂(I0) = µ̂(I0; Y, X, t∗p, λ
ups
p , uups

p , p), β∗ = τp sgn(β) and λ = λ
ups
p =√

2ϑ log p. Introduce the event

D̃p = D̃p(z, X) = {‖X′z‖∞ ≤ C
√

log p}.

Choosing the constant C appropriately large, P(D̃c
p) ≤ o(1/p). So all we need to

show is

P(sgn(µ̂(I0)) , sgn(βI0), j ∈ I0 CUp(t∗p), Bp ∩ Ap ∩ D̃p) ≤ Lp p−(ϑ+r)2/(4r). (3.6.39)

Now, if the sign vector of µ̂(I0) does not match that of βI0 , it does not match that

of (β∗)I0 . By the definitions of µ̂(I0),

1
2

(ỸI0 − (X′X)I0,I0 µ̂(I0))′((X′X)I0,I0)−1(ỸI0 − (X′X)I0,I0 µ̂(I0)) +
λ2

2
‖µ̂(I0)‖0

≤
1
2

(ỸI0 − (X′X)I0,I0(β∗)I0)′((X′X)I0,I0)−1(ỸI0 − (X′X)I0,I0(β∗)I0) +
λ2

2
‖(β∗)I0‖0.

By (3.6.35), ‖(X′X)I0,I0−ΩI0,I0‖∞ is algebraically small. So up to a negligible effect,

1
2

(ỸI0 −ΩI0,I0 µ̂(I0))′(ΩI0,I0)−1(ỸI0 −ΩI0,I0 µ̂(I0)) +
λ2

2
‖µ̂(I0)‖0

≤
1
2

(ỸI0 −ΩI0,I0(β∗)I0)′(ΩI0,I0)−1(ỸI0 −ΩI0,I0(β∗)I0) +
λ2

2
‖(β∗)I0‖0. (3.6.40)

Denote d = d(I0) = ‖(β∗)I0‖0 − ‖µ̂(I0)‖0. Reorganizing, it follows from (3.6.40)

that

((β∗)I0 − µ̂(I0))′ỸI0 ≤
1
2
[
dλ2 + ((β∗)I0)′ΩI0,I0(β∗)I0 − µ̂′(I0)ΩI0,I0 µ̂(I0)

]
, (3.6.41)

where by Lemma 3.6.4, there is an |I0| × 1 vector z̃ ∼ N(0,ΩI0,I0) independent of

βI0 such that

ỸI0 = ΩI0,I0βI0 + z̃ + rem, ‖rem‖∞ ≤ o(
√

log p). (3.6.42)
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Now, for notational simplicity, we drop I0 everywhere in (3.6.40)–(3.6.42).

This is a slight misuse of the notations. Note that β and Ω below are low-

dimensional. Write

β − µ̂ = τp(∆1 + ∆2), where ∆1 =
1
τp

(β∗ − µ̂), ∆2 =
1
τp

(β − β∗). (3.6.43)

Plug (3.6.42)-(3.6.43) into (3.6.41) and reorganize. We conclude that over the

event (3.6.39),

−
∆′1z̃√
∆′1Ω∆1

≥
1

2
√

∆′1Ω∆1

(
−d(ϑ/r)+2∆′1Ω∆2 +∆′1Ω∆1

) √
2r log p+o(

√
log p), (3.6.44)

where the o(
√

2 log(p)) term is non-stochastic and has a negligible effect.

Let Bnn be the number of zero coordinates of β estimated as 0, Bns be the

number of those estimated as τp. Let Bsn be the number of nonzero coordinates

of β that are estimated as 0, and Bss be the number of those estimated as τp.

Note that, first, over the event in (3.6.39), Bns + Bsn ≥ 1. Otherwise, the sign

vector of µ̂ matches that of β. Second, the probability that I0 contains Bsn + Bss

signals ∼ εBsn+Bss
p = p−ϑ(Bsn+Bss). Third, since z̃ ∼ N(0,Ω), (∆′1z̃/

√
∆′1Ω∆1) ∼ N(0, 1).

Combining these with (3.6.44), to show (3.6.39), it is sufficient to show

p−ϑ(Bsn+Bss)Φ̄

((−d(ϑ/r) + 2∆′1Ω∆2 + ∆′1Ω∆1
)

2
√

∆′1Ω∆1

√
2r log p

)

≤


Lp p−

(ϑ+r)2
4r , if Ω only has non-negative coordinates,

Lp p−
(ϑ+r)2

4r + p−2ϑ, if Ω may have negative coordinates,
(3.6.45)

where Φ̄ = 1 − Φ is the survival function of N(0, 1).

First, we consider (3.6.45) for the case where Ω only has non-negative co-

ordinates. Before we proceed further, we note that, first, when a zero coor-

dinate of β is estimated as 0, it has no effect on the desired inequality. So

without loss of generality, we assume Bnn = 0. Second, the proof for the case
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Bsn + Bss ≥ (ϑ + r)2/(4ϑr) is trivial, so we assume Bsn + Bss < (ϑ + r)2/(4ϑr). Third,

the case Bsn + Bss = 0 is easy. In fact, note that d = Bsn − Bns ≤ −1, ∆′1Ω∆1 ≥ 1, and

∆2 = 0. So

Bsn + Bss = 0,
−d(ϑ/r) + 2∆′1Ω∆2 + ∆′1Ω∆1

2
√

∆′1Ω∆1
≥

1 + (ϑ/r)
2

.

The left-hand side of (3.6.45) is

p−ϑ(Bsn+Bss) · Φ̄

−d(ϑ/r) + 2∆′1Ω∆2 + ∆′1Ω∆1

2
√

∆′1Ω∆1

√
2r log p

 ≤ Φ̄(
1 + (ϑ/r)

2

√
2r log p),

and the claim follows from Mills’ ratio [29]. Last, the case Bns = 0 but Bsn+Bss ≤ 1

is also relatively easy. In this case, as sgn(µ̂) , sgn(β), Bns and Bsn can not be 0

at the same time, and we must have Bsn = 1 and Bss = 0. It follows that d = 1,

∆1 = 1, ∆2 ≥ 0, and Ω = 1. So

Bsn + Bss = 1,
−d(ϑ/r) + 2∆′1Ω∆2 + ∆′1Ω∆1

2
√

∆′1Ω∆1
≥

1 − (ϑ/r)
2

.

Using Mills’ ratio [29], the claim follows from

p−ϑ(Bsn+Bss) · Φ̄

−d(ϑ/r) + 2∆′1Ω∆2 + ∆′1Ω∆1

2
√

∆′1Ω∆1

√
2r log p

 ≤ εpΦ̄(
1 − (ϑ/r)

2

√
2r log p).

In light of these observations, below, we assume Bnn = 0 and

1 ≤ Bsn + Bss ≤ (ϑ + r)2/(4ϑr), and when Bns = 0, Bss + Bsn ≥ 2. (3.6.46)

The following lemma is proved in Section 3.6.5.

Lemma 3.6.6. Fix ω0 ∈ [0, 1/2). Suppose that Ω has unit diagonals and only non-

negative coordinates, and that

max{‖U(Ω)‖∞, ‖U(Ω)‖1} ≤ ω0. (3.6.47)

Then

∆′1Ω∆1 ≥


2Bsn − 2ω0(2Bsn − 1), Bsn = Bns ≥ 1,

(Bsn + Bns) − 4ω0 min{Bsn, Bns}, Bsn , Bns.
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By Cauchy-Schwarz inequality,

|∆′1Ω∆2| ≤

√
∆′1Ω∆1

√
∆′2Ω∆2. (3.6.48)

First, by assumptions, the largest eigenvalue of Ω is bounded by 1 + 2ω0, so

∆′2Ω∆2 ≤ (1 + 2ω0)‖∆2‖
2
2. (3.6.49)

Second, recall that the support of πp is contained in [τp, (1 + η)τp]. By definitions,

∆2 has (Bss+Bsn) nonzero coordinates, each of which ≤ η in magnitude. It follows

that

∆′2Ω∆2 ≤ (1 + 2ω0)‖∆2‖
2
2 ≤ (1 + 2ω0)(Bss + Bsn)η2. (3.6.50)

Recall that Bsn + Bss ≤ (ϑ + r)2/(4rϑ). Combining this with (3.6.48)-(3.6.50) gives

|∆′1Ω∆2| ≤

√
(1 + 2ω0)

(ϑ + r)2

4ϑr
η2 ·

√
∆′1Ω∆1. (3.6.51)

Write for short c = c(η;ϑ, r, ω0) = (1+2ω0) (ϑ+r)2

4ϑr η
2. By the definition of η (i.e. (2.6)),

2
√

c ≤ min{
2ϑ
r
, 1 −

ϑ

r
,
√

2 − 2ω0 − 1 +
ϑ

r
}. (3.6.52)

Combining these with (3.6.51) gives

−d(ϑ/r) + 2∆′1Ω∆2 + ∆′1Ω∆1

2
√

∆′1Ω∆1
≥
−d(ϑ/r) + ∆′1Ω∆1

2
√

∆′1Ω∆1
−
√

c. (3.6.53)

We now discuss three different cases (a) Bns = Bsn ≥ 1, (b) Bns > Bsn, and (c)

Bns < Bsn separately.

Consider (a). In this case, d = 0, and by Lemma 3.6.6, ∆′1Ω∆1 ≥ 2Bsn(1−2ω0)+

2ω0 ≥ 2 − 2ω0. It follows that

−d(ϑ/r) + ∆′1Ω∆1

2
√

∆′1Ω∆1
−
√

c =
1
2

√
∆′1Ω∆1 −

√
c ≥

1
2

(
√

2 − 2ω0 − 2
√

c). (3.6.54)

By (3.6.52),

2
√

c ≤
√

2 − 2ω0 − 1 + (ϑ/r). (3.6.55)
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Combining (3.6.53)-(3.6.55) gives

−d(ϑ/r) + 2∆′1Ω∆2 + ∆′1Ω∆1

2
√

∆′1Ω∆1
≥

1
2

(1 −
ϑ

r
).

Inserting this into (3.6.45) and noting Bss + Bsn ≥ 1, the claim follows by Mills’

ratio [29].

Consider (b). In this case, Bns > Bsn and so d ≤ −1. First, by (3.6.52),
√

c ≤ ϑ/r.

Second, note that the function [ (ϑ/r)+x
2
√

x −
√

c] is positive and monotonely increasing

in the range of x ≥ 1, and that by Lemma 3.6.6, ∆′1Ω∆1 ≥ 1. It follows that

−d(ϑ/r) + ∆′1Ω∆1

2
√

∆′1Ω∆1
−
√

c ≥
1
2

(1 +
ϑ

r
) −

ϑ

r
=

1
2

(1 −
ϑ

r
).

By (3.6.46), Bsn + Bss ≥ 1. Inserting these into (3.6.45), the claim follows by Mills’

ratio [29].

Consider (c). In this case, Bns < Bsn. We have either Bns = 0 or Bns ≥ 1. By

(3.6.46), we have that in either case, Bsn + Bss ≥ 2. First, suppose ϑ/r ≥ 1/3. In

this case, 2ϑ ≥ (ϑ + r)2/(4r), and the claim follows by p−ϑ(Bsn+Bss) ≤ p−2ϑ. Next,

suppose 0 < ϑ/r < 1/3. Note that d = Bsn − Bns ≥ 1. By Lemma 3.6.6, ∆′1Ω∆1 ≥

Bsn − Bns. Recall that, for given d ≥ 1 and r > ϑ, the function −d(ϑ/r)+x
2
√

x is positive

and monotonely increasing in the range of x ≥ d. Combining these gives

−d(ϑ/r) + ∆′1Ω∆1

2
√

∆′1Ω∆1
≥
−d(ϑ/r) + d

2
√

d
≥

1
2

(1 −
ϑ

r
).

At the same time, by (3.6.52),
√

c ≤ θ/r. It follows that

−d(ϑ/r) + ∆′1Ω∆1

2
√

∆′1Ω∆1
−
√

c ≥
1
2

(1 − ϑ/r) − ϑ/r =
1
2

(1 − 3ϑ/r).

Inserting this into (3.6.45) and recalling Bsn + Bss ≥ 2, the claim follows from

p−2ϑΦ̄(
1
2

(1 − 3ϑ/r)
√

2r log p) = Lp p−2ϑ−(r−3ϑ)2/(4r) ≤ Lp p−(ϑ+r)2/(4r),
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where we have used Mills’ ratio [29]. This proves (3.6.45) for the case where Ω

has only non-negative coordinates.

Next, consider (3.6.45) for the case where Ω may have negative coordinates.

The proof for the case Bsn + Bss ≥ 2 is trivial, so we only consider the case Bsn +

Bss ≤ 1. By similar arguments as in Lemma 3.6.6,

∆′1Ω∆1 ≥ 1. (3.6.56)

We now consider three cases (a) Bsn + Bss = 0, (b) Bsn = 1 and Bss = 0, and (c)

Bsn = 0 and Bss = 1, separately.

Consider (a). In this case, Bns ≥ 1 and so d ≤ −1. Also, we must have ∆2 = 0.

By (3.6.56) and the monotonicity of the function ((ϑ/r) + x)/
√

x in x ∈ [1,∞),

−d(ϑ/r) + ∆′1Ω∆1 + 2∆′1Ω∆2

2
√

∆′1Ω∆1
≥
ϑ/r + ∆′1Ω∆1

2
√

∆′1Ω∆1
≥

1
2

(1 +
ϑ

r
),

and the claim follows by similar arguments.

Consider (b). In this case, d ≤ 1 and ∆′1Ω∆2 ≥ 0. By (3.6.56) and the mono-

tonicity of the function (−(ϑ/r) + x)/
√

x in x ∈ [1,∞),

−d(ϑ/r) + ∆′1Ω∆1 + 2∆′1Ω∆2

2
√

∆′1Ω∆1
≥
−(ϑ/r) + ∆′1Ω∆1

2
√

∆′1Ω∆1
≥

1
2

(1 − ϑ/r).

Noting that Bsn + Bss = 1, the claim follows by similar arguments.

Consider (c). In this case, ∆′1Ω∆2 ≥ −ω0η ≥ −ϑ/r, where we have used the

condition η ≤ 2ϑ/r. Note that in this case, we must have Bns ≥ 1, so d ≤ −1. By

(3.6.56) and the monotonicity of the function (−(ϑ/r) + x)/
√

x in x ∈ [1,∞),

−d(ϑ/r) + ∆′1Ω∆1 + 2∆′1Ω∆2

2
√

∆′1Ω∆1
≥
−(ϑ/r) + ∆′1Ω∆1

2
√

∆′1Ω∆1
≥

1
2

(1 − ϑ/r),

and the claim follows similarly. �
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Proof of Lemma 3.6.6

Without loss of generality, assume all coordinates of ∆1 are nonzero. Write for

short A1 = Bsn, A2 = Bns and k = A1 + A2. Introduce a k × k diagonal matrix Λ

such that Λ(i, i) is the sign of the i-th coordinate of ∆1. For notational simplicity,

we write ∆ = ∆1, and let ∆i be the i-th coordinate of ∆, 1 ≤ i ≤ k. Let Ω̃ = Λ′ΩΛ.

Note that |Ω̃(i, j)| = |Ω(i, j)| for all 1 ≤ i, j ≤ k, and so max{‖U(Ω̃)‖∞, ‖U(Ω̃)‖1} ≤ ω0.

It is seen that

∆′Ω∆ = 1′Λ′ΩΛ1 = 1′Ω̃1, (3.6.57)

where 1 is the k × 1 vector of ones. We discuss the case A1 = A2 ≥ 1 and the case

A1 , A2 separately.

In the first case, A1 = A2 ≥ 1. By the assumptions of the lemma and direct

calculations,

1′Ω̃1 =

k∑
i=1

Ω̃(i, i) + 2
k−1∑
i=1

k∑
j=i+1

Ω̃(i, j) ≥ k − 2
k−1∑
i=1

ω0 ≥ k − 2(k − 1)ω0. (3.6.58)

In the second case, A1 , A2. By symmetry, we only show the case A1 > A2. Let

S 1 = {1 ≤ i ≤ k : ∆i = 1} and S 2 = {1 ≤ i ≤ p, ∆i = −1}. Note that |S 1| = A1 and

|S 2| = A2, and that Ω̃(i, j) ≤ 0 if and only if i ∈ S 1 and j ∈ S 2, or i ∈ S 2 and j ∈ S 1.

It follows that

1′Ω̃1 =

k∑
i=1

Ω̃(i, i) +
∑
i, j

Ω̃(i, j) ≥ k + (I + II), (3.6.59)

where I =
∑

i∈S 1, j∈S 2
Ω̃(i, j) and II =

∑
i∈S 2, j∈S 1

Ω̃(i, j). By the assumptions of the

lemma and the symmetry of Ω̃, for each fixed j ∈ S 2,
∑

i∈S 1
|Ω̃(i, j)| ≤ 2ω0. Simi-

larly, for each fixed i ∈ S 2,
∑

j∈S 1
|Ω̃(i, j)| ≤ 2ω0. Inserting these into (3.6.59) gives

1′Ω̃1 ≥ (A1 + A2) − 4ω0A2, and the claim follows. �
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3.6.6 Proof of Lemma 2.4

In this section and Sections 3.6.6 and 3.6.6, we denote t = t∗p for simplicity. S-

ince the proofs are similar, we only show the first claim. Note that except for

a probability of o(1/p), |Ỹ j| ≤ C
√

2 log p for some constant C > 0. Write for

short δp = 1/ log(p), and let Ω̃ be the matrix where Ω̃(i, j) = Ω(i, j)1{|Ω(i, j)|≥δp},

1 ≤ i, j ≤ p. By the summability assumption of Ω and elementary algebra,

we have (i) each row of Ω̃ has no more than 2 log(p) nonzero coordinates, (ii)

‖Ω − Ω̃‖∞ ≤ C(log(p))−(1−γ), and (iii) there is a non-stochastic term ap = (1 + o(1))

such that apΩ̃ − Ω is positive semi-definite (note ‖Ω̃ − Ω‖∞ = o(1)). Recall that

Ỹ = X′Xβ + X′z, where
√

nX′z/‖z‖ ∼ N(0,Ω). Let η ∼ N(0, apΩ̃ − Ω) be a Gaussian

random vector that is independent of
√

nX′z/‖z‖. Introduce

W = Ω̃β +
1
√ap

(
√

nX′z/‖z‖ + η).

It is seen that W ∼ N(Ω̃β, Ω̃). Additionally, there is a non-stochastic term bp =

o(1) such that except for a probability of o(1/p),

‖W − Ỹ‖∞ ≤ bp ·
√

2 log(p). (3.6.60)

In fact, letting W̃ = Ωβ +
√

nX′z/‖z‖, we write

‖W − Ỹ‖∞ ≤ ‖W − W̃‖∞ + ‖W̃ − Ỹ‖∞. (3.6.61)

First, by Lemma 3.1, except for a probability of o(1/p),

‖Ỹ − W̃‖∞ ≤ C
√

log(p)(p−(θ−(1−ϑ))/2 + p−θ/2). (3.6.62)

Second, by definitions, ‖W − W̃‖∞ ≤ ‖(Ω − Ω̃)β‖∞ + (| 1
√ap
− 1|)‖

√
nX′z
‖z‖ ‖∞ + 1

√ap
‖η‖∞.

It follows from (i)–(iii) and elementary statistics that except for a probability of

o(1/p),

‖W − W̃‖∞ ≤ o(
√

2 log(p)). (3.6.63)
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Inserting (3.6.62)-(3.6.63) into (3.6.61) gives (3.6.60).

Now, introduce event Ap = {‖Ỹ − W‖∞ ≤ bp
√

2 log(p)}, and F̄±p (t) =

1
p

∑p
j=1 1

{W j±bp

√
2 log p≥t}

. Comparing F̄±p (t) with F̄p(t), it is seen that over the event

Ap,

F̄−p (t) ≤ F̄p(t) ≤ F̄+
p (t).

The claim follows from the following lemma, which is proved in Section 3.6.6.

Lemma 3.6.7. Under the conditions of Lemma 2.4, there is a constant c = c(ϑ, r) > 0

such that, with probability 1 − o(1/p),∣∣∣∣∣ 1
pεp

p∑
j=1

1{W j≥t} − 1
∣∣∣∣∣ ≤ Lp p−c(ϑ,r).

Proof of Lemma 3.6.7

Let Ω̃ be defined as above. The following lemma is proved below in Section

3.6.6.

Lemma 3.6.8. Suppose Y ∼ N(0, Ω̃), and S p(t) =
∑p

j=1 1{Y j≥t}. Fixing an integer m > 0,

E[(S p(t))m] ≤ C(m)(1 + 2ep log(p)Φ̄(t))m.

As a result, for any fixed constant c0 > 0, P(S p(t) ≥ pc0 E[S p(t)]) ≤ o(1/p).

We now proceed to prove Lemma 3.6.7. Write W = β̃ + z̃, where we bear

in mind that (i) β̃ = Ω̃β and z̃ ∼ N(0, Ω̃), (ii) β̃ and z̃ are independent, (iii) each

row of Ω̃ has no more than 2 log(p) nonzero coordinates, and (iv) if β j , 0, then

τp ≤ β j ≤ (1 + η)τp. For each 1 ≤ j ≤ p, let D j = {1 ≤ k ≤ p : Ω̃( j, k) , 0}, and let

A0 j, A1 j, and A2 j be correspondingly the events where there are none, one, and
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two or more indices k ∈ D j such that βk , 0. Write

1
p

p∑
j=1

1{W j≥t} =
1
p

(I + II + III),

where I =
∑p

j=1 1{W j≥t}1{A0 j}, II =
∑p

j=1 1{W j≥t}1{A2 j}, and III =
∑p

j=1 1{W j≥t}1{A1 j}.

Consider I first. Note that over the event A0 j, β̃ j = 0. It follows from (i) that

I ≤
∑p

j=1 1{W j≥t,β̃ j=0} ≤
∑p

j=1 1{z̃ j≥t}. By Lemma 3.6.8, for any fixed c0 > 0, as p → ∞,

except for a probability of o(1/p),

I ≤ pc0

p∑
j=1

P(z̃ j ≥ t) = p1+c0Φ̄(t). (3.6.64)

Consider II. Introduce the set

H = {(k, `) : k < `, and Ω̃( j, k) , 0, Ω̃( j, `) , 0 for some 1 ≤ j ≤ p}.

It is seen that |H| ≤ 4 log2(p)p, and that

p∑
j=1

1{A2 j} ≤

p∑
j=1

∑
{k∈D j,`∈D j,k<`}

1{βk,0,β`,0} =
∑
{(k,`)∈H}

1{βk,0,β`,0}.

Define a graph where each element of H is a node, and two nodes (k, `) and

(k′, `′) are connected if and only if {k, `} ∩ {k′, `′} , ∅. Fixing a node (k, `), we

calculate the number of nodes (k′, `′) that are connected to (k, `). Note that two

nodes are connected if and only if k = k′, k = `′, ` = k′, or ` = `′. Take the first

case for example. By definition, there is a j such that Ω̃( j, k) , 0 and Ω̃( j, `′) , 0.

By (iii), for a given k, there are 2 log(p) different choices of j, and for a given j,

there are 2 log(p) different choices of `′. It follows that there are no more than

4 log2(p) nodes (k′, `′) that may be connected to (k, `). By similar argument as in

the proof of Lemma 3.6.8, except for a probability of o(1/p),

∑
{(k,`)∈H}

1{βk,0,β`,0} ≤ pc0 E[
∑
{(k,`)∈H}

1{βk,0,β`,0}] ≤ 4 log2(p)p1+c0ε2
p, (3.6.65)
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where we have used |H| ≤ 4p log2(p). It follows that

II ≤
p∑

j=1

1{A2 j} ≤ 4 log2(p)p1+c0ε2
p. (3.6.66)

Consider III. Write III = IIIa + IIIb− IIIc, where IIIa =
∑p

j=1 1{W j≥t}1{A1 j}1{β j=0},

IIIb =
∑p

j=1 1{A1 j}1{β j,0}, and IIIc =
∑p

j=1 1{W j<t}1{A1 j}1{β j,0}. Consider IIIa. Write for

short δ0 = δ0(Ω). Note that over the event A1 j ∩ {β j = 0}, β̃ j ≤ δ0(1 + η)τp. Fix a

realization of β, let j1 < j2 < · · · < j` be all the indices at which 1{A1 j}1{β j=0} = 1.

Using (i)-(ii),

IIIa ≤
p∑

j=1

1{z̃ j≥t−δ0(1+η)τp}1{A1 j}1{β j=0} ≤
∑̀
k=1

1{z̃ jk≥t−δ0(1+η)τp}.

Using Lemma 3.6.8, for any c0 > 0, as p→ ∞, except for a probability of o(1/p),∑̀
k=1

1{z̃ jk≥t−δ0(1+η)τp} ≤ pc0
∑̀
k=1

P(z̃ jk ≥ t − δ0(1 + η)τp) ≤ pc0`Φ̄(t − δ0(1 + η)τp). (3.6.67)

Since (3.6.67) holds for all the realizations of β, and that except for a probability

of o(1/p), ` ≤ ‖β‖0 ≤ 2pεp, it follows that

IIIa ≤ 2p1+c0εpΦ̄(t − δ0(1 + η)τp). (3.6.68)

Consider IIIb. Write

IIIb =

p∑
j=1

1{β j,0} −

p∑
j=1

1{β j,0}1{A2 j}, (3.6.69)

where we have used the fact 1{A0 j}1{β j,0} = 0. Note that except for a probability of

o(1/p), |
∑p

j=1 1{β j,0} − pεp| ≤ C
√

log(p)/(pεp), and that by (3.6.66),
∑p

j=1 1{β j,0}1{A2 j} ≤∑p
j=1 1{A2 j} ≤ 4 log2(p)p1+c0ε2

p. It follows that except for a probability of o(1/p),

|IIIb − pεp| ≤ C/
√

pεp + 4 log2(p)p1+c0ε2
p. (3.6.70)

Consider IIIc. Note that over the event A1 j ∩ {β j , 0}, β̃ j = β j ≥ τp. By (i)-(ii),

IIIc ≤
∑p

j=1 1{W j<t}1{β̃ j≥τp}
≤

∑p
j=1 1{z̃ j<t−τp}1{β̃ j,0}. Note that except for a probability
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of o(1/p),
∑p

j=1 1{β̃ j,0} ≤ 2 log(p)
∑p

j=1 1{β j,0} ≤ 4 log(p)pεp. By similar arguments as

in the proof of IIIa, for any fixed c0 > 0, as p → ∞, except for a probability of

o(1/p),

IIIc ≤
p∑

j=1

1{z̃<t−τp}1{β̃ j,0} ≤ 4 log(p)p1+c0εpΦ̄(τp − t). (3.6.71)

Combining (3.6.68), (3.6.70), and (3.6.71) gives that except for a probability of

o(1/p),

|III − pεp| ≤ C log2(p)
[
p1+c0ε2

pΦ̄(t − δ0(1 + η)τp) + p1+c0εpΦ̄(τp − t) +

√
1

pεp
+ p1+c0ε2

p

]
.

(3.6.72)

Recall t = t∗p =
√

2q log p where max{δ2
0(1+η)2r, ϑ} < q ≤ (ϑ+r)2

4r . Combining (3.6.64),

(3.6.66), and (3.6.72), the claim follows by Mill’s ratio [29].

Proof of Lemma 3.6.8

The second claim follows directly by Chebyshev’s inequality, so we only show

the first claim. Write

E[S m
p (t)] =

m∑
k=1

∑
a1+...ak=m

∑
i1<...<ik

E
[
(1{Yi1≥t})a1 . . . (1{Yik≥t})ak

]
,

where ai ≥ 1 are integers, 1 ≤ i ≤ k. By basic combinatorics,

E[S m
p (t)] =

m∑
k=1

∑
a1+...ak=m

∑
i1<...<ik

E
[
(1{Yi1≥t}) . . . (1{Yik≥t})

]
≤

m∑
k=1

(
m − 1
k − 1

) ∑
i1<...<ik

E
[
(1{Yi1≥t}) . . . (1{Yik≥t})

]
. (3.6.73)

Form a graph where {1, 2, . . . , p} are the nodes and nodes {i, j} are connect-

ed if and only if Ω̃(i, j) , 0. For 1 ≤ ` ≤ k, let M(`; k) = {{i1 < . . . <

ik} : {i1, . . . , ik} splits into ` different CG}, where CG stands for connected sub-

graph as before. First, by Lemma 3.6.2 and basic combinatorics, |M(`; k)| ≤
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(
p
`

)(
k−1
`−1

)
(2e log(p))k ≤ C(m)p`(2e log(p))k. Second, note that for any {i1, . . . , ik} ∈

M(`; k), E[(1{Yi1≥t}) . . . (1{Yik≥t})] ≤ (Φ̄(t))`. Combining these gives that for each

1 ≤ k ≤ m,

∑
i1<...<ik

E[(1{Yi1≥t}) . . . (1{Yik≥t})] =

k∑
`=1

∑
{{i1,...,ik}∈M(`;k)}

E[(1{Yi1≥t}) . . . (1{Yik≥t})]

≤

k∑
`=1

(2e log(p))k
k∑
`=1

(pΦ̄(t))` ≤ k(2e log(p)Φ̄(t))k.

Inserting this into (3.6.73) gives the claim. �

3.6.7 Proof of Theorem 2.2

Let (λups
p , uups

p ) be the tuning parameters as in Theorem 2.1. Write for short

(λp, up) = (λups
p , uups

p ) and (λ̂p, ûp) = (λ̂ups
p , ûups

p ). The proof is similar to that of Theo-

rem 2.1 except one difference: the non-stochastic tuning parameters (λp, up) are

replaced by stochastic tuning parameters (λ̂p, ûp). By a close investigation of the

proof of Theorem 2.1, it is sufficient to show that Lemma 6.5 continues to hold

if we replace (λp, up) by (λ̂p, ûp), except for that the generic logarithmic term Lp

may be different. Towards this end, note that by Lemma 2.4, there is a positive

number δp = o(1) such that except for a probability of o(1/p),

(1 − δp)λp ≤ λ̂p ≤ (1 + δp)λp, (1 − δp)up ≤ ûp ≤ (1 + δp)up. (3.6.74)

Note that Lemma 3.6.5 continues to hold if we replace λp by (1± δp)λp and up by

(1 ± δp)up. The claim follows by (3.6.74) and a close investigation of the proof of

Lemma 3.6.5. �
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3.6.8 Proof of Lemma 3.1

The first claim follows directly from [4], so we only show the second claim. Let

e j be the j-th basis of the Rp. All we need to show is that for each 1 ≤ j ≤ p,

except for a probability of o(1/p2), |e′j(X
′X − Ω)β| ≤ C‖Ω‖

√
log p p−[θ−(1−ϑ)]/2. By

symmetry, it is sufficient to show this for j = 1 only. Denote a = (X′X −Ω)e1 and

write e′1(X′X−Ω)β =
∑p

i=1 aiβi. It is sufficient to show that except for a probability

of o(1/p2),

|

p∑
i=1

aiβi| ≤ C‖Ω‖
√

log p p−[θ−(1−ϑ)]/2. (3.6.75)

Towards this end, let µp = µp(a, πp) = 1
p

∑p
i=1 E[aiβi] and σ2

p = σ2
p(a, πp) =

1
p

∑p
i=1 a2

i Var(βi). Direct calculation shows that

pµp � εp

√
log p

p∑
i=1

ai, pσ2
p � εp log(p)

p∑
i=1

a2
i . (3.6.76)

First, let Z = XΩ−1/2, ξ = Ω1/2e1, and η = 1
√

pΩ1/21p/
√
‖Ω‖. Note that ‖ξ‖2 = e′1Ωe1 =

1 and ‖η‖2 = 1
‖Ω‖

( 1
p1′pΩ1p) ≤ 1. It follows that

p∑
i=1

ai = e′1(X′X −Ω)1p =
√

p‖Ω‖(ξ′Z′Zη − ξ′η). (3.6.77)

Write Z = (Z1,Z2, . . . ,Zn)′ and ξ′Z′Zη − ξ′η = 1
n

∑n
i=1(
√

nξ′Zi)(
√

nη′Zi) − ξ′η. Note

that for 1 ≤ i ≤ n, (
√

nξ′Zi,
√

nη′Zi)′ are iid samples from a bivariate normal with

variances ‖ξ‖2 and ‖η‖2, and covariance ξ′η. By similar arguments as in [4] and

that n = pθ, except for a probability of o(1/p2),

|ξ′Z′Zη − ξ′η| ≤ C
√

log(n)/
√

n ≤ Cp−θ/2
√

log(p). (3.6.78)

Combining (3.6.76)-(3.6.78), we have that except for a probability of o(1/p2),

pµp ≤ Cεp log(p)
√

p‖Ω‖p−θ/2 ≤ C log(p)
√
‖Ω‖p−

ϑ
2−[θ−(1−ϑ)]/2. (3.6.79)
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Second, write

p∑
i=1

a2
i = e′1(X′X −Ω)(X′X −Ω)e1 = ξ′(Z′Z − Ip)Ω(Z′Z − Ip)ξ. (3.6.80)

It is known [27] that except for a probability of o(1/p2), the largest eigenvalue of

(Z′Z − Ip) is no greater than C
√

p/n in absolute value. Recalling ‖ξ‖ = 1,

ξ′(Z′Z − Ip)Ω(Z′Z − Ip)ξ ≤ ‖Ω‖ξ′(Z′Z − Ip)(Z′Z − Ip)ξ ≤ C‖Ω‖(p/n). (3.6.81)

Combining (3.6.76), (3.6.80) and (3.6.81) gives

pσ2
p ≤ C‖Ω‖ log(p)εp p/n ≤ C‖Ω‖ log(p)p−[θ−(1−ϑ)]. (3.6.82)

Last, since βi ≤ C
√

log p, using Bennett’s lemma [25], for any λ > 0,

P(
p∑

i=1

aiβi ≥ pµp +
√

pλ) ≤ exp
(
−
λ2

2σ2
p
ψ(
λC

√
log p

σ2
p
√

p
)
)
, (3.6.83)

where ψ(x) > 0 and xψ(x) is monotonely increasing in x ∈ (0,∞). Choose λ such

that
√

pλ = C‖Ω‖
√

log(p)εp(p/n) = C‖Ω‖
√

log(p) p−[θ−(1−ϑ)]/2.

Using (3.6.82), it follows from (3.6.83) that

P(
p∑

i=1

aiβi ≥ pµp +
√

pλ) = o(1/p2). (3.6.84)

Combining (3.6.84) with (3.6.79) and (3.6.82) gives (3.6.75). �

3.6.9 Proof of Lemma 4.1

For notational simplicity, write for short β1 = β j−1, β2 = β j, β̂1 = β̂ j−1, β̂2 = β̂ j, ỹ1 =

Ỹ j−1, and ỹ2 = Ỹ j. By the KKT condition [28], (β̂1, β̂2)′ minimizes the functional if
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and only if there is a sub-gradient α = (α1, α2)′ such that 1 a

a 1


 β̂1

β̂2

 −
 ỹ1

ỹ2

 + λα = 0, and


αi = sgn(β̂i), if β̂i , 0,

|αi| ≤ 1, otherwise.
(3.6.85)

Since the proofs are similar, we only show that for Regions I, IIa, and IIIa.

Consider Region I. For i = 1, 2, construct β̂i = 0 and αi = ỹi/λ. It is seen that

the first requirement in (3.6.85) is satisfied. Moreover, note that |ỹi| ≤ λ in the

current region. It follows that |αi| ≤ 1, and the constructions satisfy the second

requirement in (3.6.85) as well. So in this case, the minimizer is (β̂1, β̂2) = (0, 0).

Consider Region IIa. Construct β̂1 = ỹ1 − λ, β̂2 = 0, α1 = 1, and α2 = [(ỹ2 −

aỹ1) + aλ)]/λ. Direct calculations show that these satisfy the first requirement

of (3.6.85). Moreover, since −(1 + a)λ < (ỹ2 − aỹ1) < (1 − a)λ, |α2| ≤ 1, so this

construction also satisfies the second requirement of (3.6.85). So in this case,

(β̂1, β̂2) = (ỹ1 − λ, 0).

Consider Region IIIa. Set α1 = α2 = 1 and

β̂1 =
1

1 − a2 [(ỹ1 − λ) − a(ỹ2 − λ)], β̂2 =
1

1 − a2 [(ỹ2 − λ) − a(ỹ1 − λ)].

Direct calculations show that these constructions satisfy the first requirement

of (3.6.85). Moreover, by the definition of Region IIIa, β̂1 > 0 and β̂2 > 0, so

αi = sgn(β̂i) and the second requirement of (3.6.85) is also satisfied. Combining

these gives the claim. �
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3.6.10 Proof of Lemma 4.2

Write for short β̂ = β̂lasso and λp = λlasso
p =

√
2q log(p). Introduce events A0 j =

{βk = 0, j− 2 ≤ k ≤ j + 1}, A1 j = {β j−2 = β j−1 = β j+1 = 0, β j = τp}, B0 j = {β̂ j−2 = β̂ j−1 =

β̂ j = β̂ j+1 = 0}, and B1 j = {β̂ j−2 = β̂ j−1 = β̂ j+1 = 0, β̂ j , 0}. The Hamming distance

satisfies

p∑
j=1

P(sgn(β̂ j) , sgn(β j)) ≥
p−1∑
j=3

[
P(β̂ j , 0, β j = 0) + P(β̂ j = 0, β j , 0)

]
≥

1
7

p−1∑
j=3

(I j + II j),

where

I j =

j+1∑
k= j−2

P(β̂k , 0, βk = 0), II j = P(β̂ j = 0, β j = τp)+
∑

k∈{ j−2, j−1, j+1}

P(β̂k , 0, βk = 0).

By basic algebra and definitions, I j ≥
∑ j+1

k= j−2 P(β̂k , 0, A0 j) ≥ P(A0 j ∩ Bc
0 j), and

II j ≥ P(β̂ j = 0, A1 j) +
∑

k∈{ j−2, j−1, j+1} P(β̂k , 0, A1 j) ≥ P(A1 j ∩ Bc
1 j). It follows that

p∑
j=1

P(sgn(β̂ j) , sgn(β j)) ≥
1
7

p−1∑
j=3

[P(A0 j ∩ Bc
0 j) + P(A1 j ∩ Bc

1 j)]. (3.6.86)

Let R be a two-dimensional region as follows{
(x, y) :

x − ay
1 − a

> λp and
y − ax
1 − a

> λp, or
y − ax
1 + a

> λp and
x − ay
1 + a

< −λp

}
.

We introduce the events

D0 j = {|Ỹ j| > λp}, D1 j = {|Ỹ j| ≤ λp}, D̃1 j = {(Ỹ j−1, Ỹ j)′ ∈ R}.

Note that D1 j ∩ D̃1 j = ∅. We now show that

Bc
0 j ⊇ {|Ỹ j| > λp}, Bc

1 j ⊇ (D1 j ∪ D̃1 j). (3.6.87)

This is equivalent to show that

B0 j ∩ D0 j = ∅, B1 j ∩ (D1 j ∪ D̃1 j) = ∅. (3.6.88)
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Towards this end, we note that by the KKT condition [28],

Ωβ̂ = Ỹ − λpα, (3.6.89)

where α is the vector of sub-gradients (i.e. α j = sgn(β̂ j) if β̂ j , 0 and |α j| ≤ 1

otherwise). Consider the first claim in (3.6.88). Recall that Ω is a tridiagonal

matrix. When B0 j happens, it follows from (3.6.89) that 0 = β̂ j = Ỹ j − λpα j.

Therefore, |Ỹ j| ≤ λp, and the claim follows. Consider the second claim of (3.6.88).

When B1 j happens, it follows from Lemma 4.1 that
Ỹ j < −λp,

−(1 − a)λp ≤ Ỹ j−1 − aỸ j ≤ (1 + a)λp,
or


Ỹ j > λp,

−(1 + a)λp ≤ Ỹ j−1 − aỸ j ≤ (1 − a)λp.

Then (3.6.88) follows by noting that

{|Ỹ j| > λp} ∩ D1 j = ∅,

{Ỹ j < −λp,−(1 − a)λp ≤ Ỹ j−1 − aỸ j ≤ (1 + a)λp} ∩ D̃1 j = ∅,

{Ỹ j > λp,−(1 + a)λp ≤ Ỹ j−1 − aỸ j ≤ (1 − a)λp} ∩ D̃1 j = ∅.

Next, note that D1 j ∩ D̃1 j = ∅. Combining (3.6.86) and (3.6.87) gives

p∑
j=1

P(sgn(β̂ j) , sgn(β j)) ≥
1
7

p−1∑
j=3

[P(A0 j∩D0 j) + P(A1 j∩D1 j) + P(A1 j∩ D̃1 j)]. (3.6.90)

By definitions, P(A0 j) = (1 − εp)4, P(A1 j) = (1 − εp)3εp, that conditional on A0 j,

Ỹ j ∼ N(0, 1), and that conditional on A1 j, Ỹ j ∼ N(τp, 1). It follows from elementary

statistics and definitions that

P(A0 j ∩ D0 j) = (1 − εp)4P(N(0, 1) ≥ λp) = Lp p−q, (3.6.91)

and that

P(A1 j∩D1 j) = (1−εp)3εpP(N(τp, 1) ≤ λp) =


Lp p−[ϑ+(

√
q−
√

r)2], q < r,

p−ϑ(1 + o(1)), q > r.
(3.6.92)
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At the same time, P(A1 j) = (1 − εp)3εp, so

P(A1 j ∩ D̃1 j) = (1 − εp)3εpP
(
(Ỹ j−1, Ỹ j)′ ∈ R|A1 j

)
.

Note that conditional on A1 j, Ỹ j−1 ∼ N(aτp, 1), Ỹ j ∼ N(τp, 1), and Cov(Ỹ j−1, Ỹ j) = a.

Directly evaluating P
(
(Ỹ j−1, Ỹ j)′ ∈ R|A1 j

)
gives

P(A1 j ∩ D̃1 j) =


Lp p−ϑ−

1−|a|
1+|a|q, 0 < q < r,

Lp p−ϑ
1

1+|a| (2q+(1+|a|)r−2(1+|a|)
√

qr), r < q.
(3.6.93)

Inserting (3.6.91)-(3.6.93) into (3.6.90) gives the claim. �

3.6.11 Proof of Lemma 4.3

For simplicity, write for short λp = λss
p , β1 = β j−1, β2 = β j, β̂1 = β̂ j−1, β̂2 = β̂ j, ỹ1 =

Ỹ j−1, and ỹ2 = Ỹ j. Direct calculations show that the minimum of the functional is

0, if β1 = 0 & β2 = 0,

(λ2
p − ỹ2

1)/2, if β1 , 0 & β2 = 0,

(λ2
p − ỹ2

2)/2, if β1 = 0 & β2 , 0,

λ2
p − (ỹ2

1 + ỹ2
2 − 2aỹ1ỹ2)/(2(1 − a2)), if β1 , 0 & β2 , 0,

(3.6.94)

obtained at (β1, β2)′ = (0, 0), (ỹ1, 0)′, (0, ỹ2)′, and ((ỹ1−aỹ2)/(1−a2), (ỹ2−aỹ1)/(1−a2))′,

correspondingly. Write for short A1a = (λ2
p − ỹ2

1)/2, A1b = (λ2
p − ỹ2

1)/2, and A2 =

λ2
p − (ỹ2

1 + ỹ2
2 − 2aỹ1ỹ2)/(2(1 − a2)). We now discuss the regions one by one. By

symmetry, we only show that for Regions I, IIa and IIIa.

In Region I, it is seen that A1a > 0, A1b > 0, and A2 > 0. By (3.6.94), the min-

imum of the functional is achieved at (β1, β2)′ = (0, 0), and the claim follows. In

Region IIa, we have |ỹ1| > λp, |ỹ2| < |ỹ1|, and |aỹ1 − ỹ2| < λp

√
1 − a2. Correspond-

ingly, it follows that A1a < 0, A1a < A1b, and A1a < A2, and the claim follows. In
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Region IIIa, we have ỹ2
1 + ỹ2

2 − 2aỹ1ỹ2 − 2λ2
p(1 − a2) > 0, |aỹ1 − ỹ2| > λp

√
1 − a2,

and |aỹ2 − ỹ1| > λp

√
1 − a2. Correspondingly, it follows that A2 < 0, A2 < A1a, and

A2 < A1b, and the claim follows. �

3.6.12 Proof of Lemma 4.4

Write for short β̂ = β̂ss and λp = λss
p =

√
2q log(p). Introduce events A0 j = {β j−2 =

β j−1 = β j = β j+1 = 0}, A1 j = {β j−2 = β j−1 = β j+1 = 0, β j = τp}, A2 j = {β j−2 = β j+1 =

0, β j−1 = β j = τp}, B0 j = {β̂ j−2 = β̂ j−1 = β̂ j = β̂ j+1 = 0}, B1 j = {β̂ j−2 = β̂ j−1 = β̂ j+1 =

0, β̂ j , 0}, and B2 j = {β̂ j=1 = β̂ j+1 = 0, β̂ j−1 , 0, β̂ j , 0}. The Hamming distance is

p∑
j=1

P(sgn(β̂ j) , sgn(β j)) ≥
p−1∑
j=3

P(β̂ j , 0, β j = 0) + P(β̂ j = 0, β j , 0)

≥
1
9

p−2∑
j=3

(I j + II j + III j),

where

I j =

j+1∑
k= j−2

P(β̂k , 0, βk = 0),

II j = P(β̂ j = 0, β j = τp) +
∑

k∈{ j−2, j−1, j+1}

P(β̂k , 0, βk = 0),

and

III j =
∑

k∈{ j−2, j+1}

P(β̂k , 0, βk = 0) +
∑

k∈{ j−1, j}

P(β̂k = 0, βk = τp).

By basic algebra and definitions,

I j ≥

j+1∑
k= j−2

P(β̂k , 0, A0 j) ≥ P(A0 j ∩ Bc
0 j),

II j ≥ P(β̂ j = 0, A1 j) +
∑

k∈{ j−2, j−1, j+1}

P(β̂k , 0, A1 j) ≥ P(A1 j ∩ Bc
1 j),
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and

III j ≥
∑

k∈{ j−2, j+1}

P(β̂k , 0, A2 j) +
∑

k∈{ j−1, j}

P(β̂k = 0, A2 j) ≥ P(A2 j ∩ Bc
2 j).

It follows that

p∑
j=1

P(sgn(β̂ j) , sgn(β j)) ≥
1
9

p−1∑
j=3

[P(A0 j ∩ Bc
0 j) + P(A1 j ∩ Bc

1 j) + P(A2 j ∩ Bc
2 j)]. (3.6.95)

Introduce the events

D0 j = {|Ỹ j| > λp}, D1 j = {|Ỹ j| < λp}, H j = {Ỹ2
j−1 + Ỹ2

j − 2aỸ j−1Ỹ j < 2λ2
p(1 − a2)},

and

D2 j = H j∪{|aỸ j−1− Ỹ j| < λp

√
1 − a2, |Ỹ j−1| > λp}∪{|aỸ j− Ỹ j−1| < λp

√
1 − a2, |Ỹ j| > λp}.

We now show that

Bc
0 j ⊇ D0 j, Bc

1 j ⊇ D1 j, Bc
2 j ⊇ D2 j, (3.6.96)

or equivalently, that

B0 j ∩ D0 j = ∅, B1 j ∩ D1 j = ∅, B2 j ∩ D2 j = ∅.

Consider the first claim. Recall that Ω is a tridiagonal matrix. When B0 j or B1 j

happens, β̂ j−2 = β̂ j−1 = β̂ j+1 = 0, and β̂ j minimizes the functional

1
2

u2 − uỸ j +
λ2

p

2
1{u,0}.

Elementary calculus shows that the minimum is achieved at u = 0 if and only if

|Ỹ j| < λp. Therefore, when B0 j happens, β̂ j = 0, the minimum is achieved at u = 0.

Therefore, |Ỹ j| ≤ λp, and the claim follows. Consider the second claim. Similarly,

when B1 j happens, β̂ j , 0 and |Ỹ j| ≥ λp, and the claim follows. Consider the third

129



claim. Let W j = (β̂ j−1, β̂ j)′ and u be a two-dimensional vector. Similarly, when B2 j

happens, W j minimizes the following functional

1
2

u′

 1 a

a 1

 u − u′

 Ỹ j−1

Ỹ j

 +
λ2

p

2
‖u‖0.

By Lemma 4.3, both coordinates of the minimizing vector u are nonzero if and

only if

(Ỹ j−1, Ỹ j) ∈{|aỸ j−1 − Ỹ j| > λp

√
1 − a2, |aỸ j − Ỹ j−1| > λp

√
1 − a2,

Ỹ2
j−1 + Ỹ2

j − 2aỸ j−1Ỹ j > 2λ2
p(1 − a2)}.

When B2 j happens, both coordinates of W j are nonzero. This implies that

(Ỹ j−1, Ỹ j) ∈ Dc
2 j, and the claim follows.

Now, combining (3.6.95) into (3.6.96) gives

p∑
j=1

P(sgn(β̂ j) , sgn(β j)) ≥
1
3

p−1∑
j=3

[P(A0 j∩D0 j) + P(A1 j∩D1 j) + P(A2 j∩D2 j)]. (3.6.97)

By definitions, P(A0 j) = (1 − εp)4, P(A1 j) = (1 − εp)3εp, that conditional on A0 j,

Ỹ j ∼ N(0, 1), and that conditional on A1 j, Ỹ j ∼ N(τp, 1). It follows from elementary

statistics and definition that

P(A0 j ∩ D0 j) = (1 − εp)4P(N(0, 1) ≥ λp) = Lp p−q, (3.6.98)

and that

P(A1 j∩D1 j) = (1−εp)3εpP(N(τp, 1) ≤ λp) =


Lp p−[ϑ+(

√
q−
√

r)2], q < r,

p−ϑ(1 + o(1)), q > r.
(3.6.99)

Furthermore, we have that P(A2 j) = (1 − εp)2ε2
p and that conditional on A2 j,

(Ỹ j−1, Ỹ j) is distributed as a bivariate normal with equal means (1 + a)τp, unit

variances and correlation a. Let R denote the region in the two-dimensional
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Euclidean space

R = {(x, y) : |ay − x| < λp

√
1 − a2 and |y| > λp}

∪{(x, y) : |ax − y| < λp

√
1 − a2 and |x| > λp}

∪{(x, y) : x2 + y2 − 2axy < 2λ2
p(1 − a2)}.

By direct calculations,

P(A2 j ∩ D2 j) = (1 − εp)2ε2
pP((Ỹ j−1, Ỹ j) ∈ R) = Lp p−2ϑ−min{[(

√
r(1−a2)−

√
q)+]2,2[(

√
r(1+a)−

√
q)+]2}.

(3.6.100)

Inserting (3.6.98)-(3.6.100) into (3.6.97) gives the claim. �
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