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In this dissertation we present work on the development, characterization, and analysis 

of an easy-to-fabricate, reusable bioinspired switchable adhesive that consists of a 

film-terminated fibrillar layer atop a substrate. We use a dynamic rod model and 

stability analysis to define and analyze the buckling of a fibril subjected to a 

prescribed shear displacement and a constant normal compressive force. Following 

this analysis, we present work on the switchable adhesive: a film-terminated fibrillar 

interface with two metastable states. In the first state, a thin film spanning the fibrillar 

surface results in strongly enhanced adhesion due to crack-trapping. In the second 

state, the thin film collapses onto the substrate between fibrils and resembles a rough 

surface. We perform indentation experiments (pull-off and adhesion hysteresis), which 

demonstrate differences in the adhesive response of the two states. We show that the 

adhesive state has a pull-off load up to 70 times higher than the non-adhesive state and 

has up to 20 times larger adhesion hysteresis. Friction experiments show that in the 

collapsed state there is no static friction peak and that even in sliding friction, which is 

not enhanced for the adhesive state over the control samples (flat, unstructured 

PDMS), the collapsed state exhibits much lower sliding friction forces. We determine 

the pressure-to-collapse the thin film to switch from the adhesive to the non-adhesive 

state using hydrostatic pressure experiments. Finally, we perform both linear plate and 



von Kärman plate analyses on the thin film as it deforms under an applied pressure to 

gain insight into both bistability and the pressure required to collapse the thin film and 

in doing so, turn off the adhesion. We find that the von Kärman plate theory more 

accurately captures the pressure required to initiate collapse of the thin film onto the 

substrate, most likely because of the large deflections taking place during collapse. To 

account for pressurization that occurs in our sealed samples during hydrostatic 

pressure experiments, we model the rate dependence in the hydrostatic pressure 

experiments. Pressurization and diffusion of gas through the thin film reduces the 

dependence on interfibrillar spacing.  
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CHAPTER 1  

INTRODUCTION 

In nature, fibrillar structures are found on the contact surfaces of many lizards and 

insects, conferring several remarkable properties, such as the ability to repeatedly 

adhere to a variety of surfaces and to self-clean [1][2][3][4]. For example, the 

hierarchical design features on gecko feet allow the animal to move with speeds of 

over 1 m/s, switching between adhesive and non-adhesive states rapidly and 

repeatedly.  

A recent paper by [5] reviews different mechanisms observed in contacting 

surfaces in nature as well as many of the derived biomimetics.  The first problem, 

shown in Chapter 2, studies a particular aspect of the gecko adhesive system: the 

stability of an initially straight elastic fibril clamped at one end, while the other end is 

subjected to a constant normal compressive force and a prescribed shear displacement. 

We found that the buckling load of a sheared fibril is always less than the Euler 

buckling load. Should the end of the fibril lose contact, the buckling load can be 

considerably less. This study shows that, for microfibrillar arrays, the static friction 

decreases as the normal compressive load increases and that, in some cases, the 

friction force can actually become negative. 

Inspired by nature’s surfaces, several groups have designed and fabricated 

biomimetics with enhanced properties [6]-[13], using soft, dry adhesives using 

materials such as poly(dimethylsiloxane) (PDMS). While single level structures such 

as fibrils with flat ends have generally failed to achieve significant enhancement [14], 



two- or multi-level structures have been shown to significantly improve adhesion over 

that of a flat, unstructured control [6][7][12][13][14].   

Scanning electron micrographs (SEM) of the film-terminated fibrillar adhesive 

(FTFA) studied in Chapters 3 and 4 are shown in Figure 1.1(a) along with relevant 

parameters. The FTFA consists of a layer of fibrils atop a thick substrate and 

terminated by a thin-film. Adhesion enhancement in this architecture is obtained by 

means of a crack-trapping mechanism as there is a spatial variation in energy available 

to drive the contact edge (for a monotonically changing remote load). As the sample is 

separating from another surface, the variation of available energy causes the contact 

edge to propagate unstably, requiring a larger load than is necessary in a flat surface. 

This structure, in addition to enhancing adhesion, avoids lateral collapse and buckling 

of fibrils by means of the terminal thin-film [9][14].  

In recent years, interest has arisen in exploiting other properties observed in 

nature, including controllable adhesion, self-cleaning, and directional adhesion. 

Controllable adhesion has been of particular interest because of its practical uses in 

applications such as wall-climbing robots [15], micromanipulators [16], MEMS 

switching [17]. Several different approaches have been taken to produce gecko-

inspired adhesives with controllable adhesion. In [18] light-sensitive photoresist was 

embedded in microchannels to allow samples to “memorize” shapes imposed on them. 



(c) (d) (e)

Uncollapsed Transition                    Collapsed
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Figure 1.1 Film-terminated fibrillar surfaces (FTFA) can be bistable. (a) A 

typical structure in its as-processed state (described on page 85). (b) A partially 

collapsed state in which much of the terminal film is adhered onto the lower 

surface (below the bumps are the fibrillar posts). (c) Side-view schematic 

diagram of (a). (d) Transition state in which potential energy has increased (e) 

adhesion causes collapse of the terminal film onto the lower surface, and (f) 

Schematic plot of potential energy versus configuration of the terminal film, 

depicting bistability.  

 



Some groups have controlled adhesion with samples that have a lower adhesion along 

a single axis, either by angled fiber tips or offset fibril caps [20]. In [21], a phase-

change material was used in the backing of the adhesive structure that allowed 

variable stiffness of the substrate. Some other active methods include magnetic 

manipulation of cantilever structures [22], shape-memory polymers that deform and 

restore fibers to a default adhesive condition [23], thermally responsive polymers that 

change both surface energy and mechanical properties [24], and polymer nanofibrillar 

structures that are shape tunable by means of electron beam radiation [25].  In [26] and 

[27], PDMS sheets were pre-strained to introduce wrinkling into surfaces that can be 

controlled mechanically to modulate the adhesion. In [28], fibril buckling was utilized 

to switch a fibrillar layer from an adhesive state to a non-adhesive state.  

While the FTFA had exhibited enhanced adhesion and friction, a question was 

whether the FTFA could exhibit controllable adhesion and self-cleaning properties. As 

the adhesion enhancement mechanism for the FTFA is unlike other biomimetics, the 

methods used to control the adhesion would not be applicable. In Chapter 3, we show 

that for certain architectural parameters such as interfibrillar spacing, fibril length, and 

film thickness, the FTFA had a second stable state exhibiting much lower adhesion 

(see Figure 1.1(b)). As mentioned earlier, the first state, in which the film lies on top 

of the fibrillar layer, enhanced adhesion and static friction compared to an 

unstructured flat control. In the second state, the film collapses onto the substrate 

between fibrils and is held up (away from the substrate) at the fibrils, resulting in a 

surface with a periodic array of bumps and a much reduced adhesion. Surfaces with 

this second stable state are referred to as bistable. Pull-off forces, as a measure of 



adhesion, were reported and a simple model where the film is modeled as a linear 

plate was used to analyze the switching mechanism and bistability.  

In CHAPTER 4, we characterize the adhesion hysteresis and friction response 

of the bistable FTFA. We also experimentally determine the required pressure to 

collapse the thin film in order to switch from the adhesive to the non-adhesive state. 

Finally, to gain insight into the switching mechanism and bistability, we present a 

more representative, large deflection, adhesive contact mechanics model of the thin 

film collapsing onto the substrate.  

In the final chapter, we present a summary of the work as well as a discussion of 

avenues for future work. 
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CHAPTER 2  

BUCKLING OF SHEARED AND COMPRESSED MICROFIBRILS
1
 

2.1  Introduction 

Many small animals and insects use fine hairs on their feet to climb and to stick to 

surfaces. Inspired by these micro- and nano-structures, many research groups have 

fabricated synthetic mimics using various polymers or carbon nanotubes to create 

arrays of micro-fibrils. Typically, fibrils in these arrays are terminated with either a 

thin film or a spatula to enhance contact and adhesion [6][12][13][23][30]-[33]. These 

fibrils are part of a backing layer
 
that is made up of the same material, typically a soft 

elastomer such as PDMS or polyurethane. These biologically inspired surfaces have 

adhesion considerably greater than that of a flat surface of the same material [14]. 

More recently, the friction behavior of these micro-fibril arrays has been investigated 

by different research groups, e.g., [33]-[43]. In this chapter, we focus on synthetic bio-

inspired surfaces instead of the fibrillar structures seen in small animals such as 

geckos. Natural systems are more complex (e.g. fibrils have natural curvatures and 

exhibit directional adhesion and friction properties). Readers interested in these 

systems should refer to [44] and [45] and the references therein. 

 Figure 2.1 shows the schematics of a typical experiment to measure static and 

sliding friction. A hard and smooth surface, such as the surface of a spherical glass 

indenter, is brought into contact with the surface of the micro-fibril array by the 

application of a normal compressive force. In a typical friction test, this compressive 

                                                 

1
 Nadermann, N., Kumar, A., Goyal, S. and Hui, C.-Y., J. R. Soc. Interface, 2010 
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force is kept constant as a shear displacement is applied to move the indenter 

horizontally.  

A difficulty with interpreting experimental results is that fibrils tend to buckle 

and collapse during experiments. While buckling increases compliance, it reduces 

adhesion by breaking contact between fibril ends and the indenter [46]. As a result, 

fibril buckling is usually detrimental to adhesion, as demonstrated by the experiments 

in [47]. In some cases, collapsed fibrils can lead to greater contact and can increase 

adhesion and friction; see for example [51].  

To avoid buckling of fibrils, many shear experiments are carried out with a 

fixed normal indenter displacement [35][44]. These experiments show very high 

“static” friction (friction between two objects that are not moving relative to each 

other). Typically, in these experiments, a very small compressive force is applied to 

bring the fibrils into good contact with the indenter, and in contrast to the experimental 

procedure described earlier, then the fibrils are sheared keeping the indenter’s normal 

displacement fixed. As a result, the longitudinal force along the fibril changes from 

compression to tension. In these experiments, the normal force acting on the fibril 

array changes during shear. These behaviors are quite different from a friction test 

where the normal force is maintained to be constant throughout; in this case, common 

sense suggests that buckling of fibrils will play an important role in the static friction 

behavior of these arrays. For example, the experiments of [40] clearly show initial 

buckling of fibrils when the indenter is displaced laterally at fixed normal load. It is 

interesting to note that this difference between normal displacement controlled and  
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Figure 2.1. Schematic of a typical indentation and friction experiment. (a) A 

rigid, smooth, spherical indenter is brought into contact with a microfibril array. 

The compressive force is sufficiently large to cause fibrils in the contact zone to 

buckle. (b) A smaller compressive force is applied to the indenter, which is 

sheared to the right, causing the fibrils attached to the indenter to shear. For a 

sufficiently large compressive force, the shear force at the ends of a fibril acts in a 

direction opposite to the imposed shear displacement. 
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normal force controlled friction test is much less significant for typical structural 

materials where the surfaces are non-fibrillar.  This motivates us to analyze fibril 

buckling as a step towards developing contact and friction models for bio-inspired 

fibrillar structures. 

Intuitively, it is easy to understand why fibrils tend to collapse in shear 

experiments even though the compressive force is below the buckling load - a sheared 

fibril bends readily.   However, it is non-trivial to calculate the deflection of a buckled 

fiber and to determine how the buckling load is affected by shear. Since classical 

buckling theory deals with buckling about an initially straight state (straight fibril in 

our case), a question arises as to how one defines the buckling load of a sheared fibril. 

This question will be addressed both numerically and theoretically in this work.  

Fibrils under combined normal and shear loads can exhibit very counter-

intuitive behavior. In [40], it was observed that during a shearing test, the fibrils shear 

in the direction opposite to the shearing force, as shown schematically in the inset in 

Figure 2.1(b). Note that this behavior occurs initially during the test. We will 

demonstrate that this counter-intuitive behavior can occur under low applied 

compressive loads in systems with weak adhesion.    

In our previous works [40][48], we have successfully used a nonlinear rod 

theory where the rod can stretch and bend (but cannot shear) to study deformation of 

typical fibrils in an array subjected to shear and normal loads. Nonlinear rod theory is 

also required to study the post-buckling behavior. As is well known, the governing 

equations for static equilibria of a nonlinear rod can have many solutions 

corresponding to the same loading and boundary conditions. These equilibrium 
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solutions have different deformed shapes which correspond to different energy states, 

many of which are stable. A difficulty with the static equilibria calculations is that it is 

not easy to identify which one of these stable states the rod will converge to. A simple 

way to circumvent this difficulty is to use a dynamic rod model to compute the 

deformation of a fibril. In this work, both approaches are used. 

The plan of this chapter is as follows. The dynamic rod model is briefly 

summarized in Section 2.2. The numerical results and the results of the stability 

analysis are given in Section 2.3. In Section 2.4, we discuss and summarize our 

results.  

2.2 Dynamic Rod Model 

The undeformed rod is assumed to be straight and the arc length coordinate of a 

material point on the centerline of the undeformed rod is specified by s (see Figure 

2.2). The position vector of the material point s after deformation (at time t) is denoted 

( , )s tr . A local coordinate system with orthornormal basis vectors  ˆ
ia is attached at 

each cross-section, with 
3

â  aligned with the centerline tangent, while the other two 

vectors are aligned with the principal flexure axes.  This body-fixed frame describes 

the orientation of a cross-section with respect to the inertial frame,
 
 ˆ

ie . The dynamic 

state of a rod’s cross-section is represented by four field variables: linear velocity  v , 

angular velocity   , curvature   , and force  f , defined along the rod’s centerline.  

All field variables are functions of both s and t.  The angular velocity   of a cross-

section is defined as rotation of body-fixed frame  ˆ
ia per unit time relative to the  
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Figure 2.2. Undeformed and deformed fibril in the inertial reference frame. The 

insert shows a free body diagram of an infinitesimal element, s  . 
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inertial frame  ˆ
ie , i.e. 

 ˆ

ˆ
ˆ

i

i
i

t

 
  

  e

a
a

 

(2.1) 

 

where the subscript  ˆ
ie  specifies that the derivative is taken relative to the inertial 

frame. Similarly, the curvature vector   is the rotation of the body-fixed frame per 

unit arc length relative to the inertial frame, 

 

 ˆ

ˆ
ˆ

i

i
i

s

 
  

  e

a
a

 

(2.2) 

 

 

The internal moment q is related to the curvature by a constitutive law for bending.  

For this work, the initial rod curvature is zero and we use the standard linear relation: 

( , ) , )s t s tq B
 

(2.3) 

Since we have chosen  ˆ
ia  to coincide with the principal torsion-flexure axes of a 

cross-section, the torsion-flexure stiffness tensor B is diagonal with respect to the 

body-fixed frame. 

Extensibility of the centerline is added to the field equations by means of a 

kinematic relationship between s, the length of an infinitesimal undeformed material 

element and s  , the same element after extension as  s s    , where   represents 

the longitudinal stretch ratio. A nonlinear constitutive model is used to relate   to the 
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longitudinal force
3f  by assuming that the material is neo-Hookean. Under uniaxial 

tension, the engineering stress,  and the stretch ratio   satisfies 

33 2

1

3

E
 



 
  

   

(2.4) 

It can be shown that there is only one positive real root for   in (2.4).  The 

longitudinal force f3 is thus given by: 

3 2

1

3

oEA
f 



 
  

   

(2.5) 

where 
oA is the undeformed cross-sectional area of a fibril.    

Vector quantities such as f  can be expressed in terms of their components 

once we fix the basis. In the following, quantities such as , , , ,f v q    are 3-tuples 

consisting of the three components of these vectors with respect to the body fixed 

frame ˆ
ia . In the body-fixed reference frame, the linear momentum and the angular 

momentum balance equations for an extensible rod are [49]: 

f v
f m v

s t
 

  
     

    

(2.6) 

3

q
q f a

s t


   

 
      

 
I I

 

(2.7) 

where 3 (0,0,1)a  . In (2.6) and (2.7), m is the mass per unit arc length and I is the mass 

moment of inertia matrix per unit arc length with respect to the body fixed frame. 



 

28 

Additionally, we have the following equation enforcing unshearability, i.e., line 

elements perpendicular to the centerline remain so even when the rod is deformed: 

3 3

v
v a a

s t


 

 
    

   

(2.8) 

and a compatibility condition between   and   that enforces continuity of the body-

fixed reference frame  ˆ
ia along the arc length coordinate s and time t, i.e.,  

s t

 
 

 
  

   

(2.9) 

The deformation of the fibrillar array while undergoing indentation and friction tests is 

assumed to be planar, i.e., independent of the out-of-plane coordinate, 
2ê . This is 

consistent with the loading conditions in shearing and indentation experiments. As a 

result of this simplification, 
1 3 1 3 2 2, , , , ,f f v v  

 
are the only non-zero physical 

quantities. Thus the angular moment balance reduces to a scalar equation and the only 

relevant element in the matrix I is I2, which we denote simply as I.  Furthermore, since 

in our case there is no rotation about the 1â  and 3â  axes, the only element of B that 

comes into play is the bending stiffness EJ about the principal flexure axis along 2â .  

Here E is the small strain Young’s modulus of the rod and J is the second moment of 

area. To damp out oscillations of elastic waves, we include the term 
i

hv  in the linear 

momentum balance equations. Here, h is the damping coefficient. The following six 

scalar equations survive from their three-dimensional, vector counterparts in (2.6) 

through (2.9). 
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1 1
2 3 2 3 1

f v
f m v hv

s t
 

  
    

    

(2.10) 

 

(2.11) 

2 2
1

q
I f

t s




 
 

   

(2.12) 

 

(2.13) 

3
2 1

v
v

s t




 
 

   

(2.14) 

2 2

s t

  


   

(2.15) 

We define the following normalized variables:  

s LS ,  t T ,  
2 2

EJ
q Q

L


 , 
2i i

EJ
f F

L


 , 

2
2

K

L
 

,
i i

L
v V




 ,
2 2

1



 

  

1,3i 
                                                     

(2.16) 
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where L is the length of the undeformed rod. Note that time is normalized by 

4 /mL EJ  , which is proportional to the time for a flexure wave to traverse the 

length of a rod. Also, with this normalization, the Euler buckling load for a non-

stretchable clamped-clamped rod is -4π
2
. Similarly, the Euler buckling load for a non-

stretchable pinned-pinned rod is -π
2
.  

 The normalized governing equations for an extensible rod are accordingly:  

1 1
2 3 1 2 3

F V
K F HV V

S T

 
   

   

(2.17) 

3 3
2 1 3 2 1

F V
K F HV V

S T

 
   

   

(2.18) 

2 2 2
1

Q
F

T S
 

 
 

   

(2.19) 

1
2 3 2

V
K V

S



  

  

(2.20) 

3
2 1

V
K V

S T

 
 

   

(2.21) 

2 2K

S T

 


   

(2.22) 
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2

3 2

1

3

oA L
F

J




 
  

   

(2.23) 

Note that these normalized equations are governed by two dimensionless parameters, 

2

I

mL
   and 

2hL
H

mEJ
  (2.24) 

where is the slenderness ratio defined as the ratio of the radius of gyration of the rod 

to its length and H is the normalized damping coefficient. Since H controls damping of 

oscillations, the equilibrium solution depends only on 

We employ a typical boundary condition that is encountered in shearing and 

indentation experiments. Specifically, the end of the fibril (O in Figure 2.2), which is 

attached to the backing, is assumed clamped, whereas the end that is in contact with 

the indenter is constrained from rotation but allowed to shear. It is important to note 

that the last two boundary conditions are satisfied only for fibrils which are well 

adhered to the indenter. Most investigators use fibrils that have structures at their tips 

to improve contact and adhesion. For example, [13] and [39] used terminal contact 

plates, whereas [9] and [43] used a terminal continuous thin film. For these fibrils, it is 

expected that the aforementioned boundary conditions would be satisfied. However, 

these boundary conditions will not be met for fibrils with no special structures at their 

tips. The adhesion of these fibrils is found to be weak and they tend to buckle easily as 

their tips lose adhesion [46]. We will discuss this further in the discussion section.

To solve the nonlinear partial differential equations (2.17)-(2.23) for the 

unknowns Κ2, Ω2, F1, F3, V1, V3, we use Keller’s box method [50] to discretize the 
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equations in both space and time as well as numerically integrate them. This method 

has second order accuracy. The resulting nonlinear difference equations are implicit 

and their solution is required to satisfy the boundary conditions described above (see 

Figure 2.10 for some details).  

2.3 Results 

The numerical results presented in this section are valid for fibrils of any dimension as 

long as they have the same slenderness ratio α.  To give an idea of typical dimensions, 

in the samples used by [51], the fibrils have a 10 m × 10 m square cross-section. 

Fibril heights range from 30 to 100 µm. Typical materials used to create these arrays 

are elastomers such as poly(dimethylsiloxane) (PDMS, Sylgard 184, Dow Corning) 

and polyurethane which has shear modulus on the order of 1 MPa. Thus, the 

slenderness ratio of the samples used by [51] is 1.054 × 10
-3

. The numerical results 

below are obtained using this value.   

 To analyze the buckling behavior of a fibril subjected to a compressive normal 

force and a shear displacement at the top end, we prescribe normalized axial force Fn 

(compressive in nature, negative) and normalized shear displacement Δs/L at the top 

end. The kinematic boundary conditions are imposed by enforcing zero linear and 

angular velocities at the bottom end of the fibril. In each case, the desired normalized 

shear displacement is simulated by prescribing a shear velocity at the top end (as 

shown in Figure 2.3). Simultaneously, we increase the normalized compressive force 

Fn from zero to its maximum value using a hyperbolic tangent function.  The notations 

nF  and sF denote the values of 3F  and 1F , respectively, at the top end.    
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How does one define the buckling load of a sheared fibril? A zoom-in view of 

the variation of the normalized normal tip displacement with the compressive load for 

six fixed values of normalized shear displacement Δs/L is shown in Figure 2.4.  For 

each Δs/L, there is a distinct point at which the slope of the normal tip displacement 

curve changes abruptly, i.e., a cusp is formed. Figure 2.5 shows the shape of a fibril 

just before and after this cusp; the number of inflection points in the deformed shape 

changes from one to two as the cusp is reached. 

As is well-known, a cusp is a bifurcation point at which multiple solutions 

exist; one of these solutions has to satisfy the condition of continuity of slope. In our 

case, this solution may be unstable. If this is the case, then this bifurcation point 

corresponds to buckling instability or fibril collapse. The existence of an unstable 

solution will be demonstrated in the next section. Assuming for now that an unstable 

solution does exist, we define the compressive force at this cusp point to be the 

buckling load of a sheared fibril.  

We summarize our result in Figure 2.6 where the normalized compressive 

force at the cusp nF 
is plotted against the normalized shear displacement at the top 

end. As expected, nF 
 decreases as the shear displacement at the tip is increased. The 

result of the dynamics analysis suggests the following quadratic dependence:   

 
2

0.00182 / 0.00232 / 41.275n s sF L L      
 

(2.1) 
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Figure 2.3 Example of a loading history prescribed at the top end of a fibril in 

dynamic simulation with a final normalized shear displacement of 0.05 and a 

normalized (compressive) load of -4
2
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Figure 2.4 Normalized normal tip displacement, -Δn/L, plotted against the 

compressive load for six different values of s. For each prescribed shear 

displacement, there is a cusp at which the slope is discontinuous.  
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Figure 2.5 Normal tip displacement (normalized by L) as a function of 

compressive force with a normalized shear tip displacement of 0.05. Note that the 

number of inflection points in the deformed shape changes from one to two as the 

cusp is reached.  
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Figure 2.6 Buckling load as a function of normalized shear displacement at the 

tip of a fibril for the nonlinear dynamic and stability analysis. Dashed line with 

asterisks, extensible–dynamic; solid continuous line, extensible–stability; dotted 

line, inextensible–stability. 
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Stability Analysis 

In the following, we analyze the stability of static equilibrium configurations of the 

sheared fibril as we vary the compressive load as well as the shear displacement. The 

stability analysis was performed by co-author Ajeet Kumar in [52]. Recall that the 

fibril is assumed to be stretchable but unshearable. To analyze the stability of a given 

configuration, the fibril must be perturbed about the given equilibrium configuration 

such that the perturbed configuration also satisfies the unshearability constraint. For a 

stable configuration, all “nearby” and admissible perturbed configurations will have a 

higher potential energy. Numerical determination of stability, especially in the 

presence of a point-wise unshearability constraint, is a non-trivial problem and was 

discussed in detail in the work of [53]. This work also shows that the minimum 

potential energy method is equivalent to the linearized dynamics stability criterion for 

conservative problems, as is the case here. Here we use their technique to determine 

whether a given configuration is stable or not.     

Shear Constraint Violation 

The dependence of shear force on shear displacement is particularly interesting.  

Figure 2.7 shows two different regimes.  For normalized compressive forces less than 

π
2
, the slope of the normalized shear displacement versus normalized shear force curve 

is positive. That is, the shear force increases in the same direction as the shear 

displacement.  However, when the normalized compressive force is greater than π
2
, 

the slope becomes negative, i.e., the shear force is in the opposite direction of the 
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shear displacement! This phenomenon is actually observed by the experiments of [51], 

as mentioned in Section 2.1. 

 The fact that the shear force is in the opposite direction of the shear 

displacement suggests that if a fibril were to overcome the shear constraint at the 

boundary (recall the fibrils are assumed to be adhered firmly to the rigid indenter), 

then the fibril would become unstable and collapse at a lower normalized compressive 

force of π
2
. This loss of boundary constraint is illustrated schematically in Figure 

2.8(a), (b) (see also caption for explanation).  Physically, this means that sheared 

fibrils can collapse at much lower compressive loads if they are poorly adhered to the 

indenter. 

 Why does this instability occur at
2

nF   ? Here we offer a simple physical 

explanation. Figure 2.8(b) shows that when the shear constraint is removed and the top 

end of the fibril is allowed to shear without friction, i.e., Fs = 0, the resulting structure 

becomes equivalent to the pinned-pinned configuration as shown in Figure 2.8(c). The 

normalized buckling load for this case is exactly 2 . It is well known that fibrils 

without an attachment mechanism lose adhesion readily in normal indentation tests 

(no shear displacement applied) when they buckle.  It has been shown experimentally 

and theoretically that buckling of the fibril causes the top end of a fibril which is 

attached to the indenter to rotate; as a result, it behaves as a pinned support instead of 

a clamped support when in contact with the indenter [46].  This experimental and 

theoretical result is consistent with the fact that the shear instability occurs at 

2 2/nF EI L . 
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Figure 2.6 plots the results of the dynamics analysis (extensible rod) as well as 

the stability results based on static analysis for both an extensible and inextensible rod.  

This figure shows how the buckling load decreases as the fibril is sheared. Also, the 

buckling load corresponding to an inextensible fibril is lower than that for an 

extensible fibril. As expected, this difference becomes less pronounced as the 

normalized compressive load is reduced since the fibril starts to behave more as an 

inextensible rod. This indicates that extensibility does not affect the buckling load 

greatly. We mentioned that the dynamics result is slightly above the static result.  We 

believe that the static result is more accurate since numerically it is more 

straightforward so finer discretization can be used without sacrificing computation 

time. Figure 2.7 shows the stability/ bifurcation diagram for an inextensible rod. All 

stable configurations are shown as solid black lines.  

As discussed earlier and shown in Figure 2.7, shear force and shear 

displacement are of the same sign for compressive loads below 2 . Figure 2.7 also 

shows that all equilibrium solutions are stable for normalized compressive loads less 

than 30. This means that the change in sign of the shear force is not related to the onset 

of buckling for a rod whose tip is constrained against shear displacement. However, if 

this constraint is violated, the fibril will become unstable as was described in the 

previous section. By examining the energy landscape of the rods for the normalized 

compressive loads of 30 and 35, we found the rods lose stability at a critical value of 

shear displacement. These critical shear forces and displacements correspond to 

buckling points.  The presence of multiple equilibria (bifurcation) is indicated by the 
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different dotted curves emitting from these bifurcation points.  These bifurcated 

solutions are found to be unstable indicating the absence of a stable equilibrium 

configuration.  Physically, this corresponds to collapse of fibrils in this regime which 

also confirms that the cusp observed in our dynamic simulation corresponds to the 

same bifurcation point.  

2.4 Discussion and Summary  

Using dynamic rod model and stability analysis, we define and analyze buckling of a 

fibril that is subjected to prescribed shear displacement and a constant normal 

compressive force. Our result is summarized in Figure 2.6 which shows how buckling 

load decreases with prescribed shear displacement. The buckling load is bounded from 

above by the Euler buckling load of a clamped-clamped rod, 2 24 /EI L . It should be 

noted that our rod model allows for non-uniform stretching of the centerline of the rod.  

This feature is included since there are situations where fibril stretching is not 

negligible, e.g. when a fibril is sheared under a fixed normal displacement (see [35]).  

However, for the boundary conditions used in this work, extensibility plays a small 

role in the determination of stability, as shown in Figure 2.6. 

What is unexpected is that instability can occur at or above a compressive load 

of 2 2/EI L  which is the Euler buckling load of a pinned-pinned rod. This load is 

exactly one fourth of the Euler buckling load of a clamped-clamped rod. Specifically, 

we found that when a fibril, subjected to a normal compressive load exceeding 

2 2/EI L , is displaced laterally, the shear force acting on the fibril will be in the 

opposite direction as the imposed shear displacement. This has the following  



 

42 

 

Figure 2.7. Bifurcation diagram for an inextensible fibril as a function of 

normalized shear displacement.  
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interesting implications. Consider the rigid indenter in Figure 2.1(b) which is perfectly 

adhered to a set of m identical fibrils. Assume the indenter has very large radius of 

curvature so it is effectively a flat block.  If this block is subjected to a normal 

compressive force greater than 2 2/m EI L  (e.g. by adding weights on top of the 

block), then it is unstable in shear. This means that a fibrillar interface has negative 

friction coefficient and energy is transferred from the fibrils to the loading device.   

This prediction is actually observed by [51]. In the initial part of their experiment, they 

observed buckling of fibrils and that the slope of the shear force versus shear 

displacement curve under a fixed normal compressive load becomes negative (see 

Figure 11, [51]). 

What happens if the applied normal compressive load is less than 2 2/EI L ? In 

this case, the system is stable.  However, intuitively, one expects that, for a fixed shear 

displacement, Δs, the shear compliance of a fibril should increase with increasing 

normal load
n

F . In other words, the shear force at a fixed Δs should decrease with 

increasing compression. Figure 2.9 shows this is indeed the case. Note that the 

compliance of the system is positive as long as
2 2/

n
F EI L  .     

The fact that the shear force on a fibril decreases with normal load 

(for
2 2/

n
F EI L  ) suggests that static friction should also decrease with normal 

force as long as the boundary constraints on the fibrils are maintained. It is important 

to note that static friction is defined in different ways in the literature. In this work,  
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(a)             (b)        (c) 

Figure 2.8. Schematic (a) shows shear constraint on the upper end of the fibril; 

(b) shows an equivalent boundary condition for the critical condition when the 

shear force becomes zero. The buckling condition for schematic (b) is the same as 

that of the equivalent pinned-pinned rod between two points of inflection A and 

B as denoted in the schematic (c). In experiments, some fibrils have weak shear 

constraints. Violation of the right side shear constraint (dashed grey) in 

schematic (a) beyond a critical condition leads to dynamic collapse equivalent to 

that in schematic (b) or (c). 

 

 



 

45 

static friction corresponds to maximum shear load when the block is subjected to a 

fixed normal load. Since the normal load is fixed as we shear a fibril, the vertical 

displacement of the fibril end is not constrained. For example, a rigid block resting on 

a fibrillar interface consisting of a uniform matt of identical fibrils will move vertically 

down as it is sheared. Note that the maximum shear load may occur after a buckling 

instability since it is possible that (1) the ends of the fibrils are still well adhered to the 

indenter, (2) collapsed fibrils can support more shear. Static friction is defined 

differently in the work of [35] and [44]. In their tests, the vertical displacement of the 

contactor is fixed during shear after a compressive preload is applied to bring the 

contactor into contact with the fibrils. In this set up, if the fibrils are well adhered to 

the contactor, they will be stretched and the normal load will change with shear and 

actually become tensile (see Figure 3 in [35]). In this case, static friction corresponds 

to adhesive failure of the fibril ends.  

To summarize, assuming that fibrils in the array are identical and the number 

of fibrils do not change as we shear (e.g. the indenter is flat), our theory predicts the 

following: 

 If the applied compressive Fn on each fibril is less than 2
EI/L

2
 then static 

friction should decrease with increasing normal load.   

 If the applied compressive Fn on each fibril is greater than 2
EI/L

2
, then the 

friction force becomes negative if adhesion is weak resulting in the 

violation of shear constraint.   
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Figure 2.9 Normalized shear force, Fs, versus normalized compressive force, Fn, 

for several normalized shear tip displacements, Δs. 
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2.5 Appendix: Numerical Methods 

Briefly, in Keller’s box method [50], a rectangular grid is created along the space and 

time axis as shown in Figure 2.10 below. We discretize the differential equations by 

finite difference. For example, a dependent variable u, is approximated by its value at 

the midpoint of the box by: 

 1/ 2 1 1

1/ 2 1 1

1

4

n n n n n

j j j j ju u u u u  

     
 

(2.2) 

where n is the time index and j is the space index. Also, the partial derivatives of u 

with respect to s or t are given by:  
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(2.4) 

Thus, a dependent variable and its partial derivatives are evaluated at the midpoint of 

the box in terms of two known nodal values (the dark circles in Figure 2.10) and two 

unknown nodal values (the open circles). Boundary conditions are imposed by 

specifying their nodal values at the boundary nodes. The resulting nonlinear algebraic 

equations can be solved using Newton’s method.  
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Figure 2.10 Stencil for Keller Box method 
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CHAPTER 3  

ACTIVE SWITCHING OF ADHESION IN A FILM-TERMINATED 

FIBRILLAR SURFACE
2
 

3.1  Introduction 

In this chapter, we show that the FTFA can be designed such that it has two metastable 

states. In the first state, the terminal film is stretched flat and held up by fibrils (see 

Figure 1.1(a)). The uncollapsed structure is inspired by adhesion enhancing structures 

seen in nature. The essential features borrowed from nature include the seta-like 

fibrils, which provide compliance, and a terminal thin film. In the second state, the 

terminal film adheres to the substrate between fibrils (Figure 1.1(b)) resulting in an 

overall bumpy surface and mimicking surfaces that lack adhesion due to the increased 

roughness and accompanying reduction in area. Previously, we have shown that the 

uncollapsed state has significantly enhanced adhesion compared to a flat control 

sample [14]. The collapsed state, on the other hand, resembles a rough surface (Figure 

1.1(b)) and is expected to have low adhesion. 

With a proper choice of architectural parameters, such as fibril height and 

spacing, and film thickness, this structure can remain indefinitely in either of two 

states: with uncollapsed and collapsed terminal film. In addition, it can be switched 

repeatedly between these two states by a simple external stimulus such as pressure, 

allowing its adhesion to be switched between “on” and “off”. 

                                                 

2
 N. Nadermann, J. Ning, A.Jagota, C.-Y. Hui, Active switching of adhesion in a film-terminated 

fibrillar structure. Langmuir. 2010 Oct 5;26(19):15464-71 
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 The remainder of this chapter is organized as follows. In the next section, we 

provide a description of the fabrication methods used to create the samples we have 

tested, followed by a description of the experiments to measure adhesion. In the 

subsequent section, we present a qualitative illustration of bistability and the resulting 

difference in adhesion between the collapsed and uncollapsed states, followed by 

results of quantitative measurements of the adhesion in the two states. We then present 

a simple model to explain how materials and geometrical parameters control 

bistability and, finally, we conclude with a summary of our findings. 

3.2 Materials and Methods 

3.2.1 Fabrication 

The fabrication method for the structure shown in Figure 1.1(a) has been described 

elsewhere [14]. Briefly, fibrillar structures were fabricated by the molding of PDMS 

(Sylgard 184, Dow Corning, 1:10 ratio of cross-linker to prepolymer) using negative 

image silicon (Si) masters patterned by standard photolithography and deep reactive 

ion etching (DRIE) techniques. A hydrophobic self-assembled monolayer (SAM) of n-

hexadecyltrichlorosilane was applied to the wafers to reduce their surface energy, 

enabling easy subsequent release of the molded PDMS. The liquid polymer precursor 

was flowed into the holes, cured, and peeled out of the master resulting in an array of 

PDMS posts (fibrils) on the sample surface. The cross-sectional geometry and spacing 

of the posts (fibrils) is identical to that of the array of holes on the master, and the post 

(fibril) height is equal to the depth of the hole. To provide access for the application of 

pressure to the space under the terminal thin film, which itself was attached in a later 

step, we molded tapered, polystyrene coated glass rods into the PDMS atop each of 
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the samples in the silicon mold. The tips of the glass rods range from 30-50 μm in 

diameter. An illustration of this process is given in Figure 3.1. 

To attach the terminal film to the ends of the posts, a polymer precursor (again, 

PDMS) was first spin-coated on a hydrophobic substrate. Then, the array of posts was 

placed on the film while the film was still liquid. Bistability depends on several 

parameters (see theory section for details), one of which is fibril length. We found that 

to achieve the metastable collapsed state, it is necessary to either use shorter fibrils, 

thinner films, or larger interfibrillar spacings. However, shorter fibrils were more 

prone to wicking of the thin film, necessitating the partial pre-curing of the film prior 

to attaching the substrate and fibrillar layer. The optimal time of pre-curing (in this 

work, it is done at 40ºC) varies depending on the fibrillar spacing, height, and the 

thickness of the thin film. Except where noted differently, film thickness was 6 μm 

and fibrils had a square cross-section 100 μm
2
 in dimension.  The thin films were 

fabricated using a spin speed of 3,000 RPM for 10 minutes. The fibrils are distributed 

in a square pattern with minimum center-to-center spacings ranging from 20  125 

m.  We report results for three different fibril lengths, w0 = 10.6, 17.8, and 23.2 m.  

For w0 = 10.6 m, we pre-cured the larger spacings (80 m, 95 μm, 110 μm, and 125 

μm) for 29 minutes and the smaller spacings (20 μm, 35 μm, 50 μm, and 65 μm) for 

22 minutes.  For w0 = 17.8 μm, we pre-cured the thin film for 14 minutes for the 

smaller spacings and 17 minutes for the larger spacings.  For w0 = 23.2 μm, we pre-

cured the thin film for 9 minutes for smaller spacings and 11.5 minutes for larger 

spacings. After partially pre-curing the thin film and placing the fibrillar samples onto  
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Figure 3.1. Typical fabrication procedure of a FTFA. (a) First, liquid PDMS is 

poured into a Si master for molding; a glass rod can be used to provide access to 

the space under the terminal film. (b) The fibrillar sample is peeled from the Si 

mold. (c) The fibrillar sample is placed on a Si wafer with liquid PDMS spin-

coated on top for cross-linking; the entire sample is cured for 1 hour at 80ºC. (d) 

After removing the fibrillar sample and thin film from the Si wafer, one has a 

FTFA. (e) In some cases, a syringe needle is used to apply a PDMS seal to the 

sides of the sample. This allows one to control the internal pressure of the sample 

via the channel introduced in (a). 
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the thin film, the liquid film partially wicked up the fibrils, cross-linked with the 

fibrillar sample, and was cured for 1 hour at 80ºC. The entire sample was removed 

manually from the substrate. An image of a typical final fibrillar structure is shown in 

Figure 1.1(a).  For some samples, after removal from the Si wafer, liquid PDMS was 

applied using a syringe needle to seal the outer edges of the structure, so that the only 

access to the volume between the thin film and the substrate was the hole previously 

molded in through the bottom of the substrate in Figure 3.1.  

Using microbore tubing (0.03” diameter) (Cole-Parmer) inserted into the hole 

created in each sample by the glass rod, we were able to use a syringe pump (Chemyx 

Inc.) to control the flow of air into the sample.  By these means we could collapse the 

terminal film by removing the air in the sample, thereby reducing the pressure in the 

cavity under the film. Conversely, to return the sample to the uncollapsed state, we 

increased the pressure in this cavity by pumping air into the sample.  Alternatively, we 

were able to collapse the sample locally by pressing on the contacting surface with a 

spherical indenter coated with a silane monolayer or globally by pressing the surface 

through a nitrile glove.  We were able to uncollapse the structure by pressing against 

the top surface by a slab of PDMS or another fibrillar sample, and peeling it off.  

Because of the way we collapsed and uncollapsed the specimens, at present the 

associated critical values of pressures are not known.  We fabricated unstructured flat 

control samples following the same procedure, except that the PDMS film in the first 

step was cast against a polystyrene coated glass slide. 
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3.2.2 Measurement of adhesion and compliance 

Indentation experiments were performed to measure compliance and adhesion of the 

samples.  A schematic drawing of the set-up is given in Figure 3.2. It consists of a 

precision vertical stage (Newport MFN25CC) attached to a load train containing a 

strain gauge type load cell (Transducer Techniques, 10g) in line with the spherical 

glass indenter with a radius of approximately 4 mm. To reduce interfacial rate effects, 

a n-hexadecyltrichlorosilane monolayer was deposited on the spherical glass indenter. 

To add the monolayer, the indenter was cleaned in a piranha solution (70% H2SO4, 

30% H2O2) for 1 hour. Afterwards, it was rinsed with deionized water, dried with 

flowing N2, and then cleaned with oxygen plasma. A few drops of the silane were 

placed on a leaf of Whatman 5 filter paper, which was suspended over the indenter for 

two hours in a sealed chamber. After two hours, the indenter was removed from the 

chamber and left to cure overnight.  

The stage lowered the indenter at a speed of 1 μm/s into contact with the 

sample, which was supported on the microscope platform. The glass sphere was 

indented a prescribed 30 μm into the sample and then retracted at the same speed.  As 

this took place, the load cell voltage (for force) and stage displacement were recorded 

by a computer data acquisition system and the contact area between the indenter and 

sample was viewed through the microscope. The maximum force supported by the 

indenter (positive numbers represent compression), the pull-off force, was our 

measure of adhesion. The computer used for data acquisition also recorded a direct 

digital streaming video of the corresponding contact evolution. After obtaining the 
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force-displacement data, we zeroed the force measurement using the first 150 points of 

data obtained when the indenter was not in contact with the sample. 

3.3 Results and Discussion 

3.3.1 Qualitative Comparison of Collapsed and Uncollapsed States 

For certain sample parameters (fibril spacing and height), we found that decreasing the 

pressure in the space between the thin film and the substrate can cause the thin film to 

collapse around the fibrils. An image of a sample showing this behavior is shown in 

Figure 1b, where part of the thin film has collapsed, showing distinct bumps, while the 

rest of the thin film smoothly spans the fibrils. The fact that the two regions can co-

exist demonstrates the bistability of this sample. By adjusting the pressure in the space 

between the thin film and the substrate, we could advance or retreat the collapsed 

portion of the sample (see Figure 3.3).   

Using spherical glass particles ranging 300-400 µm in diameter, we 

qualitatively tested the adhesive qualities of the uncollapsed and collapsed regions in a 

bistable sample, as shown in Figure 3.4. This size of the spherical glass particles is in 

the range of medium coarseness sand [54]. We chose this range for its closeness in 

size to dirt particles and also because the particles are large enough compared to 

characteristic length scales of our structure that the collapsed state appears as a 

bumpy, rough surface. Particles much smaller than the typical length scales of our 

structure, e.g., those with radii of a few microns, are expected to adhere equally well 

to both collapsed and uncollapsed samples. For each sample we first collapsed a 

certain region by applying pressure mechanically from above. Next, we poured glass  
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Figure 3.2 Experimental set-up for the indentation experiments. A spherical 

indenter is lowered into the sample to a certain depth and then pulled out using a 

motorized stage. The load on the indenter, P, is measured using an in-line load 

cell, the indenter's vertical displacement, δ, is measured using a capacitance 

sensor, and the contact between the indenter and sample is obtained by recording 

its image through the inverted optical microscope. 
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Figure 3.3 Optical micrographs of collapsed and uncollapsed regions on a sample 

with 10.6 μm tall fibrils with an interfibrillar spacing of 65 μm. In the upper right 

parts of both micrographs, one can see the region over which the thin film has 

collapsed and is in contact with the substrate (the darker region with rings 

around the fibrils). A decrease in pressure between the left and right frames 

causes the collapsed region to advance into the uncollapsed region. The circles 

around the fibrils indicate where the thin film loses contact with the substrate; 

these are the bumps seen in Figure 1.1(b) of the main chapter. 
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particles over the sample.  After shaking the sample to remove any loose particles, we 

attempted to clean the surface in one of two ways.  Firstly, we subjected it to a gentle 

flow of N2 gas. Alternatively, we pressed a slab of flat PDMS into the sample two or 

three times.  We found that in both cases, the particles deposited on the collapsed 

region were removed but those on the uncollapsed region were not.  This demonstrates 

directly that particles that easily foul the uncollapsed region have much poorer 

adhesion compared to the uncollapsed region.  It also shows that the uncollapsed 

region has stronger adhesion than the flat control while the collapsed region has 

weaker adhesion than it.   

Figure 3.5 demonstrates the ability of this structure to undergo an uncollapse-

collapse cycle.  Starting with the uncollapsed state (Figure 3.5(a1) and (a2)), by 

applying an external pressure we can collapse the structure over the entire sample 

(Figure 3.5(b1) and Figure 3.5(b2)).  Then, we press on the collapsed top surface using 

a material with greater adhesion (usually another uncollapsed fibrillar material) and 

peel it slowly.  Figure 3.5(c) shows that as we peel, two fronts sweep across the 

sample.  The first one, captured in Figure 3.5(c1) is the boundary between collapsed 

and uncollapsed region.  Ahead of the collapse-uncollapse front, the structure is 

collapsed; behind it, the structure is uncollapsed.  A second front follows the first one 

(Figure 3.5(c2)), representing the peeling boundary.  The structure between the two 

fronts is but still attached to the peel arm.  After the second front has passed, the 

sample has returned to its starting state – compare Figure 3.5(d2) and (a2).  Later in the 

chapter we show that this cycle can be repeated many times. 
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Figure 3.4 Glass particles distributed on a sample with collapsed and uncollapsed 

regions demonstrate the adhesive differences between the two states. After the 

glass particles were adhered to the sample, a flow of N2 was used to clean the 

fibrillar sample.  It was effective in removing particles from the collapsed region 

but failed to do so from the uncollapsed region.  
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Figure 3.5 Images from a sequence in which the entire sample begins in the (a) 

uncollapsed, adhesive state; (a1) is the zoomed out image (5x magnification) while 

(a2) is an image with 10x magnification in which the dark spots represent fibrils. 

(b) Next, the sample is switched to a collapsed, low-adhesion state. Again, two 

magnifications are shown, (b1) and (b2). The circles around the dark spots 

represent the boundary of the collapsed region around each fibril.  We show that 

the collapsed state can be (c) easily uncollapsed. In (c) there are three distinct 

areas. In (c1), the upper left corner (where it is dark) is the still-collapsed area. 

The uncollapsed front is the boundary between the collapsed and uncollapsed 

regions. In (c2), we observe a crack front where the sample is separating from the 

second fibrillar sample being used to uncollapse it.  (d) The sample has returned 

to its original adhesive state.  
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The demonstrated bistability and clear differences in adhesive performance 

between the collapsed and uncollapsed states leads to two questions.  How does the 

adhesion of the collapsed state compare quantitatively with that of the uncollapsed 

state and an unstructured control?  Under what conditions do we achieve bistability?  

We address these questions in the next two sections. 

3.3.2 Adhesion Measurements 

Indentation tests were performed on samples of three fibril lengths – 10.6 µm, 17.8 

µm, and 23.2 µm – for eight fibril center-to-center spacings each, 20 µm, 35 µm, 50 

µm, 65 µm, 80 µm, 95 µm, 110 µm and 125 µm.  For each set of fibril lengths, for a 

certain range of inter-fibril spacing, the samples were found to have a second, 

metastable state in which the thin film, if brought into contact with the substrate by 

application of external load, would remain collapsed upon removal of the load.  For 

shorter fibril lengths, the range of spacings that are collapsible increases while for 

longer fibril lengths, fewer samples were capable of achieving the second metastable 

state.  

Figure 3.6(a) shows force-displacement results from a typical indentation test 

on a sample with 10.6 µm tall fibrils and 95 µm interfibrillar spacing.  We first note 

that the pull-off force, our measure of adhesion, is much larger in the uncollapsed state 

than in the flat control sample.  The collapsed state shows essentially zero adhesion.  

This is consistent with the results from the self-cleaning experiment in which the 

PDMS slab (similar to a control) was capable of removing the particles from the 

collapsed portion of the sample but not from the uncollapsed region.  Secondly, the 
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uncollapsed state is significantly more compliant whereas the collapsed state is only 

marginally more compliant than the flat control. The results for the uncollapsed 

sample are very similar to those we have reported previously and demonstrate 

characteristics of adhesion enhancement by crack-trapping, such as intermittent crack 

advance and hysteresis [9][14]. For the collapsed sample, initially, contact is only 

partial and restricted to the tops of bumps. Eventually, in an inner region the indenter 

makes nearly full contact (see micrograph E in Figure 3.6(b)), but reverts back to 

partial contact everywhere on unloading (see micrograph F in Figure 3.6(b)). Pictures 

like E/F have also been reported by Crosby, et al. [55]. However, for taller fibrils, 

contact usually remained restricted to the tops of the bumps throughout the 

experiment. This partial contact is responsible for the drastic reduction in adhesion.  

Figure 3.7 shows results from indentation experiments on samples for four 

different interfibrillar spacings for all three fibril heights, for both the collapsed and 

uncollapsed states. As expected, adhesion of the uncollapsed state is always 

significantly greater than that of the flat control. On the other hand, the adhesion of the 

collapsed states is generally very small. For samples that are marginally metastable in 

the collapsed state, we often observe that an initially collapsed state can be locally 

uncollapsed on retraction of the indenter. In these cases, we also measure some 

adhesion, for example, as seen in Figure 3.7(d), 65 µm spacing.   
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(a) 

 

 (b) 

Figure 3.6 (a) Force-displacement results from a typical indentation test on a 

sample with 10.6 μm tall fibrils and 95 µm interfibrillar spacing.  Negative force 

indicates tension.  Notice that in the uncollapsed state the pull-off load is much 

larger than in the control while in the collapsed state the pull-off load is 

vanishingly small.  (b) Optical micrographs of the contact region halfway to 

maximum indentation (A, D, and G), at maximum indentation (B, E, and H), and 

halfway retracted from maximum indentation (C, H, and I) for the uncollapsed 

(A, B, and C), collapsed (D, E, and F), and control (G, H, and I) samples.  
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Figure 3.7 Left column (a, c, e): Force vs. indenter displacement during 

indentation of uncollapsed samples for three different fibril lengths.; results from 

an unstructured control are also shown. Right column (b, d, f): Force-

displacement measurements on the same samples in the collapsed state for three 

different fibril lengths.  
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It is known that the work of adhesion between PDMS surfaces is rate-

dependent [9][39]. Also, the rate dependence of the work of adhesion between the 

glass indenter and PDMS is different from that of the internal PDMS-PDMS surface.  

Matthew et al. 2006 [56] have previously used such differences to pick-up and place 

PDMS structures. We have observed that slow removal of the indenter leaves the 

structure in a collapsed state and that, if the removal of the indenter is rapid, 

uncollapses the sample. This presents another route to switch the adhesion on and off 

in the FTFA.   

3.3.3 Compliance 

As observed previously, compliance of the uncollapsed samples increases 

systematically with spacing [57]. The maximum true indentation is lower than the 

nominal maximum displacement applied to the motor (30 µm) because of compliance 

in the load cell. As the sample compliance increases, the maximum indentation depth 

approaches the displacement applied to the motor, as can be seen in Figure 3.7.   

For collapsed samples, the contact compliance is much smaller, similar to that 

of the flat control, particularly for samples with 10.6 µm and 17.8 µm long fibrils.  As 

can be seen in the sequence of images in Figure 3.6(b) (D-F), for collapsed samples 

contact is initially partial as the indenter is supported only by the ‘bumps’.  For 

shallow indentation, the compliance is expected to be similar to that of the uncollapsed 

state for which, although the contact is continuous, vertical loads are supported 

primarily by the fibrils. With deeper indentation in the collapsed state (e.g. E in Figure 

3.6(b)), the indenter makes nearly full contact with the substrate in an inner region 
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entered at the tip of indenter. For these cases, compliance is expected to decrease and 

approach that of the flat control. This transition from partial to full contact is more 

difficult to achieve with longer fibrils.  Therefore, we find that samples with longer 

fibrils show an increase in compliance even in the collapsed state (see Figure 3.7(b)). 

To understand more quantitatively how compliance varies, we utilize the 

model developed by [57] for indentation of a fibrillar structure by a flat punch of 

radius, R.  During loading, the area of contact between the indenter and the sample 

grows steadily for all samples. However, during unloading, there is a period of time 

during which the contact is pinned. For the control and uncollapsed FTFAs, this is due 

to the adhesion. For the collapsed samples, as is explained in more detail later, the area 

remains constant for some period until the outline of contact jumps inward. In all 

cases, as the contact area remains constant immediately after the indenter begins 

retracting, we are able to compare the incremental compliance measured at that point 

to the predictions of the flat-punch model of Long et al. 2008 [57].  The experimental 

compliance was obtained by taking the inverse of the slope of the force-displacement 

curve immediately after unloading begins. Long’s theory states that the compliance 

can be described by a single parameter, * , which is determined by the stiffness of the 

fibrillar layer, k = ρEA/wo, the punch radius (identified here with the contact radius at 

maximum contact, R), and the Young’s modulus of the material, E.  The parameter A 

= s
2
 is the cross-sectional area of a fibril, wo is the fibril length, and ρ is the number of 

fibrils per unit area or the fibril density (1/4a
2
).  The compliance, C, of a fibrillar 

sample with a finite backing layer of thickness Ts is given by, 
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where EkR  2/3  and χ  is defined by 

   2 31.095 1.3271 0.1431 0.9717      
 

(3.3) 

The compliance is normalized by that of a flat, circular punch of radius R indenting an 

elastic half-space, ( BCCC / ,  1 2BC RE ,  21E E    ). 

The contact area at maximum indentation was measured for the collapsed and 

uncollapsed samples. As shown in Figure 3.5(b) D-F, the indenter sometimes makes 

partial contact with the tips of the fibrils.  In such cases, we take the edge of the 

contact area to be the convex hull of the set of fibrils in contact with the indenter (see 

Figure 3.5(b), D for an example.)   

 Note that as the fibril height, wo, decreases, the compliance given by equation 

(3.1) approaches that of an unstructured layer with finite thickness, that is, 

 1

BC
C

 



 

(3.4) 
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We extracted the Young’s modulus of the PDMS by applying (3.4) to the measured 

compliance in a flat control sample upon initial unloading from maximum indentation 

and obtained a value of E = 1.8 MPa. 

Figure 3.8 shows the measured compliance in uncollapsed and collapsed 

samples for samples with 23.2 m long fibrils, compared to the prediction from 

Long’s model, (3.1). Results for samples with shorter fibrils are qualitatively similar. 

We find that the measured compliance is significantly smaller than that predicted by 

the model based on fibrils alone for both the uncollapsed and collapsed samples.  For 

the uncollapsed samples, we attribute the difference to the load-bearing capacity of the 

terminal film, the effect of which has not been included in the model. One might 

expect the model to apply better in the case of the collapsed structure, since the 

terminal film has collapsed onto the substrate. However, we find that the discrepancy 

is even greater. This fact is directly related to the observation that during indentation 

of collapsed samples, the indenter makes contact with both the pillars and the substrate 

between pillars (see Figure 3.5) and thus the incremental compliance is not very 

different from that of a flat control.   
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Figure 3.8 Compliance normalized by CB = 1/2RE* for samples with 23.2 m long 

fibrils. The horizontal line represents measurements on a flat control.  Circles 

and triangles represent compliance measured on uncollapsed and collapsed 

samples, respectively. The dashed line shows the compliance predicted 

theoretically by equation (3.4). 
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In Figure 3.9, we plot the normalized pull-off load, Fmax, for the eight different 

spacings and three different fibril heights for both the collapsed and uncollapsed states 

(the solid lines are drawn as guides to the eye). The loads are normalized by the 

average pull-off load for the flat control sample.  It is clear that the adhesion for the 

uncollapsed samples is larger than that of the control, increases with fibril spacing and 

is relatively insensitive to the fibril height, which is characteristic of the crack-trapping 

mechanism [9][14][58].
 
On the other hand, the adhesion of the collapsed states is 

lower than that of the control, decreases strongly with increasing spacing, and is 

negligible or close to zero for several samples. That is, the structure can be designed 

such that the ratio of adhesion in the “on” or uncollapsed state and the “off” or 

collapsed state approaches two orders of magnitude.  For example, we are able to 

achieve ratios of the pull-off force in the uncollapsed to collapsed state up to 70 for the 

for interfibrillar spacings of 110 µm and 125 µm.  

Note that data on collapsed samples is presented for fewer spacings than for 

the uncollapsed samples.  Whereas the uncollapsed state is always metastable, for a 

given fibril height, the collapsed state is metastable only for sufficiently large spacing 

between fibrils. The minimum spacing for bistability increases with increasing fibril 

height.  In the theory section we provide a model to explain both of these experimental 

findings.  

For structures whose pull-off is controlled by crack-trapping, as is the case for 

the uncollapsed samples, the adhesion energy enhancement is proportional to the 

fourth power of the interfibrillar spacing [41][48]. Consistent with this expectation, 

indentation experiments demonstrate a distinct increase in the pull-off load as the  
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Figure 3.9 Pull-off load (normalized by the maximum pull-off load for the flat 

control sample) for collapsed and uncollapsed samples. For the uncollapsed 

samples, the pull-off load is significantly enhanced over the flat control sample 

and increases with interfibrillar spacing while for the collapsed samples, the pull-

off load remains low or negligible. In the legend, ‘(c)’ represents the collapsed 

samples and ‘(u)’ represents uncollapsed samples.  
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interfibrillar spacings grow. Eventually, this growth is limited by factors such as 

cavitation under fibrils or damage to the structure.  

To understand the effect of fibril spacing on adhesion of collapsed samples, we 

use the model described in Vajpayee, et al. [59]. That model treats the surface as an 

elastic spring foundation, neglecting the elasticity of the backing layer.  Each fibril is 

assumed to detach at a critical stress, 
c . Then, the pull-off force is given by 

2

c o
pull off

Aw
F R

E


  

 

(3.5) 

i.e., it decreases inversely with the square of interfibrillar spacing since = 1/4a
2
.  

Thus, the model in [59] also predicts that adhesion of collapsed structures decreases 

with fibril density (increased interfibrillar spacing).   

Finally, to ascertain the robustness of properties in the context of multiple 

switching between states, we cycled a sample (with 10.6 µm long fibrils, a 5 µm thin 

film, and inter-fibril spacing of 65 µm) 100 times between the collapsed and 

uncollapsed states.  In Figure 3.10, we show that the surface compliance and adhesion 

of the two states remained substantially unchanged (within test-to-test variability). We 

see no reason why the material could not be cycled many more times between the two 

states.  

3.3.4 Linear Theory of Plate Collapse 

In the previous sections we established experimentally that, if the FTFA is designed 

appropriately, it can reside in one of two metastable states, one with a collapsed and an 

uncollapsed terminal film, and that these two states have markedly different adhesion.   
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Figure 3.10 A demonstration that properties remain substantially unaltered 

despite multiple switching between the two states: force-displacement data from 

a 65 μm sample with 10.6 μm fibrils and a 5 μm thin film. Indentation tests were 

initially performed on collapsed and uncollapsed areas. The sample was then 

collapsed by mechanical pressure from above and uncollapsed by peeling with a 

dry adhesive 100 times. Indentation tests were repeated and are shown as well. It 

can be seen that the sample can be repeatedly cycled between the collapsed (non-

adhesive) and uncollapsed (enhanced adhesion) states without degradation of its 

properties.  
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Therefore, an important question is: for what combination of parameters (material 

property and geometrical) can we expect the structure to be bistable? 

In this section, we present a simple model to provide insight into this question 

of the collapse of the terminal thin film. The work on linear plate theory was done by 

co-author and labmate, Jing Ning. Related models have been developed to describe the 

pull-off of a clamped circular film adhered to a flat cylindrical punch [60][61]. The 

film is modeled as an elastic circular plate suspended at a height of wo above a rigid 

substrate, where wo represents fibril length. To simplify the problem, we neglect the 

deformation of the fibrils, represent the complex geometry of the terminal film by a 

circular plate, and assume that the plate is clamped at its boundaries. The plate is 

brought into contact with a rigid flat substrate by a uniform pressure q as shown in 

Figure 3.11. The circular plate has thickness h, elastic modulus E, Poisson’s ratio,  , 

and flexural rigidity D given by: 

 3 212 1D Eh  

 

(3.6) 

The radius of the circular plate and contact radius between the plate and the substrate 

are denoted by ad and c respectively; we equate the former to half the diagonal 

distance between fibrils in a square unit cell.  

 The differential equation for symmetrical bending of circular plates [62], using 

the coordinate system defined in Figure 3.11, is given by: 

1 1d d d dw q
r r

r dr dr r dr dr D


   
        

(3.7) 
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Figure 3.11 Schematic drawing of a plate adhered to a rigid substrate under 

uniform pressure 
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The boundary conditions are: 

 

 

   

0

0

0d d

w r c w

w r c

w r a w r a

 

  

   
 

(3.8) 

We normalize the governing equation and boundary conditions as follows: 

0 0

4

,,   ,  d

d d

qaw r c
w r q c

w a Dw a
   

 

(3.9) 

The general solution for the normalized deflection is: 

4 2 2

1 2 3 4

1
ln ln

64
w r q C r r C r C r C    

 

(3.10) 

Applying the boundary conditions in (3.8), we obtain four equations for five unknowns 

iC  and c : 

2 4

1 2 3

4 2 2

1 2 3 4

3 3

1 1 2

1
0

64

1
2 0

16

1
ln ln 1

64

1
2 ln 2 0

16

q C C

q C C C

c q C c c C c C c C

C
c q C c c C c C c

c

  

   

    

    

 

 

(3.11) 

The additional equation which allows us to solve for the five unknowns is determined 

by energy balance; that is, the potential energy released by the system (plate + applied 
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pressure), G, to peel off a unit area of contact must be equal to the work of adhesion 

adW of the surfaces in contact. This condition is (see for example, [63])
 

   
2

2 20

4
2 2

ad

r c r cd

DwD
W G w w

a 

   

 

(3.12) 

Using (3.12), (3.10) is found to be: 

2

2 3

1 1 2 2

3
2 ln 3 2

16
ad

C
W c q C c C C

c
    
 
 
   

(3.13) 

and we define: 

4

2

0

2 d ad
ad

a W
W

Dw


 

(3.14) 

as the normalized work of adhesion. The solution of (3.10) and (3.12) is:  

   

   

     

   

   

   

   

1

2

2

2
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2 2

4

2 4 2

2 22 2

2
2 4 2

2 22 2
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2 4

2 22 2

2 2
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1 2 ln

1 64 1 4 ln

1 4 ln

1 64 1 64 1 4 ln
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1 ln 64
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64 1 6

C

c c
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C

c c c

C

c q c c q c

c c c

c q c q c q c

c c c

q c c q c q

c c c

c q c
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

 



     
 

  
  

         
    

  
  

     
  

  
  
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   
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2 22 2
64

4 1 2 ln

1 4 ln

q c q c

c c c

   
  

  
    

(3.15) 
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Substituting (3.15) into (3.13) gives the relationship between the applied pressure and 

the contact radius, i.e.,  

      

   

2

2 4 2 2 4 4

2 22 2

1 64 4 3 2ln 64 2 3 4 ln

16 1 4 ln
ad

c q c c c q c q c q c q c
W

c c c

 
           

          

(3.16) 

Using the expressions for constants Ci, we obtain the relationship between the applied 

pressure and the contact radius. We then solve for q , which is: 

     

    

2 22 2 2

2 4 2 2 4 4

64 1 2ln 16 1 4 ln

1 4 3 2ln 1 2 3 4 ln

adc c W c c c
q

c c c c c c c c

     
  

      
 

(3.17) 

In (3.17) we see that there are two solution branches. Since the applied pressure to 

maintain a given contact area is always larger for the solution with the + sign, the 

negative sign should be chosen. 

 It is interesting to consider the dependence of the applied pressure on the 

contact radius in the limit of small contact.  A straightforward calculation shows that,  

64 8
64

ln

adW
q

c

 
 

 

(3.18) 

for 1c  . (3.18) shows that the pressure qo  needed to bring the plate into contact 

with the substrate (c = 0) is  

0
0 4

64

d

Dw
q

a


 

(3.19) 
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Since 3D h , (3.19) suggests that collapse is extremely sensitive to the plate 

thickness. 

Figure 3.12 plots the normalized pressure versus the normalized contact 

radius for different values of adW . The slope of the pressure versus contact radius 

curve at 0c  can be computed using (3.18) and is:  

 
2

64 8

ln

adW
q

c c


 

 

(3.20) 

(3.20) states that the pressure versus contact radius curve has an infinite positive slope 

for 64adW   and infinite negative slope for 64adW   (see inset in Figure 3.12).   The 

transition occurs at 64adW  . For small adhesion ( 64adW  ), the system is stable, in 

the sense that increasing pressure is needed to increase contact radius.  For 64adW  , 

the pressure first decreases with c , reaches a minimum 
minq  at 

minc , then increases.  

In this case, the system is unstable for small contact radius (
minc c ) since pressure 

decreases with increasing contact. The stable solution branch occupies the interval 

minc c .  Note that 
minc  increases with adW  with min ( 64) 0adc W   .   Physically, 

minc  

is the radius at pull-off and 
minq is the pull-off pressure.   

The curve with 
*314.6ad adW W   and 

*

min 0.176c   is particularly important, 

since the pull-off pressure is negative for any
*

ad adW W . The significance of this is that 

it defines bistability, i.e., for 
*

ad adW W , once the plate collapses it remains stuck when 
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pressure is released and one has to apply a reverse pressure to revert it back to the 

initial state. 

In Figure 3.13, we show a phase diagram of bistability for the different fibril 

heights and spacings. For greater spacings and shorter fibrils, bistability is easier to 

achieve, as expected. Parameters for our PDMS samples are: 

2138 mJ / madW   

1.8 E MPa  

0.5   
wo = 10.6 µm, 17.8 µm, 23.2 µm 

h = 6 µm 

2a = 20-125 µm (or 2ad = 28-177 µm).  

 

Filled circles represent combinations of fibril height and spacing that were metastable 

in the collapsed state; squares represent those that would not remain collapsed. The 

line represents the condition, 
*314.6ad adW W  ; our model predicts that combinations 

to the right of the line have a collapsed metastable state. The model captures the 

observation that, for a given fibril height, a minimum interfibrillar spacing is required 

for the collapsed state to be metastable. It also captures correctly the fact that this 

minimum spacing increases with increasing fibril height. Given the simplicity of the 

model the quantitative agreement with experiment is quite good. We do note, 

however, that the model has several approximations – e.g., we have ignored the large 

deflections of the terminal film and have represented a square arrangement by an 

axisymmetric plate – and a better model will be needed for a more quantitative 

comparison with experiment.  Nevertheless, we believe that the simple model captures 

the essential features of bistability. 
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Figure 3.12 Plot of normalized pressure versus contact radius for six adW . In 

LPT, we define bistability as requiring a negative pressure to uncollapsed the 

FTFA, i.e., to reduce the contact area to zero.    
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Figure 3.13 Phase diagram of fibril spacing and heights for bistability from 

Linear Plate Theory.  Filled circles represent combinations of fibril height and 

spacing that were metastable in the collapsed state; squares represent those that 

would not remain collapsed. The line represents the condition, 
*314.6ad adW W  ; 

our model predicts that combinations in the shaded region to the right of the line 

have a metastable collapsed state. 
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3.4 Summary and Conclusions 

We have demonstrated that a FTFA can have two metastable states. In the first 

metastable state, a thin film spanning a fibrillar surface results in strongly enhanced 

adhesion due to a previously studied crack-trapping phenomenon. For certain 

geometries of this first state, we can achieve a second state by bringing the thin film 

into contact with the substrate of the fibrillar structure. This second, collapsed state 

resembles a rough surface and has strongly reduced adhesion, even lower than that of 

a flat control. 

A qualitative demonstration of the difference in adhesive properties of the 

collapsed and uncollapsed states was made by placing particles a few hundred microns 

in diameter over a sample that had part of its surface in the first metastable state and 

another part in the collapsed state.  By using N2 gas to blow particles off the sample as 

well as by using a PDMS slab to remove particles from the sample, we demonstrated 

that the adhesion of the uncollapsed state caused particles to be difficult to remove.  

However, particles were easily removable from the collapsed region.  To illustrate the 

robustness of the sample, we showed that one can collapse and uncollapse the sample 

repeatedly (we repeated this one hundred times) with no significant change in 

properties. 

 To explain the phenomenon of bistability in this structure, we developed a 

simple theoretical model representing the thin film between four posts as a linear 

circular plate clamped at the edge.  This model identifies a dimensionless combination 

of materials and geometrical parameters including work of adhesion, fibril height, film 

thickness, elastic modulus, and interfibrillar separation, such that bistability is possible 

P 
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only when this parameter is sufficiently large. We find that the model captures the 

experimental findings reasonably well. 
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CHAPTER 4  

ADHESIVE AND FRICTIONAL CHARACTERIZATION OF SWITCHABLE 

ADHESIVE 

4.1  Introduction 

In this chapter, we present the results from a characterization of the adhesive and 

frictional behavior of the switchable film-terminated fibrillar architecture (FTFA) as 

well as a theoretical and experimental description of the switching mechanism. In 

Section 4.3.1, we discuss how cyclic indentation experiments are used to determine 

the interfacial hysteresis of both the highly adhesive and non-adhesive states of the 

bistable FTFA. We also characterize the frictional behavior of the two states. For both 

indentation hysteresis and friction experiments, we compare the performance of the 

switchable FTFA to control samples, which are fabricated in the manner similar to 

what is described in CHAPTER 3. In addition to characterizing the bistable FTFA, we 

determine the pressure to switch the FTFA from the adhesive to the non-adhesive state 

using hydrostatic pressure experiments. Finally, in Section 4.4, we present a large 

deflection, adhesive contact model of the sample as it undergoes switching.  

4.2 Materials and Methods 

4.2.1 Fabrication 

The fabrication method for the FTFA is described in the Chapter 3 as well as [64]. To 

summarize, fibrillar structures were fabricated by the molding of PDMS using 

negative image silicon (Si) masters patterned by standard photolithography and DRIE 

techniques. Bistability depends on several parameters including fibril length, w0,  
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        (a)           (b) 

  

        (c)           (d) 

Figure 4.1 (a) SEM image of the FTFA, shown from the side with sample 

dimensions noted: thin film thickness, h, fibril height, w0, and interfibrillar 

spacing 2a. The layer of fibrils is arranged in a square array and each fibril has a 

100 m
2
 square cross-section. (b) SEM image from above of a sample with both 

the collapsed and uncollapsed states present. We denote the diagonal distance 

between two fibrils 2ad. In the lower, left-hand corner of the image, the thin film 

is uncollapsed and lies on top of fibrils while in the upper right-hand corner, the 

thin film has collapsed around the fibrils and is adhered to the substrate. (c) We 

provide a schematic of the FTFA in the uncollapsed state, with the same 

parameters shown in (a). In (d), we show a schematic of a cross-section of the 

FTFA in the collapsed state, corresponding to the collapsed region in (c).  

Uncollapsed 

Collapsed 

2ad Top view Thin film Side view 

w0 2a 

h 

100m Substrate 

Fibrils 
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interfibrillar (center-to-center) spacing, 2a, thin-film thickness, h, and the effective 

work of adhesion, Wad, as described in [64]. For this work, we used samples with 

interfibrillar spacings ranging between 20 μm and 125 μm and three fibril lengths: 

10.6 m, 17.8 m, and 23.2 m. The fibrils have a 10 μm × 10 μm square cross-

section. The 5 μm thin films are fabricated using a spin speed of 3,000 RPM. Spacers 

were used to provide a 1 mm thick substrate to the fibrillar layer. To attach a terminal 

film to the ends of the posts, a polymer precursor (again, PDMS) is first spin-coated 

on a polystyrene-coated Si wafer. The fibrillar layer is then placed on the film while 

the film is only partially cured (to prevent wicking); together they are cured for 80°C 

for two hours. The entire sample is removed from the wafer manually.  

4.2.2 Measurement of adhesion and friction 

Adhesion  

Cyclic indentation experiments were performed to measure adhesion of the samples. 

Details of this experiment can be found in Noderer, et al. [14] and a schematic of the 

set-up is the same as shown in Figure 3.2. For these experiments, the 4 mm radius, 

SAM-coated glass sphere indents the sample to a prescribed maximum depth of 30 μm 

and then retracts to a specified minimum depth (that maintains contact); this loading 

cycle is repeated four times. The force on the indenter is recorded by a computer data 

acquisition system and the displacement is determined by the motorized vertical stage 

as well as a capacitance sensor. Contact between the indenter and sample is viewed 

through the microscope and direct digital streaming video of the corresponding contact 
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evolution is recorded. We perform the experiment three times on each sample and 

report the average value and standard deviation. 

Friction  

The apparatus used to measure the response of samples in the adhesive and non-

adhesive states as they undergo shear displacement is shown in Figure 4.2. Details of 

the friction experiment can be found in [39][41]. Briefly, a SAM-coated glass indenter 

with a 4 mm radius is brought into contact with a FTFA sample on a glass slide using 

the minimum possible normal load to maintain contact via a mechanical balance 

(Ohaus 310D). The samples were displaced laterally with a variable speed motor 

(Newport ESP300) at a fixed velocity of 10 m/s. The frictional force was measured 

by a load cell (Honeywell Precision Miniature Load Cell model 31-50) attached on the 

balance arm in the direction parallel to the sliding motion. We perform the experiment 

three times on each sample and report the average value and standard deviation.  

4.3 Results 

4.3.1 Interfacial hysteresis results 

In Chapter 3, the maximum measured tension experienced by the indenter upon 

retracting from the sample, Fpull-off, was presented as a measure of adhesion of the 

FTFA in the collapsed and uncollapsed states. While this is a widely used measure, the 

pull-off load can change significantly with increasing maximum indentation to some 

saturated value. Schargott, et al. [65] determined the minimum compressive preload 

required to reach this saturated value for a spherical indenter on a spring foundation  



 

89 

 

 

Figure 4.2 Experimental set-up for the friction experiments. A SAM-coated 

spherical indenter with a 4 mm radius is brought into contact with the sample. 

The sample is driven at a constant rate using a motorized stage. The shear force 

on the indenter is measured using an in-line load cell and the contact between the 

indenter and sample is obtained by recording its image through the inverted 

optical microscope.  
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atop a rigid backing layer. In Long, et al. [57] the elasticity of the substrate for a 

fibrillar layer was accounted for in the case of a cylindrical punch indenter. Presently, 

there is no analytical or numerical solution for the case of a spherical indenter on a 

fibrillar surface with finite or infinite backing. Thus, care must be taken either to 

specify the indentation depth/maximum load or to indent sufficiently to ensure the 

pull-off load no longer depends on indentation depth.  

 Alternatively, if there is no bulk dissipation, cyclic indentation experiments 

can be used to extract interfacial hysteresis as a measure of adhesion in a completely 

model-independent manner [39]. In a simplified version of this theory, interfacial 

hysteresis is calculated by: 

Pd
W

A


 




 

 

(4.1) 

The integral in the numerator is the net area under the force-displacement curve during 

a loading cycle and A  is the difference between the contact areas at maximum and 

minimum indentation. W  is the work done per unit area to make or break contact. 

Force-displacement data for this experiment is shown in Figure 4.3. In previous 

papers, it has been shown that the hysteresis for the FTFA comes from the process of 

separation and not the bulk material properties [14]. 

During the cyclic loading, contact between the glass indenter and FTFA 

sample grows and shrinks from the edge of contact. As described in CHAPTER 3, we 

can think of the contact edge as an edge crack and, in turn, think of the increasing 

contact between the indenter and the sample as a crack that is healing and shrinking 

contact between the indenter and sample as a crack opening. 
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Figure 4.3 Force-displacement data from a cyclic indentation experiment on a 

sample (w0 = 17.8 m, 2a = 80 m). Positive forces indicate compression and 

negative forces indicate tension. Arrows on the plot indicate the glass indenter is 

compressing and retracting from the sample.  

 

 

 

 

 

 



 

92 

In many situations, it is possible to define a work of adhesion for crack opening, W
+ 

as 

well as for crack healing, W
-
, respectively, and write (4.1) as:  

 Pd W W A    
 

(4.2) 

If W W 
, the hysteresis per unit area is well-approximated by W

+
. However, 

ifW W  , then the hysteresis per unit area vanishes. For the collapsed samples, there 

is not enough hysteresis for us to reasonably make the approximation for W
+
, so we 

report the interfacial (adhesion) hysteresis, W .  

The adhesion hysteresis in the uncollapsed samples is up to four times greater 

than the control samples; these results are shown in Figure 4.4. In [41], it was shown 

that the adhesion enhancement is due to a crack-trapping mechanism that arises from 

the variation in strain energy present within the sample available to drive the crack.  

For the collapsed samples, the adhesion hysteresis is even lower than the 

hysteresis for the control samples. In addition to having no adhesion enhancement 

from the crack-trapping mechanism, contact for these samples is (at least initially) 

reduced by the bumps on the surface. For shorter fibrils, the indenter comes into 

contact with the substrate in the center of contact.  

4.3.2 Friction Results 

In Figure 4.5, we show the force-displacement response for both collapsed and 

uncollapsed samples with w0 = 10.6 m from the friction experiment. For uncollapsed 

samples, there is initially no relative movement between the sample and the indenter at 

the interface. During this period the measured shear force on the indenter increases to 
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a peak value. After the peak friction force is reached, the sample transitions to steady 

sliding and exhibits a much lower shear force. For the collapsed samples, there is no 

observable static friction peak; instead, the sample slides steadily throughout. 

It has been shown previously on the uncollapsed FTFA that the static friction 

increases systematically with interfibrillar spacing [51], implying the enhancement is 

due to the enhanced adhesion. As in [51], we observed a significant increase in the 

peak friction force in uncollapsed FTFA samples over the control up to an 

intermediate spacing (in Figure 4.5 this is 2a = 95 m). For larger spacings, the 

sample is damaged during the experiment. In Figure 4.5, one can see that the measured 

shear force drops dramatically once the sample is damaged.  

In Shen, et al. [40], an unstable release of the shear strain in the contact region 

between the indenter and the sample occurs at the static friction peak, resulting in a 

dramatic drop in the shear force. After the instability takes place, the sample begins 

sliding with respect to the indenter. Additionally, the shear force is independent of 

spacing and identical to that of the flat control. This was attributed to the fact that in 

sliding friction the normal load is supported by the tension in the thin film as the 

sheared fibrils have very little stiffness.  
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Figure 4.4 W W W     normalized by W for the control sample. Results 

from the interfacial hysteresis experiments are shown for collapsible samples 

with w0 = 10.6, 17.8, and 23.2 m and 2a = 20 – 125 m. 
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Figure 4.5 (a) Shear force as a function of sample displacement, u, for 

experiments on samples with w0 = 10.6 m in both uncollapsed (2a = 35 m, 50 

m, 65 m, 95 m) and collapsed states (2a = 65 125 m and denoted by ‘C’). 

For 2a = 95 m and more, the thin film tears for the uncollapsed samples at the 

peak friction force. For the collapsed samples, spacings reported are limited to 

bistable FTFAs. (b), (c) Micrographs showing the contact between the indenter 

and the sample during the experiment (for the uncollapsed, it is during steady 

sliding). Arrows indicate the motion of the sample and ‘LE’ and ‘TE’ point to the 

leading edge and trailing edge of contact, respectively. In (b), w0 = 10.6 m, 2a = 

50 m in the uncollapsed state, there is a large area of contact between the 

indenter and the sample, while for (c), w0 = 10.6 m, 2a = 80 m in the collapsed 

state, the contact is restricted to the tips of the bumps, which occupy the region 

outlined by an octagon. 

(a) 
(b) 

(c) 
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Figure 4.6 Top: The peak friction force for three different fibril heights and for 

spacings from 20-125 m normalized by sliding friction of the flat control. 

Bottom: Normalized maximum friction forces recorded for collapsed samples.  
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For the uncollapsed FTFA studied in this work the sample gradually shifts to 

steady sliding after the static friction peak. Additionally, the shear force during sliding 

depends on the interfibrillar spacing as well as the fibril height. The differences in the 

shear response between the samples in this work and [41] are attributed to the different 

lengths of fibrils in the two studies. For one, in all FTFA samples, the thin film at the 

leading edge of the contact region buckles as the sample is displaced. For samples 

with shorter fibrils, the thin film makes contact with and adheres to the substrate, 

producing a locally collapsed region, as shown in Figure 4.7, micrograph 2. 

Another, more significant difference takes place in the center of the contact 

region. As mentioned above, in [41] (for longer fibrils) the fibrillar layer does not 

support the indenter. As the sample is displaced, the fibrils do not lose contact with the 

indenter. Thus, we assume the sheared fibrils buckle as described in CHAPTER 1. For 

samples with shorter fibrils, the indenter compresses the fibrils like springs, with the 

greatest compression at the center of contact (see Figure 4.7, micrograph 1). The 

stiffened fibrils, and the thin film above them, rotate when sheared and lose contact 

with the indenter (Figure 4.7, micrograph 3).  

For both the fibrils at the leading edge and inside the contact region, the thin 

film closer to the leading edge has lost contact with the indenter while the thin film 

behind the fibril (closer to the trailing edge) remains in contact. As the sample 

continues to be displaced, the detached thin film folds under the sheared fibrils, 

forming a crescent-shaped contact with the substrate, as shown in Figure 4.7(b).  
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(a) 

 
(b) 
 

Figure 4.7 (a) Transition from static to sliding friction in uncollapsed FTFA samples 

(w0 = 17.8 m). (1) Contact between the fixed indenter and sample; sample is 

displaced downward (in the direction of the arrow) (2) Thin film at the leading edge 

buckles downward into contact with the substrate. The fibrils bend and the thin film 

above them detaches from the indenter (as depicted in micrograph 3 and (b)). (3) 

Sample detaches from the indenter inside of the contact region above a compressed 

and sheared fibril. (4) In locations where the thin film has detached from the 

indenter ahead of a fibril that remains in contact, the detached thin film folds under 

the sheared fibril, forming a crescent-shaped contact with the substrate. This can be 

seen in the lower part of micrograph 6 and a schematic of this is shown in (b) as well.  
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Outside of the center region and the leading edge, the contact area is reduced as the 

sample transitions from static to sliding friction via an instability in a manner similar 

to what was observed in [41].  

For fibrils that partially lose contact with the indenter as described above, 

movement between the indenter and sample does not occur until the shear strain in the 

thin film behind the fibril becomes large enough to initiate an unstable release. The 

indenter continues to move relative to the sample in this manner.  

For the collapsed samples, there is obviously no benefit from the crack-trapping 

mechanism, and therefore we do not find static friction enhancement. Indeed, for a 

sufficiently small normal load, contact between the indenter and the sample is limited to 

the tips of the bumps (for a large enough normal load, the indenter comes into contact 

with the substrate in the center of the region of contact). In Figure 4.8 it is shown that the 

sliding friction force of the collapsed samples is approximately one third or less than that 

of the flat control sample. The friction force on collapsed samples reduces monotonically 

with fibril density for w0 = 10.6 m while. For longer fibrils this is not the case because 

the bumps for these samples are much more compliant as they are typically bent or 

buckled underneath the thin film. Consequently, as the fibril density decreases the contact 

grows on each fibril. In Figure 4.11, a micrograph (and schematic) of a partially collapsed 

sample (w0 = 17.8 m) shows the contact between the side of the fibril and the substrate.  

To support this explanation, we compare the frictional force to the area of contact 

and find that Fs = τfA, where 51.2512 10f   kPa, which is consistent with values 

reported by Chateauminois and Fretigny [42]. We plot the average shear stress for each 

fibril height and spacing in Figure 4.9.  
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Figure 4.8 Sliding friction results from experiments for both collapsed and 

uncollapsed samples. The friction force for the uncollapsed samples is dependent on 

spacing, unlike observations in previous friction experiments on FTFA samples with 

longer fibrils. This dependence is due to the indenter locally collapsing the thin film 

during shear; the severity of this is dependent on fibril height and interfibrillar 

spacing. 
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Figure 4.9 The sliding friction is lower for collapsed samples, which we believe is due 

to reduced contact area. Here we plot the friction stress, assuming it behaves 

according to  Fs = τfA [42],  and find it to be approximately independent of spacing 

and fibril height and comparable to previously reported values for PDMS  [42]. 
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4.3.3 Pressure-to-Collapse Experiments 

The pressure required to initiate and propagate collapse of the thin film onto the 

substrate, thereby switching a sample from the adhesive state to the non-adhesive 

state, was quantified using hydrostatic pressure. Samples were sealed at the edges 

between the thin film and substrate with PDMS to prevent water from entering the 

gap. They were then placed inside of a 1 m column, as illustrated in Figure 4.10, and 

water was supplied to a column using a peristaltic pump (Fisher Scientific Medium 

Flow Peristaltic Pump). The experiments were performed at two rates: 2.9p   Pa/s 

and 9.4p   Pa/s.  

As pressure on the sample increases, the thin film between fibrils deflects towards 

the substrate and the fibrils begin to compress under the applied pressure. In a typical 

experiment, the thin film initially collapses in one location and the collapsed region 

propagates outward (see Figure 4.10). The initial location where the structure 

collapses is somewhat random and likely caused by variability in the fabrication 

process. For example, in the linear plate model of the thin film [64], collapse was 

found to be very sensitive to the film thickness, so film thickness variability could 

greatly influence the location of initial collapse. We refer to the pressure at which the 

thin film collapses somewhere on the sample as the pressure-to-collapse (PTC) and 

subsequently measure the area of collapsed thin film on a given sample as a function 

of applied pressure. In Figure 4.11, we plot the experimentally observed PTC for three 

fibril heights for 2.9p   Pa/s. Results are reported for interfibrillar spacings and fibril 

lengths that are bistable. 
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Figure 4.10 Left: Micrographs from a hydrostatic pressure experiment on a 17.8 

µm fibril length with a 110 µm interfibrillar spacing. The pressure on the sample 

increases as a function of time, which is indicated on the micrographs. Here, 

collapse has begun somewhere off-screen and is propagating across this region as 

the pressure increases. Right: Schematic of set-up for the hydrostatic pressure 

experiments. FTFA samples are sealed at the sides and placed inside of a 1m tall 

column. A peristaltic pump adds water to the column at a constant rate and 

pressure is applied by the water. The collapse of the thin film is recorded by a 

camera through an inverted optical microscope. 
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Figure 4.11 Left: Experimentally observed pressure required to initiate collapse 

(or “pressure-to-collapse”, PTC) for samples with fibril lengths of 10.6 m, 17.8 

m, and 23.2 m. We also show the predicted PTC from linear plate theory 

(LPT) and von Kärman plate theory (VKPT). The PTC decreases with increasing 

interfibrillar spacing in the experiments as well as in both plate theories. LPT 

underestimates the PTC while VKPT underestimates the PTC for w0 = 10.6 m 

and overestimates the PTC for the taller fibrils. For w0 = 17.8 and 23.2 m, this is 

due to fibril bending and/or buckling under the applied pressure, effectively 

reducing w0. Experimental observations supporting this are shown in the 

micrographs and a schematic of what this looks like from the side is provided on 

the right. For the 10.6 m long fibrils, the fibrils appear to be upright as the 

micrograph shows only the bottom of the fibril in contact with the substrate, 

while for the 17.8 m long fibrils, it appears the lateral side of the fibril has come 

into contact with the substrate, suggesting the fibril has bent over. 
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During our experiments, we observed a strong dependence, for both the PTC 

as well as the area of collapsed thin film, on the rate at which pressure was applied 

(see Figure 4.12). This rate dependence is due to the pressurization of the air inside the 

sealed sample as the thin film deflects and the internal volume decreases. The increase 

in internal pressure results in some gas components of air diffusing through the PDMS 

thin film into the water. To confirm the hypothesis that diffusion is reducing the 

pressurization inside the sealed samples, we performed the hydrostatic pressure 

experiment on a scaled up (sealed) sample with and without an outlet. The scaled up 

sample had a 78 m circular thin film with a 1 cm diameter. The distance between the 

thin film and the substrate was approximately 1 mm. The hydrostatic pressure 

experiment was performed once with no outlet and again with an outlet (using 

microbore tubing) to avoid pressurization. In the latter case, we found that the PTC for 

the higher ( p = 9.4 Pa/s) pressure application to be 2559 Pa while for the lower ( p = 

2.9 Pa/s) pressure application rate, the PTC was 2520 Pa, as shown in Figure 4.13. In 

comparison, the PTCs for the corresponding rates with no outlet were 8520 Pa and 

6070 Pa. Additionally, for the experiment with an outlet, the contact radius between 

the thin film and the substrate was independent of rate and depended only on the 

applied pressure.  

4.4 von-Kärman plate contact problem 

In the previous chapter, we presented a linear plate theory to obtain insight into the 

bistability of the FTFA. Here, we present a large-deflection adhesive contact model 

describing the thin-film as the sample switches from the adhesive to the non-adhesive 

state under an applied pressure. We also consider compression in the fibrils due to the  
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Figure 4.12 At the higher rate (9.4 Pa/s), the sample first begins collapsing at a 

pressure approximately 1.5 kPa higher than at the lower rate (2.9 Pa/s). Once it 

begins collapse, the rate at which it collapses is slower as well. We found that this 

rate dependence was due to diffusion of the gas through the PDMS film, 

discussed in more detail in the next section.  
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Figure 4.13. Comparison of pressure-to-collapse for a scaled-up sample with an 

outlet and without an outlet. The sample was scaled up to have dimensions of h = 

78 m, 2ad = 1 cm, and w0 = 1 mm so that a microtube outlet could be used to 

avoid pressurization. In the samples with no outlet, we observed the expected 

dependence on pressure application rate while for the samples with an outlet, 

both PTCs were similar and the subsequent collapse data overlapped.  
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applied pressure. Finally, we model the pressurization and diffusion of air inside 

sealed samples that occurs during the hydrostatic pressure experiments. 

In our PTC experiments, the thin film atop the fibrillar layer deforms between 

the fibrils until it collapses on and adheres to the substrate. As this occurs throughout 

the sample, we simplify the problem by looking at the deflection of the thin film 

between any four fibrils (fibrils are arranged in a square array). For our fibril lengths, 

the maximum deflection can be up to five times the thickness of the thin film. When 

the deflections are no longer small compared with the thickness of the plate, 

membrane effects which arise from stretching of the mid-plane must be considered. To 

include this effect, we use the well-known von Kärman plate theory. To further 

simplify the problem, we approximate the thin film held up by four fibrils as a 

clamped, circular plate whose diameter is equal to the diagonal distance between 

fibrils. 

 We describe the deformation of the plate and its subsequent contact behavior 

with the substrate in three stages. In the first stage, the thin film deforms freely in 

accordance with the von Kärman plate governing equations. In the second stage, the 

pressure is large enough for the plate to come into (no-slip) adhesive contact with the 

substrate. In the third stage, the applied pressure is reduced and the contact decreases 

until eventually the plate detaches from the substrate. 

It should be noted that in our model, we consider the compression (or 

extension) of the fibrils due to the applied pressure. We assume fibrils are under 

uniaxial compression and do not bend or buckle, which is consistent with experimental 

observations for w0 = 10.6 m, though this is not always the case for longer fibrils. We 
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model fibrils as springs with spring constant,
0fibril fk EA w , where 2100 μmfA   is 

the area of the (square) cross-section of the fibrils.  

We only consider diffusion when determining the PTC. While it could be 

extended to stages two and three of our model, in the experiments the problem is much 

more complicated. It is reasonable to assume the thin film deforms similarly 

throughout the FTFA. In the experiments, once the applied pressure is large enough, 

the thin film jumps into contact somewhere and the collapsed thin film propagates 

from that location. When collapse occurs the volume between the thin film and 

substrate shrinks and the internal pressure increases throughout the sample.  

Consequently, in stages 2 and 3 the internal pressure depends on the history of the 

entire sample, which we do not consider in our model.  

First, we describe the experimental parameters used in our contact mechanics 

model, illustrated in Figure 4.14. This will be followed by a discussion of the 

boundary conditions and numerical methods used in each stage of this model. In this 

section, we do not account for the effects of pressurization and diffusion. In Section 

4.4.4, we discuss the diffusion model and present results from model showing the 

effect of rate on the PTC.  

The location of a material point on the plate is denoted by r. The plate has a 

radius ad, defined in the same manner as in the linear plate theory in Section 3.3.4. The 

vertical deflection is denoted by w, with a maximum deflection of w0 (fibril length), 

and the radial displacement is denoted by u. Note that w0 is not constant since we take 

into account the compression of the fibril. The applied pressure is denoted by q. These 

quantities are non-dimensionalized as follows:  
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Here, ν is Poisson’s ratio and E is the Young’s modulus of the plate, h is the plate 

thickness, and D = Eh
3
/(1-

2
) is the bending rigidity of the plate. In a similar approach 

to what is found in [62], we obtain the governing equations for the von Kärman plate. 

In von Kärman plate theory, the strains in the radial and tangential directions are [62]: 
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The corresponding tensile forces (per unit length) are: 
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Using these definitions in the sum of projections in the radial direction of all forces 

acting on an element in the plate, we obtain:  
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(4.7) 

We get another equilibrium equation by applying a moment balance with respect to 

the axis perpendicular to the radius:  
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Figure 4.14 Left: Schematic of VKPT adhesive contact mechanics model in 

uncollapsed state. We model the thin film between four fibrils as a circular plate 

whose diameter is the diagonal distance fibrils in a square array. Right: 

Additional parameters for the collapsed state. The radius of contact with the 

substrate is denoted c.  
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We expand the LHS of (4.8) and rearrange the RHS to get: 
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(4.9) 

Rearranging and normalizing (4.9), we obtain the following governing equations:  
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where w dw d  . These equations describe the deformation of the plate due to the 

normalized applied pressure, q .  

Stage 1: Non-contact deformation 

For values of w  insufficient to bring the plate into contact with the substrate, the plate 

is freely deforming. We assume that the plate is clamped at 1   and that, by 

symmetry, the radial displacement and slope are zero at  = 0. Equations (4.10) and 

(4.11) are solved numerically with the following boundary conditions: 

 1 0w       1 0w       1 0u   
  

 0 0w   

  
 0 0u   

  
 0 0w   

 

(4.12)  

To solve the governing equations for these boundary conditions, we use the boundary 

value problem solver in MATLAB (bvp4c) to obtain the deformation as a function of 

pressure. To check our program, we compare it to Way’s solution in [62] and 
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reproduce the loading-deflection curves for three different Poisson’s ratios. The results 

of the VKPT in stage 1 are shown in the appendix (Section 4.6).  

 As mentioned earlier, we account for fibril compression due to the applied 

pressure. In stage 1 this is straightforward as we prescribe the pressure and can 

determine the change in length directly from the force on the fibril, so that the 

maximum deflection is 
0 cw w , where cw is the change in length and is calculated as, 

21 s
c

fibril

qA
w

h k




 

(4.13)  

Stage 2: No-slip, adhesive contact 

At some critical pressure the plate comes into contact with the substrate. As the plate 

is deformed beyond the point of initial contact, the contact between the thin film and 

the substrate begins to grow. We assume that, once a region of the plate comes into 

contact with the substrate, there is no slip between the plate and the substrate. The 

location of the contact edge is denoted by *
. At the outer edge of the plate, we have 

clamped boundary conditions:  

 1 0w   

  

 1 0w   
  

 1 0u   

 
 

(4.14)  

 

At the contact edge, we have a clamped plate:  
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(4.15) 

  

Again, we must determine w0 as a function of the applied pressure. However, 

because we prescribe    and w0 in the bvp4c solver (and not q), this is not as 
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straightforward as it is in stage 1. Using (4.13), we obtain the fibril length due to 

compression under the applied pressure. Beginning with the contact edge location in 

question and assuming an uncompressed w0, the applied pressure will initially predict 

a shorter fibril than the prescribed w0. Thus, we incrementally decrease w0 (for a given 

  ) until the applied pressure predicts the prescribed fibril length.   

  Finally, the curvature, w  at * is determined by the adhesion between the 

plate and the substrate. To model adhesion we view the process of making and 

breaking contact between the plate and the substrate as an external crack. In stage 2, 

the pressure applied to the plate increases its contact with the substrate: the crack heals 

and adhesion energy is released into the system. In stage 3, the pressure is reduced, the 

crack opens, and elastic energy is released by the system to create the new surfaces. 

The energy released by the elastic system per unit contact area change (as the crack 

advances or retreats) is called the energy release rate, G and the condition for making 

or breaking contact is,  

G = Wad, (4.16) 

 

where Wad is the effective work of adhesion of the interface. This condition will be 

used as a boundary condition to determine the size of the contact zone.  

The derivation of our expression for the energy release rate for detaching a von 

Kärman plate from a rigid substrate is based on the work of R. Long, et al. [67] and 

details, including a schematic of the geometry, are provided in Section 4.4.1. For no-

slip adhesion, the potential energy released by the system, G, to peel off a unit area of 

contact is:  
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(4.17) 

Here, EI is the bending rigidity of the plate, rN   and rN  are the radial forces 

immediately ahead of and behind the crack tip, respectively, and similarly, r
  and 

r
 are the radial strain immediately ahead of and behind the crack tip. Comparing this 

expression for energy release rate to the same term in linear plate theory [64], we see 

and additional term is due to the difference in radial strain across the crack tip. This 

term does not contribute to the energy release rate unless there is hysteresis in the 

system. In Section 4.6, we show the contact area as a function of applied pressure for 

the case with hysteresis using values for W
+
 and W

-
 for bulk PDMS from [66].  

We normalize the work of adhesion as:  
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(4.18) 

Rearranging and normalizing (4.17) and using the relation between the in-plane radial 

force and radial strain, (4.17) can be re-written as: 
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(4.19) 

 

Note that as long as contact is growing, the radial strain is continuous across the 

contact edge, so u u 
  . We once again use Matlab’s bvp4c solver to obtain the 

deflection and the stretch of the plate as the pressure and contact area increase. To 
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check our results, we compare them with the analytical solution from linear plate 

theory in the small deflection regime Wad = 0. This is included in Section 4.6.  

Stage 3: Detachment 

Finally, to determine bistability, we examine the evolution of contact as the applied 

pressure is reduced. To solve for the location of the contact edge, we note that in 

general, contact remains pinned at *
 until the following condition is satisfied: 

 
   

2
2 2 2

2 22 2
00

12

1
ad

h d w a
G u u u u vu W

d ww 
   

 
         

  

 

(4.20) 

Crack pinning occurs in systems with interfacial hysteresis because the free-standing 

thin film can stretch independently of the adhered thin film and, due to the no-slip 

condition, the u u 
   is no longer zero. As the pressure is reduced, the energy release 

rate, G, at the crack tip increases. When Equation (4.16) is satisfied, the crack 

advances and the contact area is reduced until, eventually, the plate detaches from the 

substrate. The boundary conditions once again assume clamped conditions at the edge 

of the plate:  

 1 0w       1 0w      (4.21) 

At the contact edge, the boundary conditions are:  

  0w       
2

0

1
w w

h


  
   

(4.22) 
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We assume the Wad is the same in loading and unloading, so that the strain will remain 

continuous across the contact edge during unloading. If the system does exhibit 

hysteresis, this is not the case. For a given Wad, we use the bvp4c solver to determine 

the deformation as a function of the reducing pressure. As we do so, we evaluate the 

energy release rate and allow the crack to propagate when it equals the work of 

adhesion.  

4.4.1 Energy release rate 

We assume perfect bonding (no slip inside the contact zone) between the plate and the 

substrate. In Figure 4.15, a schematic of the reduction of the contact is shown as an 

infinitesimal area initially in contact with the substrate, da (‘part 2’ in Figure 4.15), 

detaches from the substrate. The plate outside of the original contact region is called 

part 1. Then the external work required to detach a unit area of contact, da, is: 

 2 ( )r r r r r

d

a M w da N da Q dw



    



 
    
 
 

 

(4.23) 

Here, rM EIw is the radial moment and rQ is the shear force, both at the contact 

edge, c. rN 
 represents the radial force to the right of the contact edge (in tension) and 

r


and r


represent the radial strain to the right and the left of c, the normalized 

contact edge, respectively.   These quantities are related to the displacements by: 

      
21

2
r u r c w r c u r c          

,  
  0w r c  

 

 

(4.24) 

      
21

2
r u r c w r c u r c          

,  
  0w r c  

 

 

(4.25) 
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Figure 4.15  Left: The change in geometry during an infinitesimal shrinkage in 

contact line, da. The position of the edge of contact is located at the left hand side 

of part 1, which represents the plate not in contact with the substrate before 

detachment. Strain immediately to the left and right of the contact edge is 

denoted. Dashed lines indicate the shape of the plate after detachment. Right: 

Line tension and moments acting on part 1 before and after detachment at the 

contact edge.  
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Similarly,  

 
2
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21 1
r

Eh u Eh u
N u v w u v
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   
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(4.26) 

Consequently,  
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    

(4.27) 

Since  
2

rQ dw O da , this reduces the work to move da  to da  to: 

 
2

2 ( )r r rada EI w N       
 

 

(4.28) 

The change in strain energy in part 2 is: 

 
2

2
2 2

r r r r
EI w N N
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 


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  

 

(4.29) 

Therefore, the total change in potential energy  is: 
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(4.30) 
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Finally, we get for the energy release rate: 

 
2

2 2 2 2

r r r
no slip r r

d EI N N
G w N

ada






  
 



  
      

 

 
(4.31) 

4.4.2 Wad  as a fitting parameter 

Typically in the pressure experiments, we apply hydrostatic pressure to the FTFA and 

measure the PTC and the collapsed area as the pressure is further increased. For 

sample geometries that do not lie on the cusp of bistability, the collapsed region does 

not return to the uncollapsed state when the pressure is reduced to zero. However, the 

contact area of the thin film in contact between any four fibrils does shrink as the 

pressure is reduced (see Figure 4.16). To estimate the Wad, we use Wad to fit the 

contact radius predicted by the adhesive contact mechanics model to the experimental 

contact radius as a function of pressure. We use data from two samples, one with w0 = 

23.2 m and 2a = 80 m and the second with w0 = 10.6 m and 2a = 65 m (shown in 

Figure 4.16). From these, we estimate a value for Wad = 0.3 J/m
2
 that fits for both 

samples.  

4.4.3 Bistability 

As shown in Figure 4.17 for w0 = 10.6 m, samples with 2a = 65 m and greater, the 

contact mechanics model requires a negative applied pressure to reduce the 

normalized contact area from 0.5 to 0. As with LPT, these samples are termed bistable 

as a negative force is required to remove the thin film from its equilibrium state in  
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Figure 4.16 To find a value to use for Wad in the VKPT contact mechanics model, 

we use Wad as a fitting parameter to fit VKPT to the experimental data. For a 

sample with w0 = 10.6 m and 2a = 65 m, the experimental values for the contact 

radius as applied pressure is reduced were measured. This data is given by the 

orange line with circles. The lines without symbols show the contact radius as a 

function of reducing pressure for different Wad. As is shown, the best fit was 

obtained for Wad = 0.3 J/m
2
.  

 

 

 

 

 

ad 

c 



 

122 

0 0.1 0.2 0.3 0.4 0.5
-200

-150

-100

-50

0

50

100

150

200

Location of contact edge, 
*

N
o

rm
a
li

z
e
d

 a
p

p
li

e
d

 p
re

ss
u

re

w
0
 = 10.6 m

 

 

50 m

65 m

80 m

0 0.1 0.2 0.3 0.4 0.5
-400

-300

-200

-100

0

100

200

300

400

Location of contact edge, 
*

N
o

rm
a
li

z
e
d

 a
p

p
li

e
d

 p
re

ss
u

re

w
0
 = 23.2 m

 

 

110 m

125 m

140 m

 

Figure 4.17 Results for contact radius as a function of pressure from the VKPT 

contact mechanics model for Wad = 0.3 J/m
2
. These figures do not incorporate 

pressurization and diffusion of the gas sealed in the samples (discussed in the 

next section), but does account for the compression in the fibrils.  
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contact with the substrate. For w0 = 23.2 m, the model does not predict that any of 

the interfibrillar spacings used in our experiments will be bistable. 

For all three fibril heights, VKPT overpredicts the interfibrillar spacing 

required for bistability compared to what is observed experimentally, particularly for 

longer fibrils. This is in part because we do not account for bent or buckled fibrils, 

which was experimentally observed for w0 = 17.8 m and w 0 = 23.2 m. In Figure 

4.11, we show micrographs of collapsed samples with short and intermediate fibril 

lengths; in the latter case, buckling is observable. 

 In Figure 4.18 we plot the geometries for which VKPT predicts bistability. We 

also plot bistability predicted using LPT for comparison. VKPT is more conservative 

than LPT because it accounts for the membrane forces in the plate as deflection 

becomes large relative to the plate thickness. It predicts more accurately the nonlinear 

dependence bistability has on interfibrillar spacing, although linear plate theory is 

more successful for shorter fibril lengths.  For longer fibrils, it appears VKPT would 

be more suitable.  

4.4.4   Pressure-collapse -- Diffusion 

As mentioned previously, the experimentally observed PTC is dependent on the rate at 

which the hydrostatic pressure is applied. In our hydrostatic pressure experiments, we 

increase the pressure on the sample at one of two constant rates p = 9.4 Pa/s, and p = 

2.9 Pa/s. The difference between the applied external pressure and the pressure of the 

sealed gas inside the sample, external internalp p p    gives us the pressure on the thin 

film discussed in section 4.4. We assume that the thin film deflects in a similar manner  
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Figure 4.18 Phase diagram indicating fibril heights and interfibrillar spacings for 

which FTFA samples possess both the adhesive and non-adhesive stable states. 

FTFA samples that, from experimental observation, are bistable are denoted with 

‘o’ symbols while samples that are not bistable are denoted with ‘x’. The ‘– - –’ 

dashed green line follows the experimental data as a guide to the eye. The VKPT 

model predicts geometries (fibril heights and spacings) on and to the right of the 

solid black line are bistable while LPT predicts geometries on and to the right of 

the dashed blue line are bistable.  

 

 

 



 

125 

between any four fibrils throughout the sample. Additionally, we assume that the air 

inside the sample is an ideal gas. With these assumptions, we can model the 

pressurization and diffusion of gas by looking at a unit cell of four fibrils. 

The pressurization inside the sample increases the chemical potential of the gas 

inside the sample, resulting in the diffusion of gases through the thin film. If the thin 

film were impermeable, the pressure inside of the sealed sample would increase, 

reducing the pressure difference across the thin film. For example, for samples with w0 

= 17.8 m the VKPT predicts the PTC to be 5 to 6 times larger than if diffusion does 

not occur, as shown in Figure 4.19 and compared to experimental data. 

Due to the rate dependence, it is not possible to assign a unique value for the 

PTC. Approximately representing the composition of the air as 79% N2 and 21% O2, 

we utilize Fick’s first law of diffusion to estimate the diffusion of different gas 

species, i, out of the sample.  

i i

ex in

i
i i

D
J c

RT h

 
   

(4.32) 

where Di is the diffusivity of a gas species in PDMS; for N2 and O2 in PDMS, 

2 2

93.4 10N OD D     m
2
/s [68]. R is the ideal gas constant (8.314 JK

-1
mol

-1
), T is 

room temperature (296 K). 
ic  is the molar concentration (

in V  mol m
-3

, ni is the 

number of moles of gas i and V is the total volume that the gas occupies, which will 

decrease as the thin film is depressed by the hydrostatic pressure). 
i

ex  and 
i

in  are the 

values of the chemical potential of the gases outside of the sample (in the water) and 

inside the space between the thin film and the substrate, respectively. 
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Figure 4.19 In this figure we compare the PTC predicted by the VKPT model for 

a sample with no diffusion (full pressurization) as well as no pressurization and 

compare these results to the experimental data for PTC at the two different 

pressure application rates, 2.9 Pa/s and 9.4 Pa/s, indicated by the symbols. As is 

shown here (and as was observed experimentally), pressurization inside the 

sample can have a large impact on the PTC.  
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Assuming an isothermal process, the chemical potential of the gases inside the 

sample as the gas is compressed is given by: 

i i

ex in

i
i i

D
J c

RT h

 
 

 
 

(4.33) 

0

i  is the chemical potential of pure species i in the reference state. 
C

iP  is the partial 

pressure of component i of the compressed gas and P
0
 is the pressure in the reference 

state. Thus, for each gas species, we get the following expressions for the chemical 

potential as the gas compresses: 
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(4.34) 

For the chemical potential of air above the thin film (in water), we can assume 

that because the air above the water and the water are in equilibrium, the chemical 

potential of the air in the water is the same as the chemical potential of the air above 

the water. The increase in the chemical potential due to the hydrostatic pressure is 

negligible; e.g., Enns, et al. [69] showed that for an aqueous solution in equilibrium 

with atmospheric air, hydrostatic pressurization on the partial pressure of dissolved 

gases increases it approximately 1.4% for every 1 MPa increase in external pressure. 

Therefore, the chemical potential of the gas in the water above the sample is: 
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(4.35) 
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where 2H O

iP is the partial pressure of gas component i in H2O and is equal to 
i atmP , 

where 
i is the molar fraction of species i in air. The difference between the chemical 

potential of the air in the water and the compressed gas inside of the sample is 

obtained by subtracting equation (4.34) from equation (4.35): 

2

ln ln ln
H O

ex in i i atm atm
i i i C C C

i i

P P P
RT RT RT

P P P
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          
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(4.36) 

As shown in equation (4.36), the  ’s for N2 and O2 are equal as the molar fractions 

cancel out. Along with the equivalent diffusivities of both gases, we can use equation 

(4.17) to re-write our expression for the molar flux as:  

 
2 2 2 2N O N O

c

D D n
J J J c c

RT h RTh V
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
       

 

(4.37) 

where n is the total number of moles (
2 2O Nn n n  ). Using equation (4.37) the molar 

amount of gas component i diffused through the membrane per unit time fn is: 

p

f

c

DA n
n

RTh V
  

 

(4.38) 

where pA  is the projected surface area of the deformed thin film. Accounting for the 

reduced molar amount inside the sample, the internal pressure is now:  

 f
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c

n n RT
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V




 

(4.39) 
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By accounting for the pressurization and diffusion, we are able to use the VKPT 

contact mechanics model to determine more accurately the actual pressure on the thin 

film in VKPT.  

As shown in Figure 4.20, the faster the rate at which pressure is applied, the higher 

the predicted PTC. Because of the log-term in (4.36), diffusion occurs more rapidly 

for larger pressure differences. As a result, for larger spacings (for which the PTC is 

much lower), the duration over which diffusion takes place is shorter. This means the 

effect of pressurization is much more pronounced for larger spacings. Conversely, for 

smaller spacings, the duration of time over which the thin film deforms to the point of 

contact with the substrate is much longer. For a long enough duration, the diffusion 

can negate the effects of pressurization. In summary, pressurization reduces the effect 

of interfibrillar spacing on PTC. With this accounted for, the VKPT more accurately 

models the dependence of PTC on interfibrillar spacing.  

4.5 Summary 

In this chapter, we characterize the adhesive and shear response of a switchable FTFA 

as well as develop a VKPT adhesive contact mechanics model to describe the behavior 

of the thin film as the sample switches between adhesive and non-adhesive states. The 

VKPT model more accurately describes the pressure required to collapse the thin film 

than linear plate theory and describes bistability more accurately for longer fibrils.  

We observed rate dependence in the hydrostatic pressure experiments when 

determining the pressure required to collapse the thin film. We confirmed that the gas 

inside the sealed samples pressurizes during these experiments and that the rate at 

which gas diffuses out of the sample determines both the pressure required to initiate  
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Figure 4.20 Predicted PTC from the VKPT model accounting for pressurization 

and diffusion in our samples for w0 = 17.8 m. The results from the model are 

compared with experimental results, denoted by the symbols. For lower loading 

rates, diffusion reduces more of the pressurization, and the PTC approaches the 

theoretical PTC for samples with no pressurization.  
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collapse as well as the rate at which collapse propagates through the sample. By 

incorporating diffusion into VKPT model, we show that the rate at which pressure is 

applied affects the PTC and reduces the dependence of PTC on interfibrillar spacing. 

Taking this into account, the model is more consistent with what is observed 

experimentally. 
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4.6 Appendix 
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Figure 4.21 von Kärman plate theory for Stage 1 for three Poisson’s ratios. 

Way’s solution from [62] is included on the left. Results from bvp4c included on 

the right.  
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Figure 4.22 Results for w0 = 17.8 m, ad = 110 m with hysteresis (Wad in Stage 2 

not equal to Wad in Stage 3). 
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Figure 4.23 Comparison of LPT and VKPT in stage 2 for different w0/h; Wad = 0.  
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CHAPTER 5  

Summary and Future work 

5.1  Summary of Present Work 

The most important contributions of the present dissertation are the development, 

characterization, and analysis of a switchable bioinspired adhesive. The original 

development and findings of the present investigation include: 

1. The use of a dynamic rod model and stability analysis to define and analyze 

buckling of a fibril subjected to a prescribed shear displacement and a constant 

normal compressive force.  

2. For a friction experiment with a flat indenter, assuming that the fibrils in an 

array are identical and the number of fibrils in contact with the indenter is 

constant, some findings from this analysis include:  

a. If the applied compressive Fn on each fibril is less than 2
EI/L

2
 then 

static friction should decrease with increasing normal load.   

b. If the applied compressive Fn on each fibril is greater than 2
EI/L

2
, then 

the friction force becomes negative if adhesion is weak resulting in the 

violation of shear constraint.   

c. The shear force on a fibril decreases with normal load 

(for
2 2/

n
F EI L  ) suggesting that static friction should also decrease 
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with normal force as long as the boundary constraints on the fibrils are 

maintained.  

3. We develop a film-terminated fibrillar interface with two metastable states. In 

the first state, a thin film spanning a fibrillar surface results in strongly 

enhanced adhesion due to crack-trapping. In the second state, the thin film 

collapses onto the substrate between fibrils and resembles a rough surface.  

4. Indentation experiments (pull-off and adhesion hysteresis) demonstrate 

differences in the adhesive response of the two states. We show that the 

adhesive state has a pull-off load up to 70 times higher than the non-adhesive 

state and has up to 20 times larger adhesion hysteresis.  

5. Friction experiments demonstrate the differences in the two states in shear. In 

the uncollapsed state there is a gradual transition from static to sliding friction. 

Sliding friction on the non-adhesive state is a quarter to a third of the control as 

contact is limited by the bumpy surface.  

6. We determined the pressure-to-collapse the surface in order to switch from the 

adhesive to the non-adhesive state using hydrostatic pressure experiments.  

7. To understand the behavior of the thin film in the film-terminated fibrillar 

architecture, we presented two models representing the thin film between four 

posts as a circular plate clamped at the edge.  

a. In CHAPTER 3 we first develop a linear plate theory that identifies a 

dimensionless combination of materials and geometrical parameters 

including Wad, w0, h, E, and a, such that bistability is possible only 
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when this parameter is sufficiently large. We find that the model 

captures the experimental findings reasonably well. 

b. As we are dealing with large deflections, in CHAPTER 4 we present a 

von Kärman plate adhesive contact mechanics model. We find that it 

more accurately captures the pressure required to initiate collapse of the 

thin film onto the substrate. It also is better at describing the nonlinear 

dependence of bistability on w0 as interfibrillar spacing grows.  

c. We model the rate dependence in the hydrostatic pressure experiments 

using Fick’s law. We see that the pressurization and diffusion of gas 

through the thin film of the sample reduces the dependence on 

interfibrillar spacing.  

5.2 Suggestions for Future Work 

5.2.1 Theoretical Work 

The models presented to describe the switching mechanism could be improved upon. 

While von Kärman plate theory captures the large deflections experienced by the thin 

film, it would be important to look at models that can account for the membrane 

behaviors, particularly for longer fibrils.  

 We modeled the thin film between four fibrils as a plate clamped at the edge in 

order to simplify the model. However, as the thin film can deflect in the experiments 

between the fibrils, this boundary condition may be too strict. A model with more 

realistic boundary conditions might suggest a lower PTC.  

 Also, modeling the PTC as well as bistability would be aided by accounting for 

the bending or buckling of longer fibrils during collapse.  
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5.2.2 Practical Applications 

While there are several methods that can be used to switch the adhesive between the 

highly adhesive and non-adhesive states, including displacing the thin film manually 

and changing the pressure on the thin film from either above or below, developing a 

device in which the switching can be done while in contact with another surface would 

be very useful. With this set-up, the switchable adhesive would have a great deal of 

uses, including in robots, as a micromanipulator, and more. Additionally, the 

switchable adhesive presents a possible route to self-cleaning. Based on the qualitative 

behavior of the test in Figure 3.4, if the surface is dirtied in the adhesive state and then 

switched into the non-adhesive state, cleaning the surface would be much easier 

(assuming the foulants are not smaller than the distance between bumps).  
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