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Single-molecule fluorescence spectroscopy is nowadays one of the most robust

experimental techniques when one is to measure local fluctuations of individ-

ual molecules. The Chen group at Cornell University has been able to adapt this

technique to detect catalytic transformations of resazurin into resorufin on the

surface of a single gold nanoparticle. In this experiment, the emission intensity

of a single nanoparticle is recorded as a function of time. This trajectory is in-

trinsically stochastic and two distinct states of different emission intensity are

detected. Every state shows random dwell times that are multiexponentially

distributed and their mean values depend on the substrate concentration, ex-

hibiting saturation. In addition, memory effects are detected as dwell times are

correlated.

In this work we have investigated the chemical basis of the dynamical com-

plexity and the stochastic nature of this system under saturating conditions. To

this goal, we have defined constrained mean dwell times and, by studying the

difference between constrained and unconstrained mean dwell times, we have

found that each active site undergoes internal dynamics, fluctuating among sev-

eral substates. We have also found that active sites on the surface of a nanopar-

ticle are spatially correlated and, therefore, their fluctuations are correlated. We

have also determined that fast activation processes occur through the same re-

action path as slow product desorptions, and vice versa. We have obtained a

further insight into the internal dynamics of each active site by studying dwell-



time correlation functions. In this way, we demonstrated that every active site

fluctuates among no less than three internal substates and, therefore, catalytic

transformations occur through no less than three distinct reaction paths. We

found that the decay rates of the autocorrelation functions are relative measures

of the time scales of two distinct internal processes. For a gold nanoparticle of

6 nm diameter, the time scales of the internal fluctuations are at least one order

of magnitude smaller that the time scales of the activation and product des-

orption processes. We also demonstrated that constrained mean dwell times,

together with the dwell-time correlation functions, form a minimum set of sta-

tistical indicators that can qualitatively characterize the kinetic mechanism of

the catalytic transformations on the nanoparticle surface, including fluctuations

and spatial correlation among active sites.
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CHAPTER 1

ELEMENTS OF SINGLE-MOLECULE KINETIC THEORY

1.1 Single-molecule studies

About twenty years ago, efforts to follow chemical reactions in condensed

phases on a single molecule basis became successful. First, Moerner and

Kador[34] observed the optical-absorption spectrum of single dopant molecules

of pentacene in a p-terphenyl host crystal at liquid-helium temperatures. About

the same time, Orrit and Bernard[36] found that, at cryogenic conditions, nar-

row peaks in the fluorescence-excitation spectrum of a pentacene-doped p-

terphenyl crystal stem were generated by single molecules. After this, with

the work of Xie [48, 30, 28, 29], Betzig and Chichester[7], Macklin et. al.

[31], Ambrose et. al. [2] and others, it became possible to measure the fluo-

rescence emission of individual molecules at room temperature. Around the

same time, different techniques for single-molecule manipulation were devel-

oped by Ashkin, Dziedzic, Bjorkholm and Chu [3]; Block et al [8]; Smith, Cui

and Bustamante [41] and many others. These advancements in the manip-

ulation and detection of individual molecules opened the door to the study

of new phenomena that were not accessible by traditional ensemble experi-

ments. In particular Lu, Xun and Xie[29] were able to follow, for the first

time, catalytic transformations by a single enzyme as a function of time. This

led to the kinetic study of conformational dynamics in enzymes, as well as

their subtle differences in catalytic activity: single-molecule enzymology was

born. In 2008 Chen and coworkers[51, 49, 11, 52], were able to study the cat-

alytic activity of gold nanoparticles by means of single-molecule fluorescence
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spectroscopy. Afterwards, Chen and coworkers have expanded their results to

the study of nanoparticle-size effects on the catalytic properties[58], nanoscale

electrocatalysis[40], single-nanorod catalysis[57] and catalysis on single silver

nanoparticles[21].

Along with the appearance of new experiments, better and novel physical

theories are needed. Single-molecule studies have motivated a different sort of

chemical kinetics that studies fluctuations instead of ensemble means. To men-

tion a few achievements, Brown [9] and later with Peng, Xie and Zheng[37] have

been able to interpret the statistics of the emission of single photons by means

of the generating function formalism for single-molecule spectroscopy. Vlad,

Moran, Schneider and Ross [45] have studied memory effects and oscillations

in single-molecule kinetics for systems with two chemical states by means of

correlation functions of the fluorescent signal. In their work they discuss the

possible cause of chemical oscillations in single molecule kinetics, showing that

the intrinsic dynamics of the molecule, expressed by the fluctuations of the con-

trol parameters, may lead to damped oscillations of the correlation functions

of the fluorescent signal. Flomenbom and Silbey [17] have introduced a proce-

dure that classifies kinetic schemes that are equivalent in the statistical proper-

ties of the single-molecule signal. This procedure partitions the space of kinetic

schemes into canonical forms, which constitutes a powerful tool in discriminat-

ing among kinetic schemes. Gopich and Szabo[22, 19, 20] have analyzed data

from single molecule fluorescence and force spectroscopy experiments from a

theoretical perspective, concentrating on the distribution of the number of tran-

sitions during a fixed observation time, the distribution of times between tran-

sitions, and the corresponding correlation functions. They are able to show how

these quantities are related to each other, and their formalism is illustrated by

2



a detailed analysis of the statistics of catalytic turnovers of enzymes. Taylor,

Makarov and Landes [44] developed a method to separete noise and signal in

single-molecule fluorescence resonance energy trajectories using wavelet de-

tail thresholding and Bayesian inference. Fisher and Kolomeisky[16, 15] have

employed continuum ratchet concepts in the description of motor-protein dy-

namics, concentrating on discrete kinetic and stochastic models to predict the

mean velocity and other observables as a function of an imposed load force,

the ATP concentration, and other variables. Akimov and Kolomeisky [26, 1]

have used coarse-grained molecular dynamics to analyze single-molecule dy-

namics of artificial molecular motors and molecular rotors. Cao [10] has de-

fined n-channel models to describe the complexity of single molecule processes,

investigating the multiexponential behavior observed in the frequency distribu-

tion functions of single fluorescence trajectories. Quantitative measurements of

memory effects were initially studied by Cao by means of dwell-time correla-

tion functions[54, 10, 46], intensity correlation functions [46] and also through

the number density of single-molecule sequences[55].

While we have witnessed the appearance of many new ideas intended to

better explain single molecule measurements, we found that no physical theory

is in place to the describe the complete set of observations and phenomena dis-

covered in single nanoparticle catalysis[51, 49, 11, 52]. We find, though, that the

conceptual framework of single enzyme catalysis provides a good starting point

to build up the physical ideas that at the end will describe the additional com-

plications that catalysis by individual nanoparticles exhibits. To better pose the

main questions in Sec. 1.3 that have motivated our study, we will explore in de-

tail the experimental findings of Chen and coworkers [51, 49, 11, 52, 58]. Along

with this discussion in Sec. 1.2, we will introduce the basic statistical tools that
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are typically employed to extract the physical mechanism responsible for the

trajectories observed in single-molecule fluorescence. After, in Sec. 1.4 we will

elaborate on the mathematical aspects that have been used to describe single

enzyme catalysis, as they will also apply to single nanoparticle catalysis.

1.2 Single nanoparticle catalysis

Chen and coworkers have been successful in studying the catalytic trans-

formation of rezasurin to resorufin, in the presence of NH2OH and on

the surface of gold nanoparticles, by means of single-molecule fluorescence

spectroscopy[51]. In their experiments, gold nanoparticles are immobilized on

an amine-functionalized, positively charged glass surface. The dispersion of

the gold nanoparticles is such that the probability of finding two gold nanopar-

ticles in a square of 1µm2 area is less than 0.06%. As a solution of substrate

molecules (rezasurin) flows over the glass surface with many fixed nanoparti-

cles, the fluorescence intensity signal can be recorded as a function of time. Fig-

ure 1.1 presents in a rather simple form the experimental system just described.

The wavelength of fluorescence detection is 532 nm and the consistent height of

the high level signal indicates that each fluorescence burst comes from a single

resorufin molecule. Figure 1.2 is a representation of a typical fluorescence tra-

jectory for this system. In these experiments, the concentration of the reducing

agent is fixed to 1 mM. Product formation on the nanoparticle surface appears

as an instantaneous increase in the fluorescence signal. A product dissociation

from the nanoparticle surface appears as an instantaneous signal decrease. A

turnover is any part of the trajectory, starting at a sudden change in the fluores-

cence intensity, that completes a cycle in the trajectory.

4



S
=

R
es
az
u
ri
n

− O
O

O

ON

N
H

2
O
H

P
=

R
es
or
u
fi
n

− O
O

O

N

Fi
gu

re
1.

1:
Sc

he
m

at
ic

re
pr

es
en

ta
ti

on
of

th
e

ex
pe

ri
m

en
ta

l
sy

st
em

st
ud

ie
d

by
C

he
n

an
d

co
w

or
ke

rs
[5

1]
.

G
ol

d
na

no
pa

rt
ic

le
s

ar
e

im
m

ob
i-

liz
ed

on
an

am
in

e-
fu

nc
ti

on
al

iz
ed

gl
as

s
su

rf
ac

e,
su

ch
th

at
th

ey
ar

e
se

pa
ra

te
d.

A
so

lu
ti

on
of

re
za

su
ri

n
flo

w
s

ov
er

th
e

na
no

pa
r-

ti
cl

es
,

th
ey

ar
e

ad
so

rb
ed

an
d

tr
an

sf
or

m
in

to
re

so
ru

fin
(

a
flu

-
or

es
ce

nt
m

ol
ec

ul
e)

on
th

e
na

no
pa

rt
ic

le
su

rf
ac

e.
Th

e
re

ac
ti

on
oc

cu
rs

in
th

e
pr

es
en

ce
of

N
H

2O
H

.P
ro

du
ct

m
ol

ec
ul

es
ar

e
ev

en
-

tu
al

ly
de

so
rb

ed
.

Th
e

flu
or

es
ce

nc
e

in
te

ns
it

y
si

gn
al

is
re

co
rd

ed
as

a
fu

nc
ti

on
of

ti
m

e
at

a
gi

ve
n

po
in

t.

5



Intensity

time

Figure 1.2: A representation of a fluorescence trajectory for transformation
of rezasurin to resorufin in a single nanoparticle, after a thresh-
old value in the intensity has been set to determine the high
intensity signal and after the background noise has been sup-
pressed. Two different states, one of low intesity and one of
high intensity can be differentiated. The dwell times for each
state are stochastic.

Several important characteristics of nanoparticles as heterogeneous catalysts

are revealed from the inspection of these trajectories. It has been found that for

about 1 % of the trajectories, the fluorescence bursts show multiple intensity

levels. This indicates the existence of either multiple catalytic sites that can un-

dertake catalysis simultaneously or, docking sites where resorufin molecules

can be adsorbed before they are finally desorbed. On the other hand, the num-

ber of these multilevel events is very rare and, as an analysis of density of states

reveals, we can clearly identify two different states corresponding to different

fluorescence intensities. We will refer to the state with low intensity in the fluo-

rescence signal as the Dark or D state while the state with high intensity in the

fluorescence signal will be called the Light or L state. Associated with either of

these states one can define their dwell times. The time tD between a sudden de-

crease and the next sudden increase in the flourescence intensity is a dark dwell

time. Similarly, the time tL between a sudden increase and the next decrease in

the intensity is a light dwell time.

One can immediately observe that the dark and light dwell times are stochas-
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Figure 1.3: Dark-dwell-time density function for a typical fluorescence tra-
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gle nanoparticle. Experimental data is represented by rhom-
buses, a biexponential fitting is presented in the solid line
and stretched exponential fitting is represented by the dashed
line. The form of the biexponential fitted to the experimen-
tal data is 0.06 exp(−0.13tD) + 0.98 exp(−1.00138tD). The form
of the stretched exponential fitted to the experimental data is
1.23 × 103 exp(−8t0.15

D ). Time is given in seconds.

tic variables and we may wonder about the origin of this randomness. In con-

trast to traditional ensemble kinetic studies, at the single molecule level local

fluctuations in the environment can lead to significant differences in the instant

dynamical properties. Perhaps the best example of how fluctuations can bring

into a stochastic regime a system that is seemingly deterministic is the Brow-

nian motion. In that case, local fluctuations in the location of the molecules

surrounding a relatively small cluster of molecules, can instantly take this ag-

gregate out of the equilibrium position to a new place in space. Fluctuations in

the local environment are undetectable in ensemble experiments, as they have
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form of the monoexponential fitted to the experimental data is
0.89 exp(−0.495tD). Time is given in seconds.

a mean of zero after averaging over the whole ensemble. This averaging does

not take place in a single molecule experiment, and one can expect to see the

influence of these fluctuations in the local dynamics. This, of course, provides

an advantage and a new challenge. Single molecule experiments open the door

to a more systematic understanding of these fluctuations and their effect on dy-

namics. What the nature of these fluctuations is, depends on the system under

study.

We can better characterize the stochastic nature of the set of dwell times for

the dark or the light state by calculating their density functions and the mo-
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ments associated with them. Experimentally, density functions are obtained

from the histogram of dwell times. Figure 1.3 shows the experimental density

function for the dark dwell times of the trajectory studied by Xu and Chen[51].

The bin size selected to partition the time line was 1 s, and the value reported

at ti = 1, . . . , is the ratio of the total number of dwell times that are smaller than

ti and at the same time greater than ti − 1. Fitting these data by a least-squares

minimization shows that the density function for the dark dwell times cannot be

described by a single exponential function. Instead, a better description of the

experimental data is obtained with a biexponential function or with a stretched

exponential function. In Fig. 1.3 these fittings are represented by a solid and

a dashed line, respectively. This is a noticeable fact, as it is the first indicator

of dynamic complexity and internal structure. Before we introduce the ideas

9



that will support this statement, it is possible to suggest the existence of this

complexity by comparing the density function observed with that of a Poisson

process. A Poisson variable is a random variable characterized by a monoexpo-

nential density function

f Poisson(t) = λe−λt, (1.1)

for λ positive real[14]. From any density function f (t) one can obtain the cumu-

lative distribution by integration

P(t < T ) =

∫ T

0
f (t)dt, (1.2)

from which we can derive the relation

dP(t < T )
dT

= f (T ). (1.3)

Equation (1.3) tells us that we can derive the density function by solving a dif-

ferential equation, which presumably also describes the dynamical evolution of

our system, as it depends on the statistical properties of the dwell times. The

density function for a Poisson process in Eq. (1.1) is the solution of a simple dif-

ferential equation that is characteristic of systems with very simple dynamics,

such us a unimolecular reaction that occurs in one single step. The cumula-

tive distribution of dark dwell times P(tD < T ) is presented in Fig. 1.4 and it is

contrasted against monoexponential and a biexponential fits. Cumulative dis-

tributions have the nice property that, when calculated from experimental data,

the error due to the bin size selected is suppressed, and the T parameter can be

varied continuously to obtain as many points as required for a better fitting. We

can again state that a biexponential function is an appropriate functional form

for the density.

There are other indicators that can be calculated from this trajectory that

indicate the existence of dynamical complexity. One of them is the randomness
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parameter that has been used in the study of ion channels[30, 39]. This quantity

is defined as the ratio between the variance1 and the square of the mean of a

random variable. The first and second moments of the density function in Eq.

(1.1) are λ−1 and λ−2, respectively. As a consequence, the randomness parameter

of this distribution equals 1. On the contrary, we observe that the set of dark

dwell times has a variance of 36.7s2 and a mean of 3.87s, and also the set of light

dwell times has a variance of 0.36s2 and a mean of 0.53s. Therefore they have

a randomness parameter that is different from one supporting the idea that a

monoexponential function does not describe the stochastic properties of these

dwell times.

Transforming dwell times into new variables can also reveal information that

may be encrypted in the experimental trajectory. In this way Xu, Kong and Chen

[49] were able to identify two different populations of active sites by studying

the variances of t−1
L and t−1

D . Another way to see the multiexponential nature of

tD is achieved by studying the random variable uD = log tD. Figure 1.5 shows

the frequency plot for the uD values. Since P(tD < T ) = P(log tD < log T ), we can

derive the expression for the density function f ∗(uD) for uD, using Eq. (1.3) and

the chain rule. As a result, if f (tD) is given by Eq. (1.1) then

f Poisson ∗(uD) =euDλe−λeuD
, (1.4)

and for a multiexponential density function in tD we will have that f ∗(u) is a lin-

ear combination of functions of the form in Eq. (1.4). For the set of experimental

tD we find that for the density function of uD, a linear combination of three func-

tions of the form in Eq. (1.4) is required to have good qualitative agreement

with the experimental data. Equation (1.4) has a gaussian-like form with only

1The variance of is given by the difference between the mean value of t2 and the square of
the mean value of t.
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one maximum and we can differentiate three local maxima.

The experimental trajectory in consideration was recorded for a substrate

concentration [S ] of 1.2 µM [51]. By studying similar trajectories at different

concentrations[51], it was possible to determine that both the mean dark dwell

time and the mean light dwell time depend on the concentration following a

Langmuir - Hinshelwood mechanism[51, 50]. In fact, the mean values of tD and

tL, t̄D and t̄L, exhibit saturation kinetics similar to the one observed for the same

quantities in single-molecule enzymology[30]. More precisely,

1
t̄D

=
c1[S ]

c2 + [S ]
, (1.5)

1
t̄L

=
c3[S ]

c4 + [S ]
, (1.6)

where the constants c1, c2, c3 and c4 are given in terms of the rate constants of the

kinetic model proposed by Xu, Kong and Chen [51]. Independent of the explicit

form of these constants, Eqs. (1.5) and (1.6) show that these mean values achieve

a substrate-independent value for a large value of [S ], in which case we say that

the system is in saturating conditions. The concentration of 1.2µM of rezasurin

is a saturating concentration for gold nanoparticles of 6 nm diameter.

Another interesting characteristic of the fluorescence trajectories is that

they exhibit memory: dark dwell times as well as light dwell times are

autocorrelated[51]. The experimental correlation plots for this trajectory are pre-

sented in Fig. 1.6. Here CD denotes the dark-dwell-time correlation function, CL

the one corresponding to light dwell times and, CLD and CDL are the crosscorre-

lation functions. We observe that, first, CD and CL are positive and decay with

different rates. Also, CLD and CDL are very close to zero and we can say that tD

and tL are uncorrelated. What exactly these observations about the correlation

functions mean, in terms of the chemical and physical properties of the nanopar-
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ticle and the catalyzed reaction, is one of the questions we will address in the

present work (see Chapter 3).

At this point, we have described enough about the phenomenology of the

experiment to state several questions. As they will serve to define the direction

and the scope of this work, we will formulate them in a separate section.

1.3 Questions arising from single nanoparticle catalysis

1. What is the correct expression for the dwell-time density functions? Cer-

tainly, they are not Poisson density functions in general. While we can fit

data to functions such as stretched exponentials, multiexponential func-

tions arise naturally in a theory that describes single-molecule and ensem-

ble kinetics by similar and compatible rules. The compatibility condition,

that we will study in Sec. 1.4, is the idea behind the development of the

general theory of single-molecule dynamics[30, 10, 20].

2. What is the set of observables, as functions of the dwell times, that pro-

vides more information about the heterogeneity in the nanoparticle? In

addition to the density functions and the means, we can define several

other quantities to explore the information content of the trajectories. In

the following chapters we will study several statistical indicators that re-

veal qualitative properties that, to our knowledge, have not been reported

before.

3. How different is the catalytic activity of a catalyst with a single active site,

such as an enzyme, and one with multiple active sites, such as a nanoparti-

cle? Should we expect to observe cooperative effects or correlation among

14



active sites in a nanoparticle? If so, how can this correlation among active

sites be determined? We will find answers to these questions in Chapters

2 and Chapter 3.

4. What does it mean that trajectories exhibit positive autocorrelation, but

they do not have crosscorrelation? What information is carried by the

rates of decay of CD and CL? Cao[10] and also Gopich and Szabo[20], have

found that for a few simple kinetic models, the rate of decay of the au-

tocorrelation functions is equal to the ratio between the rate constants of

internal transformations and the rate constants of reaction [55] (Equation

(32) in this reference). In light of this result, we initially conclude that the

internal dynamics of these nanoparticles must be significantly slower than

the time scale associated with the reaction and desorption process[51]. We

will address these questions in Chapter 3.

5. Can we characterize the mechanism for the catalytic transformation of

rezasurin to resorufin on the surface of a nanoparticle at a single nanopar-

ticle level? Substrate-concentration dependence of t̄D and t̄L suggested that

the catalytic transformation occurs in several steps and several paths, in-

cluding a substrate-assisted desorption step. While we can only detect two

different states in the trajectory, statistical properties of the dwell times can

only be explained assuming the existence of substates within the same

state and, in this way, every state should experience internal dynamics.

How many substates are required to describe the correlation properties of

the correlation function together with any other quantity we can define in

terms of dwell times? Is it possible to characterize, at least qualitatively,

the set of parameters that define the internal processes just by analyzing a

single trajectory?
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In order to find answers, total or partial, to the above questions, we will

define several indicators. First, we must review the basic ideas of the kinetic

theory of single-molecule processes that are relevant for the present study. That

is our goal in the next section.

1.4 Single molecule kinetics

The time evolution of a chemical process for an ensemble of molecules is given

by the solution to differential equations for the concentration of each species.

Tracking the same process in a small part of the ensemble, of dimensions compa-

rable to the size of a molecule, will show continuous fluctuations in the number

of molecules detected in that region even after the system has reached equilib-

rium. For a region of the dimensions of the size of just one molecule, concen-

tration of a species will then fluctuate between zero and the inverse of this tiny

volume. In this scenario, the concentration [S ] of a chemical species S is equiv-

alent to the probability P of observing one molecule of S at a given time. As

a consequence, the probability of this event must be determined by the same

rules that determine the change in time of the concentration. Put another way,

in a region of atomic or molecular dimensions, where at most one molecule can

be detected; the probability of observing a molecule varies in time as the con-

centration does according to the rules of macroscopic kinetics. Therefore, the

equations of evolution for P and C should be the same. This is the natural cor-

respondence between single-molecule and macroscopic kinetics.

For a single molecule, such as an enzyme, that can be captured by specific

interactions in the small region under study, chemical transformations should
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correspond to a sequence of unimolecular steps2. Cao and coworkers[10, 54]

have defined and studied n-channel models to describe the complexity of sin-

gle molecule processes and they have implemented different techniques from

the theory of stochastic process to analyze experimental trajectories. n-channel

models are kinetic schemes with two states, one dark and one light, each one of

them with a manifold of n substates . A channel is a reaction path connecting

two conformers from different states. As a consequence, an n-channel system

couples every substate with one in the complementary state by means of a reac-

tion path.

In Fig. 1.7 we present a typical two-channel model. Notice that every trans-

formation has a rate constant associated. We use kD, kL, d and l to denote rate

constants as explained in the caption of Fig. 1.7. Since every transition between

two states is a unimolecular process, the differential equations that describe the

change in time of the probability of observing each state are linear. For the two

channel system in Fig. 1.7 we can define the matrices

KD =

kD1 0

0 kD2

 , (1.7)

KL =

kL1 0

0 kL2

 , (1.8)

ΓD =

 d21 −d12

−d21 d12

 , (1.9)

ΓL =

 l21 −l12

−l21 l12

 . (1.10)

2Bimolecular elementary steps may be included. However if other molecules are allowed
to freely diffuse and there is a continuous supply of them, we can consider this process as a
pseudo-first-order process.
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Figure 1.7: An example of a two-channel model. Dark substates are repre-
sented by a D, light substates by L. Rate constants for the inter-
nal transformation from the Di(L j) to the D j (L j) substates are
represented by di j (li j). Reaction rate constants are represented
by kDi and kLi .

In terms of these, the differential equation for the time evolution of the proba-

bilities ρD1 , ρD2 , ρL1 and ρL2 , is

d
dt
|p(t)〉 = −

ΓD + KD −KL

−KD ΓL + KL

 |p(t)〉, (1.11)

where |p(t)〉 = (ρD1(t), ρD2(t), ρL1(t), ρL2(t))
T is the total vector of substate prob-

abilities. In addition, if we define 〈1| = (1, 1, 1, 1) then the equality 〈1|p(t)〉 = 1

must always hold. The last statement is the condition of probability conserva-

tion.

Fluorescence trajectories differentiate between dark and light states, but do
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not detect every substate or internal transformation. Thus, it is important to de-

termine the equations for the evolution for each state. Equation (1.11) together

with the condition of probability conservation are sufficient to determine such

equations, as we will illustrate below.

The solution of Eq. (1.11) is a vector |p(t)〉 that for a given time T , carries

the probabilities of observing each substate, depending on an initial condition

|p(0)〉. For an increasing sequence of times {0,T1,T2,T3, . . . }, the sequence of

vectors |p(0)〉, |p(T1)〉, |p(T2)〉, . . . defines a Markov process[24, 56], since one can

take |p(Ti)〉 as the initial condition for the calculation of |p(Ti+1)〉, instead of |p(0)〉.

From this Markov process, one can find the expression for the evolution of the

system in an interval of time, say (0,T ), with the condition that, for example, no

transition from any dark substate to the light state occurs. In this way we can

find the dynamic equations for the dark state. The technique that we are trying

to sketch here, involves the observation of all finite partitions of the interval

(0,T ) into an increasing sequence of times 0 ≤ Ti ≤ T , in a limit process similar

to the one implemented in the definition of the Riemannian integral. At the end,

one assigns the minimum value of all possible partitions to the dark vector state

in the interval (0,T ). At the end, this procedure generates a Markov process that

is continuous in time from a Markov process that is discrete in time.

The disadvantage of the above procedure is not only that it requires a good

understanding of the mathematical details of many concepts of Markov pro-

cess and measure theory, but also that we have to go through the same pro-

cedure from the beginning to the end for every kinetic scheme. Alternatively,

Cao[10, 54] has found a different approach for the determination of the equa-

tions of evolution of each state, that has all the properties demanded by the
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exact solution[56], with the additional advantage of providing at once the dy-

namics for each state and for every n-channel system. Since we will adopt Cao’s

mathematical formulation of single-molecule kinetics in this work, we will now

review the main elements of this theory. For another alternative solution see

[20].

The two channel system in Fig. 1.7 can be studied by means of the indepen-

dent contributions from the subsystems

D1

D2

-
kD1

?

d21

-
kD2

6
d12 and

L1

L2

�
kL1

?

l21

�
kL2

6
l12 (1.12)

We now let |pD(t)〉 = (ρD1 , ρD2)
T and |pL(t)〉 = (ρL1 , ρL2)

T be the probability vectors

for the dark and light state, respectively. In the dark state, the kinetic scheme in

the right in Eq. (1.12) describes all possible events that can take place. Similarly,

the kinetic scheme in the left in Eq. (1.12) describes all possible events in the

light state. The dynamic equations for the dark and light state are

d
dt
|pD(t)〉 = − (KD + ΓD)|pD(t)〉, (1.13)

d
dt
|pL(t)〉 = − (KL + ΓL)|pL(t)〉, (1.14)

from which we obtain the solutions

|pD(t)〉 =e−(KD+ΓD)t|pD(0)〉, (1.15)

|pL(t)〉 =e−(KL+ΓL)t|pL(0)〉. (1.16)

We define the dark and light Green functions as follows

gD(t) =e−(KD+ΓD)t, (1.17)

gL(t) =e−(KL+ΓL)t. (1.18)
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Figure 1.8: The solid line shows the dark-dwell-time density function
fD(tD) for a two-channel system with rate constants kD1 =

1, kD2 = 5, kL1 = 2, kL2 = 3, l12 = l21 = d21 = 0.1 and d12 = 1/3
in units of kD1 . The biexponential form of fD(tD) is illustrated
by the dashed plots that represent the two monoexponential
functions that add to give fD(tD) as predicted by Eq. (1.27).

The dark-dwell-time density function is derived from Eqs. (1.3), (1.13) and

(1.15). As a result,

fD(tD) = 〈1|KDgD(tD)|pD(0)〉, (1.19)

and similarly, the set of light dwell times

fL(tL) = 〈1|KLgL(tL)|pL(0)〉. (1.20)

|pD(0)〉 and |pL(0)〉 are determined from the stationary solutions to Eq. (1.11).

If |peq
D 〉 and |peq

L 〉 are the state probability vectors at equilibrium, then|pD(0)〉

|pL(0)〉

 = N−1

KL|p
eq
L 〉

KD|p
eq
D 〉

 (1.21)
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where N = 〈1|KL|p
eq
L 〉 is the normalization constant. These initial conditions

can be interpreted as the stationary fluxes from the L state to the D state, and

vice versa. We notice that the equilibrium probabilities |peq
D 〉 and |peq

L 〉 obey the

following equalities

(KD + ΓD)|peq
D 〉 =KL|p

eq
L 〉, (1.22)

KD|p
eq
D 〉 =(KL + ΓL)|peq

L 〉. (1.23)

In addition, the identities

〈1|ΓD =〈0|, (1.24)

〈1|ΓL =〈0|, (1.25)

together with Eqs. (1.22) and (1.23) imply that

N = 〈1|KD|p
eq
D 〉 = 〈1|KL|p

eq
D 〉. (1.26)

Thus, Eqs. (1.19),(1.20) and (1.21) lead to the following expressions for the dark

and light density functions:

fD(tD) =
〈1|KDgD(tD)KL|p

eq
L 〉

〈1|KD|p
eq
D 〉

, (1.27)

fL(tL) =
〈1|KLgL(tL)KD|p

eq
D 〉

〈1|KL|p
eq
L 〉

. (1.28)

Equations (1.27) and (1.28) for an n-channel model show that in general fD(tD)

and fL(tL) are multiexponential. In particular, for a two-channel model den-

sity functions are biexponential. In Fig. 1.8, we illustrate this fact for a specific

model.

The mean dark dwell time t̄D, and the variance σ2
D are calculated from Eq.
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(1.27), as follows

t̄D =

∫ ∞

0
dtDtD fD(tD) (1.29)

=
〈1|peq

D 〉

〈1|KD|p
eq
D 〉
, (1.30)

σ2
D =t2

D − tD
2 (1.31)

=2
〈1|(KD + ΓD)−1|peq

D 〉

〈1|KD|p
eq
D 〉

. (1.32)

with similar expressions for t̄L and σ2
L. An interesting fact should be noted from

Eq. (1.30), for a two channel system:

1
t̄D

= x1kD1 + x2kD2 (1.33)

where xi = ρDi/(ρD1 + ρD2). Therefore, the inverse value of the mean dark dwell

time is a mean value of the reaction rate constants leading to a transition from

the dark to the light state. Notice that the result in Eq. (1.33) can be generalized

to any n-channel system and as a consequence, this statement is also general.

A final note on the density functions in Eqs. (1.27) and (1.28), comes from the

fact that they can be generated by differentiation from the following functions:

gD(tD) =
〈1|gD(tD)|peq

D 〉

〈1|KD|p
eq
D 〉

, (1.34)

gL(tL) =
〈1|gL(tL)|peq

L 〉

〈1|KL|p
eq
L 〉

. (1.35)

Thus,

fD(tD) =
d2

dt2
D

gD(tD), (1.36)

fL(tL) =
d2

dt2
L

gL(tL). (1.37)

In addition, observe that gD(0) = t̄D and gL(0) = t̄L, as gD(0) = I = gL(0), where I

is the identity matrix of dimension n.
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1.5 Conclusion

Throughout this Chapter, we have revisited different single-molecule studies

that occurred prior to the investigations in single-nanoparticle catalysis. In all

these experiments, dynamic heterogeneity has been reported and we have illus-

trated how this heterogeneity is discovered in single nanoparticle catalysis. In

particular, we analyzed the multiexponential nature of the density functions of

the dark and light dwell times, as recorded in a typical fluorescence trajectory.

We also found that dwell times are autocorrelated. Questions about the chem-

istry and physics responsible for the statistical properties of these dwell times

were posed. n-channel systems and single-molecule kinetics were introduced,

and they allowed us to explain the multiexponential behavior of the density

functions in terms of the existence of multiple reaction paths. These ideas de-

scribe the dynamics of a catalyst with one active site. In contrast, nanoparticles

are catalysts with multiple active sites and multiple docking sites. As a conse-

quence, we need to formulate a theory that accounts for the existence of multiple

active sites to describe catalysis in individual nanoparticles.
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CHAPTER 2

CONSTRAINED MEAN DWELL TIMES

One of our main conclusions in Chapter 1 was that the inverse values of t̄D

and t̄L are mean values of the rate constants of reaction k̄D and desorption k̄L,

respectively (see Eq. 1.33). This average in the reaction rate constants is in gen-

eral different from their arithmetic mean, since the mean value is calculated as

a weighted sum of reaction rate constants and the weighting factors are pro-

portional to the equilibrium probabilities of each substate (see again Eq. (1.33)

). A general assumption in the interpretation of single molecule trajectories is

that this mean value of the reaction rate constants is exactly the same value

than one can measure in an equivalent macroscopic experiment. If mean values

in the dwell times provide direct information of the value of the reaction rate

constants, then calculating several means, in many different ways, for the same

collection of dwell times, will unfold the heterogeneity of these rate constants.

Inventing new forms to compute these means, such that we understand and

control how they discern among different reaction paths or ponder the reaction

rate constants is a valuable enterprise.

In this Chapter we will introduce a new family of dwell time means: the

constrained mean dwell times. In brief, they are conditional expectations of the

stochastic dark or light dwell times. A constraint is introduced in the calculation

of the mean value of a dwell time: a dwell time from the collection that defines

the trajectory is to be considered in the computation of its mean only if it fulfills

a condition on its immediately preceding event. In this work the condition or

constraint will be either of two kinds. The first sort of constraint essentially

rejects any dwell time that occurs after a very slow event. The second sort of
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constraint rejects the complementary set of times. Slow and fast events will be

defined in terms of a time gap or a threshold time T . We will make more precise

these definitions in the subsequent sections.

We will start our discussion in Sec. 2.1 by introducing density functions for

two consecutive events that occur in a single active site. These elements will be

used in Sec. 2.2 to define the constrained mean dwell times for one active site.

Catalysts, such as nanoparticles, may have multiple active sites that, during

the course of many catalytic transformations, contribute to the trajectory. Mean

values may also be sensitive not only to the number of active sites or the rate

constant values, but also to synergistic effects among different active sites. We

study in Sec. 2.3 and Sec. 2.4 systems with many identical active sites. In Sec. 2.3,

we assume that they are all independent while in Sec. 2.4 we construct a simple

model for many active sites that are correlated. Models with both correlated

and independent active sites will be discussed in Sec. 2.5. Finally, we investigate

the constrained mean dwell times for the catalytic transformation discussed in

Chapter 1 as they compare to our models.

2.1 Joint density functions for a single n-channel system

In this section we introduce density functions for dwell times that occur in se-

quence along a single-molecule fluorescence trajectory. As in Chapter 1, we

assume that the single-molecule trajectory has only two distinct states. These

functions are multidimensional, with one parameter per each dwell time in

the sequence. In order to build up some chemical intuition in our definition,

we start by remembering from Eqs. (1.15) and (1.17), that the n × n matrix

gD(t) = e−(KD+ΓD)t is the evolution matrix for the vector of probabilities for the
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dark substates when the system is in such a state. In Chapter 1, we defined in

Eq. (1.27) the dark dwell-time density function fD(t) by

fD(t) =
1

〈1|KD|p
eq
D 〉
〈1|KDgD(t)KL|p

eq
L 〉,

where |peq
D 〉 is the vector of equilibrium probabilities for the substates in the dark

state and N = 〈1|KD|p
eq
D 〉 = 〈1|KL|p

eq
L 〉 as we found in Eq. (1.26). We interpreted

fD(t) as the sum of the elements of the propagated vector of initial probabilities

for the dark state under the action of the evolution operator gD(t) during an

interval of time of length t and, right after an instantaneous transition to the

light state (as suggested by the matrix KD in Eq. (1.7)).

An event is a sudden change in the signal detected, corresponding to a

change in state. Events are of two kinds: D → L or L → D. For a sequence

of events, as for example D → L → · · · → D → L, Cao ([10]) has defined the

multidimensional density functions for their dwell-times tD1 , tL1 , . . . , tDm , tLm by

the expression

f(DL)m(tD1 , tL2 , . . . , tDm , tLm+1) =
1
N
〈1|

m∏
i=1

KDgD(tDi)KLgL(tLi+1)KD|pD〉. (2.1)

One can verify that the marginal probabilities are

fD(tDi) =

∫ ∞

0
dtD1

∫ ∞

0
dtL1 . . .

∫ ∞

0
dtLi−1

∫ ∞

0
dtLi . . .

∫ ∞

0
dtLm f(DL)m(tD1 , tL1 , . . . , tDm , tLm),

(2.2)

and also that∫ ∞

0
dtD1

∫ ∞

0
dtL1 . . .

∫ ∞

0
dtLi . . .

∫ ∞

0
dtLm f(DL)m(tD1 , tL1 , . . . , tDm , tLm) = 1, (2.3)

employing the rules that we derived in Chapter 1. In particular, for two consec-

utive times we have

fDL(tD1 , tL2) =
1

〈1|KD|pD〉
〈1|KLgL(tL1)KDgD(tD1)KL|pL〉, (2.4)
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fLD(tL1 , tD2) =
1

〈1|KL|pL〉
〈1|KDgD(tD1)KLgL(tL1)KD|pD〉. (2.5)

The density function in Eq. (2.1), and in particular Eq. (2.4) and Eq. (2.5) can

be described as a sum of the elements of the propagated initial vector along

the corresponding sequence of events, each one during a time interval tDi or

tLi depending on the state. Our choice of the initial conditions N−1 KD|pD〉 and

N−1 KL|pL〉, is based on the idea that if we screen a sequence of events along the

trajectory (time average) that process is equivalent to taking as our initial point

the equilibrium probabilities (space average). Put it other way, we assume that

the system is ergodic and that in the long run of the experiment, the trajectory

samples all possible initial conditions in a way that is proportional to the equi-

librium probabilities of each state.

Cao [10, 54] has extensively studied the properties of these joint density func-

tions as indicators of complex chemical schemes. In the next section, we will

make use of them to define the constrained mean dwell times as conditional

expectations. The reader should notice that if tL and tD are independent, then

we should have fLD(tL, tD) = fL(tL) fD(tD). We anticipate that our analysis of the

constrained mean dwell times will show that, in general, tL and tD are not inde-

pendent. As it will turn out, it will be useful to consider an additional pair of

functions, the generating functions gDL and gLD, that are associated with these

joint density functions by means of a simple operation. The generation func-

tions in consideration are defined as follows

gDL(tD1 , tL2) =
1

〈1|KD|pD〉
〈1|gL(tL2)KDgD(tD1)|pD〉, (2.6)

gLD(tL1 , tD2) =
1

〈1|KL|pL〉
〈1|gD(tD2)KLgL(tL1)|pL〉, (2.7)

and their connection with the joint density functions in Eq. (2.5) and Eq. (2.4) is
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given by:

∂2

∂tD∂tL
gDL(tD, tL) = fDL(tD, tL), (2.8)

∂2

∂tD∂tL
gLD(tL, tD) = fLD(tL, tD). (2.9)

The generating functions have the following properties

gDL(0, tL) =gLD(tL, 0) = −ġL(tL), (2.10)

gDL(tD, 0) =gLD(0, tD) = −ġD(tD). (2.11)

where gD(tD) and gL(tL) have been defined in Eqs. (1.34) and (1.35). These defi-

nitions are for a single active site and they will let us define and understand the

constrained mean dwell times for this case in the following section.

2.2 Constrained mean dwell times for a single active site

The constrained mean dwell times are a particular class of conditional expec-

tations, they are the mean value of the dark or light dwell times of those

dwell times that fulfill a condition that is imposed in the previous light or dark

dwell time event, depending on the case. Specifically, we define the functions

t̄L<(T ), t̄L>(T ), t̄D<(T ), t̄D<(T ) by

t̄L<(T ) =

∫ ∞
0

dtLtL

∫ T

0
dtD fDL(tD, tL)∫ T

0
dtD fD(tD)

, (2.12)

t̄L>(T ) =

∫ ∞
0

dtLtL

∫ ∞
T

dtD fDL(tD, tL)∫ ∞
T

dtD fD(tD)
, (2.13)

t̄D<(T ) =

∫ ∞
0

dtDtD

∫ T

0
dtL fLD(tL, tD)∫ T

0
dtL fL(tL)

, (2.14)

t̄D>(T ) =

∫ ∞
0

dtDtD

∫ ∞
T

dtL fLD(tL, tD)∫ ∞
T

dtL fL(tL)
, (2.15)
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and we refer collectively to them as the constrained mean dwell times. The func-

tions t̄L<(T ) and t̄L>(T ) are two different means for light dwell times. The former

is the mean value of all the light dwell times that are preceded by a dark dwell

time that is less than or equal to a threshold time T . At times, we will refer to

these dark times as being short or, corresponding to a fast process. On the other

hand, the latter function is the mean value of all the light dwell times that are

preceded by a dark dwell time that is greater than or equal to a threshold time

T . At times, we will refer to these dark times as being long or corresponding

to a slow process. The values of these constrained mean light dwell times are

therefore dependent on the threshold T , and they have the following asymptotic

limits:

t̄L<(T )→ t̄L as T → ∞, (2.16)

t̄L>(T )→ t̄L as T → 0, (2.17)

which can be expected as in these two limits the constraint is too weak to effec-

tively separate fast and slow processes. In fact, if tL and tD are independent, then

t̄L<(T ) = t̄L = t̄L>(T ) for all values of the threshold T . As we found in Chapter

1, in the absence of internal dynamics in the two states, tL and tD are indepen-

dent. Thus, conformal fluctuations in enzymes should have different values for

the constrained means than the unconstrained ones. Similar conclusions can be

drawn for the case of the constrained mean dark dwell times t̄D<(T ) and t̄D>(T ).

This suggests that rather than studying the constrained means by them-

selves, we must study the difference between the constrained and uncon-

strained means, as they can show the existence of dependence between pairs of

adjacent events. As expected from the number of constrained mean dwell times

and the expressions in Eq. (2.16) and (2.17) and the equivalent expressions for
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dark dwell times, we have four new functions:

∆t̄D<(T ) = t̄D<(T ) − t̄D, (2.18)

∆t̄D>(T ) = t̄D>(T ) − t̄D, (2.19)

∆t̄L<(T ) = t̄L<(T ) − t̄L, (2.20)

∆t̄L>(T ) = t̄L>(T ) − t̄L, (2.21)

These are the objects of the present study. Since every constrained mean can de-

fine only one of the above ∆t̄ functions, we will refer to the difference between

the constrained and the unconstrained mean by the name of the corresponding

constrained mean. Besides, as elaborated above, it is the difference between the

constrained and the unconstrained mean that is of relevance. These constrained

means can reveal interesting patterns in the internal dynamic transformations.

In general, they have simple forms in terms of generating functions. For exam-

ple, from Eq. (2.14) we have

t̄D<(T ) =

∫ ∞
0

tDdtD

∫ T

0
dtL fLD(tL, tD)∫ T

0
fL(tL)dtL

(2.22)

=

∫ ∞
0

tDdtD

∫ T

0
dtL∂tL∂tDgLD(tL, tD)∫ T

0
fL(tL)dtL

(2.23)

=

∫ ∞
0

tDdtD
[
∂tDgLD(tL, tD)

]T
0∫ T

0
fL(tL)dtL

(2.24)

=

∫ ∞
0

tDdtD
[
∂tDgLD(T, tD) − ∂tDgLD(0, tD)

]∫ T

0
fL(tL)dtL

(2.25)

=

∫ ∞
0

dtD
[
gLD(0, tD) − gLD(T, tD)

]∫ T

0
fL(tL)dtL

(2.26)

=
t̄D −

∫ ∞
0

dtDgLD(T, tD)

1 + ġL(T )
. (2.27)

Therefore

∆t̄D< =
−t̄DġL(T ) −

∫ ∞
0

dtDgLD(T, tD)

1 + ġL(T )
, (2.28)
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and if we take the opposite constraint we have

∆t̄D> =
−t̄DġL(T ) −

∫ ∞
0

dtDgLD(T, tD)

ġL(T )
. (2.29)

The reader should notice that expressions in Eq. (2.28) and Eq. (2.29) are valid

for any n-channel system.

In general, constrained mean dwell times are complex functions whose qual-

itative properties depend not only on the number of channels or reaction paths

in the kinetic scheme, but also in the explicit set of values that all the rate con-

stants can take. As we discussed in Chapter 1, dwell-time correlation func-

tions experimentally determined in enzymes and nanoparticles suggest that

internal transformations happen in a different time scale than those transfor-

mations leading to a change in the system state. In the presence of multiple

substates, we think of a transformation among different states as a mean to pre-

pare the system in a given substate. For instance, a reaction that is catalyzed

by an enzyme, should happen through a single conformal configuration and,

the enzyme remains in this configuration for some time after the reaction. For

a reaction that is catalyzed on the surface of nanoparticle, this transformation

occurs at the surface in a particular stable atomic configuration: a nanoparticle

substate. A change in substate has to be a process much slower than any state

transformation, if memory effects are to be observed. Otherwise, the system

will have enough time to relax and transform into different substates almost

in a random way, breaking in this way any possible dependence that the next

reaction may have on previous events. These ideas serve as motivation to in-

troduce an ideal limit in which the internal transformations are several orders

of magnitude slower when compared to the speed of reactions from one state

to another. The static limit[53, 59] neglects in the evolution of |pD〉 and |pL〉 the
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contribution that on it has the set of internal transformations. More precisely,

the Green functions are taken as depending only on the reaction rate constants:

e−(KL+ΓL)tL → e−KL+tL , (2.30)

e−(KD+ΓD)tD → e−KDtD . (2.31)

Internal transformations are not neglected in the computation of the equilib-

rium probabilities for each substate. Whenever the rate constants for internal

transformations are significantly smaller than the reaction rate constants, we

will say that the system is close to the static limit or that it obeys the static limit

condition. We will explore the idea of memory along a trajectory and how this

further justifies the study of this limit in Chapter 3.

The simplest scenario for which constrained mean dwell times are not equal

to the unconstrained means is the one in which the system has two substates.

This corresponds to a two-channel model. In the static limit, Eq. (2.28) and

Eq. (2.29), for a two channel model lead to the following expressions for the

constrained means in the dark dwell times:

∆t̄D<(T ) =
ρD1ρD2

kD1ρD1 + kD2ρD2

(e−kL2 T − e−kL1 T )(kD1 − kD2)
(1 − e−kL1 T )kL1ρL1 + (1 − e−kL2 T )kL2ρL2

, (2.32)

∆t̄D>(T ) =
ρD1ρD2

kD1ρD1 + kD2ρD2

(e−kL2 T − e−kL1 T )(kD2 − kD1)
e−kL1 T kL1ρL1 + e−kL2 T kL2ρL2

. (2.33)

We now illustrate how to obtain Eq. (2.32). First, we observe that in the static

limit KL|pL〉 = KD|pD〉 holds and the generating function gLD(tL, tD) is

gLD(tL, tD) =
1

kD1ρD1 + kD2ρD2

(e−kD1 tDkL1e
−kL1 tLρL1 + e−kD2 tDkL2e

−kL2 tLρL2). (2.34)

From this expression we evaluate the following integral∫ ∞

0
dtDgLD(T, tD) =

1
kD1ρD1 + kD2ρD2

(e−kL1 TρD1 + e−kL2 TρD2). (2.35)
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In addition, we notice that

t̄DġL(T ) = −
ρD1 + ρD2

(kD1ρD1 + kD2ρD2)2 (e−kL1 T kL1ρL1 + e−kL2 T kL2ρL2), (2.36)

and hence

−t̄DġL(T ) −
∫ ∞

0
dtDgLD(T, tD) =

1
(kD1ρD1 + kD2ρD2)2ρD1ρD2(e

−kL2 T − e−kL1 T )(kD1 − kD2).

(2.37)

What remains is to evaluate of the term in the denominator in Eq. (2.28):

1 + ġL(T ) =
(1 − e−kL1 T )kL1ρL1 + (1 − e−kL2 T )kL2ρL2

kD1ρD1 + kD2ρD2

. (2.38)

One can proceed following the same line of argument and derive general

expressions for the light constrained means

∆t̄L< =
−t̄LġD(T ) −

∫ ∞
0

dtLgDL(T, tL)

1 + ġD(T )
, (2.39)

∆t̄L> =
−t̄LġD(T ) −

∫ ∞
0

dtLgDL(T, tL)

ġD(T )
, (2.40)

and also expressions for their corresponding static limit:

∆t̄L<(T ) =
ρL1ρL2

kL1ρL1 + kL2ρL2

(e−kD2 T − e−kD1 T )(kL1 − kL2)
(1 − e−kD1 T )kD1ρD1 + (1 − e−kD2 T )kD2ρD2

, (2.41)

∆t̄L>(T ) =
ρL1ρL2

kL1ρL1 + kL2ρL2

(e−kD2 T − e−kD1 T )(kL2 − kL1)
e−kD1 T kD1ρD1 + e−kD2 T kD2ρD2

. (2.42)

We can now use these results to describe how the rate constants and the

mechanism of reaction of a chemical system influence the qualitative properties

of these constrained means. First of all, we observe that by definition, ∆t̄D<(T )

and ∆t̄L<(T ) tend to zero as T becomes large. Also, Eq. (2.32) and Eq. (2.41)

show that the sign of ∆t̄D< and ∆t̄L< is given by the algebraic sign of the product

(kL1 − kL2)(kD2 − kD1). As a consequence, the sign of these functions is a measure
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of the relative proportion of the four reaction rate constants. For the catalytic

transformation by gold nanoparticles, if the reaction on the surface can occur

through two different paths (i.e. two different channels) and if one of these

reaction paths has the larger reaction rate constant and also the larger rate con-

stant of product desorption, then we should observe that ∆t̄D< and ∆t̄L< decay to

zero from negative values. On the contrary, if fast reactions and slow desorp-

tions happen through the same channel, then ∆t̄D< and ∆t̄L< must decay to zero

from positive values.

The asymptotic decay rate of ∆t̄D< and ∆t̄L< also carries useful information.

For the case of well-separated rate constants for transitions from dark to light

and light to dark such that kbig
D is significantly bigger than ksmall

D and also kbig
L

is significantly bigger than ksmall
L , ∆t̄L<(T ) approaches zero exponentially with

decay constant ksmall
D . Moreover, for time less than or of the order of (kbig

D )−1, t̄L(T )

selects the sub-population with larger reaction rate, but for times comparable to

or larger than (ksmall
D )−1, this mean reflects the entire ensemble, and selectivity is

lost. Thus, the rate constant for the slower of the two reaction processes may

be extracted from the long T dependence of ∆t̄L<(T ). In the same fashion, ∆t̄D<

approaches zero exponentially with decay constant ksmall
L , with high selectivity

for the sub-population with the larger desorption rate when T < (ksmall
L )−1.

From Eq. (2.33) and (2.42), it can be asserted that the sign of the constrained

means ∆t̄D> and ∆t̄L>, close to the static limit, is the same for every value of

the threshold T and thus, the algebraic sign is determined by the product

(kL1−kL2)(kD1−kD2). This prediction also tells us that complementary constrained

means have different signs. In accordance, if the catalytic transformation on the

surface of the nanoparticle can happen through two channels and, fast reactions
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and fast desorptions occur through the same channel, then ∆t̄L> and ∆t̄D> must

be positive. If fast reactions and slow desorptions take place along the same

channel then ∆t̄L> and ∆t̄D> must be negative.

∆t̄D>(T ) and ∆t̄L>(T ) tend to zero as T becomes smaller and they approach a

finite asymptote for large values of T . In the static limit and for well-separated

reaction rate constants, ∆t̄D< and ∆t̄L< approach their asymptotes exponentially

with decay constants kbig
L and kbig

D , respectively.

At this point we should illustrate in a numerical example all the properties

that we have listed above. Figure 2.1 shows plots for each constrained mean

dwell time for two different models of a catalyst with one active site. In both

models the active site is assumed to have two substates. The first model, whose

constrained means are plotted in Fig. 2.1 in solid lines, has reaction rate con-

stants kD1 = 0.1, kD2 = 0.01 and desorption rate constants kL1 = 10 and kL2 = 1,

i.e. fast reactions and slow desorptions occur through one of its channels. On

the contrary, the second model, represented in Fig. 2.1 by dashed lines, un-

dergoes fast reactions and fast desorptions through the same channel. We must

point out that both models have rate constants for internal transformations that,

when compared to the reaction and desorption rate constants, are small and,

consequently, these models are close to the static limit. As predicted, for the

first model ∆t̄D<(T ) and ∆t̄L<(T ) are positive for every value of T whilst they are

negative for the second model. In the same fashion, ∆t̄D>(T ) and ∆t̄L>(T ) are

negative functions for the first model and positive for the second. This exam-

ple typifies the capacity that the constrained mean dwell times have to discern

between these two possible scenarios.

Thus far, our understanding of the qualitative properties of the constrained
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mean dwell times is based on their simple form in the static limit in Eq. (2.32),

(2.33),(2.41) and (2.42). In Fig. 2.2 we take the model in Fig. 2.1 represented by

solid lines, out of the static limit by sequentially increasing the value of the inter-

nal rate constants. In Fig. 2.2, d12, l12 and l21 increase by one order of magnitude

from 10−4 to 10−2 as the curve goes from solid to dotted. The rate constant d21 is

chosen such that the condition of detailed balance is satisfied. Observe that d21

is of the order of magnitude as some of the reaction rate constants in both the

dashed and dotted plots and, that even in these two cases our prediction for the

qualitative behavior of the constrained means based on the relative proportions

of the reaction and desorption rate constants is correct.

Another relevant observation about the model in Fig. 2.2 is that the absolute

value of every constrained mean, for a given value of T , decreases as the val-

ues of the internal rate constants increase. In order to visualize this trend, it is

enough to trace at any point in every panel in Fig. 2.2 a vertical line and com-

pare the intersected values. This is a manifestation of the idea that our capacity

of effectively selecting dwell times corresponding to the fastest or slowest chan-

nel is affected by the ratio between internal and reaction rate constants. As the

internal rates of dynamics increase, the possibility of internal transformations

in short times increases and the preparation of our system, achieved by means

of the constraint imposed in the preceding dwell time, can be more easily de-

stroyed by such an internal transition. As a consequence the absolute value of

the difference between the constrained and the unconstrained mean decreases.

Out of the static limit, the constrained mean dwell times for an active site

with two substates can be obtained by considering the spectral decomposition

of the matrices KL + ΓL and KD + ΓD, and by writing the propagator for each
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substate in the corresponding basis. After this consideration, the derivation

of the general case follows the same line of argument described above for the

case of the static limit. An alternative but similar derivation can be found in

Eqs. (B.97)-(B.117) in Appendix B.6 in Chapter 3 based on the properties of the

turnover matrix. As a result, the constrained mean dwell times, out of the static

limit have the general form:

∆t̄D< =

(
PD2L1

α1α2

) (
e−β1T − e−β2T

)
(α2 − α1)

(1 − e−β1T )PL1 + (1 − e−β2T )PL2
, (2.43)

∆t̄D> =

(
PD2L1

α1α2

) (
e−β1T − e−β2T

)
(α1 − α2)

e−β1T PL1 + e−β2T PL2
, (2.44)

∆t̄L< =

(
PL2D1

β1β2

) (
e−α1T − e−α2T

)
(β2 − β1)

(1 − e−α1T )PD1 + (1 − e−α2T )PD2
, (2.45)

∆t̄L> =

(
PL2D1

β1β2

) (
e−α1T − e−α2T

)
(β1 − β2)

e−α1T PD1 + e−α2T PD2
, (2.46)

where α1 and α2 are the eigenvalues of KD +ΓD, and β1 and β2 are those of KL +ΓL.

Also, PD2L1 and PL2D1 are factors involving projections into the eigenvectors of

these two matrices. Their actual form is given in Appendix B.6. It should be

noted that close to the static limit αi tends to kDi whereas βi tends to kLi . Hence,

Eq. (2.43)- (2.46) are indeed more general and can be used to study these func-

tions in different normal modes of conformal fluctuation, a concept introduced

by Cao[55], to describe the eigenvectors of gD and gL (see reference [55] Sec. III

C. ).

On a final note, one should notice that Eq. (2.43)- (2.46) indicate that even out

of the static limit, the constrained means have a definite sign, i.e. they can only

be either positive or negative for all T , and that ∆t̄D< and ∆t̄L< have the algebraic

sign of the product (α1 − α2)(β2 − β1). Numerically it has been observed that

for certain choices of internal rate constants, far from the static limit and when

they are comparable or bigger than the reaction rate constants, the sign of the
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products (α1−α2)(β2−β1) and (kD1−kD2)(kL2−kL1) are different and our prediction

of the sign based only on the relative values of the reaction rate constants may

be violated.

2.3 A catalyst with many independent active sites.

Nanoparticles, as heterogeneous catalysts, have a multitude of active sites on

their surface and their catalytic activity can change through dynamic restruc-

turing of the surface metal, either as a spontaneous process or induced by the

reaction of adsorbed molecules. Active sites on a single nanoparticle can also be

very different in nature, vary in number with time and have their catalytic activ-

ity fluctuate as nearby active sites also fluctuate. These observations motivate

the study of models for systems with many active sites.

In this section we generalize the model introduced in Sec. 2.2 with a single

active site to a system with N independent active sites, each one corresponding

to an n-channel system. We will not consider any possible spatial correlation

among active sites until Sec. 2.4.

Two states are possible, one of low intensity and one of high intensity in

the fluorescence emission. The former is the dark state and the later the light

state for the nanoparticle. We will use the word configuration for a substate of

the nanoparticle, which in principle corresponds to a collection of substates for

each active site. For a single active site, the dark state has n substates and as a

consequence, there are nN possible configurations for the whole nanoparticle in

the dark state. The light state admits every possible configuration in which only

one active site is in any light substate, while the other active sites are in any of
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the dark substates. Thus, we have N × nN possible configurations in the light

state.

The vector state for the dark state |PD(t)〉, is defined as a column vector of

dimension nN all whose elements are products of the form ρ(1)
Di1

(t) . . . ρ(N)
DiN

(t) with

ik equal to 1 to n. This product of probabilities corresponds to the probability of

one of the possible dark configurations (see Appendix A.1). Alternatively, the

dark vector state |PD(t)〉 is the direct product of the dark vector states for every

single active site:

|PD(t)〉 =

N∏
j=1

|p( j)
D (t)〉. (2.47)

The vector state for the j-th active site |p( j)
D 〉 evolves according to the sin-

gle site dynamics in Eq. 1.15. The light vector state for the catalyst, when

the j-th active site is in the light state |P( j)
L (t)〉 is a vector of length nN with

elements ρ(1)
Di1

(t) . . . ρ( j)
Li j

(t) . . . ρ(N)
DiN

(t). The total light vector state is |PL(t)〉 =(
|P(1)

L (t)〉, . . . , |P(N)
L (t)〉

)T
. Alternatively, the light vector state is the direct sum over

all the active sites of the direct product of dark vector states for N −1 active sites

and one light vector state for a single active site:

|PL(t)〉 =

N∑
i=1

N∏
j,i

|p( j)
D (t)〉|p(i)

L (t)〉. (2.48)

Likewise, the total probability vector for the catalyst |P(t)〉 is:

|P(t)〉 = |PD(t)〉 ⊗ |PL(t)〉. (2.49)

The equation of evolution of |P(t)〉 can be determined from the equation of mo-

tion of every active site, as they are independent. For probability conservation,

a restriction in the internal transitions between two light configurations is intro-

duced: during the time that an active site is in the light state, transitions from the

dark to the light state and also internal transformations between dark substates
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are forbidden for all the other active sites(see Appendix A.1). The differential

equation for the time evolution of |P(t)〉 is

|Ṗ(t)〉 = −

 WDD −WDL

−WLD WLL

 |P(t)〉. (2.50)

The explicit form of the matrices WDD, WDL, WLD and WLL are included in Ap-

pendix A.1, along with the details for the derivation of Eq. (2.50). In brief, each

of these matrices carries on the rate constants for a given subset of changes in

the catalyst configuration. For instance, WDD has as matrix elements the rate

constants for every possible internal transformation from a dark to a dark sub-

state, for every active site, and also the reaction rate constants that leads to a

change in the state of the nanoparticle.

As a consequence of Eq. (2.50) and (2.49), the following equalities should

hold at equilibrium:

WDD|P
eq
D 〉 =WDL|P

eq
L 〉, (2.51)

WLL|P
eq
L 〉 =WLD|P

eq
D 〉. (2.52)

In addition, based on the definition introduced in Appendix A.1 we have

〈1nN |WDD = 〈1N×nN |WLD, (2.53)

〈1N×nN |WLL = 〈1nN |WDL, (2.54)

where the vector 〈1A| is a row vector of length A, all whose elements are equal to

1. As the length of the vector 〈1A| will always be the same as the dimension of

the square matrix that is multiplying to its right, in the following we will omit

the sub index A in the vector 〈1|, for the sake of simplicity in our notation. With
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this convention in mind, we also obtain the following results

〈1|WDD|P
eq
D 〉 =〈1|KD|P

eq
D 〉, (2.55)

=

N∑
s=1

〈1|K(s)
L |P

(s),eq
L 〉, (2.56)

=〈1|WLL|P
eq
L 〉. (2.57)

The dwell-time density functions for the dark and light states are given as func-

tions of the propagation in time of the corresponding probability vectors. These

functions are defined as follows

FD(t) =
〈1|WDDGD(t)WDD|P

eq
D 〉

〈1|WDD|P
eq
D 〉

, (2.58)

FL(t) =
〈1|WLLGL(t)WLL|P

eq
L 〉

〈1|WLL|P
eq
L 〉

, (2.59)

where

GD(t) =e−WDDt, (2.60)

GL(t) =e−WLLt, (2.61)

are the propagators or the Green functions for the dark and light state vectors.

In resemblance to the single active site case, we can also define the generating

functions for a systems with many active sites

GD(t) =
〈1|GD(t)|Peq

D 〉

〈1|WDD|P
eq
D 〉

, (2.62)

GL(t) =
〈1|GL(t)|Peq

L 〉

〈1|WLL|P
eq
L 〉

, (2.63)

and they generate the density functions in Eq. (2.58) and (2.59) by differentiation

( FD(t) = G̈D(t) and FL(t) = G̈L(t) ). In addition, GD(0) = t̄D and GL(0) = t̄L. Joint

density functions and their corresponding generating functions are defined by

FDL(tD, tL) =
〈1|WLLGL(tL)WLDGD(tD)WDD|P

eq
D 〉

〈1|WDD|P
eq
D 〉

, (2.64)

FLD(tL, tD) =
〈1|WDDGD(tD)WDLGL(tL)WLL|P

eq
L 〉

〈1|WLL|P
eq
L 〉

, (2.65)
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GDL(tD, tL) =
〈1|GL(tL)WLDGD(tD)|Peq

D 〉

〈1|WDD|P
eq
D 〉

, (2.66)

GLD(tL, tD) =
〈1|GD(tD)WDLGL(tL)|Peq

L 〉

〈1|WLL|P
eq
L 〉

, (2.67)

with

∂2

∂tL∂tD
GDL(tD, tL) =FDL(tD, tL), (2.68)

∂2

∂tL∂tD
GLD(tL, tD) =FLD(tL, tD). (2.69)

We stress the similarity in the form that Eq. (2.66)-(2.67) have with those for

a single active site, in Eq. (2.6)-(2.7). As a consequence of that similarity, the

derivation of the general expressions for the constrained mean dwell times for a

set of N independent active sites follows the same line of argument used in the

case of a single case. For instance, the mean value of the dark dwell times that

happen after a light dwell time than is shorter that a threshold time T , is given

by

t̄(N)
D<(T ) =

∫ ∞
0

tDdtD

∫ T

0
dtLFLD(tL, tD)∫ T

0
FL(tL)dtL

, (2.70)

=
t̄(N)
D −

∫ ∞
0

dtDGLD(T, tD)

1 + ĠL(T )
. (2.71)

where Eq. (2.71) can be obtained by a sequence of steps identical to Eq. (2.23)

- (2.27). We will use the superindex (N) in the notation of constrained mean

dwell times to specify that they are calculated for models with N active sites.

Therefore

∆t̄(N)
D<(T ) =

−t̄(N)
D ĠL(T ) −

∫ ∞
0

dtDGLD(T, tD)

1 + ĠL(T )
, (2.72)

and for the opposite constraint we obtain

∆t̄(N)
D>(T ) =

−t̄(N)
D ĠL(T ) −

∫ ∞
0

dtDGLD(T, tD)

ĠL(T )
. (2.73)
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In the case of the constrained means of light dwell times we obtain.

∆t̄(N)
L< (T ) =

−t̄(N)
L ĠD(T ) −

∫ ∞
0

dtLGDL(T, tL)

1 + ĠD(T )
, (2.74)

∆t̄(N)
L> (T ) =

−t̄(N)
L ĠD(T ) −

∫ ∞
0

dtLGDL(T, tL)

ĠD(T )
. (2.75)

We want to understand how the constrained means, as given by Eq. (2.72) -

(2.75), for a catalyst with many active sites compare for different numbers of

active sites. In particular, we are interested in understanding how these con-

strained means compare to the constrained means of a single active site. Our

treatment of the problem has not made any assumption about the nature of the

active sites, other than imposing that all of them have two states, each one with

n substates. For simplicity, we will now assume that all the active sites in the

catalyst are chemically identical, i.e. the internal transformations, the reaction

and the desorption process have the same set of rate constants for every active

site.

For a system with N identical active sites we can write the generating func-

tions in Eq. (2.66)-(2.67) in terms of those corresponding to a single active site

(Eq. (2.6) to (2.7)). Notice that KD and |peq
D 〉 are the matrix KD and |Peq

D 〉 in the case

N = 1 (see Appendix A.1). As derived in the Appendix A.2,

〈1|WDD|P
eq
D 〉 =N〈1|KD|p

eq
D 〉〈1|p

eq
D 〉

N−1, (2.76)

〈1|GD(t)|Peq
D 〉 =〈1|gD(t)|peq

D 〉
N . (2.77)

As a consequence, we observe that t̄(N)
D = t̄(1)

D /N. In addition

〈1|WLL|P
eq
L 〉 =N〈1|KL|p

eq
L 〉〈1|p

eq
D 〉

N−1, (2.78)

〈1|GL(t)|Peq
L 〉 =N〈1|gL(t)|peq

L 〉〈1|p
eq
D 〉

N−1, (2.79)

implying in this case that t̄(N)
L = t̄(1)

L . Observe that Eq. (2.77) suggests that the sum

of the elements of the vector resulting from the action of the Green function GD(t)
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on the state vector |Peq
D 〉 is equivalent to the product of the sum of the elements

of the action of the Green function gD(t) for each single-active-site vector state

|peq
D 〉. In addition, Eq. (2.79) suggests that the sum of the elements of the vector

resulting from the action of the Green function GL(t) on the state vector |Peq
L 〉 is

equivalent to the sum over all products of a sum of the elements of the action

of the Green function gL(t) on the unique active site in the light state |peq
L 〉, and

the sums of the elements of the remaining N − 1 vector states states |peq
D 〉. Notice

that the sum is over all the active sites. Similarly, from Eq. (2.76) and Eq. (2.78),

and after noticing that 〈1|WDD = 〈1|KD and also 〈1|WLL = 〈1|KL, we can describe

the trace of KD and KL in terms of their action on individual active sites. For

instance, the trace of the action of KD on the state vector |Peq
D 〉 is equivalent to the

sum over all active sites, of the action of the operator KD on an active site |peq
D 〉

times the product of the traces of the individual vector states |peq
D 〉 for the other

active sites.

Our previous analysis can be extended to the product of Green functions

and other operators, such as those found in the definition of GDL(tD, tL) and

GLD(tL, tD). In these two cases, we discover the function

ED(t) =
〈1|gD(t)|peq

D 〉

〈1|pD〉
, (2.80)

in terms of which the relation between the generating functions GDL(tD, tL) and

GLD(tL, tD) for many independent active sites and gDL(tD, tL) and gLD(tL, tD) for a

single active site is given:

GDL(tD, tL) =gDL(tD, tL)ED(tD)N−1, (2.81)

GLD(tL, tD) =gLD(tL, tD)ED(tD)N−1. (2.82)

Now we have enough tools to describe how the constrained mean dwell

times for many independent active sites change with N. We will illustrate how
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the derivation proceeds for the case of ∆t̄(N)
D< . Starting with Eq. (2.72) we can

derive two different expressions for ∆t̄(N)
D< , to wit,

∆t̄(N)
D<(T ) =

−t̄(1)
D ġL(T )/N −

∫ ∞
0

dtDgDL(tD, tL)(ED(tD))N−1

1 + ġL(T )
, (2.83)

and

∆t̄(N)
D<(T ) =

〈1|(It̄(N)
D −W−1

DD)WDLGL(T )|Peq
L 〉

〈1|(I − GL(T ))WLL|P
eq
L 〉

. (2.84)

The expression in Eq. (2.83) is directly obtained after replacing Eq. (2.77), (2.79),

(2.81) and (2.82) in Eq. (2.72). On the other hand, the expression in Eq. (2.84) is

the result of calculating the integrals of the corresponding generating functions

(see Appendix A.3).

In the static limit, either Eq. (2.83) or (2.84) lead to the following expression

∆t̄D<(T ) =
(e−kL2 T − e−kL1 T )t̄(1)

D kL2ρL2

N〈1|(I − e−KLT )KL|p
eq
L 〉

1 − N

t̄(1)
D

∫ ∞

0
e−kD2 tED(t)N−1dt

 , (2.85)

Details of the derivation of Eq. (2.85) are in the Appendix A.4. One should notice

that the above expression for ∆t̄D<(T ) in the case N = 1 gives the same result in

Eq. (2.32). In fact, Eq. (2.85) is valid for every number of independent active

sites. If the number of active sites is large we can derive a simpler expression

for ∆t̄(N)
D<(T ). The function ED(t) is a weighted mean of an exponential operator.

Thus, (ED(t))N admits the cumulant expansion

(ED(tD))N = e−NtD/t̄
(1)
D (1 + Nσ2

wt2
D/2 + O(t3

D)), (2.86)

with

σ2
w =
〈1|(KD + ΓD)2|peq

D 〉

〈1|peq
D 〉

− (t̄(1)
D )−2. (2.87)

For large N, the exponential term dominates and, in this case we can replace

(ED(tD))N−1 by exp(−NtD/t̄
(1)
D ) in Eq. (2.85), which after integration gives a simpler
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expression for the N-dependence of ∆t̄(N)
D< for large N, i.e.

∆t̄(N)
D<(T ) ∼

 t̄(1)
D

N

2
(e−kL2 T − e−kL1 T )(kD2 − kD1)kD2ρD2kD1ρD1

〈1|KD|p
eq
D 〉〈1|(I − e−KLT )KL|p

eq
L 〉

. (2.88)

=kD1kD2

 t̄(1)
D

N

2

∆t̄(1)
D<(T ). (2.89)

The same line of argument adapted to Eq. (2.73), leads to the following expres-

sion for the complementary dark constrained mean

∆t̄(N)
D>(T ) = −

(e−kL2 T − e−kL1 T )t̄(1)
D kL2ρL2

N〈1|e−KLT KL|p
eq
L 〉

1 − N

t̄(1)
D

∫ ∞

0
e−kD2 tED(t)N−1dt

 , (2.90)

and for large N

∆t̄(N)
D>(T ) ∼

 t̄(1)
D

N

2
(e−kL2 T − e−kL1 T )(kD1 − kD2)kD2ρD2kD1ρD1

〈1|KD|p
eq
D 〉〈1|e−KLT KL|p

eq
L 〉

(2.91)

=kD1kD2

 t̄(1)
D

N

2

∆t̄(1)
D>(T ). (2.92)

At this point we can draw an interesting conclusion from Eq. (2.89) and Eq.

(2.92): ∆t̄(N)
D< and ∆t̄(N)

D> have the same algebraic signs as their single-active-site

counterparts, but their amplitude decays as N−2 for large N. In Fig. 2.3, we

investigate numerically the N-dependence for a catalyst with many active sites,

all of them identical to the active site in Fig. 2.1 represented by a solid line.

While we expect Eq. (2.89) and Eq. (2.92) to be numerically correct for large N,

we see that this prediction is still accurate for small systems with only ten active

sites.

Constrained means for light dwell times have a different dependence on N.

We consider first ∆t̄(N)
L< . From Eq. (2.74), we find two general and equivalent

expressions in terms of single-active-site Green functions, that explicitly reflect

the dependence of ∆t̄(N)
L< on N

∆t̄(N)
L< (T ) =ED(T )N−1 〈1|(It̄(1)

L − K−1
L )KDgD(T )|peq

D 〉

〈1|KD|p
eq
D 〉 − ED(T )N−1〈1|KDgD(T )|peq

D 〉
, (2.93)
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and

∆t̄(N)
L< (T ) =ED(T )N−1

−t̄(1)
L ġD(T ) −

∫ ∞
0

dtLgLD(tL,T )

1 + (ED(T ))N−1ġD(T )

 . (2.94)

Both of these expressions coincide with our prediction in Eq. (2.39) when N = 1.

For a catalyst with a large number of identical and independent active sites,

each one admitting two internal substates and close to the static limit, Eq. (2.93)

and Eq. (2.94) become

∆t̄(N)
L< (T ) =

e−NT/t̄D

〈1|KL|p
eq
L 〉

(kL1 − kL2)(e
−kD1 T − e−kD2 T )

(1 − e−kD1 T e−NT/t̄D)kD1ρD1 + (1 − e−kD2 T e−NT/t̄D)kD2ρD2

. (2.95)

We observe that, in contrast to the case of Deltat̄(N)
D<(T ) and Deltat̄(N)

D>(T ) in Eqs.

(2.89) and (2.89), in the static limit Deltat̄(N)
L< (T ) does not exhibit a simple connec-

tion with the correspondig constrained mean for a single active site. Moreover,

Deltat̄(N)
L< (T ) on N in a nontrivial form and the term e−NT/t̄D will dominate only

for large N. In contrast, a striking result emerges from the analysis of Eq. (2.75),

namely

∆t̄(N)
L> (T ) =∆t̄(1)

L>(T ). (2.96)

We infer that the constrained mean light dwell time, when the constraint is to

consider only light dwell times that take place after long dark dwell times (i.e.

bigger than the threshold value T ), does only reflect the dynamic heterogeneity

of a single active site and disregards the total number of active sites. Moreover,

Eq. (2.96) is valid whether the system is close the static limit or not and, the

algebraic sign of both ∆t̄(N)
L< and ∆t̄(N)

L> coincides with the one predicted for a single

active site.

Another qualitative characteristic of the constrained mean dwell times that

bears information regarding the number of active sites is the rate of decay. We

found in Sec. 2.2 that ∆t̄D< and ∆t̄L< decay to zero, while ∆t̄D< and ∆t̄L< approach
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to two different nonzero constants. In the static limit, for a system with two

substates, and when the separation of the two reaction rate constants and also

between the two desorption rate constants is large, the decay of these functions

is exponential, with the decay dominated by one of these rate constants. Ex-

plicitly, from Eq. (2.89) and Eq. (2.92) we observe that ∆t̄(N)
D<(T ) and ∆t̄(N)

D>(T ) have

asymptotic decay rates dominated by the rate constants ksmall
L and kbig

L , respec-

tively. On the contrary, from Eq. (2.95) and Eq. (2.96) we find that ∆t̄(N)
L< (T ) and

∆t̄(N)
L> (T ) have asymptotic decay rates Nkbig

D and kbig
D , respectively. Notice that in

the asymptotic analysis of the constrained means, one has to take in account

that t̄D → (kbig
D )−1 in the static limit, and with ksmall

D significantly smaller than kbig
D .

The question now is whether we can assert that nanoparticles as heteroge-

neous catalysts with multiple active sites can be well described by a model with

identical and independent active sites. Before we attempt to answer this ques-

tion, we must investigate what properties the constrained mean dwell times

have for a model with many dependent active sites. This will be our task in the

next section.

2.4 A model for a system with correlated active sites

In the absence of spatial resolution, we introduce correlation among active sites

by restricting the number of configurations that the nanoparticle can take. In

this way, if one were able to determine the substate of a given single active

site, then one could better estimate, if not completely determine, the substate in

which other active sites are. Thus, restricting the number of possible configura-

tions is indeed a way to introduce space correlation in our models.
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We now present a correlated model for N chemically-identical active sites,

each one of which has n-substates. We restrict the number of possible config-

urations by imposing that in the dark state only configurations that assign to

every single active site the same dark substate, say Di, are accessible. More-

over, admissible light configurations have only one active site in the light state,

say in the substate Li, and every other active site is in the same dark substate

(accordingly Di). Thus, we have n configurations in the dark state and N × n

configurations in the light state. However, as the experiment does not discern

between light configurations corresponding to light states occurring in different

active sites, light configurations that differ only in the active site that is in the

light substate are equivalent. We are therefore led to n distinct configurations in

the light state. Consequently, the dark state vector |PD〉, is a column vector of

dimension n whose i-th element is ρDi , which in this case will denote the proba-

bility of the ith dark configuration. Also, |PL〉 is a vector of dimension n whose

i-th element is the ith-light-configuration probability ρLi . |PL〉 can also be defined

as a linear combination of the N equivalent configurations |P( j)
L 〉, where j labels

the active site that is in the light state. Finally, we denote by |P〉 the vector of all

substate probabilities that is given by |PD〉 ⊗ |PL〉.

The equations of evolution of |P〉 can be estimated from the equations of evo-

lution of individual configurations. In order to be able to compare this model

with the independent model introduced in Sec. 2.3, we assume that rate con-

stants of reaction and desorption are the same in both models. Although we

shall use the same notation for the internal rate constants, the reader should no-

tice that they are different from those of a single active site. The equations for
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the evolution of different configurations are

dρDk

dt
= −

NkDk +

m∑
r,k

drk

 ρDk + kLkρLk +

m∑
r,k

dkrρDr , (2.97)

dρLk

dt
= −

kLk +

m∑
r,k

lrk

 ρLk + NkDkρDk +

m∑
r,k

lkrρLr . (2.98)

Eq. (2.97) and (2.98) are identical to the equations of evolution for a single active

site with reaction rate constants kDk increased by a factor that is equal to the

number of correlated active sites N. Hence, the differential equation of |P〉 is

identical to Eq. (2.50) with the following definition for the matrices WDD, WDL,

WLD and WLL

WDD =NKD + ΓD, (2.99)

WDL = − KL, (2.100)

WLD = − NKD, (2.101)

WLL =KL + ΓL. (2.102)

Observe that definitions for many-active-site density functions in Eqs. (2.58),

(2.59), (2.64) and (2.65), and their corresponding generating functions in Eqs.

(2.62), (2.63), (2.66) and (2.67) are given in terms of general W matrices and do

not use the independence hypothesis. Therefore, they can be used along with

the definitions in Eq. (2.99) - (2.102) to compute constrained and unconstrained

means. In this way we find that mean value of the dwell times are

t̄(N)
D =

1
N
〈1|PD〉

〈1|KD|PD〉
, (2.103)

t̄(N)
L =

〈1|PL〉

〈1|KL|PL〉
. (2.104)

These results are not readily comparable with neither the mean times for a single

active site nor those for the independent model. The reason for this, is that |PL〉

and |PD〉 are rational functions of the number of correlated active sites N. This
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may lead to complicated changes in these values for a small number of active

sites. However, for large N, the ratios 〈1|PD〉

〈1|KD |PD〉
and 〈1|PL〉

〈1|KL |PL〉
tend asymptotically to a

pair of constant values. This suggests that we must take as our reference an ideal

model with N large, instead of the single active side used in the uncorrelated

case. We denote by |peq
D 〉 the limit vector |Peq

D 〉 when N → ∞ and also, |peq
L 〉 for

|Peq
L 〉 in the same limit.

After these considerations, we find that in the static limit and for a large

number of correlated active sites, constrained means have the following func-

tional form

∆t̄(N)
D<(T ) =

1
N

〈1|
(
I tD − K−1

D

)
KLe−KLT |peq

L 〉

〈1|(I − e−KLT )KL|p
eq
L 〉

, (2.105)

∆t̄(N)
D>(T ) = −

1
N

〈1|
(
I tD − K−1

D

)
KLe−KLT |peq

L 〉

〈1|e−KLT KL|p
eq
L 〉

, (2.106)

∆t̄(N)
L< (T ) =

〈1|(I t̄L − K−1
L )KDe−NKDT |peq

D 〉

〈1|(I − e−NKDT )KD|p
eq
D 〉

, (2.107)

∆t̄(N)
L> (T ) = −

〈1|(I t̄L − K−1
L )KDe−NKDT |peq

D 〉

〈1|e−NKDT KD|p
eq
D 〉

, (2.108)

From Eq. (2.105) and (2.106) we find that in contrast to the independent

model, the amplitudes of ∆t̄(N)
D<(T ) and ∆t̄(N)

D>(T ) decay as N−1. Besides, from Eq.

(2.108) we observe that ∆t̄(N)
L> is N-dependent in opposition to the result for inde-

pendent active sites (see Eq. (2.92)). Moreover, for n = 2 the constrained means

in Eq. (2.105)- (2.108) reduce to a single-active-site form with the following dif-

ferences. First, the substate probabilities ρDi and ρLi are substituted by their

asymptotic limit as N becomes large. Second, ∆t̄(N)
D< and ∆t̄(N)

D> have an additional

factor of N−1. Third, the exponents in all the exponential functions in ∆t̄(N)
L< and

∆t̄(N)
L> are rescaled to N × kDi .

In Fig 2.4, we explore numerically the validity of the approximation in Eq.
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(2.105)-(2.108) for a sample model with two substates. We see that our predic-

tion for large values of N is in excellent agreement for a number of correlated ac-

tive sites as small as 10. In the case of a large separation in the magnitudes of the

reaction rate constants and also between the desorption rate constants, we find

that the asymptotic decay rates for ∆t̄(N)
D< and ∆t̄(N)

D> are ksmall
L and kbig

L , respectively.

This conclusion is exactly the same as we found in the case of a catalyst with

independent active sites in Sec. 2.3. On the contrary, the asymptotic decay rates

of ∆t̄(N)
L< and ∆t̄(N)

L> are different to those predicted for independent active sites.

Specifically, for the model with correlated active sites the asymptotic decay rate

for ∆t̄(N)
L< is Nksmall

D , and for ∆t̄(N)
L> is Nkbig

D ; whereas for the model with indepen-

dent active sites they are Nkbig
D and kbig

D , respectively. To put it another way, we

must observe a faster decay for ∆t̄(N)
L> than for ∆t̄(N)

L< in the case of correlated active

sites and, as stated in Sec. 2.3, this situation is reversed for independent active

sites. This is a significant characteristic that can qualitatively decide whether a

catalyst can be conceived as a set of independent active sites or, whether space

correlation or cooperative behavior exists among the active sites. In fact, if a

catalyst with many active sites is found to deviate qualitatively from any of the

characteristics predicted for the independent model, we must infer that active

sites are not independent, as there is only one possible independent model. Fur-

thermore, it only takes one trajectory with statistically meaningful events to find

which model describes better a catalyst with many active sites.

In Fig. 2.5 we numerically test how ∆t̄(N)
L< and ∆t̄(N)

L> decay by considering two

models, one independent and one correlated, both of them with 256 active sites,

all of them identical to the single active site plotted with a solid line in Fig. 2.1.

For the independent model, displayed in panel A, ∆t̄(N)
L< decays to zero only near

TD = 1 while ∆t̄(N)
L> has reached its asymptote even before TD = 0.5. The correlated
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model, shown in panel B, has a similar decay rate for ∆t̄(N)
L< , while ∆t̄(N)

L> reaches its

asymptote for TD > 1.5. These observations are consistent with our qualitative

characterizations of the constrained means for light times in these two models.

We close this section by emphasizing that, while there may be other possible

models with correlation among active sites, we believe that the one introduced

in this section is the simplest and, has enough characteristics to be differentiated

from the model with independent active sites. In fact, these two models can be

used to construct more general scenarios, as will be described in the next section.

2.5 An intermediate model: domains of correlation

The independent model of Sec. 2.3 and the correlated model of Sec. 2.4, are

two extreme cases of a more general family of correlated models. It is likely

that for certain systems, active sites are only correlated with neighboring active

sites defining in this way regions of correlation. Thus, a catalyst with many

active sites could be divided i into many different and pairwise independent

domains composed of several active sites. Realistically, domains may differ in

the number of active sites but, for simplicity, we will assume that the number of

active sites S is the same in every domain, and that active sites are chemically

identical. If J is the total number of domains, then the total number of active

sites N must equal S J. The model that we will describe below, reduces to the

independent model of Sec. ?? when S = 1 and J = N and we also recover the

model in Sec. 2.4 when S = N and J = 1.

We describe correlation in a single domain by restricting the number of pos-

sible configurations for the group of S active sites in the same way we did in
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Sec. 2.4. As a consequence, the dynamics of a given domain is equivalent to

that of a single active site with rescaled reaction rate constants, to wit, kDi is re-

placed by S kDi . Because domains are independent, the density functions, their

corresponding generating functions and constrained means for a model with

domains are those of a model with J independent active sites with reaction rate

constants rescaled as the size of our domains. Hence, the constrained mean

dwell times for active sites with two substates that are close to the static limit

are:

∆t̄(JS )
D< (T ) =

(e−kL2 T − e−kL1 T )t̄(S )
D kL2ρ

(S )
L2

J〈1|(I − e−KLT )KL|p
eq
L 〉

1 − J

t̄(S )
D

∫ ∞

0
e−S kD2 tED(t)J−1dt

 (2.109)

∼

 t̄(S )
D

JS

2

S
(e−kL2 − e−kL1 )(kD2 − kD1)kD2ρ

(S )
D2

kD1ρ
(S )
D1

〈1|KD|p̄
eq
D 〉〈1|(I − e−KLT )KL|p̄

eq
L 〉

+ O
(

1
J3S 2

)
(2.110)

∆t̄(JS )
D> (T ) = −

(e−kL2 T − e−kL1 T )t̄(S )
D kL2ρ

(S )
L2

J〈1|e−KLT KL|p
eq
L 〉

1 − J

〈t(S )
D 〉

∫ ∞

0
e−S kD2 tED(t)J−1dt

 (2.111)

∼

 t̄(S )
D

JS

2

S
(e−kL2 − e−kL1 )(kD1 − kD2)kD2ρ

(S )
D2

kD1ρ
(S )
D1

〈1|KD| p̄
eq
D 〉〈1|e−KLT KL| p̄

eq
L 〉

+ O
(

1
J3S 2

)
(2.112)

∆t̄(JS )
L< (T ) =ED(T )J−1 〈1|(I t̄(S )

L − K−1
L )S KDgD(T )|peq

D 〉

〈1|S KD|p
eq
D 〉 − ED(T )N−1〈1|S KDgD(T )|peq

D 〉
(2.113)

=ED(T )J−1
(kL1 − kL2)(e

−S kD1 T − e−S kD2 T )ρ(S )
l1
ρ(S )

l2

〈1|KL|p
eq
L 〉〈1|S KD

(
I − ED(T )J−1gD(T )

)
|peq

D 〉
(2.114)

∆t̄(JS )
L> (T ) =∆t̄(S )

L> (T ) (2.115)

= −
〈1|(I t̄(S )

L − K−1
L )S KDe−S KDT |peq

D 〉

〈1|e−S KDT S KD|p
eq
D 〉

(2.116)

Observe that the algebraic sign of the constrained means follows the same

rules determined for the uncorrelated and correlated models. On the other

hand, the amplitude of ∆t̄D< and ∆t̄D> depends on the number of active sites

in two different ways: as a function of the size of each domain it decreases as
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Figure 2.6: Constrained mean dwell times in the fluorescent state are
shown for a catalyst with N = 256 active sites, each with two
internal states. Differences between constrained and uncon-
strained mean times are plotted. All rate constants are identi-
cal to those in Fig. 2.5. The system is composed of 4 domains of
64 sites each, with site fluctuations correlated within a domain
and uncorrelated between domains. Time unit is k−1

L1
.

S −1 and, as a function of the number of domains it decays as J−2. This assertion

must hold for a large number of independent domains, each one with a signif-

icant number of active sites. On the other hand, we find that ∆t̄L> is a function

only of the size of every domain, and is independent of how many of these exist.

Asymptotic decay rates for models with N active sites and well-separated

reaction and desorption rate constants, should transition between the two ex-

treme cases as we go through models with different domain sizes. In Sec. 2.4

we elaborated on the idea that ∆t̄L> and ∆t̄L> should decay in different ways

for correlated and uncorrelated active sites. While some model with domains

may have qualitative decays that are closer to any of the extreme cases, there
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is room for unique models where both of these constrained means have simi-

lar asymptotic decay rates, to the point that they can be thought as having the

same decaying rate. In Fig. 2.6, we study this situation for a model with the

same total number of active sites than the correlated and uncorrelated models

in Fig. 2.5. In Fig. 2.6, the 256 active sites are partitioned in four independent

domains, so that each one has 64 of them. We recognize that for this model ∆t̄(N)
L<

and ∆t̄(N)
L> decay to their corresponding asymptotic values around the threshold

value TD = 1.5.

2.6 Constrained means for single nanoparticle trajectories

We have calculated constrained mean dwell times from single-turnover fluores-

cence trajectories measured by Chen and coworkers[51, 58] for the reductive N-

deoxygenation of the nonfluorescent reactant resazurin to the fluorescent prod-

uct resorufin, catalyzed by a spherical gold nanoparticle. Constrained mean

dwell times were computed from trajectories for individual nanoparticles, and

then averaged over the ensemble of trajectories for nanoparticles of the same

diameter and with the same reactant concentrations. At least fifty trajectories

were averaged for each diameter. The mean dwell times t̄L and t̄D show satu-

ration behavior as a function of reactant concentration,[51, 58] and only data in

the saturation regime are analyzed here. Results are presented in Figure 2.7 for

diameters and resazurin concentrations 6.0 ± 1.7 nm and 1.2 µM (solid lines), 9.1

± 1.5 nm and 0.4 µM (dotted lines), and 13.7 ±2.4 nm and 0.4 µM (dashed lines).

All times are given in seconds. Zhou, et al.[58] observed a significant difference

between the catalytic deactivation of particles with the smallest diameter and

with the two larger diameters. For particles of the two larger diameters, t̄D is
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found to increase during the course of the measurement on the time scale of

tens of minutes, indicating that the catalyst becomes deactivated in time. Since

t̄L does not show this time dependence, poisoning of the catalyst by reaction

products other than resorufin has been proposed as a cause.[58] For the 6 nm di-

ameter particles, such deactivation occurs detectably only on times longer than

three hours, providing a sufficient time window to collect data without signif-

icant deactivation. The curves in Fig. 2.7 for the three particle diameters have

the same algebraic sign and qualitative appearance. The models of Secs. 2.2-2.5

could be modified to include an irreversible deactivation process when a site is

in the dark state. However, to simplify the interpretation, we will focus atten-

tion on the data for the particles with 6 nm diameter for which deactivation is

negligible.

The data in Fig. 2.7 for particles of diameter 6 nm are replotted as the open

squares in Fig. 2.8. As in Fig. 2.7, all times are given in seconds. Dashed

curves show fits to empirical functional forms, ∆t̄ j<(T ) = C1e−k1T + C2e−k2T and

∆t̄ j>(T ) = C3(1 − e−k3T )/(C4 + e−k3T ). For j = L, C1 = 0.0426 s, C2 = 0.104 s,

C3 = −0.0744 s, C4 = 2.00, k1 = 0.217 s−1, k2 = 1.18 s−1, k3 = 1.835 s−1. For

j = D, C1 = 0.373 s, C2 = 0.926 s, C3 = −0.0287 s, C4 = 0.0477, k1 = 1.66 s−1,

k2 = 7.83 s−1, k3 = 9.37 s−1. In Sec. 2.4, we demonstrated that constrained mean

dwell times are sensitive to correlations among dynamic fluctuations at differ-

ent active sites in a catalyst with multiple active sites. In particular, we showed

that for N sites with completely correlated fluctuations, ∆t̄L>(TD) decays more

rapidly than ∆t̄L<(TD), while for completely independent fluctuations, ∆t̄L>(TD)

decays more slowly than ∆t̄L<(TD).

A qualitative comparison of these two quantities indicates the importance of
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dynamic correlations among events at different active sites. These two quanti-

ties for 6 nm particles are shown in the two left-hand panels of Fig. 2.8, which

demonstrate that ∆t̄L>(TD) decays more rapidly than ∆t̄L<(TD). Similar trends are

also clear for gold nanoparticles of diameter 9 and 14 nm, as shown in Fig. 2.7.

These data are thus more consistent with a scenario in which active sites are

correlated, than with a picture in which the substate fluctuations occur entirely

independently. In Sec. 2.4, we showed that in the model of completely corre-

lated fluctuations, the number of active sites N enters only as a scaling factor

multiplying reaction rate constants, so that in principle the data in Fig. 2.8 are

also consistent with the case of N = 1, with each nanoparticle having a single

active site. However, this is not the case, since several product molecules are oc-

casionally observed[51] simultaneously on single 6 nm nanoparticles, indicating

the presence of a multiplicity of sites. The present analysis therefore indicates

correlated dynamics at active sites on gold nanoparticles.

The solid curves in Fig. 2.8 show least-squares fits to the prediction of the

kinetic model of Sec. 2.4 with n = 2, N sites, and completely correlated fluc-

tuations. The limit of static disorder is not assumed to hold, so that, for ex-

ample, ∆t̄L<(TD) is calculated from the general form in Eq. (2.39) rather than

from the simplified static limit in Eq. (2.107). The resulting parameter values are

NkD1 = 6.30 s−1,NkD2 = 0.175 s−1, kL1 = 1.45 s−1, kL2 = 2.48 s−1, d12 = 0, d21 = 0.147

s−1, l12 = 0.516 s−1, l21 = 0.860 s−1. The fit was carried out subject to the conditions

that the unconstrained mean dwell times be near to the experimental values

t̄L = 0.48 s and t̄D = 4.28 s. The solid curves in Fig. 2.8 yield unconstrained mean

times t̄L = 0.47 s and t̄D = 4.31 s, close to the correct values. The fitted rate con-

stant values describe a system near to the limit of static disorder, in which rate
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constants for site state changes, li j and d ji are small compared to rate constants

for reaction kDi and product desorption kL j . In particular, the rate constant for

leaving a particular state because of changes in site state is smaller than the rate

constant for leaving that state because of reaction or desorption, for example,

l12 < kL2 . Figure 2.8 demonstrates that a two-state model provides qualitatively

reasonable agreement but not a quantitative fit to constrained mean dwell times

for single nanoparticles.

Constrained mean dwell times calculated from the nanoparticle data sup-

port the interpretation of the autocorrelation function results in Ref.[51] that

adsorption sites exist in several functionally different types. Figures 2.7 and

2.8 show that ∆tL<(τD) and ∆tD<(τL) decay to zero from positive values and that

∆tL>(τD) and ∆tD>(τL) decay from zero to negative asymptotes. As shown by the

calculations in Fig. 2.1, these signs indicate that the rate at which a reactant

molecule undergoes the catalytic reaction is inversely correlated with the rate of

desorption of the resulting product molecule; a relatively rapid reaction event

produces a relatively slowly desorbing product molecule. This qualitative con-

clusion is supported by the values of the rate constants used to generate the

solid curves in Fig. 2.8. In these fits to the S = 2 model, kD1 > kD2 , so site state

1 has the more rapid reaction, but kL1 < kL2 so site state 1 has slower desorp-

tion. This finding is consistent with a scenario in which reactions with lower

activation barriers produce more stable surface-bound species.

The constrained mean dwell times also confirm the interpretation of the au-

tocorrelation functions[51, 58] in indicating the presence of dynamical processes

that alter the condition of adsorbed reactants and products. These dynamics

may arise in principle either from a mechanism in which the adsorption sites
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change identity through surface reconstruction of the nanoparticle[23, 13, 42, 47]

or from a mechanism in which the sites are static, but mobile adsorbates can

sample sites of different types,[43] or from some combination of these two lim-

iting cases. The present analysis does not distinguish between dynamics of the

nanoparticle and dynamics of adsorbates. Xu, et al.[51] have measured the de-

pendence of decay times of CL(n) and CD(n) on turnover rate. These autocor-

relation functions decay increasingly rapidly as the reactant concentration is

increased, consistent with a scenario of adsorbate-induced surface restructur-

ing and not with dynamics arising from motion of reactant molecules. Raising

reactant concentration increases the fraction of filled sites, hindering possible

relaxation through translational motion. This interpretation of dynamic dis-

order arising from surface reconstruction is further supported by the observa-

tion that autocorrelation function decay rates decrease with increasing particle

diameter.[58] Our finding that dynamical fluctuations at different active sites

are correlated is also consistent with the surface reconstruction mechanism, as

surface dynamics in metal nanoparticles can involve the entire particle, and are

thus nonlocal.[47] The constrained mean dwell time analysis of single nanopar-

ticle fluorescence turnover trajectories quantifies the role of disorder and of dy-

namical fluctuations in these kinetics.

2.7 Conclusion

Constrained mean dwell times have proven to be excellent instruments when

one is to determine the dynamic heterogeneity and complexity arising from

single-molecule measurements. In particular, they can 1) select and filter infor-

mation coming from different reaction paths, discerning between fast and slow
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processes 2) compare between chemically-identical catalysts that differ only in

the number of active sites, providing a relative measure of the number of sites

3) account for the existence of cooperative behavior among multiple active sites.

We have found that the constrained means for single nanoparticle measure-

ments in a gold nanoparticle of 6 nm diameter, are qualitatively described by a

model with multiple chemically-identical active sites that have correlated fluc-

tuations between two different substates. In this system fast reactions, as com-

pared to the mean reaction time, occur most likely in the same nanoparticle

substate that is responsible for most of the slowest product desorptions. Ac-

cording to this model, the nanoparticle acts as a single unit with many reaction

centers on its surface and the speed of the catalytic transformation is enhanced

by the number of active sites.

All along this chapter, we have put aside the evidence coming from dwell-

time correlation functions only invoking them to motive our study of the static

limit. We will investigate these functions in the next Chapter and we will find

how they connect and complement with the constrained mean dwell times.
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APPENDIX A

APPENDICES CHAPTER 2

A.1 The equation of evolution for many independent active

sites

In this section we determine the explicit form of the evolution equation Eq.

(2.50) for the model with N independent and identical active sites, described

in Sec. 2.3.

For a catalyst with N independent active sites, each one admitting n states,

we can write the probability of a given configuration as a product of the substate

probabilities assigned by the configuration to every active site. The collection of

these products defines a vector that can be thought as an ordered set with the

following ordering relation

ρ(1)
Di1

(t) . . . ρ(N)
DiN

(t) < ρ(1)
D j1

(t) . . . ρ(N)
D jN

(t) if


i1 < j1 or

ik < jk i1 = j1, . . . , ik−1 = jk−1

Thus, we can find the i-th element of the vector |PD(t)〉 after writing i in the n

basis, i.e., for i = i1mN−1 + i2mN−2 + · · ·+ iN−1m1 + iNm0 we have that the i-th element

is ρ(1)
Di1

(t)ρ(2)
Di2

(t) . . . ρ(N−1)
DiN−1

(t)ρ(N)
DiN

(t).

In a similar way we define vectors |P(s)
L 〉 for s counting the active sites,

and varying between 1 and N. The elements of |P(s)
L 〉 have the form

ρ(1)
Di1

(t) . . . ρ(s)
Lis

(t) . . . ρ(N)
DiN

(t) and can be ordered as we did for the elements of |PD〉.

Our total probability vector |P(t)〉 can be defined in terms of these vectors as
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follows

|P(t)〉 =
(
|PD(t)〉, |P(1)

L (t)〉, . . . , |P(N)
L (t)〉

)T
.

Now we must establish the differential equation that determines |P(t)〉. This

will arise naturally from the differential equations defining the time evolution

of every active site. First, consider the time derivative of an element of |PD〉

d
dt

(
ρ(1)

Di1
(t) . . . ρ(N)

DiN
(t)

)
=

∑
s

ρ(1)
Di1

(t) . . . ρ(s)
Dis

(t) . . . ρ(N)
DiN

(t)
d
dt
ρ(s)

Dis
(t), (A.1)

where the line on top of the ρ(s)
Dis

probability means that we have removed this

term from the product. For the sake of clarity, we are going to omit the explicit

time dependence in the probabilities ρ(k)
Dik

. Given the Dis substate in the s active

site, the time dependence in its probability is given by the differential equation

d
dt
ρ(s)

Dis
= −k(s)

Dis
ρ(s)

Dis
−

∑
r,is

d(s)
r is
ρ(s)

Dis
+

∑
r,is

d(s)
is rρ

(s)
Dr

+ k(s)
Lis
ρ(s)

Lis
, (A.2)

which lets us write expression (A.1) as follows

d
dt

(
ρ(1)

Di1
(t) . . . ρ(N)

DiN
(t)

)
=

∑
s

−
k(s)

is
+

∑
r,is

d(s)
r is

 ρ(1)
Di1

(t) . . . ρ(s)
Dis

(t) . . . ρ(N)
DiN

(t)+

∑
r,is

d(s)
is rρ

(1)
Di1

(t) . . . ρ(s)
Dr
. . . ρ(N)

DiN
(t) + k(s)

Lis
ρ(1)

Di1
(t) . . . ρ(s)

Lis
. . . ρ(N)

DiN
(t)


(A.3)

= −

N∑
s=1

k(s)
is

+
∑
r,is

d(s)
r is

 ρ(1)
Di1

(t) . . . ρ(N)
DiN

(t)+

N∑
s=0

m−1∑
r,is

d(s)
is rρ

(1)
Di1

(t) . . . ρ(s)
Dr
. . . ρ(N)

DiN
(t) +

N∑
s=0

k(s)
Lis
ρ(1)

Di1
(t) . . . ρ(s)

Lis
. . . ρ(N)

DiN
(t)

(A.4)

Expressions of the form of Eq. (A.4) for every configuration can be collected in

a matrix equation after defining appropriate nN × nN matrices KD,ΓD,KL and ΓL.

We introduce these matrices by writing their matrix elements. For i, j < nN , one
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writes i and j in the n basis and uses this expansion to identify the rate constants

that determine the element in the ith row, jth column of each matrix. Explicitly

[KD]i j =

N∑
s=1

k(s)
Dis
δi j (A.5)

[K(s)
D ]i j =δi jk

(s)
D js

(A.6)

[K(s)
L ]i j =δi jk

(s)
L js

(A.7)

KL =

N⊕
s=1

K(s)
L (A.8)

In addition,

[ΓD]i j =

δi j

N∑
s=1

∑
r,is

d(s)
r is

 − N∑
s=1

d(s)
is js

(1 − δis, js)
∏
v,s

δ jviv

 (A.9)

[ΓL]i j =

δi j

N∑
s=1

∑
r,is

l(s)
r is

 − N∑
s=1

l(s)
is js

(1 − δis, js)
∏
v,s

δ jviv

 (A.10)

[Γ(s)
D ]i j =

δi j

∑
r,is

d(s)
r is

 − d(s)
is js

(1 − δis, js)
∏
v,s

δiv jv (A.11)

[Γ(s)
L ]i j =

δi j

∑
r,is

l(s)
r is

 − l(s)
is js

(1 − δis, js)
∏
v,s

δiv jv (A.12)

Observe that we always have that d(s)
rr = l(s)

rr = 0. With these definitions we can

write the complete set of expressions of the form Eq. (A.4) for the dark configu-

rations as follows

d
dt
|PD(t)〉 =

(
−KD − ΓD , K(1)

L , . . . ,K(N)
L

)
|P(t)〉. (A.13)

On the other hand, for a given light configuration

d
dt

(
ρ(1)

Di1
. . . ρ(s)

Dis
. . . ρ(v)

Liv
. . . ρ(N)

DiN

)
=

N∑
s=1
s,v

ρ(1)
Di1
. . . ρ(s)

Dis
. . . ρ(v)

Liv
. . . ρ(N)

DiN

d
dt
ρ(s)

Dis

+ ρ(1)
Di1
. . . ρ(s)

Dis
. . . ρ(v)

Liv
. . . ρ(N)

DiN

d
dt
ρ(v)

Liv
, (A.14)
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and since our model does not allow more than one active site in any light con-

figuration, in this case the following expressions determine the dynamics in the

s active site in a way that is consistent with the condition of probability conser-

vation:

d
dt
ρ(s)

Dis
(t) =0, (A.15)

d
dt
ρ(v)

Liv
(t) =

∑
r,iv

(
l(v)
ivrρ

(v)
Lr
− l(v)

riv
ρ(v)

Liv

)
+ kDiv

ρDiv
− kLiv

ρLiv
. (A.16)

By substituting Eqs. (A.15) and (A.16) into Eq. (A.14) we obtain

d
dt

(
ρ(1)

Di1
. . . ρ(s)

Dis
. . . ρ(v)

Liv
. . . ρ(N)

DiN

)
= +

∑
r,iv

l(v)
ivrρ

(1)
Di1
. . . ρ(s)

Dis
. . . ρ(v)

Lr
. . . ρ(N)

DiN

−
∑
r,iv

l(v)
riv
ρ(1)

Di1
. . . ρ(s)

Dis
. . . ρ(v)

Liv
. . . ρ(N)

DiN

+ kDiv
ρ(1)

Di1
. . . ρ(s)

Dis
. . . ρ(v)

Div
. . . ρ(N)

DiN

− kLiv
ρ(1)

Di1
. . . ρ(s)

Dis
. . . ρ(v)

Liv
. . . ρ(N)

DiN

or in the matrix form

d
dt
|P(s)

L (t)〉 = −
(
−K(s)

D , 0, . . . , 0 , K(s)
L + Γ

(s)
L , . . . , 0

)
|P(t)〉,

for all s. Finally, the differential equation of evolution for the state vector |P(t)〉

is

d
dt
|P(t)〉 = −



KD + ΓD −K(1)
L · · · −K(s)

L · · · −K(N)
L

−K(1)
D K(1)

L + Γ
(1)
L · · · 0 · · · 0

...
...

. . .
...

...
...

−K(s)
D 0 · · · K(s)

L + Γ
(s)
L · · · 0

...
...

...
...

. . .
...

−K(N)
D 0 · · · 0 · · · K(N)

L + Γ
(N)
L



|P(t)〉 (A.17)

73



At equilibrium, the following relations between state vectors hold

(KD + ΓD)|Peq
D 〉 =

N∑
s=1

K(s)
L |P

(s),eq
L 〉 (A.18)

K(s)
D |P

eq
D 〉 = (K(s)

L + Γ
(s)
L )|P(s),eq

L 〉. (A.19)

This is indeed in agreement with the condition of probability conservation at

each active site. From Eq. (A.17) we can define the following matrices

WDD =KD + ΓD WDL =

[
K(1)

L · · · K(s)
L · · · K(N)

L

]
(A.20)

WLD =



K(1)
D

...

K(s)
D

...

K(N)
D


WLL =



K(1)
L + Γ

(1)
L · · · 0 · · · 0

...
. . .

...
...

...

0 · · · K(s)
L + Γ

(s)
L · · · 0

...
...

...
. . .

...

0 · · · 0 · · · K(N)
L + Γ

(N)
L


(A.21)

The matrix WLD contains all the kinetic rate constants for transitions from any

D substate to any L substate. WDD, WDL and WLL could be interpreted similarly.

Furthermore, the following equalities should hold at equilibrium

WDD|P
eq
D 〉 =WDL|P

eq
L 〉 (A.22)

WLL|P
eq
L 〉 =WLD|P

eq
D 〉 (A.23)

〈1|WDD|P
eq
D 〉 = 〈1|KD|P

eq
D 〉 =

N∑
s=1

〈1|K(s)
L |P

(s),eq
L 〉 = 〈1|WLL|P

eq
L 〉 (A.24)
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A.2 Relation between GD(tD) and gD(tD).

In this section we derive Eq. (2.76) and (2.77) for the model of N uncorrelated

active sites. First observe that

〈1|WDD|PD〉 =〈1|KD + ΓD|P
eq
D 〉 = 〈1|KD|P

eq
D 〉

=

2N∑
i=1

N∑
s=1

k(s)
Dis
ρDi1

. . . ρDis
. . . ρDiN

=

N∑
p=0

(
N
p

) (
pkD1 + (N − p)kD2

)
ρ

p
D1
ρ

N−p
D2

=

N∑
p=0

(
N
p

)
pkD1ρ

p
D1
ρ

N−p
D2

+

N∑
p=0

(
N
p

)
(N − p)kD2ρ

p
D1
ρ

N−p
D2

=NkD1ρD1

N∑
p=1

(N − 1)!
(p − 1)!(N − p)!

ρ
p−1
D1
ρ

N−p
D2

+

NkD2ρD2

N−1∑
p=0

(N − 1)!
p!(N − (p + 1))!

kD2ρ
p
D1
ρ

N−(p+1)
D2

=N(kD1ρD1 + kD2ρD2)(ρD1 + ρD2)
N−1

=N〈1|KD|p
eq
D 〉〈1|p

eq
D 〉

N−1

Now, consider the eigenvalue equations (KD + ΓD)|rα〉 = λα|rα〉 and 〈lα|(KD + ΓD) =

λα〈lα|. Thus, for α = α1 . . . αN , we let |Rα〉 be a vector of dimension nN whose i-th

component is given by r(1)
α(1),i1

. . . r(N)
α(N),iN

. |Rα〉 is then an eigenvector of WDD as we
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will show next:

[(KD + ΓD)|Rα〉]i =

N∑
s=1

kDis
+

∑
r,is

d(s)
r is

 r(1)
α1,i1

. . . r(s)
αs,is

. . . r(N)
αN ,iN
−

2N−1∑
j=0

N∑
s=1

d(s)
is js

(1 − δis, js)
∏
v,s

δ jviv

 r(1)
α1, j1

. . . r(N)
αN , jN

=

N∑
s=1

r(1)
α1,i1

. . . r(s)
αs,is

. . . r(N)
αN ,iN

kDis
+

∑
r,is

d(s)
r is

 r(s)
αs,is
−

N∑
s=1

r(1)
α1,i1

. . . r(s)
αs,is

. . . r(N)
αN ,iN

∑
r,is

d(s)
is rr

(s)
αs,r

=

N∑
s=1

r(1)
α1,i1

. . . r(s)
αs,is

. . . r(N)
αN ,iN


kDis

+
∑
r,is

d(s)
r is

 r(s)
αs,is
−

∑
r,is

d(s)
is rr

(s)
αs,r


=

N∑
s=1

λ(s)
αs

r(1)
α1,i1

. . . r(N)
αN ,iN

=

 N∑
s=1

λ(s)
αs

 |Rα〉i.

We can use this fact to rewrite the denominator and numerator in gD(t) as fol-

lows

〈1|e−(KD+ΓD)t|Peq
D 〉 =

∑
α

〈1|Rα〉e−λαt〈Lα|P
eq
D 〉

=
∑
α

〈1|Rα〉

 N∏
i=1

e−λαi t

 〈Lα|Peq
D 〉

and after some algebra

=〈1|e−(KD+ΓD)t|peq
D 〉

N = 〈1|gD(t)|peq
D 〉

N .
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A.3 ∆t̄D<(T ) for a catalyst with N independent active sites

In this Appendix we illustrate the derivation of Eq. (2.84).

∆t̄D<(T ) =

〈1|Peq
D 〉

〈1|WDD |P
eq
D 〉

〈1|GL(T )WLL |P
eq
L 〉

〈1|WLL |P
eq
L 〉
−

∫ ∞
0

dtD
〈1|GD(tD)WDLGL(T )|Peq

L 〉

〈1|WLL |P
eq
L 〉

1 − 〈1|GL(T )WLL |P
eq
L 〉

〈1|WLL |P
eq
L 〉

(A.25)

=

〈1|Peq
D 〉

〈1|WDD |P
eq
D 〉
〈1|GL(T )WLL|P

eq
L 〉 −

∫ ∞
0

dtD〈1|GD(tD)WDLGL(T )|Peq
L 〉

〈1|WLL|P
eq
L 〉 − 〈1|GL(T )WLL|P

eq
L 〉

(A.26)

=

〈1|Peq
D 〉

〈1|WDD |P
eq
D 〉
〈1|GL(T )WLL|P

eq
L 〉 − 〈1|W

−1
DDWDLGL(T )|Peq

L 〉

〈1|WLL|P
eq
L 〉 − 〈1|GL(T )WLL|P

eq
L 〉

(A.27)

=

〈1|Peq
D 〉

〈1|WDD |P
eq
D 〉
〈1|WDLGL(T )|Peq

L 〉 − 〈1|W
−1
DDWDLGL(T )|Peq

L 〉

〈1|(I − GL(T ))WLL|P
eq
L 〉

(A.28)

=
〈1|(It̄(N)

D −W−1
DD)WDLGL(T )|Peq

L 〉

〈1|(I − GL(T ))WLL|P
eq
L 〉

. (A.29)
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A.4 ∆t̄(N)
D<(T ) close to the static limit

In this section we derive the expression for ∆t̄(N)
D<(T ), in the case m = 2 presented

in Eq. (2.85) from Eq. (2.84). First observe that the denominator of Eq. (2.84) in

the static limit is

〈1|(I − GL(T ))WLL|P
eq
L 〉 =

(
〈1|(I − eK(1)

L )K(1)
L ), . . . , 〈1|(I − eK(N)

L )(K(N)
L )

)
|Peq

L 〉 (A.30)

=

N∑
s=1

〈1|(I − eK(s)
L )(K(s)

L )|P(s)
L 〉 (A.31)

=

N∑
s=1

2N∑
i=1

(1 − e−k(s)
Lis

t)(k(s)
Lis

)ρDi1
. . . ρLis

. . . ρDiN
(A.32)

=

N∑
s=1

(
(1 − e−kL1 T )kL1ρL1 + (1 − e−kL2 T )kL2ρL2

)
(A.33)

×

2N−1∑
i=1

ρ(1)
Di1

(t) . . . ρ(s)
Dis

(t) . . . ρ(N)
DiN

(t) (A.34)

=

N∑
s=1

(
(1 − e−kL1 T )kL1ρL1 + (1 − e−kL2 T )kL2ρL2

)
(A.35)

×

N−1∑
p=0

(
N − 1

p

)
ρ

p
D1
ρ

N−1−p
D2

(A.36)

=N〈1|(I − e−KLT )KL|p
eq
L 〉〈1|p

eq
D 〉

N−1. (A.37)
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For the numerator of Eq. (2.84) we have that

〈1|(I〈tD〉 −W−1
DD)WDLGL(T )|Peq

L 〉 →〈1|(I〈tD〉 − K−1
D )(I, . . . , I)|KLe−KLT |Peq

L 〉 (A.38)

=〈1|(I〈tD〉 − K−1
D )(K(1)

L e−K(1)
L T , . . . ,K(N)

L e−K(N)
L T |Peq

L 〉

(A.39)

=〈1|(I〈tD〉 − K−1
D )

N∑
v=1

K(v)
L e−K(v)

L T |P(v)eq
L 〉 (A.40)

=

N∑
v=1

2N∑
i=1

〈t(N)
D 〉 −

 N∑
s=1

kDis

−1× (A.41)

k(v)
Liv

e−k(v)
Liv

T
ρ(1)

Di1
. . . ρ(v)

Liv
. . . ρ(N)

DiN
. (A.42)

Observe that when T = 0 this expression vanishes. We define pi as the number

of is = 0 when we write i in basis 2 and x0 = ρD1/〈1|ρD〉 then

N∑
v=1

2N∑
i=1

〈t(1)
D 〉

N
−

1
pikD1 + (N − pi)kD2

 k(v)
Liv
ρLiv

ρ(1)
Di1
. . . ρ(v)

Div
. . . ρ(N)

DiN
(A.43)

=

N∑
v=1

2N∑
i=1

k(v)
Liv
ρLiv

ρ(1)
Di1
. . . ρ(v)

Div
. . . ρ(N)

DiN

Nx0kD1 + (N − Nx0)kD2

−

N∑
v=1

2N∑
i=1

k(v)
Liv
ρLiv

ρ(1)
Di1
. . . ρ(v)

Div
. . . ρ(N)

DiN

pikD1 + (N − pi)kD2

(A.44)

=

N∑
v=1

2N−1∑
i=1

(k(v)
L1
ρL1 + k(v)

L2
ρL2)ρ

(1)
Di1
. . . ρ(v)

Div
. . . ρ(N)

DiN

Nx0kD1 + (N − Nx0)kD2

−

N∑
v=1

2N∑
i=1

k(v)
Div
ρ(1)

Di1
. . . ρ(N)

DiN

pikD1 + (N − pi)kD2

(A.45)

=

N∑
v=1

2N−1∑
i=1

(ρD1 + ρD2)ρ
(1)
Di1
. . . ρ(v)

Div
. . . ρ(N)

DiN

N
−

2N∑
i=1

(pikD1 + (N − pi)kD2)ρ
(1)
Di1
. . . ρ(N)

DiN

pikD1 + (N − pi)kD2

(A.46)

=N
〈1|peq

D 〉
N

N
− 〈1|peq

D 〉
N = 0. (A.47)
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In light of this result, we can write

〈1|(I〈tD〉 −W−1
DD)WDLGL(T )|ρeq

L 〉 → (A.48)

N∑
v=1

2N−1∑
i=1

t̄(N)
D −

 N∑
s=1

kDis

−1 k(v)
Liv

e−k(v)
Liv

T
ρ(1)

Di1
. . . ρ(v)

Liv
. . . ρ(N)

DiN
(A.49)

=

N∑
v=1

2N−1∑
i=1

(
t̄(N)
D −

1
(1 + pi)kD1 + (N − pi − 1)kD2

)
k(v)

L1
e−k(v)

L1
T
ρ(1)

Di1
. . . ρ(v)

L1
. . . ρ(N)

DiN

(A.50)

+

N∑
v=1

2N−1∑
i=1

(
t̄(N)
D −

1
pikD1 + (N − pi)kD2

)
k(v)

L2
e−k(v)

L2
T
ρ(1)

Di1
. . . ρ(v)

L2
. . . ρ(N)

DiN
(A.51)

=

N∑
v=1

(e−k(v)
L2

T
− e−k(v)

L1
T )

2N−1∑
i=1

(
t̄(N)
D −

1
pikD1 + (N − pi)kD2

)
k(v)

L2
ρ(1)

Di1
. . . ρ(v)

L2
. . . ρ(N)

DiN

(A.52)

=N(e−kL2 T − e−kL1 T )kL2ρL2

N−1∑
p=0

(
N − 1

p

)  t̄(1)
D

N
−

1
pkD1 + (N − p)kD2

 ρp
D1
ρ

N−1−p
D2

(A.53)

=(e−kL2 T − e−kL1 T )(kD2 − kD1)t̄
(1)
D kL2ρL2

N−1∑
p=0

(
N − 1

p

)
Nx0 − p

(N − p)kD2 + pkD1

ρ
p
D1
ρ

N−1−p
D2

(A.54)

We can further simplify this expression by writing the polynomial as the integral

of an appropriate function. We use the following identity

1
a

=

∫ ∞

0
dte−at. (A.55)
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Therefore

(kD2 − kD1)
N−1∑
p=0

(
N − 1

p

)
Nx0 − p

(N − p)kD2 + pkD1

ρ
p
D1
ρ

N−1−p
D2

= (kD2 − kD1)Nx0

N−1∑
p=0

(
N − 1

p

)
1

(N − p)kD2 + pkD1

ρ
p
D1
ρ

N−1−p
D2

+ 〈1|peq
D 〉

N−1 −

N−1∑
p=0

(
N − 1

p

)
NkD2

(N − p)kD2 + pkD1

ρ
p
D1
ρ

N−1−p
D2

= (kD2 − kD1)Nx0
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(
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p

) ∫ ∞

0
e−[(N−p)kD2 +pkD1 ]tdtρp
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ρ

N−1−p
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+ 〈1|peq
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N−1−p
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= (kD2 − kD1)Nx0

∫ ∞

0
e−kD2 t〈1|e−KDt|peq

D 〉
N−1dt + 〈1|peq

D 〉
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− NkD2

∫ ∞

0
e−kD2 t〈1|e−KDt|peq

D 〉
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= −
N

t̄(1)
D

∫ ∞

0
e−kD2 t〈1|e−KDt|peq

D 〉
N−1dt + 〈1|peq

D 〉
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to finally obtain

∆t̄(N)
D<(T ) =

(e−kL2 T − e−kL1 T )t̄(1)
D kL2ρL2

N〈1|(I − e−KLT )KL|p
eq
L 〉

1 − N

t̄(1)
D

∫ ∞

0
e−kD2 tED(t)N−1dt

 . (A.57)

Observe also that

Nx0 − p
(N − p)kD2 + pkD1

=
x0 −

p
N

(1 − p
N )kD2 +

p
N kD1

(A.58)

<
x0

(1 − p
N )kD2 +

p
N kD1

(A.59)

<
ρD1

〈1|ρD〉

N
kD2

, (A.60)

which after substitution implies that

∆t̄(N)
D<(T ) < ∆t̄(1)

D<(T ). (A.61)
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CHAPTER 3

DWELL-TIME CORRELATION ANALYSIS

In the two previous chapters we learned that the analysis of density func-

tions, mean dwell times and their constrained counterparts can provide evi-

dence of the existence of intermediate states, conformers and other species that

are inaccessible from a traditional macroscopic kinetic experiment. We learned

that the statistical analysis of fluorescence trajectories can reveal complex ki-

netic schemes with multiple reaction paths for the same chemical process. In

particular, we found in Chapter 2 that we can filter the information content of

the fluorescence trajectories collected in experiments, such as the catalytic trans-

formation by single nanoparticles studied by Chen[51], by calculating the mean

value of a selected group of dwell times. The difference between the total mean

and any of the constrained mean dwell times is an indicator of the memory

along the trajectory. Here, we understand memory as the dependence of one

event (reaction, emission, desorption, . . . ) on its history and preceding events.

Traditionally, memory effects have been measured by studying several indica-

tor functions among which the intensity and dwell-time correlation functions

have been extensively implemented [51, 29].

In the present chapter we will study the dwell-time correlation function in

single-molecule fluorescence spectroscopy for the system with two states that

we investigated in Chapters 1 and 2. To our knowledge, the first formal treat-

ment of the correlation functions was undertaken by Cao [10] in 2000, motivated

by the experiments on single-enzyme catalysis done by Lu, Xie and coworkers

[29]. From his calculations for the on-time correlation function for the two-

conformational-channel model Cao was able to observe that the value of this
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function is sensitive not only to the reaction rate constants for transitions from

the on to the off but also to those for the opposite transition. In fact, in a sub-

sequent work[54], Cao found that for the same model the correlation function

decays as the powers of a ratio of rate constants (see in Ref. [54] section IV A,

Eq. (32) ). Working from a different perspective, Gopich and Szabo [20] were

able to find a more general result. To obtain the statistics of transitions, Gopich

and Szabo considered the probability that no monitored transitions (i.e. reac-

tions leading to a change in the state) occur in a time interval. This probability

was calculated by making the monitored probability irreversible, as shown in

Eq. (2.3) in reference [20]. The mathematical formulation of this problem differs

from that described in Chapters 1 and 2, in that the rate constants of the moni-

tored transitions removed from the equation of evolution for the total probabil-

ity vector. From this, Gopich and Szabo calculated the correlation function of

a two-channel model (in section VI B of Ref. [20]). This correlation function is

found to decay to zero as the powers of ratios of rate constants (See Eq. (6.16) in

this reference). These two results are very close to our findings in Sec. 3.3.1 and,

in fact, they can be obtained as limiting cases of the expression in Eq. (3.20).

Experimentally[51, 29], time correlation functions are fitted to exponential

functions of the form e−m/m0 where m is the number of events separating two

dwell times and m0 is a constant. Associated with a correlation function there is

a correlation time, which is measure of time length of memory effects. Several

definitions are possible. In any case, a universal measure of the correlation time

is the constant m0. Actually m0 can be considered as having for units “number of

events” and those can be transformed in seconds by multiplying this constant

by the mean time of the event. We will find in this Chapter that we can inter-

pret in several instances the parameter m0 in terms of the rate parameters of the
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model by simple relations.

While several other authors have studied this indicator [51, 29] to some ex-

tent and for different models and experimental systems [49], we found that none

of them is in place to describe the complete set of qualitative and quantitative

properties observed in single nanocatalysis. For one reason we can anticipate

this: nanoparticles as heterogeneous catalysts are different from enzymes in that

they have a multitude of active sites that, as we concluded in Chapter 2, are

correlated. Since our work will essentially extend and further improve previ-

ous findings from Cao[10] and others, connections with results in the literature

are expected. For this reason, it is important to mention the work of Vlad and

Ross[45] on intensity correlation functions of the fluorescence signal. In their

treatment of the kinetic equations, solution are given in terms of Green func-

tions. These Green functions are determined by the spectra of a stochastic ma-

trix and, as a consequence, the correlation on fluorescence intensity is a func-

tion of the eigenvalues of the same stochastic matrix. This is perhaps, the first

instance in the literature where elements of theory of Markov process are put in

the description of single-molecule dynamics. But not the last, as Ha et. al. [38]

have analyzed single-molecule FRET trajectories using hidden Markov model-

ing in 2006. More recently Kou and coworkers[12] have studied both dwell-time

and intensity correlations from a theoretical perspective. In Sec. 3.2 of Ref. [12]

the correlation of turnover times is described by a stochastic matrix and Eq. (3.4)

shows that this correlation should decay as the powers of these eigenvalues. In-

teresting from this study is that it explores the role that substrate concentration

can play on the correlation properties of Michaelis-Menten mechanism for a sin-

gle enzyme subject to conformal fluctuations.
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Our investigations will begin in Sec. 3.1 with the introduction of density

functions for arbitrary pair of dwell times and the definition of the turnover

matrix. Then, in Sec. 3.2 we start our study of dwell-time correlations by infer-

ring some generalities about them. Next in Secs. 3.3, 3.4 and 3.5 we study the

two and three-channel models for a catalyst with a single site and also models

with many active sites, each one with two substates. After this, in Sec. 3.5 we

explore how the correlation function and the constrained mean dwell times are

related, at the same time we extend our understanding of the qualitative prop-

erties of the constrained means, this time for models fluctuating among three

substates.

3.1 More about joint density functions

From a single-molecule fluorescence trajectory with two states, it is possible to

construct a bidimensional histogram for any dwell-time pair, with the condition

that the two dwell times in consideration are distant a fixed number of events

and the trajectory is long enough to provide good statistics. Correspondingly,

we must be able to define a joint density function describing the same proper-

ties as such histogram. In chapter 2, in Eqs. (2.4) and (2.5) or more generally for

many-active-site systems in Eqs. (2.64) and (2.65), we defined joint density func-

tions only for consecutive dwell. The definitions of these functions, as described

in Sec. 2.1, take into account the propagation of the system along a sequence of

events. Multivariate density functions are expressions for the propagation of

the initial vector along a sequence of events, with propagators given by GD(tD)

and GL(tL) and matrices for changes in the state WDL and WLD. As we can con-

sider non-consecutive events, four are the number of dwell-time pairs for which
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we can define joint density functions, to wit, (tD, tD), (tD, tL), (tL, tD) and (tL, tL).

For a sequence of m events, say D1 → L2 → · · · → Dm → Lm+1 → Dm+1, we can

define the multidimensional density function

F(DL)mD(tD1 , tL2 , . . . , tLm+1 , tDm+1) =

〈1|WLDGD(tDm+1)
(∏m

i=1 WDLGL(tLi)WLDGD(tDi)
)

WDL|pL〉

〈1|WDD|PD〉
, (3.1)

and from this, we can obtain the joint density function for the dwell times t(m+1)
D

and t(1)
D after integration over all the intermediate events. This amounts to sum-

ming over all possible realizations of the same sequence of events, with differ-

ent times. As a result, the joint density functions for two dark dwell times that

are separated by m turnovers and their corresponding generating functions are

given by

F(m)
D (t(m+1)

D , t(1)
D ) =

〈1|WDDe−WDDt(m+1)
D S LMm−1

L WLDe−WDDt(1)
D WDD|P

eq
D 〉

〈1|WDD|P
eq
D 〉

(3.2)

=
〈1|WDDe−WDDt(m+1)

D Mm−1
D S LWLDe−WDDt(1)

D WDD|P
eq
D 〉

〈1|WDD|P
eq
D 〉

, (3.3)

and

G(m)
D (t(m+1)

D , t(1)
D ) =

〈1|e−WDDt(m+1)
D S LMm−1

L WLDe−WDDt(1)
D |Peq

D 〉

〈1|WDD|P
eq
D 〉

(3.4)

=
〈1|e−WDDt(m+1)

D Mm−1
D S LWLDe−WDDt(1)

D |Peq
D 〉

〈1|WDD|P
eq
D 〉

, (3.5)

for m ≥ 1. In these expressions we have introduced two new matrices: the

turnover matrix for the dark state MD and the turnover matrix for the light

state ML. They are important elements of the theory that we will develop here

to understand dwell-time correlation in the catalytic transformations on single

nanoparticles. We have also introduce the auxiliary matrices S D and S L, as they
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will frequently appear in this study. In terms of the set of rate constants associ-

ated with the chemical process these new elements are given by

MD =WDLW−1
LLWLDW−1

DD, (3.6)

S D =WLDW−1
DD, (3.7)

and ML, S L are obtained after index substitution D ⇐⇒ L. Observe that MD =

S LS D. In the next section we will show how these matrices are useful in the

description of the qualitative properties of the correlation function.

3.2 Dwell-time correlation functions

Dwell times are random variables whose stochastic properties are given by mul-

tiexponential density functions. The correlation function between two different

dwell times has been used as a measure of memory effects[29]. Formally this co-

efficient estimates the linear dependence between two different times and can

vary continuously between -1 and 1. For the case of the dark dwell time, with

mean value tD, a positive value in the correlation coefficient between two sub-

sequent times, say t(1)
D and t(2)

D , predicts that if t(1)
D > tD is observed, then it is most

likely that a t(2)
D > tD is also observed. In contrast, a negative value in the cor-

relation coefficient implies that in the second case the most likely event is the

opposite, to wit, t(2)
D < tD.

In general, the correlation for two dark dwell times t(1)
D , t(m+1)

D that are distant

apart m turnovers is given by

CD(m) =
t(1)
D t(m+1)

D − tD
2

t2
D − tD

2
, (3.8)
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with m ≥ 1. We can calculate these means in terms of the joint density func-

tion F(m)
D in eq. (3.2) and the density function FD in Eq. (2.58) according to the

following expressions

t(1)
D t(m+1)

D =

∫ ∞

0
dt(1)

D

∫ ∞

0
dt(m+1)

D t(1)
D t(m+1)

D F(m)
D (t(1)

D , t(m)
D ), (3.9)

tD =

∫ ∞

0
dtD tD FD(tD), (3.10)

and conclude that the difference t(1)
D t(m+1)

D − tD
2 depends on the powers of either

the turnover matrix MD or the turnover matrix ML. A noticeable fact is that Eq.

(3.8) is independent of whether we use MD or ML in its computation, as MD and

ML are similar matrices with similarity transformation

S −1
D MLS D = MD. (3.11)

While similar matrices have the same eigenvalues[32], their eigenvectors are

different but they can be transformed into each other by means of the similar-

ity relation (3.11). For instance, if MD|RD
i 〉 = λi|RD

i 〉 and ML|RL
i 〉 = λi|RL

i 〉, then

|RL
i 〉 ∝ S D|RD

i 〉. We can find the spectral decomposition of MD after choosing

eigenvectors that are normalized according to the rule 〈LD
i |R

D
j 〉 = δi j, and then

we can write

MD =
∑

i

|RD
i 〉λi〈LD

i |. (3.12)

It follows that CD(m) is a function of the power of the eigenvalues of the turnover

matrix. In particular, one should notice that

〈1|MD =〈1|, (3.13)

MDWDL|pL〉 =WDL|pL〉, (3.14)

and therefore 1 is always an eigenvalue of the turnover matrix. In the cases that

will be discussed below, WDD and WLL are M-matrices[4] and we can use this
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fact to show that MD and ML are positive matrices[6]. As a consequence, we can

state that these turnover matrices are left-stochastic[5] and they model single-

nanoparticle trajectories as Hidden Markov process. Besides, we can appeal to

the Perron-Frobenius theorem to say that every eigenvalue of the turnover ma-

trix is less that or equal to one, in norm. We elaborate on the above statements

in Appendix B.1. These properties turn out to be very nice tools for the study of

correlation functions in simple models, as we will illustrate in next sections.

3.3 Catalyst with one active site

We start our discussion about correlation in different kinetic models by assum-

ing that our system has only one active site. This is the case of many enzymes.

As we assumed before, the active site undergoes transformations between a

dark and a light state and each state has n substates. Under these conditions,

equations (2.50)-(2.63) are written in terms of the matrices WDD = KD + ΓD,

WLL = KL + ΓL, WDL = KL and WLD = KD. After some algebraic manipulation(see

Appendix B.2), we obtain the following expressions for the covariance of two

dwell times corresponding to the same or different states:
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t(1)
D t(m+1)

D − tD
2

=
1

〈1|KD|pD〉

N−1∑
i=1

liλ
m+1
i 〈1|K−1

D |R
L
i 〉〈L

D
i |pD〉 (3.15)

t(1)
L t(m+1)

L − tL
2

=
1

〈1|KL|pL〉

N−1∑
i=1

riλ
m+1
i 〈1|K−1

L |R
D
i 〉〈L

L
i |pL〉 (3.16)

t(1)
D t(m+1)

L − tD tL =
1

〈1|KD|pD〉

N−1∑
i=1

λm+1
i 〈1|K−1

L |R
D
i 〉〈L

D
i |pD〉 (3.17)

t(1)
L t(m+1)

D − tD tL =
1

〈1|KD|pD〉

N−1∑
i=1

λm+1
i 〈1|K−1

D |R
L
i 〉〈L

L
i |pL〉 (3.18)

where li = 1/〈LD
i |S L|RL

i 〉, ri = 1/〈LL
i |S D|RD

i 〉 and λirili = 1. Correlation functions

can be written as a ratio between a covariance and the standard deviation of

each variable. An interesting conclusion can be drawn at this point about these

correlation functions: In the absence of heterogeneity in the reaction rate con-

stants for transitions from the dark to the light state (i.e. kDi = kD), one has that

〈1|K−1
D |R

L
i 〉 = k−1

D 〈1|R
L
i 〉 = 0 for all i and, as a consequence, t(1)

D t(m+1)
D − tD

2
= 0 and

CD(m) = 0 for all m ≥ 1. This fact indicates that correlation is due not only to

the existence of multiple channels or reaction paths, but also as a result of the

differences in the kinetic properties among them. Besides, it is also the case that

the correlation function will be independent of m in the limit of multiple chan-

nels without substate-substate transformation. We will make more precise this

statement below when we study in detail some explicit models.

3.3.1 Two-channel model

We consider the kinetic scheme for one active site and two substates described in

Figure (1.7). This is the smallest model for which we can expect correlation(see
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Appendix B.4). After substitution of Eq. (3.15) into Eq. (3.8) with n = 2 we obtain

CD(m) =λm+1 〈1|K−1
D |R

L〉〈LD|PD〉

〈1|KD|PD〉〈LD|S L|RL〉σ2
D

. (3.19)

Similar expressions follow for other correlation functions. Here, we notice again

that the decay in the correlation function is given by the powers of the unique

nontrivial eigenvalue λ of the turnover matrix MD = KL(KL + ΓL)−1KD(KD + ΓD)−1.

In fact, we can verify that

λ =
1(

1 + d21
kD1

+ d12
kD2

) (
1 + l21

kL1
+ l12

kL2

) , (3.20)

and thus we expect to find correlation when the time scales associated with tran-

sitions from the dark to the light state and vice versa are much shorter than the

time scales of internal transformations. When this is the case, we can approxi-

mate to an exponential function the decay of the correlation function, i.e.

λm+1 ∼ e
−

(
d21
kD1

+
d12
kD2

+
l21
kL1

+
l12
kL2

)
(m+1)

. (3.21)

This prediction is in agreement with the phenomenological observation in some

systems that CD(m) ∼ e−m/mD , where mD is a constant[29, 51, 21]. However, we

must stress that as the rates of internal dynamics increase the exponential ap-

proximation to the decay deviates from the exact rate of decay. In Figure 3.1, we

have investigated this numerically. We observe that the exponential decay ap-

proximation, as presented in eq. (3.21), is in excellent agreement with the exact

decay for slowly decaying correlation functions (λ > 0.8).

The constant mD has been experimentally measured before in nanoparticles[51]

and enzymes[29]. This parameter is strongly associated with the concept of cor-

relation time. Here we give a physical interpretation for it that is valid when

this parameter is large and a 2-channel model is describes all the correlation
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Figure 3.1: Eigenvalue λ as defined in Eq. (3.20) for a 2-channel model as
a function of the rate constant for internal transformation d.
The exact decay is presented in solid line and the exponential
approximation is represented by a dashed line. Parameters for
this model are kD1 = 1, kD2 = 1/10, kL1 = 10, kL2 = 100 and
di j = li j = d .

properties:

1
mD

=
d21

kD1

+
d12

kD2

+
l21

kL1

+
l12

kL2

. (3.22)

One should also notice that mD = mL = mDL = mLD for every model with two

substates. This is a simple consequence of all four rate constants decaying as

the powers of the same parameter λ. Therefore a two-channel model does not

describe any system in which the correlation functions show different decays.

The amplitude of the correlation function is the limiting value that the cor-

relation coefficient takes when m goes to zero. We notice again that the explicit

computation of the factor 〈1|K−1
D |R

l
i〉 leads to the conclusion that in the absence

of heterogeneity in the channels (i.e. kD1 = kD2), the dark-dwell-time correla-
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tion should vanish as well as one of the crosscorrelation functions, independent

of the heterogeneity that might exist in the rate constants kL1 and kL2 . A simi-

lar conclusion holds in the absence of dynamic heterogeneity in the transitions

from the light to the dark state for the corresponding correlation functions.

Another interesting property of two channel systems is that a large ampli-

tude in the autocorrelation function for the dark and light dwell times, with

slow rate of decay, necessary implies crosscorrelation between these times. This

remark is an interpretation of the following relation among correlation functions

CD(m)CL(m) =
1
λ
CLD(m)CDL(m), (3.23)

that is valid for every two channel model. Expression (3.23) provides another

way to test if an experimental system can be fully described by a model with

two substates.

The static limit approximation is an idealization of the dynamical evolution

of systems for which internal transformations are significantly slower than those

that lead to transitions to different states. In this limit, we neglect the internal

dynamics by setting the corresponding rate constants to zero in the time propa-

gation of the state vectors |pD〉 and |pL〉. We will find soon how this assumption

simplifies our treatment of correlation functions at the same time revealing in-

teresting aspects of them. Under the static limit approximation, the equilibrium

condition for the vector of probabilities is given by KD|pD〉 = KL|pL〉, which im-

plies detailed balance for every channel.

From Eqs. (3.21) and (3.22), we infer that systems exhibiting long correlation

time can be well described by considering the static limit approximation. In that
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limiting case the correlation function takes the form (see Appendix B.3)

CD(m) =
1

(ρD1kD1 + ρD2kD2)2

λm

σ2
D

(
ρD2ρD1

kD1kD2
(kD2 − kD1)2

)
, (3.24)

where σ2
D is given by Eq. (1.32). We immediately see that CD(m) is a quadratic

function of the difference kD1 − kD2 when this difference is small, and that CD(m)

is always positive. Similarly, CL(m) is proportional to (kL2 − kL1)
2. In Fig. 3.2, we

show for a sample model the value of the dark-dwell-time correlation coefficient

for dwell times that occur immediately one after the other, as calculated from

the exact expression given by Eq. (3.19) with m = 1 and the static limit case

described in Eq. (3.24). Notice that we have set three of the rate constants of

internal transformations to the same value, and we have estimated the fourth

rate constant so as to satisfy the condition of microscopic reversibility. Although

this choice of the rate constants may not be close to the conditions demanded

in the static limit when the value of kD1 is small, we observe that eq. (3.24)

is in excellent agreement with the exact solution. Deviations are only evident

when the difference in the kD constants are large. We have not included our

calculations for smaller values in the internal rate constant, as they are nearly

indistinguishable from the exact solution for the set of parameters considered.

The reader should notice that both crosscorrelation functions are propor-

tional to the product (kD2 − kD1)(kL2 − kL1) and as a consequence, their sign is

a measure of the relative proportion of the four reaction rate constants in the

model. For instance, we expect negative crosscorrelations in the case that fast

transitions from the dark to the light state are coupled to slow reactions from

the light to the dark state. In such a case, we can say that the relative propor-

tion among reaction rate constants is kD1 < kD2 and kL1 > kL2 . On the contrary, if

slow reactions happen through the same channel then positive crosscorrelation

should be observed. Another interesting observation about crosscorrelations in
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Figure 3.2: CD(1) for a 2-channel model as a function of the rate constant
kD1 . The solid line corresponds to the exact value for the cor-
relation, calculated according to (3.19). The dashed line shows
the static limit estimation (see Eq. (3.24)). Parameters for this
model are kD2 = 1/2, kL1 = 1, kL2 = 2, d21 = d12 = l12 = 1/10 and
l21 = 1/(40kD1).

the static limit is that they should be almost the same, i.e. CLD(m) ∼ CDL(m).

We close this section by presenting numerical calculations in Fig. 3.3 that

display some of the characteristics that we have just described. The dwell-time

correlation functions have been calculated without approximations and one of

the internal rate constants has been set so that the condition of microscopic re-

versibility holds for this model. Notice that we can interpret the qualitative

properties of the correlation functions for this models based on our study of

models close to the static limit.
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3.3.2 Three-channel model

Autocorrelation functions for the dark and light dwell times decay with differ-

ent rates[51], as we pointed out in Chapter 1, Sec. 1.2 and in Fig. 1.6. In light of

our discussion above in Sec. 3.3.1 we must conclude that a two channel model is

not sifficient for the complete description of the dwell-time correlation proper-

ties observed in single nanoparticle catalysis. The assumption of the existence of

an additional light or dark substate, but not in both, does not break the symme-

try that a two-channel system imposes in the rates of decay of each correlation

function. This can be anticipated by using the same ideas as in Appendix B.4.

For a system with 3 substates, MD is now a 3×3 matrix with two eigenvalues

λ1 and λ2 different from 1. In terms of these parameters the dark-dwell-time

correlation function is

CD(m) =
1

〈1|KD|pD〉σ
2
D

(
λm

1

〈1|K−1
D |R

L
1〉〈L

D
1 |pD〉

〈LD
1 |S L|RL

1〉
+ λm

2

〈1|K−1
D |R

L
2〉〈L

D
2 |pD〉

〈LD
2 |S L|RL

2〉

)
. (3.25)

In general the decay of these functions is multiexponential. However, it is pos-

sible to find some three-channel models for which these functions have a nearly

monoexponential decay in both CD(m) and CL(m), with mD , mL. We stress the

fact that crosscorrelation is not observed in catalytic transformations by single

spherical nanoparticles. For a three channel system, Eq. (3.23) no longer holds,

opening the door for us to find autocorrelated systems without crosscorrelation

or, perhaps, negligible crosscorrelation. In Fig. 3.4 we show dwell-time correla-

tion functions for a model that has all these properties.

Rate constants for the model in Fig. 3.4 have been chosen so that the turnover

matrix has eigenvectors for which 〈1|K−1
D |R

L
2〉, 〈L

D
2 |pD〉, 〈1|K−1

L |R
D
1 〉 and 〈LL

1 |pL〉 are
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Figure 3.4: Dwell-time correlation functions for a three-channel model.
The solid line is the correlation function for dark dwell times,
the dashed line plots the correlation function for light dwell
times and plots in dotted lines are crosscorrelation functions.
Reaction rate constants for this model are kD1 = 0.7, kD2 = 0.7,
kD3 = 8000, kL1 = 0.5, kL2 = 8, kL3 = 0.941 and rate constants
for internal transformations are d21 = 0.25, d32 = 0.05, d13 = 0,
d12 = 0.117, d23 = 0.8, d31 = 0, l21 = 0.05, l32 = 0.01, l13 = 0,
l12 = 0.375, l23 = 0.1 and l31 = 0.

identically zero, or very small ( less that 10−3)1. Details on how these parameter

can be chosen are elaborated in Appendix B.5. When these factors are zero, the

autocorrelation functions decay given as the powers of different eigenvalues,

to wit, CD(m) ∼ λ(m+1)
1 and CL(m) ∼ λ(m+1)

2 , with the additional consequence of

setting to zero the amplitude of both crosscorrelation functions. For the example

in Fig. 3.4 we have that λ1 = 0.866 and λ2 = 0.560. Numerical explorations

reveal that it is possible to find more than one set of rate constants for a three-

channel system with similar correlation functions. This lack of determinacy is

1Observe that the turnover matrix MD, λ, |RD
i 〉 and 〈LD

i | are dimensionless.
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due to the size of the parameter space, that can have as many as 18 different rate

constants. Put another way, dwell-time correlation analysis does not provide a

unique model but gives information about the smallest number of substates

in which the system fluctuates, even when particular properties, such as null

crosscorrelations, are imposed in the model.

Other correlation scenarios are possible for three-channel systems, such as

autocorrelated models with CLD(m) = 0 and CDL(m) > 0 or, models that are cross-

correlated having zero autocorrelation. As we discussed in the previous section,

many of these scenarios are impossible for systems with two substates. In the

following, we will concentrate on the study of two specific cases: models with

negative autocorrelation and models with oscillations in one of the correlation

functions. While at the present moment we do not know of chemical systems

showing any of these characteristics, we want to understand under which con-

ditions or properties on the kinetic scheme they are possible. Below, we will

find that they are not expected to be very common as they demand very partic-

ular conditions in the set of rate constants that at the same time lead to very low

amplitudes or fast rates of decay. In Fig. 3.5 we present a model with negative

dark-dwell-time autocorrelation and positive light-dwell-time autocorrelation,

each with different rates of decay. This particular model also exhibits low cross-

correlation when compared with the light autocorrelation function and these

crosscorrelation functions have opposite signs. Each one of these characteris-

tics is only possible in a system that has at least three substates. Numerically,

we have found that in order to achieve negative correlations internal transfor-

mations should happen at the same rate of the reactions. In this example, this

is reflected in our choice of the magnitude for the nonzero internal rate con-

stants, which are comparable to the reaction rate constants of the same state.
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Figure 3.5: Dwell-time correlation functions for a three-channel model.
The solid line is the correlation function for dark dwell times,
the dashed line plots the correlation function for light dwell
times and plots in dotted lines are crosscorrelation functions.
Reaction rate constants for this model are kD1 = 5.5, kD2 = 5,
kD3 = 10, kL1 = 0.333, kL2 = 12, kL3 = 0.366 and rate con-
stants for internal transformations are d21 = d32 = d13 = 5,
d12 = d23 = d31 = 0, l21 = l32 = l13 = 0, l12 = l23 = l31 = 1.4.

Essentially, models with negative correlation are systems in which the inter-

nal dynamics competes with those processes that lead to a change in the state.

However, as we have numerically tested, not every model with competing dy-

namics exhibits negative correlation. In addition, under these conditions a fast

rate of decay is expected in every correlation plot. In order to experimentally

access these very low correlations, the experimentalist may have to collect long

trajectories or average over many equivalent trajectories, so as to minimize the

statistical error.

The system studied in Fig. 3.5 does not respect the principle of detailed bal-
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ance characteristic of systems in equilibrium. As a consequence, this kinetic

model can only represent chemical systems that are not in thermodynamic equi-

librium. Numerical explorations of three-channel models obeying the detailed

balance condition with negative autocorrelation have been found to also exhibit

very low amplitude in the correlation, in the order of 0.01 or lower. While our

exploration might not be conclusive, given the size of the space parameter of a

three channel system; it seems to be the case that microscopic reversibility leads

to very low correlations, whenever they are negative. Based on our interpreta-

tion of the correlation coefficient, it is possible that if two reactions, say from the

dark to the light state, happen through the same channel or reaction path with

times t(1)
D and t(2)

D , they will most likely be positively correlated as they will most

likely have the same deviation from the mean: either t(1)
D < t̄D and t(2)

D < t̄D or,

t(1)
D > t̄D and t(2)

D > t̄D. On the other hand, if these two reactions occur through

different channels and one of them has short reaction times while the other one

has long reaction times it is likely to observe a negative correlation coefficient,

as in this case we could observe either t(1)
D < t̄D and t(2)

D > t̄D or, t(1)
D > t̄D and

t(2)
D < t̄D. That is why internal dynamics have to be of the same order of magni-

tude than the reaction rates, otherwise it would not be possible to change from

one channel to the other. But microscopic reversibility implies that the average

rate of every process is equal to the average rate of its reverse process, and this

reduces the probability of a biased transition from one channel to another.

Correlation functions of three-channel models may decay with damped os-

cillations, as illustrated in Fig. 3.6. We have numerically found that oscillations

can be observed in models with internal dynamics of the same order of mag-

nitude as the reaction rates. However, as we discussed above, this also leads

to correlation functions with fast decays. If loops or cycles exist in the set of
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internal transformations, it is also possible that the eigenvalues of the turnover

matrix can be complex. We investigate this scenario by analyzing Eq. (3.25) as-

suming that the turnover matrix MD has complex eigenvalues. In this case, a

basic consequence of the fundamental theorem of algebra tells us that λ∗1 = λ2.

The eigenvectors for different eigenvalues can be obtained by conjugation: If

MD|RD
i 〉 = λi|RD

i 〉, then (
MD|RD

i 〉
)∗

=
(
λi|RD

i 〉
)∗

= λ∗i |R
D ∗
i 〉 (3.26)

=MD|RD ∗
i 〉. (3.27)

Therefore, coefficients in eq. (3.25) can be complex numbers as well, and in that

case they are the complex conjugate of each other. We can write

λ1 =re−iφ λ2 = re+iφ (3.28)

〈1|K−1
D |R

L
1〉〈L

D
1 |pD〉

〈LD
1 |S L|RL

1〉
=ae−iθ 〈1|K

−1
D |R

L
2〉〈L

D
2 |pD〉

〈LD
2 |S L|RL

2〉
=
〈1|K−1

D |R
L ∗
1 〉〈L

D ∗
1 |pD〉

〈LD ∗
1 |S L|RL ∗

1 〉
= ae+iθ (3.29)

with 0 ≤ r ≤ 1, a > 0, 0 ≤ φ < 2π and 0 ≤ θ < 2π; we find that the dark correlation

function for models with λ1 and λ2 complex, can be written as follows:

CD(m) =2 a rm+1 cos (φ(m + 1) + θ) (3.30)

While Eq. (3.30) suggests that one should observe damped oscillations in the

correlation function when the turnover matrix for the model has complex eigen-

values, we observe in Fig. 3.7 that this is not always the case, as we have

λ1 = 0.417e−0.17i for this model, with r = 0.417 and φ = 0.17. In the upper panel

of Fig. 3.7 we observe that for this model powers of r decay to zero before an

oscillation takes place, which will be induced by the factor cos(φ(m + 1)). Put

another way, the correlation time for this model, that is given by rm+1 is much

shorter than its period of oscillation (given by 2π/φ). The lower panel in Fig. 3.7

shows the four correlation plots for this model. We will find below an explana-

tion for this difference between the correlation time and the period of oscillation
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Figure 3.6: Oscillations in the dark-dwell-time correlation for three-
channel model. CD(m) Solid line, CL(m) dashed, CLD(m) and
CDL(m) dotted. Reaction rate constants for this model are kD1 =

3.1, kD2 = 1, kD3 = 4, kL1 = 1, kL2 = 5, kL3 = 2 and rate con-
stants for internal transformations are d21 = d32 = d13 = 2.5,
d12 = d23 = d31 = 0, l21 = l32 = l13 = 0, l12 = l23 = l31 = 55.

once we have introduced a different form of the turnover matrix (see Eq. (3.31)).

Before we proceed, we should go back to Fig. (3.6) and note that in this case λ1

and λ2 are real, which means that nonmonotonic behavior are not exclusive to

systems with complex eigenvalues.

3.4 A perturbative analysis of the turnover matrix

While we can interpret the exponential decay of the correlation function in a

simple fashion and calculate the decay constant mD in terms of the rate constants
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Figure 3.7: The top panel shows the norm r (solid line) and the cosine of
the argument φ (dashed line) for a three channel model with
complex eigenvalues. The bottom panel shows the dwell-time
correlation functions for the same model. Notice that there are
no oscillations. Reaction rate constants for this model are kD1 =

3, kD2 = 1, kD3 = 4, kL1 = 1, kL2 = 5, kL3 = 2 and rate constants for
internal transformations are d21 = d32 = d13 = 1/20, d12 = d23 =

d31 = 0, l21 = l32 = l13 = 0, l12 = l23 = l31 = 3/2. The eigenvalues
for this model are λ1 = 0.416e−0.17i and λ1 = 0.416e+0.17i.
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defining the two-channel scheme, the decay for a general three-channel system

does not have a simple form that can be predicted in a simple way from its set of

parameters. Only in some particular cases, such as chemical systems with mo-

noexponential decays in the autocorrelation functions, can we get some qual-

itative understanding of the factors in the model that dominate the observed

decays. This requires the introduction of perturbation theoretical methods to

calculate the eigenvalues of MD and we will undertake this task next.

First, we observe that the turnover matrix MD can be written as follows:

MD =(I + VD)−1, (3.31)

where VD = ΓLK−1
L + ΓDK−1

D + ΓLK−1
L ΓDK−1

D . VD has a simpler structure when com-

pared with MD, as all the inverse matrices involved in its definition are diagonal

matrices. In fact, every matrix element VD is a simple combination of ratios of

rate constants of internal transformations and rate constants of reaction. In ad-

dition, VD and MD have the same set of eigenvectors.

If αi is an eigenvalue of VD, then

λi =
1

1 + αi
(3.32)

is an eigenvalue of MD. Close to the static limit, we can write these eigenvalues

as exponential functions: λm
i ∼ e−αim. Hence, constants determining the expo-

nential decay are the eigenvalues of VD, in this limit. Besides, one has that αi is

in general a function of ratios of rate constants for internal transformations and

reaction rate constants. These observations hold for every n-channel system.

When the internal dynamics (given by ΓD and ΓL) are significantly slower

than the reaction dynamics (given by KD and KL), MD can be written as a series
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in powers of VD

MD =
∑

n

(−1)nVn
D, (3.33)

and in a first-order approximation to this series we have

M(1)
D =I − ΓLK−1

L − ΓDK−1
D = I − V (1)

D , (3.34)

where we have introduced the super index (1) to indicate that MD has been ap-

proximated by Eq. (3.34). For an n-channel system admitting only internal trans-

formations between neighbor substates (i.e. Ai → A j possible only if i = j + 1 or

i = j − 1), we observe that V (1)
D is a tri-diagonal matrix with matrix elements

[V (1)
D ]i j = δi j

(∑
k,i dki

kD j

+

∑
k,i lki

kL j

)
− (δi j+1 + δi j−1)

(
di j

kD j

+
li j

kL j

)
(3.35)

In the next example we illustrate how the approximation in eq. (3.34) can be

used to study some systems.

3.4.1 Example: A three-channel system as a perturbation of a

two-channel system

For a two channel system

VD(2) =

x1 y1

z2 x2

 (3.36)

where we have introduced the subindex (2) to remind us that this is is the rep-

resentation of VD for a system with two substates. Notice that in Eq. (3.36) with

x1 + z2 = 0 and y1 + x2 = 0. The exact elements of this matrix can be easily

determined. For example,

x1 =
d21

kD1

+
l21

kL1

+
l21

kL1

d21

kD1

+
l12

kL2

d21

kD1

. (3.37)
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Here, the first two terms in the right hand side are the elements that would be

considered in a first order approximation. For a three channel system with slow

substate transformations we can write

V (1)
D(3) =


x1 y1 0

z2 x̃2 y2

0 z3 x3

 (3.38)

and in this case y1 + x̃2 + z3 = 0. From this or just by direct computation we can

see that x̃2 = x2 − z3. Observe that if z3 vanishes then the eigenvalues of VD(3) are

those of VD(2) and x3. Also, observe that the exact value of z3 is given by

z3 = −
l32

kL2

−
d32

kD2
−

d32

kD2

(
l12 + l32

kL2

)
−

d23

kD3

l32

kL2

. (3.39)

We can take z3 as a perturbation parameter since its magnitude is controlled by

that of the rate constants that involve transitions from the two channel model

and an additional substate. Our goal is to describe the eigenvalues of V (1)
D(3) as

a perturbation of those corresponding to a two-channel system and one term

associated with the kinetic parameters of the additional channel. Observe that

α = x1 + x2 is the eigenvalue of VD(2) different to zero. For the eigenvalues of V (1)
D(3)

we have

α1 =x1 + x2 − z3
(x2)

(x1 − x3 + x̃2)
+ O(z2

3) (3.40)

α2 =x3 − z3
(x1 − x3)

(x1 − x3 + x̃2)
+ O(z2

3) (3.41)

where z3 is small. In the same fashion, we can describe the eigenvectors of V (1)
D(3)

as series of z3 which should provide a simple description for small values on z3.

This perturbative approach to the eigenvectors of V (1)
D(3), and at the end, to the

factors defining the amplitude of the correlation functions, can be understood
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after defining the matrices

V (0)
D(3) =


x1 −x2 0

−x1 x2 −x3

0 0 −x3

 P =


0 0 0

0 −z3 0

0 z3 0

 (3.42)

in such a way that V (1)
D(3) = V (0)

D(3) + P. Observe that the eigenvalues for V (0)
D(3) are 0,

x1 + x2 and x3 with the corresponding left eigenvectors(
1 1 1

) (
x1 −x2

x2 x3
x1+x2−x3

) (
0 0 1

)
. (3.43)

The corresponding right eigenvectors are
x2

x1

0




1

−1

0




1

x1−x3

1
x2

−
(x1+x2−x3)
x2(x1−x3)

 . (3.44)

In Fig. 3.8, we numerically explore a system satisfying the conditions de-

manded by the perturbative approach described above. A two-channel system

with correlation only between the dark dwell times, as presented in the upper

panel of Fig. 3.8, is considered as a subsystem of a three-channel system (see

lower panel of Fig. 3.8). Substates in one of the channels of the subsystem trans-

form into the substates of the third channel with small rate constants. This is the

condition that we have imposed in our perturbative analysis of three-channel

systems. By contrasting both panels, we conclude that the dark-dwell-time cor-

relation function is well described only by the kinetic rate constants of the two-

channel system that is taken as a subsystem of the total kinetic model. In fact,

the exact m−1
D for the two channel system is 0.325 and for the total three-channel

system is 0.330. One can also calculate m−1
D according to Eq. (3.22) and obtain a

value of 0.36, after what we find that m−1
D is very close to α1 as predicted in Eq.
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Figure 3.8: The top panel shows CD for a two channel model with vanish-
ing CL, CLD and CDL. The bottom panel shows a CD, CL, CLD and
CDL for three-channel model that is the result of expanding the
model of the top by introducing a third substate with slow in-
ternal transformations to the two-channel subsystem. Reaction
rate constants for this model are kD1 = 1/10, kD2 = 5, kD3 = 10/51,
kL1 = kL2 = 1, kL3 = 9/2 and rate constants for internal transfor-
mations are d21 = 0.015, d12 = 0.6, d32 = 0.01, d23 = 1/2295,
l21 = 5/100, l12 = 4/100, l32 = 1/100, l23 = 1/20. The two-channel
model in the top panel is the subsystem composed by channels
1 and 2.
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(3.40). On the other hand, the third channel introduces heterogeneity in the re-

action rate constants associated with transitions from the light to the dark state

with consequent existence of correlation between light dwell times. As antici-

pated by our perturbative analysis, the decay of the light correlation function

is dominated by the rate constants in the third channel: The exact value of m−1
L

is 0.0195 and the one predicted by Eq. (3.41) is 0.0133. Notice that in the above

model we have chosen the values for some of the rates constants in such a way

that crosscorrelation is negligible.

3.4.2 Example: Oscillations in a three-channel model

In our treatment of the three-channel system we stated that oscillations in the

correlation functions are actually seldom, even in the case that MD has complex

eigenvalues. In that case we found numerically that the period for an oscilla-

tion is expected to be longer than the correlation time. We will support this

conclusion by considering the argument and the norm of the eigenvalues in Eq.

(3.28) based on their form according to Eq. (3.32). Assuming that λ1 and α1 are

complex numbers, we can write α1 = a + bi with a and b real to find that

r =
1

(1 + a)2 + b2 , (3.45)

φ = arctan
(
−b

1 + a

)
. (3.46)

The coefficients a and b are functions of different ratios between rate constants

of internal transformation and rate constants of reaction. Both of them are ex-

pected to be small when the internal dynamics is small, and so r ∼ 1 − 2a and

φ ∼ b. This will lead to a long period of oscillation of 2π/b.
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3.5 Many active sites

Our treatment of correlation functions through this Chapter has consider only

case of catalysts with one active site. Nanoparticles, as pointed out Sec. 1.2, have

many active sites. As a consequence, we must determine the effects that multi-

ple active sites may have on the dwell-time correlation functions that are mea-

sured from a single trajectory. As we found in Chapter 2, Secs. 2.3-2.5, whether

the active sites are independent or spatially correlated can make a difference

in the qualitative properties of the constrained means. Thus, we should also

include cooperative effects among active sites in our study of dwell-time corre-

lation functions and, we will do this in the following two sections.

3.5.1 Active sites with correlated fluctuations

Under saturating conditions and in the presence of multiple active sites, we can

hypothesize that internal transformations in a single active site influence the in-

ternal dynamics of nearby active sites and vice verse. As discussed in Chapter 2

and as reported in[35], this in fact the case for gold nanoparticles of 6 nanome-

ters diameter. In order to understand how this cooperative behavior is mani-

fest in the fluorescence trajectory, we introduced a model for many-active-site

nanoparticles that restricts the configuration space, i.e. the number of possible

substates that every active site can take at any time. In the absence of space

resolution, it is plausible to assume that every active site has the same num-

ber of substates, and also that the set of rate constants is the same. To further

simplify our model, we assume that when the nanoparticle is in the dark state

every active site is in the same substate. In addition, whenever the nanoparti-
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cle is the light configuration Li, any active site in the dark substate Di remains

in that substate until the dark configuration is recovered. In accordance to the

experimental observations for nanoparticles, only one active site at a time is al-

lowed to experience a transition from the dark to the bright state. One can also

consider the case of a nanoparticle with independent active sites, and we will

do this in the next section. Intermediate cases can be described by considering

independent domains of active sites that act cooperatively, as studied in Sec. 2.5,

Chapter 2.

For the model with spatially correlated active sites we found [35] that the

dynamic equations are equivalent to those of one active site with enhanced re-

action rate constants from the dark to the light state (i.e., kDi → N × kDi) and, if

every state admits only two substates, then we have that

λ =
1(

1 + d21
NkD1

+ d12
NkD2

) (
1 + l21

kL1
+ l12

kL2

) , (3.47)

which indeed suggests that a significant increase in the correlation time should

be observed for N spatially correlated active sites, when compared to the decay

observed for an individual active site. In fact, if two nanoparticles differ only

in the number of active sites and they have active sites with spatially correlated

fluctuations, then the correlation time should be larger for the system with the

bigger number of active sites. In addition, one should also observe that as N

increases the decay constant, and therefore the correlation time, increases and

we should expect to find that rate of decay is controlled by the rate constants

associated with the light substate. This assertion follows from the asymptotic

behavior of λ for large N:

λN→∞ →
1(

1 + l21
kL1

+ l12
kL2

) . (3.48)
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The dark correlation function for a set of N spatially correlated active sites close

to the static limit is given by

CD(m) =
1

N2(kD1ρD1 + kD2ρD2)2

λm+1

σ2 (N)
D

(
ρD2ρD1

kD1kD2
(kD2 − kD1)2

)
. (3.49)

While Eq. (3.49) suggests a simple relation between the amplitude and the

number of active sites, one should notice that this is not the case, for the equi-

librium probabilities are rational functions of the number of active sites and the

variance depends on N as well. In general, this leads to a non-monotonic behav-

ior of the amplitude of the CD. However, this change in the amplitude is small

close to the static limit. First, notice that in this case the variance scales as N

increases as follows

σ2 (N)
D =

1
N2

〈1|(KD + N−1ΓD)|ρD〉

〈1|KD|ρD〉
−
〈1|ρD〉

2

〈1|KD|ρD〉

2 , (3.50)

∼
1

N2σ
2 (1)
D , (3.51)

and therefore CD(0) should be nearly independent of N2. In Figs. 3.9 and 3.10

we have explored numerically the above assertions. Notice that these models

differ only in the values that we have assign to the internal rate constants: The

system in Fig. 3.9 is close to the static limit while the one in Fig. 3.10 is not.

We find, as anticipated, that the amplitude is independent from the number of

active sites for models that are close to the static limit, but certainly dependent

on N when the system experiences fast internal dynamics. Besides, in both cases

the correlation time becomes longer as the number of active site increases.

2Remember that the eigenvalue λ depends on N according to Eq. 3.47. The value obtained
for these correlation functions by extrapolation at m = −1 must be independent of N, but m is
only defined for m ≥ 1.

113



1 4 7 10
0

0.1

0.2

0.3

m

CD

N =1

N =2

N =4

N =10

N =1000

Figure 3.9: CD(m) for many correlated active sites. Parameters for these
models are kD1 = 1/10, kD2 = 1/2, kL1 = 1, kL2 = 3, d21 = d12 = l12 =

1/50 and l21 = 1/30. Time unit is (kL1)
−1.

3.5.2 Independent active sites

A full treatment of the correlation functions for a set of N independent active

sites based only on the analysis of the turnover matrix might be cumbersome.

As illustrated in our treatment of constrained mean dwell times, introducing

appropriate generating functions helps to avoid these complications. In the fol-

lowing, we will center our discussion around the dependence of dark dwell-

time correlation on the number of independent active sites N, as it serves for

illustration. Similar conclusions to those that we will find below can be drawn

for the case of the light dwell-time correlation after considering the multiple in-

cidents that can contribute to the correlation coefficient. We will come back to

this point once we have introduced the general treatment of dwell-time correla-
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Figure 3.10: CD(m) for many correlated active sites. Parameters for these
models are kD1 = 1/10, kD2 = 1/2, kL1 = 1, kL2 = 3, d21 = d12 =

l12 = 1/5 and l21 = 1/3

tion functions in terms of generating functions.

First, consider two dark states in a fluorescence trajectory. If t(1)
D and t(m+1)

D are

dark dwell times that are spaced m turnovers apart (m ≥ 1), the generating func-

tion for their density function is given by Eq. (3.4). In terms of this generating

function the mean value of the product of these dwell times is given by

t(1)
D t(m+1)

D =

∫ ∞

0
dt(1)

D

∫ ∞

0
dt(m+1)

D G(m)
DD(t(1)

D , t(m+1)
D ). (3.52)

We want to illustrate here that a system of N independent active sites is less

correlated than a single active site. To achieve this goal, it will be enough to

illustrate the dependence on the number of active sites for the correlation when

m = 1, since the correlation function is strictly decreasing for systems with two

substates. In this case, t(1)
D and t(2)

D are dark dwell times that are separated by a
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single event in a single active site. In contrast, if we were to consider dwell times

t(1)
D and t(3)

D , we would find that the generating function G(2)
DD(t(1)

D , t(3)
D ) has contribu-

tions from events that occur in the same active site but also contributions from

events that happen at two different active sites (with dwell times t(2)
L and t(3)

L ).

An equivalent expression for Eq. (3.52) can be derived for the mean value of

the products t(1)
L t(m+1)

L , t(1)
D t(m+1)

L and t(1)
L t(m+1)

D . Also, their generating functions have

multiple contributions from sequences of events occurring in one, two, . . . , m

active sites.

Thus if m = 1, Eq. (3.52) can be written in terms of the generating function

for a single active site as follows

t(1)
D t(2)

D =

∫ ∞

0
dt(1)

D

∫ ∞

0
dt(2)

D (ED(t(1)
D + t(2)

D ))N−1g(2)
DD(t(1)

D , t(2)
D ). (3.53)

with ED(tD) is as defined in Eq. (2.80) and g(2)
DD(t(1)

D , t(2)
D ) is equal to G(2)

DD(t(1)
D , t(2)

D ) for a

single active site. One can see that E(tD) < 1 for all tD > 0 and therefore, the mean

of the product t(1)
D t(2)

D should decrease as the number of active sites increases. For

the sake of calculating the CD(1) we should notice the following equalities:

t2
D =2

〈1|W−1
DD|ρD〉

〈1|WDD|ρD〉
, (3.54)

=2 tD

∫ ∞

0
dt (ED(t))N , (3.55)

σ2
D =tD

(
2
∫ ∞

0
dt (ED(t))N

− tD

)
. (3.56)

By substituting Eqs. (3.56), (3.55) and (3.53) into Eq. (3.8) with m = 1, we find

an integral expression for CD(1) with explicit dependence on N. The resulting

expression is investigated numerically in Fig. 3.11. There, we have also included

the corresponding values for CD(1) for the equivalent model with spatially cor-

related active sites. First we notice that both models coincide at N = 1 and that
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Figure 3.11: A comparison between CD(1) for a model with spatially cor-
related (triangles) and independent (circles) actives sites as
function of the number of active sites. Parameters for these
models are kD1 = 1/10, kD2 = 1/2, kL1 = 1, kL2 = 3, d21 = d12 =

l12 = 1/50 and l21 = 1/30. Time unit is (kL1)
−1.

this correlation coefficient decreases as the number of independent active sites

increases.

We would like to estimate how this decrease in the CD(1) scales as N in-

creases. For large N one can calculate the integral Eq. (3.56) after considering

the cumulant expansion for ED(t) in Eq. (2.86). This way, we can conclude that

σ2
D →

1
N

t̄2
D(onesite), (3.57)

for large N. On the other hand the covariance Cov(1) = t(1)
D t(m+1)

D − t2
D can also be

calculated using the cumulant expansion and, after a change of variables given

by t+
D = t(1)

D + t(2)
D and t−D = t(1)

D − t(2)
D , i.e.

CD(1) =

1
2

∫ −∞
−∞

dt−D
∫ −∞

0
dt+

DED(t+
D)N−1g(2)

DD

(
t+D+t−D

2 ,
t+D−t−D

2

)
− tD

2

σ2
D

. (3.58)
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In order to simplify eq (3.58), we first note from eq. (3.4), for one active site,

that g(2)
DD is a multiexponential function of t+

D and t−D, and that this function can be

written in the general form

g(2)
DD

(
t+
D + t−D

2
,

t+
D − t−D

2

)
=

∑
i

e−φit+Dbi(t−D), (3.59)

where φi and bi are functions of the rate constants for our model. Using this and

the cumulant expansion of ED(t+
D), we find that for systems with a large number

of independent active sites CD(1) decays as follows

CD(1) =
tD

N

∫ ∞

−∞

∑
i

bi(t−D)σ2
wDdt−D − 1

 . (3.60)

In the derivation of eq. (3.60), we have made use of the fact that t+
D = 2 tD, which

is a simple consequence of the properties of the joint density function.

Finally, we can conclude that our model for many active sites with spatially

correlated fluctuations has a longer dark correlation time, as manifested in de-

creased rate of decay, when compared to a single active site. In contrast, a

nanoparticle with many independent active sites should have a shorter dark

correlation time, as compared again to a single active site.

3.6 Interlude: constrained mean dwell times as calculated from

the turnover matrix

In Chapter 2 and in our paper[35], we investigated the interdependence in the

fluctuations among active sites on the surface of a nanoparticle by means of dif-

ference between unconstrained and constrained mean dwell times. Our main

conclusion was that gold nanoparticles have active sites that are correlated, in
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the sense that there is an interdependence in the fluctuations among active sites.

On the other hand, in this chapter we are studying the dwell-time correlation

functions as indicators of memory. In order to avoid any potential misunder-

standings, in the following we will talk about independent and spatially cor-

related instead of uncorrelated and correlated active sites, saving this adjective

for the CD,CL,CDL and CLD functions.

For simplicity, we assumed in chapter 2 that every active site was able to

fluctuate between two substates. However, as we discussed above, a nanoparti-

cle with spatially correlated fluctuations among active sites, each one with two

substates, does not exhibit the dwell-time correlation properties that have been

observed in single nanoparticle catalysis, to wit, CD and CL decay with different

rates and crosscorrelation is not detected. We know that these properties indi-

cate that every active site fluctuates among three or more different substates.

For this reason, we should expand our findings in Chapter 2 to the study of

constrained mean dwell times for spatially correlated active sites that fluctuate

among three substates.

Most of our results in Chapter 2 and in reference [35] are readily adaptable

to models with active sites having three or more substates. For example, one

can notice that the difference between the unconstrained and constrained mean

light dwell time, for this case and the static limit, can be written simply as

∆t̄L< =hL<
12 + hL<

13 + hL<
23 , (3.61)

where

hL<
i j (t) =

ρLiρL j (kL j − kLi)(e
−kDi t − e−kD j t)

〈1|KD|ρD〉 P(tD < T )
, (3.62)

P(tD < T ) =

∫ T

0
fD(tD)dtD. (3.63)
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This result can be derived from generating functions in the static limit or from by

introducing the the partition of unity induced by the eigenspace of MD into fLD.

The last technique is illustrated in Appendix (B.6). By comparison of Eq. (3.62)

with Eq. (2.39) in Chapter 2, we find that hL<
i j has the form of the constrained

mean light dwell time for a two channel model close to the static limit composed

only by channels i and j. The only significant difference is that the hL<
i j functions

involve the probability P(tD < T ) that takes into account the full set of channels

of the original model, as well as the total product 〈1|KD|ρD〉 . Whenever the

conditions are those demanded by the static limit, P(tD < T ) assumes the form

P(tD < T ) =1 −
e−kD1 T kD1ρD1 − e−kD2 T kD2ρD2 − e−kD3 T kD3ρD3

kD1ρD1 + kD2ρD2 + kD3ρD3

. (3.64)

On the other hand, ∆t̄L> is given by

∆t̄L> = hL>
12 + hL>

13 + hL>
23 , (3.65)

with

hL>
i j (t) =

ρLiρL j (kLi − kL j)(e
−kDi t − e−kD j t)

〈1|KD|ρD〉 P(tD > T )
. (3.66)

Similar conclusions and definitions follow for constrained mean dark dwell

times.

We explore numerically the qualitative behavior of the constrained mean

dwell times in Figs. 3.12 to 3.16. Differences in the constrained means for two

and three-channel models are enhanced when the time scales of transformations

in distinct channels differ in orders of magnitude. In all these plots we have

included not only the exact curve for the corresponding constrained mean, but

also the static limit prediction (Dashed line) and the different contributions from

the functions hi j to the static limit approximation (Dotted lines). We observed
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that the static limit predictions are in great agreement in almost every model,

with the exception of ∆t̄L> in Fig. 3.15. And we can see why: the rate constant

d32 is 0.005, same as kD2 giving a ratio equal to 1. Thus, the model in Fig. 3.15 is

far from the static limit and deviations from Eq. (3.65) are possible.

In Fig. 3.12 we have a model in which the fastest transition from the dark to

the light (kD1) occurs through the same channel as the slowest transition from

the light to the dark (kL1). It is also true for this model that the smallest kD

and the largest kL are in the same channel (third channel). This leads to the

observation that curves for ∆t̄D< and ∆t̄L< are positive and those for ∆t̄D> and

∆t̄L> are negative. We can anticipate this behavior from the two-channel decom-

position of a three-channel model suggested by Eqs. (3.61) and (3.65), and the

corresponding expressions for the constrained means for dark dwell times. For

the model in Fig. 3.12 it is true that (kDi −kD j)(kL j −kLi) > 0 for every (i, j) pair. We

also notice that ∆t̄D<, ∆t̄L< and ∆t̄D> are dominated by a single pair of channels

and, as a consequence they resemble two-channel-model constrained means.

On the contrary, ∆t̄L> has an unusual decay that can qualitatively be explained

by the independent contribution of the three functions hL>
i j . In Fig. (3.13) hL>

12 ,

hL>
13 and hL>

23 are identified. Observe that two different decay rates are observed.

Initially, ∆t̄L> decays fast (TD < 10) to approach a pseudo-asymptote of approx-

imately 0.25. Later, for threshold values between 50 and 100, ∆t̄L> decays to a

true asymptote with a slower decay rate. This different decay rates can be ra-

tionalized by observing that every hL>
i j for a large separation in the rate constant

values kDi and kD j is exponential, with an exponential decay constant of |kDi−kD j |.

Another comment that we can make from Fig. (3.13) is that hL>
12 approaches zero

as a result of P(td > T ) being dominated by the smallest rate constant3, i.e. kD3 .

3This follows after Eq. 3.64 and the fact that P(td > T ) = 1 − P(td < T ).
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Figure 3.13: Decomposition into different pair that constribute to the total
∆t̄L> for the system with three substates shown in Fig 3.12.
Time unit is (2kD1)

−1.
.

In summary, we observe close to the static limit in ∆t̄L> fastest decay rates at

short times and, if the separation between rate constants is significant, the rate

of decay can change for longer threshold values.

We now consider a slightly different system that is the result of an inter-

change between the values for the reaction rate constants kD2 and kD3 in Fig.

3.14. Internal rate constants are reassigned in such a way that the condition

of microscopic reversibility holds and, we can observe these parameters are in

the regime that we consider close to the static limit. In this case we find that

(kD2 − kD3)(kL3 − kL2) < 0, while a similar product for the other pair of channels is

positive. As a consequence, we see that plots for the h23 functions, contribute to

the total in a different way, with negative constrained means when h12 and h13

are positive, and so on. However, this permutation in reaction rate parameters

123



0
0.

5
1

1.
5

135

D
t

D
<

0
15

30
45

0.
01

0.
02

0.
03

D
t

L
<

1
2

0

-
0.

5

-
1

-
1.

5

-
2

t L

D
t

D
>

0
50

10
0

15
0

0

-
0.

1

-
0.

2

-
0.

3

t D

D
t

L
>

Fi
gu

re
3.

14
:C

on
st

ra
in

ed
m

ea
n

dw
el

l
ti

m
es

fo
r

a
sy

st
em

w
it

h
th

re
e

su
b-

st
at

es
.T

he
ex

ac
tv

al
ue

fo
r

ea
ch

co
ns

tr
ai

ne
d

m
ea

n
is

sh
ow

n
by

a
so

lid
lin

e.
Th

e
ap

pr
ox

im
at

ed
co

ns
tr

ai
ne

d
m

ea
n,

ca
lc

ul
at

ed
ac

co
rd

in
g

ex
pr

es
si

on
s

of
th

e
fo

rm
of

Eq
.

(3
.6

1)
ar

e
da

sh
ed

.
D

ot
te

d
pl

ot
s

co
rr

es
po

nd
to

th
e

di
ff

er
en

tf
un

ct
io

ns
h i

j.
Pa

ra
m

-
et

er
s

fo
r

th
is

m
od

el
ar

e
k D

1
=

1/
2,

k D
2

=
1/

20
0,

k D
3

=
1/

10
,k

L 1
=

2,
k L

2
=

5,
k L

3
=

20
0,

d 1
2

=
d 2

1
=

l 1
2

=
l 2

3
=

l 3
2

=
d 2

3
=

1/
10

00
0,

l 2
1

=
1/

25
00

00
0

an
d

d 3
2

=
1/

20
00

0.
Ti

m
e

un
it

is
(2

k D
1
)−

1 .

124



0
1

2

0

-
3

-
6

D
t

D
<

0
15

30
45

0

-
0.

05

-
0.

1

D
t

L
<

1
2

0

0.
3

0.
6

t L

D
t

D
>

0
50

10
0

15
0

0.
1 0

-
0.

1

-
0.

2

t D

D
t

L
>

Fi
gu

re
3.

15
:C

on
st

ra
in

ed
m

ea
n

dw
el

l
ti

m
es

fo
r

a
sy

st
em

w
it

h
th

re
e

su
b-

st
at

es
.T

he
ex

ac
tv

al
ue

fo
r

ea
ch

co
ns

tr
ai

ne
d

m
ea

n
is

sh
ow

n
by

a
so

lid
lin

e.
Th

e
ap

pr
ox

im
at

ed
co

ns
tr

ai
ne

d
m

ea
n,

ca
lc

ul
at

ed
ac

co
rd

in
g

ex
pr

es
si

on
s

of
th

e
fo

rm
of

Eq
.

(3
.6

1)
ar

e
da

sh
ed

.
D

ot
te

d
pl

ot
s

co
rr

es
po

nd
to

th
e

di
ff

er
en

tf
un

ct
io

ns
h i

j.
Pa

ra
m

-
et

er
s

fo
r

th
is

m
od

el
ar

e
k D

1
=

1/
2,

k D
2

=
1/

20
0,

k D
3

=
1/

10
,k

L 1
=

20
0,

k L
2

=
5,

k L
3

=
2,

d 1
2

=
d 2

1
=

l 1
2

=
l 2

3
=

l 3
2

=
d 2

3
=

1/
10

00
0,

l 2
1

=
1/

25
00

00
0

an
d

d 3
2

=
1/

20
0.

Ti
m

e
un

it
is

(2
k D

1
)−

1 .

125



0
0.

5
1

-
113

D
t

D
<

0
15

30
45

-
0.

00
20

0.
00

2
D

t
L

<

0
2

4
06012
0

18
0

t L

D
t

D
>

0
40

80

0

0.
1

0.
2

0.
3

t D

D
t

L
>

Fi
gu

re
3.

16
:C

on
st

ra
in

ed
m

ea
n

dw
el

l
ti

m
es

fo
r

a
sy

st
em

w
it

h
th

re
e

su
b-

st
at

es
.T

he
ex

ac
tv

al
ue

fo
r

ea
ch

co
ns

tr
ai

ne
d

m
ea

n
is

sh
ow

n
by

a
so

lid
lin

e.
Th

e
ap

pr
ox

im
at

ed
co

ns
tr

ai
ne

d
m

ea
n,

ca
lc

ul
at

ed
ac

co
rd

in
g

ex
pr

es
si

on
s

of
th

e
fo

rm
of

Eq
.

(3
.6

1)
ar

e
da

sh
ed

.
D

ot
te

d
pl

ot
s

co
rr

es
po

nd
to

th
e

di
ff

er
en

tf
un

ct
io

ns
h i

j.
Pa

ra
m

-
et

er
s

fo
r

th
is

m
od

el
ar

e
k D

1
=

1/
20

0,
k D

2
=

1/
2,

k D
3

=
1/

10
,k

L 1
=

2,
k L

2
=

5,
k L

3
=

20
0,

d 1
2

=
d 2

1
=

l 1
2

=
l 2

3
=

l 3
2

=
d 2

3
=

1/
10

00
0,

l 2
1

=
1/

25
00

0
an

d
d 3

2
=

1/
20

00
00

0.
Ti

m
e

un
it

is
(2

k D
2
)−

1 .

126



only induces a qualitative change in the form of ∆t̄L>.

A further permutation in the set of reaction rate constants is done in Fig.

3.15, namely, the values of kL1 and kL3 in the model of Fig. 3.14 are inter-

changed by each other. We now see a dramatic change in the qualitative be-

havior of this functions. In contrast to the situation in Fig. 3.14, we have that

(kD2 − kD3)(kL3 − kL2) > 0 and all other products are negative. As a consequence,

the sign of ∆t̄D<,∆t̄L< and ∆t̄D> has changed. Even more striking is the form of

∆t̄L> which has now a positive value for short tD and a negative value when tD

is big. This characteristic is only found in three-channel models or bigger and

is not observed in two-channel ones. We can also see larger deviations from the

static limit prediction for this model as the internal rate constant d32 has become

of the same order of magnitude of kD2 . In Fig. 3.16 we show that the nonmonotic

behavior observed in Figs. 3.12-3.15 for the constrained means ∆t̄D> and ∆t̄L>

can also be found in the complementary constrained means, ∆t̄D< and ∆t̄L<, for

certain models.

As stated above, Eq. (3.61) can be demonstrated by using our knowledge of

the spectral properties of the turnover matrix. Details can be found in the Ap-

pendix B.6 and we only sketch the main steps here. First, we write the identity

matrix in term of the eigenvectors of MD as follows

I =

3∑
i=1

|RD
i 〉〈L

D
i |. (3.67)

Then, we insert this form of the identity matrix in fLD(tL, tD) defined in Eq. (2.4),

and rearrange terms until we find the following expression

fLD(tL, tD)− f (tL) f (tD) = k1
LD(tL, tD) + k2

LD(tL, tD), (3.68)
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where

ki
LD(tL, tD) =

1
〈1|KD|ρD〉

〈1|KDe−(KD+ΓD)tD |RD
i 〉〈L

D
i |KLe−(KL+ΓD)tLKD|ρD〉. (3.69)

The result in Eq (3.68) can be generalized to n-channel systems. However, the

main obstacle in this procedure lies on the computation of the eigenvectors for

n × n turnover matrices. In this regard, the method of generating functions,

introduced in Chapter 2 is better. On the other hand, the approach of this section

to the description of the constrained means is appropriate for the understanding

of other properties that will be described below.

First, from our definition of the joint density functions for two dwell times

that are distant apart m turnovers as for example in Eq. (3.2), we can define

additional constrained mean dwell times. If we denote the dark constrained

mean dwell time by ∆t̄D<(T ; m), where m is the number of turnovers separating

the light and the dark dwell times, then we find for a system with two channels

that

∆t̄D<(T ; m) = λm−1∆t̄D<(T ; 1). (3.70)

Second, note that there is a connection between the dwell time crosscorrelation

functions and the constrained mean dwell times of Chapter 2. The expression

in Eq. (3.68) can be generalized for n-channel systems, and from this we obtain

the general result ∫ ∞

0
dT P(tL < T )∆t̄D<(T ) = CDL(1). (3.71)

From here, we can infer that if the difference in the constrained mean dwell

time is null, crosscorrelation between the light and dark states should vanish.

The opposite implication does not hold. However, we may expect that the lack

of crosscorrelation between this variables is associated with systems with fast
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decay in ∆t̄D< and low rate of desorption. In this way, it is plausible to find

systems with vanishing CDL and ∆t̄D< , 0.

At this point, it is questionable whether the difference on the asymptotic de-

cay rates for ∆t̄L< and ∆t̄L> can discern between an independent and a spatially

correlated model, when active sites fluctuate among three substates. As we will

illustrate below, in the static limit and with a significant separation in the values

of the reaction rate constants, an equivalent statement about the qualitative de-

cay rates of ∆t̄L< and ∆t̄L> that differentiates between these two scenarios exists.

Our model for a spatially correlated catalyst with N active sites is identical

to that of a single active site with the same rate constants, but except for kD1 , kD2

and kD3 , which are replaced by the renormalized constant N × kD1 , N × kD2 and

N × kD3 . Thus, close to the static limit, it is possible to describe ∆t̄(N)
L< and ∆t̄(N)

L>

as the sum of the functions hL<
i j and hL>

i j as in Eq. (3.61) and Eq. (3.65), with the

rescaled rate constants. If the kD1 , kD2 and kD3 are pairwise significantly different,

perhaps by a few orders of magnitude as in Fig. 3.13, then ∆t̄(N)
L< and ∆t̄(N)

L> may

show an intricate behavior as TD increases. However, the initial decay should

be dominated by the two largest reaction rate constants. Notice that this is the

case in Fig. 3.13, where hL>
12 dominates for TD < 40. Our claim, which follows

from the asymptotic analysis of Eq. (3.62) and Eq. (3.66) is that, ∆t̄(N)
L> must decay

initially to the first inflection point exponentially, with decay constant N × kmid
D ,

while ∆t̄(N)
L< must decay exponentially with decay constant N × kmid

D , where kmid
D

represents the second largest reaction rate constant. Observe that the so-called

asymptotic analysis that we are considering in this case, does not correspond

to the one observed at TD → ∞. Instead, we consider ∆t̄(N)
L< and ∆t̄(N)

L> as they

approach a given time Tmax that is larger that the time scales of kbig
D and kmid

D .
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Figure 3.17: ∆t̄L< and ∆t̄L> for 8 active sites that are spatially correlated.
Each active site has three substates. Parameters for this model
are kD1 = 1/200, kD2 = 1/2, kD3 = 1/10, kL1 = 2, kL2 = 5, kL3 = 200,
d12 = d21 = l12 = l23 = l32 = d23 = 1/10000, l21 = 1/25000 and
d32 = 1/2000000
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Figure 3.18: ∆t̄L< and ∆t̄L> for 8 active sites that are independent. Each ac-
tive site has three substates. Parameters for this model are
kD1 = 1/200, kD2 = 1/2, kD3 = 1/10, kL1 = 2, kL2 = 5, kL3 = 200,
d12 = d21 = l12 = l23 = l32 = d23 = 1/10000, l21 = 1/25000 and
d32 = 1/2000000

131



Once more, in Fig. (3.13) observe that the time scales for kD1 and kD2 are less

than 40.

For a system with N independent active sites and three substates, the qualita-

tive decays of the light constrained means are the same as predicted in Chapter

2, i.e. ∆t̄(N)
L< has as decay rate constant N × kbig

D and ∆t̄(N)
L> has as decay rate con-

stant kbig
D . In brief, this statement is a consequence of the factor ED(t)N−1 in Eq.

(2.94), that t̄(N)
D ∼ (kbig

D )−1 and the result in Eq. (2.96). Numerical calculations also

support the idea that ∆t̄(N)
L< and ∆t̄(N)

L> can differetiate between independent and

spatially correlated models, for active sites admitting three substates. In Fig.

3.17 and Fig. 3.18 we show light constrained means for two models with 8 ac-

tive sites corresponding to the spatially correlated and independent active sites.

Each active site in this model is equivalent to the model in Fig 3.12 and Fig. 3.13.

Amazingly, our prediction is correct even when the number of active sites is as

small as 8.

3.7 Conclusion

For a catalyst with a single active site, dwell-time correlation functions can dif-

ferentiate among systems with one, two or three substates. In the case of a

catalyst that fluctuates between two substates, the correlation time, measured

as the inverse of the decay rate, is the same for each correlation function. Be-

sides, if dark and light dwell times are autocorrelated, they are crosscorrelated.

In the presence of a third substate correlation times can be different, as corre-

lation functions are, in this case, biexponential. Differences in the correlation

times reveal the different time scales of distinct internal processes. A scenario
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with autocorrelated dwell times and null crosscorrelation is only possible if the

system fluctuates among three substates.

Many-active-site catalysts with correlated fluctuations exhibit larger corre-

lation times as compared to the correlation time of a single active site. Also,

when internal fluctuations are slow, the amplitude is not significantly affected

by the number of active sites and, therefore, it is of the same magnitude as the

amplitude for a single active site. In contrast, a catalyst with independent active

sites has a lower dwell-time correlation than a single active site, and the value

decays fast as the number of active sites increases.

Constrained mean dwell times for a catalyst with three internal substates

also differentiate between active sites that experience correlated fluctuations

and those that are independent, based on the pseudo-asymptotic behavior of

∆t̄L< and ∆t̄L>.

Single-nanoparticle catalytic transformations under saturating conditions

exhibit positive autocorrelation, null crosscorrelation and two different corre-

lation times. These findings, together with our conclusions in this chapter, com-

plement our analysis of the experimental constrained means for the same sys-

tem in Chapter 2. As a consequence, we must reinterpret the experimental ev-

idence for this system with a model that takes into account the existence of a

third substate. We will undertake this discussion in Chapter 4.
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APPENDIX B

APPENDICES CHAPTER 3

B.1 Properties of the turnover matrix MD and ML

In this section we describe some of the most relevant characteristics of the

turnover matrices MD and ML for a single active site that has to n channels. In

this case, S D = KD(KD +ΓD)−1 and S L = KL(KL +ΓL)−1 and we can write ML = S DS L

and also MD = S LS D. As long as KD and KL are invertible, we can conclude that

ML and MD are similar matrices, with the following possible similarity transfor-

mations

ML = S DMDS −1
D = S −1

L MDS L, (B.1)

MD = S LMLS −1
L = S −1

D MLS D. (B.2)

This fact has as a consequence that the spectrum for these two matrices are the

same, as they have the same characteristic polynomial[32]. A similar statement

is not true for the eigenvector spaces. Nevertheless, the eigenvectors of MD and

ML are related by the following transformations. Let |RD
i 〉 be such that MD|RD

i 〉 =

λi|RD
i 〉, then

S DS LS D|RD
i 〉 = S DMD|RD

i 〉 = λiS D|RD
i 〉 (B.3)

= MLS D|RD
i 〉, (B.4)

and we infer that |RL
i 〉 = riS D|RD

i 〉, for some constant ri. This expression also leads

to the identity S L|RL
i 〉 = riλi|RD

i 〉. In the same fashion we find 〈LL
i | = li〈LD

i |S L and

〈LL
i |S D = liλi〈LD

i |.

There is a relation between ri and li that arises from the conditions used in
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the spectral decomposition of MD and ML, i.e.,

〈LL
i |R

L
i 〉 = (li〈LD

i |S L)(riS D|RD
i 〉) (B.5)

= liriλi〈LD
i |R

D
i 〉, (B.6)

then

liriλi = 1, (B.7)

since 〈LD
i |R

D
i 〉 = 〈LL

i |R
L
i 〉 = 1. Finally, these coefficients are given by the expres-

sions ri = 1/〈LL
i |S D|RD

i 〉 and li = 1/〈LD
i |S L|RL

i 〉.

We can say more about the spectrum of the turnover matrix. The fact that

〈1|S D = 〈1|S L = 〈1| and also that every element in these matrices is nonnegative,

leads immediately to the conclusion that |λ| ≤ 1. In order to see that, we need

to understand that the products 〈1|S D = 〈1|S L = 〈1| tell us that the sum of all

the elements of every column in S D or S L is equal to 1. Then, our statement

follows from the Frobenius and Perron-Frobenius[18] theorems on nonnegative

matrices that we partially present now.

Theorem 1. Let A be a nonnegative matrix, S i be the sum of the entries in column i of

A, s = mini S i, S = maxi S i and let r denote the maximal characteristic root of A. Then

s ≤ r ≤ S .

Theorem 2. [33] Let A be an n-square nonnegative indecomposable matrix. Then:

• A has a real positive characteristic root r (the maximal root of A) which is a simple

root of the characteristic equation of A. If λi is any characteristic root of A, then

|λi| ≤ r.

• There exists a positive characteristic vector corresponding to r.
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• If A has h characteristic roots of modulus r:λ0 = r, λ1, . . . , λh−1 then these are the

h distinct roots of λn − r = 0. The number h is called the index of imprimitivity of

A.

That S D and S L are nonnegative matrices is a consequence of the fact that

KD + ΓD and KL + ΓL are M-matrices: the inverse matrix of an M-matrix has the

property that every element in the matrix is greater or equal to zero[4, 18, 6].

Finally, since r = 1 for MD and ML, we conclude that these matrices are left-

stochastic matrices[5, 6].
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B.2 Derivation of the general form of CD, CL, CDL and CLD for

an n-channel system

In this section we derive the forms of correlation functions for a single active

site with n channels. We can rewrite Eq. (3.2) in terms of the eigenvectors of

the turnover matrix by replacing either MD or ML by its corresponding spectral

decomposition. In that way, we obtain the following expressions for the joint

density functions

fDD(t1, tm+1) = fD(t1) fD(tm+1)+(
1
N

) n−1∑
i

λm−1
i 〈1|KDgD(tm+1)KL(KL + ΓL)−1|RL

i 〉×

〈LL
i |KDgD(t1)KL|pL〉, (B.8)

or,

fDD(t1, tm+1) = fD(t1) fD(tm+1)+(
1
N

) n−1∑
i

λm−1
i 〈1|KDgD(tm+1)|RD

i 〉×

〈LD
i |KL(KL + ΓL)−1KDgD(t1)KL|pL〉, (B.9)

where

N = 〈1|KD|pD〉. (B.10)

In addition,

fDL(t1, tm+1) = fD(t1) fL(tm+1)+(
1
N

) n−1∑
i

λm
i 〈1|KLgL(tm+1)|RL

i 〉〈L
L
i |KDgD(t1)KL|pL〉, (B.11)
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with similar expressions for fLL(t1, tm+1) and fLD(t1, tm+1). The covariance for the

dwell times can be calculated from these expressions after integration, taking in

account that

QD ≡

∫ ∞

0
t gD(t)dt = (KD + ΓD)−2. (B.12)

This indeed leads to a further simplification of the coefficients involved in the

spectral expansion of the covariance function. Explicitly,

〈1|KDQDKL(KL + ΓL)−1|RL
i 〉 =〈1|KD(KD + ΓD)−2KL(KL + ΓL)−1|RL

i 〉

=λi 〈1|KD(KD + ΓD)−1K−1
D |R

L
i 〉

=λi 〈1|K−1
D |R

L
i 〉

also,

〈LL
i |KDQDKL|pL〉 =〈LL

i |KD(KD + ΓD)−2KL|pL〉

=〈LL
i |KD(KD + ΓD)−1|pD〉

=liλi〈LD
i |pD〉,

〈1|KLTL|RL
i 〉 =〈1|(KL + ΓL)−1|RL

i 〉

=riλi〈1|K−1
L |R

D
i 〉,

〈LD
i |KL(KL + ΓL)−1KDQDKL|pL〉 =〈LD

i |KL(KL + ΓL)−1KD(KD + ΓD)−2KL|pL〉

=λi〈LD
i |(KD + ΓD)−1KL|pL〉

=λi〈LD
i |pD〉.

Then,

t1 tm+1DD − t2
D =

(
1
N

) n−1∑
i=1

liλ
m
i 〈1|K

−1
D |R

L
i 〉〈L

D
i |pD〉 (B.13)
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also,

t1 tm+1LL − t̄2
L =

(
1
N

) n−1∑
i=1

riλ
m
i 〈1|K

−1
L |R

D
i 〉〈L

L
i |pL〉 (B.14)

t1 tm+1DL − t̄Dt̄L =

(
1
N

) n−1∑
i=1

λm
i 〈1|K

−1
L |R

D
i 〉〈L

D
i |pD〉 (B.15)

t1 tm+1LD − t̄L t̄D =

(
1
N

) n−1∑
i=1

λm
i 〈1|K

−1
D |R

L
i 〉〈L

L
i |pL〉 (B.16)

On the other hand,

t̄D =
1
N
〈1|KDQDKL|pL〉 =

1
N
〈1|pD〉 (B.17)

t2
D =

2
N
〈1|KD(KD + ΓD)−3KL|pL〉

=
2
N
〈1|(KD + ΓD)−1|pD〉. (B.18)

The variance σ2
D(t) for the dwell time in the dark state is then given by t2

D − t̄2
D.

Therefore, we can write the correlation function as

CD(m) =

∑n−1
i=1 liλ

m+1
i 〈1|K−1

D |R
L
i 〉〈L

D
i |pD〉

Nσ2
D

, (B.19)

for all m ≥ 1. Also, the cross correlation function is given by

CDL(m) =

∑n−1
i=1 λ

m+1
i 〈1|K−1

L |R
D
i 〉〈L

D
i |pD〉

N(σ2
D σ

2
L)1/2

. (B.20)

From (B.13)-(B.16), we can conclude that all possible different behaviors of this

set of functions can be determined by studying the set of zeros of the functions

〈1|KD|RL
i 〉, 〈1|KL|RD

i 〉, 〈L
D
i |pD〉, 〈LL

i |pL〉, for every i. We refer to these as the coeffi-

cients of the correlation functions. In general, |R×i 〉 and 〈L×i |, where × = D, L, are

vectors of rational functions of all the rate constants of the kinetic scheme, with

the important property that they are orthogonal to the vectors 〈1| and K�∗|p∗〉,

respectively and with � = L if × = D and � = D if × = L.
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B.3 Correlation functions for the two-channel model

In this section we derive some of our results in Sec. 3.3.1 for a single active site

with two channels. We start by noticing that there is only one eigenvalue λ

different to 1 and therefore

CD(m) =
lλm+1〈1|K−1

D |R
L〉〈LD|ρD〉

Nσ2
D

, (B.21)

and also,

CDL(m) =
λm+1〈1|K−1

L |R
D〉〈LD|pD〉

N(σ2
D σ

2
L)1/2

. (B.22)

Since 〈1| = (1, 1) and 〈1|RD〉 = 〈1|RL〉 = 0, then we can choose |RD〉 and |RL〉

proportional to the vector (1,−1)T , leading to the expression

〈1|K−1
D |R

L〉 = C
(

1
kD1

−
1

kD2

)
. (B.23)

This shows that CLD(m) and CD(m) vanish for all m in the case kD1 = kD2 , but the

same is not necessarily true for CDL(m) and CL(m).

Moreover, 〈LD|KL|pL〉 = 0 and we can take 〈LD| = C′(kL2ρL2 ,−kL1ρL1) for some

nonzero constant C′. In fact, we can set C = 1 and C′ = 1/N since

(kL2ρL2 ,−kL1ρL1).(1,−1)T = N ,

leading in this way to the following expression

〈LD|pD〉 =
1
N

(kL2ρL2ρD1 − kL1ρL1ρD2).

From the above, we can establish a rule for the qualitative dependence of 〈LD|pD〉

on its parameters. If the ratio (kL2ρL2ρD1)/(kL1ρL1ρD2) is greater than, equal to or

less than 1, then the coefficient 〈LD|pD〉 is greater than, equal to or less than 0,

respectively.

Similar rules are expected for 〈LL|pL〉 and 〈1|K−1
L |R

D〉.
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B.4 Models with different substates: nonsymmetric kinetic

schemes

In this section we investigate models with a different number of internal states

in two possible states, dark and light, and we show that the simplest model with

correlation has two substates per state.

A system with a kinetic model such as

...
...

Di Li

D j

Dk L j

...
...

6

-kDii

?

d ji

6

�
kLii

?

l ji

6
di j

?

dk j

?

-
kD jk

6
d jk

?

�
kLk j

6

li j ,

will be denominated as an (nD, nL)-channel reaction model, whenever the dark

state has nD different substates and the light state has nL. Let |pD(t)〉 be the prob-

ability vector of dimension nD for the set of all possible conformations for the

dark state, and |pL(t)〉 be the probability vector of dimension nL for the light

state. Then, the dynamics of the system is given by the set of differential equa-

tions, |ṗD(t)〉

| ṗL(t)〉

 =

KD + ΓD −ZDLKL

−ZDLKL KL + ΓL


|pD(t)〉

|pL(t)〉

 (B.24)
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where the matrices ZDL and ZLD are the transition matrices that describe the way

the different light substates transform into the different dark substates. For a

symmetric model, ZDL and ZLD are the identity matrix.

Under equilibrium conditions we have

(KD + ΓD)|peq
D 〉 = ZDLKL|p

eq
L 〉 and (B.25)

(KL + ΓL)|peq
L 〉 = ZLDKD|p

eq
D 〉, (B.26)

from which we can infer that

KD|p
eq
D 〉 = KD(KD + ΓD)−1ZDLKL(KL + ΓL)−1ZLD KD|p

eq
D 〉, (B.27)

KL|p
eq
L 〉 = KL(KL + ΓL)−1ZLDKD(KD + ΓD)−1ZDL KL|p

eq
L 〉. (B.28)

It is useful to define

MD = KD(KD + ΓD)−1ZDLKL(KL + ΓL)−1ZLD (B.29)

and

ML = KL(KL + ΓL)−1ZLDKD(KD + ΓD)−1ZDL. (B.30)

We also adopt the notation |1r〉 for the column vector of length r all of whose en-

tries are 1. Note that 〈1nD |ΓD = 〈0nD | and 〈1nL |ΓL = 〈0nL |. In addition, the matrices

ZDL and ZLD are completely determined by the kinetic model that is assumed.

This comes from the fact that ZDL and ZLD reflect the connectivity that different

substates have by means of direct reactions. Hence, If Di → Lk is a valid trans-

formation in the kinetic model, then the entry in the kth row and ith column

of the matrix ZLD is one. If it happens that Di can transform into multiple light

substates (say k of them) with a subdiagram

L j1

Di
...

...

L jk

HHj

��*

, (B.31)
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then the entry at the jsth row and ith column of ZLD is given by the fraction

kD js i∑k
r=1 kD jr i

, (B.32)

for every s = 1, . . . , k. Any other entry in that matrix must be zero.

The above shows that the equalities 〈1nD |ZDL = 〈1nL |, 〈1nL |ZLD = 〈1nD |, 〈1nD |MD =

〈1nD | and 〈1nL |ML = 〈1nL | hold.

Before studying some specific systems, let us explore how the definitions of

the density function and the correlation function are extended. Let fD(t) be the

density function given by

fD(t) = 〈1nD |KD|pD(t)〉 = 〈1nD |KDgD(t)|pD(0)〉 (B.33)

=
1
N
〈1nD |KDgD(t)ZDLKL|p

eq
L 〉, (B.34)

where we have assumed that |pD(0)〉 = 1
N

ZDLKL|p
eq
L 〉 and N = 〈1nL |KL|p

eq
L 〉. Also,

observe that N = 〈1nD |KD|p
eq
D 〉. Note that fD(t) integrates to 1 thanks to equation

(B.28). In contrast, the joint density function for the first and m + 1 dwell times

fDD(t1, tm+1) = 〈1nD |KDgD(tm)ZDLKL(KL + ΓL)−1ZLDMm−1
D KDgD(t1)

KL|pe
Lq〉
N

. (B.35)

Similar expressions to Eq. (B.34) and Eq. (B.35) for the light state can be derived.

Besides, for the special case of the joint density function for times in different

states we have

fDL(t1, tm+1) = 〈1nL |KLgL(tm)ZLDMm−1
D KDgD(t1)

KL|p
eq
L 〉

N
, (B.36)

fLD(t1, tm+1) = 〈1nD |KDgD(tm)ZDLMm−1
L KLgL(t1)

KD|p
eq
D 〉

N
, (B.37)

from which we could calculate the crosscorrelation of a system.

We now consider some specific small kinetic models. First, for a model with

two dark substates and one light substate such as
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D1 L1

D2

-

?

�

6

�
�
��� (B.38)

we have

KD =

kD12 0

0 kD11

 ΓD =

 d21 −d12

−d21 d12

 (B.39)

KL = (kL11) ΓL = 0 (B.40)

ZDL =

10
 ZLD =

(
1 1

)
= 〈12| (B.41)

Since 〈12|ZDL = 1 then we have 〈12|MD = 〈12|. In fact, for this case MD =

KD(KD + ΓD)−1ZDL〈12| and so det(MD) = 0 (det(ZDL〈12|) = 0). Finally, this implies

that fDD(t1, tm) = fD(tm) fD(t1). Besides, ML = 〈12|ZDL = 1 and so we can also con-

clude that the dwell times are uncorrelated.

We now consider the system,

D1 L1

D2

-

?

�

�
�

��	

6

�
�
���

. (B.42)

The dynamical description of this system differs only in the elements

KL = kL11 + kL21 ZDL =


kL11

kL11+kL21

kL21
kL11+kL21

 (B.43)

As before, it can be verified that det(ML) = 1 and det(MD) = 0. We conclude in

both cases that λ = 0 and therefore they have zero dwell-time correlation.

Next, we should proceed to study models with two substates in both, the

dark and the light state. These are (2,2)-system. First, consider the following
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kinetic models
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(i) (ii) (iii)

For the kinetic model (i), we can see that

KD =

0 0

0 kD22

 , (B.44)

which implies that det(MD) = det(ML) = 0, since ZDL = ZLD = I. Note that this

result show us that making kD11 = 0 breaks the correlation properties observed

in a two-channel system.

The kinetic model number (ii) shows additional features. First of all, note

that in that case

ZDL =


kD11

kD11+kD21
0

kD21
kD11+kD21

1

 , ZLD = I. (B.45)

The correlation properties for this system are given by the eigenvalue

λ = det(MD) =

(
kD11

kD11 + kD21

)
det(KD)

det(KD + ΓD)
det(KL)

det(KL + ΓL)
. (B.46)

Due to the properties of the determinant, it can be shown that det(MD) = det(ML),

meaning that the correlation has the same behavior for both states D and L.

In the case of the kinetic model number (iii)

ZLD =


kD11

kD11+kD21

kD12
kD12+kD22

kD21
kD11+kD21

kD22
kD12+kD22

 , (B.47)

which leads to a similar expression for the eigenvalue with the factor given by

det(ZLD). In the same way as in model (ii), both autocorrelation functions are
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given by the same eigenvalue. This is a consequence of the stronger fact that

det(MD) = det(ML) for every (n, n)-system.
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B.5 A three-channel system without crosscorrelation

In this section we analyze the three-channel model, with a single active site,

introduced in Sec. 3.4.1. We present the line of arguments that led to the choice

of the set of rate parameters used in this example.

For the three-channel system described in Sec. 3.4.1, two nontrivial eigenval-

ues λ1 and λ2 and eight different correlation coefficients are possible. We want

to understand how these coefficients depend on the whole set of rate constants.

Thus, we consider first the orthogonality relations 〈1|RD
1 〉 = 〈1|RD

2 〉 = 0. Then, by

setting |e1〉 = (1,−1, 0)T and |e2〉 = (1, 1,−2)T we can write

|RD
1 〉 = cD

11|e1〉 + cD
12|e2〉 (B.48)

|RD
2 〉 = cD

21|e1〉 + cD
22|e2〉 (B.49)

since the set {|1〉, |e1〉, |e2〉} is an orthogonal basis for R3. Similar expressions are

expected for |RL
i 〉. Also, considering 〈LD

1 |KL|pL〉 = 〈LD
2 |KL|pL〉 = 0 and setting

〈 f D
1 | = (kL2ρL2 ,−kL1ρL1 , 0), (B.50)

〈 f D
2 | = (kL3 ρL3 kL1 ρL1 , kL3 ρL3 kL2 ρL2 , −k2

L1
ρ2

L1
− k2

L2
ρ2

L2
), (B.51)

〈 f L
1 | = (kD2ρD2 ,−kD1ρD1 , 0), (B.52)

〈 f L
2 | = (kD3 ρD3 kD1 ρD1 , kD3 ρD3 kD2 ρD2 , −k2

D1
ρ2

D1
− k2

D2
ρ2

D2
), (B.53)

we can write

〈L×1 | = b×11〈 f
×
1 | + b×12〈 f

×
2 | (B.54)

〈L×2 | = b×21〈 f
×
1 | + b×22〈 f

×
2 |. (B.55)
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for × = D, L. Hence,

〈1|K−1
L |R

D
1 〉 =cD

11

(
1

kL1

−
1

kL2

)
+ cD

12

(
1

kL1

+
1

kL2

−
2

kL3

)
(B.56)

〈LD
1 |pD〉 =dD

11
(
kL2ρL2ρD1 − kL1ρL1ρD1

)
+ dD

12
(
kL3ρL3kL1ρL1ρD1

+kL3ρL3kL2ρL2ρD2 − (k2
L1
ρ2

L1
+ k2

L2
ρ2

L2
)ρD3

)
(B.57)

We are studying the 3-channel system in order to find a system with vanishing

crosscorrelation functions, and autocorrelation functions with different decay

in m, a behavior experimentally observed by Chen and coworkers[51] during

the single nanoparticle catalytic transformation. Again, this amounts to under-

standing when the factors involved in the spectral decomposition of the corre-

lation function are zero. From Eq. (B.56), we can see that 〈1|K−1
L |R

D
1 〉 = 0 if

1. kL1 = kL2 = kL3 .

2. kL1 = kL2 and cD
12 = 0.

3. kL3(kL1 + kL2) − 2kL1kL2 = 0 and cD
11 = 0,

and from Eq. (B.57) we have that 〈LD
1 |pD〉 = 0 if any of the following set of con-

ditions holds

1. kL2ρL2ρD1 − kL1ρL1ρD1 = 0 and

kL3ρL3kL1ρL1ρD1 + kL3ρL3kL2ρL2ρD2 − (k2
L1
ρ2

L1
+ k2

L2
ρ2

L2
)ρD3 = 0

2. kL2ρL2ρD1 − kL1ρL1ρD2 = 0 and bD
12 = 0.

3. kL3ρL3kL1ρL1ρD1 + kL3ρL3kL2ρL2ρD2 − (k2
L1
ρ2

L1
+ k2

L2
ρ2

L2
)ρD3 = 0 and bD

11 = 0.

The coefficients c×i j and b×i j for i, j ∈ 1, 2 and × = D, L, are not independent. In or-

der to see this, we project the eigenvalue equation into the different eigenspaces
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of the chosen basis. For example

MD|RD
j 〉 = λ j|R j〉

〈ei|MD|RD
j 〉 = λ j〈ei|R j〉

cD
j1〈ei|MD|e1〉 + cD

j2〈ei|MD|e1〉 = λ jcD
ji〈ei|ei〉,

letting ae
i j=〈ei|MD|e j〉 and ei = 〈ei|ei〉, we end with the expression

cD
j1ae

i1+cD
j2ae

i2=λ jcD
jiei. (B.58)

These are four equations for four coefficients that can be summarized in a matrix

equation. If j = 1 then 
ae

11
e1

ae
12

e1

ae
21

e2

ae
22

e2


c

D
11

cD
12

 = λ1

c
D
11

cD
12

 . (B.59)

The solutions to this eigenvalue problem can be written in terms of the constants

x =
ae

11

e1
−

ae
22

e2
y =

4ae
21ae

12

e1e2

as follows

λ1 =
1
2

(
ae

11

e1
+

ae
22

e2
+

√
x2 + y

)
(B.60)

cD
11

1
2

(
−x +

√
x2 + y

)
=

ae
12

e1
cD

12 (B.61)

cD
11

ae
21

e2
=

1
2

(
x +

√
x2 + y

)
cD

12 (B.62)

λ2 =
1
2

(
ae

11

e1
+

ae
22

e2
−

√
x2 + y

)
(B.63)

cD
21

2

(
−x −

√
x2 + y

)
=

ae
12

e1
cD

22 (B.64)

cD
21

ae
21

e2
=

cD
22

2

(
x −

√
x2 + y

)
(B.65)
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from which we can deduce the following rules

ae
12 = 0 and

ae
11

e1
<

ae
22

e2
⇒ cD

11 = 0 (B.66)

ae
12 = 0 and

ae
11

e1
>

ae
22

e2
⇒ cD

21 = 0 (B.67)

ae
21 = 0 and

ae
11

e1
<

ae
22

e2
⇒ cD

22 = 0 (B.68)

ae
21 = 0 and

ae
11

e1
>

ae
22

e2
⇒ cD

12 = 0 (B.69)

We conclude that the representation of MD and ML in the given basis sets con-

tains all the information required to estimate the conditions under which the

coefficients cancel without knowing their analytic expressions and before we

actually solve the equilibrium problem. Note also that we cannot cancel simul-

taneously the pairs (cD
11, c

D
21) and (cD

22, c
D
12). Similar expressions can be obtained

for ML and also with the “ f ” basis set. However, we must stress that our anal-

ysis and the conclusions about the form in which rate constants determine the

correlation coefficients, depends on the arbitrary choice of these basis sets. Put

another way, there might be other possible sets of rate constants for a three-

channel model, without crosscorrelation and exhibiting different autorrelation

times, that are not anticipated by the rules we found.
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B.6 A derivation of the constrained means from the turnover

matrix

In this section we describe how we calculate constrained mean dwell times for

a single active site with n substates from its corresponding turnover matrix MD

or ML. This section demonstrates that the static limit is not a equivalent to a

model composed of independent channels. We will also provide general forms

for the constrained mean dwell times out of the static limit and, in particular,

we will present the expressions of these functions for a three-channel model

implemented in Sec. 3.6.

Let us consider a single reaction path or substate Di → Li in an n-channel

system. The density function for the dwell times for the Di state due to its trans-

formation into Li will be a simple Poisson process[25] with density

fDi(t) = kDie
−kDi t. (B.70)

General laws of probability provide a connection between the density function

of individual channels and the density function for dark dwell times:

fD(t) =

N∑
i=1

fDi(t)P(Xt = Di), (B.71)

where P(Xt = Di) is the probability that the transition happens through the ith

channel at time t. In Eq. (B.71) we assume that transitions in different channels

are independent, a condition that only valid in the static limit. Under these

conditions, we have

t̄D =
∑

i

t̄Di P(Xt = Di). (B.72)
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As a matter of fact, Eq. (B.71) in the static limit is equivalent to

fD(t) =

N∑
i=1

kDie
−kDi t

kLiρLi

N
, (B.73)

from which we infer that P(Xt = Di) = kLiρLi/N .

In the same fashion for two subsequent dwell times for the states L and D

we have

fLD(tL, tD) =
∑

i

∑
j

fLi D j(tLi, tD j)P(XtL = i ∧ XtD = j) (B.74)

=
∑

i

∑
j

fLi(tLi) fD j(tD j)P(XtL = i)P(XtD = j), (B.75)

where P(XtL = i ∧ XtD = j) = P(XtL = i)P(XtD = j) will hold if these two event are

independent. Then

tDtL =
∑

i

∑
j

t̄Li t̄D jP(XtL = i)P(XtD = j) (B.76)

and as a consequence tDtL − t̄D t̄L = 0. Similarly, this model lacks any autocorrela-

tion. In addition, using the definition of conditional probability we have

f (tD|tL < T ) =

∫ T

0
fLD(tL, tD)dtL∫ T

0
fb(tL)dtL

(B.77)

=

∑
i

∫ T

0
fLi(tL)P(XtL = i)dtL

∑
j fD j(tD j)P(XtD = j)∑

i

∫ T

0
fLi(tL)P(XtL = i)dtL

(B.78)

=
∑

j

fD j(tD j)P(XtD = j) (B.79)

= fD(tD). (B.80)

Observe that with the introduction of the conditional density function f (tD|tL <

T ) one can also obtain t̄D< as follows

t̄D<(T ) =

∫ ∞

0
dtD tD f (tD|tL < T ), (B.81)
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and therefore in the independent case we have that ∆t̄D<(T ) = 0.

Now we will show that for a two-channel system close to the static limit

P(XtL = i, XtD = j) , P(XtL = i)P(XtD = j), showing that even in this case the two

channels are correlated. First, we consider the original expression for fLD in Eq.

(2.5) :

fLD(tL, tD) =
1
N
〈1|KDgD(tD)KLgL(tL)KD|pD〉

Introducing the identity matrix in terms of the eigenvectors of the turnover ma-

trix (i.e. I = KL|pL〉N
−1〈1| + |R2〉〈L2|) we obtain

fLD(tL, tD) =
1
N
〈1|KDgD(tD)KL|pL〉

1
N
〈1|KLgL(tL)KD|pD〉

+ 〈1|KDgD(tD)|R2〉〈L2|KLgL(tL)KD|pD〉 (B.82)

fLD(tL, tD) = fD(tD) fL(tL)

+
kL1kL2

N2

(
kD1e−kD1t − kD2e−kD2t

)
×(

ρL2e−kL1tkD1ρD1 − ρL1e−kL2tkD2ρD2

)
(B.83)

The second term vanishes when kD1 = kD2 or when kL1 = kL2
1. If any of these

conditions hold, then we would have that

P(XtD = i ∧ XtL = j) =
kLiρLi

N
kD jρD j

N
(B.84)

= P(XtD = i)P(XtL = j). (B.85)

Thus, in the absence of dynamic heterogeneity among transitions from the dark

to the light state (i.e. kD1 = kD2), the constrained and the unconstrained means

are the same and dwell times are independent. Now we assume kD1 , kD2 and

1Observe that ρD1 = c1kL1/(kD1 + kL1) and ρD2 = c2kL2/(kD2 + kL2) for some constants c1 and c2.
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kL1 , kL2 . Then

fLD(tL, tD) = kD1e−kD1tkL1e−kL1tP(XtD = 1) + kD2e−kD2tkL2e−kL2tP(XtD = 2). (B.86)

From the last expression, Eq. (B.77) and Eq. (B.81) we can calculate t̄D<(T ) and

also

∆t̄D<(T ) =

(
1

kD1
−

1
kD2

)
(1 − e−kL1T )PD2PL1 − (1 − e−kL2T )PD1PL2

(1 − e−kL1T )PL1 + (1 − e−kL2T )PL2
. (B.87)

=

(
kD2 − kD1

kD1kD2

)
PD2PL1(e−kL2T − e−kL1T )

(1 − e−kL1T )PL1 + (1 − e−kL2T )PL2
. (B.88)

Similar considerations and definitions also lead to

∆t̄D<(T ) =

(
kD1 − kD2

kD1kD2

)
PD2PL1(e−kL2T − e−kL1T )
e−kL1T PL1 + e−kL2T PL2

. (B.89)

In the above expressions we have introduced the notation Pzn for P(Xz = n).

Finally, the reader should notice that the same line of argument can be used to

derive expressions for ∆t̄L< and ∆t̄L>, in the static limit.

We now generalize the above analysis to cases that are not close to the static

limit. For this, the diagonalization of gD(t) and gL(t) will be important together

with the partition in terms of the “D” and ”L” eigenspaces.

ID =
∑

i

|RD
i 〉〈L

D
i | IL =

∑
i

|RL
i 〉〈L

L
i | (B.90)

MD|RD
i 〉 = λi|RD

i 〉 ML|RL
i 〉 = λi|RL

i 〉 (B.91)

〈LD
i |MD = λi〈LD

i | 〈LL
i |ML = λi〈LL

i | (B.92)

also

UD = KD + ΓD UL = KL + ΓL (B.93)

ĨD =
∑

i

|rD
i 〉〈l

D
i | ĨL =

∑
i

|rL
i 〉〈l

L
i | (B.94)

UD|rD
i 〉 = αi|rD

i 〉 UL|rL
i 〉 = βi|rL

i 〉 (B.95)

〈lD
i |UD = αi〈lD

i | 〈lL
i |UL = βi〈lL

i | (B.96)
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The density function for the dwell times in the D state is

fD(t) =
1
N
〈1|KDgD(t)KL|pL〉 (B.97)

=
1
N
〈1|KD

∑
i

|rD
i 〉e

−αit〈lD
i |KL|pL〉 (B.98)

=
1
N
〈1|UD

∑
i

|rD
i 〉e

−αit〈lD
i |KL|pL〉 (B.99)

=
∑

i

αie−αit 1
N
〈1|rD

i 〉〈l
D
i |KL|pL〉 (B.100)

=
∑

i

fαi(t)P(XD = i) (B.101)

where

fαi(t) = αie−αit (B.102)

P(XD = i) =
1
N
〈1|rD

i 〉〈l
D
i |KL|pL〉 (B.103)

=
1
N
αi〈1|rD

i 〉〈l
D
i |pD〉 (B.104)

Note that in the static limit 〈1|rD
i 〉 = 1, 〈lD

i |pD〉 = ρDi and Eq. (B.104) reduces to

kDiρDi/N = kLiρLi/N .

For the joint density function fLD(tL, tD), we write the identity matrix in the

in terms of the eigenvectors of the turnover matrix MD to insert it in the joint

density function as follows.

fLD(tL, tD) =
1
N
〈1|KDgD(tD)(

∑
k=1

|LD
k 〉〈R

D
k |)KLgL(tL)KD|pD〉 (B.105)
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= fD(tD) fL(tL)+

1
N

∑
k=2

〈1|KDgD(tD)|RD
k 〉〈L

D
k |KLgL(tL)KD|pD〉 (B.106)

= fD(tD) fL(tL)+

1
N

∑
k=2

〈1|KD

(∑
i=1

|rD
i 〉e

−αitD〈lD
i |
)
|RD

k 〉×

〈LD
k |KL

(∑
j=1

|rL
j 〉e
−β jtL〈lL

j |
)
KD|pD〉 (B.107)

Thus,

fLD(tL, tD) − fD(tD) fL(tL) = ∑
i=1

∑
j=1

fαi(tD) fβ j(tL)P(XD = i|XL = j), (B.108)

with

P(XD = i|XL = j) =
1
N

∑
k=2

〈1|rD
i 〉〈l

D
i |R

D
k 〉〈L

D
k |KL|rL

j 〉〈l
L
j |pL〉 (B.109)

and fαi(tD) and fβ j(tL) given by Eq. (B.102). Now observe that

P(tL < T ) =

∫ T

0

∑
i

fβi(t)P(XL = i) (B.110)

=
∑

i

Pβi(tL < T )P(XL = i) (B.111)

and

fD(tD|tL < T ) − fD(tD)P(tL < T )

=
∑
i=1

∑
j=1

fαi(tD)Pβi(tL < T )P(XD = i|XL = j), (B.112)

implying that

∆t̄D<(T ) =

∑
i=1

∑
j=1(αi)−1Pβ j(tL < T )P(XD = i|XL = j)∑

i Pβi(tL < T )P(XL = i)
. (B.113)
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Eq. (B.113) is valid for any set of rate constants and also for any number of

substates. For a two channel system, Eq. (B.113) is

∆t̄D<(T ) =
1
α1

(1 − e−β1T )PD1L1 + (1 − e−β2T )PD1L2

(1 − e−β1T )PL1 + (1 − e−β2T )PL2

+
1
α2

(1 − e−β1T )PD2L1 + (1 − e−β2T )PD2L2

(1 − e−β1T )PL1 + (1 − e−β2T )PL2
(B.114)

where PDiL j = P(XD = i|XL = j). Observe that
∑

i, j PDiL j = 0 and also PD1L1 =

−PD2L1 and PD2L1 = −PD2L1. In fact, for any n-channel model we have

n∑
i=1

PDiL j = 0
n∑

j=1

PDiL j = 0, (B.115)

therefore,for a two-channel system

∆t̄D<(T ) =
( 1
α1
−

1
α2

) e−β1T PD2L1 − e−β2T PD1L2

(1 − e−β1T )PL1 + (1 − e−β2T )PL2
(B.116)

=
(α2 − α1

α1α2

) PD1L2(e−β2T − e−β1T )
(1 − e−β1T )PL1 + (1 − e−β2T )PL2

. (B.117)

Using a similar argument we can show that

∆t̄D>(T ) =
(α2 − α1

α1α2

)PD1L2(e−β1T − e−β2T )
e−β1T PL1 + e−β2T PL2

. (B.118)

Eq. (B.113) can be immediately applied to the three-channel system to give the

following result

∆t̄D<(T ) =
( 1
α1
−

1
α3

)−e−β1T PD1L1 − e−β2T PD1L2 − e−β3T PD1L3

1 − e−β1T PL1 − e−β2T PL2 − e−β3T PL3

+
( 1
α2
−

1
α3

)−e−β1T PD2L1 − e−β2T PD2L2 − e−β3T PD2L3

1 − e−β1T PL1 − e−β2T PL2 − e−β3T PL3
(B.119)

∆t̄D>(T ) =
( 1
α1
−

1
α3

)e−β1T PD1L1 + e−β2T PD1L2 + e−β3T PD1L3

e−β1T PL1 + e−β2T PL2 + e−β3T PL3

+
( 1
α2
−

1
α3

)e−β1T PD2L1 + e−β2T PD2L2 + e−β3T PD2L3

e−β1T PL1 + e−β2T PL2 + e−β3T PL3
, (B.120)

which can be simplified to the forms equivalent to Eq. (3.61) only in the static

limit, because in that case PDiL j = PD jLi for i , j. On a final note, observe that in
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the limit of ∆t̄D<(T ) when T → 0 for a two-channel model is

lim
T→0

∆t̄D<(T ) =
( 1
α1
−

1
α2

)β1PD1L1 + β2PD1L2

β1PL1 + β2PL2
, (B.121)

and for a three channel system

lim
T→0

∆t̄D<(T ) =
( 1
α1
−

1
α3

)β1PD1L1 + β2PD1L2 + β3PD1L3

β1PL1 + β2PL2 + β3PL3
(B.122)

+
( 1
α2
−

1
α3

)β1PD2L1 + β2PD2L2 + β3PD2L3

β1PL1 + β2PL2 + β3PL3
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CHAPTER 4

INTERPRETING SINGLE NANOPARTICLE MEASUREMENTS

We found in Chapter 2 that the catalytic transformation of resazurin to re-

sorufin on the surface of a single nanoparticle has constrained mean dwell

times that are well described by a model with many chemically-identical active

sites, each one fluctuating between two substates and, spatially correlated. As

a stronger finding, we determined that a system with many independent active

sites fails to reproduce the qualitative differences that in the asymptotic decay

rates of ∆t̄L< and ∆t̄L> are observed for nanoparticles of 6, 9.1 and 13.7 nanometer

diameter. We conclude again that the correct description of these experimental

systems has to include spatial correlation among active sites, as there is only

one model with n-independent active sites. In the last statement, we implicitly

assumed two substates per active site.

In Chapter 3, we found that two states are not enough and that a third sub-

state is required to predict the qualitative properties observed in the dwell-time

correlation functions CD, CL, CLD and CDL, for the same experimental system.

We are now in a good place to discuss and analyze simultaneously dwell-time

correlations and constrained mean dwell times observed during the catalytic

transformation by single nanoparticles studied by Chen [51, 49, 11].

4.1 Kinetic scheme and fitted rate constants

For the fluorescence trajectory reported by Chen and coworkers in Ref. [51] mea-

sured on a single nanoparticle of 6 nanometer diameter, we have numerically

determined an optimal three-channel model that qualitatively reproduces the
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experimentally observed constrained means and dwell-time correlation func-

tions. We present the predictions for these quantities for this model in Figs. 4.1

and 4.2, and we also include the experimental values for comparison. Parame-

ters for this model are kD1 = 2.47s−1, kD2 = 0.175s−1, kD3 = 0.156s−1, kL1 = 1.43s−1,

kL2 = 2.80s−1, kL3 = 0.0766s−1, d21 = 0.0043s−1, d12 = 1.69 × 10−4, l12 = 0.045s−1,

l21 = 0.042s−1, l23 = 0.040s−1, l32 = 0.0185, d32 = 0.00018s−1 and d23 = 0.012s−1.

For this model d21 and l32 were determined by the condition of detailed bal-

ance. An initial inspection of Fig. 4.1 reveals that for this trajectory ∆t̄L> decays

much faster than ∆t̄L<: ∆t̄L< numerically vanishes as TD ∼ 16 while ∆t̄L> reaches

its first pseudo asymptote close to TD = 2. Based on our discussion in Sec.

3.6, we must conclude that the multiple active sites located on the surface on

the 6nm nanoparticle are spatially correlated and they can be described by the

model introduced in Sec. 2.4 with fluctuations among three substates. In this

way, we must reinterpret our fitting and say that it provides numerical values

for every rate constant, including the rescaled constants of reaction. Hence,

N × kD1 = 2.47s−1, N × kD2 = 0.175s−1, N × kD3 = 0.156s−1 for this system. These

constants are effective rate constants and they may also include the saturation

factor, given as the ratio of occupied active sites, predicted in Ref. [11].

The reader should notice the difference between the experimental data ana-

lyzed in this section and the data in Sec. 2.6. In this chapter we are considering

constrained means and correlation plots as calculated from the single fluores-

cence trajectory reported in Ref. [51] (see Figs. 4.1 and 4.2 ), while we have

previously analyzed constrained means for a collection of more than fifty tra-

jectories and reported the average constrained means in Fig. 2.7. As we want

to emphasize that the analysis of constrained mean dwell times and dwell-time

correlation function only requires a single trajectory with a statistically mean-
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ingful number of events; we have decided to study the trajectory measured

from a single nanoparticle. This trajectory has about 800 turnovers, providing

in this way a good sample for the calculation of constrained means and correla-

tion functions. Moreover, the discussion in this section also applies to the data

analyzed in Sec. 2.6. For instance, in Fig. 2.7 we noticed that ∆t̄L> decays much

faster than ∆t̄L< to the respective asymptotic values. In light of the discussion

in Sec. 3.6, we can still state that this is an indicator of correlation among active

sites.

Rate constants for this model have been determined by an optimization strat-

egy for large systems[27] that partitions the variables of the system into smaller

subsets and optimizes one group at a time, while parameters in other subsets

are unchanged during the optimization. This leads to a cascade of constrained

minima that must approach to a local minimum. In every step, we minimized

the sum of the squares of the offsets (“the residuals”) of the predicted points

from the experimentally measured values. Moreover, in order to avoid trapping

in sub-optimal positions, we have introduced in the course of the optimization

weighting coefficients that enhance the contribution to the minimization func-

tion of those experimental values that are more relevant in the determination of

the qualitative properties of the fitted model. For example, in the case of CL the

experimental values at m = 1, . . . , 5 are relevant to determine the decay that the

fitted dwell-time correlation should have. Thus, we have multiplied the residu-

als for CL at m = 1, . . . , 5 by weighting factors that increment their contribution

to the total function. As this optimization algorithm is sensitive to the way in

which variables are distributed in the different subsets, we cannot guarantee

that we have reached a global minimum. Our optimal model has been deter-

mined by starting with two partitions: a two channel system and an additional
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channel. The initial set of parameters for the two-channel submodel was deter-

mined by fitting this subsystem to the constrained mean dwell times in Fig. 4.1,

and the experimental CD. Next, initial parameters for the third channel were

assigned by fitting the whole set of unconstrained and constrained means, and

also the time correlation functions, with the three-channel model that has the

parameters for the previous two channel submodel included. These parameters

are not allowed to change in the course of this optimization step. Once we have

a complete set of initial values for rate constants, we redistribute the set of pa-

rameters into two different subsets and then repeat the previous strategy many

times, until we reach a point in which no further minimization is possible even

after considering all possible partitions of the set of variables.

4.2 Insights into the catalytic properties of a single

nanoparticle

In this section we investigate how the optimal model described in Sec. 4.1

provides further insight into the dynamical heterogeneity observed in single

nanoparticle catalysis. Internal rate constants in Fig. 4.1 and Fig. 4.2 are sig-

nificantly smaller than the reaction and product desorption rate constants and

we can say that this model is close to the static limit. In fact, as illustrated in

Fig. 4.3 the static limit prediction for this model for the constrained mean dwell

times, calculated according to Eq. (3.62) and Eq. (3.66) and displayed in dashed

lines, is numerically correct. This observation validates the following analysis of

the qualitative characteristics of the constrained means in terms of the pairwise

decomposition introduced in Sec. 3.6, and summarized in Eqs. (3.61) and(3.65).
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Figure 4.4: The top panel shows CL (Dashed line) and CD (Solid line) for
the two-channel submodel composed of channels 2 and 3. This
model exhibits small CD, CLD and CDL. The bottom panel shows
CD (Solid line), CL (Dashed line), CLD (Dotted line) and CDL

(Dotted line) for the full three-channel model that is the re-
sult of expanding the model of the top by introducing a third
substate with slow internal transformations to the two-channel
subsystem. This model is the same as the one used to fit ex-
perimental data in Fig. 4.2. Parameters for this model are
kD1 = 2.47s−1, kD2 = 0.175s−1, kD3 = 0.156s−1, kL1 = 1.43s−1,
kL2 = 2.80s−1, kL3 = 0.0766s−1, d21 = 0.0043s−1, d12 = 1.69 × 10−4,
l12 = 0.045s−1, l21 = 0.042s−1, l23 = 0.040s−1, l32 = 0.0185,
d32 = 0.00018s−1 and d23 = 0.012s−1.
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We observe that the behavior of ∆t̄D< and ∆t̄D> is dominated by the set of trans-

formations taking place through the first and second channel, and that the third

channel does not contribute significantly to these observables in the range of

times that is experimentally accessible. Notice that these two channels corre-

spond to the two fastest desorption paths (kL1 and kL2 are larger than kL3), and

therefore they are responsible for the shorter light dwell times. In contrast, ∆t̄L<

and ∆t̄L> have contributions from each one of the three channels, and the decay

is dominated by both h12 and h13. This is a consequence of the existence of two

reaction paths, corresponding to channels two an three, that have reaction con-

stants kD that are very similar, namely, kD2 = 0.175s−1 and kD3 = 0.156s−1. This

also implies that h12 and h13 have similar decay rates, both dominated by kD1 ,

and that ∆t̄L< and ∆t̄L> behave as constrained functions for a two-channel sys-

tem in the range of times that is experimentally accessible. These observations

serve to justify why we were able to qualitatively describe with a two-channel

model the complete set of constrained means for the same system in Chapter

2, Sec. 2.6. Put another way, the two-channel subsystem composed by channels

one and two, have the minimum qualitative properties that would be required

to describe the experimentally-measured constrained mean dwell times. In fact,

the reaction rate constants for the second channel of the model described in this

chapter are about the same to those obtained for the second channel in Sec. 2.6,

and this statement also holds when we compare rate constants for the first chan-

nel in both models with the exception of the rate constant N × kD1 . However, the

value determined for N × kD1 is of the same order of magnitude in both models.

Notice that this difference is also due to the difference in the data analyzed in

each case.

Another interesting characteristic of this model is presented in Fig. 4.4, based
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on the fitted correlation plots. Different decay rates in CD and CL are only pos-

sible in a system as big as a three-channel model. From our analysis in Sec. 3.4

and our finding in Fig. 4.4, we observe that CL is dominated by reactions and

desorptions that happen through channels two and three, which correspond to

the fastest and the slowest desorption events. Moreover, CD is small for the sub-

system composed only by these two channels, and we can expect this since the

numerical values of kD2 and kD3 are very similar. On the other hand, we observe

that the first channel dominates the decay of CD, as illustrated in the bottom

panel of Fig. 4.4. In order to better appreciate this result, we now consider the

analytic expressions for CD and CL derived from our optimal model

CL(m) =2.14
(
0.0015 × 0.954m+1 + 0.319 × 0.608m+1

)
(4.1)

∼0.683 × 0.608m+1 (4.2)

CD(m) =0.16
(
1.51 × 0.954m+1 + 0.00082 × 0.608m+1

)
(4.3)

∼0.243 × 0.954m+1 (4.4)

From here we observe that the two nontrivial eigenvalues are λ1 = 0.608

and λ2 = 0.954. As Fig. 4.4 suggests, the decay rate of CL is dominated by the

subsystem of channels two and three and we can use perturbation theory1 to

estimate the contribution of this subsystem to the decay of CL as follows. If we

let λ(1)
1 be the first order correction to the eigenvalue λ1 predicted in Sec. 3.4, then

λ(1)
1 =

(
1 +

l23

kL3

+
l32

kL2

+
d23

kD3

+
d32

kD2

)−1

(4.5)

=0.544, (4.6)

from where we observe that λ(1)
1 amount to about 90 % of the fitted value of λ1.

1In this case, the perturbation parameter is dominated by the sum l12/kL2 + d12/kD2 = 0.016
corresponding to z2 in Sec. 3.4.
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Likewise,

λ(1)
2 =

(
1 +

l21

kL1

+
d21

kD1

)−1

(4.7)

=0.970 (4.8)

differs from the fitted value for λ2 by less that 1.7%. While we do not have a

perfect separation into two different sets of rate constants and distinct functions

for these two decays, the fact that we can understand CD and CL as manifes-

tations of the dynamical properties of different groups of channels or reaction

paths, leads us to the conclusion that the different decays of the autocorrelation

plots, given by 1/mD and 1/mL are measurements of the relative time scales of

two different internal process. This fact is better appreciated from Eq. (3.40) and

Eq. (3.41), where such a difference in the 1/mD and 1/mL is determined to a first

order, to wit,

1

m(1)
D

=
l21

kL1

+
d21

kD1

= 0.0160 (4.9)

1

m(1)
L

=
l23

kL3

+
l32

kL2

+
d23

kD3

+
d32

kD2

= 0.838 . (4.10)

These values should be compared to those experimentally reported in Ref. [51]

which are m−1
D = 0.0800 and m−1

L = 0.385.

These different internal transformations can then be interpreted as two dif-

ferent forms of surface reconstruction or, as two different processes that are

induced on the nanoparticle by the substrate molecules, as they change from

docking place. While Chen [51] has reported experimental evidence supporting

the first idea, our model is not able to differentiate among these two scenarios.
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4.3 Answers provided by this thesis to the questions posed in

Chapter 1

We close this chapter by listing the answers to our research has found to the

questions posed in Sec. 1.3.

1. The single-molecule kinetic theory developed by Cao[10] predicts that

dwell-time density functions are multiexponential in the presence of in-

ternal transformations, such as conformational fluctuations or surface-

reconstruction processes.

2. Constrained mean dwell times and dwell-time correlation functions are

robust statistical indicators that can expose different but complementary

information about the time scale and the number of internal processes that

give rise to the memory effects observed in a single-molecule fluorescence

trajectory.

3. Our qualitative analysis of the experimental constrained mean light dwell

times for a nanoparticle of 6nm diameter led us to the conclusion that ac-

tive sites on the surface of the nanoparticle are spatially correlated.

4. We have demonstrated that the decay rates of the light and dark dwell

time autocorrelation functions in the absence of crosscorrelation, measure

the relative time scale of two distinct internal process occurring on the

nanoparticle surface. The time scale is found to be orders of magnitude

smaller than the time scale associated transitions from a state of low to a

high emission intensity.

5. While at this point our analysis do not let us determine a unique model

for the quantitative description of the whole set of constrained means and
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D1 2.5

1.4

L1

0.00017 0.00044
0.045 0.042

D2 0.18

2.8
L2

0.012 0.00018
0.040 0.018

D3 0.16

0.077
L3

Figure 4.5: A kinetic scheme for the catalytic transformation of resazurin
into resorufin on the surface of a gold nanoparticle of 6nm di-
ameter. Parameters for this model are kD1 = 2.47s−1, kD2 =

0.175s−1, kD3 = 0.156s−1, kL1 = 1.43s−1, kL2 = 2.80s−1, kL3 =

0.0766s−1, d21 = 0.0043s−1, d12 = 1.69 × 10−4, l12 = 0.045s−1,
l21 = 0.042s−1, l23 = 0.040s−1, l32 = 0.0185, d32 = 0.00018s−1 and
d23 = 0.012s−1.

dwell-time correlation function; it is indeed possible to qualitatively char-

acterize the kinetic scheme that must describe these statistical indicators

for single nanoparticle catalytic process under substrate-saturating condi-

tions. Our research has shown that the nanoparticle must fluctuate among

at least three different substates and, fast product desorptions must hap-

pen through the same reaction path as slow activation processes and vice

versa. We can then provide a kinetic scheme, with numerical values for

every rate constant, that qualitatively describes all the properties that we

found in the statistical indicators that we studied. As an example, Fig. 4.5
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presents the kinetic scheme for the fitted model obtained in Sec. 4.1.
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