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This dissertation addresses two different problems within mathematical finance: an opti-

mal execution problem with dark pools using a market impact model, and multi-product

separation with financial hedging for inventory management.

In the first part of the dissertation we consider an optimal liquidation problem in

which a large investor can sell on a traditional exchange or in a so-called dark pool.

Dark pools differ from traditional exchanges in that the orders placed in it generate

little to no price impact on the market price of the asset. Within the framework of the

Almgren-Chriss market impact model, we study an extended model which includes the

cross-impact between the two venues. By analyzing the optimal execution strategy, we

identify those model specifications for which the corresponding order execution problem

is stable in the sense that are no price manipulation strategies which can be beneficial.

In the second part of the dissertation, we propose financial hedging tools for in-

ventory management. Based on a framework for hedging against the correlation of

operational returns with financial market returns, we consider the general problem of

optimizing simultaneously over both the operational policy and the hedging policy of

the corporation. Our main goal is to achieve a separation result such that for a corpora-

tion with multiple products and inventory departments, the inventory decisions of each

department can be made independently of the other departments’ decisions. We focus

initially on a single-period, multi-product hedging problem for inventory management,

and model an economy experiencing monetary inflation. We use the Heath-Jarrow-



Morton model to represent the financial market. We then extend the model to consider

multiple periods and more general market models. In both cases, we prove a separation

result for inventory management that allows each inventory department to make deci-

sions independently. In particular, the separation result for the multi-period problem is a

global separation in the sense that no interaction needs to be considered among products

in intermediate time periods. In addition, we propose a dynamic programming simpli-

fication of the multi-period single-item inventory problem which further simplifies the

computation by reducing the dimension of the state space.



BIOGRAPHICAL SKETCH

Yuemeng ”Sunny” Sun was born in Beijing, China on October 6, 1982. She did her

undergraduate studies in the Department of Mathematics at Nanjing University. After

earning a Bachelor of Science degree in June 2004, she majored in Applied Mathe-

matics completing the Computational Finance track in the Department of Mathematics,

Statistics and Computer Science at University of Illinois at Chicago. She obtained the

Master of Science degree in May 2006. That same year, she was admitted to the Ph.D.

program in the field of Operations Research and Information Engineering at Cornell

University. She has a great interest in the field of mathematical finance and inventory

management. From 2008 to 2009, she did her doctoral research under the guidance

of Professor Alexander Schied, focused on the optimal execution problem with market

impact. Since Professor Schied left Cornell University in 2009, she has been doing re-

search under the guidance of Professor Peter Jackson, in the area of financial hedging in

inventory management.

Upon completion of her Ph.D. she will join the Global Quant Group of Bank of

America, Merrill Lynch.

iii



To my parents:

Guoming Sun and Xiurong Wang

For their unconditional love and support

iv



ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Professor Peter Jackson for his invaluable

guidance and encouragement. He has been an excellent advisor, and a great mentor

both in work and life. Meetings with him have been delightful and inspiring. Each one

was filled with not only useful insights into my work, but also valuable lessons for life

outside of research. During the moments of frustration and anxiety in my research, Peter

was always the person who encouraged me. I would also like to thank my former advisor

Professor Alexander Schied, it was my great honor to work with him during his stay at

Cornell University. Research experiences with Professor Schied lead me to the world of

mathematical finance, and initiated my passion for this area. I am really thankful for the

advice and suggestions he continues to offer me, despite now being in Germany. I also

wish to thank the School of Operations Research and Information Engineering for the

generous support and the great research environment.

Next, I want to thank Professor Johannes Wissel for working with me. I have been

very fortunate to be able to work with such a brilliant scholar and a generous friend.

The discussions with him were always illuminating to me. He has been providing me

glowing insights and ideas in research and being so generous with his time. I am also

very grateful to Professor Huseyin Topaloglu and Professor Michael Nussbaum for their

valuable inputs while serving as members of my special committee. It was Professor

Topaloglu’s encouragement and advice that helped me get through the ups and downs.

In addition, I want to thank Professor Robert Bland for being such a heart-warming

mentor. I want to thank Professor Kathryn Caggiano; it was a pleasure serving as a

teaching assistant for her. My extended gratitude goes to all faculty and staffmembers in

the School of Operations Research and Information Engineering. In particular, Kathryn

King, Cindy Jay, and Eric Johnson for their patient, efficient administrative and technical

support.

v



Special thanks to all my Ph.D. fellows and friends for their companionship and help.

You made my life here enjoyable! To name a few, Fan Zhu, Yi Shen, Xiaoqing Xie,

Hui Qu, Jie Chen, Juan Li, Collin Chan, Chao Ding, Mathew McLean, Jiawei Qian,

Shanshan Zhang, Tuohua Wu, Sophia Liu, Gwen Spencer.

Last but not least, nothing would have been possible without the love and encour-

agement of my parents. I dedicate this thesis to you!

vi



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1

2 Optimal Execution with Dark Pools and the Absence of Price Manipulation 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 The Optimal Execution Strategy . . . . . . . . . . . . . . . . . . . . . 12
2.4 The Existence of Price Manipulation . . . . . . . . . . . . . . . . . . . 19
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Multi-product Separation Result for Inventory Management under Infla-
tion Risk 36
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Model and Problem Formulation . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Financial market model . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Inventory model . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.3 Hedging in the financial market . . . . . . . . . . . . . . . . . 45

3.3 Hedging of multiple products . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 Quadratic hedging problem and Föllmer-Schweizer decomposi-
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CHAPTER 1

INTRODUCTION

Since the publication of The Theory of Speculation by Louis Bachelier in 1900, math-

ematical finance has been evolving as a rich and separate field of applied mathematics.

There are a variety of different problems in the area of mathematical finance. For ex-

ample, the portfolio optimization problem and the financial asset pricing problem are

both classical topics. While its theoretical side is being enriched, mathematical finance

tools are being extensively applied both in academia and industry. In this dissertation

we address two different problems within mathematical finance: an optimal execution

problem with dark pools and multi-product separation with financial hedging for inven-

tory management. The first problem is a type of optimal execution problem, that is, a

problem to find an optimal asset liquidation strategy in a market with limited liquidity.

The particular problem addressed is the use of dark pools as an alternative to traditional

exchanges. Transactions in dark pools are invisible to all but the parties directly engaged

in the transaction. The second problem considers the integrated problem of managing

retail inventories when the operational risk is correlated with financial instruments. We

investigate conditions under which multi-product problems can be separated into single

item problems.

This dissertation is structured into four chapters beyond this introduction. Chap-

ter 2 presents the research on dark pools; Chapters 3 and 4 present the research on

multi-product separation; and chapter 5 presents concluding remarks. A more detailed

overview follows.

In chapter 2, we consider an optimal liquidation problem with two trading venues:

a traditional exchange and a dark pool. A dark pool is an alternative trading platform

whose use has been mushrooming in recent years. The first dark pool, Instinet’s After
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Hours Cross, was started in the fall of 1986. The Cross allowed clients to enter orders

into a blind book which would then run a match at 6:30 pm Eastern time using that day’s

closing price for all traders. The match allowed large buyers and sellers to transact

without pre-trade transparency and potential information leakage. Instinet soon had

many competitors, both in the U.S. and around the world. As of 2010, there were over

40 different dark pools in the U.S. and they accounted for 12.1% of the U.S. equities

market.

The main feature of a dark pool is that it provides dark liquidity; that is, orders

placed in a dark pool cannot be seen by any potential market participant. As a result,

dark pool orders do not influence the quoted price of an asset. Due to its ’dark’ property,

dark pools have been popular among traders who wish to move large numbers of shares

without revealing themselves to the open market. Neither the price nor the identity of

the trading company is displayed. Dark pools are popular among institutional investors.

For them, dark pools provide many of the efficiencies associated with trading on the

traditional exchanges’ public limit order book but without showing their hand to others.

Dark pools vary greatly in their characteristics and makeup. It is common to divide

them into the following five general categories:

• Public Crossing Networks. These are the most traditional dark pools. Most were

started by agency-only brokerage firms with the single economic purpose of gen-

erating commissions. One of the distinguishing properties of public crossing net-

works is that the dark pool operator is barred from engaging in proprietary trades.

• Internalization Pools. These are designed primarily to internalize the operator’s

trade flow. They differ from public crossing networks in that they can include the

operator’s proprietary trades as well as the flow from their retail and institutional

customers.

2



• Ping Destinations. The operators of these pools accept only Immediate or Cancel

(IOC) orders, and their customers’ flow interacts solely with the operator’s own

flow. The main operators of Ping destinations are large hedge funds or electronic

market-makers.

• Exchange-Based Pools. There are two types of dark pools in this category: dark

pools that are actually registered as Alternative Trading Systems (ATSs) by ex-

changes, and pools of liquidity created as a result of hidden order types supported

by Electronic Communication Networks (ECNs) and exchanges. A distinguish-

ing characteristic is that the hidden orders usually interact with regular displayed

orders.

• Consortium-Based Pools. These are pools operated by numerous partnering bro-

kers. These dark pools behave like a hybrid of public crossing networks and

internalization pools. Unlike crossing network pools, the partners may engage

in proprietary trades. However, unlike internalization pools, they are not typi-

cally owned by agency-only firms. They therefore provide somewhat more trans-

parency.

In our work, we consider a model for order execution in two possible venues: a dark

pool and an open exchange. Facing a liquidation deadline, the trader needs to execute a

strategy using the two trading venues to maximize the expected revenue by reducing the

market price impact. There are two tasks to accomplish: liquidation must be completed

by the deadline and the impact of the strategy on market price must be minimized.

While the dark pool promises a reduction of market impact and of liquidation costs,

the risk is that the order placed in the dark pool cannot meet a matching order, and, as a

result, cannot be fulfilled by the deadline. While using a traditional exchange guarantees

execution of the trades, the risk is that the trades will generate a significant price impact.

The optimal strategy, therefore, is likely to be a hybrid strategy exploiting both venues.
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We propose a continuous-time stochastic model which extends the standard Almgren-

Chriss market impact model to include exchange prices in a dark pool. We derive an

optimal trading strategy that exploits both venues.

One distinguishing property of dark pools is that they do not have an intrinsic price-

finding mechanism. Instead, the price at which orders are executed is derived from the

publicly quoted price at an exchange. Thus, trades in a dark pool might be manipulated

through placing large buy or sell orders in the corresponding exchange coincident with

offsetting orders within the pool. Because of the importance of this issue for regulation

and for market efficiency, we use our model to establish conditions under which the

manipulations are not beneficial.

Chapters 3 and 4 of the dissertation address the financial hedging problem for a

large corporation’s inventory management. Traditional inventory management models

focus on characterizing inventory policies so as to minimize the expected total cost

over a planning horizon. This kind of objective is appropriate for risk-neutral decision

makers. Corporate planners increasingly recognize that inventory investments and retail

operations expose the company to significant financial risk; so, introducing a degree of

risk aversion into inventory planning is appropriate.

Our model differs from much of the existing inventory literature in that we consider

a non-financial corporation (a retail sales organization) doing financial hedging simul-

taneously with inventory management. We therefore consider both financial risk and

non-financial risk. The financial risk comes from the financial market and hence can be

hedged, to some extent, using financial instruments. The non-financial risk is assumed

to be independent of the financial market, and hence cannot be hedged through financial

trading. We assume that both financial and non-financial risk is observable. In the case

of non-financial risk, this could be captured in macroeconomic indicators such as the
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rate of unemployment and market conditions. Because the non-financial risk cannot be

hedged we must pose our model as an incomplete market. However, because the risk is

observable we are able to pose the problem in terms of financial hedging.

This problem of hedging contingent claims by means of dynamic trading strategies

in an incomplete market is a central problem in financial mathematics. There are abun-

dant results in this framework. A classical approach to this problem is to control the

hedging error by a quadratic criterion. Mathematically, this is equivalent to solving an

optimal investment problem for a mean-variance type objective function. Due to the

high degree of tractability, this approach is attractive to operations management. Hence,

we consider a mean-variance type objective function for inventory management.

There is correlation in demand for products arising from common factors such as the

business cycle and interest rates. Consequently, a risk-averse strategy for planning in-

ventories should consider all of the products together as a large-scale portfolio problem.

However, a typical retail company manages thousands of part numbers and employs

dozens of inventory managers. The task of coordinating these inventory decisions as

part of a portfolio optimization seems impractical with current technologies. Conse-

quently, we explore conditions under which this optimization problem can be optimally

decomposed into single-item inventory planning problems. In our view, for a practical

implementation, the ideal solution for inventory managers is to solve a separate op-

erational planning problem for each item and communicate their results to a finance

department which would hedge the residual financial risk.

In chapter 3, we consider a single-period model in which the inventory decisions

need only to be made at the beginning of the period. The financial risk we consider

specifically is inflation risk. That is, we consider a period of rapidly inflating prices

arising, for example, from a currency devaluation. We assume that high inflation affects
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retail operations in two ways: it leads to both higher sales prices but also to lower

demand. In a period of rapid monetary inflation, an inventory manager may be tempted

to convert as much cash as possible into hard assets such as retail inventory in order

to preserve wealth. However, inventory is an inferior asset for the purpose of wealth

preservation: it deteriorates with time and it can be hard to liquidate, especially if high

prices are discouraging demand. Consequently, this strategy would make sense only if

there is no alternative financial asset available in which to preserve wealth. We call such

inventory investment a ’malinvestment.’ If a reliable financial asset exists, the optimal

strategy will be to restrict inventory investment to optimize operational tradeoffs and to

hedge financial risk using the financial asset. The main achievement of this research

is a separation result whereby the inventory decision of each product can be optimized

separately and an optimal hedging strategy is developed subsequently.

In chapter 4, we extend the model to consider multiple time periods and more general

market models. The challenge is to prove that a separation result is still valid in this case.

Two types of separation might be possible within a multi-period problem. A so-called

local separation might be possible in which inventory decisions within a given time pe-

riod might be made independently but coordination and joint evaluation is required when

considering the impact on future time periods. However, a global separation might also

be possible in which the optimization problem decomposes into separate multi-period

single-item problems with no joint evaluation required. Our work establishes a global

separation result. For a multi-period problem, we also present a dynamic programming

algorithm which reduces the dimension of the state space and admits a practical com-

putation of the relevant inventory and hedging strategies. Concluding comments and

suggestions for future research can be found in chapter 5.
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CHAPTER 2

OPTIMAL EXECUTION WITH DARK POOLS AND THE ABSENCE OF

PRICE MANIPULATION

2.1 Introduction

Recent years have seen a mushrooming of alternative trading platforms called dark

pools. Orders placed in a dark pool are not visible to other market participants (hence

the name) and thus do not influence the publicly quoted price of the asset. Thus, when

dark-pool orders are executed against a matching order, no direct price impact is gen-

erated, although there may be certain indirect effects. Dark pools therefore promise a

reduction of market impact and of liquidation costs. They are, hence, a popular platform

for the execution of large orders.

Dark pools differ from standard limit order books in that they do not have an intrinsic

price-finding mechanism. Instead, the price at which orders are executed is derived

from the publicly quoted prices on an exchange. Thus, by manipulating the price at the

exchange through placing buy or sell orders, the value of a possibly large amount of

”dark liquidity” in the dark pool can be altered. We refer to Mittal (2008) for a practical

overview on dark pools and some related issues of market manipulation.

In this paper, we consider a stochastic model for order execution in two simultaneous

possible venues: a dark pool and an open exchange. This model is a continuous-time

variant of the one proposed by Kratz & Schöneborn (2010). It is a natural model because

it extends the standard Almgren-Chriss market impact model for exchange prices to

include a dark pool. We refer to Almgren (2003) for details on the Almgren-Chriss

model and also to Bertsimas & Lo (1998) for a discrete-time precursor. Alternative
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approaches to modeling and analyzing dark pools have been proposed, e.g., by Degryse

et al. (2009), Foucault & Menkveld (2008), Laruelle & Lehalle (2009), and Ye (2010).

Kratz & Schöneborn (2010) mainly investigate optimal order execution strategies

for an investor who can trade in the exchange and in the dark pool. But, they are also

interested in price manipulation strategies in the sense of Huberman & Stanzl (2004).

Their Propositions 7.1 and 7.2 provide some first results on the existence and the absence

of such strategies. One important reason for considering price manipulation strategies is

that their existence leads to instabilities in the market impact model and often precludes

the solvability of the optimal order execution problem. We refer to Huberman & Stanzl

(2004), Gatheral (2010), Almgren (2003) for discussions.

Our main goal in this paper is to carry out an in-depth study of transaction-triggered

price manipulation in this dark pool model. The observation is that the transaction-

triggered price manipulation exists in such a model. Transaction-triggered price manip-

ulation looks similar to the usual price manipulation strategies, but occurs only when

triggered by a given transaction. More precisely, it involves strategies which decrease

the expected execution costs of a sell (buy) program by intermediate buy (sell) trades.

In section 4, a transaction-triggered price manipulation is identified, and it turns out

that generation of such a phenomenon hinges in a subtle way on the interplay of all

model parameters and of the liquidation time constraint. With further exploration of

the optimal execution model, we discover only two cases in which transaction-triggered

price manipulation exists. Finally, we tie these conditions to an constraint on model

parameters which guarantees the absence of price manipulation.

The paper is organized as follows. In section 2 we introduce the model. The op-

timal execution strategy is stated in section 3. In section 4 we discuss the existence

of transaction-triggered price manipulation and present sufficient conditions for the ab-
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sence of price manipulation.

2.2 Formulation of the problem

Consider a seller who wants to liquidate an asset position of size x by time T . He/she has

the choice of investing in the dark pool or in the exchange. Although the dark pool has

the mechanics that the orders placed will not affect the market price of the asset, there

exists a tradeoff in that the sellers or the buyers may never be able to find a counter-party

for their trade. On the other hand, trading in the exchange guarantees that the seller can

liquidate the asset at a certain price, but the transaction will have a price impact on the

market, and as a result, effectively incur a transaction cost (the loss due to price impact).

Let F̄t be the filtration generated by the Brownian Motion B with constant volatility

σ and B0 = 0. The stock price dynamics in the market are given by

Pt = P0 + σBt + γ(Xt − X0) + ηẊt

= P0
t + γ(Xt − X0) + ηẊt

where γ is the parameter for permanent impact, η is the parameter for temporary impact,

P0 is the initial stock price in the exchange, P0
t is the unaffected stock price process, X0

is the number of shares which need to be liquidated, and Xt is the number of shares yet

to be liquidated at time t.

We model the arrival time of a matching buy order in the dark pool as an exponen-

tially distributed random variable τ with parameter θ > 0, i.e.

P(τ < t) =
∫ t

0
θe−θsds.

The stopping time, τ, is independent of the Brownian Motion B. Define Ft as the τ-

progressive enlargement of F̄t; (Ω, (Ft),F ,P) is the corresponding probability space.
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Consider the following trading strategy. The seller divides the total order into two

parts at t = 0. X̂ shares are placed in the dark pool in the hope of finding a counter-party

to liquidate this portion, while x − X̂ shares are to be executed in the exchange. If the

transaction does not occur in the dark pool by some time point ρ ∈ [0,T ], the seller exits

the dark pool and enters the exchange in order to meet the deadline of execution.

Let Xt be the number of shares held in the exchange at time t, satisfying boundary

conditions X0 = x− X̂ and XT = 0. If the seller cannot find a counter-party and decides to

exit the dark pool at time ρ, then Xρ+ = Xρ+ X̂; otherwise, the matching buy order arrives

at τ, τ ≤ ρ. Let Ẋt denote the derivative of Xt, and ξt = −Ẋt be the rate of liquidation at

time t for a selling activity in the exchange. Assume ξt is progressively measurable and∫ t

0
ξ2

s ds < ∞, for all t ≤ T . P − a.s.

We also assume that the strategies are admissible in the sense that the position in shares

Xt(ω) is bounded uniformly in t and ω. Denote all admissible strategies by X(x, r, ρ, T ).

An admissible strategy (X̂, ξ, ρ) will be called a single-update strategy if ρ is a de-

terministic time in [0,T ) and ξ is predictable with respect to the filtration generated by

the stochastic process 1{τ≤t}, t ≥ 0.

Note that the process ξ of a single-update strategy evolves deterministically until

there is an execution in the dark pool, i.e., until time τ. At that time, ξ can be updated.

But, by assumption, the update can depend only on the time τ and not on any other

random quantities. In particular, ξ can be written as

ξt =


ξ0

t , if t ≤ τ or τ > ρ,

ξ1
t , if t > τ and τ ≤ ρ,

(2.1)

where ξ0 is deterministic, and ξ1 depends on τ.
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Our perspective is to maximize the expected revenue to the seller over [0, T ] by

finding the optimal single-update strategy for the execution. Notice that if there is no

execution in the dark pool by time ρ, the seller will withdraw X̂ from the dark pool and

place it in the exchange.

The following lemma characterizes the revenue from the execution.

Lemma 2.2.1. With the price dynamics and the order arrival time in the dark pool

defined as above, the seller’s expected revenue by adapting a single-update strategy

(X̂, ξ, ρ) is:

R[0,T ] = X0P0
0 + X̂P0

{τ∧ρ} +

∫ T

0
Xt dP0

t −
γ

2
(x − 1{τ<ρ}X̂)2 − η

∫ T

0
ξ2

t dt

+ 1{τ<ρ}X̂γ(Xτ − X0).

Proof. There are two scenarios to be considered: either the order is fulfilled by a

counter-party before ρ in the dark pool or it is not.

In the first case, the revenue in [0, T ] is composed of two parts: the revenue in the

exchange in [0,T ] and the revenue in the dark pool at the time point of fulfilling the

order. That is, on the set {ω : τ(ω) ≤ ρ},

R[0,τ]|τ =
∫ τ

0
ξtPtdt + X̂Pτ

= X0P0
0 − P0

τXτ +

∫ τ

0
XtdP0

t −
γ

2
(Xτ − X0)2 − η

∫ τ

0
ξ2

t dt + γX̂(Xτ − X0)

R[τ,T ]|τ =
∫ T

τ

ξtPtdt

= XτP0
τ − P0

T XT +

∫ T

τ

XtdP0
t −

γ

2
X2

0 +
γ

2
(Xτ − X0)2 − η

∫ T

τ

ξ2
t dt

R[0,T ]|τ = R[0,τ]|τ + R[τ,T ]|τ

= X0P0
0 + X̂P0

τ +

∫ T

0
XtdP0

t − η
∫ T

0
ξ2

t dt − γ
2

X2
0 + γX̂(Xτ − X0).

11



If there is no activity in the dark pool before ρ, then on the set {ω : τ(ω) > ρ},

R[0,τ]|τ =
∫ ρ

0
ξtPtdt +

∫ τ

ρ

ξtPtdt

= X0P0
0 + P0

T0
X̂ − P0

τXτ +

∫ τ

0
XtdP0

t −
γ

2
(Xτ − x)2 − η

∫ τ

0
ξ2

t dt

R[τ,T ]|τ = XτP0
τ − P0

T XT +

∫ T

τ

XtdP0
t −

γ

2
x2 +

γ

2
(Xτ − x)2 − η

∫ T

τ

ξ2
t dt

R[0,T ]|τ = X0P0
0 + X̂P0

T0
+

∫ T

0
XtdP0

t − η
∫ T

0
ξ2

t dt − γ
2

x2.

Combining the two scenarios above, the revenue during [0,T ] is

R[0,T ] = X0P0
0 + X̂P0

{τ∧ρ} +

∫ T

0
Xt dP0

t −
γ

2
(x − 1{τ<ρ}X̂)2 − η

∫ T

0
ξ2

t dt

+ 1{τ<ρ}X̂γ(Xτ − X0).

�

2.3 The Optimal Execution Strategy

Single-update policies, as described in the previous section, may seem overly restrictive.

The following proposition reveals that they are, in fact, optimal.

Proposition 2.3.1. For any X0 ∈ R and T > 0 there exists a single-update strategy that

maximizes the expected revenues E[RT ] in the class of all admissible strategies.

Proof. Recall that

R[0,T ] = X0P0
0 + X̂P0

{τ∧ρ} +

∫ T

0
Xt dP0

t −
γ

2
(x − 1{τ<ρ}X̂)2 − η

∫ T

0
ξ2

t dt

+ 1{τ<ρ}X̂γ(Xτ − X0).
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Taking the conditional expectation with respect to Fτ∧ρ yields

E[R[0,T ] | Fτ∧ρ ] = X0P0
0 + X̂P0

{τ∧ρ} +

∫ τ∧ρ

0
Xt dP0

t −
γ

2
(x − 1{τ<ρ}X̂)2 − η

∫ τ∧ρ

0
ξ2

t dt

+ 1{τ<ρ}X̂γ(Xτ − X0) − E
[
η

∫ T

τ∧ρ
ξ2

t dt
∣∣Fτ∧ρ ].

Due to the liquidation constraint, we must have
∫ T
τ∧ρ ξt dt = Xτ∧ρ + 1{τ>ρ}X̂, and so∫ T

τ∧ρ
ξ2

t dt ≥ (Xτ∧ρ + 1{τ>ρ}X̂)2

T − τ ∧ ρ

with equality if, for τ ∧ ρ ≤ t ≤ T ,

ξt =



Xτ

T − τ on {τ < ρ}

Xρ + X̂
T − ρ on {ρ ≤ τ}.

(2.2)

These two possibilities will correspond to the single update of ξ̄ at τ.

Note next that, due to the predictability of ξ and ρ, (ξs)s≤t and ρ ∧ t are independent

of τ, conditional on {t ≤ τ}. It follows that

E[RT ] = E[E[RT | Fτ∧ρ ] ]

≤ xP0
0 + E

[
− γ

2
(X0 − 1{τ<ρ}X̂)2 − η

∫ τ∧ρ

0
ξ2

t dt + 1{τ<ρ}X̂γ(Xτ − X0)

− η(Xτ∧ρ + 1{τ>ρ}X̂)2

T − τ ∧ ρ

]
= xP0

0 + E
[ ∫ ∞

0
du θe−θu

{
− γ

2
(X0 − 1{u<ρ}X̂)2 − η

∫ u∧ρ

0
ξ2

t dt

+ 1{u<ρ}X̂γ
∫ u

0
ξt dt − η

(X0 +
∫ u∧ρ

0 ξt dt + 1{u>ρ}X̂)2

T − u ∧ ρ

}]
.

Consider the functional that maps r ∈ [0,T ] and ξ ∈ Lp[0,T ] to

F(r, ξ) :=
∫ ∞

0
du θe−θu

{
γ

2
(X0 − 1{u<r}X̂)2 + η

∫ u∧r

0
ξ2

t dt

− 1{u<r}X̂γ
∫ u

0
ξt dt + η

(X0 +
∫ u∧r

0 ξt dt + 1{u>r}X̂)2

T − u ∧ r

}
.
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When F admits a minimizer (r∗, ξ∗), then concatenating ξ∗ with (2.2) in r∗ ∧ τ yields an

optimal strategy that is a single-update strategy.

To show the existence of a minimizer of F, take any pair (r̃, ξ̃) for which C :=

F(r̃, ξ̃) < ∞. We then only need to look into those pairs (r, ξ) for which F(r, ξ) ≤ C.

Then the component ξ must be contained in the set

KC :=
{
ξ ∈ L1[0,T ]

∣∣∣ ∫ T

0
ξ2

t dt ≤ C̃
}
,

where C̃ is a suitable constant.

The set KC is a closed convex subset of L1[0,T ]. Hence it is also weakly closed in

L1[0, T ]. It is also uniformly integrable according to the criterion of de la Vallée Poussin

and our assumption that f has superlinear growth. Hence, the Dunford–Pettis theorem

(Dunford & Schwartz 1988, Corollary IV.8.11) implies that KC is weakly sequentially

compact in L1[0,T ]. From now on we will endow KC with the weak topology.

Next,

[0,T ] × KC ∋ (r, ξ) −→
∫ r

0
ξt dt =

∫ T

0
ξt1[0,r](t) dt

is a continuous map. Moreover,

[0, T ] × KC ∋ (r, ξ) 7−→ 1
2

∫ r

0
ξ2

t dt = sup
φ∈L∞

[ ∫ T

0
1[0,r](t)ξtφt dt − 1

2

∫ r

0
φ2

t dt
]

;

see, e.g., Rockafellar (1968). It follows that this map is lower semicontinuous.

Altogether, it follows that F is lower semicontinuous on the sequentially compact

set [0,T ] × KC and so admits a minimizer. �

As we proved in proposition 2.3.1, for τ ∧ ρ ≤ t ≤ T , the optimal single-update
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strategy is

ξt =



Xτ

T − τ on {τ < ρ}

Xρ + X̂
T − ρ on {ρ ≤ τ}.

After plugging the single update of ξ at τ back into the revenue formula, the prob-

lem is reduced to an optimal execution problem in [0, ρ], but with only one boundary

condition: X0 = (1 − r)x. The righthand side boundary condition for X(ρ) is free.

That is:

max
ξ

∫ ρ

0
η

∫ τ

0
ξ2

t dtde−θτ − ηe−θρ
∫ ρ

0
ξ2

t dt − ηe−θρ
(x −

∫ ρ
0 ξtdt)2

T − ρ − (1 − e−θρ)
γ

2
(x2 − X̂2)

− γ
2

x2e−θρ +
∫ ρ

0

η[(x − X̂) −
∫ τ

0 ξtdt]2

T − τ de−θτ −
∫ ρ

0
γX̂
[

x − X̂ −
∫ τ

0
ξdt
]

de−θτ

subject to

X0 = x − X̂,
∫ ρ

0
ξtdt ≤ X0 (2.3)

where

f (ξ)

=

∫ ρ

0
ηξ2

t

∫ ρ

t
de−θτdt + 2η(x − X̂)θ

∫ ρ

0
ξt

∫ ρ

t

e−θτ

T − τdτdt − ηθ
∫ ρ

0

e−θτ

T − τ

(∫ τ

0
ξtdt
)2

dτ

+ γX̂
∫ ρ

0
ξt

∫ ρ

t
de−θτdt − ηe−θρ

∫ ρ

0
ξ2

t dt + 2ηx
e−θρ

T − ρ

∫ ρ

0
ξtdt − ηe−θρ

T − ρ

(∫ ρ

0
ξtdt
)2

.

Assured of the existence of an optimal solution, we now solve for the optimal ξ∗.

Lemma 2.3.2. The optimization problem (2.3) is equivalent to finding the solutions of

an ordinary differential equation

X′′(t) − θX′(t) − θ

T − t
X(t) = A (2.4)

15



subject to

X(0) = X0 = x − X̂, X(ρ) ≥ 0

where

A = −γX̂θ
2η

.

Proof. We prove the result using the calculus of variations.

Note that ξ(t) = −X′(t), let

F(t, X(t), X′(t))

= ηX′(t)2
∫ ρ

t
de−θτ + 2η(x − X̂)θX′(t)

∫ ρ

t

e−θτ

T − τdτ + ηθ
e−θt

T − t

(∫ t

0
X′(τ)dτ

)2

+ γX̂X′(t)
∫ ρ

t
de−θτ + ηe−θρX′2(t) + 2ηx

e−θρ

T − ρX′(t) +
ηe−θρ

T − ρX′(t)
∫ ρ

0
X′(t)dt.

Then the objective function has the form:

f =
∫ ρ

0
F(t, X(t), X′(t))dt.

Let gϵ(t) = X(t) + ϵh(t) be a perturbation of X(t), where h is a differentiable function

satisfying h(0) = h(ρ) = 0. The perturbed objective function has the form

f (ϵ) =
∫ ρ

0
F(t, gϵ(t), g′ϵ(t))dt

=

∫ ρ

0
η(X′(t) + ϵh′(t))2(e−θt − e−θρ)dt + 2η(x − X̂)θ

∫ ρ

0
(X′(t) + ϵh′(t))

∫ ρ

t

e−θτ

T − τdτdt

+ ηθ

∫ ρ

0

e−θτ

T − τ(
∫ τ

0
(X′(t) + ϵh′(t))dt)2dτ + γX̂

∫ ρ

0
(X′(t) + ϵh′(t))(e−θρ − e−θt)dt

+ ηe−θρ
∫ ρ

0
(X′(t) + ϵh′(t))2dt + 2ηx

e−θρ

T − ρ

∫ ρ

0
(X′(t) + ϵh′(t))dt

+
ηe−θρ

T − ρ (
∫ ρ

0
(X′(t) + ϵh′(t))dt)2.
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Calculating the total derivative of f (ϵ) with respect to ϵ, we have

d f (ϵ)
dϵ
=

∫ ρ

0
2η(X′(t) + ϵh′(t))h′(t)(e−θt − e−θρ)dt + 2η(x − X̂)θ

∫ ρ

0

e−θt

T − t
h(t)dt

+ 2ηθ
∫ ρ

0

e−θτ

T − τ

∫ τ

0
(X′(t) + ϵh′(t))dt

∫ τ

0
h′(t)dtdτ + γX̂

∫ ρ

0
h′(t)(e−θρ − e−θt)dt

+ 2ηe−θρ
∫ ρ

0
(X′(t) + ϵh′(t))h′(t)dt + 2ηx

e−θρ

T − ρ

∫ ρ

0
h′(t)dt

+
2ηe−θρ

T − ρ

∫ ρ

0
(X′(t) + ϵh′(t))dt

∫ ρ

0
h′(t)dt.

Since the extreme value is obtained at ϵ = 0, and hence d f (ϵ)
dϵ |ϵ=0 = 0, we have

d f (ϵ)
dϵ
|ϵ=0 =

∫ ρ

0
2ηX′(t)h′(t)(e−θt − e−θρ)dt + 2η(x − X̂)θ

∫ ρ

0

e−θt

T − t
h(t)dt

+ 2ηθ
∫ ρ

0

e−θτ

T − τ

∫ τ

0
X′(t)dt

∫ τ

0
h′(t)dtdτ + γX̂

∫ ρ

0
h′(t)(e−θρ − e−θt)dt

+ 2ηe−θρ
∫ ρ

0
X′(t)h′(t)dt + 2ηx

e−θρ

T − ρ

∫ ρ

0
h′(t)dt

+
2ηe−θρ

T − ρ

∫ ρ

0
X′(t)dt

∫ ρ

0
h′(t)dt

= −2η
∫ ρ

0
[X′′(t)(e−θt − e−θρ) − θX′(t)e−θt]h(t)dt + 2η(x − X̂)θ

∫ ρ

0

e−θt

T − t
h(t)dt

+ 2ηθ
∫ ρ

0

e−θt

T − t
(X(t) − X(0))h(t)dt − γX̂

∫ ρ

0
θe−θth(t)dt

− 2ηe−θρ
∫ ρ

0
X′′(t)h(t)dt.

According to the fundamental lemma of the calculus of variations, this yields

−2ηX′′(t)e−θt + 2ηθX′(t)e−θt + 2ηθ
e−θt

T − t
X(t) − γX̂θe−θt = 0

which is equivalent to

X′′(t) − θX′(t) − θ

T − t
X(t) = −γX̂θ

2η
.

�
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Lemma 2.3.3. The general solution of the differential equation (2.4) is:

X(t) = C1[eθt − θ(T − t)eθT Ei(θ(T − t))] +C2(T − t)

+ [Ei(θT ) − Ei(θ(T − t))]eθT (T − t)A(T − 1
θ

)

− A
θ

(T − t) +
A
θ

Teθt +
A
θ2 (1 − eθt) − A(T − t)

θ
ln

T
T − t

where Ei(t) =
∫ ∞

t
e−s

s ds is the exponential integral.

Proof. First solve the homogeneous differential equation:

−2ηX′′(t)e−θt + 2ηθX′(t)e−θt + 2ηθ
e−θt

T − t
X(t) = 0.

The general solution is

X(t) = C1[eθt − θ(T − t)eθT Ei(θ(T − t))] +C2(T − t)

where the two basic solutions are:

X1(t) = eθt − θ(T − t)eθT Ei(θ(T − t))

X2(t) = T − t.

The particular solution can be obtained from the formula:

X∗(t) =
∫ t

t0

X1(s)X2(t) − X1(t)X2(s)
X1(s)X′2(s) − X2(s)X′1(s)

Ads

= A
∫ t

t0
[θ(T − s)eθ(T−s)Ei(θ(T − s)) − 1](T − t)ds

+ A
∫ t

t0
[eθ(t−s)(T − s) − θ(T − t)(T − s)eθ(T−s)Ei(θ(T − t))]ds

= −A
θ

(T − t) +
A
θ

Teθt +
A
θ2 (1 − eθt) − A(T − t)

θ
ln

T
T − t

+ [Ei(θT ) − Ei(θ(T − t))]eθT (T − t)A(T − 1
θ

).
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Hence the general solution for the nonhomogeneous differential equation is:

X(t) = C1X1(t) +C2X2(t) + X∗(t)

= C1[eθt − θ(T − t)eθT Ei(θ(T − t))] +C2(T − t)

− A
θ

(T − t) +
A
θ

Teθt +
A
θ2 (1 − eθt) − A(T − t)

θ
ln

T
T − t

+ [Ei(θT ) − Ei(θ(T − t))]eθT (T − t)A(T − 1
θ

).

�

The constant coefficients in the general solutions to (2.4) can be solved by boundary

conditions. From the initial boundary condition X(0) = X0 = x − X̂, we obtain

C2 =
X0

T
− C1

T
[1 − θTeθT Ei(θT )].

Hence

X(t) = C1[eθt − θ(T − t)eθT Ei(θ(T − t)) − T − t
T
+ θ(T − t)eθT Ei(θT )]

+ (T − t)[
X0

T
− A
θ
− A
θ

ln
T

T − t
] +

A
θ

Teθt

+
A
θ2 (1 − eθt) + [Ei(θT ) − Ei(θ(T − t))]eθT (T − t)A(T − 1

θ
).

2.4 The Existence of Price Manipulation

In the optimal execution strategy, it is possible to have X(ρ) < 0, which means the seller

sells more than x − X̂ shares by ρ. The incentive for doing this would be to reduce the

cost from temporary impact due to what may be a high speed liquidation during [ρ,T ].

For example, if the seller realizes that the probability of liquidating in the dark pool is

small, then he or she will expect a significant infusion into the exchange from the dark

pool at ρ to be liquidated in time interval [ρ, T ]. If ρ is close to T then the selling has to
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be done in a relatively short period; this will require a higher liquidation speed followed

by a correspondingly larger cost due to the temporary impact. In order to balance the

transaction pressure between the two periods, such a seller will tend to short the asset

over [0, ρ], and pay it back at ρ when the asset is withdrawn from the dark pool. Such

short selling is a conscious manipulation of the exchange price to facilitate a large trade.

In this section, we give a necessary and sufficient condition to exclude price manip-

ulation.

Lemma 2.4.1. A necessary and sufficient condition for the absence of an incentive for

short selling in a market with a dark pool and an exchange is:

C1 < C̃1

where

C̃1 =
G2

G1

and

G1 = eθρ − θ(T − ρ)eθT (Ei(θ(T − ρ)) − Ei(θT )) − T − ρ
T

G2 = −
X0

T
(T − ρ) +

A
θ

(T − ρ) − A
θ

(T − ρ) ln
T − ρ

T
− A
θ

Teθρ

− A
θ2 (1 − eθρ) + A(T − ρ)eθT (T − 1

θ
)[Ei(θ(T − ρ)) − Ei(θT )].

Proof. The existence of price manipulation is equivalent to the boundary condition

X(ρ) < 0.

Notice that

X(ρ) < 0⇔ C1G1 < G2.
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Let C̃1 =
G2
G1

, since

G1 = eθρ − θ(T − ρ)eθT [Ei(θ(T − ρ)) − Ei(θT )] − T − ρ
T

≥ eθρ − T − ρ
T

= eθρ − 1 +
ρ

T
> 0.

Hence

X(ρ) < 0⇔ C1G1 < G2

⇔ C1 <
G2

G1
= C̃1.

�

To exclude the case of short selling described in the introduction to this section, we

impose the boundary condition X(ρ) ≥ 0, which is equivalent to:

C1 ≥ C̃1. (2.5)

Now we have reduced the objective functional to be a function of C1, which can be

optimized by varying C1. Notice that the rate of liquidation is:

ξ(t) = −X′(t)

= C1[θeθT Ei(θT ) − θeθT Ei(θ(T − t)) − 1
T

]

+
X0

T
− A
θ

ln
T

T − t
+ AeθT (T − 1

θ
)[Ei(θT ) − Ei(θ(T − t))]

= C1P(t) + Q(t)

where

P(t) = θeθT Ei(θT ) − θeθT Ei(θ(T − t)) − 1
T

Q(t) =
X0

T
− A
θ

ln
T

T − t
+ AeθT (T − 1

θ
)[Ei(θT ) − Ei(θ(T − t))].
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Taking the partial derivative of the objective function f (ξ) with respect to C1, we have

∂ f (ξ)
∂C1

= 2C1P1 + Q1

where

P1 =

∫ ρ

0
ηP2(t)e−θtdt +

∫ ρ

0
ηθ

e−θτ

T − τ

(∫ τ

0
P(t)dt

)2

dτ +
ηe−θρ
T − ρ

(∫ ρ

0
P(t)dt

)2

Q1 =

∫ ρ

0
2ηP(t)Q(t)e−θtdt + 2ηθ

∫ ρ

0

e−θτ

T − τ

∫ τ

0
P(t)dt

∫ τ

0
Q(t)dtdτ

+ 2η
e−θρ

T − ρ

∫ ρ

0
P(t)dt

∫ ρ

0
Q(t)dt − 2ηθX0

∫ ρ

0

e−θτ

T − τ

∫ τ

0
P(t)dtdτ

− γX̂
∫ ρ

0
(e−θρ − e−θt)P(t)dt − 2ηx

e−θρ

T − ρ

∫ ρ

0
P(t)dt.

Now setting the partial derivative equal to 0 we obtain the optimal solution for C1:

˜̃C1 = −
Q1

2P1
.

If ˜̃C1 does not satisfy inequality (2.5), we know from the monotonicity of the number of

shares to be liquidated, the optimal solution of the objective functional can be obtained

by taking C∗1 = C̃1.

The optimal liquidation strategy for t ∈ [0, ρ) is therefore:

ξ∗(t) = C∗1P(t) + Q(t)

where

C∗1 =


˜̃C1 if ˜̃C1G1 ≥ G2

C̃1 otherwise.

To this point, we have explored the behavior of an optimal position and liquidation

strategy in the exchange before ρ. This strategy is determined at time 0. Once the seller

is notified that there is a match in the dark pool at time t0 < ρ, he/she updates the strategy

to ξ̄∗(t); otherwise, strategy ¯̄ξ∗(t) is adopted at time ρ.

In fact, C∗1 = C̃1 is just a special case of C∗1 =
˜̃C1 due to the following lemma.
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Lemma 2.4.2. C̃1 =
˜̃C1 if the optimal asset position X∗(ρ) = 0.

Proof. From the expression of X(t), we know if X∗(ρ) > 0, ˜̃C1 satisfies

X∗(ρ) = ˜̃C1

[
eθρ − θ(T − ρ)eθT Ei(θ(T − ρ)) − T − ρ

T
+ θ(T − ρ)eθT Ei(θT )

]
+ (T − ρ)

[
X0

T
− A
θ
− A
θ

ln
T

T − ρ

]
+

A
θ

Teθρ

+
A
θ2 (1 − eθρ) +

[
Ei(θT ) − Ei(θ(T − ρ))

]
eθT (T − ρ)A(T − 1

θ
).

Hence from the expression of C̃1,

lim
X∗(ρ)→0

˜̃C1 = C̃1.

�

Based on the arguments above, we can narrow the following analysis to deal with

the solution in the case that

ξ∗(t) = ˜̃C1P(t) + Q(t), t ∈ [0, ρ].

Figures 2.1-2.5 demonstrate asset positions and liquidation rates over time [0, ρ] for

optimal trading strategies with different parameter values. It is noticed that it might be

optimal sometimes to purchase assets in the exchange in order to push the price level up

in the hope of selling at a better price in the dark pool.

In other words, it is possible that an agency enters the market with the intention of

selling, however, due to the existence of the dark pool, it’s beneficial for them to buy the

asset for the purpose of a ”pump and dump”. By buying the asset in [0, ρ], the market

price of the asset increases due to the purchasing orders, which enables the seller to

liquidate the rest of asset at a higher price. This observation shows that the existence of

23



the dark pool creates a motivation for price manipulation. Therefore, it is important that

the regulatory agency takes action to prevent this type of activity.

We observe that this manipulation strategy dominates if one of the following condi-

tion is satisfied:

• the probability of finding a counter party is sufficiently, large

• the temporary impact is sufficiently small,

• the permanent impact is sufficiently large,

• the proportion of order in the dark pool is sufficiently large, or

• the exiting time from dark pool ρ is sufficiently large.

We give a sufficient condition for the absence of manipulation in theorem 2.4.8 be-

low . Several lemmas are required before we state the theorem.

The following lemmas show that the strategy before update, ξ(t), is a nondecreasing

function of t for any t ≤ τ; hence, it suffices to examine ξ(0) to detect the manipulation.

Lemma 2.4.3. For the optimal strategy ξ∗(t), and the corresponding asset position X∗(t),

t ∈ [0, ρ], we have

ξ∗(ρ) =
X∗(ρ) + X̂

T − ρ .

Proof. The idea of the proof is to consider the expected revenue E[R[t,T ]] on the set

{ω : τ(ω) ≥ t}. Then we set t → ρ−, since we know that under the optimal updated

strategy, ξ(t), t ∈ [τ∧ ρ,T ], the expected revenue can be reduced to a functional of ξ(ρ),

and the optimal ξ∗(ρ) is the one that maximizes the expression.
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Plot of liquidation rate in the exchange from 0 to ρ for different arrival rate of order
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Figure 2.1: Asset position Xt and liquidation rate ξt over time [0, ρ] for optimal
trading strategies with X = 1, 000, T = 100, ρ = 50, r = 0.4, γ = 0.01,
η = 0.04. The solid line corresponds to θ = 0.01, the dashed line to
θ = 0.001, and the dotted line to θ = .0001.
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Plot of holding position in the exchange from 0 to ρ for different parameters of temporary impact
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Plot of liquidation rate in the exchange from 0 to ρ for different parameters of temporary impact
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Figure 2.2: Asset position Xt and liquidation rate ξt over time [0, ρ] for optimal
trading strategies with X = 1, 000, T = 100, ρ = 50, θ = 0.01, r = 0.4,
γ = 0.01. The solid line corresponds to η = 0.02, the dashed line to
η = 0.04, and the dotted line to η = 0.08.
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Plot of holding position in the exchange from 0 to ρ for different parameter of permanent impact
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Plot of liquidation rate in the exchange from 0 to ρ for different parameter of permanent impact
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Figure 2.3: Asset position Xt and liquidation rate ξt over time [0, ρ] for optimal
trading strategies with X = 1, 000, T = 100, ρ = 50, θ = 0.01, r = 0.4,
η = 0.04. The solid line corresponds to γ = 0.1, the dashed line to
γ = 0.2, and the dotted line to γ = 0.4.
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Plot of holding position in the exchange from 0 to ρ for different proportion in the dark pool
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Figure 2.4: Asset position Xt and liquidation rate ξt over time [0, ρ] for optimal
trading strategies with X = 1, 000, T = 100, ρ = 50, θ = 0.01,
η = 0.04, γ = 0.01. The solid line corresponds to r = 0.2, the dashed
line to r = 0.4, and the dotted line to r = 0.6.
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Figure 2.5: Asset position Xt and liquidation rate ξt over time [0, ρ] for optimal
trading strategies with X = 1, 000, T = 100, θ = 0.01, r = 0.4,
γ = 0.01, η = 0.04. The solid line corresponds to ρ = 25, the dashed
line to ρ = 50, and the dotted line to ρ = 75.
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For all t ∈ [0, ρ), if there is no transaction in the dark pool in [0, t), the expected

revenue from t to T is:

E[R[t,T ]; τ ≥ t]

= E[R[t,T ]; t ≤ τ ≤ ρ] + E[R[t,T ]; τ > ρ]

= E[E[R[t,T ]|τ]; t ≤ τ ≤ ρ] + E[E[R[t,T ]|τ]; τ > ρ]

=

∫ ρ

t
θe−θτ

(
P0

0(Xt + X̂) +
γ

2
(Xt − X0)2

)
dτ

=

∫ ρ

t
θe−θτ

(
−η
∫ τ

t
ξ2

s ds + γX̂(Xτ − X0) − γ
2

X2
0 − η

∫ T

τ

(
Xτ

T − τ

)2

ds

)
dτ

+

∫ ∞
ρ

θe−θτ
(

P0
0(Xt + X̂) +

γ

2
(Xt − X0)2 − η

∫ ρ

t
ξ2

s ds − γ
2

x2 − η
∫ T

ρ

(
Xρ + X̂
T − ρ

)2

ds

)
dτ

which is a functional of ξ(t), and

g(ξ) =
∫ ρ

t
θe−θτ

(
P0

0(Xt + X̂) +
γ

2
(Xt − X0)2 − η

∫ τ

t
ξ2

s ds + γX̂(Xτ − X0) − γ
2

X2
0 − η

X2
τ

T − τ

)
dτ

+

∫ ∞
ρ

θe−θτ
(

P0
0(Xt + X̂) +

γ

2
(Xt − X0)2 − η

∫ ρ

t
ξ2

s ds − γ
2

x2 − η(Xρ + X̂)2

T − ρ

)
dτ

=

∫ ρ

t
θe−θτ

(
P0

0(Xt + X̂) +
γ

2
(Xt − X0)2 − η

∫ τ

t
ξ2

s ds + γX̂(Xτ − X0) − γ
2

X2
0 − η

X2
τ

T − τ

)
dτ

+

∫ ∞
ρ

θe−θτ
(

P0
0(Xt + X̂) +

γ

2
(Xt − X0)2 − η

∫ ρ

t
ξ2

s ds − γ
2

x2 − η
(Xt −

∫ ρ
t ξsds + X̂)2

T − ρ

)
dτ.

By L’Hospital’s rule:

lim
t→ρ−
−
∫ ρ

t θe
−θτη

∫ τ
t ξ

2
s dsdτ

ρ − t
= lim

t→ρ−

(
−θe−θtη

∫ t

t
ξ2

s ds −
∫ ρ

t
θe−θτηξ2

t dτ
)
= 0

lim
t→ρ−

∫ ρ
t θe

−θτ X2
τ

T−τdτ
ρ − t

= lim
t→ρ−

∫ ρ
t θe

−θτ (Xt−
∫ τ

t ξsds)2

T−τ dτ
ρ − t

= 0

lim
t→ρ−

−
∫ ∞
ρ
θe−θτη

∫ ρ
t ξ

2
s dsdτ

ρ − t
= lim

t→ρ−
−e−θρηξ2

t = −e−θρηξ2
ρ

lim
t→ρ−

−
∫ ∞
ρ
θe−θτ η

T−ρ (
∫ ρ

t ξsds)2dτ

ρ − t
= lim

t→ρ−
−2e−θρη

∫ ρ
t ξsdsξt

T − ρ = 0

lim
t→ρ−

∫ ∞
ρ
θe−θτ2η (Xt+X̂)

T−ρ
∫ ρ

t ξsdsdτ

ρ − t

= lim
t→ρ−

1
T − ρ

(
2ηe−θρ(Xt + X̂)ξt

)
=

2η(Xρ + X̂)ξρ
T − ρ .
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Hence

lim
t→ρ−

g(ξ)
ρ − t

= −e−θρηξ2
ρ + 2e−θρ

η(Xρ + X̂)ξρ
T − ρ + Ḡ

where Ḡ is a function which does not depend on ξρ.

It is obvious that the optimal solution of this functional will be obtained at

ξ∗(ρ) =
X∗(ρ) + X̂

T − ρ .

�

Lemma 2.4.4. The optimal constant ˜̃C1 always satisfies

˜̃C1 = −X̂e−θρ +
A(T − ρ)

θ
e−θρ − A

θ
T − A

θ2 (e−θρ − 1).

Proof. Notice that

X∗(ρ) = ˜̃C1

[
eθρ − θ(T − ρ)eθT Ei(θ(T − ρ)) − T − ρ

T
+ θ(T − ρ)eθT Ei(θT )

]
+ (T − ρ)

[
X0

T
− A
θ
− A
θ

ln
T

T − ρ

]
+

A
θ

Teθρ

+
A
θ2 (1 − eθρ) +

[
Ei(θT ) − Ei(θ(T − ρ))

]
eθT (T − ρ)A(T − 1

θ
)

and

ξ∗(ρ) = ˜̃C1[θeθT Ei(θT ) − θeθT Ei(θ(T − ρ)) − 1
T

]

+
X0

T
− A
θ

ln
T

T − ρ + AeθT (T − 1
θ

)[Ei(θT ) − Ei(θ(T − ρ))].

This lemma is then a direct result from the previous lemma. �

The following theorem is one of the main results of the paper. It implies that there

are only two possible cases of transaction -triggered price manipulation. The first case

is characterized by ξ(0) < 0, which means that instead of selling, the trader starts with

buying at time 0. The second case is characterized by X(ρ) < 0; that is, the exchange

venue ends up with the seller shorting at time ρ.
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Theorem 2.4.5. The optimal strategy ξ(t) is a nondecreasing function of t, for t ∈ [0, ρ].

Proof. It suffices to prove for all t ∈ [0, ρ]

ξ′(t) = − 1
T − t

[ ˜̃C1θeθt + Aeθt(T − 1
θ

) +
A
θ

] ≥ 0.

Note from the previous lemma, we have

˜̃C1θeθt + Aeθt(T − 1
θ

) +
A
θ

=
θ2

2
X̂(T − ρ)θeθ(t−ρ) − X̂θeθ(t−ρ) + A(T − ρ)eθ(t−ρ) − ATeθt

+
A
θ

(eθt − eθ(t−ρ)) + AeθtT − A
θ

eθt +
A
θ

= −γX̂
2η
θ(T − ρ)eθ(t−ρ) +

A
θ

(1 − eθ(t−ρ))

≤ 0

by noticing A ≤ 0. Hence

ξ′(t) ≥ 0 for t ∈ [0, ρ].

�

Since ξ(t) is a nondecreasing function of t, t ∈ [0, ρ], we know that if ξ(0) > 0, there

will not be price manipulation in [0, ρ].

Lemma 2.4.6. The manipulation will not exist if ˜̃C1 ≤ X0.

Proof. Note

ξ∗(0) = −C1

T
+

X0

T

so if ˜̃C1 ≤ X0, from the previous lemma we know there will not be purchasing activities

in [0, ρ]. �
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Lemma 2.4.7. ˜̃C1 is a decreasing function of the temporary impact parameter η, and an

increasing function of the permanent impact parameter γ.

Proof. From lemma 2.4.4, we have

∂ ˜̃C1

∂A
= (T − 1

θ
)(e−θρ − 1) − ρe−θρ

≤ (ρ − 1
θ

)(e−θρ − 1) − ρe−θρ

≤ −ρ + 1
θ
θρ

= 0

and

∂A
∂η
=
γX̂θ
2η2 ≥ 0

∂A
∂γ
= − X̂θ

2η
≤ 0.

Hence

∂ ˜̃C1

∂η
=
∂ ˜̃C1

∂A
∂A
∂η
≤ 0

and

∂ ˜̃C1

∂γ
=
∂ ˜̃C1

∂A
∂A
∂γ
≥ 0.

�

Theorem 2.4.8. Let

H =
X̂
2 (1 − e−θρ) − x

X̂
2

([
(e−θρ − 1)(T − 1

θ
) − ρe−θρ

]) .
Then ξ(0) ≤ 0 if η

γ
≤ H, and ξ(0) > 0 if η

γ
> H.

33



Proof. First notice that

˜̃C1 − X0 =
γ

η

X̂
2

[
(e−θρ − 1)(T − 1

θ
) − ρe−θρ

]
− X̂

2
(1 − e−θρ) + x

=
γ

η
H1 − H2

where

H1 =
X̂
2

[
(e−θρ − 1)(T − 1

θ
) − ρe−θρ

]
=

X̂
2
∂ ˜̃C1

∂A
≤ 0

and

H2 =
X̂
2

(1 − e−θρ) − x

≤ X̂
2
− x

≤ 0.

Hence

ξ(0) ≥ 0⇔ ˜̃C1 − X0 ≤ 0

⇔ γ

η
H1 − H2 ≤ 0

⇔ γ

η
≥ H2

H1
= H.

Similarly, we can reverse the inequality and get

ξ(0) < 0⇔ ˜̃C1 − X0 > 0

⇔ γ

η
H1 − H2 > 0

⇔ γ

η
<

H2

H1
= H.

�
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2.5 Conclusion

In this paper, we focus on the optimal liquidation problem with two trading venues:

a traditional exchange and a dark pool. We extend the market price impact model to

include the cross impact between exchange and dark pool, and analyze the optimal ex-

ecution strategy. We observe that price manipulation strategies could be beneficial to

traders under certain conditions, and we identify those model specifications for which

the corresponding order execution problem is stable in the sense that there are no price

manipulation strategies which can be beneficial.
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CHAPTER 3

MULTI-PRODUCT SEPARATION RESULT FOR INVENTORY

MANAGEMENT UNDER INFLATION RISK

3.1 Introduction

For a risk-averse corporation, an important decision problem to consider is how to man-

age the tradeoff between the risks and the expected return of inventory activities. This

question is often formulated as a mean-variance type of decision problem; several papers

such as Choi et al. (2008), and Wu et al. (2009) discuss the optimal operational deci-

sion for this problem. A non-financial corporation can be exposed to various sources

of risk, which can be subsumed into two types: financial risk and non-financial risk.

The financial risk comes from the financial market and hence can be hedged, to some

extent, using financial instruments. The non-financial risk is assumed to be independent

of the financial market, and hence cannot be hedged through financial trading. This can

be characterized as a financial hedging problem in an incomplete market. A recent line

of research addresses incorporating hedging in operations management. In particular,

the financial department of a non-financial corporation can trade in financial markets

to hedge risks arising from operational activities. This kind of problem leads to mak-

ing financial and operational decisions simultaneously. Different inventory models with

hedging have been proposed (see, for instance, Caldentey & Haugh (2006), Caldentey

& Haugh (2009) and Gaur & Seshadri (2005)).

Financial hedging in incomplete markets is a widely studied field in mathematical fi-

nance. A classical approach to this problem is to control the hedging error by a quadratic

criterion. This is mathematically equivalent to solving an optimal investment problem

for a mean-variance type of objective function. From an operations management point
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of view, an attractive feature of this approach is its high degree of tractability. We refer

to Schweizer et al. (1999) for a thorough overview of the quadratic hedging literature.

We use the phrase inventory hedging to refer to the general problem of using finan-

cial instruments to hedge away the financial risk associated with inventory management

activities. One of the challenges that will need to be faced for any practical implementa-

tion of inventory hedging is in scaling the techniques to cope with the cardinality of the

problem. Retail organizations, for example, manage tens, if not hundreds, of thousands

of inventory items. Optimizing the risk-return tradeoff among these items is potentially

a very large scale portfolio optimization problem. In our approach, we limit the interac-

tion between inventory items to correlations with common market factors and we con-

sider only those market factors which can be hedged with financial instruments. With

this restriction, we show that the overall inventory hedging problem can be decomposed

into separate problems, one for each inventory item, and the optimal financial hedging

policy can be determined after the inventory policies are determined. Hence, our ma-

jor contribution is the achievement of a multi-product separation result for inventory

hedging.

In the special case of a single product operational decision problem, our work closely

follows Caldentey & Haugh (2006) who propose a dynamic hedging strategy for the

profits of a risk-averse corporation when these profits are correlated with returns in the

financial markets. We depart from their framework by considering a slightly different

mean-variance type objective function. This change allows us to extend their results to

a multi-product problem which admits a separation theorem.

One example of financial risk that can affect a corporation’s profits is monetary in-

flation, defined as the general increase in prices caused by a debasement of the under-

lying currency. We use the model in Jarrow & Yildirim (2003) to describe a market
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of inflation-related financial securities. This setting enables us to characterize an infla-

tionary economy. We discuss a classical newsvendor problem in which demand for the

product is negatively correlated with inflation. As will be proved in section 3.3, in the

absence of financial hedging instruments monetary inflation leads to a malinvestment

in inventory. Our motivation is to provide a correction to the malinvestment in inven-

tory that may exist under rapid monetary inflation. However, as in Caldentey & Haugh

(2006), our main results in section 3 are formulated for a generic financial asset, and

thus can be applied in the context of other sources of financial risk.

The paper is organized as follows. In section 2 we introduce the financial market

model and the inventory model, and formulate the hedging problem for multiple product

inventory management. Our main results are stated in section 3, where we solve the

problem via separation. We conclude the paper with numerical examples in section 4.

Proofs are collected in section 5, also referred to as the Appendix.

3.2 Model and Problem Formulation

Fix a time horizon T ∗ ∈ (0,∞). Our set of states is given by the product probability space

(Ω,F , P) = (ΩW × E,F W ⊗ E, PW ⊗ PE), where (ΩW ,F W ,F W
t , PW) and (E,E,Et, PE)

are two complete filtered probability spaces. In particular, (ΩW ,F W ,F W
t , PW) is a prob-

ability space endowed with Brownian motions (Wn(t),Wr(t),WI(t) : t ∈ [0,T ∗]) with

correlations given by

dWn(t)dWr(t) = ρnrdt

dWn(t)dWI(t) = ρnIdt

dWr(t)dWI(t) = ρrIdt.
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The subscripts n, r, and I are used to suggest that the corresponding processes are

sources of randomness for nominal; real; and inflation related instruments, respectively.

The space E represents an additional source of randomness which affects the mar-

ket, where {Et : t ∈ [0,T ∗]} is the standard filtration generated by the N−dimensional

Brownian motion B(t) = (B1(t), . . . ,BN(t)), t ∈ [0,T ∗], independent of F W
t .

3.2.1 Financial market model

To analyze the impact of inflation risk on inventory management, we start by describing

a market for inflation-related financial securities. We use the Heath-Jarrow-Morton type

term structure model as applied by Jarrow & Yildirim (2003) where the tradable assets

in the market are a bank account, nominal zero-coupon treasury bonds, and the Treasury

Inflation-Protected Securities (TIPS) zero-coupon bonds. The following notation for

financial markets is used in this paper:

• ’r’ for real, ’n’ for nominal.

• Pn(t,T ): time t price of a nominal zero-coupon bond maturing at time T in dollars.

• I(t): time t CPI inflation index, i.e. dollars per CPI unit.

• Pr(t,T ): time t price of a real zero-coupon bond maturing at time T in CPI units.

• fk(t, T ): time t nominal (k = n), respectively real (k = r), forward rates for date T ,

i.e.

Pk(t,T ) = exp
{∫ T

t
fk(t, u)du

}
.

• rk(t) = fk(t, t): the time t nominal (k = n), respectively real (k = r), spot rate.
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• Bn(t): time t money market account value, i.e.

Bn(t) = exp
{∫ t

0
rn(v)dv

}
.

• PT IPS (t,T ): time t TIPS zero-coupon bond maturing at time T . i.e.

PT IPS (t,T ) = I(t)Pr(t,T ).

Given the initial forward rate curve fk(0,T ) with T ∈ [0,T ∗], k ∈ {r, n}, we assume that

the nominal and real T -maturity forward rate evolves as:

d fn(t,T ) = αn(t,T )dt + σn(t,T )dWn(t) (3.1)

d fr(t,T ) = αr(t,T )dt + σr(t,T )dWr(t) (3.2)

for 0 ≤ t ≤ T ≤ T ∗, where αk(t,T ) and σk(t,T ) are stochastic processes satisfying

certain technical measurability and integrability conditions.1

The inflation index’s evolution is given by

dI(t)
I(t)
= µI(t)dt + σI(t)dWI(t) (3.3)

for t ∈ [0,T ∗], where µI(t) and σI(t) are stochastic processes satisfying certain technical

measurability and integrability conditions.2

As stated in Shreve (2004), the financial market Bn(t), Pn(t, T ), PT IPS (t,T ), 0 ≤ t ≤

T ≤ T ∗, is arbitrage-free if there exists a probability measure Q equivalent to PW on

(Ω,F W) such that:

Pn(t,T )
Bn(t)

,
PT IPS (t,T )

Bn(t)
are Q − local martingales for all T ∈ [0,T ∗].

1The process αk(t,T ) is Ft-adapted and jointly measurable with
∫ T

0 |αk(t,T )|dt < ∞ P-a.s. and σk(t,T )
satisfies

∫ T
0 σ2

k(t,T )dt < ∞ P-a.s.
2The process µI(t) is Ft-adapted with E[

∫ τ
0 |µI(t)|2dt] < ∞ and σI(t) is a deterministic function of time

with
∫ τ

0 σ
2
I (v)dv < ∞ P-a.s.
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By Girsanov’s theorem, given that (Wn(t),Wr(t),WI(t) : t ∈ [0,T ]) is a P-Brownian

motion and that Q is a probability measure equivalent to P, then there exist market

prices of risk (λn(t), λr(t), λI(t) : t ∈ [0,T ]) such that

W̃k(t) = Wk(t) −
∫ t

0
λk(s)ds for k ∈ {n, r, I} (3.4)

are Q− Brownian motions.

The following proposition characterizes the necessary and sufficient conditions for

the economy to be arbitrage-free.

Proposition 3.2.1. Pn(t,T )
Bn(t) ,

PT IPS (t,T )
Bn(t) are Q−local martingales for all T ∈ [0,T ∗] if and

only if there exists functions (λn(t), λr(t), λI(t) : t ∈ [0,T ]) satisfying (3.4) such that:

αn(t,T ) = σn(t, T )
(∫ T

t
σn(t, s)ds − λn(t)

)
(3.5)

αr(t,T ) = σr(t,T )
(∫ T

t
σr(t, s)ds − σI(t)ρrI − λr(t)

)
(3.6)

µI(t) = rn(t) − rr(t) − σI(t)λI(t). (3.7)

The proof can be found in the Appendix.

We further restrict the model parameters to satisfy:

σI(t) = σI

σk(t,T ) = σk exp(−ak(T − t)), k ∈ {n, r}

where σI , σn, σr, an and ar are constants. Under these assumptions, the bond prices

and inflation index follow a lognormal model under the risk-neutral measure Q. The

processes Pn(t,T )
Bn(t) ,

PT IPS (t,T )
Bn(t) are martingales under Q.
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Proposition 3.2.2. Under the risk neutral measure Q, the dynamics are:

d fn(t,T ) = −σ
2
n

an
e−an(T−t)

(
e−an(T−t) − 1

)
dt + σne−an(T−t)dW̃n(t) (3.8)

d fr(t,T ) = −σre−ar(T−t)
(
σr

ar
(e−ar(T−t) − 1) − σIρrI

)
dt + σre−ar(T−t)dW̃r(t) (3.9)

dI(t)
I(t)
= [rn(t) − rr(t)]dt + σIdW̃I(t) (3.10)

dPn(t, T )
Pn(t, T )

= rn(t)dt +
σn

an
(e−an(T−t) − 1)dW̃n(t) (3.11)

dPr(t, T )
Pr(t, T )

=

[
rr(t) + ρrIσI

σr

ar
(e−ar(T−t) − 1)

]
dt +

σr

ar

[
e−ar(T−t) − 1

]
dW̃r(t) (3.12)

dPT IPS (t, T )
PT IPS (t, T )

= rn(t)dt + σIdW̃I(t) +
σr

ar
(e−ar(T−t) − 1)dW̃r(t). (3.13)

The proof can be found in Jarrow & Yildirim (2003) Proposition 2.

To simplify the problem, we fix the time horizon T of our inventory management

problem, use PT IPS (·,T ) as numeraire, and immediately pass to quantities discounted

with PT IPS (·,T ). This means that PT IPS (·, T ) has (discounted) price 1 at all times and the

discounted nominal bond price is X(·) := Pn(·,T )/PT IPS (·,T ). The following proposition

characterizes the dynamics of the discounted nominal bond:

Proposition 3.2.3. Let X(t) = Pn(t,T )/PT IPS (t,T ) be the discounted nominal bond pro-

cess using the same maturity TIPS as numeraire. Its price process under the measure

PW is

dX(t)
X(t)

= µ(t)dt + σ(t)dW(t)

where W(t) is a PW-Brownian motion defined as

W(t) =
∫ t

0

1
σ(s)

(∑
k=n,r

σk

ak

(
e−ak(T−s) − 1

)
dWk(s) − σIdWI(s)

)
(3.14)
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and µ(t) and σ(t) are defined as

µ(t) = −λn(t)
σn

an
(e−an(T−t) − 1) + λI(t)σI + λr(t)

σr

ar
(e−ar(T−t) − 1) − ρnIσI

σn

an
(e−an(T−t) − 1)

− ρnr
σnσr

anar
(e−ar(T−t) − 1)(e−an(T−t) − 1) +

σ2
r

a2
r

(e−ar(T−t) − 1)2 + σ2
I (3.15)

σ(t)2 =
σ2

n

a2
n

(e−an(T−t) − 1)2 + σ2
I +

σ2
r

a2
r

(e−ar(T−t) − 1)2 − 2ρnI
σnσI

an
(e−an(T−t) − 1)

+ 2ρrI
σrσI

ar
(e−ar(T−t) − 1) − 2ρnr

σnσr

anar
(e−an(T−t) − 1)(e−ar(T−t) − 1). (3.16)

The proof can be found in the Appendix.

In Jarrow & Yildirim (2003), the authors described in detail the procedure to estimate

parameters ak, k ∈ {n, r}, σk, k ∈ {n, r, I} and correlations ρrI , ρnI , ρrn from three different

data sets: Treasury bond data, TIPS prices, and CPI-U data. For our application, we

also need to know the parameters λk, k ∈ {n, r}, or equivalently, we need to estimate the

drifts of the financial assets. This is a difficult problem in econometrics. We leave this

practical issue as an open question for now.

3.2.2 Inventory model

We consider a classical single-period, multi-product newsvendor model for inventory

management. There are N different products. At time t = 0, the operations manager

makes the product purchase decisions γ = (γ1, . . . , γN), which is a vector control, to

satisfy a future stochastic demand D(T ) = (D1(T ), . . . ,DN(T )). At time t = T , the
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demand is realized. For any product j, j = 1, . . . ,N, the net profit at time T will be

HT (γ j)

= R j(T ) min{D j(T ), γ j} + s j(T )(γ j − D j(T ))+ − q j(T )(D j(T ) − γ j)+ − p j(0)
P(T )
P(0)

γ j

= (R j(T ) − s j(T ))D j(T ) + s j(T )γ j − (R j(T ) + q j(T ) − s j(T ))(D j(T ) − γ j)+

− p j(0)
P(T )
P(0)

γ j

with γ j the corresponding operational decision for product j, R j is the unit retail price,

s j is the salvage value of unsold units, q j is an additional lost sales penalty per unit of

unsatisfied demand, p j is the unit purchase price, and P(t) is the price of the financial

asset used as numeraire (or accounting). Notice that the purchasing occurs at time 0 and

the retail activities are realized at time T .

In an economy with monetary inflation, we can expect that both price and demand

will be affected by the inflation index. For example, wages may not keep pace with cost

of living increases. In particular, we consider products whose demand depends on the

level of the inflation index, and the nominal prices of these products increase with the

index. The model we have is that for any time t, a price equals a fundamental price

multiplied by the inflation index. That is, for j = 1, . . . ,N:

R j(t) = R j(0)I(t)

p j(t) = p j(0)I(t)

s j(t) = s j(0)I(t)

q j(t) = q j(0)I(t)

(3.17)

where R j(0), p j(0), s j(0) and q j(0) are constants satisfying R j(0) > p(0)
PT IPS (0,T ) > s j(0). We

further assume that the demand is a power function of the inflation-linked price:

D j(t) = a je−b j log R j(t)+c jB j(t)
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with constants a j > 0 and b j, c j ∈ R, and B j(t) is the jth element of B(t) =

(B1(t), . . . ,BN(t)), an N-dimensional Brownian motion independent of W(t). B(t) de-

notes the non-financial noise. Thus, in this model, there are two sources of randomness

in the demand process for a product: a risky financial variable (the CPI index) and a

non-financial noise. As stated in the model setup, the filtration F W
t ⊗ Et, t ∈ [0,T ∗]

represents the evolution of observable information in the model. We consider the non-

financial noise B j(t), j = 1, . . . ,N to be observable. For example, B j(t) could represent

the relative appeal of product j to a typical consumer. This power function model of

demand is more realistic than the linear model of demand considered by Caldentey &

Haugh (2006) and others.

The total payoff function of the corporation is the sum of net profits over all products:

HT (γ) =
N∑

j=1

HT (γ j).

3.2.3 Hedging in the financial market

Consider a financial market consisting of a riskless and a risky asset with prices P(t) and

S (t), respectively. We express all value and price processes in terms of the riskless asset

P as numeraire. In particular, in numeraire P, the price of the riskless asset P itself is

equal to 1, and the price of the risky asset S is given by X(t) = S (t)
P(t) . We assume that X(t)

satisfies the stochastic differential equation (SDE):

dX(t)
X(t)

= µ(t)dt + σ(t)dW(t)

where µ(t) and σ(t) are given in proposition 3.2.3.

We further assume that the so-called mean-variance trade-off η(t) := µ(t)/σ(t) is a

bounded and deterministic function. In our application, we take P(t) = PT IPS (t,T ) and
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S (t) = Pn(t,T ), so inflation-adjusted time T -dollars are interpreted as the riskless asset

and nominal time T -dollars are the risky asset.

With everything expressed in inflation-adjusted dollars, the corresponding payoff in

discounted units is given by:

HD
T (γ j) =

HT (γ j)
PT IPS (T, T )

= (R j(0) − s j(0))D j(T ) − (R j(0) + q j(0) − s j(0))(D j(T ) − γ j)+

+ s j(0)γ j − p j(0)
γ j

PT IPS (0,T )
(3.18)

where we have used PT IPS (T,T ) = I(T ) and the parameters defined in (3.17).

The total discounted payoff is

HD
T (γ) =

n∑
j=1

HD
T (γ j).

Define the set of self-financing trading strategies Θ to be the collection of F W ⊗ E-

predictable processes (θt)0≤t≤T such that

E
[∫ T

0
θ2

t X(t)2dt
]
< ∞. (3.19)

The strategy variable, θt, denotes the number of shares in the risky asset X(t) held at time

t. The (discounted) gain process Gt(θ) associated with trading strategy θ ∈ Θ is defined

by

Gt(θ) :=
∫ t

0
θsdX(s), for all t ∈ [0,T ].

Consider a risk-averse non-financial corporation that operates during [0,T ]. It earns a

discounted profit HD
T which depends on an operating strategy γ ∈ Γ, and it gains GT (θ)

from trading in the financial market. We let Γ be the set of F W
0 ⊗E0-predictable policies

γ = (γ1, . . . , γN) with N components. HD
T is an F W

T ⊗ ET -measurable random variable.
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Since σ(X(t) | 0 ≤ t ≤ T ) ( F W
T ⊗ ET , the market is now incomplete. In other words,

there is risk in the stochastic demands D j(t) (modeled by B(t)) which cannot be hedged

by trading in the financial market using asset X(t).

Starting with an initial wealth W0, the corporation makes an operational decision and

implements a self-financing hedging strategy. As the result of operational and financial

activities, the final discounted wealth at time T will be

Y (γ,θ)
T := Ŵ0 + HD

T (γ) +GT (θ)

where Ŵ0 =
W0

PT IPS (0,T ) is the discounted initial wealth. For a fixed risk-aversion parameter

κ > 0, we are interested in the optimal solution to the problem

U = max
γ∈Γ,θ∈Θ

(
E
[
Y (γ,θ)

T

]
− κVar

[
Y (γ,θ)

T

])
. (3.20)

This completes our presentation of the multi-product inventory hedging problem in

an economy with monetary inflation. In the literature, the most closely related model to

this is that proposed and analyzed by Caldentey & Haugh (2006). Our model is derived

from theirs in that we consider a single-period newsvendor-style payoff function for

the inventory problem. We also assume that demand for the product is correlated with

a financial asset and that a self-financing hedging strategy can be implemented based

on this asset. There are four important differences in our approach, as compared to

Caldentey & Haugh (2006). First of all, we consider a multi-product problem whereas

Caldentey & Haugh (2006) explore a single product model. Secondly, we use a different

demand model. Caldentey & Haugh (2006) use a linear model relating demand to price.

We use a nonlinear demand model, and we characterize the impact of inflation. The

advantage of the power function for demand is that it ensures that demand will not

be negative or zero. Thirdly, in what follows we use a different dual criterion as the

basis for the hedging strategy solution. Finally, Caldentey & Haugh (2006) develop
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solutions for both complete and incomplete information models, according to whether

the non-financial noise is observable or not. We assume that the non-financial noise

is observable, which corresponds to the complete information scenario in Caldentey

& Haugh (2006). These differences enable us to focus on a realistic model for multi-

product separation.

3.3 Hedging of multiple products

In the previous section, the optimization problem (3.20) has been defined. It involves

optimizing over operational and financial decisions. Instead of finding the optimal con-

trols simultaneously, we first the fix operational control γ ∈ Γ and consider the restricted

hedging problem

Uγ = sup
θ∈Θ

(
E
[
Y (γ,θ)

T

]
− κVar

[
Y (γ,θ)

T

])
. (3.21)

This problem can be reformulated as follows. Let Bγ(m) denote a variance minimizing

problem

Bγ(m) = inf
θ∈Θ

{
Var

[
Y (γ,θ)

T

]
| E
[
Y (γ,θ)

T

]
= m

}
, for each m ∈ R. (3.22)

Then

Uγ = sup
m∈R

(m − κBγ(m)) . (3.23)

On the other hand, define the auxiliary problem

Aγ
T (λ) = inf

θ∈Θ
E
[
(Y (γ,θ)

T − λ)2
]
, for each λ ∈ R. (3.24)

The following theorem states that the auxiliary problem Aγ
T (λ) is conjugate to the vari-

ance minimization problem.
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Theorem 3.3.1. With Aγ
T (λ) and Bγ(m) defined as in (3.24) and (3.22), we have

Bγ(m) = sup
λ∈R

(
Aγ

T (λ) − (m − λ)2
)

(3.25)

and with λm the optimizer in (3.25), the optimal control in Bγ(m) is equal to the optimal

control in Aγ
T (λ) with λ = λm.

The proof can be found in the Appendix.

By theorem 3.3.1, to solve the optimization problem (3.21), it suffices to find the

optimal solution of the dual problem Aγ
T (λ). It turns out that Aγ

T (λ) is the auxiliary

problem of a quadratic hedging problem. Quadratic hedging is a classical mathematical

finance topic. We introduce the quadratic hedging problem in the following section, and

use it to solve the restricted hedging problem (3.21).

3.3.1 Quadratic hedging problem and Föllmer-Schweizer decom-

position

In this section, we start with considering the auxiliary problem, and show that the opti-

mization over the hedging strategy can be eliminated. We further find the optimizer in

the restricted hedging problem and the duality problem, and finally derive the separation

result of the restricted hedging problem using duality and the auxiliary problem.

Instead of considering the optimization problem (3.20), the quadratic hedging prob-

lem (3.24) can be seen to arise from maximizing the expected quadratic utility of termi-

nal wealth, where the utility function is defined as u(w) = w− lw2. Indeed, the quadratic

utility problem

max
(γ,θ)∈Γ×Θ

E[u(Ŵ0 + HD
T (γ) +GT (θ))] (3.26)
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is equivalent to

min
(γ,θ)∈Γ×Θ

E
[(

Ŵ0 + HD
T (γ) +GT (θ) − λ

)2
]

with λ = 1
2l . To solve this, we first fix γ ∈ Γ and consider the optimization problem

min
θ∈Θ

E
[(

Ŵ0 + HD
T (γ) +GT (θ) − λ

)2
]
. (3.27)

This leads to the auxiliary problem (3.24).

Given the assumption that the market price of risk, η(t), is a bounded and determinis-

tic function, the solution of (3.27) can be found using the minimal equivalent martingale

measure (MEMM, see Föllmer & Schweizer (1991)) defined by

dP̂
dP

:= exp
{∫ T

0
η(t)dW(t) − 1

2

∫ T

0
η2(t)dt

}
. (3.28)

By Girsanov’s theorem, both the financial asset X and non-financial noise B are square-

integrable martingales under P̂. We use Ê[·] to denote the expectation under P̂. The

following theorem is the key result in quadratic hedging. It has been established in a

number of modeling setups by different authors; we refer to Černỳ & Kallsen (2007) for

a treatment of the quadratic hedging problem in a general semimartingale model and for

a discussion of the literature on this problem. The version we are using here is due to

Schweizer (1992).

Theorem 3.3.2. For any FT -measurable claim HD
T (γ j) ∈ Lp(P), j = 1, . . . ,N for some

p > 2, there is a hedging strategy, ϑ(γ j), and a process δ(γ j) ∈ L2(P), such that HD
T (γ j)

admits the decomposition

HD
T (γ j) = V (γ j)

0 +

∫ T

0
ϑ

(γ j)
t dX(t) +

∫ T

0
δ

(γ j)
t dB j(t) (3.29)

where V (γ j)
0 := Ê[HD

T (γ j)]. As a result, HD
T (γ) =

∑N
j=1 HD

T (γ j) admits the decomposition

HD
T (γ) = V (γ)

0 +

∫ T

0
ϑ

(γ)
t dX(t) +

∫ T

0
δ

(γ)
t dB(t) (3.30)
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with

V (γ)
0 =

N∑
j=1

V (γ j)
0 (3.31)

ϑ
(γ)
t =

N∑
j=1

ϑ
(γ j)
t (3.32)

δ
(γ)
t =

√√√√ N∑
j=1

(
δ

(γ j)
t

)2
(3.33)

B(t) =
∫ t

0

1
δ

(γ)
s

N∑
j=1

δ(γ j)
s dB j(s) (3.34)

with B(t) a Brownian motion under P and P̂.

In addition, the optimal strategy, θ∗, that solves (3.27) is given by θ∗ = Φ(G∗t ) where

Φ(G∗t ) = ϑ(γ)
t + µ(t)/(σ(t)2X(t))(V (γ)

t +G∗t + Ŵ0 − λ), (3.35)

where G∗t solves the stochastic differential equation (SDE)

dG∗t = −Φ(G∗t )dX(t) (3.36)

G∗0 = 0 (3.37)

and V (γ)
t is the intrinsic value process defined by

V (γ)
t := Ê[HD

T (γ)|Ft] = V (γ)
0 +

∫ t

0
ϑ(γ)

s dX(s) +
∫ t

0
δ(γ)

s dB(s). (3.38)

The decomposition (3.38) is known as the Galtchouk-Kunita-Watanabe (GKW) decom-

position of V (γ)
t under P̂ with respect to X.

Remark: The decomposition in the theorem is also known as the Föllmer-Schweizer

decomposition of HD
T (γ) with respect to the semimartingale X. In particular, when the

price of the discounted risky asset X is a martingale, as in our model, the Föllmer-

Schweizer decomposition coincides with the Galtchouk-Kunita-Watanabe(GKW) de-

composition under P.
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This is a direct result from the result of Schweizer (1992).

The importance of the next theorem is that it establishes the value of the auxiliary

process in terms that do not involve the optimal hedging strategy.

Theorem 3.3.3. Define the auxiliary process

A(γ)
T := E[(V (γ)

T +G∗T + Ŵ0 − λ)2] (3.39)

and Kt :=
∫ t

0 η(s)2ds, then A(γ)
T is given by

A(γ)
T (λ) = e−KT

((
Ŵ0 + V (γ)

0 − λ
)2
+

∫ T

0
eKs E

[
(δ(γ)

s )2
]

ds
)

= e−KT

((
Ŵ0 + V (γ)

0 − λ
)2
+

∫ T

0
eKs

N∑
j=1

E
[
(δ(γ j)

s )2
]

ds

)
. (3.40)

Observe that (3.40) involves the intrinsic value V (γ)
0 and the non-financial noise term

δ
(γ)
t from the decomposition (3.38). The optimization over θ in (3.24) has been elimi-

nated.

Since the right-hand-side of (3.40) exists, we can replace the inf and sup with min

and max, respectively, in (3.24), (3.21), (3.22) and (3.25). Let λm and mopt denote the

optimizers of (3.25) and (3.23), respectively. Theorem (3.3.4) permits us to solve for λm

and mopt, and these explicit solutions enable us to separate the multi-product problem

(3.20) by product. Theorem (3.3.4) can be considered the main result of this paper.

Theorem 3.3.4. The optimizer and the corresponding optimal value of problem (3.25)

is

λm =
m − e−KT (Ŵ0 + V (γ)

0 )
1 − e−KT

(3.41)

Bγ(m) =
e−KT

1 − e−KT
(Ŵ0 + V (γ)

0 − m)2 + e−KT

∫ T

0
eKu

N∑
j=1

E
[
(δγ j

s )2
]

ds. (3.42)
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The optimizer mopt of problem (3.23) is given by

mopt =
1
2κ

1 − e−KT

e−KT
+ Ŵ0 + V (γ)

0 (3.43)

and the optimal value in problem (3.21) is

Uγ = Ŵ0 +
1
4κ

(eKT − 1) + V (γ)
0 − κe−KT

∫ T

0
eKs

N∑
j=1

E
[
(δ(γ j)

s )2
]

ds

= Ŵ0 +
1
4κ

(eKT − 1) +
N∑

j=1

V (γ j)
0 − κe−KT

∫ T

0
eKs

N∑
j=1

E
[
(δ(γ j)

s )2
]

ds. (3.44)

Finally, the optimal control γ in (3.20) can be found by maximizing (3.44) over γ.

With this theorem, we achieve separation for the multi-product problem as stated in

the following corollary.

Corollary 3.3.5. With Uγ defined as in (3.21), the problem

max
γ

Uγ (3.45)

is equivalent to solving

max
γ j

(
V (γ j)

0 − κe−KT

∫ T

0
eKs E

[
(δ(γ j)

s )2
]

ds
)

(3.46)

for each j = 1, . . . ,N.

The following theorem proves that the problem above is well-defined.

Theorem 3.3.6. There exists an optimal solution γ j for problem (3.46).

The proof can be found in the Appendix.

Armed with the existence of the optimal operation strategy γ j, problem (3.46) can

be solved numerically after we obtain V (γ j)
t and δ

(γ j)
t via the F-S decomposition. The

following theorem provides this decomposition in explicit form.
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Theorem 3.3.7. The intrinsic value of discounted profit V (γ j)
t = Ê[HD

T (γ j)|Ft] from prod-

uct j is given by

V (γ j)
t = (R j(0) − s j(0))N( j)

t + s j(0)γ j − (R j(0) + q j(0) − s j(0))M(γ j)
t − p j(0)γ j

PT IPS (0,T )

(3.47)

for all t ∈ [0,T ], and it has the Galtchouk-Kunita-Watanabe decomposition

V (γ j)
t = Ê[HD

T (γ j)|Ft]

= V (γ j)
0 +

∫ t

0
ϑ(γ j)

s dX(s) +
∫ t

0
δ(γ j)

s dB j(s)

where

V (γ j)
0 = (R j(0) − s j(0))D j(0) + s j(0)γ j − (R j(0) + q j(0) − s j(0))(D j(0) − γ j)+

− p j(0)γ j

PT IPS (0,T )
(3.48)

ϑ
(γ j)
t =

b j

X(t)
J j(t)L(γ j)(t) (3.49)

δ
(γ j)
t = c jJ j(t)L(γ j)(t) (3.50)

J j(t) = a j exp
(
−b j log R j(0) + b j log X(t) + c jB j(t)

)
(3.51)

L(γ j)(t) = −(R j(0) + q j(0) − s j(0))F j(t)Φ

(
µ j

z(t) + log J j(t)
γ j

σ
j
z(t)

+ σ j
z(t)

)
(3.52)

+ (R j(0) − s j(0))F j(t)

F j(t) = eµ
j
z(t)+ 1

2σ
j
z(t)2

(3.53)

M(γ j)(t) = J j(t)F j(t)Φ

(
µ j

z(t) + log J j(t)
γ j

σ
j
z(t)

+ σ j
z(t)

)
− γ jΦ

(
µ j

z(t) + log J j(t)
γ j

σ
j
z(t)

)
(3.54)

N( j)
t = J j(t)F j(t) (3.55)

µ j
z(t) = b jµY(t) (3.56)

σ j
z(t)

2 = b2
jσ

2
Y(t) + c2

j(T − t) (3.57)

µY(t) = −1
2
σ2

Y(t) (3.58)
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and

σ2
Y(t) =

∑
k=n,r

σ2
k

a2
k

(
1

2ak

(
1 − e−2ak(T−t)

)
− 2

ak

(
1 − e−ak(T−t)

)
+ T − t

)
+ σ2

I (T − t)

− 2ρnr
σnσr

anar

[
1

an + ar

(
1 − e−(an+ar)(T−t)

)
−
∑
k=n,r

1
ak

(
1 − e−ak(T−t)

)
+ (T − t)

]

−
∑
k=n,r

2ρnI
σkσI

ak

[
1
ak

(
1 − e−ak(T−t)

)
− (T − t)

]
=

∫ T

t
σ(s)2ds (3.59)

and where Φ(·), ϕ(·) are the CDF and pdf of the standard normal random variable

respectively.

The proof can be found in the Appendix.

Remark: Notice that in (3.46) the drifts of the financial assets enter only via the

risk aversion parameters κe−KT and eKs . As stated before, the evaluation of drifts of

financial assets is non-trivial. In problem (3.46) it corresponds to evaluating the market

risk aversion, but this is also a difficult issue in econometrics.

The optimal hedging strategy θ∗ = θ∗(γ) in (3.20) can now be computed by solving

(3.21) with the optimal γ = (γ1, . . . , γN). This is achieved by using the duality in theorem

1 and the optimal control given in theorem 3.3.2. Combining these results, we find that

θ∗(γ) is given in feedback form by

θ∗t (γ) = −
(
ϑ

(γ)
t + µ(t)/(σ(t)2X(t))(V (γ)

t +G∗t + Ŵ0 −
1
2κ

eKT − V (γ)
0 )
)

(3.60)

where G∗t is the solution of the stochastic differential equation (SDE):

dG∗t = −
[
ϑ

(γ)
t + µ(t)/(σ(t)2X(t))

(
V (γ)

t +G∗t −
1
2κ

eKT − V (γ)
0

)]
dX(t) (3.61)

where ϑ(γ) =
∑N

j=1 ϑ
(γ j). The solution of this SDE can be expressed in terms of a stochas-

tic integral with respect to X. We discuss how to solve it numerically in the next section.
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3.3.2 Approximation of quadratic hedging strategy

According to theorem 3.3.2, we need to solve a stochastic differential equation in order

to obtain the optimal hedging strategy. In general, this requires numerical techniques for

stochastic differential equations. In practice, a strategy which can be quickly and easily

calculated is desirable. Hence we introduce an approximation hedging strategy.

We suppress the product index j from this point, as the argument will apply to any

product. First, recall that the optimal quadratic hedging gain process for the discounted

problem satisfies the stochastic differential equation:

dG∗t = −
[
ϑ

(γ)
t + µ(t)/(σ(t)2X(t))(V (γ)

t +G∗t + Ŵ0 −
1
2κ

eKT − V (γ)
0 )
]

dX(t) (3.62)

with G∗0 = 0. The optimal hedging strategy is then given by

θ∗t (γ) = −
(
ϑ

(γ)
t + µ(t)/(σ(t)2X(t))(V (γ)

t +G∗t + Ŵ0 −
1
2κ

eKT − V (γ)
0 )
)
. (3.63)

To avoid solving an SDE for each step, we propose an approximation hedging strat-

egy. The following theorem gives the approximation and evaluates the quality of the

approximation by considering the expected squared difference of the gain processes.

Theorem 3.3.8. Consider the approximation strategy

θ̃t(γ) = −
(
ϑ

(γ)
t + µ(t)/(σ(t)2X(t))

(
V (γ)

t + Ŵ0 −
1
2κ

eKT − V (γ)
0

))
(3.64)

and the gain process under the approximation strategy

G̃t =

∫ t

0
θ̃s(γ)dX(s). (3.65)

If |η(t)| ≤ ϵ1, |σ(t)| ≤ ϵ2, we have

E[(G∗t − G̃t)2] < ϵ2
1 (1 + tϵ2

1 )t2Υ∗t (3.66)
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where

υt = ϑ
(γ)
t σ(t)X(t) + η(t)

(
Vt + Ŵ0 −

1
2κ

eKT − V (γ)
0

)
and

Υ∗t = sup
u∈[0,t]

E[υ2
u].

The proof can be found in the Appendix.

In practice, our conjecture is that the optimal hedging strategy can be approximated

with smaller error via a forward finite difference method. Consider m discrete time

points in [0,T ]. For any i = 1, . . . ,m we are interested in solving

G∗ti −G∗ti−1

= −
[
ϑ

(γ)
ti + µ(ti)/(σ(ti)2X(ti))(V

(γ)
ti +G∗ti−1

+ Ŵ0 −
1
2κ

eKT − V (γ)
0 )
]

(X(ti) − X(ti−1)).

(3.67)

The difference between this approach and (3.62) is that the observed gain process of the

optimal hedging strategy is used to replace G∗t on the right hand side of the SDE. This

reduces the difficulties of solving the nonhomogeneous linear SDE (3.62). It also worth

mentioning that the numerical approach is a two-dimensional procedure which yields

the optimal hedging strategy θ∗t and gain process G∗t simultaneously. In fact, we can

obtain both values as in (3.63) for each time step.

3.3.3 Comparison of optimal inventory decisions of hedging and

non-hedging

In this section, we compare the optimal inventory decision in the case when the financial

instrument for hedging is not available with the case in which hedging is available. We

57



show that if there is no inflation-protected financial instrument, in a high inflation econ-

omy, the investor tends to purchase as much inventory as possible to preserve wealth.

In other words, inflation distorts the inventory decision and causes a malinvestment. On

the other hand, optimal hedging enables the operations department to make the correct

inventory decision while the financial department takes care of inflation.

In the following theorem, we consider a single-product case without loss of general-

ity.

Theorem 3.3.9. There exist a critical value µ∗I such that for all µI > µ∗I , the optimal in-

ventory decision with hedging is less than the optimal inventory decision without hedg-

ing, that is, γ∗H < γ∗NH.

Proof. If there is no inflation-protected financial instrument, at time 0, the corporation

purchases inventory with unit price p(0), and the riskless asset in this case is bank ac-

count. So, at T , the present value of purchase cost is p(0)γBn(0). In contrast, with a

hedging opportunity, the riskless asset we consider in (3.18) is the TIPS. As a result, the

non-hedging discounted payoff is

HD
T (γ) = (R(0) − s(0))D(T ) − (R(0) + q(0) − s(0))(D(T ) − γ)+ + s(0)γ − p(0)

γBn(0)
PT IPS (T,T )

and the objective function under this case is

max
γ

(
E[HD

T ] − κVar[HD
T ]
)
.

As proved in Wu et al. (2009), theorem 2.4, the variance function is bounded in γ ∈

[0,+∞). Also notice that

lim
µI→+∞

E[
Bn(0)

PT IPS (T,T )
] = 0, (3.68)

and hence E[HD
T ] is an increasing function of γ for µI sufficiently large. That is, the

optimal inventory decision without hedging γ∗NH → ∞ as µI → ∞.
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On the other hand, we have proved in theorem 3.3.6 that the optimizer γ∗H of problem

(3.46) exists and is finite. As a result, with all other parameters the same, as µI increases,

the optimal inventory decision γ∗NH increases to +∞ while γ∗H remains unchanged, hence

there is a critical value µ∗I such that for all µI > µ
∗
I , γ

∗
H < γ∗NH. �

3.4 Numerical example

In this section we demonstrate the multi-product separation result via a numerical exam-

ple. In particular, we are interested in demonstrating the impact of hedging on products

whose demands are correlated with the inflation index to different extents.

The following inventory parameter values are used for the example.

R0 = $600, p0 = $500, s0 = $200, b0 = $300, κ = 0.2, T = 2 years.

We use the calibration result in Jarrow & Yildirim (2003) for the following financial

market parameter values.

an = 0.013398, ar = 0.014339, σn = 0.0566, σr = 0.0299

ρnI = 0.01482, ρnr = 0.06084, ρrI = −0.032127.

Furthermore, we assume

αn = 0.1, αr = 0.02, rn(0) = 0.2, rr(0) = 0, I0 = 1.

Finally, we use the CPI parameter σI = 0.1874.

We consider two products exhibiting different correlations with the CPI: products 1

and 2 with CPI correlations b1 = 0.2 and b2 = 0.9. Furthermore, to demonstrate the

hedging effect, we require that at time T , the realized demands have the same distri-

bution, which leads to the same optimal inventory decision in the absence of hedging.
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Practically, this can be done by fixing a1, b1, b2 and c1, and calculate a2, c2 via

a2 = exp(log a1 − (b1 − b2) log R(0) + (b1 − b2)µY(0))

and

c2 =

√
(b2

1 − b2
2)σ2

Y(0)/T + c2
1.

λI Product
Non Hedging Hedging

γ∗ Objective Function γ∗ Objective Function

1.5
1

8.1574 × 104 1.1536 × 1014 1.9436 × 105 4.2672 × 1013

2 2.1430 × 105 4.4424 × 1013

1
1

8.1218 × 104 7.1696 × 1013 1.0805 × 105 4.4948 × 1013

2 1.0737 × 105 3.6380 × 1013

0.5
1

8.8479 × 104 8.6252 × 1013 7.7591 × 104 6.8909 × 1013

2 6.6116 × 104 4.5046 × 1013

0.1
1

9.5204 × 104 9.9335 × 1013 6.7280 × 104 7.8694 × 1013

2 4.9799 × 104 4.0859 × 1013

0.05
1

1.0041 × 105 1.5937 × 1014 6.6303 × 104 9.0930 × 1013

2 4.8791 × 104 5.1474 × 1013

Table 3.1: Optimal inventory decision and objective function value for different
products.

We vary the drift of CPI by changing λI . To mimic a high-inflation economy, a small

λI value is required.

Table 3.4 displays the results of the experiment. The observations from the experi-

ment are that

• For both products, and for sufficiently high inflation, the optimal inventory deci-

sion with hedging becomes smaller than the one without hedging.

• The impact on the optimal inventory decision as inflation increases is weaker in

product 1 compared to product 2.
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The first observation illustrates theorem 3.3.9, showing that the malivestment will

occur under a high-inflation economy while the application of hedging avoids it. The

second observation shows that as the inflation level changes, the optimal inventory de-

cision with hedging changes. Moreover, the product with the higher dependence on

inflation has the more significant change in the optimal inventory decision.

3.5 Appendix to chapter 3

Proof of proposition 3.2.1.

Proof. According to the fundamental theorem of asset pricing, any finite subfamiliy of

the market is arbitrage-free if there exists Q ≈ P such that all Pn(t,T )
Bn(t) and all PT IPS (t,T )

Bn(t) are

Q-local martingales.

Suppose there exists such a Q as above. By Itô’s representation theorem and Gir-

sanov’s theorem, there exist predictable processes λk(t), k ∈ {n, r, I} such that

dW̃k(t) = dWk(t) − λk(t)dt, k ∈ {n, r, I}

are Q-Brownian motions. Itô’s lemma yields

d
(

Pn(t, T )
Bn(t)

)
=

1
Bn(t)

(dPn(t,T ) − Pn(t,T )rn(t)dt)

=
Pn(t,T )

Bn(t)

([∫ T

t
αn(t, s)ds +

1
2

(∫ T

t
σn(t, s)ds

)2

+ fn(t, t) − rn(t)

]
dt

−
[∫ T

t
σn(t, s)ds

]
(dW̃n(t) + λn(t)dt)

)
.

The processes are Q-local martingale for all maturities T ≥ t if and only if the drifts

61



vanish, i.e.

αn(t,T ) = σn(t, T )
(∫ T

t
σn(t, s)ds − λn(t)

)
,

noticing that rn(t) = fn(t, t).

Similarly, Itô’s lemma also yields

d
(

PT IPS (t,T )
Bn(t)

)
=

PT IPS (t,T )
Bn(t)

([
−
∫ T

t
αr(t, s)ds +

1
2

(∫ T

t
σr(t, s)ds

)2

+ fr(t, t) − rn(t)

]
dt

−
[∫ T

t
σr(t, s)ds

](
dW̃r(t) + λr(t)dt

)
+ σI(t)

(
dW̃I(t) + λI(t)dt

)
+µI(t)dt −

∫ T

t
σr(t, s)ds · σI(t)ρrIdt

)
.

The processes are Q-local martingales for all T ≥ t if and only if the drifts vanish, i.e.

αr(t,T ) = σr(t,T )
(∫ T

t
σr(t, s)ds − σI(t)ρrI − λr(t)

)
µI(t) = rn(t) − rr(t) − σI(t)λI(t).

�

Proof of proposition 3.2.3.

Proof. We discount the nominal bond by TIPS. By Itô’s lemma and proposition 3.2.2,
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the discounted nominal bond price is given by

dX(t)
X(t)

=
d
(

Pn(t,T )
PT IPS (t,T )

)
Pn(t,T )

PT IPS (t,T )

=

[
σn

an

(
e−an(T−t) − 1

)
dW̃n(t) − σIdW̃I(t) −

σr

ar

(
e−ar(T−t) − 1

)
dW̃r(t)

]
−
[
ρnI

σn

an

(
e−an(T−t) − 1

)
+ ρnr

σnσr

anar

(
e−ar(T−t) − 1

) (
e−an(T−t) − 1

)
− σ2

I

−σ
2
r

a2
r

(
e−ar(T−t) − 1

)2
]

dt

=

[
σn

an

(
e−an(T−t) − 1

)
dWn(t) − σIdWI(t) −

σr

ar

(
e−ar(T−t) − 1

)
dWr(t)

]
−
[
λn(t)

σn

an

(
e−an(T−t) − 1

)
− λI(t)σI − λr(t)

σr

ar

(
e−ar(T−t) − 1

)]
dt

−
[
ρnIσI

σn

an

(
e−an(T−t) − 1

)
+ ρnr

σnσr

anar

(
e−ar(T−t) − 1

) (
e−an(T−t) − 1

)
−σ2

I −
σ2

r

a2
r

(
e−ar(T−t) − 1

)2
]

dt.

Let

µ(t) = −λn(t)
σn

an
(e−an(T−t) − 1) + σIλI(t) +

σr

ar
(e−ar(T−t) − 1)λr(t) +

σ2
r

a2
r

(e−ar(T−t) − 1)2

− ρnIσI
σn

an
(e−an(T−t) − 1) − ρnr

σnσr

anar
(e−ar(T−t) − 1)(e−an(T−t) − 1) + σ2

I

σ(t)2 =
σ2

n

a2
n

(e−an(T−t) − 1)2 + σ2
I +

σ2
r

a2
r

(e−ar(T−t) − 1)2 − 2ρnI
σnσI

an
(e−an(T−t) − 1)

+ 2ρrI
σrσI

ar
(e−ar(T−t) − 1) − 2ρnr

σnσr

anar
(e−an(T−t) − 1)(e−ar(T−t) − 1).

and

W(t) =
∫ t

0

1
σ(s)

(
σn

an
(e−an(T−s) − 1)dWn(s) − σIdWI(s) − σr

ar
(e−ar(T−s) − 1)dWr(s)

)

Then W(t) is a P-Brownian motion. Hence we have rewritten the discounted process

X(t) with respect to a one-dimension P-Brownian motion. This finishes the proof of

proposition 3.2.3. �
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Proof of theorem 3.3.1.

Proof. Recall that

A(γ)(λ) = inf
θ∈Θ

E
[
(Y (γ,θ)

T − λ)2
]

(3.69)

Bγ(m) = inf
θ∈Θ

{
Var

[
Y (γ,θ)

T

] ∣∣∣E [Y (γ,θ)
T

]
= m

}
, m ∈ R (3.70)

We want to prove that

Aγ(λ) = inf
m

[
Bγ(m) + (m − λ)2

]
λ ∈ R, (3.71)

Bγ(m) = sup
λ

[
Aγ(λ) − (m − λ)2

]
, m ∈ R (3.72)

and ∀ m ∈ R, the optimal control of Bγ(m) is equal to the optimal control in (3.72).

Notice

E[(Yλ,θ
T − λ)2] = Var[Y (γ,θ)

T ] + (E[Y (γ,θ)
T ] − λ)2 (3.73)

By definition of Bγ(m), for each ϵ > 0 we can find θϵ ∈ Θ with controlled diffusion Yγ,θϵ ,

such that E[Yγ,θϵ

T ] = m and Var[Yγ,θϵ

T ] ≤ Bγ(m) + ϵ. i.e.

E[(Yγ,θϵ

T − λ)2] ≤ Bγ(m) + (m − λ)2 + ϵ (3.74)

and hence

Aγ(λ) = inf
θ∈Θ

E[(Yγ,θϵ

T − λ)2] ≤ Bγ(m) + (m − λ)2 ∀m, λ ∈ R. (3.75)

On the other hand, for λ ∈ R, let θ̂λ ∈ Θ with controlled diffusion Ŷγ,θ,λ
T , and optimal

control for Aγ(λ). Set mλ = E[Ŷγ,θ,λ
T ].

Aγ(λ) = Var[Ŷγ,θ,λ
T ] + (mλ − λ)2

≥ Bγ(mλ) + (mλ − λ)2. (3.76)

64



Combining (3.75) and (3.76),

Aγ(λ) = inf
m

[Bγ(m) + (m − λ)2]

= Bγ(mλ) + (mλ − λ)2 (3.77)

and θ̂λ is the solution to Bγ(mλ).

Also, since X 7→ Var[X] is convex in X, the function Bγ(m) is convex in m, and since

Aγ(λ) = inf
m

[Bγ(m) + (m − λ)2] (3.78)

(λ2 − Aγ(λ))
2

= sup
m

[
mλ − Bγ(m) + m2

2

]
(3.79)

the function λ 7→ λ2−Aγ(λ)
2 is the Fenchel-Legendre transform of the convex function

m 7→ (Bγ(m)+m2)
2 . We then have the duality relation

(Bγ(m) + m2)
2

= sup
λ

[
mλ − (λ2 − Aγ(λ))

2

]
(3.80)

and hence (3.72):

Bγ(m) = sup
λ

[Aγ(λ) − (m − λ)2]. (3.81)

Finally, ∀m ∈ R, let λm ∈ R be the argument maximum of Bγ(m) in (3.72). Then m is an

argument minimum of Aγ(λ) in (3.72). Since

m 7→ Bγ(m) + (m − λ)2 is strictly convex,

this argument minimum is unique, so m = mλm = E[Ŷγ,θ,λm
T ]. Hence,

Bγ(m) = Aγ(λm) + (m − λm)2

= E[Ŷγ,θ,λm
T ]2 +

(
E[Ŷγ,θ,λm

T ] − λm

)2

= Var[Ŷγ,θ,λm
T ]

i.e. θ̂λm is a solution to Bγ(m). �
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Proof of theorem 3.3.3.

Proof. Define the process N(γ)
t := (V (γ)

t +G∗t + Ŵ0 − λ)2. Using Itô’s lemma:

dN(γ)
t = 2(V (γ)

t +G∗t + Ŵ0 − λ)(dV (γ)
t + dG∗t ) + d < V (γ) +G∗,V (γ) +G∗ >t .

Using the definition of V (γ)
t and G∗t , we obtain

N(γ)
t = N(γ)

0 + 2
∫ t

0
(V (γ)

s +G∗s + Ŵ0 − λ)(δ(γ)
s dB(s) − ηs(V (γ)

s +G∗s + Ŵ0 − λ)dW(s))

+

∫ t

0
(δ(γ)2

s − η2
s(V

(γ)
s +G∗s + Ŵ0 − λ)2)ds.

Taking expectations, canceling all martingale terms, and using Fubini’s theorem with

the deterministic mean-variance assumption, we obtain

A(γ)
t = E[N(γ)

t ] = E[N(γ)
0 ] +

∫ t

0
(E[δ(γ)2

s ] − η2
s A(γ)

s )ds.

This implies the ODE:
d
dt

A(γ)
t + η

2
t A(γ)

t = E[δ(γ)2

t ].

Finally, use the integrating factor Kt = exp (
∫ t

0 η
2
sds) and the boundary condition A(γ)

0 =

(V (γ)
0 + Ŵ0 − λ)2 to obtain the desired result. �

Proof of theorem 3.3.4.

Proof. By theorem 3.3.1 we have

Bγ(m) = min
θ

{
Var[Ŵ0 + Hγ

T +GT (θ)] | E[Ŵ0 + Hγ
T +GT (θ)] = m

}
= max

λ
(Aγ(λ) − (m − λ)2).

The maximum is achieved for

0 =
∂

∂λ
Aγ(λ) + 2(m − λ)
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where

Aγ(λ) = e−KT

(
(Ŵ0 + V (γ)

0 − λ)2 +

∫ T

0
eKu

n∑
j=1

E[(δγ j
u )2]

)
.

So the optimal condition is

− 2e−KT (Ŵ0 + V (γ)
0 − λ) + 2(m − λ) = 0

⇔ (1 − e−KT )λ = m − e−KT (Ŵ0 + V (γ)
0 )

⇔ λ∗m =
m − e−KT (Ŵ0 + V (γ)

0 )
1 − e−KT

.

Plugging the result into the problem, we obtain

Bγ∗(m) = Aγ(λ∗m) − (m − λ∗m)2

= e−KT

(
W0 + V (γ)

0 − m
1 − e−KT

)2

−
(

e−KT (Ŵ0 + V (γ)
0 − m)

1 − e−KT

)2

+ e−KT

∫ T

0
eKu

n∑
j=1

E[(δγ j
u )2]du.

This proves the first part of the theorem. To solve the problem

Uγ = max
m

(m − κBγ(m)),

note that the first order condition is

1 − κ ∂
∂m

Bγ(m) = 0

⇔ 2(m∗ − Ŵ0 − V (γ)
0 )

e−KT

1 − e−KT
=

1
κ

⇔ m∗ =
1
2κ

e−KT

1 − e−KT
+ Ŵ0 + V (γ)

0

⇔ (m∗ − Ŵ0 − V (γ)
0 )2 =

1
4κ2

(
e−KT

1 − e−KT

)2

.
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That is,

Uγ = m∗ − κBγ(m∗)

=
1
2κ

e−KT

1 − e−KT
+ Ŵ0 + V (γ)

0 −
1
4κ

e−KT

1 − e−KT
− κe−KT

∫ T

0
eKu

N∑
j=1

E[(δγ j
u )2]du

= Ŵ0 +

N∑
j=1

V (γ j)
0 +

1
4κ

(eKT − 1) − κe−KT

∫ T

0
eKu

N∑
j=1

E[(δγ j
u )2]du.

This finishes the second part of the theorem. �

Proof of theorem 3.3.6.

Proof. For simplicity, we suppress the dependence of product j for the proof. The

problem we consider is

max
γ

(
V (γ)

0 − κe−KT

∫ T

0
eKs E[(δ(γ)

s )2]ds
)

(3.82)

where V (γ)
0 and δ(γ)

s are given in theorem 3.3.7. Both amounts are independent of µI .

The objective function above, in general, is not a concave function of γ. We want

to prove the existence by proving the concavity of V (γ)
0 and showing the variance part is

bounded with respect to γ.

First observe that

dV (γ)
0

dγ
= s − p(0)

PT IPS (0,T )
+ (R(0) + q(0) − s(0))Φ(

µz(t) + log J(0)
γ

σz(0)
)

d2V (γ)
0

dγ2 = −(R(0) + q(0) − s(0))
1
γ
ϕ

(
µz(0) + log J(0)

γ

σz(0)

)
< 0

where ϕ(·) andΦ(·) are the pdf and CDF of the standard normal distribution. This proves

that V (γ)
0 is a concave function of γ.
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Furthermore,

lim
γ→0

δ
(γ)
t = cJ(t)(−(R(0) + q(0) − s(0))F(t) + (R(0) − s(0))F(t)) = −cJ(t)q(0)F(t)

lim
γ→+∞

δ
(γ)
t = cJ(t)

(
−(R(0) + q(0) − s(0))F(t)Φ

(
µz(t)
σz(t)

+ σz(t)
)
+ (R(0) − s(0))F(t)

)
.

Notice that E[J(t)2] < ∞, which implies that E[(δ(γ)
s )2] is bounded for any time s as

γ ∈ [0,+∞).

We also need

lim
γ→+∞

dV (γ)
0

dγ
= s − p(0)

PT IPS (0,T )
< 0

where the last inequality is due to the assumption.

Up to this point, we have proved that problem (3.46) is composed of a concave

function and a bounded function of γ, hence we have proved that problem (3.46) is

well-defined, the optimizer γ∗ exists and is finite. �

The following lemmas will be used in proving theorem 3.3.7. In particular, lemma

3.5.1 is contributed to proof of lemma 3.5.2, which will be the building blocks to the

proof of theorem 3.3.7.

Lemma 3.5.1. Under the MEMM P̂, the discounted nominal bond X(t) is a P̂-local

martingale with dynamics

dX(t)
X(t)

=
σn

an

(
e−an(T−t) − 1

)
dŴn(t) − σIdŴI(t) −

σr

ar

(
e−ar(T−t) − 1

)
dŴr(t)

where Ŵk(t), k ∈ {n, I, r} are P̂-Brownian motions defined as

ŴI(t) = W̃I(t) −
∫ t

0

(
σI + ρrI

σr

ar

(
e−ar(T−s)−1

))
ds

Ŵn(t) = W̃n(t) −
∫ t

0

(
ρnIσI + ρnr

σr

ar

(
e−ar(T−s) − 1

))
ds

Ŵr(t) = W̃r(t) −
∫ t

0

(
σIρrI +

σr

ar

(
e−ar(T−s) − 1

))
ds.
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Proof of lemma 3.5.1.

Proof. First notice the dynamics of X(t) under risk-neutral measure Q are:

dX(t)
X(t)

=

[
σn

an

(
e−an(T−t) − 1

)
dW̃n(t) − σIdW̃I(t) −

σr

ar

(
e−ar(T−t) − 1

)
dW̃r(t)

]
−
[
ρnIσI

σn

an

(
e−an(T−t) − 1

)
+ ρnr

σnσr

anar

(
e−ar(T−t) − 1

) (
e−an(T−t) − 1

)
−σ2

I +
σ2

r

a2
r

(
e−ar(T−t) − 1

)2
]

dt

According to Lévy’s theorem, Ŵk(t), k ∈ {n, I, r} defined as in the lemma will be P̂

Brownian motion, and X(t) is a P̂-local martingale. �

Lemma 3.5.2. Under the MEMM measure P̂, Y(t) = log X(t) has dynamics

dY(t) = d log X(t)

=

[
ρnI

σn

an
σI
(
e−an(T−t) − 1

)
+ ρnr

σnσr

anar

(
e−an(T−t) − 1

) (
e−ar(T−t) − 1

)
− 1

2
σ2

I

−ρrI
σrσI

ar

(
e−ar(T−t) − 1

)
− 1

2
σ2

n

a2
n

(
e−an(T−t) − 1

)2 − 1
2
σ2

r

a2
r

(
e−ar(T−t) − 1

)2
]

dt

+
σn

an

(
e−an(T−t) − 1

)
dŴn(t) − σIdŴI(t) −

σr

ar

(
e−ar(T−t) − 1

)
dŴr(t).

So given Ft, Y(T ) − Y(t) is a normally distributed random variable with mean µY(t) and

variance σ2
Y(t) defined in theorem 3.3.7. Moreover, we have

σ2
Y(t) =

∫ T

t
σ(s)2ds. (3.83)

70



Proof of lemma 3.5.2.

Proof. The dynamics of Y(t) are a direct consequence of Itô’s lemma. By lemma 3.5.1:

Y(T ) − Y(t)

= log X(T ) − log X(t)

=

∫ T

t

[
ρnI

σn

an
σI
(
e−an(T−s) − 1

)
+ ρnr

σnσr

anar

(
e−an(T−s) − 1

) (
e−ar(T−s) − 1

)
−ρrI

σrσI

ar

(
e−ar(T−s) − 1

)
− 1

2
σ2

I −
1
2
σ2

n

a2
n

(
e−an(T−s) − 1

)2 − 1
2
σ2

r

a2
r

(
e−ar(T−s) − 1

)2
]

ds

+

∫ T

t

[
σn

an

(
e−an(T−s) − 1

)
dŴn(s) − σIdŴI(s) − σr

ar

(
e−ar(T−s) − 1

)
dŴr(s)

]
which is a normally distributed random variable, given Ft, with mean µY(t) and variance

σ2
Y(t).

To prove (3.83), recall that by assumption

dX(t)
X(t)

= µ(t)dt + σ(t)dW(t)

so

dY(t) = d log X(t)

= (µ(t) − 1
2
σ(t)2)dt + σ(t)dW(t).

Girsanov theorem then implies (3.83). �

Proof of theorem 3.3.7.

Proof. For each product j, j = 1, . . . ,N, the intrinsic value of the discounted payoff is

V (γ j)
t = Ê[HD(γ j)|Ft]

= Ê
[

(R j(0) − s j(0))D j(T ) + s j(0)γ j − (R j(0) + q j(0) − s j(0))(D j(T ) − γ j)+ −
p j(0)γ j

PT IPS (0,T )
|Ft

]
.

71



Let

M(γ j)
t = Ê[(D j(T ) − γ j)+|Ft]

and

N( j)
t = Ê[D j(T )|Ft].

Notice that the demand is given by

D j(T ) = a je−b j log R j(T )+c jB j(T )

= a je−b j log R j(0)−b j log I(T )+c jB j(T )

= a j exp
(
−b j log R j(0) − b j log

PT IPS (T,T )
Pn(T,T )

+ c jB j(T )
)

= a j exp
(
−b j log R j(0) + b j log X(T ) + c jB j(T )

)
.

Let J j(t) = a je−b j log R j(0)+b j log X(t)+c jB j(t). Conditioning on Ft, we have

M(γ j)
t = Ê[(D j(T ) − γ j)+|Ft]

= Ê
[(

a je−b j log R j(0)+b j log X(t)+c jB j(t)eb j(log X(T )−log X(t))+c j(B j(T )−B j(t)) − γ j
)+ |Ft

]
= Ê

[(
J j(t)eb j(log X(T )−log X(t))+c j(B j(T )−B j(t)) − γ j

)+ |Ft

]
.

Let

Z j(t,T ) = b j(log X(T ) − log X(t)) + c j(B j(T ) − B j(t))

= b j(Y(T ) − Y(t)) + c j(B j(T ) − B j(t))

which is a normal random variable with mean µ j
z(t) and variance σ j

z(t)
2. By lemma 3.5.2,

we have µ j
z(t) = b jµ

j
Y(t) and σ j

z(t)
2 = b2

jσ
j
Y(t)2 + c2

j(T − t) = b2
j

∫ t
0 σ(s)2ds + c2

j(T − t).

We can calculate the conditional expectation

M(γ j)(t) = J j(t)F j(t)Φ

(
µ j

z(t) + log J j(t)
γ j

σ
j
z(t)

+ σ j
z(t)

)
− γ jΦ

(
µ j

z(t) + log J j(t)
γ j

σ
j
z(t)

)
(3.84)
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with Φ(·) being the CDF of the standard normal distribution and F j(t) = eµ
j
z(t)+ 1

2σ
j
z(t)2

.

Similarly,

N( j)
t = Ê[D j(T )|Ft] = J j(t)Ê[eZ j(t,T )|Ft] = J j(t)F j(t). (3.85)

Hence the intrinsic value of discounted profit for product j is

V (γ j)
t = (R j(0) − s j(0))N(γ j)

t + s j(0)γ j − (R j(0) + q j(0) − s j(0))M(γ j)
t − p j(0)

γ j

PT IPS (0,T )
.

(3.86)

So the decomposition with respect to X(t) can be obtained by Itô’s formula and finally

we have the desired result. �

The following proposition is dedicated to the proof of theorem 3.3.7.

Proposition 3.5.3. Let υt = ϑ
(γ)
t σ(t)X(t) + η(t)(Vt + Ŵ0 − 1

2κe
KT − V (γ)

0 ). Assuming

|η(t)| ≤ ϵ1, |σ(t)| ≤ ϵ2, there exists

Υ∗t = sup
u∈[0,t]

E[υ2
u]

Proof of proposition 3.5.3.

Proof. First recall from the proof of theorem 3.3.6 that

ϑ
(γ)
t =

b
X(t)

J(t)L(t).

Hence

υt = bσ(t)J(t)L(t) + η(t)(Vt + Ŵ0 −
1
2κ

eKT − V (γ)
0 )

and

υ2
t = b2σ(t)2J2(t)L2(t) + η2(t)(Vt + Ŵ0 −

1
2κ

eKT − V (γ)
0 )2

+ 2bσ(t)J(t)L(t)η(t)(Vt + Ŵ0 −
1
2κ

eKT − V (γ)
0 )
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We want to find an upper bound for |L(t)| and |Vt|. Notice we have by assumption

R(0) > p(0) > s(0); hence, for any u ∈ [0, t],

|L(u)| ≤ |(R(0) + q(0) − s(0))F(u)Φz,u(log
J(u)
γ

)| + |(R(0) − s(0))F(u)|

≤ (R(0) + q(0) − s(0))F(u)1 + (R(0) − s(0))F(u)

=: L(u)

and

|Vu| ≤ |(R(0) − s(0))J(u)F(u)| + |s(0)γ| + |(R(0) + q(0) − s(0))J(u)F(u)Φz,u(log
J(u)
γ
− σz(u)2)|

+ |(R(0) + q(0) − s(0))γΦz,u(log
J(u)
γ

)| + |p(0)
γ

PT IPS (0,T )
|

≤ (R(0) − s(0))J(u)F(u) + s(0)γ + (R(0) + q(0) − s(0))(J(u)F(u) + γ) + p(0)
γ

PT IPS (0,T )

=: V(t).

Let

∆1(u) = (R(0) + q(0) − s(0))F(u) + (R(0) − s(0))F(u),

∆2(u) = (2R(0) + q(0) − 2s(0))F(u),

and

∆3(u) = s(0)γ + (R(0) + q(0) − s(0))γ + p(0)
γ

PT IPS (0,T )
+ Ŵ0 +

1
2κ

eKu + V (γ)
0 .

Then

E[υ2
u] ≤ E[b2σ(u)2J2(u)L(u)2 + η2(u)V(u)2 + 2|b|σ(u)η(u)J(u)L(u)V(u)]

= b2σ(u)2E[J2(u)∆1(u)2] + η2(u)E[(∆2(u)J(u) + ∆3(u))2]

+ 2|b|σ(u)η(u)E[J(u)∆1(u)(∆2(u)J(u) + ∆3(u))]

= (b2σ(u)2∆1(u)2 + η(u)2∆2(u)2 + 2bη(u)σ(u)∆1(u)∆2(u))E[J2(u)]

+ 2(η(u)2∆2(u)∆3(u) + |b|η(u)σ(u)∆1(u)∆3(u))E[J(u)] + η2(u)∆3(u)2.
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To calculate the expectation, it suffices to calculate E[J(u)] and E[J2(u)]:

E[J(u)] = ae−b log R(0)+µz(u)+ 1
2σz(u)2

and

E[J2(u)] = a2e−2b log R(0)+2µz(u)+2σz(u)2
.

Also notice that, for any u ∈ [0, t],

σz(u)2 = b2σY(u)2 + c2(T − u) = b2
∫ u

0
σ(s)2ds + c2(T − u) ≤ b2tϵ2

2 + c2T =: σ∗z(t)2,

µz(u) = bµY(u) = −b
2
σY(u)2 ≤ |b|

2

∫ u

0
σ(s)2ds ≤ |b|

2
tϵ2

2 =: µ∗z(t),

F(u) = eµz(u)+ 1
2σz(u)2 ≤ eµ

∗
z (t)+ 1

2σ
∗
z (t)2
=: F∗(t),

∆1(u) ≤ (R(0) + q(0) − s(0))F∗(t) + (R(0) − s(0))F∗(t) =: ∆∗1(t),

∆2(u) ≤ (2R(0) + q(0) − 2s(0))F∗(t) =: ∆∗2(t),

∆3(u) ≤ s(0)γ + (R(0) + q(0) − s(0))γ + p(0)
γ

PT IPS (0,T )
+ Ŵ0 +

1
2κ

eϵ
2
1 t + V (γ)

0 =: ∆∗3(t).

Hence

E[υ2
u] ≤ (b2ϵ2

2∆
∗
1(t)2 + ϵ2

1∆
∗
2(t)2 + 2|b|ϵ1ϵ2∆

∗
1(t)∆∗2(t))a2e2(−b log R(0)+µ∗z (t)+σ∗z (t)2)

+ 2(ϵ2
1∆
∗
2(t)∆∗3(t) + |b|ϵ1ϵ2∆

∗
1(t)∆∗3(t))ae−b log R(0)F∗(t) + ϵ2

1∆
∗
3(t)2

=: Υt.

Now, Υt is bounded; hence, Υ∗t ≤ Υt is also bounded. This finishes the proof. �

Proof of theorem 3.3.8.
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Proof. We compute

E[(G∗t − G̃t)2]

= E

[(∫ t

0

µ(s)
σ(s)2X(s)

G∗sdX(s)
)2
]

= E

[(∫ t

0

µ(s)
σ(s)2X(s)

G∗s(µ(s)X(s)ds + σ(s)X(s)dW(s))
)2
]

≤ 2E

[(∫ t

0

µ(s)2

σ(s)2 G∗sds
)2
]
+ 2E

[∫ t

0

µ(s)2

σ(s)2 G∗2s ds
]

≤ 2E
[∫ t

0
t
µ(s)4

σ(s)4 G∗2s ds
]
+ 2E

[∫ t

0

µ(s)2

σ(s)2 G∗2s ds
]

≤ 2ϵ2
1 (1 + tϵ2

1 )
∫ t

0
E
[
G∗2s

]
ds.

Here we used the inequality (a + b)2 ≤ 2(a2 + b2), Itô isometry, and Jensen’s inequality.

Notice that G∗s is the solution of a linear stochastic differential equation, which is given

by

G∗t = −Zt

∫ t

0

υu

Zu

(
2η(u)du + dW(u)

)
where

Zt = exp
(
−3

2

∫ t

0
η(u)2du −

∫ t

0
η(u)dW(u)

)
and

υt = ϑ
(γ)
t σ(t)X(t) + η(t)(Vt + Ŵ0 − λ).

Let dP̄
dP = e−

∫ t
0 2η(u)dW(u)−

∫ t
0 2η(u)2du. Then dW̄(t) = 2η(t)dt + dW(t) is a P̄-Brownian motion
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by Girsanov’s theorem. Hence

E
[
G∗t

2]
= E

[
e−

∫ t
0 2η(u)dW(u)−

∫ t
0 3η(u)2du

(∫ t

0

υu

Zu

(
2η(u)du + dW(u)

))2
]

= e−
∫ t

0 η(u)2duĒ

[(∫ t

0

υu

Zu
dW̄(u)

)2
]

= e−
∫ t

0 η(u)2duĒ
[∫ t

0

υ2
u

Z2
u

du
]

= e−
∫ t

0 η(v)2dv
∫ t

0
e
∫ u

0 η(v)2dvĒ
[
e
∫ t

0 2η(u)dW̄(u)−
∫ u

0 2η(v)2dvυ2
u

]
du

=

∫ t

0
e−

∫ t
u η(v)2dvE

[
υ2

u

]
du.

Let Υ∗t = supu∈[0,t] E[υ2
u] as proved in proposition 3.5.3. In combination with the last

estimate we obtain

E[(G∗t − G̃t)2] ≤ 2ϵ2
1 (1 + tϵ2

1 )
∫ t

0

∫ s

0
e−

∫ s
u η(v)2dvE

[
υ2

u

]
duds

≤ ϵ2
1 (1 + tϵ2

1 )t2Υ∗t .

�
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CHAPTER 4

MULTI-PERIOD, MULTI-PRODUCT SEPARATION RESULT FOR

INVENTORY MANAGEMENT UNDER FINANCIAL RISK

4.1 Introduction

Decision problems under risk aversion have been widely studied in operations man-

agement. While there are various criteria for risk aversion, one of the most common

approaches is to optimize the tradeoff between the variance of return and the expected

return; for example, Choi et al. (2008) and Wu et al. (2009) discuss the mean-variance

type of operational decision problem. A recent research interest is to implement fi-

nancial hedging in operations management. In our paper, we consider a non-financial

corporation that dynamically hedges its profits when these profits are correlated with

financial markets. In this framework, there are two types of risk for the non-financial

corporation: financial risk and non-financial risk. The financial risk comes from the fi-

nancial market and can be hedged using financial instruments. The non-financial risk is

assumed to be observable but cannot be hedged through financial trading. This frame-

work allows us to apply tools from the theory of hedging in an incomplete market.

In this paper, we consider a corporation which aims to simultaneously solve an oper-

ational and a financial decision problem. Inventory management provides an important

example of such a problem. The classical inventory management problem optimizes an

inventory decision for a stochastic future demand variable. If the demand is affected by a

financial market risk, this risk can be partially hedged via trading in the market. The cor-

poration is then faced with a combined optimal inventory decision and optimal hedging

problem. We assume that there is an inventory department and a financial department

in the non-financial corporation. The financial department implements dynamic hedg-
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ing in the financial markets, while the inventory department makes inventory decisions

periodically. We refer to Caldentey & Haugh (2006), Caldentey & Haugh (2009), Gaur

& Seshadri (2005) and Sun et al. (2011) for similar hedging models in inventory man-

agement.

We employ the tool of financial hedging in an incomplete market from the literature

in mathematical finance. Although there is recent progress in solving hedging problems

with general utility function objectives, we focus on the mean-variance objective for

tractability of hedging problems. Schweizer et al. (1999) provides a thorough overview

of the quadratic hedging results.

For a large corporation carrying different type of products, multiple inventory de-

cisions have to be made by different departments. The decisions are naturally inter-

connected if the demands for different products are exposed to the same financial risk

to some extent. Optimizing the risk-return tradeoff across a portfolio of products is a

daunting task, especially considering that the number of products can easily run into the

tens of thousands and more. Consequently, it is our goal to develop models or approxi-

mations which allow the optimization problem to be separated and solved one product at

a time. For a single-period decision model, Sun et al. (2011) achieve such a separation

result. In this paper, we extend the model to a multi-period case. A sequence of inven-

tory decisions needs to be made at the beginning of each period by inventory managers,

while the financial department executes a global dynamic hedging strategy throughout

time. The main contribution of this paper is that we achieve a global separation result

for the multiple-product, multiple-period operational decision problem. More specifi-

cally, the inventory decisions for a particular product are independent of other products

decision processes. We refer to Karmarkar (1987) for a discussion of the multi-period

inventory model.
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As mentioned, our work is a multi-period extension of Sun et al. (2011). Sun et al.

(2011) concentrate on the case in which prices and demand are affected by inflation, and

use a financial market model for inflation-related securities. That approach makes criti-

cal use of the Föllmer-Schweizer (F-S) decomposition of hedging strategies. We use a

general financial market model in our paper to allow for various economic applications.

We also consider a general demand model in our paper as opposed to the exponential

demand model in Sun et al. (2011).

The separation result reduces the global optimization problem to a dynamic pro-

gramming problem for each product. This dynamic program can be difficult to solve.

We propose a Fast Fourier Transformation approach such that, provided a density func-

tion of the demand for each period is available, the problem can be solved in an efficient

way. In addition, the approach we suggest enables us to find the F-S decomposition for

a discretized value function as opposed to an analytical value function as in Sun et al.

(2011).

The paper is organized as follows. In section 2 we review the separation result

for single-period, multiple-product inventory management problem. Formulation of the

multi-period extension of the problem can be found in section 3. Our main separation

result is presented in section 4. In section 5 we give a tractable numerical scheme for

implementation. The proofs can be found in section 6, also referred to as the Appendix.
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4.2 Separation result for hedging in inventory management with

multi-product and single period

In this section we introduce the previously established model and results for inventory

management hedging with multiple products and a single period. This is the building

block for the multi-period model.

4.2.1 Model setup

Let T ∗ ∈ (0,∞) be the fixed time horizon, consider the probability space (Ω,F , P) =

(ΩW × E,F W ⊗ E, PW ⊗ PE) endowed with two independent Brownian motions: a 1-

dimensional Brownian motion W(t) and a N-dimensional Brownian motion B(t) =

(B1(t), . . . ,BN(t)), t ∈ [0,T ∗]. The space ΩW represents the randomness of the finan-

cial instrument which will be used for hedging, and E represents the non-financial noise

which affects the market.

The financial market that we consider consists of a riskless and a risky asset with

prices P(t) and S (t), respectively. The riskless asset will be used as numeraire to dis-

count all value and price processes. In other words, the price of riskless asset P is equal

to 1 with numeraire P, and the price of risky asset S is X(t) = S (t)
P(t) , which is assumed to

satisfy the stochastic differential equation:

dX(t)
X(t)

= µtdt + σtdW(t) (4.1)

where µt and σt are assumed to be bounded adapted processes. Furthermore, we assume

that the so-called mean-variance trade-off ηt := µt/σt is a bounded and deterministic

function.
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Remark: The model we propose here for the financial market is general. In Sun

et al. (2011), the riskless asset P is taken to be a TIPS bond, and the risky asset S to be

a nominal dollar bond.

Let the set Θ be the family of self-financing trading strategies, with θ ∈ Θ being

F W ⊗ E-predictable processes such that for all T ≤ T ∗

E
[∫ T

0
θ2

t X(t)2dt
]
< ∞ P − a.s. (4.2)

The trading variable, θt, denotes the number of shares in the risky asset X(t) held at time

t. The corresponding (discounted) gain process is defined as

Gt(θ) :=
∫ t

0
θsdX(s) for all t ∈ [0,T ].

For a fixed T ≤ T ∗, let D(t) = (D1(t), . . . ,DN(t)), t ∈ [0,T ] be the stochastic demand

of N different products with

D j(t) = f j(X(t),B j(t)), t ∈ [0,T ], j = 1, . . . ,N (4.3)

with initial demand D0 = (D0,1, . . . ,D0,N) = f (X(0),B(0)) at time 0 and a realized

demand DT = (D1
T , . . . ,D

N
T ) = (D1(T ), . . . ,DN(T )) at the end of period T .

There are two sources of randomness in the demand process: a risky financial

asset X and a non-financial noise B. Furthermore, the non-financial noise B(t) =

(B1(t), . . . ,BN(t)) is considered to be observable.

Remark: The assumption (4.3) for the demand together with the independence of

X and B and the mutual independence of B j is crucial to our result. It enables us to

use a tradable financial asset to hedge the financial risk, in a way that allows separate

solutions for individual inventory decision problems. See corollary 3.3.5 below.

We consider a risk-averse non-financial corporation which plans over the pe-

riod [0,T ]. At time t = 0 the operations manager makes the inventory decision
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γ = (γ1, . . . , γN), which is F W
0 ⊗ E0-predictable. With an initial inventory level

x0 = (x1
0, . . . , xN

0 ), a discounted payoff for all products HT (γ; x0, DT ) will be realized

at T

HT (γ; x0, DT ) =
N∑

j=1

HT (γ j; x j
0,D

j
T ). (4.4)

During the period [0,T ], the financial department of the corporation implements a

dynamic hedging strategy with risky asset X(t). Notice that HT (γ; x0, DT ) is a F W
T ⊗ET -

measurable random variable, and σ(X(t) | 0 ≤ t ≤ T ) ( F W
T ⊗ ET , hence we are dealing

with an incomplete market. Intuitively, this is because the non-financial risk in the

stochastic demand D(t) cannot be hedged by trading X(t).

Starting with an initial discounted wealth ω0, the payoff from the operational and

financial activities of the corporation at time T is

YT (γ, θ;ω0, x0, DT ) := ω0 + HT (γ; x0, DT ) +GT (θ).

The optimization problem we are interested in is

U = max
γ,θ

(
E
[
YT (γ, θ;ω0, x0, DT )

]
− κVar

[
YT (γ, θ;ω0, x0, DT )

])
. (4.5)

4.2.2 Separation result for multi-product single period model

One difficulty in problem (4.5) is that the operational decisions of different products are

inter-connected. This is due to the fact that all demand processes depend on the risky

financial asset, possibly to different extent. The main contribution of Sun et al. (2011)

is to provide a separation result of the multi-product problem such that the inventory

decision of each product can be made separately. In this section, we review the main

results.
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Our objective is to solve the global optimization problem (4.5), which involves op-

timizing over operational and financial decisions simultaneously. As a first step, let us

consider the following problem for the fixed operational decision γ ∈ Γ

Uγ = sup
θ∈Θ

(
E
[
YT (γ, θ;ω0, x0, DT )

]
− κVar

[
YT (γ, θ;ω0, x0, DT )

])
(4.6)

which is equivalent to

Uγ = sup
m∈R

(m − κBγ(m)) , (4.7)

with

Bγ(m) = inf
θ∈Θ

{
Var

[
Y (γ,θ;ω0,x0,DT )

T

]
| E
[
Y (γ,θ;ω0,x0,DT )

T

]
= m

}
, for each m ∈ R. (4.8)

We also define the auxiliary problem as

Aγ
T (λ) = inf

θ∈Θ
E
[
(Y (γ,θ;ω0,D0,x0)

T − λ)2
]

for each λ ∈ R. (4.9)

The following theorem states a duality result between (4.9) and (4.8).

Theorem 4.2.1 ((Sun et al. 2011, Theorem 1)). With Aγ
T (λ) and Bγ(m) defined as in (4.9)

and (4.8), we have

Bγ(m) = sup
λ∈R

(
Aγ(λ) − (m − λ)2

)
(4.10)

and with λm the optimizer in (4.10), the optimal control in Bγ(m) is equal to the optimal

control in Aγ(λ) with λ = λm.

According to theorem 3.3.1, for fixed operational decision γ, solving (4.6) is equiv-

alent to finding the optimal control θ ∈ Θ for (4.9) and then optimizing over λ. For-

tunately, there are well-established results for problem (4.9) in the quadratic hedging

literature (see Černỳ & Kallsen (2007) and Schweizer et al. (1999) for an overview).

The following subsection formulates the main results from this literature in the context

of our model.
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Quadratic hedging problem for multi-product

The objective function of a quadratic hedging problem is

max
(γ,θ)∈Γ×Θ

E[u(ω0 + HT (γ; x0, DT ) +GT (θ))] (4.11)

with u(w) = w − lw2, or equivalently

min
(γ,θ)∈Γ×Θ

E
[
(ω0 + HT (γ; x0, DT ) +GT (θ) − λ)2]

with λ = 1
2l . We first fix the operational decision γ ∈ Γ and find the optimal hedging

strategy for

min
θ∈Θ

E
[
(ω0 + HT (γ; x0, DT ) +GT (θ) − λ)2] . (4.12)

Under the assumption that the market price of risk, ηt, is a bounded and determin-

istic function, (4.12) can be solved using the minimal equivalent martingale mea-

sure(MEMM) which is defined by

dP̂
dP

:= exp
{∫ T

0
ηtdW(t) − 1

2

∫ T

0
η2(t)dt

}
. (4.13)

It can be proved by Girsanov’s theorem, as in Shreve (2004), that both X and B are

square-integrable martingales under P̂. Denote the expectation under measure P̂ as Ê[·].

We have the following theorem summarizing the key result on the quadratic hedging

problem.

Theorem 4.2.2 ((Sun et al. 2011, Theorem 2)). For any FT -measurable claim

HD
T (γ j; x j

0,D
j
T ) ∈ Lp(P), j = 1, . . . ,N for some p > 2, there is a hedging strategy,

ϑ(γ j;x j
0,D

j
T ), and a process δ(γ j;x j

0,D
j
T ) ∈ L2(P), such that HT (γ j; x j

0,D
j
T ) admits the decom-

position

HT (γ j; x j
0,D

j
T ) = V (γ j;x j

0,D
0, j)

0 +

∫ T

0
ϑ

(γ j;x j
0,D

j
T )

t dX(t) +
∫ T

0
δ

(γ j;x j
0,D

j
T ,)

t dB j(t) (4.14)
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where V (γ j;x j
0,D

0, j)
0 := Ê[HT (γ j; x j

0,D
j
T )].

As a result, HT (γ; x0, DT ) =
∑N

j=1 HT (γ j; x j
0,D

j
T ) admits the decomposition

HT (γ; x0, DT ) = V (γ;x0,D0)
0 +

∫ T

0
ϑ(γ;x0,DT )

t dX(t) +
∫ T

0
δ(γ;x0,DT )

t dB(t) (4.15)

with

V (γ;x0,D0)
0 =

N∑
j=1

V (γ j;x j
0,D

0, j)
0 (4.16)

ϑ(γ;x0,DT )
t =

N∑
j=1

ϑ
(γ j;x j

0,D
j
T )

t (4.17)

δ(γ;x0,DT )
t =

√√√√ N∑
j=1

(
δ

(γ j;x j
0,D

j
T )

t

)2
(4.18)

B(t) =
∫ t

0

1
δ(γ;x0,DT )

s

N∑
j=1

δ
(γ j;x j

0,D
j
T ,)

s dB j(s) (4.19)

with B(t) a Brownian motion under P and P̂.

In addition, the optimal strategy θ∗ that solves (4.12) is given by θ∗ = Φ(G∗t ), where

G∗t is the solution to the SDE

dG∗t = −Φ(G∗t )dX(t) (4.20)

with G∗0 = 0 and Φ(G∗t ) = ϑ(γ;x0,DT )
t + µt/(σ2

t X(t))(V (γ;x0,DT )
t +G∗t +ω0 − λ), and V (γ;x0,DT )

t

is the intrinsic value process defined by

V (γ;x0,DT )
t := Ê[HD

T (γ; x0, DT )|Ft] = V (γ;x0,DT )
0 +

∫ t

0
ϑ(γ;x0,DT )

s dX(s) +
∫ t

0
δ(γ;x0,BT )

s dB(s).

(4.21)

The decomposition (4.21) is known as the Galtchouk-Kunita-Watanabe(GKW) decom-

position of V (γ;x0,DT )
t under P̂ with respect to X.

86



The Galtchouk-Kunita-Watanabe(GKW) decomposition under P̂ in the theorem is

also known as the Föllmer-Schweizer(F-S) decomposition of HT (γ; x0, DT ) with respect

to the semimartingale X under P.

The following theorem gives an explicit expression for the optimal value in (4.12)

by solving the optimal hedging strategy.

Theorem 4.2.3 ((Sun et al. 2011, Theorem 3)). Define the auxiliary process

A(γ;x0,DT )
t := E[(V (γ;x0,DT )

t +G∗t + ω0 − λ)2] (4.22)

and Kt =
∫ t

0 η(s)2ds, then A(γ;x0,DT )
t is given by

A(γ;x0,DT )
T (λ) = e−KT

((
ω0 + V (γ;x0,D0)

0 − λ
)2
+

∫ T

0
eKs E

[
(δ(γ;x0,DT )

s )2
]

ds
)

= e−KT

((
ω0 + V (γ;x0,D0)

0 − λ
)2
+

∫ T

0
eKs

N∑
j=1

E
[
(δ(γ j;x j

0,D
j
T )

s )2
]

ds

)
.

The first application of theorem 4.2.3 is to note that if we can find the intrinsic value

V (γ;x0,D0)
0 and the F-S decomposition term δ(γ;x0,DT )

t , the auxiliary process can be obtained

in a form that does not involve the optimal hedging strategy. Secondly, notice that the

value in problem (4.9) equals A(γ;x0,DT )
T . Since the optimizer of (4.9) exists, we can

replace the inf and sup with min and max in (4.9), (4.6), (4.8) and (4.10) from now on.

Let mopt denote the optimizer of 4.7.

The following theorem is the main result of the multi-product optimal hedging inven-

tory management problem. It solves the optimal control to the multi-product problem.

It also achieves the separation of the original problem (4.5) by product.

Theorem 4.2.4 ((Sun et al. 2011, Theorem 4)). The optimizer and the corresponding
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optimal value of problem (4.10) is

λm =
m − e−KT (ω0 + V (γ;x0,D0)

0 )
1 − e−KT

(4.23)

B(γ;x0,DT )(m) =
e−KT

1 − e−KT
(ω0 + V (γ;x0,D0)

0 − m)2 (4.24)

+ e−KT

∫ T

0
eKu

N∑
j=1

E
[
(δ(γ j;x j

0,D
j
T )

s )2
]

ds.

The optimizer mopt of problem (4.7) is given by

mopt =
1
2κ

1 − e−KT

e−KT
+ ω0 + V (γ;x0,D0)

0 (4.25)

and the optimal value in problem (4.6) is

Uγ = ω0 +
1
4κ

(eKT − 1) + V (γ;x0,D0)
0 − κe−KT

∫ T

0
eKs

N∑
j=1

E
[
(δ(γ j;x j

0,D
j
T )

s )2
]

ds

= ω0 +
1
4κ

(eKT − 1) +
N∑

j=1

V (γ j;x j
0,D

j
0)

0 − κe−KT

∫ T

0
eKs

N∑
j=1

E
[
(δ(γ j;x j

0,D
j
T )

s )2
]

ds. (4.26)

Finally the optimal control γ in (4.5) can be found by maximizing (4.26) over γ.

Finally, we state the corollary which gives the separated optimization objective func-

tion.

Corollary 4.2.5 ((Sun et al. 2011, Corollary 1)). With Uγ defined as in (4.6), the problem

max
γ

Uγ (4.27)

is equivalent to solving

max
γ j

(
V (γ j;x j

0,D
j
0)

0 − κe−KT

∫ T

0
eKs E

[
(δ(γ j;x j

0,D
j
T )

s )2
]

ds
)

(4.28)

for each j = 1, . . . ,N.

We refer to Sun et al. (2011) for the proof of the existence of a solution to problem

(4.28). In practice, the optimal inventory decision can be solved numerically for each γ j
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once the intrinsic value V (γ j;x j
0,D

j
T )

t and the F-S decomposition δ(γ j;x j
0,D

j
T )

t are obtained. The

optimal hedging strategy θ∗(γ; x0, DT ) can be computed via solving the feedback form

SDE:

θ∗t (γ; x0, DT )

= −
(
ϑ(γ;x0,DT )

t + µt/(σ2
t X(t))(Vt(γ; x0, DT ) +G∗t + ω0 −

1
2κ

eKT − V (γ;x0,D0)
0 )

)
(4.29)

where G∗t is the solution of the stochastic differential equation (SDE):

dG∗t = −
[
ϑ(γ;x0,DT )

t + µt/(σ2
t X(t))

(
V (γ;x0,DT )

t +G∗t −
1
2κ

eKT − V (γ;x0,D0)
0

)]
dX(t) (4.30)

with ϑ(γ;x0,DT ) =
∑N

j=1 ϑ
(γ j;x j

0,D
j
T ).

4.3 Optimal hedging inventory management problem for multi-

period, multi-product

In this section, we use the results of single-period problem as building blocks to solve

a multi-period, multi-product optimal hedging problem in inventory management. The

setting we use is similar to the one in the single period, and we aim at achieving a sep-

aration result by product. In other words, instead of solving the dynamic programming

problem of a product portfolio, we prove that the global optimization problem is equiv-

alent to solving N independent dynamic programming problems corresponding to each

product.

Consider T periods with the i-th period [ti, ti+1), with t0 = 0 and tT = T ∗. Let γ j
i be

the inventory purchase of product j at the time ti, i = 0, . . . , T − 1, j = 1, . . . ,N.
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The operational decision matrix is defined as

Γ =


γ1

0 . . . γN
0

...
. . .

...

γ1
T−1 . . . γN

T−1


T×N

where γi = (γ1
i , . . . , γ

N
i ) is F W

ti ⊗ Eti-measurable, with γ j
i being the inventory purchase

for product j at time ti.

Let θ(t), t ∈ [0,T ∗] be the F W ⊗ E-predictable continuous hedging strategy process.

For simplicity of notation, denote by θi(t) the restriction of the process θ(t) to the interval

(ti, ti+1].

Denote the gains from trading during [0, t] as Gt(θ); the gain during period [ti, ti+1]

is

Gti+1(θ) −Gti(θ) =
∫ ti+1

ti
θi(s)dX(s). (4.31)

Let Di = Di(ti) = (D1
i (ti), . . . ,DN

i (ti)) = (D1
i , . . . ,D

N
i ) be total demand during time

interval [ti−1, ti]. Define a process Di(t) = (D1
i (t), . . . ,DN

i (t)), t ∈ [ti−1, ti) as the F W ⊗ E-

adapted demand process. D j
i (t) is related to the time-t-projection of D j

i (ti) via

E[D j
i (ti)|Ft] = f̄ (t,D j

i (t)) (4.32)

and we assume f̄ is a deterministic function which depends on the distribution of D j
i (ti).

In (4.59), below, we provide an example for the structure of D j
i (ti), and an explicit

formula for f̄ .

When solving the multi-period problem via a dynamic programming approach, we

shall need the quantity D0, j
i which is defined as

D0, j
i := D j

i (ti−1).
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That is, D0, j
i is the projection (or forecast) made at time ti−1 for the total demand for

product j to be realized during time interval [ti−1, ti]. Notice that by definition, we have

D j
i := D j

i (ti).

During the period [ti, ti+1), i = 0, . . . , T − 1, the state variables are

• ωi: wealth at time ti.

• D0, j
i+1 = D j

i+1(ti): is the demand of product j at time ti.

• x j
i : inventory position at time ti of product j before purchase, but after observation

of D j
i .

Similar to the decision variables notation, denote the demand vector and inventory po-

sition vector of the i-th period for all products as D0
i+1 and xi respectively.

The gain from inventory activities during [ti, ti+1] for product j is of the form

H j
i+1(γ j

i ; x j
i ,D

j
i+1) with inventory decision γ j

i at time ti. The total gain for the corporation

during [ti, ti+1] is Hi+1(γi; xi, Di+1) =
∑N

j=1 H j
i+1(γ j

i ; x j
i ,D

j
i+1).

The state variables have dynamics:

ωi = ωi−1 + Hi
(
γi−1; xi−1, Di

)
+

∫ ti

ti−1

θi−1(s)dX(s) (4.33)

and

x j
i = (x j

i−1 + γ
j
i−1 − D j

i )
+ (4.34)

for i = 1, . . . , T − 1 with initial wealth ω0, demand process initial value D0, j
1 , and the

initial inventory position x j
0, j = 1, . . . ,N. Note in (4.34) we have assumed a lost sales

model; that is, demand in excess of available inventory is lost. We also assume that the

stock acquisition lead time is less than one period in duration.
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Assume that all inventory at the end of time T will be sold at a salvage price. Let

sT = (s1
T , . . . , sN

T ) be the vector indicating the (discounted) unit salvage value at time T .

The boundary condition is then

ωT = ωT−1 + HT
(
γT−1; xT−1, DT

)
+

∫ tT

tT−1

θT−1(s)dX(s) + sT xᵀ
T . (4.35)

Finally, fix a risk-aversion coefficient, κ > 0. The corporation’s goal is to solve the

mean-variance optimization problem

U(κ) = max
Γ,θ

(
E[ωT ] − κVar[ωT ]

)
. (4.36)

Note that we are considering a global optimization over financial hedging strategies θ

and inventory decisions Γ on the time interval [0,T ∗]. The inventory strategy is de-

fined over discrete points in time, t ∈ [t0, t1, . . . , tT−1] whereas the hedging strategy is

continuous over [0,T ∗].

4.4 Separation result for multi-period, multi-product model

In this section, we state a separation result for the multi-period mean-variance optimiza-

tion problem.

Let Γi = (γi, . . . ,γT−1) be a σ(ωi, xi,D0
i+1, (Xt,Bt)t≥ti)-measurable inventory decision

vector for the time interval [ti,T ∗], i = 0, . . . , T −1. For fixed inventory decision Γ = Γ0,

consider the auxiliary problem:

A(λ,Γ) = min
θ

E[(ωT − λ)2], (4.37)

and denote by Êi[·] the conditional expectation Ê[·|Fti].
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For fixed Γ, define A(λ)
T := (ωT − λ)2 and for any period i, i = T − 1, . . . , 0, define

recursively

A(λ,Γi)
i

(
ωi, xi, D0

i+1

)
= min

θi
Ei
[
A(λ,Γi+1)

i+1 (ωi+1, xi+1, Di+1)
]

(4.38)

H0
i (γi−1; xi−1, D0

i ) = Êi−1[Hi(γi−1; xi−1, Di)] (4.39)

F i
l(Γi; xi, D0

i+1) = Êi[H0
l+1(γl; xl, D0

l+1)], l ≥ i + 1 (4.40)

F̄ i+1
l (Γi; xi, Di+1) = Êi+1[H0

l+1(γl; xl, D0
l+1)], l ≥ i + 1 (4.41)

∆i
l(Γi; xi, D0

i+1)2(s) = Ei[δ
(γl;xl,Dl+1)
l (s)2] (4.42)

According to Schweizer (1992), there exists the F-S decomposition for

Vi+1(γi; xi, Di+1) = Hi+1(γi; xi, Di+1) +
T−1∑

l=i+1

F̄ i+1
l (Γi; xi, Di+1) (4.43)

conditional on Fti . Let δ(Γi;xi,Di+1)
i (s) be the corresponding integrand in the orthogonal

component of the F-S decomposition for the non-financial noise.

Let δ

(
Γ

j
i ;x j

i ,D
j
i+1

)
i (s) be the orthogonal component of the F-S decomposition of

Vi+1(γ j
i ; x j

i ,D
j
i+1) = Hi+1(γ j

i ; x j
i ,D

j
i+1) +

T−1∑
l=i+1

F̄ i+1
l

(
Γ

j
i ; x j

i ,D
j
i+1

)
(4.44)

conditional on Fti corresponding to product j. We have the following theorem:

Theorem 4.4.1. (a) For fixed Γ and for any period i ∈ {0, 1, . . . , T − 1}, we have

A(λ,Γi)
i

(
ωi, xi, D0

i+1

)
(4.45)

= e−
∫ tT

ti
η2

t dt

(
ωi + H0

i+1(γi; xi, D0
i+1) +

T−1∑
l=i+1

F i
l(Γi; xi, D0

i+1) − λ
)2

+ e−
∫ ti+1

ti
η2

t dt
∫ ti+1

ti
e
∫ s

ti
η2

vdvEi
[
δ(Γi;xi,Di+1)

i (s)2
]

ds

+

T−1∑
l=i+1

e−
∫ tl+1

ti
η2

t dt
∫ tl+1

tl
e
∫ s

tl
η2

vdv
∆i

l(Γi; xi, D0
i+1)2(s)ds;

and
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(b)

Ei[δ
(Γi;xi,Di+1)
i (s)2] =

N∑
j=1

Ei[δ
(Γ j

i ;x j
i ,D

j
i+1)

i (s)2]

with

Hi+1(γi; xi, Di+1) =
N∑

j=1

Hi+1(γ j
i ; x j

i ,D
j
i+1).

The proof can be found in the Appendix.

Remark: In the theorem above, we need to obtain the integrand δ

(
γ

j
i ;x j

i ,D
j
i+1

)
i (s) in the

orthogonal component of the F-S decomposition (we refer to the integrand as the or-

thogonal component of the F-S decomposition) for (4.43). Since a backward induction

method is used for dynamic programming, the value (4.43) has to be computed numeri-

cally. In section 5, we discuss a technique to handle the decomposition for a discretized

value function as opposed to an analytical value function as in Sun et al. (2011).

Letting i = 0 in theorem 4.4.1, we can rewrite the global optimization problem as in

the following corollary.

Corollary 4.4.2. The global minimization problem (4.37) has optimal value

A(λ,Γ) = e−
∫ tT

t0
η2

t dt

(
ω0 +

T−1∑
i=0

Ê[H0
i+1

(
γi; xi, D0

i+1

)
] − λ

)2

(4.46)

+

T−1∑
i=0

e−
∫ ti+1

t0
η2

t dt
∫ ti+1

ti
e
∫ s

ti
η2

vdvE[δ(Γi;xi,Di+1)
i (s)2]ds

where δ(Γi;xi,Di+1)
i (s) is the orthogonal component of the F-S decomposition of

Vi+1(γi; xi, Di+1) = Hi+1(γi; xi, Di+1) +
T−1∑

l=i+1

F̄ i+1
l (Γi; xi, Di+1) (4.47)

with

F̄ i+1
l (Γi; xi, Di+1) = Êi+1[H0

l+1(Γl; xl, D0
l+1)]. (4.48)
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The following theorem is the main result of this paper.

Theorem 4.4.3. The optimal value and optimal Γ in (4.36) is given by

U(κ) = max
Γ

{
ω0 +

T−1∑
i=0

Ê[H0
i+1

(
γi; xi, Di+1

)
]

−κ
T−1∑
i=0

e−
∫ ti+1

t0
η2

t dt
∫ ti+1

ti
e
∫ s

ti
η2

vdvE
[
δ

(Γi;xi,D0
i+1)

i (s)2
]

ds

}
(4.49)

where δ(Γi;xi,Di+1)
i (s) is the orthogonal component of the F-S decomposition conditional

on Fti of

Vi+1(γi; xi, Di+1) = Hi+1(γi; xi, Di+1) +
T−1∑

l=i+1

F̄ i+1
l (Γi; xi, Di+1) (4.50)

with

F̄ i+1
l (Γi; xi, Di+1) = Êi+1[H0

l+1(γl; xl, D0
l+1)]. (4.51)

Product-wise, we have

H0
i+1

(
γi; xi, D0

i+1

)
=

N∑
j=1

H0, j
i+1

(
γ

j
i ; x j

i ,D
0, j
i+1

)
(4.52)

E[δ(Γi;xi£Di+1)
i (s)2] =

N∑
j=1

E[δ(Γ j
i ;x j

i ,D
j
i+1)

i (s)2] (4.53)

with δ(Γ j
i ;x j

i ,D
j
i+1)

i (s) the orthogonal component conditional on Fti of the F-S decomposition

of product j with respect to

Vi+1(γ j
i ; x j

i ,D
j
i+1) = Hi+1(γ j

i ; x j
i ,D

j
i+1) +

T−1∑
l=i+1

F̄ i+1
l (Γ j

i ; x j
i ,D

j
i+1). (4.54)

The proof is based on corollary 4.2.5 and 4.4.2. See the Appendix.

The implication of theorem 4.4.3 is that the inventory optimization can be performed

product by product. Let Γ j
i = (γ j

i , . . . , γ
j
T−1), i = 0, . . . , T − 1 be the inventory decision

vector starting from time ti for product j. The following corollary states the main result

in a product-wise formulation.
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Corollary 4.4.4. The optimal inventory decision Γ j = (γ j
0, . . . , γ

j
T−1) is given by

max
Γ j

{
ω0 +

T−1∑
i=0

Ê[H0
i+1

(
γ

j
i ; x j

i ,D
0, j
i+1

)
]

−κ
T−1∑
i=0

e−
∫ ti+1

t0
η2

t dt
∫ ti+1

ti
e
∫ s

ti
η2

vdvE
[
δ

(Γ j
i ;x j

i ,D
j
i+1)

i (s)2
]

ds

}
(4.55)

where δ(Γ j
i ;x j

i ,D
j
i+1)

i (s) is the orthogonal component conditional on Fti of the F-S decompo-

sition of

Vi+1(Γ j
i ; x j

i ,D
j
i+1) = Hi+1(γ j

i ; x j
i ,D

j
i+1) +

T−1∑
l=i+1

F̄ i+1
l (Γ j

i ; x j
i ,D

j
i+1) (4.56)

with

F̄ i+1
l (Γ j

i ; x j
i ,D

j
i+1) = Êi+1[H0

l+1(γ j
l ; x j

l ,D
0, j
l+1)]. (4.57)

Remark: Notice that there are two different measures involved in problem (4.55):

the real world measure P and the risk-neutral MEMM P̂.

4.5 Solution via dynamic programming

In this section, we describe a dynamic programming approach to solve problem (4.55).

In light of the separation result in corollary 4.4.4, we can focus on the single product

case for simplicity of notation.

We assume a power function formulation for (4.3) and we assume that the non-

financial noise in demand is memoryless. That is, for period i

Di+1(t) = ai+1ebi+1 log X(t)+ci+1(B(t)−B(ti)). (4.58)
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With this assumption, the f̄ (·, ·) function in (4.32) can be calculated as follows:

E [Di(ti)|Ft]

= E
[
aiebi log X(t)+ci(B(t)−B(ti−1))|Ft

]
= aiebi(log X(ti)−log X(t))+ci(B(t)−B(ti−1))E[ebi(log X(ti)−log X(t))+ci(B(ti)−B(t))]

= Di(t)ebi
∫ ti

t µ(s)ds+ 1
2 (b2

i
∫ ti

t σ2(s)ds+c2
i (ti−t))

=: f̄ (t,Di(t)) (4.59)

since bi(log X(ti) − log X(t)) + ci(B(ti) − B(t)) is a normally distributed random variable

with mean bi
∫ ti

t µ(s)ds and variance b2
i

∫ ti
t σ

2(s)ds + ci(ti − t).

We also assume that the financial asset follows a Black-Scholes model

dX(t)
X(t)

= µdt + σdW(t).

Notice that there are two different measures involved in problem (4.55): the real world

measure P and the risk-neutral MEMM P̂. To initialize the dynamic programming, we

rewrite the objective function in terms of the risk-neutral MEMM P̂. Recall the Radon-

Nikodým derivative

Z =
dP̂
dP
= eηWT∗− 1

2 η
2T ∗

with η = µ
σ

and the Radon-Nikodým process

Zt = eηWt− 1
2 η

2t.

We also define

Zτ,t = eη(Wt−Wτ)− 1
2 η

2(t−τ).

Notice that

E
[
δ(Γi;xi,Di+1)

i (s)2
]
= Ê

[
δ(Γi;xi,Di+1)

i (s)2 1
ZtT

]
.
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Under the MEMM P̂, problem (4.55) then reads

max
Γ

{
ω0 +

T−1∑
i=0

Ê[H0
i+1

(
γi; xi,D0

i+1

)
]

−κ
T−1∑
i=0

e−
∫ ti+1

t0
η2

t dt
∫ ti+1

ti
e
∫ s

ti
η2

vdvÊ
[
δ(Γi;xi,Di+1)

i (s)2 1
ZtT

]
ds

}
. (4.60)

Further notice that

Êi

[
δ(Γi;xi,Di+1)

i (s)2 1
ZtT

]
= Êi

[
δ(Γi;xi,Di+1)

i (s)2 1
ZtiZti,tT

]
=

1
Zti

Êi

[
δ(Γi;xi,Di+1)

i (s)2 1
Zti,tT

]
.

With the demand model in (4.58), we have

Zti = e
µ

bi+1σ
2 [log D0

i+1−log ai+1−bi+1(log X0+
1
2 (µ−σ2)ti)]

.

This enables us to characterize the problem using the state variables (γi; xi,D0
i+1). Iter-

ated conditioning in (4.60) then yields the following proposition for the dynamic pro-

gramming algorithm.

Proposition 4.5.1. Define the terminal conditions

ΦT = 0,

and

VT (γT−1; xT−1,DT ) = HT (γT−1; xT−1,DT ) + sT (γT−1 + xT−1 − DT )+.

Then problem (4.55) can be solved via the dynamic programming recursion: For i =

0, . . . , T − 1,

Φi(xi,D0
i+1) (4.61)

= sup
γi

{
H0

i+1(γi; xi,D0
i+1) − κe−

∫ ti+1
t0

η2
t dt
∫ ti+1

ti
e
∫ s

ti
η2

vdv 1
Zti

Êi

[
δ
∗(γi;xi,Di+1)
i (s)2

Zti,tT

]
ds

+ Êi[Φi+1((xi + γi − Di+1)+,D0
i+2)]

}
, (4.62)
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where δ∗(γi;xi,Di+1)
i (s) is the orthogonal component of the F-S decomposition conditional

on Fti of Vi+1(γi; xi,Di+1) with

Vi(γi−1; xi−1,Di) = Hi(γi−1; xi−1,Di) + Êi[Vi+1(γ∗i ; (xi−1 + γi−1 − Di)+,Di+1)],

and γ∗i = γ
∗
i (xi) is the optimal inventory decision for period i, that is, the optimizer in

(4.61).

We can further simplify the problem with the demand assumption (4.58) and a news-

vendor inventory model such that the discounted payoff of each period i is

Hi+1(γi; xi,Di+1) (4.63)

= Ri+1Di+1 − (Ri+1 + qi+1)(Di+1 − γi − xi)+ − pi+1γi + 1{i=T−1}sT (yT−1 − DT )+

where Ri+1 is the unit retail price, qi+1 is the penalty cost for unsatisfied demand and pi+1

is the unit purchase price.

Before we state the simplified dynamic programming recursion, we need the follow-

ing lemma.

Lemma 4.5.2. Let yi = γi + xi be the inventory level after the inventory decision of

period i is made, yi = (y1
i , . . . , y

N
i ). The inventory payoff of any period i, i = 0, . . . , T − 1

can be rewritten as

Hi+1(γi; xi,Di+1) = hi+1(xi + γi,Di+1) + Ri+1xi (4.64)

= hi+1(yi,Di+1) + Ri+1xi (4.65)

where

hi+1(yi,Di+1) = Ri+1(Di+1 − yi)− − qi+1(Di+1 − yi)+ + (Ri+1 − pi+1)yi + 1{i=T−1}sT (yT−1 − DT )+.

(4.66)
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Proof: This follows directly from rewriting (4.63).

We finally have the following corollary for the simplified dynamic programming

algorithm.

Corollary 4.5.3. Let hi+1(yi,Di+1) for i = 0, ..., T − 1 be the functions defined in (4.66).

The dynamic programming recursion for problem (4.36) is given by the terminal condi-

tion

ΨT = 0, (4.67)

MT (yT−1,DT ) = hT (yT−1,DT ) (4.68)

and the recursion which for each i = T − 1, ..., 0 computes functions Ψi(x,D) and

Mi(y,D) from functions Ψi+1(x,D) and Mi+1(y,D) as follows. First, compute the orthog-

onal component δ∗(yi;Di+1)
i (s) of the F-S decomposition of Mi+1(yi,Di+1). Then, compute

the function

Ψi(xi,D0
i+1) = sup

yi≥xi

{
Êi[hi+1(yi; Di+1)] + Ri+1xi − κe−

∫ ti+1
t0

η2
t dt
∫ ti+1

ti
e
∫ s

ti
η2

vdv 1
Zti

Êi

[
δ
∗(yi;Di+1)
i (s)2

Zti,tT

]
ds

+ Êi[Ψi+1((yi − Di+1)+,D0
i+2)]

}
(4.69)

and let y∗i (xi,D0
i+1) denote the maximizer in (4.69) if it exists. Finally, compute

Mi(yi−1,Di) = hi(yi−1,Di) + Ri+1(yi−1 − Di)+

+ Êi

[
Mi+1

(
y∗i
(
(yi−1 − Di)+,D0

i+1

)
,Di+1

)]
. (4.70)

We refer to Mi(·, ·) as the intermediate value function.

Remark: Observe that (4.69) resembles a classical formulation of the risk-neutral

multi-period Newsvendor problem. The difference is captured in the third term on the

right hand side. It is not surprising, therefore, to see in this term the risk-aversion factors
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and an integration over time of a hedging process, δ, which are features unique to this

risk-averse model.

The following theorem states that the optimizer of the multi-period problem exists,

so that we can replace the sup in (4.69) with max.

Theorem 4.5.4. The optimizer of problem (4.69) exists.

The proof can be found in the Appendix.

4.6 Numerical implementation and the F-S decomposition of inter-

mediate value function

In this section we describe an algorithm for solving the dynamic programming problem

in corollary 4.5.3. There are two major difficulties in implementation: how to obtain

the orthogonal component δi of the F-S decomposition for Mi+1; and how to store the

numerical value of Mi in recursion formula (4.70).

In light of the separation result (corollary 4.4.4), we can restrict our discussion to

the single-product case as in section 4.5. In particular, we seek the orthogonal com-

ponent, δ(yi;Di+1)
i (s), in the F-S decomposition of Mi+1(yi; Di+1) which is defined by the

recursion as in (4.70). For fixed state variables yi and D0
i+1 , the value of (4.70) is based

on realizations of Di+1. The difficulty is that the value function in (4.70) is no longer

presented in an analytical form such that we can apply Itô’s lemma to obtain the F-S

decomposition. However, by applying a Fast Fourier Transformation, we can achieve

the F-S decomposition in numerical form.
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Let Ni+1 = log Di+1. We suppose we have a numerical representation of the function

g(Ni+1) = Mi+1(yi; Ni+1) (4.71)

given in (4.70).

The Fourier transformation of g(Ni+1) is

α(ξ) =
∫ +∞
−∞

g(Ni+1)e−2πiNi+1ξdNi+1 (4.72)

where i
2 = −1, and the inverse Fourier transformation is

g(Ni+1) =
1

2π

∫ +∞
−∞

α(ξ)e2πiNi+1ξdξ. (4.73)

By theorem 4.2.2, we can obtain the F-S decomposition of the analytical function

e2πiNi+1ξ as

e2πiNi+1ξ = Ê
[
e2πiNi+1ξ |Fti

]
+

∫ ti+1

ti
δ̄(v, ξ)dB(v) +

∫ ti+1

ti
ϑ̄(v, ξ)dX(v).

for suitable choices of δ̄ and ϑ̄. In particular, assume that the demand has the exponential

form in (4.58)

Di+1(t) = ai+1ebi+1 log X(t)+ci+1(B(t)−B(ti))

where Xi+1(t) and Bi+1(t) for t ∈ [ti, ti+1] are risky asset price and nonfinancial noise at

time t, respectively. Thus,

Ni+1(t) = log ai+1 + bi+1 log Xi+1(t) + ci+1(Bi+1(t) − B(ti)).

The following lemma gives an explicit formula for the F-S decomposition of e2πiNi+1ξ.

Lemma 4.6.1. The F-S decomposition of e2πiNi+1ξ can be written explicitly in terms of

Ê
[
e2πiNi+1ξ |Fti

]
= e2πiNi+1ξ+2πξibi+1µ

i
z−2π2ξ2(b2

i+1(σi
z)

2+c2
i+1(ti+1−ti)),

δ̄(v, ξ) = 2πiξci+1e2πiξNi+1(v),
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and

ϑ̄(v, ξ) = 2πiξ
bi+1

Xi+1(v)
e2πiξNi+1(v)

with µi
z = − 1

2 (σi
z)

2 and (σi
z)

2 =
∫ ti+1

ti
σ(s)2ds.

This implies that the inverse Fourier transformation also has a decomposition of the

following form:

g(Ni+1) =
∫ +∞
−∞

α(ξ)Ê
[
e2πiNi+1ξ |Fti

]
dξ +

∫ +∞
−∞

∫ ti+1

ti
α(ξ)δ̄(v, ξ)dB(v)dξ

+

∫ +∞
−∞

∫ ti+1

ti
α(ξ)ϑ̄(v, ξ)dX(v)dξ

=

∫ +∞
−∞

α(ξ)Ê
[
e2πiNi+1ξ |Fti

]
dξ +

∫ ti+1

ti

∫ +∞
−∞

α(ξ)δ̄(v, ξ)dξdB(v)

+

∫ ti+1

ti

∫ +∞
−∞

α(ξ)ϑ̄(v, ξ)dξdX(v).

The orthogonal component of the F-S decomposition we need is essentially the term

δ
(γi;xi,Di+1)
i =

∫ +∞
−∞

α(ξ)δ̄(v, ξ)dξ. (4.74)

(4.74) can be computed numerically, once we have an approximation of α(ξ) in (4.72).

To apply the Fast Fourier Transformation, we employ regular spacing of size ϖ and ϱ

for Ni+1 and ξ respectively. In particular, fix a large n and m, define

Nk
i+1 = (k − n − 1)ϖ for k = 1, . . . , 2n (4.75)

ξu = −b + ϱ(u − 1) for u = 1, . . . ,m (4.76)

with

b =
1
2

mϱ (4.77)

for u = 1, . . . ,m. Then an approximation for (4.72) is

α(ξu) =
2n∑

k=1

e−2πiNk
i+1ξug(Nk

i+1)ϖ (4.78)

=

2n∑
k=1

e2πibNk
i+1e−2πiϱϖ(u−1)(k−n−1)g(Nk

i+1)ϖ. (4.79)
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This approximation can be efficiently computed using the Fast Fourier Transform

method.

Note that as (4.71) also depends on yi, we suppress the dependence on yi for a com-

pact notation. In any period i, we have to compute the expectation under the MEMM

Êi[·] in (4.69). Since δ̄(v; ξ) is an Fv-measurable random variable, we can compute the

expectation Êi[·] under ds and dξ integrals explicitly. Finally, a discrete approximation

to the double integral on ds and dξ is required. The following theorem states the formula

of the third term in (4.69).

Theorem 4.6.2. For i = 0, . . . , T − 1, we have∫ ti+1

ti
e
∫ s

ti
η2

vdv 1
Zti

Êi

[
δ
∗(yi;Di+1)
i (s)2

Zti,tT

]
ds (4.80)

= −
∫ ti+1

ti

∫ +∞
−∞

∫ +∞
−∞

e
∫ s

ti
η2

vdv 1
Zti
α(ξ1)α(ξ2)ξ1ξ2c2

i+1eς(ξi,ξ2)dξ1dξ2ds (4.81)

where

ς(ξ1, ξ2) = 2πibi+1(ξ1 + ξ2)
(
−1

2
σ2(ts − ti) + log X(ti)

)
+ 2πi(ξ1 + ξ2) log ai+1

− η2(tT − ti) +
1
2

(ts − ti)ι21 +
1
2

(ts − ti)ι22

ι1 = 2πibi+1σ(ξ1 + ξ2)

ι2 = 2πici+1(ξ1 + ξ2).

The proof can be found in the Appendix.

4.7 Appendix to chapter 4

Proof of theorem 4.4.1:

104



Proof. We prove a) and b) simultaneously by backward induction on i = T − 1, . . . , 0.

For fixed inventory decision Γ, recall that sT = (s1
T , . . . , sN

T ) is the vector indicating

the (discounted) unit salvage value at time T , where s j
T is the corresponding (discounted)

salvage price for product j, j = 1, . . . ,N. The final wealth is

ωT = ωT−1 + HT
(
γT−1; xT−1, DT

)
+

∫ tT

tT−1

θT−1(s)dX(s) + sT xᵀ
T

= ωT−1 + H̃T
(
γT−1; xT−1, DT

)
+

∫ tT

tT−1

θT−1(s)dX(s)

where

H̃T
(
γT−1; xT−1, DT

)
= HT

(
γT−1; xT−1, DT

)
+ sT [xT−1 + γT−1 − DT ]ᵀ. (4.82)

For i = T − 1 we obtain from theorem 4.2.3 applied to the time period [tT−1, tT ]

A(λ,ΓT−1)
T−1 (ωT−1, xT−1, D0

T )

=min
θT−1

ET−1[(ωT − λ)2]

=min
θT−1

ET−1

[(
ωT−1 + H̃T

(
γT−1; xT−1, DT

)
+

∫ tT

tT−1

θT−1(s)dX(s) − λ
)2
]

= e−
∫ tT

tT−1
η2

t dt (
ωT−1 + H0

T

(
γT−1; xT−1, D0

T

)
− λ
)2

+ e−
∫ tT

tT−1
η2

t dt
∫ tT

tT−1

e
∫ s

tT−1
η2

vdvET−1
[
δ(ΓT−1;xT−1,DT )

T−1 (s)2
]

ds

where the intrinsic value of payoff H̃T incurred during [T − 1,T ) at T is

H0
T

(
γT−1; xT−1, D0

T

)
= ÊT−1[H̃T

(
γT−1; xT−1, D0

T

)
]

= ÊT−1[HT
(
γT−1; xT−1, D0

T

)
+ sT [xT−1 + γT−1 − D0

T ]ᵀ]

and δ(ΓT−1;xT−1,DT )
T−1 is the orthogonal component of the F-S decomposition of

H̃T
(
γT−1; xT−1, DT

)
.
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Let δ
(Γ j

T−1;x j
T−1,D

j
T )

T−1 be the orthogonal component of the F-S decomposition of

H̃T

(
γ

j
T−1; x j

T−1,D
j
T

)
corresponding to product j. Then by theorem 4.2.2

ET−1
[
δ(ΓT−1;xT−1,DT )

T−1 (s)2
]
=

N∑
j=1

ET−1

[
δ

(γ j
T−1;x j

T−1,D
j
T )

T−1 (s)2
]

and

H̃0
T

(
γT−1; xT−1, D0

T

)
=

N∑
j=1

H̃0
T

(
γ

j
T−1; x j

T−1,D
0, j
T

)
.

This finishes the proof of the i = T − 1 period.

For the induction step, assume that for any period k̃ = i + 1, . . . , T − 1, we have
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(4.61). Then for period i,

A(λ,Γi)
i (ωi, xi, D0

i+1)

= min
θi

Ei[A
(λ,Γi+1)
i+1 (ωi+1, xi+1, D0

i+2)]

= min
θi

Ei

A(λ,Γi+1)
i+1

ωi + Hi+1(γi; xi, Di+1) +
∫ ti+1

ti
θi(s)dX(s)︸                                                 ︷︷                                                 ︸

ωi+1

, (xi + γi − Di+1)+︸                 ︷︷                 ︸
xi+1

, D0
i+2




= min
θi

Ei

[
e−

∫ tT
ti+1

η2
t dt
(
ωi + Hi+1(γi; xi, Di+1) +

∫ ti+1

ti
θi(s)dX(s) + H0

i+2(γi+1; xi+1, D0
i+2)

+

T−1∑
l=i+2

F i+2
l (Γi+1; xi+1, D0

i+2, ) − λ
)2

+ e−
∫ tT

ti+1
η2

t dt
∫ ti+2

ti+1

e
∫ s

ti+1
η2

vdvEi+1
[
δ(Γi+1;xi+1,Di+2)

i+1 (s)2
]

ds

+

T−1∑
l=i+2

e−
∫ tl+1

ti+1
η2

t dt
∫ tl+1

tl
e
∫ s

tl
η2

vdv
∆i+1

l (Γi+1 xi+1, D0
i+2)(s)2ds

]
(4.83)

= min
θi

Ei

[
e−

∫ tT
ti+1

η2
t dt
(
ωi + Hi+1(γi; xi, Di+1) + H0

i+2(γi+1; xi+1, D0
i+2) +

∫ ti+1

ti
θi(s)dX(s)

+

T−1∑
l=i+2

F i+2
l (Γi+1; xi+1, D0

i+2) − λ
)2
 + e−

∫ tT
ti+1

η2
t dt
∫ ti+2

ti+1

e
∫ s

ti+1
η2

vdvEi

[
Ei+1

[
δ

(γi+1;xi+1,Di+2)
i+1 (s)2

]
ds
]

+

T−1∑
l=i+2

e−
∫ tl+1

ti+1
η2

t dt
∫ tl+1

tl
e
∫ s

tl
η2

vdvEi
[
∆i+1

l (Γi+1; xi+1, D0
i+2)(s)2ds

]
= e−

∫ tT
ti
η2

t dt

(
ωi + H0

i+1(γi; xi, D0
i+1) +

T−1∑
l=i+1

F i
l(γi; xi, D0

i+1) − λ
)2

+ e−
∫ ti+1

ti
η2

t dt
∫ ti+1

ti
e
∫ s

ti
η2

vdvEi[δ
(Γi;xi,Di+1)
i (s)2]ds

+

T−1∑
l=i+1

e−
∫ tl+1

ti
η2

t dt
∫ tl+1

tl
e
∫ s

tl
η2

vdv
∆i

l(Γi; xi, D0
i+1)(s)2ds (4.84)

where δ(Γi;xi,Di+1)
i is the orthogonal component of the F-S decomposition of

Hi+1(γi; xi, Di+1) +
T−1∑

l=i+1

F̄ i+1
l (Γi; xi, Di+1)

The last equation in (4.83) follows from theorem 4.2.3 applied to the time period [ti, ti+1].
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Let δ(Γ j
i ;x j

i ,D
j
i+1)

i be the orthogonal component of the F-S decomposition of

Hi+1(γ j
i ; x j

i ,D
j
i+1) +

T−1∑
l=i+1

F̄ i+1
l (γ j

i ; x j
i ,D

j
i+1) (4.85)

corresponding to product j. Then

Ei[δ
(Γi;xi,Di+1)
i (s)2] =

N∑
j=1

Ei[δ
(Γ j

i ;x j
i ,D

j
i+1)

i (s)2]

and

Hi+1(γi; xi, Di+1) =
N∑

j=1

Hi+1(γ j
i ; x j

i ,D
j
i+1)

This proofs for the i-th period, (4.61) holds.

Hence for all period i = 0, . . . ,T − 1, we have (4.61). �

Proof of theorem 4.4.3:

Proof. For fixed inventory decisions Γ, let the variance minimization problem for the

multi-period problem be

BΓ(m) = inf
θ∈Θ
{Var[ωT ]|E[ωT ] = m}.

In theorem 4.2.1 Sun et al. (2011) it is proved that for fixed inventory strategy Γ =

(γ0, . . . ,γT−1)

BΓ(m) = sup
λ

(AΓ(λ) − (m − λ)2)

where the optimum is achieved for

0 =
∂

∂λ
AΓ(λ) + 2(m − λ).
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This is equivalent to

−2e−
∫ tT

t0
η2

t dt

(
ω0 +

T−1∑
i=0

Ê[H0
i+1(γi; xi, D0

i+1)] − λ
)
+ 2(m − λ) = 0

which has solution

λ∗m =
m − e−

∫ tT
t0
η2

t dt(ω0 +
∑T−1

i=0 Ê[H0
i+1(γi; xi, D0

i+1)])

1 − e−
∫ tT

t0
η2

t dt
.

Plugging this back into the duality equation yields

BΓ
∗
= AΓ(λ∗m) − (m − λ∗m)2

= e−
∫ tT

t0
η2

t dt

(
ω0 +

∑T−1
i=0 Ê[H0

i+1(γi; xi, D0
i+1)] − m

1 − e−
∫ tT

t0
η2

t dt

)2

−
(

e−
∫ tT

t0
η2

t dt(ω0 +
∑T−1

i=0 Ê[H0
i+1(γi; xi, D0

i+1)] − m)2

1 − e−
∫ tT

t0
η2

t dt

)

+

T−1∑
i=0

e−
∫ ti+1

t0
η2

t dt
∫ ti+1

ti
e
∫ s

ti
η2

vdvE[δ(Γi;xi,Di+1)
i (s)2]ds.

As a result, with UΓ defined as

UΓ = sup
m∈R

(m − κBΓ(m))

we have

U(κ) = max
Γ

UΓ.

and

UΓ = max
m

(m − κBΓ(m))

⇔ 2

(
m∗ − ω0 +

T−1∑
i=0

Ê[H0
i+1(γi; xi, D0

i+1)]

)
e−

∫ tT
t0
η2

t dt

1 − e−
∫ tT

t0
η2

t dt
=

1
κ

⇔
(

m∗ − ω0 +

T−1∑
i=0

Ê[H0
i+1(γi; xi, D0

i+1)]

)2

=
1

4κ2

(
e−

∫ tT
t0
η2

t dt

1 − e−
∫ tT

t0
η2

t dt

)2

109



which implies

UΓ = ω0 +

T−1∑
i=0

Ê[H0
i+1(γi; xi, D0

i+1)] +
1
κ

(
e−

∫ tT
t0
η2

t dt − 1
)

− κ
T−1∑
i=0

e−
∫ ti+1

t0
η2

t dt
∫ ti+1

ti
e
∫ s

ti
η2

vdvE[δ(Γi;xi,Di+1)
i (s)2]ds.

�

The following lemmas and corollary are used to get corollary 4.5.3.

Lemma 4.7.1. Let yi = γi + xi be the inventory level after the inventory decision of

period i is made, yi = (y1
i , . . . , y

N
i ).

(a) The random variable F̄∗i+1
l (γi; xi,Di+1) := Êi+1[H0

l+1(γ∗l ; xl,D0
l+1)] can be written as

a function F̄∗i+1
l (yi; Di+1), and the orthogonal component δ∗(γi;xi,Di+1)

i of the F-S de-

composition conditional on Fti of Vi+1(γi, xi,Di+1) in proposition 1 can be rewritten

as a function of yi and Di+1:

δ
∗(γi;xi,Di+1)
i = δ

∗(xi+γi;Di+1)
i = δ

∗(yi;Di+1)
i . (4.86)

(b) We can decompose

Vi+1(γi; xi,Di+1) = V̄i+1(yi; xi,Di+1) = Mi+1(yi; Di+1) + Ri+1xi (4.87)

with

Mi+1(yi; Di+1) = hi+1(yi; Di+1) + (Ri+1 − pi+1)Di+1 +

T−1∑
l=i+1

F̄ i+1∗
l (yi; Di+1). (4.88)

Moreover we have for V̄i and Mi the terminal conditions

V̄T (yT−1; xT−1,DT ) = MT (yT−1; DT ) + RT xT−1 (4.89)

MT (yT−1; DT ) = hT (yT−1; DT ) + (RT − pT )DT + sT (yT−1 − DT )+ (4.90)
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with the iteration

V̄i(yi−1; xi−1,Di) = Mi(yi−1; Di) + Rixi−1 (4.91)

Mi(yi−1; Di) = hi(yi−1; Di) + (Ri − pi)Di + Ji(yi−1; Di), (4.92)

where we define

Ji(yi−1; Di) = Êi[V̄i+1
(
y∗i ((yi−1 − Di)+,D0

i+1); (yi−1 − Di)+,Di+1
)
] (4.93)

and y∗i (xi,D0
i+1) = γ∗i (xi,D0

i+1) + xi is the optimal inventory level after decision of

period i.

The following lemma is used to prove lemma 4.7.1.

Lemma 4.7.2. For each period i, i = 0, . . . , T − 1, the orthogonal component δ̄i of F-S

decomposition conditional on Fti for payoff function Hi+1(γi; xi,Di+1) is a function of

yi = xi + γi and Di+1, that is, δ̄i = δ̄
(yi,Di+1)
i .

Proof of lemma 4.7.2:

Proof. Recall for each period i, i = 0, . . . , T − 1, the payoff function from operations is

Hi+1(γi; xi,Di+1)

= Ri+1 min(Di+1, xi + γi) − qi+1(Di+1 − (xi + γi))+ − pi+1γi

= Ri+1Di+1 − (Ri+1 + qi+1)(Di+1 − γi − xi)+ − pi+1γi.

With model assumptions of (4.58) and (4.63), for t ∈ [ti, ti+1], it is proved in Sun et al.

(2011), theorem 3.3.7, that the orthogonal component of the F-S decomposition is given

by:

δ̄
(γi;xi,Di+1)
i (t)

= ci+1Di+1(t)

(
−(Ri+1 + qi+1)Fi(t)Φ

(
µi

z(t) + log Di+1(t)
γi+xi

σi
z(t)

+ σz(t)

)
+ Ri+1Fi(t)

)
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for i = 0, . . . , T − 2, and, for i = T − 1,

δ̄
(γi;xi,Di+1)
i (t)

= ci+1Di+1(t)

(
−(Ri+1 + qi+1 − si+1)Fi(t)Φ

(
µi

z(t) + log Di+1(t)
γi+xi

σi
z(t)

+ σz(t)

)
+ (Ri+1 − si+1)Fi(t)

)

with

Fi(t) = ebi+1µ
i
z(t)+

1
2 (b2

i+1σ
i
z(t)

2+c2
i+1(ti+1−ti))

µi
z(t) = −

1
2
σi

z(t)
2

σi
z(t) =

∫ ti+1

ti
σ(s)2ds.

As a result, for i = 0, . . . , T − 1,

δ̄
(γi;xi,Di+1)
i = δ̄

(xi+γi;Di+1)
i = δ̄

(yi;Di+1)
i .

This finishes the proof.

�

Proof of lemma 4.7.1:

Proof. To prove (a), recall that for period [ti, ti+1], δ
∗(γi;xi,Di+1)
i is the orthogonal compo-

nent of F-S decomposition conditional on Fti of

Vi+1(γi; xi,Di+1) = Hi+1(γi; xi,Di+1) +
T−1∑

l=i+1

F̄ i+1∗
l (γi; xi,Di+1).

By lemma 4.7.2 it suffices to look at the orthogonal component of F-S decomposition

conditional on Fti of
T−1∑

l=i+1

F̄ i+1∗
l (γi; xi,Di+1).
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Denote this by ¯̄δ
∗(γi;xi,Di+1)
i . We prove by backward induction on i + 1 ≤ k ≤ l, for fixed

l = i + 1, . . . , T − 1 and i = 0, . . . ,T − 1

F̄k∗
l (γk−1; xk−1,Dk) = F̄k∗

l (yk−1; Dk). (4.94)

The desired result

¯̄δ
∗(γi;xi,Di+1)
i = ¯̄δ

∗(yi;Di+1)
i (4.95)

is then obvious once we have (4.94).

For fixed i and l, l ≥ i + 1, i = 0, . . . , T − 1, use backward induction on i + 1 ≤ k ≤ l.

For k = l

F̄k∗
l (γk−1; xk−1,Dk) = Êk[H0

l+1(γ∗l ; xl,D0
l+1)]

= Êl[H0
l+1(γ∗l ; xl,D0

l+1)]

= Êl[H0
l+1(γ∗l (xl); xl,D0

l+1)]

= Êl[H0
l+1(γ∗l ((yl−1 − Dl)+); (yl−1 − Dl)+,D0

l+1)]

= F̄ l∗
l (yl−1; Dl)

= F̄k∗
l (yk−1; Dk)

where we used that xl = (xl−1 + γl−1 − Dl)+ = (yl−1 − Dl)+.

This proves (4.94) for k = l.

Assuming that for any k = l, . . . , k̄ + 1, we have (4.94), i.e.

F̄k∗
l (γk−1; xk−1,Dk) = F̄k∗

l (yk−1; Dk),
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then for k = k̄,

F̄ k̄∗
l (γk̄−1; xk̄−1,Dk̄) = Êk̄[H

0
l+1(γ∗l ; xl,D0

l+1)]

= Êk̄[Êk̄+1[H0
l+1(γ∗l ; xl,D0

l+1)]]

= Êk̄[F̄
k̄+1∗
l (γk̄; xk̄,Dk̄+1)]

= Êk̄[F̄
k̄+1∗
l (yk̄; Dk̄+1)]

= Êk̄[F̄
k̄+1∗
l (xk̄ + γk̄; Dk̄+1)]

= Êk̄[F̄
k̄+1∗
l ((xk̄−1 + γk̄−1 − Dk̄)

+ + γ∗k̄((xk̄−1 + γk̄−1 − Dk̄)
+); Dk̄+1)]

= F̄ k̄∗
l (yk̄−1; Dk̄)

since

xk̄ = (xk̄−1 + γk̄−1 − Dk̄)
+ = (yk̄−1 − Dk̄)

+.

This finishes the proof of (4.94).

As a result,
T−1∑

l=i+1

F̄ i+1∗
l (γi; xi,Di+1) =

T−1∑
l=i+1

F̄ i+1∗
l (yi; Di+1), (4.96)

so the orthogonal component of F-S decomposition of the function above depends only

on (yi; Di+1), and, hence is of the form ¯̄δ
∗(yi;Di+1)
i .

Further notice that δi = δ̄i +
¯̄δi, and combine lemma 4.7.2 and the result above. This

yields

δ
∗(γi;xiDi+1)
i = δ

∗(yi;Di+1)
i .

This proves (4.86) and concludes the proof of (a).

For (b), recall from Proposition 1 part (b) that the iteration formula for

Vi+1(γi; xi,Di+1) is

Vi(γi−1; xi−1,Di) = Hi(γi−1; xi−1,Di) + Êi[Vi+1(γ∗i ; (xi−1 + γi−1 − Di)+,Di+1)]. (4.97)
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We write

V̄i+1(yi; xi,Di+1) = Mi+1(yi; Di+1) + Ri+1xi

where

Mi+1(yi; Di+1) = hi+1(yi; Di+1) +
T−1∑

l=i+1

F̄ i+1∗
l (γi; xi,Di+1)

= hi+1(yi; Di+1) +
T−1∑

l=i+1

F̄ i+1∗
l (yi; Di+1)

is of the form Ji(yi,Di+1) for some function Ji by (4.96).

Also notice

Êi[V̄∗i+1(γi; xi,Di+1)] =
T−1∑

l=i+1

F̄ i∗
l (γi; xi,Di+1) (4.98)

and, hence,

Êi[V̄∗i+1(γi; xi,Di+1)] = Êi[V̄i+1
(
y∗i ((yi−1 − Di)+,D0

i+1); (yi−1 − Di)+,Di+1
)
] := Ji(yi; Di+1)

by (4.96).

Combining (a) and (4.98) finishes the proof. �

Proof of corollary 4.5.3:

Proof. From lemmas 4.7.1 and 4.7.2, δ∗(yi;Di+1)
i is the orthogonal component of F-S de-

composition conditional on Fti for

V̄i+1(yi; xi,Di+1) = Mi+1(yi; Di+1) + Ri+1xi

since Ri+1xi is Fti-measurable, δ∗(yi;Di+1)
i is the orthogonal component of F-S decomposi-

tion conditional on Fti for Mi+1(yi; Di+1). Notice that

V̄i+1(y∗i ; xi,Di+1) = Mi+1(y∗i ; Di+1) + Ri+1xi

= Mi+1(y∗i ((yi−1 − Di)+,D0
i+1); Di+1) + Ri+1(yi−1 − Di)+.
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The recursion for Mi is

Mi(yi−1; Di) = hi(yi−1; Di) + Êi[V̄i+1(y∗i ((yi−1 − Di)+,D0
i+1); (yi−1 − Di)+,Di+1)]

= hi(yi−1; Di) + Êi[Mi+1(y∗i ((yi−1 − Di)+,D0
i+1); Di+1) + Ri+1(yi−1 − Di)+]

= hi(yi−1; Di) + Êi[Mi+1(y∗i ((yi−1 − Di)+,D0
i+1); Di+1)] + Ri+1(yi−1 − Di)+.

This proves the recursion formula for Mi as in (4.70).

Let Ψ be the value function such that

ΨT = 0.

Combining the definition above and proposition 4.5.1, we obtain (4.69):

Ψi(xi,D0
i+1) = sup

yi≥xi

{
Êi[hi+1(yi; Di+1)] + Ri+1xi − κe−

∫ ti+1
t0

η2
t dt
∫ ti+1

ti
e
∫ s

ti
η2

vdv 1
Zti

Êi

[
δ
∗(yi;Di+1)
i (s)2

Zti,tT

]
ds

+Êi[Ψi+1((yi − Di+1)+,D0
i+2)]

}
. (4.99)

�

Proof of theorem 4.5.4:

Proof. We prove by backward induction that for any i = 0, . . . ,T − 1, the optimizer for

(4.69) y∗i < +∞.

For i = T − 1,

lim
yT−1→+∞

Êi[hi+1(yi; Di+1)] = −∞

and κe−
∫ ti+1

t0
η2

t dt ∫ ti+1

ti
e
∫ s

ti
η2

vdv 1
Zti

Êi

[
δ
∗(yi;Di+1)
i (s)2

Zti ,tT

]
ds > 0. Hence,

lim
yT−1→+∞

{
ÊT−1[hT (yT−1; DT )] − κe−

∫ tT
t0
η2

t dt
∫ tT

tT−1

e
∫ s

tT−1
η2

vdv 1
ZtT−1

ÊT−1

[
δ
∗(yT−1;DT )
T−1 (s)2

ZtT−1,tT

]
ds

}
= −∞.
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That is, y∗T−1 < +∞.

Assume for i = T − 1, . . . , k + 1, y∗i < +∞, then for i = k,

lim
yk→+∞

Êk[Ψk+1((yk − Dk+1)+,D0
k+2)] = lim

xk+1→+∞
Êk[Ψk+1(xk+1,D0

k+2)] = −∞

due to the induction and the fact that yk+1 ≥ xk+1.

As a result,

lim
yk→+∞

{
Êk[hk+1(yk; Dk+1)] − κe−

∫ tk+1
t0

η2
t dt
∫ tk+1

tk
e
∫ s

tk
η2

vdv 1
Ztk

Êk

[
δ
∗(yk;Dk+1)
k (s)2

Ztk ,tT

]
ds

+ Êk[Ψk+1((yk − Dk+1)+,D0
k+2)]

}
= −∞.

This shows that yk = +∞ is not an optimizer for i = k. This finishes the proof. �

Proof of theorem 4.6.2:

Proof. We want to calculate Êi

[
δ

(yi;Di+1)
i (s)2

Zti ,tT

]
.

First notice that

Ŵ(t) = W(t) + ηt

is a P̂-Brownian motion, where W(t) is a P-Brownian motion. hence

Di+1(ts) = ai+1ebi+1 log X(ts)+ci+1(B(ts)−B(ti))

= ai+1ebi+1(log X(ts)−log X(ti))+bi+1 log X(ti)+ci+1(B(ts)−B(ti))

= ai+1ebi+1((µ− 1
2σ

2)(ts−ti)+σ(W(ts)−W(ti)))+bi+1 log X(ti)+ci+1(B(ts)−B(ti))

= ai+1ebi+1(− 1
2σ

2(ts−ti)+σ(Ŵ(ts)−Ŵ(ti)))+bi+1 log X(ti)+ci+1(B(ts)−B(ti)),

and

Zti,tT = eη(W(tT )−W(ti))− 1
2 η

2(tT−ti)

= eη(W(tT )−W(ts))+η(W(ts)−W(ti))− 1
2 η

2(tT−ti)

= eη(Ŵ(tT )−Ŵ(ts))+η(Ŵ(ts)−Ŵ(ti))− 3
2 η

2(tT−ti).
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Let

u1 = Ŵ(ts) − Ŵ(ti)

u2 = Ŵ(tT ) − Ŵ(ts)

u3 = B(ts) − B(ti)

where (u1, u2, u3) is a 3-dimensional multivariate normal N(0,Σ) with

Σ =


ts − ti 0 0

0 tT − ts 0

0 0 ts − ti


and ψ(u1, u2, u3) is the corresponding probability density function. As a result, we have

Êi

[
δ

(yi;Di+1)
i (s)2

Zti,tT

]

=

∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞

e−ηu1−ηu2− 3
2 η

2(tT−ti)

·
[∫ +∞
−∞

α(ξ)iξai+1ci+1e2πiξ[bi+1(− 1
2σ

2(ts−ti)+log X(ti)+σu1)+ci+1u3]dξ
]2

ψ(u1, u2, u3)du1du2du3

=

∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞

e−ηu1−ηu2− 3
2 η

2(tT−ti)

·
∫ +∞
−∞

α(ξ1)iξ1ai+1ci+1e2πiξ1[bi+1(− 1
2σ

2(ts−ti)+log X(ti)+σu1)+ci+1u3]dξ1

·
∫ +∞
−∞

α(ξ2)iξ2ai+1ci+1e2πiξ2[bi+1(− 1
2σ

2(ts−ti)+log X(ti)+σu1)+ci+1u3]dξ2ψ(u1, u2, u3)du1du2du3

= −
∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞

α(ξ1)α(ξ2)ξ1ξ2a2
i+1c2

i+1e2πi(ξ1+ξ2)bi+1(− 1
2σ

2(ts−ti)+log X(ti))− 3
2 η

2(tT−ti)

· e−η(u1+u2)+2πibi+1σu1(ξ1+ξ2)+2πici+1u3(ξ1+ξ2)ψ(u1, u2, u3)du1du2du3dξ1dξ2

= −
∫ +∞
−∞

∫ +∞
−∞

α(ξ1)α(ξ2)ξ1ξ2a2
i+1c2

i+1e2πi(ξ1+ξ2)bi+1(− 1
2σ

2(ts−ti)+log X(ti))− 3
2 η

2(tT−ti)

· e 1
2 (ts−ti)ι21+

1
2 (ts−ti)ι22+

1
2 η

2(tT−ti)dξ1dξ2

with

ι1 = 2πibi+1σ(ξ1 + ξ2)

ι2 = 2πici+1(ξ1 + ξ2).

118



(4.80) follows immediately by considering the integration on time interval [ti, ti+1]. �
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CHAPTER 5

CONCLUSION

The first part of the dissertation focuses on an optimal liquidation problem with dark

pools using a market impact model. In chapter 2, we propose a market impact model

which includes the cross-impact between two venues, and we derive the optimal execu-

tion strategy. Observing that there exists the possibility for transaction-triggered price

manipulation, we use this model to identify a market condition such that price manipu-

lation is not beneficial.

There is much more research that could be conducted on dark pools. As an alter-

native trading venue which is relatively new to the public, dark pools have not been

thoroughly studied. To our knowledge, there is no existing model which character-

izes the mechanisms of dark pools in general. For example, our model assumes that

there is no partial fulfillment of dark pool orders. This should be extended to accom-

modate partial orders. Furthermore, we have considered only a single order type in

the dark pool. In practice, different dark pools are experimenting with a variety of or-

der types (Limit, market, peg-to-national-best-bid, peg-to-midpoint, national-best-offer,

minimum-quantity, day and IOC, etc.). There are no models available now to allow

consideration of these different order types. Another challenge is to propose a proper

model for the execution price in dark pools. As we discussed in our work, price manip-

ulation can exist in a market impact extended model. Proposing a price model for dark

pools which guarantees the absence of price manipulation would be meaningful for both

regulation and market efficiency.

The second part of the dissertation solves a multi-product inventory hedging prob-

lem. We consider both the single- and multiple-period problems, and prove, in both

cases, a separation result for inventory management. This allows each inventory de-
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partment to make decisions independently. In particular, the separation result for the

multi-period problem is a global separation in the sense that no interaction needs to be

considered among products in intermediate time periods. In addition, we propose a dy-

namic programming algorithm of the multi-period single-item inventory problem which

further simplifies the computation by reducing the dimensionality of the state space. In

the literature, the Föllmer-Schweizer decomposition is used for analytical representa-

tions. We extend this result with a Fast Fourier Transformation scheme to apply the

Föllmer-Schweizer decomposition numerically.

The separation results for inventory hedging introduced in this dissertation are

among the first in the literature to deal with multi-product inventory hedging issues.

Our work completes the separation results in the sense that it solves both single and

multiple period problems. Despite that, there are still some extensions to be considered

in future research. For example, instead of considering a mean-variance type objective

function, alternative risk-averse objectives should be analyzed, such as the exponen-

tial utility function. Alternatively, one can replace our assumption that the retail prices

are exogenous, and consider a pricing problem instead, which leads to an equilibrium

model.

Thus, we have successfully extended the ideas of Louis Bachelier into the new world

of dark pool trading and into the old world of inventory management.
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