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Venkatasubramanian Narayanan, Ph.D.  

Cornell University 2006 

 

This dissertation explores the use of macroscopic quantum hydrodynamic 

(QHD) models as tools for investigating the transport of charge carriers in 

semiconductor devices in the regime where quantum effects are important. The 

primary contributions are an elucidation of the nature of density-gradient theory in the 

treatment of barrier repulsion effects and confinement and a clear derivation and 

application of a completely macroscopic model for tunneling calculations. 

Chapter 1 provides a panoramic view of the field of carrier transport modeling 

in semiconductors. The essential differences between classical and quantum transport 

are discussed. Successively less detailed models from the fundamental starting points 

of the Boltzmann transport equation (BTE) for classical transport and the quantum 

distribution functions (Wigner function and the density matrix) based methods for 

quantum transport. A mention is made of the various quantum hydrodynamic models 

without going into the details of their derivation and applicability.  

Chapter 2 brings into focus the area of quantum hydrodynamic modeling of 

carrier transport. A detailed derivation using the method of moments is presented for 

each of two popular quantum hydrodynamic models currently being explored in the 

literature, namely the density-gradient method and the smooth quantum potential 

model. A summary is made of their limitations and these limitations are then shown as 

arising out of particular assumptions made in their derivations that could hamper their 

applicable regimes.  
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Chapter 3 presents an analysis of the boundary layers near interfaces obtained 

in the density-gradient theory. An integral equation for the density near such interfaces 

is obtained and this is used to analytically compare the DG solution with the solutions 

from one-electron quantum mechanics in non-degenerate conditions. Modeling of 

confinement in simple potential wells is then discussed using the macroscopic 

equations.  

Chapter 4 discusses the derivation of macroscopic equations to describe 

quantum mechanical tunneling through large barrier potentials. Using the approximate 

solutions of the Schrödinger equation it is analytically shown that the density profile 

inside the barrier satisfies a second order differential equation, very similar to the 

Schrödinger equation for a carrier at a suitably chosen average energy. Use of this is 

made to derive a consistent macroscopic treatment of tunneling transport in the 

insulating barrier.  

Chapter 5, the final chapter, summarizes the major contributions of this 

dissertation and concludes it with several suggestions for future research directions 

that can stem from this work.  
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CHAPTER 1 

CARRIER TRANSPORT MODELS 

 

1.1  CMOS SCALING AND MOORE’S LAW  

 The invention of the planar processed integrated circuit (IC) [1] following that 

of the bipolar junction transistor (BJT) [2] is arguably the greatest technological 

breakthrough to have occurred in the last five decades, in terms of impact on everyday 

life.  One would be hard pressed today to find a single area of human endeavor, in 

which electronics, as implemented in the integrated circuit does not play a role. The 

growth of integrated circuits in turn has been aided by numerous other inventions 

along the way, primary among which are those of the metal-oxide-semiconductor-

field-effect-transistor (MOSFET) [3] and complementary-metal-oxide-semiconductor 

(CMOS) technology [4]. Tremendous improvements in IC performance have been 

achieved in the last three decades by steadily scaling down the size of the MOS 

transistor that has become the de-facto fundamental building block.  

 In 1965, Gordon Moore predicted [5] that the density of transistors in an IC 

chip was likely to double every 18 to 24 months. This prediction based on empirical 

data which has since been dubbed Moore’s law has held out remarkably well for the 

better part of the last three decades.  

 The problem of designing devices for use in integrated circuits is an 

optimization problem with numerous constraints on performance, even for the case 

when they are meant to act only as switches in digital circuits. For most of the last 

three decades, the trend in device scaling has almost faithfully followed a universal 

scaling rule [6] that is derived from the assumption of simple electrostatics and the 

classical physics of ideal gases for transport. However, with device sizes entering the 

deep sub-micron (< 0.1 mm gate length) regime, several additional elements of the 
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detailed transport physics have required attention to understand device behavior 

adequately. These range from purely classical effects caused by the onset of 

ballisticity in the transport, such as hot-carrier effects [7], velocity overshoot [8], and 

impact ionization [9], to purely quantum mechanical effects due to the wave nature of 

the charge carriers in semiconductors [10,11].  

 This dissertation will deal with macroscopic models for the physics of 

semiconductor devices in the regime where quantum mechanical effects, such as 

quantization and tunneling are important. The rest of this chapter is devoted to 

introducing the reader to notions of classical and quantum transport and to give a brief 

overview of this very diverse field and current research. 

 

1.2  TRANSPORT MODELS 

  There are two fundamental levels at which one can understand and describe 

the behavior of any many-body physical system. The first, is at a microscopic level – 

i.e. one can try to understand the dynamics of a single constituent particle in the 

system in the presence of external forces and then to extend this to when there are 

many such particles which interact with each other. This is physics, as described by 

statistical mechanics. The second description that one can attempt is at a macroscopic 

level, where one is not interested so much in the details of the driving forces and 

interactions, but their aggregate effects, on suitably defined averages (densities) in the 

system. This description is epitomized, for instance, in equilibrium by the laws of 

thermodynamics. Quite obviously, in order to have overall consistency, the 

macroscopic description should be derivable from the statistical mechanics of the 

system under consideration. A macroscopic description of the physics can however be 

obtained independently from experimental results as well. Indeed, the ideal gas laws 
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were known long before the fundamental laws of classical statistical mechanics were 

codified by Boltzmann [12] and subsequent workers.  

 The statistical mechanical description of transport in many-body systems is 

conveniently expressed in terms of kinetic equations [13,14]. Kinetic equations, 

describe the evolution in time and approach to equilibrium, of distribution functions 

(reduced to a single particle description or otherwise) defined on the system. The 

macroscopic descriptions of transport processes on the other hand are interpreted as 

conservation equations for physical quantities – charge, momentum, energy, energy 

flux etc. They can therefore be regarded as fundamental laws, provided the right 

relations for the various generalized driving terms that appear in these conservation 

equations are found experimentally or from the more detailed statistical descriptions 

[15]. These ideas remain independent of the differences between classical and 

quantum mechanics.   

 In the context of semiconductors, the many-particle system that one requires a 

description of, are the charge carriers – the electrons. The presence of the crystal 

lattice is usually acknowledged for a description of near equilibrium transport, by [16] 

i) the effective mass approximation, which assumes a parabolic band structure close to 

the edge of the energy bands obtained by solving the Schrödinger equation with the 

crystal periodic potential, and ii) the introduction of positively charged holes to 

account for the negative curvature of the valence bands. It is worthwhile to remember 

that in this description, the carrier wavefunctions described by solving the effective 

mass Schrödinger equation are the modulating functions for the set of Wannier 

functions [17-19] on the lattice. This is revisited in more detail in the Section 1.4, 

when we discuss quantum transport.  

 The transport properties of electrons and holes are respectively, in the effective 

mass approximation, those of interacting negatively and positively charged gases in an 
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external potential. The external potential, V, can be obtained in the Hartree 

approximation, by solving the Poisson equation with charge contributions from the 

mobile charges (electrons and holes) and the fixed charges (ionized dopants). 

Depending on the particular conditions that we are interested in, a classical or a 

quantum mechanical description of these (already semiclassical because of the 

effective mass approximation) gases will then be appropriate. These descriptions can 

in turn be statistical or macroscopic as has already been mentioned above. 

 

1.3  CLASSICAL TRANSPORT  

1.3.1 The Boltzmann Transport Equation  

 The kinetic equation for a classical gas is the Boltzmann Transport Equation 

(BTE), which describes the time evolution of the classical phase space distribution 

function f(r,p), due to the action of the external forces (drift) and because of 

inhomogeneities in the distribution function in real space (diffusion).  The equation is 

expressed as [16,20],  

 

(1.3.1) 

 

The solution of this equation is the fundamental problem in classical transport theory. 

The right hand side of this equation yields the change in the distribution function due 

to the random external forces (scattering) that are encountered by the carriers. When 

this is zero, the BTE represents nothing but the conservation of phase space volumes 

(Liouville’s theorem) under the evolution determined by Hamilton’s equations of 

classical dynamics [21].  The scattering term is frequently written as an integral 

operator on the distribution function as under,  
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(1.3.2) 

 

Detailed models for the different scattering mechanisms, due to impurities, acoustic 

and optical phonons, surface roughness etc. are available in the literature [16]. The 

scattering terms above represent the dominant term in the BTE and virtually all the 

tremendous variety in classical transport phenomena are associated with the very 

different solutions to the BTE that are obtained in regimes where scattering is 

important or relatively unimportant. 

 The BTE as written above is a semiclassical equation, because the effective 

mass m* and since the scattering probabilities that appear in (1.3.2) are calculated from 

detailed quantum mechanics from the band structure and time dependent perturbation 

theory (Fermi’s golden rule) [22], while the equation itself represents a purely 

classical evolution.  

 The BTE, with the scattering term (1.3.2) is a very difficult equation to solve 

numerically even in the effective mass approximation, since it is an integro-

differential equation in the six coordinate phase space and time. Direct solutions using 

discretized versions of (1.3.1) are computationally unfeasible, except in simple one 

dimensional problems. Solution using the expansion in terms of basis functions (e.g. 

spherical harmonics) [23] has also been performed in some cases. The Monte-Carlo 

method is most often adopted for its solution [24] in multi-dimensional problems, self-

consistently with the Poisson equation. The field of Monte-Carlo modeling of 

semiconductor devices using the BTE is very rich in itself and has seen extensive 

work [25-33] in the last two decades, on both the numerical aspects and towards the 

inclusion of more accurate physical models. Tremendous advances have been made in 

the ability to include the accurate band structure [25-27], different mechanisms of  
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Figure 1.1 A representation of the classical transport theories at different levels of 

detail, from the kinetic equation (BTE) to the macroscopic equations from 

the truncation of the hydrodynamic set of equations   
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scattering (e.g. carrier-carrier scattering) [28,29], different materials [30] et cetera in 

this time.  The Monte-Carlo method has served to clarify the understanding of several 

problems related to issues as diverse as mobility parameterization [28-31], high energy 

tails in the carrier energy distributions [33], detailed effects of band structure [32] etc 

that would have been otherwise difficult to analyze. In recent years, there have also 

been several attempts to include the effects of quantum mechanics namely 

quantization and tunneling, in classical Monte-Carlo transport simulations – these 

however are obviously not based on fundamental quantum mechanical transport 

equations (since the BTE is classical), but added on as corrections to the classical 

equations for particle dynamics and statistics, using numerical or analytical solutions 

of the one-electron Schrödinger equation [34].   

 

1.3.2 Classical Hydrodynamic Modeling and Closure Relations 

 In spite of the tremendous advances made in the Monte-Carlo modeling of 

devices using the BTE, the method remains more an exploratory tool than an 

engineering tool suitable for use in device design. This is owing to the tremendous 

computational complexity involved in the calculation of the full-band Monte-Carlo 

solution. Instead the pride of place as far as use in engineering design with the 

classical transport equations is concerned, has been accorded to the macroscopic 

transport equations obtained from the BTE, viz. the hydrodynamic equations.  

 The term “hydrodynamic” is a general qualification used to refer to the various 

equations that are obtained by averaging out the detailed momentum space 

information [20] from the BTE. Any distribution function (or a probability 

distribution) can be expressed in terms of its moments [35] and therefore its evolution 

can modeled by the evolution of its moments. The easiest way to get a PDE 

description in real space is to extract the moments of the BTE, by integrating out the 
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momentum space information systematically, after multiplying the equation with 

different orders of the momentum, {pi, I = 0,1,2…}. The first three moments from this 

operation, yield the equations of conservation of charge density (n), momentum 

density (P), and energy density (W) respectively and can be written as under, 

 

 

 

(1.3.3) 

 

 

  

 A simple relaxation time approximation [16] for the BTE has been assumed in 

deriving the above, with momentum and energy relaxation times given by tm and tw. 

The quantity u represents the centroid of the non-equilibrium distribution function f 

and Q is a heat flux term.  P represents the stress tensor of the gas given by 

 

(1.3.4) 

  

 Frequently, the distribution function in most regions of a device does not differ 

appreciably in functional form from the equilibrium Fermi-Dirac distribution, except 

for a small shift in the centroid in momentum space. In this case, the higher order 

moments remain unchanged from their equilibrium values and the system can be 

modeled to an excellent approximation by the first few moment equations only.  

 As is seen from the Eqns (1.3.3) each equation in the hydrodynamic hierarchy 

has a higher order moment as one of its driving terms, due to the diffusion term 

(second term) in the BTE. For instance, the first moment equation, the momentum 
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balance equation retains the divergence of the stress tensor P, which is a second 

moment of the full non-equilibrium distribution function. When the system is modeled 

using the hydrodynamic equations to a certain order (n-1), a closure relation, has to be 

found for the n’th order driving term appearing in the highest order moment equation, 

in terms of the lower order moments, to truncate the hierarchy. Since the non-

equilibrium distribution function is not known (it is what we are solving for using the 

BTE), we need to make an intelligent assumption as to the form of the closure relation. 

The method that is most often adopted is to assume that the functional form for the 

highest order moment from equilibrium holds locally under non-equilibrium 

conditions as well. The closure relations can therefore be interpreted as equations of 

state for the electron and hole gases – i.e. a constitutive relation, which holds for the 

particular kind of system, in a particular type of ensemble, independent of the 

transport equations.  

 The truncation of the hierarchy at n=2 yields the drift-diffusion equations 

[16,20]. The closure relation for the stress tensor P is obtained from the equilibrium 

Boltzmann distribution function and is isotropic,  

 

(1.3.5) 

 

The stress tensor relation is therefore, the same as the pressure/density relationship 

(equation of state) of an ideal gas [12]. The drift-diffusion equations therefore, 

correspond to assuming that the electrons and holes are ideal interacting gases in the 

semiconductor. The convective term inside the divergence term for the stress tensor is 

usually ignored in classical transport, since it is much smaller than the stress tensor 

term, on account of the average carrier momentum m*u being much smaller than the 

thermal momentum.  
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 The drift-diffusion equations have been the bulwark of semiconductor device 

modeling for engineering design in the last two decades, due to their simplicity and 

their ease of numerical implementation. They have also formed the backbone of all -

physical and semi-physical compact device models for circuit simulation. 

Consequently they have attracted great attention [36,37] over the last few decades on 

virtually every aspect of their derivation, numerical implementation and 

parameterization for different materials, device structures and geometries.  

 The applicability of the drift-diffusion equations depends on the careful 

parameterization of the average quantities appearing in them, the mobilities and the 

generation-recombination terms in terms of the local dependent variables, i.e. the 

electron and hole densities and the electrostatic potential. A closure relation such as 

(1.3.5) assumes that carrier acceleration by the electric field is not very important and 

that there is adequate scattering to keep the distribution function locally close to an 

equilibrium Maxwellian like form.  

 Higher order truncations of the hierarchy can be performed with different sets 

of closure relations. These equations, partially model the carrier acceleration in the 

presence of an electric field that is not captured in the drift-diffusion model since it 

assumes that the local form of the distribution function is very close to an equilibrium 

distribution function shifted in momentum coordinates [16]. Energy transport 

equations can be obtained by closing the system of equations at n=3. These can 

further be simplified to the electron temperature model, through an assumption of a 

Maxwell- like distribution function with a different temperature for the carriers [20]. 

Modeling of semiconductor transport using as many as six moment equations have 

been reported in the literature [38-40]. However beyond a point these equations lose 

the physical simplicity and elegance of the moment equation approach, since it is hard 

to get an intuitive grasp of very high order moments and their behavior, especially 
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given the number of parameters that are introduced in these equations to model the 

average behavior. These parameters themselves are often calibrated against full band 

Monte-Carlo simulations [40], when they can no longer be described using simple 

extrapolations from equilibrium. 

 

1.4   QUANTUM TRANSPORT – STATISTICAL APPROACHES 

1.4.1 Validity of Effective Mass Theorem and Classical Transport Theory 

 The carriers in semiconductors, in equilibrium occupy the energy levels that 

are obtained from a solution of the Schrödinger equation in the periodic lattice 

potential VL [17], i.e. the Bloch states Yn,k. The states are labeled by the crystal 

momentum k in the first Brillouin zone and the band index, n. 

 

(1.4.1) 

 

The potential VL has the periodicity of the lattice, i.e. if Qi is the translation vector that 

takes from the unit cell at the origin to the i’th cell then, 

 

(1.4.2) 

 

 The probability of occupation of these states is given by the Fermi function of their 

energy eigenvalues. These states are delocalized over the entire lattice.  As mentioned 

earlier, these Bloch states can be written in terms of Wannier functions, Wk [17-19] 

defined on the lattice for a particular band index n as, 

 

(1.4.3) 
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In the presence of an external potential Vext the solution for the total wavefunction can 

be written in terms of the Wannier function basis as, 

 

(1.4.4) 

 

The discrete coefficients jq with the new quantum number q in this defined only in 

each unit cell, can then be extended to the continuous space r and can be shown to 

satisfy the following equation [19], when Vext is slowly varying over one unit cell, 

 

 (1.4.5) 

 

This is just a re-statement of the effective mass approximation when the band En,k is 

parabolic in k. This suggests that the description of electron wavefunctions has been 

shifted from the complete Bloch form to the coefficients jq which modulate the 

Wannier functions. The Wannier functions form a highly localized basis and their 

spatial extent is limited to the unit cells of the lattice – they can be visualized as 

playing the same role in a lattice that delta functions do in the absence of a periodic 

potential. Therefore the effective mass approximation above is valid for potential 

variations which are small relative to the magnitude of the crystal potential over a unit 

cell size (i.e. over a distance of the order of the lattice constant).  

 If the effective mass approximation is assumed to be valid we then have, in the 

absence of an external potential, a description for electrons and holes in terms of plane 

waves, as seen from a comparison of (1.4.3) and (1.4.4). These plane waves are nearly 

at a continuum, since the quantized wavevectors ki are determined by the total size of 

the crystal, V according to the requirement that the wavefunctions go to zero at the 

edges of the crystal. Since the macroscopic size of the crystal V is usually very large 
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compared to the unit cell volume (which is decided by the lattice constant a) the 

wavevectors can be assumed to be a continuum. There are exactly N states for each 

band in the Brillouin zone, where N is the total number of unit cells in the crystal.  

 When we have a near continuum of free-carrier like eigenstates (plane waves), 

one can define localized wavepackets as a superposition (with some weight function 

w) of closely separated eigenfunctions with different wavevectors in a small 

neighborhood of some k.  

 

(1.4.6) 

 

Now, according to Ehrenfest’s theorem [41] in quantum mechanics, the average 

position of any such wavepacket and its average momentum obey the laws of classical 

mechanics. Hence the above wavepacket, which has a finite extent in real and 

momentum space, can be interpreted as a classical particle, provided we examine it 

over length and momentum scales which are large compared to the respective spreads. 

This is the only sense in which the concept of a particle has to be understood in 

quantum mechanics and therefore in semiconductors.  

 We can now state under what conditions classical transport theory as described 

in the previous section can be a useful approximation to the physics. One can stipulate 

the following general guidelines as necessary for the transport to be describable in 

semiclassical terms. 

 

a) The length scales over which quantities (may be potential, scattering 

probabilities etc.) vary significantly must be much larger than the 

delocalization length of the wavepackets that one can construct with the 

occupied (delocalized) eigenstates. 
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b) Collisions between wavepackets at k and k1 must be local in space and 

instantaneous in time, compared to time and length scales considered [16] 

c) Scattering must be completely randomizing and the carriers must not retain 

any phase information for sufficiently long time evolutions.  

 

 In particular, for instance, close to equilibrium and for Boltzmann statistics, 

(i.e. non-degenerate conditions) only wavevectors smaller than corresponding to the 

thermal energy kBT, i.e. 

  

 (1.4.7) 

 

are available to construct wavepackets. This implies that one cannot use the classical 

theory to describe phenomena that require a spatial resolution of better than about  

 

(1.4.8) 

 

since this is a practical limit on the smallest wavepacket that can be constructed at 

room temperature. For silicon and its large longitudinal effective mass [16] (0.916 m0) 

the above length scale works out to around 1.3 nm at room temperature. Typically the 

length is around a few nanometers, since the average effective mass is smaller than 

this due to the effect of the small transverse mass (0.19 m0). This puts an obvious 

restriction on the variation scale of the external potential – i.e. the potential variation 

in this length scale must be much smaller than the thermal energy kBT in order for a 

classical description based on the BTE to be adequate.  

 We can therefore understand from the above discussions that the validity of the 

effective mass approximation and the semiclassical theory of transport hinge on 
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similar restrictions. For the effective mass theory to be valid, one requires the variation 

of the potential to be small compared to the crystal potential over a lattice constant, 

while for the semiclassical theory to be applicable one requires that variation to be 

small compared to the thermal voltage over a thermal wavelength. Since the crystal 

potential [17] is usually large compared to the thermal voltage Vt  (0.0259 V at 300 K) 

in the unit cell (being due to the screened ion cores) and the lattice constant is around 

0.5 nm (i.e. smaller than the thermal wavelength as determined by the effective 

masses), there is likely to be a significant regime where the effective mass theory 

holds for the description of carrier wavefunctions, but the classical transport 

description for the constructed wavepackets does not. For all the discussions that 

follow, we will assume that we are considering the semiconductor transport properties 

in this regime, so that we do not have to take into account the lattice explicitly.  

 It is worthwhile to reiterate at this point that the above discussions pertain only 

to the classical or quantum mechanical description of transport and have nothing to do 

with the microscopic or macroscopic models that we may employ for such a 

description. 

 

1.4.2 Coherent Evolution 

  A complete understanding of the dynamics of a single particle system is 

achieved from the knowledge of its wavefunction at any initial time t0 and the 

Hamiltonian of the system. The Schrödinger equation can then be solved for the time 

evolution and all properties at time t can be extracted from the resulting wavefunction. 

The same information can of course, be obtained by solving the time- independent 

Schrödinger equation for the spectrum of the Hamiltonian, writing the initial state 

wavefunction as a superposition of these eigenstates and then using the individual 

evolutions of the eigenstates with energy E according to the rule [41],     
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(1.4.9) 

 

The above discussion assumes that the Hamiltonian itself is not directly dependent on 

time. If it is time dependent then the evolution cannot be solved for trivially using the 

spectrum at any one time alone as above. We can instead write the total wavefunction 

at time t, as the action of an evolution operator, U(t,t0) on the initial state, i.e. 

 

(1.4.10) 

 

The evolution operator U satisfies the initial value equation, 

 

(1.4.11) 

 

This operator equation has to be integrated explicitly in order to determine the final 

state [42]. The spectrum of the Hamiltonian changes with time, and the Hamiltonian 

operators at different times t1 and t2 do not in general commute with one another. 

Quite obviously then a particle in an eigenstate of the initial Hamiltonian does not stay 

in an eigenstate of the Hamiltonian at some other time during the evolution.  

 For a many particle system, the dynamics in the presence of a time 

independent, deterministic Hamiltonian can be understood in much the same way as 

above for the single particle case. The system is completely described by the 

Hamiltonian and the initial state – which in the absence of exact information about the 

full many body wavefunctions is approximated by the linear combination of the 

product of single particle wavefunctions in a mean field, as in the Hartree or Hartree-

Fock approximation [17]. Symmetry (or antisymmetry) relevant for Fermions or 

Bosons can be introduced by the linear combinations that are admitted as 
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wavefunctions, for instance through the use of Slater determinants. Coherent transport 

phenomena, involving two-level systems, quantum Hall effect [43] etc. can be readily 

handled using these methods.  

 

1.4.3 Non-Equilibrium Green’s Functions  

 Finite temperature, interactions and scattering processes complicate the above 

simple picture considerably. At finite temperature, in equilibrium, the laws of 

statistical mechanics require a Fermionic system to be distributed in energy according 

to the Fermi-Dirac distribution, irrespective of the exact nature of the scattering 

processes. This amounts to a certain loss of coherence in the system, since the system 

is no longer in one single pure state given by a linear combination of eigenfunctions of 

the Hamiltonian – only a probability distribution for the occupation of states different 

in energy can be given. The initial state of a system must thus be described as an 

incoherent superposition of pure states. The problem of quantum transport is the 

description of the time evolution of this initial state (possibly an equilibrium state) in 

the presence of interactions, dissipation and external driving forces.  

 A simple picture of the various processes that must be studied in order to 

understand the transport properties is as follows. Consider one particle, occupying at 

some time t0 the state k in some suitable basis set. There is a Hamiltonian Hext, due to 

the externally applied, driving perturbation to the system. The state begins to evolve 

according to the coherent evolution given by this Hamiltonian, from some initial state 

which is statistically defined. As a result of this coherent evolution, there is an 

amplitude for the particle to propagate to state k1 at some time t1. There may be a 

scattering event at some random time t2 in between, to another intermediate state k2, 

which might in turn evolve to reach k1 at t1. The randomness in the time t1 will mean a 

loss of coherence in the evolution. In addition, if the system is open (i.e. current can 
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flow through the system), the particle may escape to one of the contacts, in which 

case, for current conservation, another coherent evolution of a particle injected from 

one of the other contacts will begin and this might lead to an amplitude for the state k1 

at t1 as well. This latter evolution due to the contacts will also be incoherent, since 

they are usually in equilibrium and the distribution of carriers injected into an active 

device will only depend on the Fermi energy of the contact.  

 The evolution of a quantum mechanical system, at finite temperature in the 

presence of a time varying Hamiltonian is then most generally written in terms of 

correlation functions that take the role of the distribution function in a classical 

description [43-45]. For instance in the free carrier basis set (plane waves), labeled by 

wavevectors {k} we can define the following correlation functions in terms of the 

creation and annihilation operators [44] ak and ak
+ 

 

           (1.4.12) 
 

 

The language of second quantization [44] has been used here, but basically what the 

above represent are the amplitudes of the state k at time t given unit amplitude in state 

k1 at t1, for the cases when the time t1 is earlier or later than t (for a Hermitian system, 

these contain identical information).  

 In steady state, the above functions depend only on the difference between the 

times (t = t-t1). Besides, in steady state the spectrum is static in time and so the time 

evolution from t1 to t, depends on the state at t1 similar to Eqn (1.4.9). This allows us 

to identify the conjugate variable of (t-t1) (in the sense of a Fourier transform) as the 

energy. The correlation function can also be written in terms of the energy variable by 

performing the Fourier transform of the above with respect to the time difference t. 
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 (1.4.13) 

 

 The quantities Gn and Gp contain all the information that is required of a 

system in non-equilibrium for calculating average values. For instance, the density 

n(r,t) is given by the diagonal elements in space integrated over energy, 

 

 (1.4.14) 

 

Other quantities, such as currents can be calculated in a similar manner through 

integrations in energy.  

 The kinetic equation for the above two correlation functions is the fundamental 

result of the Non-Equilibrium Green’s Function formalism (NEGF). This equation 

plays the same role in quantum transport theory that the BTE plays in classical 

transport theory. For the sake of brevity we simply present the equations here in 

matrix form in steady state, without going into the details of their derivation [43,44] 

(each of the quantities have the same matrix structure as the correlation functions 

above). 

 

(1.4.15) 

 

 The quantities appearing in the above equations have rather simple meanings – 

the functions GR and GA are the retarded and advanced Green’s functions respectively 

of the modified Schrödinger equation. These represent the propagation of the single 

particle excitations in the Hamiltonian field, in the presence of dissipative interactions 

or open boundary conditions.  
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(1.4.16) 

 

 

The self-energy functions SR and SA model the effects of random scattering due to 

impurities, phonons and surface roughness, as well as that of the open boundaries. All 

these mechanisms have the effect of introducing a non-Hermitian part to the 

Hamiltonian, which cause the single particle eigenstates to decay in time. The lifetime 

of a state k is determined by the imaginary part of the eigenvalues introduced by the 

self-energy functions. 

 The functions Sin and Sout represent the in-scattering and out-scattering 

amplitudes respectively – these are simply generalizations of the semiclassical 

scattering function S(k,k’) and S(k’,k) that appear in the Boltzmann Transport 

equation. In the NEGF, all these quantities must be inputs estimated independently 

using first order perturbation theory.  

 As can be realized from (1.4.15-16), a self-consistent numerical solution of the 

Poisson equation and the NEGF equations, is bound to be even more computationally 

intensive than the BTE due to the additional energy coordinate, and the integrations 

with respect to energy (1.4.14) which are required to calculate the carrier densities at 

each iteration. The matrices that are to be inverted for each energy in (1.4.16) are in 

general not sparse and have high bandwidth (since we do not know the basis set in 

which they are nearly diagonal) when scattering terms are included [45]. Besides, 

since the energy eigenvalues are not known apriori, very fine energy grids are often 

required to resolve quantization energies around which the density of states vary very 

rapidly.  
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 Because of the above reasons of computational intractability, there are 

relatively few instances in which the above equations have been applied generally to 

semiconductor devices. These are mostly one-dimensional or quasi one-dimensional 

investigations of lateral transport in MOSFETs or double-gate devices for quasi-

ballistic transport [46], or with very simple scattering models [47,48,50].  For quasi-

ballistic transport, the NEGF equations are really unnecessary and they reduce to those 

of the Landauer formalism [43]. A notable exception is [51] in which the 2-D 

equations including the full phonon-scattering self-energies have been solved for an 

idealized double-gate geometry. The inclusion of realistic device geometries, band-

structure and the effect of all the various scattering mechanisms is still a long way 

from realization.  

1.4.4 Density Matrices and Wigner Functions 

 As noted in the previous section, in order to completely describe quantum 

transport in the presence of a time varying Hamiltonian, one requires a description in 

terms of the two time correlation functions, Gn(k,k1,t,t1). The correlation between two 

different times, in turn represents the effect of the detailed time varying spectrum 

through (1.4.13). Inelastic processes which transfer carriers from one energy to 

another, cause a part of this correlation, while the coherent Hamiltonian evolution 

causes the other part.  

  The time correlation caused by the inelastic processes, decay extremely fast in 

the time difference (t = t-t1). The typical time for which this correlation exists, is of 

the order of the scattering time, which in turn can be approximated by the uncertainty 

principle to be around,  

 

(1.4.17) 
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where DE  represents the energy difference between the two “levels” taking part in the 

process. For energies relevant in semiconductors, (of the order of eV), these times are 

of the order of femtoseconds. Tunneling times, scattering times etc. are all of this 

typical duration.  

 If the rate of variation of the Hamiltonian is small, i.e. for some norm if    

 

(1.4.18) 

 

then the only reason transitions occur between states DE  apart in this time scale is due 

to the inelastic processes. Then for time scales much longer than these, we can think of 

the transitions as occurring between energy states, defined by the instantaneous 

Hamiltonian (i.e. quasi-statically) and ignore the time correlation. In this 

approximation (the Markov approximation, since the system now has no memory), the 

properties of the system can be described by the single-time correlation function, 

Gn(k,k1,t,t). This quantity is also called the density-matrix of the system.  

 

(1.4.19) 

  

 The density matrix can thus be used to describe a quantum mechanical system 

with instantaneous scattering processes. All the detailed information on the scattering 

processes available from the self-energy functions in the above equations has to be 

averaged in some form to introduce the irreversibility in the transport equation. One 

such approximation for the transport equation is obtained by assuming that the density 

matrix evolves according to the Heisenberg equation of motion in the Hamiltonian, 

with an additional term due to scattering, similar to the spirit of the BTE i.e.  
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                            (1.4.20) 

 

Different models for the collision term [51-54] can then be used in order to solve this 

equation numerically. The problem of determining quantum mechanically consistent 

scattering models to use in (1.4.20) above is very much an open problem, as is that of 

a good choice of basis states for representing the density matrix in the above equation 

for numerical simplicity. Using a Bloch representation [52,53] or a Wannier 

representation  [54], is particularly useful, if interband transition effects (such as Zener 

tunneling) are important, although for single-band transport, one might use basis states 

from the solution of the one-electron, effective mass Schrödinger equation. 

Unfortunately, since the above equation is not generally in the form of a master 

equation (i.e. a differential, or integro-differential equation, with diagonal dominance) 

one cannot use Monte-Carlo like methods for a general solution as with the BTE.  

 When the density matrix is represented in the real space basis, a special 

operation, the Weyl transform [55], can be performed to yield a phase space 

distribution similar to the classical phase space distribution. In this case, the density 

matrix is written as a correlation function of two space variables x and x1, i.e. r(x,x1). 

Then the quantity, fw(r,p,t) defined by  

  

  

 (1.4.21) 

 

 

is called the Wigner distribution function and has properties very similar to a classical 

phase space distribution function, for evaluating average values of observables 

[55,56]. The function however is not a true distribution function, since it is not 



 

24 

coll

w
wprwr

w

t

f
frUfv

t

f

¶

¶
=ú

û

ù
ê
ë

é
ÑÑ+Ñ+

¶

¶
)(

2
sin

2
.

h

h

r

positive definite. The equation (1.4.20) for the density matrix transforms in this case to 

the Wigner-Boltzmann equation [57,58], 

  

(1.4.22) 

 

The similarity of this equation to the BTE (1.3.1) is striking – it is straightforward to 

note that the limit of small Planck’s constant yields the BTE. The effects of quantum 

mechanics enter through the non- local nature of the interaction with the potential due 

to the presence of an infinity of derivatives.   

 The Wigner function and its evolution equation have been the object of much 

interest owing to the attractive interpretation as a distribution function. Several one-

dimensional problems have been simulated using (1.4.22), notably, those involving the 

resonant tunneling diode and its negative differential conductivity [57-61]. These 

workers have investigated aspects of numerical implementation, scattering models, 

modifications required for inclusion of band structure, transient effects etc., using 

direct discretized solvers for (1.4.22). Since (1.4.20) as pointed out for the density 

matrix, is not generally a master equation, it does not readily admit of Monte-Carlo 

like methods for solution. This is the prime reason for the very few instances that exist 

for applications in multiple dimensions. An interesting exception is the series of 

investigations by Ferry and co-workers [62-64] where the Monte-Carlo method is 

generalized to solve (1.4.22) by ascribing to the particles an additional sign property to 

account for the negative values of the Wigner function – this method appears to 

provide meaningful results, when physical quantities do not vary too rapidly in space, 

although this analysis has also been limited to one dimension.  
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 The Wigner function and the density matrix are the basis for the derivation of 

the various macroscopic quantum transport approaches and will be re-visited in more 

detail in the next chapter.  

1.4.5 The Pauli Master Equation 

 One possible, natural way of assigning basis states and treating the scattering 

term in the density matrix evolution (1.4.20), is to use the set of instantaneous 

Hamiltonian eigenstates and then to use the Fermi Golden rule [22] for the scattering 

rates from one eigenstate to another. This approach leads naturally to the Pauli Master 

Equation (PME) for the time variation of the diagonal elements of the density matrix 

in the Hamiltonian representation.  

 

(1.4.23) 

 

Wij is the probability per unit time of a transition occurring from the state labeled i to 

the state j as given by the Fermi Golden rule of first order time dependent perturbation 

theory (Eint is the energy of the scattering mechanism, e.g. a phonon energy) 

 

 (1.4.24) 

 

 A general equation for transport using the density matrix, as pointed out 

previously requires the solution of Eqn (1.4.20) or (1.4.22), thus including the off 

diagonal elements as well. However, in the weak scattering limit, for a closed system 

(i.e. no open boundaries), it has been shown by Van Hove [66] that the off-diagonal 

elements in the density matrix remain negligible under weak scattering interactions 

and Hamiltonian evolution, provided that the initial state is quasi-diagonal in the 

Hamiltonian eigenstates. The PME ignores the non-diagonal elements of the density 
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matrix, by assuming that the scattering terms only re-distribute the eigenstate 

populations. Recently, this result has been extended to open systems by Fischetti [67], 

under the assumptions that the dephasing length due to the external particle reservoirs 

is large compared to the dimensions over which transport is considered (i.e. the 

physical dimensions of the device). For degenerately doped silicon, this length is 

atleast around 50 nm [68] and so the PME can be used for analyzing devices that are 

of the order of this length or smaller.  

 The biggest advantage that the PME offers over the full density matrix or 

Wigner function transport equation is that it is amenable to a Monte-Carlo solution 

(being a master equation with diagonal dominance) and hence the enormous work that 

has been performed on those methods can be directly applied to it. Several very 

encouraging recent results have appeared in the literature including the effects of band 

structure, with realistic geometries [67-69] to investigate the onset of ballisticity and 

interference effects etc. at small geometries in two dimensions and steady state. They 

suffer from a similar drawback as the Monte-Carlo method in terms of computational 

cost – the PME is even more intensive to solve numerically because of the 

requirement of solving the full multidimensional eigenvalue problem at each time step 

instead of simple semiclassical dynamical equations as with the BTE.  This is a 

formidable problem [70] by itself.  

 

1.4.6 Self-Consistent Schrödinger-Poisson Solutions 

 The PME represents transport in the weak scattering limit, when the dephasing 

lengths in the contacts are larger than the device dimensions. If scattering, in the active 

device regions of this length is ignored completely, then the PME need not be solved 

and the only system that needs to be solved is that constituted by the multidimensional 

Schrödinger equation and the Poisson equation [70].  
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 In this limit, all the scattering occurs at the contacts only and this can be 

modeled by assuming that the contacts inject a thermalized distribution into the 

device, consistent with their Fermi levels, as in the Landauer formalism [43]. All 

interference and quantization effects in the active device region are explicitly included 

in this treatment. Frequently, open boundaries are treated using the quantum 

transmitting boundary method (QTBM), due to Lent and Kirkner [73], in which the 

transition from device eigenstates to traveling wave like states in the leads is carried 

out elegantly.  

 The Schrödinger-Poisson system has been investigated extensively with 

respect to semiconductor devices. Use of the effective mass approximation in 

conjunction with this was pioneered by Stern [74] for an investigation of inversion 

layer physics. Inversion layer quantization and barrier repulsion in a MOSFET [75], 

thin- film SOI devices [76], double gate devices [77], resonant tunneling diodes [78], 

single band tunneling [79], quantum wells [80] etc. have all been explored in the last 

decade using these minor variations of these methods. Classical drift-diffusion 

simulators often use an intermediate Schrödinger-Poisson solver [81] in regions where 

quantum effects are important, to correct the charge densities and potential in the grid. 

Typically this is done only in one-dimensional slices in the device for computational 

ease by making use of the inherent anisotropy in the devices. 

 

1.5   QUANTUM TRANSPORT – MACROSCOPIC APPROACHES 

 The previous section dealt with the various levels of detail at which statistical 

transport calculations can be carried out. All the methods described have the 

commonality of being very expensive computationally for use in practical engineering 

design situations.  

 



 

28 

1.5.1 Density-Functional Theory 

 Prior to the 1960s it was believed that a quantum mechanical description of a 

many-body system, necessarily involved an explicit or implicit solution of the many-

body Schrödinger equation. All approximate treatments were believed to originate in 

the inability to render an exact solution to this equation and the consequent 

requirement to make assumptions on their nature.  

 In a series of path breaking papers [82-84], Walter Kohn and co-workers 

showed in the early 1960s that this viewpoint is unnecessary. They proved that the 

single particle density, in the quantum mechanical many-body ground state can be 

viewed as a fundamental quantity and that all observables in this ground state can be 

expressed as universal functionals of this density [82]. This shift in emphasis from the 

solution of the many-body Schrödinger equation, which is a function of all the N 

coordinates, to a single-particle density, which is a function of position only, 

represents a tremendous theoretical triumph and simplifies the numerical calculation 

of ground state properties. This new formalism, with the density as a fundamental 

variable and all other quantities expressed as functionals has come to be known as 

Density Functional theory (DFT).  

 In DFT, the problem is shifted from one of determining the eigenfunctions of 

the many-body Hamiltonian, to determining the universal functionals that represent 

the self-consistent energies due to Coulombic interactions as well as due to exchange 

and correlation.  The approximations made in DFT are all due to the unknown nature 

of these universal functionals and in practice, empirical assumptions are made for 

these based on one of several available treatments for specific cases [85] – viz. for the 

homogeneous electron gas (the local density approximation – LDA), or the slowly 

varying inhomogeneous gas (generalized gradient approximation – GGA) etc. These 
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are in turn conveniently interpreted as equations of state for the quantum mechanical 

system at zero temperature.  

  Approximate extensions of DFT to include degeneracy, excited states [88] etc. 

are known and are now standard. DFT is now, the tool of choice for investigation of 

electronic properties of many-body systems.  The correlation and exchange energy 

contributions in DFT are only of importance for very high densities – they will 

therefore be crucial for an understanding of metals but are relatively unimportant for 

semiconductors where the carrier concentrations do not often exceed 1020 cm-3. 

 Since the many-body ground state, is one coherent pure state (or several pure 

states at the same energy when there is degeneracy) and is theoretically, exactly 

described using the macroscopic single particle density, it is obvious that there is no 

contradiction between the two independent facets of quantum effects on the one hand 

and a macroscopic description on the other. DFT is however, in the rigorous sense, 

only applicable to zero temperature systems, and has no flow or transport processes 

included in it explicitly.  

 

1.5.2 Thomas-Fermi Theory 

 The best known semiclassical approximation to quantum mechanics is the 

Thomas-Fermi approximation [85,86], which is an equilibrium theory obtained under 

the assumption of a slowly varying potential (and thus a slowly varying density). This 

can be viewed as a special case of DFT where the many-body system is described by 

the occupation of single particle eigenstates and exchange and correlation effects are 

ignored. The Thomas-Fermi relation between the potential and the density hinges at 

the core of the theory, 

 

       (1.5.1)                       
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The relation is obtained by considering a homogeneous electron gas (i.e. in a constant 

potential) and then allowing the potential to vary slowly in space. The above relation 

is equivalent to assuming a kinetic energy functional in terms of the density as 

determined from the homogeneous electron gas, in the DFT, viz. 

 

(1.5.2) 

  

where C1 is a constant. 

 The Thomas-Fermi theory has been phenomenally successful in approximating 

the solutions to many-body problems in quantum mechanics [87]. Originally proposed 

for an understanding of the electronic structure of atoms, it has since been used for an 

understanding of the properties of systems as diverse as molecules, solids, and even 

stars. Several material properties influenced by charge carriers including the dielectric 

constant, screening etc. [87,88] have been investigated in this approximation, in the 

linear response regime.  

 The von-Weizsäcker correction [89] to the kinetic energy functional of 

Thomas-Fermi theory contains gradient corrections due to the inhomogeneities in the 

density, and has been shown to yield excellent values for electronic states in heavy 

atoms.  

 

(1.5.3) 

 

C1 is the same as in Thomas-Fermi theory, and C2 is frequently considered an 

adjustable parameter [90] to fit experimental results for the ground state properties.  

 Though strictly an equilibrium theory, the Thomas-Fermi equation of state 

above has been used in hydrodynamic descriptions of transport at low temperatures 
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[91,92], by considering the above relation for the kinetic energy density as the 

requisite closure relation required. This leads to a quasi-static generalization of the 

density-functional theory.  

 It can be seen that the Thomas-Fermi relations (1.5.3) above, are derivable (at 

zero temperature) from the following assumption for the equilibrium Wigner function,  

 

 (1.5.4) 

 

 

The above function can be obtained formally from a complete quantum description as 

the lowest order term in the expansion [94] for the equilibrium Wigner function in the 

Planck’s constant. Higher order approximations to the equation of state above can be 

made for finite (low) temperature by using the Sommerfield expansion [17] for the 

Fermi function above. These establish the fundamental derivation of Thomas-Fermi 

theory from a statistical description. The above equation will reduce to the Boltzmann 

distribution function for high temperature and will therefore yield the very familiar 

classical equation of state (1.3.5) for an ideal gas and thus the drift-diffusion equations 

when used in the hydrodynamic equations.  

 

1.5.3 Macroscopic Quantum Transport Approaches 

 The descriptions of the statistical approaches to quantum transport in previous 

sections have repeatedly stressed the tremendous computational cost involved in these 

calculations, particularly in multiple dimensions. These are in addition to the 

difficulties involved in describing the various inputs to these transport descriptions, 

viz. the self-energies, scattering functions and open boundaries, at the microscopic 

levels. This is especially owing to the fact that it is very difficult to calibrate these 
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microscopic quantities from experiments (as compared to macroscopic parameters 

such as mobility or effective mass for instance), which by their very nature, usually 

yield aggregate information.  

 The great success of DFT and Thomas-Fermi theory must be seen as an 

encouragement for attempts to treat transport with quantum effects at a macroscopic 

level, i.e. with densities and current densities as basic variables rather than going 

through the detailed nature of occupied states. By sacrificing detail in the treatment, 

one can hope to achieve a description that is numerically easy to implement and can be 

solved for in computational times that are reasonable for use in engineering design. 

We would like to be able to describe the lowest order quantum effects of quantization 

and tunneling within the formulation. Obviously, these ideas must be viewed in the 

spirit of similar macroscopic theories – e.g. the drift-diffusion formalism. Similar to 

that theory, several parameters will have to be introduced that model the average 

effect of energy shifts due to quantization etc. (which cannot be obtained using a 

description using just the first two moment equations since the energy information is 

not available). Such models will be the focus of our attention for the rest of the thesis.  

 

1.6   DISSERTATION OVERVIEW 

 In this dissertation we make a case for macroscopic modeling of transport 

including quantum effects. The background and the motivation for this have been 

established in the current chapter which provided a brief description of the various 

statistical approaches to quantum transport.  
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Figure 1.2 A representation of the quantum transport theories at different levels of 

detail, from the most detailed (NEGF) to the macroscopic, density-gradient 

and quantum potential models.  
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Chapter 2 introduces the quantum hydrodynamic equations obtained from a moment 

expansion of the Wigner function or density matrix equation of motion (1.4.20). The 

problem of closure of the hydrodynamic hierarchy is first discussed and the necessity 

of understanding the equilibrium ensembles to aid in this closure is shown. Some 

approximations for equilibrium and the corresponding transport equations – the 

density gradient method and the smooth quantum potential model, that they lead to are 

derived followed by a discussion on their applicability to situations prevalent in 

common semiconductor devices.  

 Chapter 3 discusses the description of quantization effects in the inversion 

layer of a MOSFET and potential wells using the density-gradient method. The 

boundary layer structure of these equations is examined and comparisons to one-

electron effective mass quantum mechanics are made.  

 Chapter 4 presents a description of the single band tunneling process, a 

completely quantum mechanical phenomenon in purely macroscopic terms. This 

represents a significant achievement of this dissertation that shows conclusively that 

an average description in terms of densities and currents of purely quantum 

mechanical transport phenomena is possible.  

 Chapter 5 discusses the main contributions of this dissertation and provides 

several suggestions for future research that can be based upon this dissertation.  
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CHAPTER 2 

QUANTUM HYDRODYNAMIC TRANSPORT MODELS 

 

2.1  INTRODUCTION 

 The previous chapter gave a panoramic view of the various levels of detail at 

which one can model the transport properties of semiconductor devices. Microscopic 

approaches starting from distribution functions and statistical mechanics can yield a 

wealth of information about the device behavior at the cost of significant 

computational complexity. More often than not however one is interested in modeling 

the aggregate behavior of devices (the terminal characteristics) with acceptable 

accuracy for use in engineering design. Macroscopic models derived from moment 

expansions of the Boltzmann transport equation, such as the drift-diffusion model and 

the various energy transport and hydrodynamic models have fulfilled this requirement 

admirably in regimes where transport is predominantly classical. In contrast there are 

no such general models available that can describe quantum transport fully 

consistently even in a low energy transport regime in spite of considerable research 

efforts. This chapter takes a close look at the derivation of the quantum hydrodynamic 

models that have been suggested to bridge this gap. 

 There are two major ingredients that are necessary in any consistent 

microscopic transport theory. The first is an adequate description of equilibrium – i.e. 

one must have such information about the equilibrium state as will allow us to 

calculate the average values of the observables that we are interested in. The second is 

a model for how this equilibrium distribution function evolves under the action of 

external forces, both deterministic and stochastic (the latter are what lead to 

irreversibility in the transport process). 
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2.2  EQUILIBRIUM DISTRIBUTION FUNCTIONS 

 Since Newton’s law is a second order differential equation, the complete 

description of the classical state of a single particle requires the statement of its 

position and momentum at some point in time (i.e. the location of the particle in phase 

space). Hence for an adequate statistical description of the state of an ensemble of 

particles we require information about their distribution in phase space. In quantum 

mechanics, the definition of a phase space is not intuitive because of the non-

commuting nature of the space and momentum operators and has to be derived based 

on principles of quantum-classical correspondence. However, one can recognize that 

for an adequate quantum statistical description, we need to know both the complete set 

of Hamiltonian eigenstates and the occupation probabilities of these states.  

 The statistical mechanics of large systems in equilibrium, through notions of 

the canonical and the grand-canonical ensemble yield the very general concepts of 

temperature, chemical potential and the partition function. These are as valid for 

quantum mechanical systems as for classical ones. Through these we get the 

distributions in energy that have to be satisfied by the individual microsystems (e.g. 

the particles) constituting the large system. For the case of carriers in semiconductors 

these will specialize to the Boltzmann distribution for a non-degenerate carrier gas and 

the Fermi-Dirac distribution function for the degenerate case when the exclusion 

principle is important.  

  

            -    Boltzmann Distribution 

 

            -   Fermi-Dirac Distribution 
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In the above equations, the quantity b  is the inverse temperature 1/kBT and Z 

represents the partition function given by the usual sum over available energy states.  

 For the case of classical carriers, the above are readily translated into phase 

space distributions, by trivially noting that the energy is the sum of the potential and 

kinetic terms and is essentially a continuum, e.g. the Boltzmann distribution yields the 

Maxwell distribution 

 

(2.2.1) 

 

This equilibrium phase space distribution (or its Fermi-Dirac analogue) is used, 

implicitly or explicitly, in the derivation of all the various classical macroscopic 

transport models.  

 In quantum mechanics, we can define a system quite generally as an incoherent 

superposition of states, by providing the probabilities gI of the system being in one of a 

number of pure states {jI , I = 0,1…}. Then, to get the expectation value of an 

observable A in this ensemble of particles we need a two-stage averaging process, i.e. 

we need the expectation value of the observable in each of the pure states (a coherent 

superposition of eigenvectors ui in some basis) and then perform a weighted sum of 

these values over the occupation probabilities of the different states. In other words we 

will have, for some set of pure states {jI , I = 0,1…}, 

   

 

(2.2.2) 
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where cj
(i) are the weighted coefficients for the eigenstates ui. By simple manipulation, 

this can be written as the trace of the product of the operator A with a density operator 

r, which depends only on the state of the system (i.e. the states jI and the weights gi.)  

 

(2.2.3) 

 

  

 In equilibrium, the probability of occupation of the available states is known as 

a function of energy, and therefore the set of states ji can be taken to be the set of 

many-body Hamiltonian eigenstates {y i , i = 0,1…} for which the energies are 

constant eigenvalues.  Therefore, the density matrix in equilibrium becomes diagonal 

in the Hamiltonian representation and is,  

 

(2.2.4) 

 

Thus, to describe equilibrium we need the complete set of Hamiltonian eigenstates.  

The determination of the density matrix is the fundamental problem of equilibrium 

statistical mechanics [1].  

 We can now, examine the properties of the Weyl transform of the density 

matrix, i.e. the Fourier transform with respect to the difference coordinate h, in the 

difference coordinates defined as under,  

 

 

(2.2.5) 
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This function was originally defined by Wigner in order to investigate the quantum 

corrections to the average energy of an inhomogeneous Maxwell gas in thermal 

equilibrium. One can immediately see from the properties of Fourier transforms that 

the following hold for the densities n(R,t) and n(p,t) in R and p space.  

 

(2.2.7) 

  

 

The above two relations allow us to interpret the quantity p as a parameter 

corresponding to the classical momentum and the space (R, p) as a quantum phase 

space. The function f is called the Wigner function and is a generalization of the 

classical phase space distribution function to include the effects of quantum 

mechanics. The reader is referred to [2] for a detailed discussion of the properties of 

the Wigner function and the quantum phase space.  

 For a rigorous treatment of a system of charge carriers in semiconductors, the 

states y i, that we use in the equation must be the solutions of the full many-body 

Schrödinger equation. However, since the solution of this equation is intractable we 

can use the usual Hartree approximation (or the Hartree-Fock approximation, if we 

wish to include correlation and exchange effects), and convert the description to a 

single-particle description, in which case the Hamiltonian eigenstates become the 

single-particle eigenstates and the coordinates x and x’ become the single particle 

space coordinates.  

 It is obvious that even in the above single-particle approximations the density 

matrix is not known a priori as an explicit, exact function of the space coordinates x 

and x’. The single-particle Hamiltonian, for instance, is given by the differential 

operator, 
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(2.2.8) 

 

Therefore the density matrix in equilibrium is a functional of the self-consistent 

potential. Since the eigenstates are not generally known as explicit functionals of the 

potential, we cannot write down the density matrix very generally either. Moreover, 

the potential V in equilibrium is usually not known and has to be obtained self-

consistently with the density matrix. This can be done numerically through a self-

consistent iteration of the Schrödinger and Poisson equations. For the purposes of 

deriving macroscopic transport equations, however, we will need analytical forms of 

the density matrix (or the Wigner function) from which we can assume a linearized 

response for the non-equilibrium distribution function to calculate averages. We will 

therefore have to look for approximations to the density matrix in equilibrium under 

special assumptions on the potential.  

 For the non-degenerate case, definition of the density matrix in equilibrium can 

be shown to be equivalent to the following initial value equation (as can be directly 

verified from the Schrödinger equation) [8] 

 

 

(2.2.9) 

 

 

This equation (called the Bloch equation for the density matrix henceforth) can be 

solved numerically for the density matrix, instead of having to solve the Hamiltonian 

eigenvalue problem and then performing the sum for the density matrix. Using the 
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definition of the Wigner function we can easily show that the equivalent equation for 

the Wigner function is,  

 

(2.2.10) 

 

 

 

The initial condition for the density matrix reduces to the simple initial condition that 

indicates the absence of any quantum effects at infinite temperature (i.e. all states in 

phase space are occupied with equal probability), 

 

(2.2.11) 

 

The operator q’ is a pseudo-differential operator and should be understood in the sense 

of a series expansion of the cosine term, with the differential operators with respect to 

p acting only on the Wigner function and the operators with respect to R acting only 

on the potential. When the potential is not differentiable, or varies very sharply, this 

operator should be replaced by an integral expansion using the Green’s function of the 

differential operator in (2.2.10) [3]. 

 The equations (2.2.9) and (2.2.10) are very useful to derive approximations for 

the equilibrium Wigner function under particular assumptions on the potential. We 

will now look at typical expressions for the Wigner function and the density matrix for 

carrier gases. We will start with a free electron gas to get a feel for its distribution 

function, and then look at two specific approximations for the equilibrium distribution 

function that can be usefully employed in deriving transport equations. The first is a 

method that is based on a small parameter expansion due to Wigner (and later 
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Kirkwood [4]) while the second is based on the Born approximation of the Bloch 

equation for the density matrix. In addition to these there are also a separate series of 

approximations based on the “effective potential” methods [9,10] , which are intended 

to approximate the carrier density in the same form as in classical transport (i.e. in the 

Boltzmann form) but with modified expressions for the potential. These are however 

not directly relevant to what we will discuss in succeeding chapters and are hence not 

covered here.  

 

2.2.1 Density matrix and Wigner function for a free carrier gas 

 For a free carrier gas, the Hamitonian eigenfunctions are given by, 

 

 (2.2.12) 

 

The sum for the density matrix can be explicitly performed as an integral in k-space to 

yield the Gaussian in the difference variable (x-x’),  

 

(2.2.13) 

 

This is also directly obtainable from the Bloch equation (2.2.9), since for this special 

case the initial value problem reduces to the heat equation. The Wigner function then 

becomes the classical Maxwellian distribution function through (2.2.5),  

 

(2.2.14) 

 

In the absence of an external potential the density of the gas is homogeneous in space. 

A free carrier gas behaves classically as seen from the above distribution function. 
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Quantum effects only become evident in the presence of variations in the potential, 

which translate to inhomogeneities in the density.  

 

2.2.2 Wigner function in a slowly varying potential  

 In pure-state quantum mechanics, the analysis of the Schrödinger equation for 

a slowly varying potential plays a very important role as it allows one to write down 

the approximate wavefunctions and energy eigenvalues. For instance, the WKB 

approximation yields semiclassical wavefunctions that provide information on the near 

classical dynamics, as well as purely quantum mechanical phenomena (such as 

tunneling) to the leading order. 

 In the same spirit one can analyze equation (2.2.10) to get the lowest order 

deviations from the classical equilibrium phase space distribution function due to 

quantum mechanics. It is first convenient to cast the equation in a dimensionless form 

that is amenable to a perturbation series expansion solution.  To do this, one can scale 

the space coordinate with a large length scale d, the potential by the thermal voltage, 

and the momentum by the thermal momentum (i.e. the momentum of a carrier with 

thermal energy kBT) to get [5],  

 

(2.2.15) 

 

 

We have changed the label on the space coordinate of the Wigner function to x from R 

to be consistent with the labeling of the classical distribution function. Assuming that 

the parameter e is small, one can now look for series expansions of the solution of the 

form,  
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(2.2.16) 

 

Since the parameter e is zero for classical evolution, the first term (i=0) in the above 

expansion should be the classical response. Therefore the initial condition for the first 

term is identical to (2.2.11) while the rest of the terms in the expansion are zero at 

infinite temperature.  

 Substituting now the above expression in the differential equation and equating 

terms of each order e, one gets for the zeroth-order solution, i.e., the classical 

distribution function.   

    

 (2.2.17) 

 

Since the cosine series has only even order terms in the expansion, the odd order terms 

in the expansion (2.2.16) drop out and the lowest-order quantum correction is given by 

the equation,  

  

(2.2.18) 

 

This yields as the lowest order, purely quantum correction to the equilibrium phase 

space distribution, 

 

(2.2.19) 

Hence the total distribution function to this order in e is given by 

 

(2.2.20) 
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 The above distribution function can also be written in a form that is more 

convenient and illuminating for the purposes of deriving the transport equations. We 

can also get a different expression for the “quantum potential” that leads naturally to a 

set of linearized transport equations. We can see that, for the above distribution 

function, the density is given by straightforward integration as, 

 

 (2.2.21) 

 

We therefore have, 

               (2.2.22) 

 

Using the above relations to eliminate the potential in (2.2.20) by long algebraic 

division, we can write,  

  

(2.2.23) 

 

This can now be taken to represent a fundamental relationship between the distribution 

function and the density, as opposed to the distribution function and the potential. One 

can then linearize the transport equations about equilibrium by assuming that Eqn 

(2.2.23) holds locally even when the system is globally off equilibrium.   

 Eqns (2.2.20) and (2.2.23) yield very close asymptotic approximations to the 

equilibrium Wigner functions in regions where the potential is smooth. However, they 

may differ significantly near a large and sharply varying potential perturbation. On the 

other hand, as opposed to the expansion of the distribution function on the derivatives 

of the potential, Eqn (2.2.23), in yielding an expansion directly based on the density-

gradient is fundamentally free of problems arising from the non-analyticity of the 
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potential near an abrupt barrier. The functional form of Eqn (2.2.23) simply requires 

the density to be twice differentiable, a condition which will generally hold, since the 

density will be smooth even at abrupt potential barriers. The curvature of the potential 

near such perturbations can be very large, but the curvature of the logarithm of the 

density will still not be very large.  

 Instead, what makes Eqn (2.2.23) inaccurate in the vicinity of an abrupt and 

large potential perturbation is not so much the largeness of the density gradient (or the 

gradient of the logarithm of the density to be precise), but that the assumed 

relationship between the potential and the density, i.e. Eqn (2.2.22), can be far off the 

mark. We need to examine the actual relationship in a more rigorous manner near such 

abrupt potential perturbations to find the appropriate form of the expansion for the 

distribution function, and whether Eqn (2.2.22) is sufficiently accurate to second order 

in Planck’s constant.  

 

2.2.3 Density Matrix for Small Potential Perturbations 

 Another form for the equilibrium distribution function can be obtained under a 

different assumption on the potential from Section 2.2.2. As mentioned earlier, for the 

free carrier case, the Bloch equation (2.2.9) for the density matrix reduces to a heat 

equation with the initial condition given by the uncorrelated density matrix at infinite 

temperature. This equation has a Gaussian in the difference coordinate as its solution 

for a finite temperature as derived in Section 2.2.1.  

 The Green’s function of Eqn (2.2.9) in the absence of any potential is the same 

as the Green’s function of the heat equation, i.e. a Gaussian. This Green’s function can 

be used to write an implicit solution for the density matrix in equilibrium.  
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(2.2.24) 

 

We can treat the above implicit solution as the basis of an iterative scheme for the 

density matrix. Then if we use the equilibrium free carrier solution (2.2.13) as the 

starting point, we can write the first iteration for the density matrix, the Born 

approximation [5], in the above by replacing the full solution r by the free-carrier 

solution ro.  

 On algebraic simplification, the above solution can be written in terms of a 

smooth quantum potential Vq as,  

(2.2.25) 

 

where Vq is a Gaussian smoothened version of the classical self-consistent equilibrium 

potential [5]. 

 The form (2.2.25) of the density matrix, avoids the problems inherent in the 

derivation of Eqn (2.2.20) for sharply varying potentials. However, the Born 

approximation is only good for small absolute values of potential perturbations in Eqn 

(2.2.9). This requires that the potential energy perturbation must not be much larger 

than the thermal energy which is not practical for the large abrupt insulating barriers 

that are encountered in real devices.  

 

2.3  QUANTUM HYDRODYNAMIC EQUATIONS 

 The quantum hydrodynamic equations (QHD) equations are obtained in a 

similar manner from the equation of motion of the Wigner function (1.4.22) as the 

classical hydrodynamic equations are obtained from the BTE, viz. by a method of 

moments to average out the information in momentum space. The first three moments 
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of the hierarchy are formally identical to the classical hydrodynamic equations (1.3.3). 

They are reproduced here for the sake of convenience [8] 

 

 

 

(2.2.6) 

 

 

The quantities appearing in these equations have the same meaning as in classical 

hydrodynamic modeling which was described in Section 1.3.2 – the dependent 

variables are n the carrier density, P, the momentum density and W, the energy 

density.  As in the case of the classical equations, the QHD equations are incomplete 

on truncation at any level and will have to be completed through appropriate closure 

relations.  

 The formal equivalence of the first three equations in classical and quantum 

transport implies that any quantum mechanical properties will have to enter only 

through the closure relations for truncating the hierarchy. As was seen in the context 

of the classical hydrodynamic equations, the closure will have to be performed 

assuming a form for the non-equilibrium distribution function.  

 

2.4  DENSITY-GRADIENT THEORY 

 The density-gradient formalism is a generalization of the drift-diffusion 

formalism to include quantum effects. It is formally obtained by closing the hierarchy 

(2.2.6) at the second (momentum density) equation through a local equilibrium 

assumption for the stress tensor P and by ignoring the convective term uP.  
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 As has been pointed out in (1.3.4), the stress tensor can be defined in kinetic 

terms as an average on the non-equilibrium distribution.   

  

 (2.2.7) 

 

The particular form of the stress tensor used in the density-gradient theory is derived 

from assuming the non-equilibrium distribution to be locally of the form of (2.2.3) 

with a final drift in the momentum space. This yields the following closure relation [6] 

for the stress tensor, which can be interpreted as an equation of state for the density-

gradient gas.  

 

(2.2.8) 

 

On closing the hierarchy with the above relation at the current equation, and after 

trivial manipulations of the resulting terms we arrive at the fundamental transport 

equation of the density-gradient theory in steady state.  

 

(2.2.9) 

 

A similar equation can be derived for holes. These transport equations have to be 

solved self-consistently with the continuity equation and the Poisson equation for the 

potential.  
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2.5   SUMMARY 

This chapter examined in detail the derivation of the different equations used in the  

macroscopic treatment of quantum effects in semiconductor devices. The Bloch 

equation was introduced and the commonality between the two different formalisms, 

i.e. the density-gradient theory and the smooth quantum hydrodynamic model in terms 

of their derivation based on the free carrier Wigner function or the density matrix was 

repeatedly stressed. The next chapter will examine the behavior of density-gradient 

theory in more detail in situations where quantum effects are important but the 

conditions of their derivation are explicitly violated.  
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CHAPTER 3 

MACROSCOPIC DESCRIPTION OF BOUNDARY LAYERS AND 

CONFINEMENT EFFECTS 

 

3.1 INTRODUCTION 

 The previous chapter gave an account of the derivation of the density-gradient 

equations and the smooth quantum potential model and discussed the aspects of their 

derivation near large abrupt potential perturbations. These equations are derived from 

approximations to the full phase-space distribution function near such perturbations; 

but nevertheless, do exhibit a boundary layer behavior near such interfaces. Since we 

are mostly interested in the formulation to yield us aggregate quantities such as 

threshold voltage shifts and capacitances, they merit further investigation.  

 The density-gradient equations have been applied in several cases to the 

simulation of inversion layer physics [1-5] where their derivations make them of 

dubious validity. This chapter is devoted to assessing aspects of the boundary layer 

behavior of these equations near insulator interfaces and to gain an understanding of 

the level to which the macroscopic physics is approximated by these equations.  

 The methods employed in this chapter are simple, intuitive and semi-analytical 

in nature, and therefore an insight into the behavior can be obtained. We will first 

analyze the boundary layer behavior of the equations by expanding the solution to the 

equations in a singular perturbation series near the interfaces. We will then compare 

the asymptotic results to what is expected from quantum mechanics in analytically 

solvable cases. We will next consider the form of the DG solutions for confinement in 

a potential well. The emphasis here is on getting a clear idea of the nature of solutions 

obtained from the DG equations and their relation to one electron quantum mechanics.  
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3.2 DENSITY GRADIENT EQUATIONS 

 We will first briefly reproduce the density-gradient (DG)/Poisson equation 

system here in the form used in this chapter for the sake of completeness. We will be 

interested in static (Jn = Jp = 0) conditions in this chapter and will hence write down 

the equation forms relevant for this specialized case.  

 The general transport equation in DG theory, for electrons is (2.2.9), 

   

(3.2.1) 

 

 

 

The coefficients bn and bp refer to the strength of the gradient effects in the electron 

and hole gases and F is the electric field, the negative gradient of the classical  

electrostatic potential. The assumed forms of bn  and bp are, 
 
 

 (3.2.2) 

 

 In the above, r can be shown to take the values of 1 for a low-temperature, 

high-density regime to the value of 3 for a high- temperature and low-density (nearly 

classical) regime. In the intermediate range, it is usually used as a phenomenological 

fitting parameter between the two limits [2]. 

 The DG transport equation has to be solved for electrons and holes, self-

consistently with the continuity equations and Poisson’s equation in the 

semiconductor,  
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(3.2.3) 
 
  
 

(3.2.4) 

 
For the static conditions that we consider here and for electrons, we will get,  

 
 

(3.2.5) 
 
 

 Assuming that the density is non-zero almost everywhere (except maybe on the 

boundaries, for strict confinement), we can integrate the above equation directly to 

yield a fundamental relation for the variation of the density.  
 
 
 

(3.2.6) 
 
 

where C is an integration constant. The above equation has to be interpreted as 

representing the constancy of a generalized electrochemical potential for electrons, 

under static conditions, defined by the left hand side of the expression. The constant C 

can be obtained from the value of this potential in a nearly classical region of the 

device where the gradient effects are not important and the density is assumed to be 

known (for instance at a contact).  

 The relationship between the diffusion coefficient (Dn) and the mobility (mn) is 

dependent on the conditions (degenerate or non-degenerate) of the electron gas and 

can be written as a function of the density in one of many available forms in the 

literature. For instance a particularly convenient one for numerical simulation is [6] 
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(3.2.7) 

 

with, a1 = 4.8967, a2 = 0.1334, a3 = 0.0450 and z = n/Nc obtained from a Pade 

approximation of the Fermi integral. 

 A convenient way to write (3.2.6) is in terms of the auxiliary variable s, the 

square root of the density n.  
 
 

(3.2.8) 
 
 

3.3 BOUNDARY LAYERS IN DENSITY-GRADIENT THEORY 

 For a given potential profile, with an infinite (or large) abrupt barrier as a 

boundary condition, (3.2.6) will exhibit a boundary-layer behavior [7], as shown in 

Fig. 3.1. This owes to the fact that the highest order derivative of the density, the DG 

term, is multiplied by the small parameter bn given by (3.2.2).  

 We will first examine the solution of Eqn. (3.2.6) in the vicinity of a simple 

abrupt potential barrier close to the flat-band condition. This situation is of great 

practical importance, since it is seen repeatedly in silicon MOS devices (the Si-SiO2 

interface) and in heterostructures. This will give us a good understanding of the 

leading order physics of barrier repulsion of carriers described macroscopically. For a 

slowly varying, smooth potential Vs (a more rigorous condition will be made explicit 

in the following section), the solutions that we discuss below will simply be 

modulated by the Boltzmann factor of the potential, in the spirit of the WKB 

approximation for the very similar Schrödinger equation. In fact, it is interesting to 

note that (3.2.8) is very similar to a Schrödinger equation, with the energy eigenvalue 

replaced by the non- linear logarithmic term and the kinetic energy operator replaced 

by the density-gradient coefficient (2bn).  
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Figure 3.1 A typical DG boundary layer solution showing the regions of validity of 

the inner solution close to the barrier and the outer solution away from the 

barrier. The variation of the outer solution is negligible inside the boundary 

layer if the potential does not vary significantly here. 

 

3.3.1 Quantum-mechanical solution for the boundary layer 

 The solution of the problem from one-electron effective mass quantum 

mechanics is particularly simple. Assuming that the potential energy is a constant Eb 

(the barrier height) for the left half plane and zero in the right, one can write, the 

solutions of the Schrödinger equation in terms of scattering states as [8], 

Ec 

Inner 
Solution 

Outer 
Solution 

n 
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(3.3.1) 

  

 

The transmission and reflection coefficients t(k) and r(k) are given by  

  

(3.3.2) 

 

These wavefunctions can be used to calculate the single-particle density-matrix and 

the single-particle density through,  

 

(3.3.3)  

 

Assuming a large barrier, i.e. (Eb >> kBT), we can perform the integration for the 

density outside the barrier explicitly [9], 

 

(3.3.4) 

 

The Hi(x) in the above expression refer to the Hermite polynomials [10] of degree i. 

The simpler version, corresponding to the case of infinite barrier height, is used in the 

model proposed by Hänsch [11] for the inversion layer of a MOSFET.  

 The above expression for the density can be modified in the presence of a non-

zero, slowly-varying potential on the right half plane using the WKB approximation 

for the wavefunctions in (3.3.3). We just provide the resulting intuitive expression 

from the calculation here,   
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(3.3.5) 

 

For the non-degenerate case and an infinite barrier, the solution for small x is given 

from (3.3.4) by 

 

 (3.3.6) 

 

 We also notice an interesting result – the density at a finite barrier interface is 

suppressed exactly by the factor (bEb) from the density in the absence of the barrier.  

(3.3.7) 

  

  

 Since the typical energies of the scattering states that take part in the 

summation above are around kBT , we must have the following condition, in order for 

the assumed WKB approximation to be accurate and to have a quasi-continuous 

spectrum, 

(3.3.8) 

 

For the non-degenerate case the condition above will usually be satisfied because of 

low densities, except at very high doping concentrations ( > 1019 cm-3). For degenerate 

conditions and Fermi statistics, the relevant length scale and energy will be the Fermi 

wavelength and the separation of the Fermi energy from the conduction band edge 

respectively.  

3.3.2 DG density profiles – Non-degenerate conditions  

 For this situation, the relationship between Dn and mn can be taken to be the  

thermal voltage (Vt), as is done for the usual form of the drift-diffusion equations. Let 
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us assume that the boundary condition for Eqn (3.2.6) is given by a vanishing density 

at the barrier interface (assumed at x = 0 for convenience), for now thus implying a 

very large barrier height. Then we get,  

  

 (3.3.9) 

 

Far away from the interface, DG effects are negligible and the density is the constant 

bulk density s0 and so evaluating the constant here we get,  

 

(3.3.10) 

 

The above equation is understood very simply – in the absence of a significant self-

consistent potential, there is a balance between the diffusion and “quantum diffusion” 

given by the gradient term. Since the coefficient of the gradient term bn is small, we 

will have a boundary layer near the interface, but the leading order behavior will be 

classical – i.e. we will see a constant density corresponding to s0 until we reach very 

close to the barrier where it will change sharply to comply with the boundary 

condition at x=0. 

 We would like to facilitate analytical comparisons with the QM solution of the 

solutions to (3.3.9). Numerical solutions will only yield aggregate information as to 

the variation and getting some insight as to the local behavior of the solutions would 

require a very fine grid because of the nature of boundary layer behavior. The other 

important function that will be served by these analytical approximations is that they 

yield a systematic approach [12] to derive drain current equations when quantum 

effects are described by the DG theory.  
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 We first cast the equation into a dimensionless form by scaling the length by a 

typical length term d (may be the device length, or a Debye length or some 

characteristic potential variation length), and s by s0. We also notice that the term  

  

  (3.3.11) 

 

has the dimensions of length and is related to the thermal wavelength lth (1.4.8) as 

above. Lin is a boundary layer thickness term. This is the typical order of the boundary 

layer thickness. For a large d we get 

 

(3.3.12) 

(3.3.13) 

 

where the variables are now dimensionless and the small parameter e  is defined 

naturally as the ratio of Lin to d.  

 For very small x (much smaller than the boundary layer thickness defined by 

3.3.11), we have, because of the boundary condition (3.3.13),  

 

 (3.3.14) 

 

Thus the solution for s yields,  

 

and is, at least in the sense of having a linear variation(noting that ns º ), consistent 

with the QM solution given by (3.3.6).  

 The outer solution for the density (so) is given by setting (e = 0) in (3.3.12). 

This yields as expected, the classical solution for large x. 
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(3.3.15) 

 

The above solution is obviously incorrect when x is of the order of e or lesser. The 

inner solution is the solution of (3.3.12) obtained by introducing the new length scale,  

 

(3.3.16) 

 

This yields,  

(3.3.17) 

 

where the subscript i (for inner) has been explicitly introduced to label the solution. It 

can be seen that the variable y is the original dimension, scaled by Lin. The solution of 

the above equation is readily written now, in the form of an inverse relation between si 

and y.  

 

(3.3.18) 

   

(3.3.19) 

 

The linear part of the relationship for the density yields,  

 
 

(3.3.20) 
 

 

The density (3.3.20) agrees exactly with the calculated QM density (3.3.6) close to the 

barrier edge for the particular case of r=1. However this is not the usual value used 
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Figure 3.2 A comparison of the boundary layer solutions obtained from QM (dashed 

line) and DG (solid lines) with different values of the gradient strength from 

(3.2.2) corresponding to r = 3, r = 2 and r = 1. An average effective mass of 

0.45 m0 corresponding to the silicon conduction band was used.  

 

for the high temperature (300 K) case in density-gradient simulations [1]. For the 

value of r=3 which is normally used, the densities are different by a factor of nine. 

This will not be important for capacitance calculations, where the thin boundary layer 

does not yield to a large charge contribution. However, for situations where the theory 

is to be used directly for barrier penetration problems (similar to what is discussed in 

the next chapter), the density at the interface (and therefore inside the classically 

Normalized 
electron 
density 

x (nm) Barrier 

interface 
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forbidden region) would be overestimated. The QM and DG solutions for the electron 

density near the barrier interface are shown in Fig. 3.2. 

 The other comparison that we can readily make is that of the width of the 

boundary layer. This is an important parameter, since it is directly related to the 

capacitance shifts due to the repulsion of carriers away from the interface. We define 

here this width, wb to be the distance from the interface at which the density achieves 

99% of the maximum value.  This definition is ad-hoc, but very similar results are 

obtained with other definitions as well.  

 For the QM solution, we get the equation [11], 

  
  

 (3.3.21) 

This readily yields  

 

(3.3.22) 

For the DG solution (3.3.) we get,  

 

(3.3.23) 
 
 
 
Numerically solving the for the above integral we get,  
 
 
 

(3.3.24) 
 
 

 

Thus the assumption r = 3, yields a much closer result to that calculated from QM for 

the width of the barrier layer.  
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 The above results indicate that in general, the values of the DG coefficient bn 

(through the parameter r), required to achieve an agreement with the QM solution are 

different depending on the particular aspect of the boundary layer that we are 

interested in. It is difficult to achieve a detailed fit to the complete QM density profile 

using the form (3.2.2) without imposing arbitrary parameterization. However it is 

obvious that the general trend of the density variation is captured in the DG 

simulations.  

 We will make a general comment at this point – the DG coefficient bn is a 

measure of the gradient corrections to the statistical free energy of the system. In 

particular it is related to the extent to which the kinetic energy density of the system is 

increased locally due to density gradients from the value given by the Thomas-Fermi 

theory. For a non-degenerate ensemble it has been shown in (2.) that the coefficient 

takes a value of (3.2.2) with r = 3. This, in turn was obtained assuming that the states 

are free-electron like, an implicit assumption made in the Thomas-Fermi theory. 

  When we have an abrupt potential barrier, only carriers with a high kinetic 

energy can penetrate close to the barrier. Hence the local kinetic energy density needs 

to be raised relative to that calculated by assuming a free-electron like ensemble as we 

explore regions close to the barrier. One can calculate the kinetic energy density  

explicitly from the scattering states (3.3.1), using the kinetic energy operator. This 

calculation yields,  

 (3.3.25) 

 

and thus the kinetic energy density is clearly seen to diverge at the barrier edge 

The DG theory approximates this by the density dependent expression : 

(3.3.26) 

 



 

75 

02ln2 2

0

=Ñ-+- sb
s

s
sVsV nts

02ln2 22 =Ñ-+- ssssVs e

( )souter Vs bexp=

 This is the fundamental reason for the inaccuracy of the DG solution with a 

constant r as compared to the QM solution for the boundary layer.  

3.3.3 Analytical solutions with a self-consistent potential 

 The previous sections derived an analytical solution in the inverse form for the 

DG equations at the flat-band MOS capacitor situation and compared it with the 

numerical QM solution. We can include the self-consistent potential Vs approximately 

to derive analytical solutions for the DG equations, provided, that (3.3.7) holds 

(actually, a simpler version merely requiring the variation of the potential over the 

width of the inversion layer might be sufficient). This can be applied to the inversion 

and accumulation conditions in the MOS capacitor.  Under this condition, we can 

ignore the variation of the potential within the boundary layer [12], obtain outer and 

inner solutions as before, and match them at the maximum charge density nmax.  

 The equation to be solved here is (3.2.8),  

 
(3.3.25) 

 

For simplicity, we have assumed the potential reference at sufficiently large x to be 

zero. As earlier, we scale the equations into dimensionless form, where additional to 

the scaling for s and x, the potential is scaled by the thermal voltage Vt.  
 
 

(3.3.26) 
 

The outer solution satisfies the equation with e = 0, yielding the usual Boltzmann 

variation of the density with potential.  

  
(3.3.27) 
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At some x = wmax the carrier density achieves a maximum nmax (corresponding to smax) 

and beyond this point, the inner solution is a valid approximation for the density. 

Because of the assumption on the potential (that it is a constant within the very small 

inner layer) we can simply use the inverse form (3.3.18) for the solution replacing the 

quantity s0 by the maximum smax to scale s. This yields as before,  
 
 

 
(3.3.28) 

 
 
 
for the inner layer density. 
 

3.4 DG BEHAVIOR FOR POTENTIAL WELLS  

3.4.1 Analytical DG solutions in a potential well 

 In deriving approximate analytical solutions for the DG boundary layer, we 

introduced a small parameter e that depends on the ratio of a typical length scale in the 

device d (for instance a depletion layer width) to the length scale of the boundary 

layer. We also stressed that the solution is reasonable only when the potential variation 

across the length of the boundary layer is negligible. The parameter e is no longer 

negligible when the device dimensions start approaching the length scale Lin as for the 

case of a quantum well, as d will then have to be chosen to be the device dimension. 

This case is seen in practical cases for ultra thin body SOI and double-gate devices as 

well as in the bulk MOSFET under strong inversion conditions. 

 We will look at the behavior of the DG solutions when the carriers are 

confined in a narrow potential well between x=0 and x=a. As above, we simplify this 

problem by ignoring tunneling and setting the boundary condition on density to vanish 

at the well boundaries. 
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 Physically, the density of states (DOS) in the quantum well is reduced from 

that of 3-D bulk to a 2-D DOS due to energy quantization. This should lead to a 

reduction in the total charge as compared to the values expected from a classical 

situation, which assumes no confinement and a 3D DOS.  

 One way of physically rationalizing the situation from the DG equations is that 

there is no “outer” solution in this case, since x everywhere is of the order of the 

boundary layer thickness. In this case therefore we use the inner solution (3.3.18) 

everywhere within the quantum well. The maximum value that the density achieves is 

at the middle of the well (by symmetry). Labeling this value by some ks0 for k < 1  

being the suppression factor in the density peak from what it would reach in the 

absence of confinement (i.e., the bulk density), we can write for s the implicit 

equation,   

 

(3.3.29) 

 
 

The value of k can be calculated by writing the boundary condition for the center of 

the well. 

 

(3.3.30) 

  
 

This in turn can be cast into a more convenient form by replacing the integral from the 

variable y to the variable q=y/k. This yields something very much like a quantization 

condition on k.  

 

(3.3.31) 
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Figure 3.3 (a) A comparison of the solutions for density in a potential well obtained 

from QM (dashed line) and DG (solid lines) with different values of the 

gradient strength from (3.2.2) corresponding to r = 3, r = 2 and r = 1. An 

average effective mass of 0.45 m0 corresponding to the silicon conduction 

band was used.  

 

3.4.2 Quantum-mechanical solution in a potential well 

The QM solution for the density is given by an explicit sum over the occupied 

sub-bands (labeled i below). Assuming an isotropic effective mass to make the 

comparison of the two cases transparent [13] 

 
 
 

(3.3.30) 
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Figure 3.3 (b) Similar plot of the QM and DG densities as in Fig. 3.3 (a) for a 

potential well width of 4 nm. The discrepancy in the densities is even more 

pronounced because of confinement not being captured in the DG method.  

 

The mass in the above Eqn. 3.3.30 can be easily related to the effective DOS in the 

conduction band edge Nc. The classical density expected is obviously  
 
 
 

(3.3.31) 
 
 

3.4.3 Comparison of the DG and QM solutions 
 

Figs. 3.3 (a) and (b) show the trends of these calculations for the two different 

potential well widths of 6 nm and 4 nm respectively. Since the density is symmetric 

the density in one half is shown for clarity of comparison of the peak density. It can be 
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seen clearly that none of the three values of r used in the DG equations compares well 

with the true quantum mechanical density shown in dotted lines.  It is also obvious 

that the discrepancy is significantly worse for the smaller potential well width. 

 The reason for the poor match between the DG solutions and the full quantum 

mechanical solutions is easy to understand. As pointed out in the previous chapter the 

density-gradient theory is derived assuming a perturbation expansion on the free 

carrier solution of the Bloch equation for the Wigner function. In both the cases 

considered above the presence of an abrupt potential barrier and a narrow potential 

well width violate this condition explicitly and therefore the perturbation expansion 

used for the derivation of DG theory is rendered invalid. Since problems of barrier 

penetration (tunneling) are in this regime (far from classical transport), it is very 

questionable whether these equations can be directly used in the treatment of tunneling 

transport at all. 

 

3.2 SUMMARY 

This chapter examined the behavior of the density-gradient theory equations with 

respect to their behavior in two special cases encountered very often in semiconductor 

cases. The first was the boundary layer behavior of the equations. It was shown that 

the equations show similar aggregate behavior to the full quantum mechanical solution 

near abrupt potential barriers but that the details of the solution for the density do not 

match very well. Secondly the behavior of the density-gradient theory in modeling 

confinement and quantization in narrow potential wells was considered and it was 

once again shown that the full quantum mechanical solution differs quite a lot from 

the density gradient solution.  
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CHAPTER 4 

MACROSCOPIC DESCRIPTION OF TUNNELING 

 

4.1  INTRODUCTION 

 In the previous chapter, macroscopic description of inversion layer 

quantization and quantum repulsion effects were explored using the density-gradient 

equations. It was shown that the equations describe the physics to leading order and 

show most of the qualitative average effects expected from microscopic quantum 

mechanical calculations.  

 This chapter extends the macroscopic formulation to include tunneling effects 

under large barrier potentials, by considering the form that the equation of state of the 

electron gas must take in those regions. The formulation presented is inherently one 

dimensional in nature, because a general approximate form of the carrier wavefunction 

cannot be written down in a multidimensional potential. However the ideas should 

carry over directly for the case of potentials that allow the Schrödinger equation to be 

solved by the separation of variables. 

 Our intention here is not to get the most accurate description of tunneling 

current for a particular device structure in a particular operating regime, say a 

MOSFET in the inversion regime, which can be obtained owing to the anisotropy of 

the MOSFET potential profile in any number of one-dimensional approximations, but 

rather to demonstrate that a purely macroscopic description of such a tunneling 

process is possible. Although we demonstrate the ideas for simple one-dimensional 

calculation here, the real power of these ideas will only be appreciated in multiple 

dimensions where the calculation of the energy states and the tunneling currents 

through a direct solution of the Schrödinger equation is impractical, both due to the 
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computational cost involved as well as due to the inherent difficulties in solving the 

equation numerically [1].  

 

4.2  CONVENTIONAL CALCULATION OF TUNNELING CURRENTS  

 Conventionally tunneling currents are calculated using techniques involving 

the solution of the one-electron effective mass Schrödinger equation. We will restrict  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 (a) Schematic representation of the bands and the direct and Fowler-

Nordheim tunneling components for electrons (E) and holes (H) in an 

NMOS transistor biased in inversion, from the conduction band (CB) and 

valence band (VB). 
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ourselves to a discussion of techniques for currents through MIM barriers and the 

MOSFET gate-oxide barrier in this section. Fig. 4.1 shows a schematic representation 

of the various direct tunneling and Fowler-Nordheim components of the gate current 

in a typical silicon MOS capacitor structure, with an oxide insulating layer. 

 In the simplest treatment of tunneling through an insulating barrier, the 

mechanism of current is assumed to be from the transmission of free electron like 

traveling waves (scattering states) impinging on the barrier [2]. The carrier spectrum is 

assumed to form a continuum in energy from the bottom of the conduction band on 

one side and the eigenfunctions are treated as traveling waves with a parabolic E-k 

relation set by the conduction band (valence band for holes) effective mass. A carrier 

of a particular wavevector k is assumed to have a probability of transmission through 

the barrier given by the WKB transmission function,  

 

                                  

(4.2.1) 

 

 

The current is then given by the difference of transmitted currents [Fig. 4.2 (a)] from 

either direction, the difference being due to the different populations of carriers on the 

two sides of the barrier owing to the different Fermi levels, i.e. 

 

 

(4.2.2) 

  

 Several minor variations of the above theme, accounting for the reflection of 

electron waves at the interface, which will yield a prefactor for the above probability  
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Figure 4.2 (a) Schematic representation of the traveling wave, constant amplitude 

eigenfunction form assumed in the transmission approach to calculating 

direct tunneling currents. This picture is accurate only there is no 

quantization due to the band bending, or for the higher energy states. 

 

[3], or those that take into account the conservation of the momentum parallel to the 

oxide interface in the tunneling process [4] have also been considered. The BSIM3 

compact model [5] is essentially a semi-empirical expression based on the above idea, 

of course with numerous fitting parameters to capture the variation in current over a 

large gate voltage range.  

 A more sophisticated approach for calculating the gate current is to take into 

account the gradual variation in the surface density of states from a 3-D like situation 

to a 2-D like situation under inversion [6] or accumulation [7]. This approach 

calculates the current after inversion as arising from the finite lifetime of carriers in 

states quasi-bound in the potential well formed by the conduction band and the oxide,  

Re [ y(x)] 
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Figure 4.2 (b)  Schematic representation of the amplitude of a quasi-bound inversion 

layer sub-band on a logarithmic axis. The finite amplitude of penetration 

past the finite width barrier is related to the energy broadening and thus the 

state’s lifetime which determines the tunneling rate from the sub-band. 

 

 

 

 

 

 

 

 

Figure 4.3 (a)  Typical density of states (DOS) plot with respect to total energy for a 

carrier in a confining potential. When states are quasi-bound due to 

tunneling, the levels are no longer sharp, but this cannot be seen on a linear 

scale.  
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Figure 4.3 (b)  Same situation as in (a), but the plot is with respect to the energy due 

to the motion in the confinement direction only – the delta functions at the 

quantized levels for bound states are broadened to approximate Lorentzians 

at slightly shifted energies for quasi-binding, shown exaggerated here 

 

interface [Fig. 4.3 (a)-(b)]. The quasi-bound state lifetime can be related to the 

imaginary part of the energy eigenvalues, introduced when the Hamiltonian becomes 

non-Hermitian due to the open boundary conditions [5] (see also Chapter 1), 

introduced because of tunneling.  

 These approaches, for the silicon inversion layer, usually also take into account 

the lifting of the conduction band degeneracy owing to the different effective masses 

that carriers might have (for instance the transverse and longitudinal masses for 

electrons, or the heavy hole and light hole masses for the valence band), for motion 

perpendicular to the interface [6]. Once again several variants of this basic method can 

be found in the literature, owing to different ways to estimate the quasi-bound state 

lifetime [8] based on semiclassical or wave-mechanical approaches exact versus 

approximate treatment of the band splitting etc. Yet another, totally different approach 
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is to use the transfer-Hamiltonian formalism [9,10] using WKB wavefunctions on the 

two sides.   

 There are in addition to these simple one-electron models, a few notable 

attempts at detailed simulations including the band structure and the short range order 

in the oxide, using density-functional theory techniques [11].  

 In all these models, the oxide effective mass is taken as a fitting parameter – 

the effective mass in the forbidden gap of oxide has been assumed at various widely 

different values in the literature ranging for electrons from around 0.3 m0 to around 0.6 

m0 and for holes over a similar range.   

 Correspondingly fewer models exist for the treatment of band-to-band 

tunneling, the efforts in that direction centered mostly on extensions of the Kane 

model [12] for direct bandgap semiconductors.  

 

4.3  TUNNELING MODELS IN DRIFT-DIFFUSION SIMULATORS 

 Classical transport simulators, based on the drift-diffusion equations typically 

assume zero current through insulating barriers, or admit of thermionic emission 

currents over the barrier only. In applications where it is required to estimate the 

tunneling currents, they are not obtained self-consistently through a solution of 

quantum mechanically correct transport equations. Instead the one-electron 

Schrödinger equation is solved in the classical self-consistent potential and the 

tunneling currents are calculated and parameterized with respect to, for example the 

tunneling oxide thickness, the barrier height and the insulator electric field. The pre-

calculated currents are then included as generation/recombination terms in the 

continuity equation for classical carriers at the insulator-semiconductor interfaces. 

This idea is schematically illustrated in Fig 4.1 below for an idealized MOS transistor 

geometry.  
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Figure 4.4 Gate current connections, for tunneling simulations using a typical drift-

diffusion simulator (e.g. FIELDAY). Generation-recombination terms are 

introduced at the nodal connections indicated by arrows to simulate carriers 

lost (recombination) at the surface and created (generation) at the gate. 

 

An approach such as the one above has many undesirable features apart from being 

physically inelegant – i.e. a compact model is used ad-hoc in a device simulation 

environment. Analytical forms for the gate current are seldom of consistent use over 

all the different operating regions of the device [3]. Although theoretically, one can 

use different current expressions for the different operating regions, this requires 

several independent parameters similar to, for instance the BSIM model (which itself 

is calibrated from experiment, is terminal voltage dependent and cannot be used) and 

is very cumbersome. The carrier density as simulated will retain a predominantly 

classical form, peaking at the insulator interface which is physically incorrect. Effects 

of multidimensionality are ignored completely and no attempt is even made to include 

these in an approximate sense. And finally, the resulting simulations may not converge 

at all in certain cases where the tunneling currents are large – for instance, charge for 

tunneling from an inversion layer has to be supplied by the generation process in a  
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MOS diode, since there are no source-drain contacts to supply carriers. For a thin gate 

oxide the current will be limited by this generation process and not by the oxide 

transport, i.e. the inversion layer might not form at all. Assuming a parameterized gate 

current that is only based on the oxide electric field could lead to convergence 

problems in the resulting simulations unless the ad-hoc generation terms are accurately 

reflected in the Jacobian matrix calculation as well. 

 

4.4  SCHRODINGER EQUATION IN MADELUNG-BOHM FORM 

 For the purposes of the analysis to follow, it is useful to first write the form of 

the Schrödinger equation in its Madelung-Bohm (hydrodynamic) form [13]. The one 

single-band effective mass Schrödinger equation is 

 

 (4.4.1) 

 

We can use a general polar form for the wavefunction in the above equation.  

 

(4.4.2) 

 

The quantity P can be identified as the probability density of the state Y. On 

substituting the above form for the wavefunction into the Schrödinger equation and 

equating the real and imaginary parts we get 

 

 

(4.4.3) 
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These equations have very simple interpretations as a continuity equation for the 

probability density and a modified form of the Hamilton-Jacobi equation which is 

familiar in classical mechanics [13]. The potential term which is dependent on the 

probability density in the above equation is referred to as the Bohm potential or the 

quantum potential. The probability current is given by, 

 

(4.4.4) 

 

For an eigenstate at energy E the second of these equations becomes,  

 

(4.4.5) 

 

Equations (4.4.3) are identical to the Schrödinger equation in all respects and may be 

solved for the quantum dynamics of a particle.  

 Now, the local form of equations for the probability density, are bound to be 

independent of the boundary conditions [14], so we can, without any loss of 

generality, bound the system in a very large box. This will lead to the following 

equation for the probability density of a single pure state, bounded in a large box. 

 

(4.4.6) 

 

4.5  DENSITY EQUATIONS INSIDE A LARGE BARRIER 
 

 We are now in a position to consider the forms of the density matrix and 

therefore the resulting equations for the transport for carriers in a large barrier 
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potential. We will consider three different cases – one of these is solvable exactly 

while the others are analyzed approximately using the WKB approximation.  

 

4.5.1 Simple Potential Barrier at Flat Band 

 Consider a potential barrier as in Fig. 4.5 (a). The form of the potential can be 

written as,  

(4.5.1) 

 

In the above, Eb is the barrier height and q(x) is the unit step function.  

 The solution of the corresponding Schrödinger equation inside the barrier is 

given by the evanescent forms of the scattering states (3.3.1). For a large barrier (Eb 

>> kBT) these are given by  

 

 

(4.5.2) 

 

 

 

For these solutions, we can explicitly write down the form of the density matrix inside 

the barrier (x > 0), 

 

(4.5.3) 

 

On performing the summation explicitly, we get an expression for the density matrix. 
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(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 

 

 

 

Figure 4.5 Typical potential forms assumed in Sections (4.5.1-3), (a) A simple large  

potential barrier, (b) Large barrier with a non-confining smooth potential, 

and (c) Large barrier with a confining potential on one side. The x-axis in 

all the plots is the coordinate perpendicular to the barrier. 

 

 

(4.5.4) 

 

 

The density is therefore calculated in a straightforward manner.  
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Quite obviously then, the total density is very similar in functional form to each of the 

evanescent mode densities inside the barrier. It therefore obeys the same differential 

equation as those densities, i.e. Eqn (4.4.6) with P replaced by n and with the energy,  

 

(4.5.6) 

 

The differential equation that the density obeys is therefore 

 

(4.5.7) 

 

Physically, this has the meaning that the electrochemical potential for the gas of 

tunneling carriers inside the potential barrier is given by 

 

(4.5.8) 

 

The gradient of Eqn (4.5.8) is essentially the second moment equation (i.e. the 

momentum balance equation) for the distribution function when scattering is neglected 

in the barrier. On taking the gradient and multiplying by the carrier density, we get an 

equation that suggests that tunneling carriers move such that their drift due to the 

external electric field is balanced (or nearly balanced for the case of a non-zero total 

current) by a “quantum drift” inside the barrier. As a sanity check, the densities 

calculated from the explicit sum of energy states are shown compared to the density 

calculated from the above equation in Fig. 4.6 (a)  

 



 

96 

÷÷
ø

ö
çç
è

æ
-+-+-»

÷
÷

ø

ö

ç
ç

è

æ
ò ÷÷

ø

ö
çç
è

æ -
+-

-
+-=

¥

b

sm

b

b

b

b

b

sm

b

sm
bE

E

(x)V

k

k
k

k

xk
xkC

E

ExV
dx

E

ExV
kCx

442
exp

)(
1ln

4

1)(
1exp)(

2

22

1

0
1y

E)(x)Vm(Ep(x)

p(x)dx
p(x)

C
(x)ψ

smb

x

E

-+=

÷
ø

ö
ç
è

æ
ò-=

2

1
exp

0h

θ(x)E(x)VV(x) bsm +=

4.5.2 Potential Barrier in a Non-zero Electric Field 

 For this case [Fig. 4.5 (b)] we write the potential inside the barrier as a sum of 

a smoothly varying component Vsm and the barrier height. 

 

(4.5.9) 

 

We will assume that the potential has a quasi-continuous spectrum so that there are a 

sufficiently large number of available eigenstates within a thermal energy. It is also 

worth mentioning here, that the spectrum is determined by the form of the potential 

outside the barrier itself. For this case we can write the evanescent mode 

wavefunctions inside the barrier using the WKB approximation as 

 

(4.5.10) 

  

 

By definition, this solution approximately satisfies Eqns (4.4.3). For a large barrier in 

the direct tunneling regime (i.e. Eb >>| Vsm – E | ) we can write the above in a very 

good approximation as, 

 

 

 (4.5.11) 

 

 

The replacement of the energy as a parabolic function of the wavevector is possible 

since we have assumed a quasi-continuum of available states. We can now use this 

wavefunction to write the density matrix inside the barrier. We will get for the density  
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(4.5.12) 

 

 

Writing the density as an exponential by making use of the largeness of the barrier 

height compared to the thermal energy we get,  

 

(4.5.13) 

 

So we find that once again, the density inside the barrier takes a very similar 

functional form to each of the wavefunctions and obeys the differential equation  

 

(4.5.14) 

 

 

Numerical solutions are provided in Fig. 4.6 (b) to confirm this result, for a couple of 

simple barrier potentials, assuming that they yield a quasi-continuous spectrum.  

 

4.5.3 Bound States Leaking into a Potential Barrier 

 The above argument assumes that the smooth part of the potential is slowly 

varying outside the barrier and therefore any bound states that exist form a near 

continuum (i.e. confinement energies are much smaller than the thermal energy and 

there are several states in an energy range kBT). This allows the sum over energy states 

that is required to evaluate the density inside the barrier to be converted to the integral 

which has been evaluated explicitly above. 
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 We now consider the case of bound states, as in a potential well decaying into 

a neighboring barrier potential. This case is schematically illustrated in Fig. 4.5 (c). 

There are several interesting practical cases which fall under this category viz. the 

inversion layer of a MOSFET, ultra thin-body SOI devices, thin body double gate 

devices etc.  

 In this case, the Bohr-Sommerfield condition [15] yields us the quantization 

energies of the carriers as given in the WKB approximation. 

 

(4.5.15) 

 

Here a and b are the classical turning points and n is a quantum number that labels the 

discrete energy levels. This is known to yield excellent values for the higher levels but 

is acceptable even for the low lying levels in the spectrum for the case where the 

potential does not vary too rapidly in between the turning points.  

 The wavefunctions for this case are given by an expression very similar to the 

WKB expression given in the previous section inside the barrier with the notable 

change that the energy is labeled by the level j rather than by a wavevector k as in a 

near continuum. We can therefore write the total density, inside the barrier as, 

 

(4.5.16) 

 

We do not know anything about the energies Ej except for the assumed fact that they 

are large compared to the thermal energy (otherwise the analysis would reduce to that 

in the previous section), and that they satisfy the above quantization condition. Before 

proceeding further we notice that the density function for a single state in the WKB 

approximation can be written from the previous section as, 
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(4.5.17) 

 

 

 

The probability density, for a single state is hence the product of an energy 

independent term which contains all the dependence on the external potential and an 

energy dependent spatial variation which is very slowly varying if the barrier potential 

is large. Now, for the significant few energy levels we can assume that the 

quantization energies are much smaller than the barrier height and we can write, 

 

(4.5.18) 

 

 

where the averages are self-evident.  

Hence the total density inside the barrier is to a very good approximation given by, 

 

 (4.5.19) 

 

Once again, by analogy with the wavefunctions and (4.4.6) the above must satisfy the 

differential equation,  

 

 (4.5.20) 

 

The only difference between this and the previous cases is therefore the replacement 

of the average energy from kBT/2 by the appropriate value over the quantization 
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energies. But as pointed out earlier, the exact value of this energy makes only a 

marginal contribution to the density variation in the barrier since it is effectively 

swamped by the potential.  

 

4.5.4 Generalization to Fermi-Dirac Statistics 

 It is not very hard to generalize the above differential equations for carrier 

density inside the barrier to the case of Fermi-Dirac weighting of the carrier 

wavefunctions. Eqn (4.5.17) is independent of the weighting of the states, being for a 

single probability density that appears in the sum and a procedure similar to that 

adopted in Eqn (4.5.18) will hold for the case where the energies are weighted by the 

Fermi distribution as well. In this case, we would have the average energy <E> that 

appears in Eqn (4.5.20) evaluated over a Fermi distribution as opposed to the 

Boltzmann distribution.   

 

4.5.5 Generalization to multiple space dimensions 

 For a general 3D potential barrier, Eqns (4.4.3-6) are still valid being just the 

Schrödinger equation in a different form. One cannot however construct a general 

asymptotic proof as above for the differential equation satisfied by the density, since 

the approximate solution of the Schrödinger equation cannot be written down 

generally in 3-D coordinate space, unless the Hamiltonian is separable (which requires 

very specific symmetry conditions imposed on the potential). A semiclassical 

wavefunction can still be written down, in terms of the classical periodic orbits [16] in 

the action-angle conjugate variable space, but it is not possible to generally represent it 

in coordinate space.  

 The strongly decaying nature of the evanescent modes inside a large potential 

barrier is however quite general irrespective of dimension and it is expected that the 
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Eqns (4.5.20) for the density will still hold in such cases, atleast as a good first 

approximation. The validity of this can only be borne out by extensive numerical 

experiments and calibration against experimental data, for a truly multidimensional 

potential barrier profile, such as those obtained with STM probe tips, or for write/erase 

times in nanocrystal based non-volatile memories [17] and has not been attempted 

here.  

  

4.6  CURRENT TRANSPORT INSIDE A BARRIER 

 Elastic tunneling through thin insulating barriers is a transmission phenomenon 

that is predominantly determined by the characteristics of the barrier itself – i.e. 

scattering is relatively unimportant, except at the contacts that the carriers tunnel 

between. One way of saying this is that carriers originating from a particular contact 

retain the chemical potential of that contact throughout the barrier thickness till they 

reach the other contact. They are then scattered and relax to the Fermi level of the 

“downstream” contact.   

 This is consistently seen in all the different wave mechanical techniques which 

are employed to calculate the tunneling currents. The idea of calculating the tunneling 

current as a difference between the transmitted currents in opposing directions, and the 

calculation of a particular transmitted current using the population at each side and the 

transmission characteristics of the barrier (e.g. Eqn (4.2.2) ) are of course as a result of 

this implicit assumption.  

 For the macroscopic description of tunneling, this idea translates to a ballistic 

transport of the carrier gas between the two contacts. Clearly then the injection must 

be separated here as well into two carrier populations whose equations of state depend 

on the contact from which they originate. The Eqns (4.5.20), or their corresponding 

chemical potential formulation,  
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0=Ñ nj

    
(4.6.1) 

 

yield the equations for the density profile for carriers originating from one of the 

tunneling contacts. There will be a similar equation for the carriers tunneling from the 

other contact. The above equation implies that the quasi-Fermi (or the electrochemical 

potential) of the carriers injected from a particular contact into the barrier region 

remains a constant. This condition holds for equilibrium (where the current in Eqn 

(4.4.5) is rigorously zero), but it also holds when the currents themselves are not very 

large, as then the kinetic energy term due to the current is negligible for most of the 

barrier.  

 An analogy with the p-n junction diode is particularly useful here. In a p-n 

junction diode, on the application of a forward bias across the depletion region, 

majority carrier electrons from the n-doped side get thermionically injected over the 

built- in barrier, into the p-doped side of the junction [18].. They then recombine as 

minority carriers on that side. If the generation/recombination processes in the space 

charge region are taken to be negligible, the electron current is a constant across the 

depletion region. The quasi-Fermi level for electrons is then nearly constant all the 

way across the depletion region (and equal to the Fermi level fixed by the n-doped 

side as shown in Fig. 4.7 (a). This is because the electron density varies by several 

orders of magnitude from the value fixed by the doping on the n-side to the value 

fixed by the doping on the p-side and the applied voltage and the current is given by 

the product of this density and the gradient of the quasi-Fermi level. At the edge of the 

depletion region on the p-side the quasi-Fermi level for electrons, Efn relaxes to the 

bulk Fermi level on the p-doped side across the recombination region over a distance 

of the order of the diffusion length on that side. The electron current is given by the 
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Figure 4.6 (a)  Variation of the quasi-Fermi levels for electrons and holes in a typical 

p-n junction diode. The equalization of Fermi levels occurs on each side due 

to recombination process and the current depends on the rate of 

recombination 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 (b) Variation of the chemical potentials, for electrons only, injected from 

the two “contacts” 1 and 2. The equalization of the chemical potentials 

occurs due to thermalization processes in the contacts. Analogous to (a) the 

current is decided by this rate and must be modeled accordingly.  
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12.nqJ g=n

rate of recombination of minority carrier electron on the p-doped side of the junction, 

i.e. the “downstream” contact for electrons injected from the n-doped side. 

 For the case of two different carriers (electrons and holes) the local driving 

force for the equalization of the quasi Fermi levels, is recombination. For a single 

carrier the local driving force that equalizes Fermi levels for carriers moving in 

different directions is of course scattering and in the absence of this, carriers moving 

in different directions can have very different Fermi levels.  

 Eqn (4.5.20) is actually an equation for energy balance in the tunneling carrier 

gas. For the case of non-equilibrium, we will have to include the “classical” kinetic 

energy term in Eqn (4.4.5) as well, but this can be ignored in regions where the density 

is large, similar to what is done for classical carriers with the convective term in the 

hydrodynamic equations (see Chapter 1). The tunneling carrier density will decay 

nearly exponentially across the barrier length as given by the typical solutions of Eqns 

(4.5.20), from large values close to the two “contacts” (substrate and gate). Hence the 

inertia term (the convective term in the usual form of the hydrodynamic equations 

(1.3.3)) will be negligible through most of the barrier except very close to the barrier 

edge downstream, where the density is very small. At this edge, the carriers tunneling 

from the first contact will have to be scattered to the chemical potential of the 

downstream contact. In the absence of detailed information about this part of the 

physics (similar to the recombination process [18] in a p-n junction diode, for 

instance) we can model this, by assuming a certain recombination velocity g  for these 

carriers at this contact, i.e.  

 

 (4.6.2) 
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In the above n1 is the density of carriers tunneling from contact 1 (the substrate) and 

the quantity g2  is a tunneling recombination velocity [19,20], a fundamental 

macroscopic property of the contact for carriers n1 at the second contact. This can be 

calibrated from the experimental results for tunneling current, or estimated from the 

microscopic calculation from the Schrödinger equation. In the context of microscopic 

calculations like Eqn (4.2.2), we implicitly assume this to be of the order of the 

thermal velocity (for instance the rate at which the carriers strike the interface in 

transmission probability based theories, is given by the average velocity of a hemi-

Maxwellian distribution).  For the purposes of simulation here, we will assume this to 

be a constant fitting parameter g  and to be the same for each contact.  

 The total tunneling current is therefore, given by, 

 

(4.6.3) 

  

The tunneling oxide is assumed to be between x=0 and x=tox in the above expression 

and the subscripts refer to contact from which carriers are injected into the barrier.  

  

4.7  EXAMPLES OF MACROSCOPIC TUNNELING CALCULATIONS 

 We will consider two sets of examples for a numerical demonstration of the 

above macroscopic tunneling formalism. The first is the application to the problem of 

direct tunneling currents in MOSFETs with thin gate oxides. The second concerns the 

tunneling of carriers between the plates of an MIM capacitor. This provides another 

easy application to check for the validity of the approach, since the metals can be 

assumed to be ideal conductors and the barrier repulsion for Fermi statistics in 

degenerate conductors is negligible and the current is solely determined by how 
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appropriate the assumed forms of the density equations and the recombination 

boundary conditions are for the problem. 

 

4.7.1 Numerical Formulation 

 The Eqns (4.5.20) discretized directly can lead to numerical problems and will 

require a very fine grid inside the barrier. They can be cast in a more convenient form 

for the purposes of numerical simulation. Since the density of carriers injected from 

each contact, is expected to decay nearly exponentially across the barrier, it is better to 

cast the equations in terms of the logarithms of the densities rather than the absolute 

values. This can be considered similar to other exponential fitting schemes for easing 

the requirements on discretization of differential equations in regions where the 

solutions vary very rapidly [21]. This is easily accomplished by noting that,  

 

 (4.7.1) 

 

Eqn (4.7.1.) then transforms to the nonlinear differential equation, (for s = log(n) ) 

 

(4.7.2) 

 

The above equations have to be solved for each of the carriers (electrons and holes) 

injected from each contact, self-consistently with the Poisson equation that determines 

the potential. For electrons injected from each side, we make the assumption that  

  

(4.7.3) 
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In the above, the subscripts refer to the contact and Ec is the conduction band edge. 

Basically the assumption is that the mean energy that is relevant in the Eqn (4.7.2) is 

in excess of the conduction band edge, by the average energy of a Boltzmann averaged 

continuum. A similar relation is adopted for holes. This assumption is similar to the 

assumption of a quasi-continuum in energy at the tunneling contact and should be 

modified explicitly when there is quantization. For instance the mean energy above the 

conduction band due to quantization can be made a function of the field strength on 

the substrate side. This will be re-visited later.  

 

4.7.2 Boundary conditions 

 The boundary condition for the electron density at the upstream contact is 

obtained from Eqn (2.), the scattering state sum for the density matrix in equilibrium 

for  

 

(4.7.4) 

 

Once again the relevant expression is used for holes. Obviously Eqn (4.7.4) could be 

replaced instead by allowing the density to “float” to the correct value using the 

relevant macroscopic equations inside the semiconductor as well, although for 

simplicity this is not done here. The relation above assumes that the density at the 

interface is fixed simply by the local Fermi level and potential, with the effects of the 

barrier in reducing the density due to quantum repulsion is taken to be from that for a 

free electron like situation locally. In reality the effect of the field (through 

quantization) must also be parameterized in the spirit of the macroscopic approach as 

with the average carrier energy. This quantity is equivalent to the density of states for 

the initial state of tunneling carriers.  
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 The boundary condition on the downstream contact is modeled by assuming 

that the carrier density profile is nearly flat there. i.e. by assuming that  

 

(4.7.5) 

 

This is a reasonable guess for the downstream boundary condition that also seems to 

be borne out by numerical simulations – since the carrier profile decays exponentially, 

the derivative does as well and for any reasonable barrier length, Eqn (4.7.5) will give 

an excellent approximation to the carrier density. 

 The effects of the boundary conditions for the downstream contact are actually 

rather minimal as far as the results for the tunneling currents are concerned. The 

exponential nature of the decay of charge density in the barriers is captured by the 

nature of the differential equation and this largely determines the current. Since the 

downstream density determines the current through a linear relation (4.6.2), an error in 

this amounts to an error in the pre-factor for the tunneling current density, while the 

exponential dependence on voltage is very well captured in the solution of the 

boundary value problem posed by Eqns (4.7.2-5). 

 For electrons tunneling from the gate to the substrate under inversion 

conditions, the low energy electrons will see a substantially wider insulator thickness 

because of the silicon bandgap (Fig. 4.1). This can be approximately accounted for by 

modifying the tunneling recombination velocity for these carriers by the Boltzmann 

factor depending on the oxide voltage 

 

 

(4.7.6) 
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4.7.3 A note on oxide effective mass values 

 The oxide effective mass, mox is a fundamental parameter entering into the 

(4.7.2) applied to a MOSC and will have a particularly strong effect on the tunneling 

characteristics owing to the exponential variation of the carrier densities inside the 

barrier. It is worthwhile to investigate what values are reasonable for this parameter. 

As mentioned briefly in Section 4.2, the values of effective masses in oxide seen in the 

literature from tunneling models, experimental calibration and numerical band 

structure simulations vary very widely [22-26]. Values in the range from 0.25 m0 to as 

high as 0.7 m0 have been used.  

 Since the carriers tunnel through the forbidden gap of the insulator, the E-k 

relation for the evanescent modes in the SiO2 is relevant for the effective mass seen by 

the tunneling carriers. Although SiO2 is amorphous and it might be suspected that an 

unambiguous band structure effective mass does not exist [23], local order might be 

expected and this might lead to an effective mass with minor variations depending on 

detailed growth. The complex E-k relation (the complex wavevector is labeled 

k below) in silicon dioxide is frequently modeled using the Franz E-k dispersion 

relation with a conduction band effective mass mc
* (assumed equal to the valence band 

effective mass) 

 

(4.7.7) 

 

  This relation was used for calibrating F-N tunneling currents in [22] and an 

effective mass of 0.42 m0 was obtained for the conduction band edge of SiO2. It was 

also shown that the rough form of the E(k) relation in the oxide follows (4.7.6). Other 

band structure calculations obtained 0.55 m0 [24] for the same value. The above 
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relation then indicates that the effective mass seen by carriers in the oxide bandgap is 

energy dependent (Fig. 4.7), roughly according to, 

 

(4.7.8) 

 

where E is the energy difference between the conduction band edge of oxide and the 

tunneling carrier energy.  

 The use of the above Franz relation is equivalent to using a variable effective 

mass across the oxide as a function of the local potential. However as seen in Fig. 4.7, 

this leads to a very small effective mass close to the conduction band edge of silicon  

  

 

 

 

 

 

 

 

 

 

 

Figure 4.7 The oxide effective masses calculated from the Franz E-k relation (4.7.7) 

assuming a band edge effective mass of 0.42 m0 or 0.55 m0. Both lead to 

extremely low effective masses close to the Si conduction band edge 

(dashed line), due to the assumption of equal valence and conduction band 

masses. 

mox/m 

Ec – E (eV) 

Carriers see the 
effective mass in 
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which leads to high tunneling current results and the effective mass at the middle of 

the oxide bandgap goes to zero. The problem is that the above relation assumes that 

the conduction band and valence band effective masses in oxide are identical and this 

is not borne out by numerical simulations of the oxide electronic structure using 

pseudo potential methods. In fact, the valence band masses are probably very large 

[24] (5-10 m0) and hence the valence band states are unlikely to mix with the 

conduction band states, a condition required for the validity of (4.7.6). In the absence 

of reliable data or experimental results, we will continue to assume a parabolic 

relationship with a tunneling effective mass, expected to lie among the reported values 

of parabolic conduction band effective masses reported in the literature. 

 

4.7.4 Numerical Results 

 Figs. 4.8 (a) and (b) show the densities inside the barrier, calculated from the 

macroscopic equations (4.7.2-5) in conjunction with the Poisson equation. The 

injected densities from each of the contacts decay exponentially across the barrier, as 

was seen in the analytical forms in Section 4.5, with the self-consistent potential 

corrections becoming important near the downstream edges. The tails of the densities 

at near the downstream contacts are much higher for the smaller oxide thickness 

leading to higher currents in this picture. The substrate p-doping and the n+-poly 

doping were assumed to be 5×1017 /cc and 1020 /cc respectively and the bias is 2.0 V. 
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Figure 4.8 (a) The density variation inside the barrier from the solution of (4.7.2-5) 

for carriers from each contact in conjunction with the Poisson equation. 

Seen clearly is the exponential decay of n1 and n2 as well as the polysilicon 

depletion effect in the value of n2 at the gate edge. 
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Figure 4.8 (b) Same plot as (a) for a barrier of 1.5 nm. The very high tail of the 

injected carriers from the substrate is seen clearly and this leads to the high 

tunneling current. The carrier density is no longer negligible inside the 

barrier. 

 

 Fig. 4.9 (a) and (b) show the tunneling currents for NMOS devices with 

tunneling oxide thicknesses ranging between 15 to 30 Angstroms, in the inversion 

regime. The results from the model described here are shown along with data from the 

devices in [5] and [26], so as to verify the simulation results against independently 

characterized data. The substrate doping concentrations for these measured devices 
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Figure 4.9 (a) Direct tunneling current densities for NMOS transistors from [5] under 

inversion conditions – Data is shown as dots, the dashed lines represent 

simulation with mox = 0.3 m0 and the solid lines mox = 0.34 m0. The oxide 

thicknesses are indicated next to the plots. 

 

were 5×1017 /cc and 4.7×1017 /cc respectively while the corresponding gate poly 

dopings were 1×1020 /cc and 9×1019 /cc. The latter data suffers from oxide charge and 

the low voltage regime has unreliable data probably because of traps. , The plots are 

shown for effective masses of 0.3 m0 and 0.34 m0 which lie within the bounds seen in 

the literature [22-26]. 
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Figure 4.9 (b) Direct tunneling current densities for NMOS transistors from [26] 

under inversion conditions – Data is shown as dots, the dashed lines 

represent simulation with mox = 0.3 m0 and the solid lines mox = 0.34 m0. 

The oxide thicknesses are indicated next to the plots. 

 

 As is immediately seen, even the simple macroscopic approximation employed 

here is able to explain the tunneling data fairly well, for these devices over the entire 

range – this is even without taking into account explicitly the effect of quantization on 

increasing the average energy term in 4.7.2. The trends are also very reasonable, since 

the quantization energies are bound to increase at higher bias conditions and Eqn 

(4.7.4) the upstream boundary condition will also have to be modified to account for 

the field. This approximate treatment that we have shown here is somewhat similar in 

spirit to calculating the current as the transmission of traveling waves – similar to that 

method, reasonable results are obtained at either the low voltage regime, or the high 
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voltage regime by adjusting the tunneling effective mass [3], but not both because the 

effects of barrier repulsion and quantization are not included. This is typical - This 

also suggests one reason for the spread among the effective masses in the literature, 

since they depend on the particular voltage range and oxide thicknesses that simple 

calculations based on transmission probability approaches are fit to.  

 

4.7.5 Modeling Inversion layer quantization effects on tunneling 

 We will now explore how to improve the fit for the tunneling simulations to 

data by including quantization effects in (4.7.2). It is obvious from (4.5.18) how one 

must do this. The quantization effects can be included by making the average energy 

of the tunneling carriers in this equation field dependent within the macroscopic 

approach.  

 If we are interested in a “local” field approximation for the quantization effect, 

the field at the interface alone is considered and so the quantization energies for the 

bound states leaking into the barrier are those for a linear potential. The average of this 

for a Fermi distribution must be used, as is evident from (4.5.18), but we ignore this 

refinement and simply use the first energy level [23] for now, similar to the correction 

proposed for capacitance modeling by van Dort [28]. This can easily be extended to 

include higher order corrections 

 

(4.7.9) 

 

The above is an estimate that has to be adjusted a bit in practice, since the effective 

mass normal to the interface is not a constant with bias, because of the lifting of the 

degeneracy of the conduction band valleys in silicon. We will simply use above value 
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calculated for the longitudinal effective mass for electrons and the heavy hole mass in 

this work, since this will lead to the lowest sub-band quantization energies. 

 The macroscopic tunneling calculations, performed with the simple 

quantization treatment above are shown in Fig. 4.10. It is evident that the fit to data is 

improved significantly especially in the higher-field regime, where the slope 

difference with bias that is not captured well in Figs. 4.9 is better reflected in the 

calculation with an effective mass of 0.34 m0.   

 Even better models can be constructed by allowing the tunneling 

recombination velocity to be field dependent, as it is likely to be and by treating the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 (a) Direct tunneling current densities, calculated including the 

quantization condition (4.7.9) in Eqn. (4.7.2), compared with data from [5]. 

The oxide thicknesses are indicated next to the plots.  
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Figure 4.10 (b)  Direct tunneling current densities, calculated including the 

quantization condition (4.7.9) in Eqn. (4.7.2), compared with data from 

[26]. The oxide thicknesses are indicated next to the plots. 

 

barrier repulsion condition (4.7.2) through a better approximation based on the 

interface field and Fermi statistics. 

  

4.8  SUMMARY 

 Tunneling is an entirely quantum mechanical phenomenon and cannot be 

explained by extensions of classical methods. Hence the excellent agreement to 

tunneling data of the very simple macroscopic simulations presented in this chapter, 

with a simple local field approximation to model quantization must be considered as 

very encouraging results for the application of such models to treat quantum effects in 
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semiconductors and more generally for many body systems under a mean-field 

approximation. 

 The methods presented here also hint at another important idea – the idea of 

non-equilibrium closures. In the microscopic sense, elastic tunneling currents between 

two different terminals are carried by extended states originating from each which do 

not mix incoherently due to scattering. This process has been modeled here by 

assuming that an average energy (the chemical potential) is conserved for each of the 

two populations across the barrier. We can think of this as a non-equilibrium closure 

of the hydrodynamic equations – i.e. since we know a priori that the process is elastic 

we have separated the two populations, which amounts to each half of the distribution 

function due to each contact, being allowed to evolve separately.  

 It will be worthwhile to see if this idea carries over for regions of a device 

where coherent effects are important - i.e. we have already seen in Chapter 1, that the 

Landauer formalism is equivalent to assuming that the states are completely extended 

in the device and are populated only because of scattering processes at the contacts, 

which themselves yield equilibrium conditions there. This would imply that inside a 

device with many terminals, as many different non- interacting gases, as there are 

terminals would exist, each with an equilibrium closure, i.e. a constant chemical 

potential across the device (as was done here explicitly considering the Schrödinger 

equation) in this chapter. We might then be able to formulate equations like (4.5.20) 

for each of them and solve boundary value problems to get the currents and densities.  
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CHAPTER 5 

CONCLUSION 

 

5.1  SUMMARY OF CONTRIBUTIONS 

· A clear review of various classical and quantum transport approaches 

has been presented. 

· The lack of explicit models for equilibrium quantum mechanical 

distributions has been identified as the primary reason for the 

ambiguity in macroscopic quantum transport approaches. A derivation 

of the common approximations and their limitations has been 

discussed. 

· An analytical treatment of the boundary-layers in DG theory has been 

presented and a comparison to one-electron QM has been made. 

· A DG description of confinement effects has been examined using 

analytical approximations. 

· A clear derivation of the equation of state for a tunneling carrier gas has 

been presented. 

· Tunneling, a completely quantum mechanical phenomenon has been 

satisfactorily described in purely macroscopic terms 

 

5.2  SUGGESTIONS FOR FUTURE RESEARCH 

 Several interesting problems can be explored in the light of the work presented 

in this thesis on macroscopic models for tunneling. 

· Extension of the tunneling formalism to include interband tunneling 

transitions 
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· A theoretical proof for the multidimensional applicability of Eqn 

(4.5.8) can be attempted.  

· Computational experiments along the line of the tunneling model 

presented here in multiple dimensions, possibly on STM tips or 

nanocrystal memory devices. 

· Non-equilibrium closure can be explored for the hydrodynamic 

equations, along the lines discussed in Section (4.8).  

· Compact models for quantum effects in DG/UTB SOI devices based on 

the analytical charge profiles. 

 

 


