The Isotopic Age of Runoff in Natural Flow Systems

C. Duffy, Penn State University
Isotopic Age of Watershed Runoff
Isotopic Age of Watershed Runoff

Interpretation of "age" of waters is complicated since it depends on the chemical species, reaction kinetics and the flow dynamics.
Interpretation of “age” of waters is complicated since it depends on the chemical species, reaction kinetics and the flow dynamics.

Steady flow is often assumed since the age distribution of water is difficult to evaluate from field data.
Isotopic Age of Watershed Runoff

Interpretation of “age” of waters is complicated since it depends on the chemical species, reaction kinetics and the flow dynamics.

Steady flow is often assumed since the age distribution of water is difficult to evaluate from field data.

This research shows how the theoretical “mean age” of a solute can be predicted.

An experiment conducted at the NSF-funded Shale Hills Critical Zone Observatory is testing the theory and develop practical tools for answering the questions such as: Where is the water? And how long did it take to get there?
"Theories for Age of Waters: A Sampling"

The concept of "age" in mass transport research has a long history:

- Nauman (1965) chemical engineering
- Erikson (1971) compartment models
- Allison and Hughes (1973) resource assessment
- Bolin and Rhode (1973) atmospheric science
- Allison and Hughes (1973) resource assessment
- Goode (1996) groundwater
- Delhez et al. (1999) and Gourgue et al. (2006) in Ocean systems
- IAEA publications (2001) isotope methods
Groundwater **Age** is an extensive property of a dissolved solutes and the flow regime.

The **Age** is defined relative to the time since the solute entered the system.

The **Age** of any solute can be calculated in an Eulerian framework.

Age is subject to the usual processes of advection, dispersion, diffusion, reaction.

\[Q(t), C(t) \]

\[c(t, \tau, x_o : q(t)) \]
The Age Distribution at a Point X_0

$c(t, \tau, x_0)$
A Transport Model for Age Distribution

Rotenberg 1972, J, of Theoretical Biology, 37, 291-305

\[DM(t, \tau) \frac{1}{V} = \left(\frac{\partial M}{\partial t} + \frac{\partial M}{\partial \tau} \right) \frac{1}{V} \]
A Transport Model for Age Distribution

Rotenberg 1972, J, of Theoretical Biology, 37, 291-305

\[
\frac{\partial c}{\partial t} + \frac{\partial c}{\partial \tau} = \Gamma_c - L(c)
\]

\[
DM(t,\tau) \frac{1}{V} = \left(\frac{\partial M}{\partial t} + \frac{\partial M}{\partial \tau} \right) \frac{1}{V}
\]
A Transport Model for Age Distribution

Rotenberg 1972, J, of Theoretical Biology, 37, 291-305

\[
\frac{\partial c}{\partial t} + \frac{\partial c}{\partial \tau} = \Gamma_c - L(c)
\]

\[
DM(t, \tau) \frac{1}{V} = \left(\frac{\partial M}{\partial t} + \frac{\partial M}{\partial \tau} \right) \frac{1}{V}
\]
A Transport Model for Age Distribution

Rotenberg 1972, J, of Theoretical Biology, 37, 291-305

\[
DM(t,\tau) \frac{1}{V} = \left(\frac{\partial M}{\partial t} + \frac{\partial M}{\partial \tau} \right) \frac{1}{V}
\]

\[
\frac{\partial c}{\partial t} + \frac{\partial c}{\partial \tau} = \Gamma_c \rightarrow L(c)
\]
A Transport Model for Age Distribution

Rotenberg 1972, J, of Theoretical Biology, 37, 291-305

\[
\frac{\partial c}{\partial t} + \frac{\partial c}{\partial \tau} = \Gamma_c \rightarrow L(c)
\]

\[
L(c) \rightarrow D \frac{\partial^2 c}{\partial x^2} - u \frac{\partial c}{\partial x}
\]

or

\[
L(c) \Rightarrow \frac{Q_i}{V}(c_i - c)
\]
Transport Model in Terms of Moments
Transport Model in Terms of Moments

\[
\frac{\partial c}{\partial t} + \frac{\partial c}{\partial \tau} = \Gamma_c - L(c)
\]
Transport Model in Terms of Moments

\[
\frac{\partial c}{\partial t} + \frac{\partial c}{\partial \tau} = \Gamma_c - L(c)
\]

\[
\frac{\partial \mu_n}{\partial t} = n\mu_{n-1} + \Gamma_{\mu_n} - L(\mu_n)
\]
Transport Model in Terms of Moments

\[
\frac{\partial c}{\partial t} + \frac{\partial c}{\partial \tau} = \Gamma_c - L(c)
\]

\[
\frac{\partial \mu_n}{\partial t} = n\mu_{n-1} + \Gamma_{\mu_n} - L(\mu_n)
\]
Transport Model in Terms of Moments

\[\frac{\partial c}{\partial t} + \frac{\partial c}{\partial \tau} = \Gamma_c - L(c) \]

Coupling Moment

Transport Operator

\[\frac{\partial \mu_n}{\partial t} = n\mu_{n-1} + \Gamma_{\mu_n} - L(\mu_n) \]
Transport Model in Terms of Moments

\[\frac{\partial c}{\partial t} + \frac{\partial c}{\partial \tau} = \Gamma_c - L(c) \]

Coupling Moment \quad \text{Transport operator}

\[\frac{\partial \mu_n}{\partial t} = n\mu_{n-1} + \Gamma \mu_n - L(\mu_n) \]

Source terms
Transport Model in Terms of Moments

\[\frac{\partial c}{\partial t} + \frac{\partial c}{\partial \tau} = \Gamma_c - L(c) \]

Coupling Moment \hspace{1cm} Transport Operator

\[\frac{\partial \mu_n}{\partial t} = n\mu_{n-1} + \Gamma_{\mu_n} - L(\mu_n) \]

Age \[= \frac{\mu_1}{\mu_0} \]
A Concentration-Age-Flow Dynamical Model

For a volume-averaged system

Duffy, 2010 Hydrologic Processes
A Concentration-Age-Flow Dynamical Model

For a volume-averaged system

\[
\frac{dV}{dt} = Q_i - Q
\]
\[
\frac{dC}{dt} = \frac{Q_i}{V} (C_i - C) + \Gamma_c
\]
\[
\frac{d\alpha}{dt} = C - \frac{Q_i}{V} \alpha + \Gamma_\alpha
\]
\[
A(t) = \frac{\alpha(t)}{C(t)}
\]

Duffy, 2010 Hydrologic Processes
A Concentration-Age-Flow Dynamical Model

For a volume-averaged system

\[\frac{dV}{dt} = Q_i - Q \]

\[\frac{dC}{dt} = \frac{Q_i}{V} (C_i - C) + \Gamma_c \]

\[\frac{d\alpha}{dt} = C - \frac{Q_i}{V} \alpha + \Gamma_\alpha \]

\[A(t) = \frac{\alpha(t)}{C(t)} \]

Duffy, 2010 Hydrologic Processes
A Concentration-Age-Flow Dynamical Model

For a volume-averaged system

\[\frac{dV}{dt} = Q_i - Q \]

\[\frac{dC}{dt} = \frac{Q_i}{V} (C_i - C) + \Gamma_c \]

\[\frac{d\alpha}{dt} = C - \frac{Q_i}{V} \alpha + \Gamma_\alpha \]

\[A(t) = \frac{\alpha(t)}{C(t)} \]

Duffy, 2010 Hydrologic Processes
A Concentration-Age-Flow Dynamical Model

For a volume-averaged system

\[
\begin{align*}
\frac{dV}{dt} &= Q_i - Q \\
\frac{dC}{dt} &= \frac{Q_i}{V}(C_i - C) + \Gamma_c \\
\frac{d\alpha}{dt} &= C - \frac{Q_i}{V} \alpha + \Gamma_\alpha \\
A(t) &= \alpha(t) / C(t)
\end{align*}
\]

Duffy, 2010 Hydrologic Processes
For a volume-averaged system

\[\frac{dV}{dt} = Q_i - Q \]

\[\frac{dC}{dt} = \frac{Q_i}{V} (C_i - C) + \Gamma_c \]

\[\frac{d\alpha}{dt} = C - \frac{Q_i}{V} \alpha + \Gamma_\alpha \]

\[A(t) = \frac{\alpha(t)}{C(t)} \]

Duffy, 2010 Hydrologic Processes
A Concentration-Age-Flow Dynamical Model

For a volume-averaged system

\[\frac{dV}{dt} = Q_i - Q \]

\[\frac{dC}{dt} = \frac{Q_i}{V} (C_i - C) + \Gamma_c \]

\[\frac{d\alpha}{dt} = C - \frac{Q_i}{V} \alpha + \Gamma_\alpha \]

\[A(t) = \frac{\alpha(t)}{C(t)} \]

Duffy, 2010 Hydrologic Processes
Unit Step Input C_i and Q_i
Unit Step Input C_i and Q_i

For constant inputs age reaches a constant value at large time
Unit Step Input C_i and Q_i

For constant inputs age reaches a constant value at large time

$$A(\infty) = \frac{V(\infty)}{Q_i}$$

$$C(\infty) = Q(\infty) = Q_i = 1$$
Unit Pulse Input: C_i and Q_i
Unit Pulse Input: C_i and Q_i

During drought periods the Age of water increases like a clock
Unit Pulse Input: C_i and Q_i

During drought periods the Age of water increases like a clock

$$A(t \to \infty) \sim t$$
Unit Pulse Input: C_i and Q_i

During drought periods the Age of water increases like a clock:

$$A(t \to \infty) \sim t$$
Random Watershed Inputs: C_i and Q_i
Random Watershed Inputs: C_i and Q_i

For random inputs, the age of water depends on the flow and solute inputs.
Random Watershed Inputs: C_i and Q_i

For random inputs, the age of water depends on the flow and solute inputs.
Concentration-Age-Flow Distributed Dynamical Model

\[\theta_s \frac{\partial h}{\partial t} = \frac{\partial}{\partial x} Kh \frac{\partial h}{\partial x} + \varepsilon \]

\[\frac{\partial C}{\partial t} + \hat{u}(x,t) \frac{\partial c}{\partial x} = D(x,t) \frac{\partial^2 c}{\partial x^2} + k(C_i - C) \]

\[\frac{\partial \alpha}{\partial t} + \hat{u}(x,t) \frac{\partial \alpha}{\partial x} = D(x,t) \frac{\partial^2 \alpha}{\partial x^2} + C - k\alpha \]

\[\text{Age}(x,t) = \frac{\alpha(x,t)}{C(x,t)} \]
Concentration-Age-Flow Distributed Dynamical Model

\[\theta_s \frac{\partial h}{\partial t} = \frac{\partial}{\partial x} Kh \frac{\partial h}{\partial x} + \varepsilon \]

\[\mu_o \Rightarrow \]

\[\frac{\partial C}{\partial t} + \hat{u}(x,t) \frac{\partial c}{\partial x} = D(x,t) \frac{\partial^2 c}{\partial x^2} + k(C_i - C) \]

\[\frac{\partial \alpha}{\partial t} + \hat{u}(x,t) \frac{\partial \alpha}{\partial x} = D(x,t) \frac{\partial^2 \alpha}{\partial x^2} + C - k \alpha \]

\[\text{Age}(x,t) = \frac{\alpha(x,t)}{C(x,t)} \]
Concentration-Age-Flow Distributed Dynamical Model

\[\theta_s \frac{\partial h}{\partial t} = \frac{\partial}{\partial x} Kh \frac{\partial h}{\partial x} + \varepsilon \]

\[\mu_o \Rightarrow \quad \frac{\partial C}{\partial t} + \hat{u}(x,t) \frac{\partial c}{\partial x} = D(x,t) \frac{\partial^2 c}{\partial x^2} + k(C_i - C) \]

\[\mu_1 \Rightarrow \quad \frac{\partial \alpha}{\partial t} + \hat{u}(x,t) \frac{\partial \alpha}{\partial x} = D(x,t) \frac{\partial^2 \alpha}{\partial x^2} + C - k\alpha \]

\[\text{Age}(x,t) = \frac{\alpha(x,t)}{C(x,t)} \]
Concentration-Age-Flow Distributed Dynamical Model

\[\theta_s \frac{\partial h}{\partial t} = \frac{\partial}{\partial x} Kh \frac{\partial h}{\partial x} + \varepsilon \]

\[\mu_o \Rightarrow \frac{\partial C}{\partial t} + \hat{u}(x,t) \frac{\partial c}{\partial x} = D(x,t) \frac{\partial^2 c}{\partial x^2} + k(C_i - C) \]

\[\mu_1 \Rightarrow \frac{\partial \alpha}{\partial t} + \hat{u}(x,t) \frac{\partial \alpha}{\partial x} = D(x,t) \frac{\partial^2 \alpha}{\partial x^2} + C - k\alpha \]

\[\mu_1 \Rightarrow \frac{\alpha(x,t)}{C(x,t)} \]

\[\mu_o \Rightarrow \text{Age}(x,t) = \frac{\alpha(x,t)}{C(x,t)} \]
Age(x,t)

Distance x

Time t

Exponential Model + Boussinesq
Shale Hills Critical Zone Observatory
Isotope Network
Prediction of Pathways and Time Scales at the Watershed Scale
Instrumentation for Iso.Net
Instrumentation for Iso.Net
Instrumentation for Iso.Net
>5000 Stable Isotope Samples 2008-2012

Shale Hills MWL - All Data Points

\[y = 54x + 10 \]

\[y = 8.0014x + 8.3843 \]

\[R^2 = 0.96454 \]
Precipitation 2008-2012
Integrated Hydrologic Modeling System

- **Control Volume Kernel:** Semi-Discrete Finite Volume formulation of conservation equations. Finite Volume Method ensures mass balance locally (in each control volume) and globally.

The system of ODEs is solved using state-of-the-art solver with adaptive time steps

Kumar et. al., 2009
CZO Hi-Res Data Products

NCALM Lidar→ model grid
Lin and NRCS→ GPR bedrock
Eissenstat→ tree survey

Shale Hills Critical Zone Observatory
All Trees by Species
Soil Mapping

SSURGO (NRCS)

CZO Hi-Res soil survey (Lin & NRCS)
Discharge

![Graph showing discharge and precipitation for 2009. The x-axis represents the months of 2009, and the y-axis represents discharge (m3 day$^{-1}$) and precipitation (m day$^{-1}$). There are three lines on the graph: one for precipitation, one for RTHnet, and one for Flux-PIHM. The graph highlights the peak discharge occurring in November.]
Water Table Depth

![Graph showing water table depth over time in 2009 with two lines: one labeled RTHnet and the other labeled Flux-PIHM.](image-url)
Soil moisture

![Graph showing soil moisture content over 2009 with different curves representing RTHnet and Flux-PIHM data.]
Evapotranspiration
Observed δ at Shale Hills (Holmes et. al. 2011)

- δ representations were converted to standard concentration units [Dewitt et. al. 1980]
Simulated Streamflow D2H.
Spatial Mean Watershed Age = 210.9 days

JAN – MAR
Spatial Mean Watershed Age = 188.7 days
JUL - SEP

Spatial Mean Watershed Age = 161.6 days
Spatial Mean Watershed Age = 180.1 days
Spatial Mean Watershed Age = 210.9 days

JAN – MAR
Next Steps

IsoRSM experiment over Shale Hills CZO Region

Kei Yoshimura
University of Tokyo, Japan
Regional 10 km res.
Shale Hills - CZO Hydrology Team

Hydrology Group:
Chris Duffy - Civil & Environmental
Xuan Yu - PhD, CEE
Gopal Bhatt - PhD, CEE
Lorne Leonard - PhD, CEE
Evan Thomas, MS, CEE
George Holmes, MS, CEE

Boundary Layer Meteorology Group:
Ken Davis - Atmospheric Science
Yuning Shi - PhD, Atmospheric Science