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ABSTRACT

Current methods of determining stereoscopic parameters for stereo 3D films

abstract away important information about the relationship between the geom-

etry or scene elements, the camera, and the viewer, reducing the problem to

a 2-dimensional space of camera separation and convergence distance. This

abstraction handicaps the film’s artists by narrowing the scope of the stereo as-

pects of movie making to being a post process, equivalent to applying a 3D

lens to a movie already designed to be flat. In an attempt to counter the effect

of this abstraction and to better incorporate a stereo mindset into other com-

ponents of filmmaking, we have developed an interactive visualization and

intuitive pipeline toolset for animation artists that allows them to simultane-

ously view and manipulate the impact of the higher-dimensional parameters

normally abstracted away in common stereo techniques. By visualizing the

complete, comprehensive stereo pathway and encouraging meaningful inter-

action with it, artists are better enabled to create fully informed creative and

artistic stereo decisions earlier in the preliminary design stages, foresee issues

related to inherent or unintentional distortions that may arise further down the

production pipeline forcing costly re-renders and re-animations. By providing

a quicker comprehension of the stereo space and a better understanding of the

terminology used, we hope to show how the study of depth perception can

guide the creation of better stereo 3D content.

The toolset also provides for the definition of a metric of stereo distortion as

it relates to the perception of volume and shape, which allows artists to make in-

formed judgments on what constitutes perceptually good stereo, either through



automated optimization or constrained manipulation based on the limits of hu-

man perception. This tool and its applications were tested in the production an-

imation pipeline at DreamWorks Animation, and provided sufficiently accurate

and helpful feedback and aesthetically pleasing suggestions to artists involved

in the production of stereoscopic 3D animation.
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CHAPTER 1

INTRODUCTION

Figure 1.1: Our integrated pipeline tool and interactive visualization allows
stereoscopic animation artists to manipulate the entire high-dimensional stereo
parameter space and view the resultant impacts the changes have on the stereo
image as perceived by the viewer.

As the entertainment industry continues to adopt stereoscopic 3D movie

production, the number of 3D movies is increasing exponentially. Ticket prices

and 3D surcharges continue to rise as well. As a result, audiences are becoming

more discerning when it comes to stereo content in movies, requiring a higher

standard of stereo filmmaking in order for a movie to be successful. Yet stereo

3D filmmakers continue to struggle to achieve acceptable stereo that minimizes

adverse effects such as eye strain or headaches, or even correct depth perception

void of inversions or window violations.

Currently, most 3D productions employ a “stereo consultant” who acts as

an appendage to the creative process with minimal influence on the creative

core of the film. This relegates stereo as secondary to the composition of the

1



flat 2D image and other tools such as lens choice, rack focus, blocking and stag-

ing, camera movement, editing and shot selection. As such, the stereographer’s

judgment and influence is traditionally limited to simply supplying a pair of

numbers, the distance between the two cameras and the distance to the point

of convergence in the scene, that work best given the shot in its pre-configured

state. Additionally, these judgments are frequently based on a myriad of differ-

ent methodologies and rules-of-thumb, and are often inconsistent with one an-

other. This affords little latitude for incorporating stereo-minded reasoning into

the core creative decision making process, and the stereo aspects are considered

independent of (or worse reliant upon) the other aspects of the film production.

Our goal is to provide a tool which can be embedded into an animated fea-

ture film pipeline, one that lets the stereo component be integrated into the cre-

ative process of film production and used to help craft the artistry of the film.

By allowing artists to interactively visualize the influence that the broader filmic

techniques, tools, and geometric, camera, and stereo viewer space properties

have on the perception of the stereo image by the audience, they can better

grasp how variations in certain aspects of a shot alter the impact on the audi-

ence. Artists can then take advantage of this feedback and in turn can utilize

an expanded palette of creative tools augmented by the advent of stereoscopic

capabilities for the purposes of training, experimentation, and artistic growth.

The interactive graphics tool we have developed takes model and scene ge-

ometry for a given animated shot and computes the full stereoscopic transfor-

mation from model space to perceived theater space and displays both the orig-

inal geometry and transformed geometry simultaneously. This allows the artist

to visualize both where in theater space the final geometry will be displayed to
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ensure that it does not violate any perceptual or physical limits, as well as view

the types of distortions in shape and volume inherent in the stereoscopic trans-

formation. The visualization also displays the cameras, view frustums, conver-

gence plane, viewer’s eyes, and projection plane for reference. Additionally, all

of the parameters, planes, and variables needed for the stereoscopic transfor-

mation and display, as well as parameters for a variety of control paradigms

currently used to define stereo, are fully manipulatable and controllable, and

the resultant transformation is updated and displayed. This provides an intu-

itive interface and allows for instant iteration and exploration of the full stereo

transform space and feedback for artist while laying out a shot.

Finally, a metric for the shape distortion of the geometry is defined using the

stereoscopic transformation and provided geometry. The metric allows for the

visualization and understanding of how parameter variations affect the quality

of the stereo precept in a comprehensible way. The metric quantizes stereo qual-

ity, and allows a unified stereo vision across multiple artists, which becomes

increasingly important with large scale animated productions where multiple

artists might be working on any particular movie. Perceptual constraints are

applied to the full parameter space, providing a valid operating subspace for

parameter manipulation. Additionally, the potential use of the distortion metric

in an optimization technique to automate the determination of stereo parame-

ters is discussed.

The visualization tool can be used as a standalone application as a training

tool for artists unfamiliar with stereoscopic filmmaking, or it can be embedded

within an animation production pipeline for use by skilled artists to intuitively

set the stereo or any other parameters with confidence in how the resultant
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stereoscopic images will appear and iterate on variations at earlier stages in

the production. This tool allows artists to go beyond simply avoiding imper-

fections, distortions, or depth violations when determining stereo parameters

so they can develop artistic and creative uses for stereoscopic 3D filmmaking

based on a better association of the physical parameters with the changes per-

ceived by the audience.

1.1 Organization

This thesis is organized as follows. Chapter 2 introduces concepts paramount

to the basic understanding of human depth perception and the craft of stere-

oscopy, or the creation of stereo 3D films. Chapter 3 covers relevant works from

the stereoscopic transformation, to observed distortions and methods of eval-

uation of stereoscopic images, human visual comfort and fatigue, and finally

to a selection of previous attempts to visualize, automate, or control the stereo-

scopic transformation. Chapter 4 expands the stereoscopic transformation to

be more comprehensive, and introduces new concepts and methodologies for

stereo control. In Chapter 5, we introduce a visualization tool that can be imple-

mented in a studio animation pipeline which visualizes the capture and display

spaces of stereoscopic animation and the virtual precept of the stereoscopically

transformed scene by the audience in a theater. Chapter 6 introduces a method

of quantizing stereoscopic quality, or a stereo distortion metric. We also discuss

perceptual limitations on the stereo transformation parameter space. We con-

clude and ponder future directions for this research in Chapter 7, and briefly

outline one potential application of our visualization tool for stereo automation

in Appendix A.
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CHAPTER 2

BACKGROUND

2.1 Human Depth Perception

Human depth perception refers to our ability to judge absolute and relative dis-

tances in our surrounding environment as processed by our visual system. Ab-

solute, or egocentric distance, is the distance from an observer to an object. Rela-

tive distance refers to the distance between objects, or the prepositional ordering

of objects in space, like ’in front of’ and ’behind’, or ’nearer’ and ’farther’.

Figure 1 provides a relational hierarchy of the types of depth cues that al-

low us to see in depth. The primary cues include perspective, motion, relative

size, position, familiarity, occlusion, texture gradient, shading, shadows, spec-

ular highlights, atmospheric blur, motion parallax, convergence, accommoda-

tion, and stereopsis. These cues can be can be categorized as either oculomotor

or visual type cues, as well as either binocular or monocular cues.

Oculomotor cues are kinesthetic in nature, whereby the sensation and per-

ception of depth is derived from the contraction of muscular fibers in the eye

controlling either the focus of the lens or the orientation of the eye in the socket.

All other cues are strictly visual in nature, whereby the sensation and perception

of depth is derived from the retinal response of light hitting the back of the eye

and the processing of this stimuli by the brain’s visual cortex. This distinction is

important to make, as the kinesthetic cues are intimately coupled and conflicts

between the two can be a source of stereoscopic induced headaches, which we

will explain later.

5



Fi
gu

re
2.

1:
H

ie
ra

rc
hy

of
H

um
an

de
pt

h
pe

rc
ep

ti
on

cu
es

.A
da

pt
ed

fr
om

[S
B0

6]
.

6



(a)

(b)

(c)

(d)

Figure 2.2: Examples from art, photography, and computer graphics that ex-
emplify monoscopic depth cues. (a) Gustave Caillebotte’s 1877 painting ’Paris
Street in Rainy Weather’ exhibits familiarity, relative size, positioning, implied
motion, occlusion, and texture gradient depth cues. (b) A Flickr photo by local-
japantimes is a dramatic example of linear perspective. (c) Shading, shadows,
and specular highlights make the difference between a circle and a sphere. (d)
Joaquim Alves Gaspar’s photo of the Serra da Estrela in Portugal demonstrates
atmospheric blur from an aerial perspective.

The other major distinction is between monocular and binocular vision.

Monocular (or monoscopic) cues provide depth information from only a single

point of view, or one eye. Binocular (or stereoscopic) cues rely on comparing

the views from two different perspectives, one from each eye. We will briefly

describe the primary cues.
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2.1.1 Monoscopic Depth Cues

Perspective cues describe the way in which the projection of objects onto the

retina varies based on the spatial attributes of the object. In particular, as an

object become more distant, the visual angle subtended by the object at the eye

decreases, and the size of the retinal projection of the object decreases. When

looking down a long corridor, for example, parallel objects appear to converge

to a point in the eye as they become more and more distant, as in Figure 2.2(b).

Familiarity describes the way in which previous knowledge of an object can

impact our assumptions on its position in space, and relative size describes the

way in which the differences in apparent size between two familiar or similar

objects can be accounted for by positioning in space. If previous knowledge tells

us that buildings are traditionally larger than people, an image where a person

appears to be as large as a building would lead us to assume that the building is

further away from us than the person. Similarly, in an image where one person

appears significantly larger than another, it would imply that the larger person

is closer to the viewer than the other.

Related to this are motion and positioning cues. Motion cues describe how a

change in position over time towards or away from a viewer will alter the pro-

jected size of the moving object. Positioning cues describe the way that objects

further away converge on the horizon and their positions relative to the horizon

in the image plane determines their ordering in depth. In Figure 2.2(a), Gustave

Caillebotte’s 1877 painting ’Paris Street in Rainy Weather’ contains elements of

familiarity, relative size, implied motion, and positioning.

The occlusion depth cue is due to the partial obstruction of background ob-
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jects by foreground objects. For example, based on the order of obstructions of

umbrellas over umbrellas over lamp posts, we can tell that the man with his

back to us is closer than the man and woman facing us who are closer than the

green lamp post in Caillebotte’s painting.

Shading, shadows, and specular highlights describe the way that light in-

teracts with objects and how a human observer can subsequently interpret the

shape of the object. Figure 2.2(c) demonstrates how with accurate lighting and

a shadow on the ground plane, the observer can interpret the convex geometry

of a sphere.

In Figure 2.2(d) we perceive a series of mountains at increasing distances.

While this is a prime example of positioning relative to the horizon, we can

also note how the color of the ridges shifts from a more saturated blue in the

foreground to a less saturated blue in the background. This is an example of

atmospheric blur or blue shift, and is a result of reduced contrast at greater

distances because of skylight scattering from molecules in the air.

Parallax

The last visual monoscopic depth cue is parallax from motion, and is one of

the more powerful depth cues. In the context of depth perception, parallax is

the difference in relative position of an object viewed along two different lines

of sight. In terms of a monoscopic depth cue, we can obtain different points

of view or lines of sight by moving the observer over time, moving it side to

side or up and down. As the point of view changes, so too do the relative

positions of the objects being viewed: nearer objects will appear to shift more

9



(a) (b)

Figure 2.3: Motion parallax is the difference in the apparent position of objects
when viewed from varying point of view. (a) A plan view of the moving point
of view. (b) The scene viewed from varying positions as the point of view moves
from left to right.
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Figure 2.4: Accommodation of the eye. Ciliary muscles alter the shape of the
lens in the eye allowing us to focus on objects at different distances.

than distant objects. Figure 2.3 simulates this principle with thirteen still images

from a rendered video sequence as the camera tracks from left to right. Notice

how the near grey and orange boxes are displaced faster across the image than

the further objects, like the purple and red boxes and yellow and teal spheres.

This principle is frequently exploited in 2D animation, where layers of drawings

are pulled across a capturing plane at differing speeds to simulate depth in the

scene.

Accommodation

The final monoscopic depth cue is accommodation, shown in Figure 2.4, which

is the physical change in the shape of the lens of the eye by the ciliary muscles to

maintain a focused image on the retina as a result of a change in the distance of

an object. Accommodation is for the most part a reflex, but can be controlled to

some extent. It allows us to change the optical power of our eyes to focus on ob-

jects at different depths. To a limited extent depth information can be properly

interpreted from the degree of accommodation via muscular tension in the cil-

iary body for objects within a narrow range close to the viewer [LM66, WF71].
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This depth cue is enhanced when conjoined with the other kinesthetic cue of

vergence, described below. It should be noted that disorders of accommodation

are very common, and include myopia (nearsightedness), hyperopia (farsight-

edness), and presbyopia (aging and stiffening of the lens), all of which can have

adverse affects on vision and the perception of depth.

Depth of focus (DOF) describes the small amount of retinal blur toler-

ated without adjusting accommodation to perceive a sharp image, and can be

thought of as a hysteretic region or image distance that straddles the fixation

point. This observation is important when discussing vergence-accommodation

coupling and visual comfort around the fixation point.

2.1.2 Stereoscopic Depth Cues

Convergence

The other kinesthetic depth cue is vergence, or the simultaneous motion of the

eyes inwards or outwards by the rectus muscles so that the projection of a fix-

ated object is in the center of both retinas. Convergence is movement of both

eyes inwards to view a closer object, while divergence is the movement of both

eyes outwards to view a further object, as indicated in Figure 2.5. By main-

taining this single binocular vision, viewers are triangulating the position of an

object with their eyes and the fixated object. Some measure of distance can be

interpreted by the angle of muscular contraction up to a distance of 20 feet, after

which the eyes have diverged to parallel, effectively fixating at infinity [VH76].

It should be noted that convergence, accommodation, and familiar size are the

only depth cues that provide absolute distance information. All others only

12



Figure 2.5: Vergence of the eye. Rectus muscles control the inward and out-
ward motion of the eyes to maintain singular binocular vision of a fixed object.
[Wal05]

provide only relative information.

Efference Copy

It should be noted that when referring to the perception of depth using the

kinesthetic depth cues of accommodation and convergence that the human vi-

sual system is not technically capable of detecting or receiving as input the po-

sition or muscular tension of the eyes. Instead, the brain is only aware of the

control signal, or outflow. This is known as efference copy, which is defined

as an internal copy of the predicted movements or sensations resulting from a

given motor command [STK+97]. Efference copy, in part, explains why other

people are able to tickle us while we are not able to tickle ourselves, because of

the efference copy that informs us of self stimulation. While the distinction be-

tween control signal outflow and stimulus signal inflow is important to make,

it has little impact on the perception of depth as it relates to oculomotor cues
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beyond human vision disorders which in general interfere with the perception

of depth.

Stereopsis

The final stereoscopic depth cue takes advantage of the fact that our eyes pro-

vide two slightly different projections of the world because they are offset in the

horizontal direction. The difference between corresponding points in the two

projections is called retinal disparity, binocular disparity, or parallax. The brain

fuses the left and right images, and using the disparities extracts relative depth

information. This process of perceiving depth based on the difference between

the views from our two eyes is known as stereopsis.

When we fixate (converge and accommodate) on a particular point, the pro-

jection to each eye lands on corresponding areas of the retina, in particular the

middle of the fovea, and has zero disparity. Points that have positive retinal

disparity are perceived further than the fixation point, and points with negative

retinal disparity are perceived nearer than the fixation point. We will revisit the

concept of stereopsis later as it relates to visual comfort and fatigue.

2.1.3 Combined Cues

While each depth cue discussed above has been explored independently of all

other cues, under normal viewing conditions multiple, if not all, cues are uti-

lized to garner absolute and relative depth perception with higher accuracy,

consistency, and a more useful precept of the surrounding environment. While
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Figure 2.6: The relative potency and spatial importance of different depth cues,
as explored by Cutting and Viston. They assert that more potent depth cue
information is associated with smaller depth discrimination thresholds, or rel-
ative depth contrast. They found that depending on the type of the space be-
ing viewed about the viewer, either personal, action, or vista, different sources
of depth information have a higher level of importance and validity for depth
perception. Notice how some cues, such as occlusion and relative size, have
a constant just-discriminable depth threshold, indicating consistent importance
across varying depths. Other cues however, such as convergence and accom-
modation and aerial perspective, are only relevant in certain spaces and vary in
potency across their valid range of depths. [CV95]

there is no single unified theory about cue integration, many studies have ex-

plored certain aspects of combined cues.

For example, Cutting and Vishton explored the relative potency and spatial

importance of different depth cues [CV95]. They assert that more potent depth

cue information is associated with smaller depth discrimination thresholds, or

relative depth contrast. They found that depending on the type of the space be-

ing viewed about the viewer, either personal, action, or vista, different sources

of depth information have a higher level of importance and validity for depth

perception. Their findings are highlighted in Figure 2.6.
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Figure 2.7: Vergence-Accommodation dual parallel feedback control systems
that interact via cross-links. [LIFH09]

Combined Oculomotor Cues: Vergence-Accommodation Coupling

Vergence movements are closely accompanied by accommodation in the eye,

and the two often operate in a yoked manner since both reflexes occur as a result

of a change in distance to a fixation point. Thus, converging to a closer point is

often paired with increased accommodation, and diverging to a further point

is often paired with decreased accommodation, or relaxation, of the lens. This

interaction of accommodation and vergence to the same fixation point provides

clear and single binocular vision around the fixation area, where objects are in

focus and do not exhibit any parallax or retinal rivalries. Small retinal defocus

and disparities do not drive changes in either system, as the depth of field (DOF)

and sensoric fusion provide ranges of valid clear and single vision.

Because of this close coupling, vergence and accommodation is generally

modeled as two dual parallel feedback control systems that interact through
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cross-links, as indicated in Figure 2.7. Accommodation is driven by retinal blur,

while vergence is primarily driven by retinal disparities. Both respond to ap-

parent pictorial and motion based depth cues that indicate proximity, and in-

clude an adaptive tonic (slow response) component. The two systems interact

with each other via a reflexive cross-link, which can also be seen in Figure 2.7.

[LIFH09]

Combined Visual Cues

Welchman et al. [WDC+05] studied the neural architecture mediating the com-

bination of different types of visual information about depth structure. They

measured the neural responses using functional MRIs while subjects judged

the 3D structure of geometric planes defined by perspective construction and

by binocular disparity. The planes were depicted as either oriented away from

or towards the viewer in the horizontal direction. Consistent-cue stimuli and

inconsistent-cue stimuli were provided to the subjects to study which cue dom-

inated when in conflict.

They found that higher visual areas of the brain are involved in the pro-

cessing of perceived global shape and orientation, and that orientation and

depth perception depend on the combination of individual depth cues. They

determined a higher reliance on perspective cues (73%) over binocular dispar-

ity (24%).

Zhang et al. [ZBS03] explored the thresholds of stereo-slant discrimination,

and in particular by the two oculomotor cues. Stereo-slant discrimination is

the ability to discern differences in the orientation of two large and separated
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planes in the viewer’s field of view. The distance between the planes forces sub-

jects to reconverge their eyes when alternating between observing one plane

and the other. To their surprise, they found that while oculomotor errors are an

important factor in stereo-depth discrimination, they are not for stereo-slant dis-

crimination. Binocular disparity cues are used to recover slant and variations in

surface orientation for large surfaces, and little is derived from accommodation

or vergence.

Other techniques have attempted to conceptualize depth cue integration as

a statistical inference problem. By casting it as a maximum-likelihood estima-

tion of cue combinations based on reliability, combined cue depth perception

becomes an investigation into the resolution of conflicting cues. [HWLB04]

2.2 Stereoscopy: Mimicking Stereopsis

Of the cues for human depth perception explored, all but accommodation, con-

vergence, and stereopsis can be utilized in the generation of two-dimensional

imagery. Stereoscopy is any technique that creates the enhanced illusion of

depth in an image by utilizing convergence and stereopsis. By capturing and

displaying unique image information to the left and right eye, artists can mimic

the effects of convergence and stereopsis.

In terms of capturing real world images, this is traditionally accomplished

by utilizing two cameras capturing images from slightly different perspectives,

as demonstrated in Figure 2.8. The left and right images are captured simulta-

neously from the pair of cameras. In computer animation, a similar technique is

used by creating a second camera that is a copy of and offset from the original
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(a)

(b) Left Camera Image

(c) Right Camera Image

Figure 2.8: Stereoscopy is traditionally accomplished by utilizing two cameras
capturing images from slightly different perspectives.

camera, and adheres to similar animation and transformation curves.

The amount of depth and the positioning the depth range are specified by

two camera parameters: the camera separation (also known as interocular dis-

tance, internodal1 distance, interaxial distance, etc) which is the distance be-

tween the first optical nodes of the two camera lenses, and the convergence dis-

tance which is the distance from the midpoint between the first optical nodes

and the image plane at which there is zero parallax or disparity between corre-

sponding points in the left and right images. This can be more simply described

as the distance at which the optical axes of the cameras intersect.

1Nodal points, along with focal points and principal points, are the three pairs of cardinal
points along the optical axis which in an idealized symmetric Gaussian optical system com-
pletely determines the basic imaging properties. Technically, a lens has front and rear nodal
points, and are determined such that a ray intersecting one of them will be refracted through
the lens as to appear to originate from the other. However, for our purposes and for simplifica-
tion we use the frequently misunderstood definition, common to the photographer’s vernacular,
that the nodal point of an optical system is the single point along the optical axis at which all
light rays converge, collocated at the iris diaphram of the aperture.
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(a) Camera separation = 1

(b) Camera separation = 2.5

(c) Camera separation = 5

Figure 2.9: Generalizations of the camera separation at a constant convergence
distance. The blue geometry indicates the original geometry with respect to the
convergence distance plane and camera, in red. The viewer perceives the black
geometry with respect to the screen, in green. Notice how the wider the sepa-
ration between the cameras, the more exaggerated the depth, and the narrower
the separation, the flatter the depth.
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(a) Convergence distance = 20

(b) Convergence distance = 25

(c) Convergence distance = 50

Figure 2.10: Generalizations of the convergence distance at a constant camera
separation. Again, the original geometry is in blue with respect to the conver-
gence distance plane and camera in red, and the viewer perceives the black ge-
ometry with respect to the screen in green. Notice how the larger convergence
distance shifts the perceived geometry nearer to the viewer while the smaller
convergence distance shifts the geometry further from the viewer.
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A simple and convenient generalization of these parameters is that the cam-

era separation specifies the amount of depth, either more exaggerated or flat-

ter, and the convergence distance specifies the positioning with respect to the

viewer, either nearer or farther. As Figure 2.9 indicates, the greater the camera

separation, the more exaggerated the perceived depth effect is by the viewer.

Figure 2.10 indicates that a large convergence distance shifts the stereo precept

closer to the viewer, while a smaller convergence distance pushes the precept

farther from the viewer.

The convergence distance is determined and can be controlled via two dis-

tinct shooting methods; converged or parallel (Figures 3.1 and 3.2). Converged

shooting is defined by toeing the cameras inwards via physical rotation so their

optical axes converge at the convergence distance. Parallel shooting does not

rotate the cameras, as the name suggests. Instead, the cameras remain paral-

lel and shift the imaging sensors horizontally in the image plane relative to the

lenses. This still has the effect of converging the optical axes of the cameras, but

has the added benefit of not rotating the image planes; they still remain perpen-

dicular to the stereo-pair viewing direction. Alternatively, the resultant parallel-

captured images can be horizontally translated across each other to achieve the

same effect, a common method used in live action filming where the translation

of the physical image sensors is difficult. Visual manifestations of the distinc-

tion between parallel and converged will be explored later in the discussion on

stereoscopic distortions.
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CHAPTER 3

PREVIOUS WORK

3.1 Stereoscopic Transformation

One of the primary ways researchers have been able to explore how stereoscop-

ically generated images are perceived and distortions manifested is to work

through the geometric optical transformations from real world space to per-

ceived virtual stereo space. This geometric transformation is generally under-

stood and has been derived by many with slight variations and varying limita-

tions [SS53, Lip82, WDK95, HB08]. Below we describe the a general purpose ge-

ometric transformation that accommodates for some variability and is adapted

from the work of Woods et al. and Held and Banks.

First it is important to specify the stereoscopic camera and viewer position

parameters needed to completely and uniquely define the capture and viewing

geometry. In particular, six parameters are needed: three for the camera and

three for the viewer. As discussed previously, the stereoscopic parameters in-

clude the camera separation and the convergence distance. Additionally, the

field of view is required. In terms of the viewer configuration, some measure of

display size, the position of the viewer with respect to the screen (including dis-

tance and any horizontal or vertical offset from the middle of the screen), and

the interocular distance, or the distance between the viewer’s eyes. Table 3.1

outlines the variable names and descriptions used in this baseline stereoscopic

transformation definition.

Woods et al. considers the geometry of a stereo video system as a set of
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Stereoscopic Transformation Parameters

t - Camera separation. The distance between the first nodal points of the
two camera lenses.

c - Convergence distance. The distance from the midpoint between the
first nodal points of the two camera lenses and the convergence point.
Also known as ZPS (Zero Parallax Setting, or Zero Pixel Shift).

c =
t

2 tan
(
β + arctan

(
h
f

)) (3.1)

α - Horizontal field of view.*

α = arctan

 Wc
2 + h

f

 + arctan

 Wc
2 − h

f

 (3.2)

Vz - Viewing distance. The distance from the viewer to the screen.

e - Eye separation. The distance between the viewer’s eyes.

Ws - Screen width. The horizontal width of the display surface.

Wc - Sensor width. The horizontal width of the camera imaging sensor.

f - Focal length.

β - Convergence Angle. The angle of inward rotation of the stereo cameras
to achieve convergence. For converging camera configurations only.

h - Sensor offset. The distance each camera sensor is shifted outwards
from the optical axis of the lens to achieve convergence. For parallel
camera configurations only.

* There is some ambiguity in the definition of the horizontal field of view
for stereo cameras, in that there are actually three; one for each of the stereo
cameras potentially angled inwards due to convergence, and an abstract one
for a theoretical camera positioned between the two stereo cameras whose
field of view is the overlap of the first two at the convergence distance. Equa-
tion 3.2 is for the third definition.

Table 3.1: Stereoscopic transformation parameters as defined by [WDK95,
HB08].
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Figure 3.1: The stereoscopic configuration of converged camera parameters.
Converged cameras converge at depth by angling the cameras inward, such
that the optical axes, which remain perpendicular to their corresponding cam-
era sensor, intersect at the convergence distance.

three separate coordinate transformations: from the X,Y,Z coordinates in cam-

era space to the two (left and right) X,Y positions in the two camera sensors,

then to the two (left and right) X,Y positions on the stereo display, and finally to

the X,Y,Z coordinates in viewer space. Equation 3.3 and Table 3.2 identify and
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Figure 3.2: The stereoscopic configuration of parallel camera parameters. Par-
allel cameras maintain parallel camera sensors and converge the optical axes by
offsetting the sensors outward with respect to the camera lens. This can also be
achieved by translating the resultant images horizontally across each other after
being captured in camera.

outline the various coordinate values, their descriptions, and valid spaces.

World Space: (Xw,Yw,Zw)→

Camera Space: (X0,Y0,Z0)→

L/R Camera Sensor Space: (Xcl,Ycl), (Xcr,Ycr)→

L/R Screen Space: (Xsl,Ysl), (Xsr,Ysr)→

Virtual Stereo Image Space: (Xi,Yi,Zi) (3.3)

Having defined the space and variables, each of the individual transfor-
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Figure 3.3: The stereoscopic configuration of the viewer parameters in the the-
ater. Notice how objects presented with a positive parallax are perceived by
the viewer as being behind the projection plane, while objects with a negative
parallax are perceived as being in front of the screen.

mations can now be derived. From object space to camera sensor space,

(X0,Y0,Z0)→ (Xcl,Ycl), (Xcr,Ycr):

Xcl = f tan
[
arctan

(
t + 2X0

2Z0

)
− β

]
− h

Xcr = − f tan
[
arctan

(
t − 2X0

2Z0

)
− β

]
+ h

Ycl =
Y0 · f

Z0 cos β +
(
X0 +

t
2

)
sin β

Ycr =
Y0 · f

Z0 cos β −
(
X0 −

t
2

)
sin β

(3.4)
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Stereoscopic Transformation Coordinate Spaces

(Xw,Yw,Zw) - The X, Y, and Z world space coordinates of objects in the scene,
including models, cameras, and vectors.

(X0,Y0,Z0) - The X, Y, and Z camera space coordinates of objects in the
scene. This system is from the point of view of the cameras
and is centered at the midpoint between the first nodal points
of the two cameras.

(Xcl,Ycl) - The X and Y left camera sensor space coordinates of objects
projected onto the sensor image plane.

(Xcr,Ycr) - The X and Y right camera sensor space coordinates of objects
projected onto the sensor image plane.

(Xsl,Ysl) - The X and Y left screen space coordinates of objects. In gen-
eral, this is a simple scaling of the left camera sensor space
coordinates.

(Xsr,Ysr) - The X and Y right screen space coordinates of objects. In gen-
eral, this is a simple scaling of the right camera sensor space
coordinates.

(Xi,Yi,Zi) - The X, Y, and Z virtual image space coordinates, as stereoscop-
ically viewed by the observer.

Table 3.2: Stereoscopic transformation coordinate spaces as defined by
[WDK95].

From camera sensor space to screen space, (Xcl,Ycl), (Xcr,Ycr)→ (Xsl,Ysl), (Xsr,Ysr):

Xsl = Xcl

(
Ws

Wc

)
Xsr = Xcr

(
Ws

Wc

)
Ysl = Ycl

(
Ws

Wc

)
Ysr = Ycr

(
Ws

Wc

)
(3.5)

And from screen space to perceived virtual stereo image in viewer space,
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(Xsl,Ysl), (Xsr,Ysr)→ (Xi,Yi,Zi):

Xi =
e (Xsl + Xsr)

2 (e − (Xsr − Xsl))

Yi =
e (Ysl + Ysr)

2 (e − (Xsr − Xsl))

Zi =
eVz

e − (Xsr − Xsl)
(3.6)

The full general geometric stereoscopic transformation can then be combined

and defined, (X0,Y0,Z0)→ (Xi,Yi,Zi):

Xi =

(
f eWs

Wc

) (
tan

[
arctan

(
t+2X0

2Z0

)
− β

]
− tan

[
arctan

(
t−2X0

2Z0

)
− β

])
2e − 4h

(
Ws
Wc

)
+ 2 f

(
Ws
Wc

) (
tan

[
arctan

(
t−2X0

2Z0

)
− β

]
− tan

[
arctan

(
t+2X0

2Z0

)
− β

])
Yi =

e (Ysl + Ysr)

e − 2h
(

Ws
Wc

)
+ f

(
Ws
Wc

) (
tan

[
arctan

(
t−2X0

2Z0

)
− β

]
− tan

[
arctan

(
t+2X0

2Z0

)
− β

])
Zi =

eVz

e − 2h
(

Ws
Wc

)
+ f

(
Ws
Wc

) (
tan

[
arctan

(
t−2X0

2Z0

)
− β

]
− tan

[
arctan

(
t+2X0

2Z0

)
− β

]) (3.7)

There are several limitations to this general form of transformation. Primar-

ily, it does not accommodate for all variability in stereoscopic configurations

such as post rendered image translation, translation and convergence weight-

ing between the left and right cameras, viewer offset from the center of the

screen, gaze direction, allowed divergence, and stereoscopic windowed mask-

ing, among others.

3.2 Stereoscopic Distortions

Initially explored and documented by Raymond and Nigel Spottiswoode in the

1950’s, stereoscopic distortions are deviations of a viewer’s virtual perception
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of a stereoscopically projected space from their perception of the same space

if they were physically present [SS53]. They observed that the reduction of the

illusion of three dimensions to the single minor factor of convergence, especially

during the Victorian era of small, single viewer stereoscopes, would not scale to

larger demonstrations. They suggested the need for a more variable and delicate

system of capture and transmission to regulate the apparent distances of images

to within physical and comfort limits of the human observer. Additionally they

realized that a completely faithful reconstruction of the original physical space

was not necessary, and that “the recreated [stereoscopic] image is no more a

faithful reproduction of reality than is a 2-dimensional rendering of a film star

in a close-up whose head may be twenty feet high, ten feet across, but having

no depth whatever”. This would allow for artistic and creative flexibility within

the realm of comfortable stereo viewing.

As a result of their derivation of the geometric stereoscopic transformations,

Andrew Woods et al. were able to objectively detail what the Spootiswoode’s

had begun to describe 40 years earlier [WDK95]. They observed and discussed

the geometric origins, characteristics, and effects of image distortions in stereo-

scopic video displays, including depth plane curvature, depth non-linearity,

depth and size magnification, shearing distortion, and keystone distortion.

One of the more interesting observations is related to the differences between

converged and parallel shooting. While both methods can obtain equal conver-

gence distances, toed-in cameras result in a curvature of the depth planes due

to the skewed, non-parallel, nature of the left and right image planes. Accord-

ingly, the corners of the images will appear further away from the viewer than

objects in the center. Parallel configured cameras have depth planes parallel to
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each other and to the surface of the display, thus they do not induce the curved

warping seen in Figure 3.4.

Keystone distortion occurs when the projection plane is not parallel to the

camera sensor plane or when the two camera sensor planes are not parallel to

each other, situations that arise in the converged shooting configuration. This

configuration causes trapezoidal image projections, as seen in Figure 3.5. These

can traditionally be accommodated for or fixed in monoscopic displays; how-

ever keystone distortion causes vertical parallax in stereoscopic images due to

the image sensors being on different planes. Accommodation for this sort of

distortion can be painful. Also note that a certain amount of horizontal parallax

is inherent in keystone distortion as well, and this is the cause of depth plane

curvature.

Vertical parallax is also induced by radial lens distortions, such as barrel or

pin-cushion distortion. It is caused by the use of spherical lens elements which

causes different focal lengths at various radial distances from the center of the

lens. In pin-cushion distortion, the focal length increases from center, and in

barrel distortion it is the opposite. It was found that radial distortion is most

prevalent in shorter lenses due to the extreme optical requirements and glass

lens manufacturing processes. Aspherical lenses are capable of reducing the

amount of this distortion, as well as digital post-processing techniques. How-

ever there are still issues involving other types of lens aberrations and other

variances from the idealized geometrical optics simplification and abstraction

model (known as paraxial optics), whose impact can be somewhat reduced by

utilizing sequentially manufactured lenses. It should be noted that in the fields

of computer graphics and animation, simplified idealized lenses are modeled
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Figure 3.4: Curvature of the depth plane as a result of the toed-in camera
configuration. Parallel depth planes in world space are warped when trans-
formed into the virtual viewer stereo space when converged cameras are used.
[WDK95]

Figure 3.5: Keystone distortion as a result of converged stereo camera config-
urations. The trapezoidal projections create both vertical and horizontal dis-
crepancies which can lead to visual discomfort and inaccurate depth warping.
[HB08]
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and used for computation which are free of such artifacts.

Another key observation regarding stereo distortion is that perceived depth

as a function of object depth is non-linear (Figure 3.8). Simple examination of the

denominators in the derived stereoscopic transformation equations highlights

the non-linear and complex nature of the transformations. This non-linearity of

depth can lead to shape warp and false estimations of velocity, where an object

moving at one velocity may be perceived in stereo to be moving at a different

velocity or at a changing velocity due to the non-linear depth transformation.

As a result, any disparities are magnified at greater Z0 values, compounding

any perceived distortions unrelated to depth non-linearity [SGC+02]. “A linear

relationship between image depth and object depth can only be obtained by con-

figuring the stereoscopic video system such that object infinity is displayed at

image infinity on a stereoscopic display” [WDK95]. This type of configuration,

however, is difficult to achieve and induces alternate distortions and artifacts.

Distortions in shape perception occur as a result of magnification mis-

matches between depth in the Z0 direction and the X/Y planar cross section.

Because the perceived virtual stereo image space coordinates Xi and Yi can be

reduced to scaled values of the object space coordinates X0 and Y0, the shapes

on the X/Y planar cross sections of the perceived images are the same as the

original object space shapes, differing only in size. The independent scaling in

the Z direction along with the non-linear relationship between image and object

depth compresses or expands the X/Y cross sections, creating the magnification

mismatches. This can lead to perceived flattening (or cardboarding) or stretch-

ing of the image, as can be seen if Figure 2.9(a). [SGC+02, WDK95]

Son et al. [SGC+02] also point out that, compared to 2D images, stereoscopic

33



images are subject to greater distortion, especially when viewer position is con-

sidered. One of the primary distortions related to viewer positioning is shear

distortion, where objects appear to pivot about the display surface as a result

of the sideways movement in the observer position with respect to the screen

[WDK95]. See Figure 3.6(d) and (f) for an example of shear distortion. Son et

al. point out that no quantitative analysis relating to viewer position had yet

been determined, and subsequently they and others mathematically modeled

shear distortions and incorporated them into the stereo transformation equa-

tions. [SGC+02, HB08]

Held and Banks [HB08] attempt to visualize these types of distortions by

comparing the virtual stereo image projections to the original objects being cap-

tured in a variety of different camera/viewer configurations.

They first identified what they call the “proper viewing conditions” for the

real world and perceived images to match, which they define as having the

eyes positioned at the corresponding center of projections, and the vergence

matching between real world and virtual space. These conditions are known

as orthostereoscopic, where the captured space is exactly duplicated in the vir-

tual space as perceived by the viewer, and is dependent upon the display size.

Held and Banks then independently varied the viewing parameters from the

orthostereoscopic conditions to observe the effects of the estimated 3D percept.

Figure 3.6 indicates their results in plan view. The original stimulus is shown

in white and the estimated 3D stimulus in blue, while the screen is shown in

green and optical axes of the cameras in red. (E) is the proper viewing condition,

while (B) and (H) show variations in distance from the screen. (D) and (F) show

the off-centered viewing conditions that result in shear distortions, (A) and (I)
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Figure 3.6: Independent variations of viewing parameters and the resulting ef-
fects of the estimated 3D precept, as visualized by Held and Banks. The original
stimulus is shown in white with the estimated 3D stimulus in blue, while the
screen is shown in green, the optical axes in red, the observer in white, and
stereo cameras in blue. (E) shows the proper viewing condition. (B) and (H)
show variations in viewing distance from the screen. (D) and (F) show off-
centered viewing conditions and the resulting shear distortions. (A) and (I)
show mismatches in the interocular distance between camera and viewer. (C)
and (G) show mismatches in the convergence distance. [HB08]
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show mismatches in the interocular distances between camera and viewer, and

(C) and (G) show mismatches in the convergence distance.

Finally, it has been observed that the non-linear nature of the stereoscopic

depth transformation leads to misperceptions in depth, size, and velocity.

Kusaka ran psycho-physical experiments with a half mirrored surface in front of

a stereo screen and movable LEDs to gauge perceived distance and came to the

same determination of the non-linear transformation between world space and

image space [Kus92]. They then explored the implications of size perception as

it relates to the Ponzo illusion and determined that due to inaccurate percep-

tions of absolute depth, an object that maintains the same retinal image size will

be inaccurately judged in terms of its size. The Ponzo illusion, as demonstrated

by Mario Ponzo, suggests that the size of an object as judged by the human

mind partially depends on the background, and that objects that are judged at a

greater distance will be perceived to be larger if they maintain the same retinal

image size. Figure 3.7 provides an example and geometric explanation of this

illusion. Diner explored other implications of the non-linear depth transforma-

tion as it applies to motion and determined that it leads to inaccurate judgments

on velocity and acceleration [Din91].

3.2.1 Physical and Perceptual Limitations

Explorations in the limitations of stereoscopic viewing, both physical and per-

ceptual, have also been conducted.

Son et al. re-derived the stereoscopic transformation equations as functions

of the original object depth value (Z0) and the magnification of object size be-
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(a) (b)

Figure 3.7: The Ponzo illusion. Figure (a) shows how two lines of equal length
are perceived to have different sizes based on the perceived distance along the
perspectively viewed tracks. Figure (b) is the geometric explanation of the illu-
sion that demonstrates how images with the same retinal image size, or constant
subtended angle, will be perceived as different sizes if perceived at different dis-
tances.

tween the original image and perceived image (m = Ws/Wc) in order to identify

asymptotic limit values [SGC+02]. They identify near and far limitations on the

depth and position of real world objects and their corresponding virtual space

positions based on the camera and viewer configurations. Their results are sum-

marized in Figure 3.8, and generally identify the geometric limitations in the

form of asymptotic limits. These limits often have obvious and practical rea-

sonings behind them, such as the necessity for captured geometry to appear in

front of the camera and appear in front of the viewer and not cause an outward

divergence of the viewer’s eyes. Notice the change in naming conventions from

our own. In particular, note that the camera separation t = 2a, eye separation

e = 2b, and the subscripts O,C,V, I are for the object, camera, viewer, and image

positions, respectively.
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(a) Camera Separation >Interocular

(b) Camera Separation <Interocular

Figure 3.8: Physical geometric limitations of stereo viewing based on camera
and viewer configurations, in particular the object depth (Z0) and image mag-
nification (m = Ws/Wc). The left diagrams indicate the relationship between the
original object depth (Z0) and the perceived planar position (Xi,Yi), while the
right diagrams indicate the relationship between the original object depth (Z0)
and the perceived object depth (Zi). Notice how all parameters are non-linear
with respect to the original object depth and also how the asymptotes of each
diagram correspond to a computable physical geometric limitation. [SGC+02]

It is of critical note that this study did not accommodate for perceptual al-

lowances, such as the brain’s ability to fuse geometrically impossible conditions

[HB08, WDK95, Ogl40, ABM+97] or the eyes’ ability to diverge outward to a

slight degree [Pas95, YS90, CES88, Stu34, WDK95]. Also, this study assumed a

parallel, unconverged camera configuration, which is a source of many of their

geometric limits.
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Figure 3.9: Definition and visualization of the stereoscopic transformation
boundary volume as defined by [SGC+02]. The shaded region is the boundary
volume wherein all stereo-perceived objects will appear to the viewer.

Son et al. also identified a transformation boundary volume, whereby all

object space points transformed into stereo image space points lie within a pre-

defined volume (Figure 3.9). By defining the point T = (Tx,Ty,Tz) as the intersec-

tion of lines connecting the cameras (Cl/Cr) to their corresponding viewer eyes

(Vl/Vr), they were able to identify the transformed boundary volume by project-

ing from the point T to the original real world boundary defined by the external

border of the object. The illustration provides an example of this transformation

boundary volume (shaded region), identifying the left and right camera and

viewer positions, the point T , and two points (A and B) in both their original

(OA) and transformed (OB) positions. The shaded transformation boundary vol-

ume indicates the possible valid locations where transformed objects can appear
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to the viewer and is a helpful diagrammatic way of identifying limits where a

full transformation of all object points is not possible.

Another study on the limits of stereoscopic perception was conducted by

Ishikawa and Geiger [IG06]. They investigated the perception of shape, and

how the ambiguity arising from noise, periodicity, and large regions of con-

stant intensity is resolved and how missing data is interpolated. This ambiguity

makes it impossible in general to identify all locations of the two images with

certainty. They suggest that any convincing model of stereopsis should detail

how ambiguity is resolved and missing data interpolated.

They tested this by generating ambiguous stereoscopic silhouettes or bound-

ary contours, as in Figure 3.10(a). The edges are the only locations that can

be matched perfectly and provide exact depth data. They then asked partici-

pants to identify which of the three possible resolutions to the ambiguity (Fig-

ure 3.10(c)-(e)) they observed. Due to the variation and ambiguity in their re-

sults, their findings suggest a refutation of the traditional theories of depth in-

terpolation, including one-dimensional information for depth prediction (hor-

izontal depth interpolation), as well as well as gradient minimization models,

convex models, and energy minimizing models.

Ishikawa and Geiger then suggest a minimum disparity gradient or similar

model except when overridden by strong prior preference for special spatial

features, such as the preference of human perception for elliptical shapes over

hyperbolic. They note that the preferred shapes tested were parabolic.

They also propose a Zero Gaussian curvature model, which is characteris-

tic of parabolic points. Such surfaces are developable (can be made by rolling
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Figure 3.10: An example of the ambiguous stereoscopic silhouettes or bound-
ary contours of the study conducted by Ishikawa and Geiger. (a) shows the
stereoscopic stimulus, and (b) indicates the edges, which are the only perfectly
discernable depth positions. (c), (d), and (e) indicate possible depth interpo-
lation precept models, and (f) shows the possible illusory volumes along the
epipolar line. [IG06]
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and bending paper), indicating human vision system attempts to fit a bound-

ary to a wire frame. Functionality would be neither concave nor convex, and is

nonlinear which indicates it is dependent on starting location.

A subset of the Zero Gaussian model is the convex hull model, where the

perceived surface can be described as the result of wrapping the discernable

points and lines with elastic or spandex, creating a minimal surface. This sug-

gests to the authors that the precept of these surfaces arise from later stages in

the human visual process and is the simplest 3D shape that is compatible with

the data. They conclude by admitting that no developed model or theory com-

pletely and accurately matches human vision or the results of their study, and

conceded ambiguity in all of their proposed models.

3.2.2 Skewed Rays

As discussed previously, the issue of geometric versus perceptual stereo trans-

formation and interpretation has been identified as an issue in previous stereo

perception research. Banks et. al. explore this distinction between geometric

and non-geometric distortions in 3D shape perception in stereoscopic displays

[HB08]. The standard geometric model involves determining the retinal images

by projecting from the stereo images to the viewer’s eyes, and the ray intersec-

tion determines the 3D shape percept.

Held and Banks point out, however, that there are three instances when this

model fails, or, specifically, when the back-traced rays do not intersect and no

precept point can be defined: yaw rotation of the viewer, roll rotation of the

viewer, and mismatch between camera convergence and the way the stereo im-
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ages are displayed.

The non-intersecting rays lead to vertical disparities in the retinal images,

and Held and Banks suggest that these disparities are “crucial signals” in the

visual system’s interpretation of stereo images, pointing out that while many

viewing situations do create non-converging rays and vertical disparities, view-

ers are often able to perceive a coherent 3D scene. This led them to infer that

more than just the standard geometric model for distortions is at work within

the visual system.

Their findings regarding the vertical and horizontal disparities associated

with yaw rotation, roll rotation, and converging cameras are summarized in

Figure 3.11, showing the disparity vectors for points on the front ((a), (b), (c))

and back ((d), (e), (f)) planes of a cube when viewed with the varying changes

in viewing conditions.

3.2.3 Epipolar Geometry

In an attempt to integrate vertical disparities into a model for stereoscopic

viewing, Held and Banks [HB08] define skewed rays using epipolar geometry.

Epipolar geometry is defined by the geometric relationships between 3D points

and their projections onto 2D image planes, such as corresponding points in

stereo images on the projection plane or the back of the retinas. One useful el-

ement of epipolar geometry is the epipolar plane which is defined by a point

in space and the two centers of the points projection at the viewer’s eyes [Fig-

ure 3.12(a)].
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Figure 3.12: Demonstration of epipolar geometry and its applications to skewed
rays, by Held and Banks. (a) demonstrates natural viewing, where the epipolar
plane is defined by a point in space and the centers of the two eyes. (b) shows
how for properly viewed stereoscopic images, the correspondence points lie
in the same epipolar plane and thus the corresponding rays intersect in space.
(c) shows how for obliquely viewed stereoscopic images, correspondence rays
often lie in different epipolar planes and may never intersect in space. [HB08]

Two corresponding points in a stereo picture produce intersecting rays as

long as they lie on the same epipolar plane and are non-parallel, as in Fig-

ure 3.12(b). Standard transformations described within the classic geomet-

ric stereoscopic transform model may rotate or translate the epipolar plane,

but these rays still remain epipolar, continuing to provide geometrically valid

results. However, rotation of the viewer’s head produces rays in different

epipoloar planes, as in Figure 3.12(c), resulting in non-intersecting rays and ge-

ometrically indeterminable stereo precept points. Note that, as previously dis-

cussed, this only applies to yaw and roll rotations, as pitch rotations of the head

do not affect the epipolar geometry or the stereo precept by the viewer since

the rotation axis is contained within the epipolar plane. Mismatches between

camera and display surfaces can also produce differing epipolar planes, such as

the case with converging cameras, as the image sensors lie on different planes

yet the projected display surface is on one plane and traditionally none of them

are parallel with another.
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Banks identifies Woods’ seminal 1995 paper [WDK95] as the only previous

work that attempts to incorporate skewed rays into a geometric model and dis-

cusses the possible perceptual consequences. Woods et al. justified vertical dis-

parities by averaging the vertical Y coordinate in mismatching geometric points.

However, Banks points out that vision science findings suggest that this 3D esti-

mate does not match human percepts, and explicitly does not apply to yaw and

roll rotations.

An example of how stereo mismatches are managed and accommodated to

by the human visual precept is the “induced effect”. The induced effect occurs

when a vertically magnifying lens is placed in front of one eye, creating non-

zero vertical disparities. The effect of this is a perceived slanting of the fron-

toparallel surfaces, despite non-induced horizontal disparities. This led vision

scientists to accept that 3D percepts are a product of both horizontal and vertical

disparities. [HB08]

Adams et al. conducted a study into the adaptation to the “induced effect”

over a period of several days. They found that the process of adaptation and

diminishing the perceived distortions is a purely visual change rather than a re-

mapping between the visual stimuli and motor responses. They found that in

order to restore veridical perception, the determination of slant from disparity

must be recalibrated instead of reweighting or monocular adaptation. [ABVE01]

Backus et al. points out two stereopsis models that may help to incorporate

this type of slant precept into a model for stereoscopy. One is based on mea-

suring horizontal disparities and eye position, whereby the slant S of a surface

is determined by the horizontal size ratio (HS R - the ratio of horizontally sub-

tended angles between the left and right eyes), the eyes version (γ - off-center

46



gaze angle), and vergence (µ). [BBvEC99]

S ≈ − arctan (1/µ · ln HS R − tan µ) (3.8)

The other method is based on the horizontal and vertical disparities, without

relying on the eye position.

S ≈ − arctan
(
1/µ′ · ln HS R/VS R

)
(3.9)

where µ′ is the vergence derived from changes in the vertical size ratio (VS R).

Banks points to papers suggesting that the visual system uses a weighted aver-

age of the two stereoscopic methods when estimating surface orientation from

binocular disparity. [BBvEC99]

3.3 Evaluation of Stereoscopic Images

In order to generate the highest caliber stereoscopic images, we need ways to

subjectively and objectively evaluate them. The following is a review of pre-

vious research in the methodologies and results of a variety of techniques of

evaluating stereoscopic images.

3.3.1 Quality and Naturalness of Depth

Multiple studies have been conducted investigating the influence of image dis-

parity, convergence distance, and focal length on the subjective assessment of
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depth, naturalness, quality, and eyestrain of the resultant stereoscopic images

[IdRH98b, IDRV02, TSC98]. In most cases, studies utilized the RANDOT ran-

dom dot stereo test from Stereo Optical Co to verify user stereoacuity. To distin-

guish between naturalness and quality as subjective evaluation, subjects were

told that naturalness is what they perceive as a truthful representation of reality,

while quality is a subjective preference scale. It has been indicated that subjects

are able to differentiate between the two [IdRH98b].

In all studies, a strong preference for stereo over non-stereo images was

found. This was expanded upon in one study, in that the preference was dimin-

ished if stereoscopic artifacts were noticeable [TSC98]. Another group found

that both quality and naturalness of depth increase with the transition from a

monoscopic to a stereoscopic mode of presentation within natural bounds of

disparities [IDRV02].

In the studies conducted by IJsselsteijn et al., the naturalness and quality

evaluations peaked at an intermediate camera separation distance [IdRH98b,

IDRV02]. The results are highlighted in Figure 3.13. The authors attribute the

decrease in quality and naturalness ratings at larger camera separations to ex-

treme disparity values. They also found that there was a strong linear relation-

ship between naturalness and quality (r=0.96), however a small systematic shift

was observed.

There was also a difference between configurations with similar ratios of

focal length to object distance, attributed to the greater presence of keystoning

due to toe-in at the shorter focal distances, especially at larger stereo bases. The

authors calculated that the vertical disparity caused by keystoning perceptually

results in depth plane curvature which may have a negative impact on observers
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(a) Exposure Time Based

(b) Scene Based

Figure 3.13: Results of quality and naturalness evaluations as a function of
stereo parameter variation by IJsselsteijn et al. Note that in the diagrams F is the
focal length and C is the convergence distance of the stereo cameras. [IDRV02]
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appreciative judgments.

IJsselsteijn et. al. also ran experiments to determine if there is any variation

in quality and naturalness over image display duration. Displayed images were

of two scenes and varied over durations of 1, 3, 5, 10, and 15 seconds. The results

showed no significant main effect of display duration.

Few studies on subjective evaluation of stereoscopic images emphasize the

impact of variations in scene content over parameter configurations beyond the

brief mention of the ratio between the focal length and object distance.

3.4 Visual Comfort and Fatigue

Another way to evaluate the quality of stereoscopic images is to observe visual

comfort and fatigue while viewing stereo images. Visual fatigue and discom-

fort can be defined by a wide range of visual symptoms, including tiredness,

headaches, soreness of the eyes, eyestrain, dried mucus or tears, feeling of pres-

sure in the eyes, aches around the eyes, discomfort when the eyes are open, hot

eyes, difficulty in focusing or blurred vision, and stiff shoulders [UH08]. The

visual fatigue symptom of eye strain, known as asthenopia, indicates the exis-

tence of elastic distortion caused by stress. Visual fatigue can be caused by a

demand on the early visual functions or central cortical structures.

In terms of viewing stereoscopic images, visual discomfort and fatigue

can be caused by anomalies of binocular vision, binocular asymmetries,

accommodation-convergence mismatch, and excessive disparity. Asymmetries

are either optical, geometric, or filter-based in nature. Geometric asymmetries
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include vertical image shift, as well as rotation, magnification, size, and distor-

tion mismatches. Asymmetric filter characteristics include luminance or con-

trast mismatches, color differences, and cross-talk, where cross-talk is when the

image intended for one eye bleeds into the precept of the other eye, often caused

by high contrast in certain 3D display technologies.

Excessive disparity occurs when the projected image disparity is wider than

the viewer’s interocular base, forcing the viewer to diverge their eyes outward

to an uncomfortable degree. Some research has been done to identify if a com-

fortable outward divergence limit exists, and values ranging from none to 1o to

3o have been proposed [Pas95, YS90, CES88, Stu34, WDK95].

These asymmetries and excessive disparities can result in phoria on the eye

muscles which can lead to eyestrain. Phoria is any of the tendencies of the axes

of vision to deviate from the normal when binocular fusion of the retinal images

is prevented, for example in the absence of adequate fusion stimulus [LIH07,

UH08].

3.4.1 The Horopter and Panum’s Fusion Area

In vision psychology, there are certain regions within our field of view that are

defined to bring clarity to the study of binocular vision. The first is Donders’ line

which represents the correlation and coupling of vergence and accommodation

that we have explored previously. Explicitly, it is defined as the relationship

between the orientation and rotational movements of the eye for vergence and

the focal point using the accommodation function [YEM04]. It can be visualized

as a line in the space of focal distance as a function of convergence distance.
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(a) Geometric (b) Empirical

Figure 3.14: The geometric and empirical definitions of the horopter. [Ogl50]

Under normal viewing conditions, this relationship is one-to-one and linear in

diopter units, as indicated by the black line in Figure 3.15.

Additionally, we can explore correspondences in the spatial environment

surrounding the viewer. Given a particular fixation point, we can identify all of

the other points in space whose correspondences in the two retinal images are

the same, or in other words where their binocular disparity is zero and fusion is

exact. This set of points form a surface, or loci, known as the horopter. This loci

has many special properties that are relevant to the study of binocular vision

and comfort. Beyond being the surface in space upon which there is zero binoc-

ular disparity, the horopter is also the area around which precision of depth

estimates is the highest. This is due to the fact that matching solutions during

the processing of binocular disparities are biased towards it, and the region of

single vision straddles it.

There are two ways to define the horopter; geometrically, as in Figure 3.14(a),

and empirically, as in Figure 3.14(b). The shape of the loci is dependent upon

which definition is used. The geometric horopter is defined by the points with
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(a) Panum’s Fusional Area (b) Percival’s Zone of Comfort

Figure 3.15: Panum’s fusional area and Percival’s zone of comfort in vergence-
accommodation space. Figure (a) shows Donder’s line during natural viewing
and Panum’s fusional area which is the area around Donder’s line where fusion
and single vision are still possible. Figure (b) shows Percival’s zone of comfort,
which is defined as the middle third of the zone of clear and single binocular
vision. Notice how real stimuli stay within Percival’s zone while 3D-displays
traditionally provide vergence-accommodation stimuli that do not. [HGAB08]

the same coordinates in the two retinas, defined mathematically. The empirical

horopter is located by experimental measurement. The two surfaces are not

coincident with each other.

The geometric horopter contains the Vieth-Muller circle, or the circle con-

taining the fixation point and nodal points of eyes. Vertically, the horopter

curves away from the viewer above the fixation point, and curves towards the

viewer below the fixation point [SHF+08]. As the distance to the fixation point

is increased, the radius of the circle increases, and the horopter becomes more

plane-like as the viewing conditions become more parallel.

The empirical definition has been found to contain uncrossed horizontal dis-
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parities to the left and right of fixation, thus the horizontal empirical horopter is

less concave than the Vieth-Muller circle in the geometric definition. There are

also two observed distortions, the Hering-Hillebrand deviation near the hori-

zontal meridian and the Helmholtz shear near the vertical meridian, which im-

ply that the empirical corresponding points are optimized for viewing a ground

plane by a standing observer. [SHF+08] Given a particular vergence and accom-

modative fixation distance, there is a region surrounding the horopter in the

focal direction where a certain amount of retinal blur is tolerated but clear vi-

sion is still maintained. This is known as depth of field (DOF). Similarly, there

is a region surrounding Donders’ line in the vergence direction where a certain

amount of retinal disparity is tolerated but the fusion and single vision of the

two images is still possible. This is known as Panum’s fusion area. These ranges

are approximately 0.3 diopters and 30 arcminutes, respectively, and are depicted

in Figure 3.15(a). Within the intersection of these ranges, clear and single binoc-

ular vision is possible, and certain levels of mismatch between accommodation

and vergence is tolerated [LIH07, SW83].

A subset of this region is Percival’s visual comfort area, and is defined as

the middle third of the zone of clear and single binocular vision (green region

in Figure 3.15(b)). If Donders’ line lies within this zone, there should be no

visual discomfort. Under normal real-world viewing conditions, this condition

is always met.

Discomfort within this area is still possible but due to alternate issues. Ex-

cessive demand on the accommodation-vergence linkage can contribute to vi-

sual discomfort within Percival’s visual comfort area. This demand includes,

but is not limited to, fast tracking depth motion, 3D artifacts from insufficient
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depth information yielding spatial and temporal inconsistencies, conflicts be-

tween depth cues and geometrical distortions, and unnatural amounts of blur

from cross-talk, conversion, or artificially induced DOF. [LIH07]

Alternately, Donders’ line may lie outside of Percival’s visual comfort area

(the horizontal line in Figure 3.15(b)), in which case such viewing configurations

may induce visual discomfort or fatigue as a result of the mismatch between the

traditionally coupled vergence and accommodation. This decoupling of ver-

gence and accommodation is known as the vergence-accommodation conflict.

3.4.2 Vergence-Accommodation Conflict

Mismatches between focal and vergence distances are significantly different

from normal yoked viewing conditions, and were first explored by Charles

Wheatstone in the mid 19th century [Whe52b]. Since then, others have explored

the effects of the vergence-accommodation conflict and found that it may make

the viewing and fusing of stereo images difficult as well as cause visual fatigue

[IO97, HGAB08].

As previously discussed, natural real world viewing conditions provide for

correlated focal and vergence distances. Most stereoscopic displays, however,

force the user to focus on the surface of the screen while converging across a

wide spatial range both in front of and behind the screen, creating a conflict of

traditionally coupled depth cues, as in Figure 3.16. As a result, accommodation

and retinal blur provide incorrect depth information and reduce the ability to

fuse retinal disparities, as the eyes are fixated on the traditionally 2D projection

plane and not on the implied virtual stereo fixation point.
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Figure 3.16: Vergence-accommodation conflict. Under normal, real world view-
ing conditions, vergence and accommodation are traditionally linked and fix-
ate on points at the same depth (A), (C). However, most 3D-displays force the
viewer to accommodate to the screen while verging across a wide spatial range
both in front of or behind the screen (B), (D). This mismatch creates a conflict
between the traditionally coupled depth cues. [HGAB08]

A study by Inoue and Ohzu [IO97] found that correct focus cues can reduce

the time to identify a stereo stimulus, increase stereoacuity, reduce perceived

distortions in depth, and reduce viewer fatigue and discomfort. They also iden-

tified a major difference in perception when viewing identical stimuli, once as

a real world stimulus and once on a stereo screen with orthostereoscopic con-

ditions. They found that the depth in the computer display appeared flattened

compared to the real world stimulus, implicating a slight amount of distortion

when viewing stereo content, even under orthostereoscopic conditions.

The results of this study make logical sense when taken in context with what
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is known about the coupling and feedback mechanisms between vergence and

accommodation as previously discussed. The double feedback and crosslink

mechanisms help to speed up the vergence and accommodation process. When

a mismatch is induced while fusing and focusing on 3D display stimuli, the

viewer must counteract normal accommodation-vergence coupling, possibly

taking longer and causing visual discomfort and fatigue [Uka06, WMW02].

3.5 Stereo Parameter Prediction, Control, and Automation

Finally, we review previous attempts at constructing systems to calculate ideal

stereo parameters or to predict potential distortions, as well as currently em-

ployed methodologies regarding determining stereo parameters.

3.5.1 Puppet Theater and Cardboard Cutout Effects

The first, by Masaoka et al. [MHE+06], proposed a system that calculates spatial

distortion based on shooting, display, and viewing conditions with an emphasis

on the puppet-theater and cardboard effects. They also show how the proposed

system could be useful in predicting ratings of naturalness and quality of depth

in stereoscopic images.

The puppet-theater effect is defined as an unnatural miniaturization effect

that results from the reproduced space depth of background objects being em-

phasized more than the object of focus. In the reproduced image space, the

angular retinal size of background objects does not become proportionately

smaller, thus miniaturizing objects of interest. One of the authors, Yamanoue
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[Yam97], defined a puppet-theater effect parameter, Ep, as the ratio of lateral

reproduction magnifications between the object of interest and the background

elements. Ep < 1 means that an object of interest appears smaller.

The cardboard effect is the result of reproduced space depths being short-

ened, flattening perceived objects. An example of this can be seen in Fig-

ure 2.9(a) where we generalized a shortening of the camera separation to a flat-

tening of the perceived depth. Again, Yamanoue also defined a cardboard effect

parameter, Ec, as the ratio of depthwise to lateral reproduction magnifications.

Yamanoue determined that an object appears flat when Ec < 0.75.

They point out that under orthostereoscopic conditions the puppet-theater

and cardboard effects do not occur geometrically, but physically and physiolog-

ically these conditions may not be ideal, creating excessive parallax and induc-

ing headaches. They claim their system predicts the extent of excessive parallax

distribution and excessive binocular parallax as well as the puppet-theater and

cardboard effects.

Masaoka et al. start by suggesting that the amount of parallax in stereoscopic

images should be limited to within a defined comfortable range. They define a

comfort range for a 90 inch TV viewed from 3.3 meters to be from 30mm of

parallax in front of the screen to 65mm of parallax behind for the average eye

width, and that parallax distribution should not exceed 0.3 diopters. [NYHO03]

Their system continuously records the shooting parameters as images are

captured. Analysis of the captured images gives parallax values, and the real

depth is calculated. The user must then specify the maximum and minimum

desired depth values, as well as a depth for the objects of interest, which they
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specify as the focus plane. The system then provides visual feedback for when

the current shooting conditions imply excessive cardboarding or puppet-theater

effects.

Their simulation results are shown in Figure 3.17, where a magenta hued

texture indicates an increased perception of the puppet theater effect, and a

green hued texture indicates an increased perception of the cardboarding ef-

fect. They show the results of seven theoretical cases; large camera separation,

narrow field of view, long convergence distance, short convergence distance to

minimize cardboarding, short convergence distance to minimize excessive par-

allax, small eye separation, and narrow display viewing angle.

Masaoka et al. then discuss relating their findings to previous work done on

describing the naturalness and quality of depth in stereoscopic images. They

believe that naturalness will go down as the effects become more pronounced,

as would quality of depth except that viewers might prefer stereo images whose

depth is enhanced, even if it appears unnatural. To test this, they replicated the

conditions used in IJsselsteijn’s experiments [IDRV02]. They found a good over-

all degree of correlation between spatial distortions and perceived naturalness

and quality of depth, leading the writers to propose that the spatial distortions

measured by their system are those that affect observers’ judgments of natural-

ness and quality of depth.

3.5.2 Bounding Parallax

A separate system was proposed by Robert Akka [Akk92]. He introduces a

method of calculating initial stereoscopic settings and ongoing adjustments for
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software designers dealing with stereoscopic computer graphics. Part of the is-

sue he identifies is that typically stereo display parameters are interactively user

controlled, but often an unviewable starting image and too-frequently needed

adjustments prevent manual control from being a viable solution. Akka says

that software using his approach should yield stereoscopic scenes that are “com-

fortable and pleasing to look at” with minimum user adjustment.

Akka defines high-quality stereoscopic computer graphic images. Intu-

itively, he says, this would imply being geometrically accurate, by estimating

the positions of the user’s eyes for example; however in many situations where

the scale of the scene does not match the scale of the viewer, this fails. He also

suggests that algorithms based on object rotations should not be used, as they

introduce vertical distortions.

Akka claims that, regardless of the user’s viewing position, stereo images

tend to look best if a wider field-of-view is used, and defines “wide” as approx-

imately 50 degrees, from Lenny Lipton’s The CrystalEyes [LAM91]. He then

arrives at a definition for high-quality stereoscopic imagery–“elements in the

scene should generally have parallax values that fully span the range from 3%

of display width negative parallax to 3% of display width positive parallax.”

Next he defines the mathematical stereoscopic transformations using maxi-

mum negative and positive parallax values, the range of Z-coordinates where

most elements in scene appear, and a “center of interest”. He is then able to

define a camera separation value that projects objects within the defined Z-

coordinate range to within the specified parallax range. The crux of his argu-

ment, however, lies in his assumption of a 50o field of view and a screen size of

12 inches–all of his computed values are derived from these two initial assump-
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tions.

Akka then discusses methods for ongoing stereo adjustment. The most pop-

ular method he defines as setting a single set of parameters to meet the average

condition. This method is good for static scenes. An obvious alternative would

be to periodically recalculate the stereo parameters, which requires continuous

knowledge of the positioning of the objects within the scene. The final method

he defines as simply proportionally scaling the values according to changes in

position. This final method assumes that the width-to-depth ratio of the scene

remains constant.

Finally, Akka suggests that the user should have a manual fine-tune control

over the degree of the stereoscopic parameters and that such control should not

conflict with the software adjustments and act more as minor variations from

the computed baseline.
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CHAPTER 4

COMPLETENESS OF THE STEREOSCOPIC TRANSFORMATION

The previous chapters have covered the perceptual and computational as-

pects of stereoscopic animation and cinema, and highlighted many studies

and other research endeavors that have explored the understanding, creation,

and control of stereoscopic content. We now present an interactive graphical

stereoscopic distortion visualization tool for artists working in a 3D animation

pipeline. The work takes advantage of many of the recent advancements in

stereoscopic filmmaking and research to provide a comprehensive graphical in-

terface for visualizing the resulting stereoscopic precept by the viewer in a the-

atrical environment.

Through augmentation of the traditionally accepted stereoscopic transfor-

mation, we accommodate for perceptual limitations related to human vision

and increase the completeness of the parameter space to allow for full variability

of all stereoscopic parameters and controls. We provide an interactive visualiza-

tion of the stereoscopic parameters, as well as the stereoscopically transformed

geometry as perceived by the audience simultaneously with the original geom-

etry. The interactive graphic tool thus enhances the artists comprehension of

the distortions inherent in the stereoscopic system’s configuration. Addition-

ally, the tool has an intuitive interface that allows for easy manipulation and

control of all geometry, camera, viewer, and stereo parameters, as well as the

implementation of several popular control mechanisms to allow for parameter

manipulation by the artist within several commonly used stereo paradigms. Ul-

timately, these components provide an intuitive way for stereoscopic artists to

explore the complete stereoscopic parameter space and understand the effects
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(a) 1.85 Aspect Ratio (b) 2.40 Aspect Ratio

Figure 4.1: Aspect ratio variations. Projection surface and viewer shown.

that their decisions have on the ultimate precept by the viewing audience at any

stage of the filmmaking pipeline.

In an attempt to remove assumptions, allow for complete configuration, and

to conform to a more perceptual model of the stereoscopic transformation, we

have augmented the classic geometric stereo transform model through an ex-

pansion of the independent parameter space, implementation of indirect stereo

camera control paradigms, and the addition of other industry standard stereo

techniques. Ultimately, this leads to a new and complete unconstrained stereo-

scopic transformation model with usability enhancements.

4.1 Expansion of the Parameter Space

4.1.1 Aspect Ratio - A

The aspect ratio (A) is the ratio of the width of the camera sensor to the height.

It is the same as the ratio of the width of the projection surface to its height. In

conjunction with the width of the camera sensor or projection plane it uniquely

defines the shape and dimensions of the projected image. This is important as

the shape of the camera sensor and projection plane determine what objects are

64



(a) 1.85 Aspect Ratio (b) 2.40 Aspect Ratio

Figure 4.2: Horizontal sensor resolution at varying aspect ratios.

in the field of view of the camera, which is then used for the framing of a shot

by camera operators and artists as well as for computational culling algorithms

which discard geometry outside of the field of view of the camera.

Most modern movies are presented in one of two aspect ratios, as deter-

mined by the creative lead of the film. The most common format has an aspect

ratio of 1.85. It is about the shape of modern widescreen televisions, and is col-

loquially referred to as “flat”. The second most common format, colloquially

referred to as “scope”, has an aspect ratio of 2.40 and is significantly wider. Our

visualization tool allows for variation of the aspect ratio of the camera system

to arbitrary user specified values, and can also be snapped to either of the two

current industry standards of 1.85 and 2.40, as seen in Figure 4.1.

4.1.2 Horizontal Sensor Resolution - Rc

The horizontal sensor resolution (Rc) is an important parameter for the com-

plete definition of a stereoscopic camera. In conjunction with the camera sensor

width, screen width, and the aspect ratio, it relates pixels to distance and fully

defines the image sensor format, an intrinsic parameter of a camera system, and

the projection surface dimensions, as seen in Figure 4.2.
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Of significant importance to stereoscopic computations, it allows for a com-

mon grammar amongst stereo artists to refer to parallax in pixel units. Since the

film industry has currently settled on a standardized high definition horizontal

image resolution of 1920 pixels for digital content, a unified reference point has

been established so that artists can refer to specific parallax values in pixels and

those values will retain their meaning across artists and productions.

Note however that this grammar is reliant upon the horizontal sensor reso-

lution being constant. In today’s quickly advancing technological world, digital

cinema standards are marching forwards and soon a horizontal sensor resolu-

tion of 4096 pixels will take over from 1920 as the new universal horizontal

resolution standard. At that point, negative 10 pixels of parallax will no longer

have the same meaning in terms of percentage of screen width and stereo pre-

cept, and stereoscopic artists will have to relearn their stereo dictionary. Our

visualization tool allows for variation of the horizontal sensor resolution to ar-

bitrary user specified values, and defaults to the current industry standard of

1920 pixels.

4.1.3 Convergence Method

As discussed previously, traditional stereoscopic camera configurations are

specified as either parallel or converged (Figure 4.3). The inherent distortions

between the two configurations has also been presented. Our system allows

for the specification of the convergence style as either parallel or converged.

The parallel method locks the convergence angle to zero, while the converged

method locks the sensor offset to zero. This allows for variation of the con-
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(a) Parallel (b) Converged

Figure 4.3: Convergence methods and their inherent distortions. Notice how
depth plane curvature inherent to the converged method is manifest in the curv-
ing of the cube.

vergence distance by the artist while maintaining internal consistency of the

stereoscopic parameter space. For example, if the system is in parallel mode,

changing the convergence distance updates the sensor offset only, while a sys-

tem in converged mode would update the convergence angle only. The system

can be rapidly switched between the two modes, allowing the artist to better vi-

sualize the distortions inherent between the two stereo methodologies, all other

things equal.

Additionally, our system has a third mode which allows for the utilization of

both parameters simultaneously. While this is not currently a standard practice,

it does have many theoretical and artistic applications. By removing the restric-

tion of forcing the artist to choose between the two methodologies, it allows

them to fully explore the parameter space, understand the differences between

the two, and explore potential future artistic uses for combinations of the two

modes where the styles could be blended in an effort to minimize or emphasize

the impact that one style has over the other.
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(a) Right (b) Split (c) Left

Figure 4.4: Primary camera specification and parameter distribution. With a
symmetrical split between the left and right camera parameters (b), the math
for the stereo transformation is clearer and cleaner. In practice, however, it im-
portant to be able to specify the distribution of these parameters between the
left and right cameras asymmetrically, as in (a) and (c). This allows artists to use
a single camera image for a 2D presentation void of artifacts related to animated
stereo parameters.

4.1.4 Primary Camera - Pl, Pr

In most stereoscopic transformation literature, it is often assumed that the cam-

era separation (t), sensor offset (h), and convergence angle (β) are applied uni-

formly or split evenly between the left and right cameras [SS53, Lip82, WDK95,

HB08]. With a symmetrical split, the math is clearer and cleaner, and this de-

cision would seem to be the most obvious choice. In practice, however, it im-

portant to be able to specify the distribution of these parameters between the

left and right cameras asymmetrically. The issue arises when a stereoscopic

film is released for theatrical exhibition or retail distribution in a flat 2D for-

mat. In these cases, it is most practical to release one of either the left or right

eye versions of the film as the 2D version instead of re-rendering or re-filming.

Filmmakers noticed, however, that if the stereoscopic parameters in question

were split evenly between the left and right cameras and were also animated

across the duration of a shot, the single eye 2D image would appear to drift
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unnaturally.

For example, in a static shot where the camera position does not change

but the convergence distance is animated, an even split would have both cam-

eras change their convergence angle or sensor offset, and the 3D precept would

match the intent of a static camera position with a change in convergence dis-

tance. But if only a single eye view is observed, it would appear as if the camera

is rotating or translating during the shot where the intent was for a static camera

position.

This led industry artists to reweight the distribution of the camera separa-

tion, sensor offset, and convergence angle between the left and right cameras

such that one camera observes the complete transformation from these param-

eters, leaving the other camera static and unchanging, perfect for a 2D release

version of the film.

Our tool allows for arbitrary weighting of the stereoscopic camera parame-

ters in the form of Primary Left (Pl) and Primary Right (Pr) weighting param-

eters. The values can be arbitrarily defined by the artist, however the sum of

the two must add to 1. The tool also has “snap points”, allowing the artists

to default to one of the three most common configurations; an even split, left

as primary, and right as primary, as outlined in Table 4.1 and demonstrated in

Figure 4.4.
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Primary Camera Specification

Configuration Pl Pr

Split 0.5 0.5
Left Primary 1 0

Right Primary 0 1

Table 4.1: The primary camera parameter specification. Specifying a primary
camera allows for the weighted distribution of stereoscopic camera parameters
between the left and right cameras.

(a) Normal Viewer (b) Off-center Viewer

Figure 4.5: Viewer position variations and inherent skew distortions.

4.1.5 Viewer Position - (Xv,Yv,Zv)

Beyond defining just the z-distance (Zv) of the viewer from the center of the pro-

jection screen as was previously defined in the classic stereoscopic transforma-

tion, our visualization tool allows for the off-centered positioning of the viewer

with respect to the screen. By implementing the viewer position extension to

the classic model as suggested by [HB08], our tool allows the artist to position

the stereoscopic viewer arbitrarily within the theatrical space, as demonstrated

in Figure 4.5. Zv is still the longitudinal distance of the viewer from the screen,

while Xv and Yv specify the horizontal and vertical translations from the center

of the projection plane, respectively.

While the artist using the tool ultimately has little control over where the

viewer will eventually position him or herself when viewing the stereo content,
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this tool does allow the artist to visualize the shear distortions inherent in off-

centered viewing as explored previously [WDK95, HB08, SGC+02]. The artist

can then tailor the content and stereoscopic configuration of their shot based

on the maximum distortions that could be perceived by the viewer from the

extremes of the intended exhibition space.

4.1.6 Gaze Direction - (Xg,Yg,Zg)

In addition to viewer position within the viewing space, our tool also allows

for variation in the viewer orientation. The viewer orientation is specified by

a gaze direction, (Xg,Yg,Zg), which acts similarly to a target vector for camera

specifications.

4.1.7 Failure of Skewed Rays

As previously discussed, there are particular situations where geometrically im-

possible configurations may arise, leading to stereoscopic transformations that

are mathematically incomputable (Sections 3.2.2 and 3.2.3). These situations

are limited to oblique viewer gaze directions due to the rotation and tilt of the

viewer’s head, and cause skewed non-intersecting view rays that lie on separate

epipolar planes.

Despite the previously explored research into the perception of skewed rays,

the resultant definition of the stereo precept as a slant for planar surfaces is not

generalizable enough to fit arbitrary geometry for use in our tool. Accordingly,

we allow for the specification of a gaze direction but compute the ray intersec-
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(a) No Allowed Divergence

(b) 0.25 Degrees of Allowed Divergence

Figure 4.6: Permitting a comfortable amount of outward divergence allows for
the proper visualization of objects with parallax wider than the viewer’s eyes.
Notice how geometrically the cube is perceived behind the viewer in the no
allowed divergence instance (a), which clearly does not match the precept of an
actual viewer. However, when divergence is allowed (b), the precept appears
more credible.

tion and precept point by taking the average of the left and right correspondence

points, a commonly used geometrically computable approximation [WDK95].

Finally, there is little an artist can do to predict, correct, or accommodate for

such oblique viewing configurations since the extent of this sort of parameter

variation is only restricted by the flexibility of the viewer. This makes distortions

from variations in viewer gaze direction the least controllable and accountable

metric.
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Figure 4.7: A small amount of comfortable divergence of the viewer’s eyes al-
lows for deeper stereo perceptions and greater flexibility in parallax ranges on
the part of the artist. Notice how allowing a quarter of a degree of divergence
per eye on the part of the audience more than doubles the useable virtual stereo
real estate behind the screen.

4.1.8 Allowed Divergence - γ

One of the shortcomings of previous stereoscopic transformation models is that

they do not allow for the outward divergence of the viewer’s eyes. Studies have

shown that a small amount of outward divergence of the eyes is not uncomfort-

able, with comfort ranges cited of up to three degrees of divergence per eye

[Pas95, YS90, CES88, Stu34, WDK95]. Geometrically, in the classic stereoscopic

transformation model, diverging viewer configurations lead to incorrect stereo-

scopic precept points behind the viewer, a mathematical fallacy resulting from

a inverted triangulation of converging correspondence rays (Figure 4.6).
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Beyond academic findings, the expectation that viewers can comfortably di-

verge their eyes to a small degree has become common practice in many films

intended for theatrical release on large screens during moments of accentuated

depth. Due to the relationship between screen size and parallax, exhibition on

larger screens actually reduces the workable parallax range without allowing

comfortable divergence.

For example, an image projected onto a 40 inch wide screen could present

an object with a positive parallax of 2.5 inches, or about the width of the human

interocular. On that sized screen, this object will be perceived as being at infinity,

since the viewer’s eye vergence directions are effectively parallel. In the classic

model this would be the deepest object permitted. The same image projected

onto a 40 foot wide screen, like those found in multiplex theaters, would present

the same deep object with a parallax of positive 30 inches, significantly wider

than the viewer’s eyes and incomputable by the classic stereo transform model.

However, viewed from a screen-average and suggested distance of 40 feet away,

this configuration would only amount to an outward divergence of 1.6 deg per

eye, possibly within the viewer’s comfort limit.

Our visualization tool accommodates for this, allowing for the definition

and variation of a maximum allowed comfortable outward divergence of the

viewer’s eyes. This permits artists to correctly visualize the stereoscopically

transformed geometry if outward divergence is permitted by the artist.

The threshold for allowed divergence is specified by substituting the interoc-

ular distance, e, in the screen space to perceived virtual stereo space transform,

Equation 4.10, with

e + 2Zv tan (γ) (4.1)
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Here, γ is the desired maximum angular divergence in degrees for each eye.

This effectively shifts the perceived infinity point beyond geometric infinity and

allows for the visualization of positive parallax values greater than the width of

the viewer’s eyes, as demonstrated in Figure 4.7. Notice how allowing a quarter

of a degree of divergence per eye on the part of the audience more than doubles

the useable virtual stereo real estate behind the screen. It is because of this

flexibility of space that stereo artists are starting to anticipate a small amount of

comfortable divergence on the part of the viewers.

As with all of the stereoscopic parameters, γ can be varied by the artist to

allow for exploration of possible maximum divergence values as it applies to

their working geometry and scene, as well as possible viewer configurations

tied to varying outlets for distribution.

4.1.9 Post Render Shift - s

In live action stereoscopic filmmaking, converging at a distance that is not in-

finity using the parallel configuration is made difficult by the physical nature

of the camera, which often times prevents physical manipulation of the sensor

position to generate a sensor offset. Frequently, then, artists apply a horizontal

image translation to the stereo images after capture or render to converge the

stereo space. This is known as a post render shift, and is accomplished by hor-

izontally translating the stereoscopic left and right images with respect to each

other, as seen in Figure 4.8.

The post render shift is different in mechanics and application from hor-

izontal image translation accomplished via a sensor offset. When utilizing a
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Figure 4.8: Post render shift applied to scene. Notice the loss of horizontal
resolution of the image frame, as well as the shift in convergence plane with
respect to the original convergence point before the applied shift.

(a) Without Blending (b) With Blending

Figure 4.9: Depth blending is a technique which utilizes a post render shift.
Consecutive shots across a cut may contain un-matched convergence distances,
or depth jumps, which can be difficult for our visual system to instantaneously
adjust to. Depth blending is the process of continuously transitioning the con-
vergence distance across the cut via an animated post render shift. The resulting
blend is easier to track with the eyes.
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sensor offset, this is done in the camera at the time of image capture, and one

still has use of the entire sensor area as the horizontal resolution (Rc) remains

unchanged. In contrast, post render shift is utilized after image capture on the

resultant rendered images, and as a result reduces the final image size by the

amount of the post render shift as only the overlapping area of the left and right

images is used.

Due to this limitation, the sensor offset acts as the primary convergence

method for parallel configurations when it is available, and post render shifts

are traditionally used for depth timing or depth blending across cuts during

post processing. Depth blending is a technique that artists use when editing to

smooth the discrepancies in convergence between two shots across a cut. By ap-

plying a brief transitional period between shots where the objects of interest are

at different depths across the cut, artists allow viewers to track with the blend,

eliminating the stress associated with instantaneously reconverging your eyes

to a different depth. Figure 4.9 illustrates this concept. Our visualization tool

allows for the specification and variation of the post render shift.

4.2 Alternate Control Mechanisms

There are many methodologies to describe and specify a stereoscopic config-

uration using one of the many grammars and control mechanisms available.

Eventually, however, all of the terminology used must be translated into the

two intrinsic properties of a stereoscopic system, the camera separation (t) and

either the convergence angle (β) or the sensor offset (h), depending on the con-

vergence method used.
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(a) Parallel (b) Converged

Figure 4.10: Direct control of the intrinsic stereo parameters of camera separa-
tion (t) and sensor offset (h) or convergence angle (β).

For flexibility and to promote interactivity with artists from varying schools

of thought and comfortable with different approaches to stereoscopic specifica-

tions, our tool provides interfaces for a number of alternate control mechanisms

at various levels of abstraction.

4.2.1 Direct

Primary amongst control mechanisms would be to directly specify camera sep-

aration (t) and sensor offset (h) or convergence angle (β), as in Figure 4.10. Our

tool allows for control of these parameters directly. Despite its direct correla-

tion to the intrinsic stereo camera system, this method has the disadvantage of

being ambiguous when attempting to abstract its relative significance without

knowledge of the state of the rest of the parameter space. In other words, while

saying that the sensors are offset 1mm might have physical meaning to the cam-
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Figure 4.11: Indirect control of the intrinsic stereo parameters by manipulation
of the camera separation (t) and convergence distance (c).

era system, without knowledge of the focal distance and sensor size, it has little

meaning externally. It is very difficult to understand precisely how such a spec-

ification will affect the stereoscopic precept of the viewer.

4.2.2 Convergence Distance

A step up in abstraction is to indirectly specify the sensor offset (h) or conver-

gence angle (β) by directly specifying the convergence distance (c), a dependent

variable in the stereoscopic parameter space, as in Figure 4.11. The specification

of the convergence distance has more relevance to the captured space external to

the camera system rather than to the camera system itself. It specifies in world

space units the distance to the convergence plane, an easier metric to conceptu-

alize than the sensor offset or convergence angle, and is frequently representa-

tive of where the screen plane will appear to the viewer relative to the objects

within the scene. With the ability to directly control the convergence distance,
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a derivative parameter, we increase the association between the control point

being manipulated and resultant affect on the stereo precept.

As a dependent variable, manipulation of the convergence distance must

propagate changes upwards to maintain internal consistency of the entire

stereoscopic system. Depending on the convergence method used, the sensor

offset or the convergence angle must be updated with any change to the con-

vergence distance. These update equations are outlined below.

h = 2 f tan
(
arctan

( t
2c

)
− β

)
(4.2)

β = arctan
t

2c
− arctan

h
2 f

(4.3)

Note that with this method, the camera separation is still directly controlled.

4.2.3 Bounded Parallax

It is often easier to conceptualize the stereoscopic space by describing the

amount of parallax, or perceived depth, at a particular distance from the stereo

camera, or physical depth. As previously explored, parallax can be referred to

in pixel units or as a percentage of the screen width. If parallax is defined in

pixels, then parallax as a function of distance is

parallax =
(

f Rc

Wc

) ( t
c
−

t
distance

)
(4.4)
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Figure 4.12: Indirect control of the intrinsic stereo parameters by manipulation
of bounded parallax values (ns, fs) at specified near (nd) and far distances (fd).

and distance as a function of parallax is

distance = c ·
t f Rc

t f Rc − parallax · c ·Wc
(4.5)

To define parallax as a percentage of screen width, the parallax terms in the

equations above are divided by the horizontal image resolution, Rc.

A third and more abstracted methodology for controlling the stereoscopic

camera system follows directly from the definition of parallax in pixels or screen

width percentages as a function of the object’s distance from the camera and vice

versa. Both of the intrinsic stereo camera parameters can be indirectly specified

by defining a minimum and maximum parallax (ns, fs) for corresponding near

and far object distances from the camera (nd, fd), as in Figure 4.12.
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Because this abstraction is easy to conceptualize, this paradigm is frequently

used as it directly correlates objects in the scene to their desired perceived depth.

Additionally, when the near and far distances are defined at the nearest and

furthest objects in the field of view respectively, then this methodology applies

comprehensible bounds on the total depth perceived in the scene–the artist di-

rectly manipulates the nearest and furthest distance any object will be perceived

by the viewer via parallax, a very relevant and understandable metric.

By combining and rearranging the equations for parallax as a function of

depth (Equations 4.4 and 4.5) with the equation for the convergence distance

(Equation 3.1) we arrive at the update equations for the camera separation (t)

and convergence distance (c) as a function of the near and far parallax and dis-

tances (ns, nd, fs, fd). These equations maintain the internal consistency of the

stereoscopic system required for any change to the parameter space.

t =
nd · f s · f d − f d · ns · nd

f d − nd
·

Wc

f · Rc
(4.6)

c =
nd · f s · f d − f d · ns · nd

f d · f s − nd · ns
(4.7)

Our visualization tool allows for specification and manipulation of the near

and far parallax and distances.
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4.3 Additional Considerations

4.3.1 Floating Windows - (FWul, FWur, FWlr, FWll)

One of the most noticeable infringements of stereoscopic depth perception is

known as a window violation. This occurs when the precept of an object that

crosses out of the left or right side of frame is perceived as being in front of

the projection plane, as is shown in Figure 5.9(b). This configuration violates

the occlusion revelation depth perception cue, wherein one object (the edge of

the projection plane, or window) occludes another (the violating object) and

the former object is perceived to be nearer than the latter. However, when a

window violation occurs, the perceived depth order is reversed and the stereo

precept cue conflicts with the occlusion revelation cue.

As a result, the film industry has adopted a technique to alter the perceived

position of the projection plane window known as floating windows. For each

corner of the projection plane (upper left, upper right, lower right, and lower

left), a parallax value is specified which offsets that corner of the window from

the physical projection surface, in essence floating the window as seen in Fig-

ure 4.13. This is akin to applying a post render shift to each of the window’s

corners individually, and is achieved by occluding the corresponding portion of

the frame linearly interpolated from corner to corner.

Our tool allows for the specification of floating windows via parallax val-

ues for the four corners of the projection plane (FWul, FWur, FWlr, FWll). Positive

values push that corner of the floating window behind the physical projection

screen and occlude the left side of the right eye image or the right side of the

83



Figure 4.13: The floating window technique where artists alter the perceived po-
sition of the projection plane frame. Control of the floating window is achieved
by specifying parallax values for each of the four corners of the projection plane
(FWul, FWur, FWlr, FWll).

(a) Left Eye (b) Right Eye

Figure 4.14: The appearance of the floating window is achieved by occluding
the corresponding portion of the projection plane. For the case in Figure 4.13,
10 pixels are occluded on the left side of the right eye image for a positive left
side floating window, and 20 pixels are occluded on the right side of the right
eye for a negative right side floating window.
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left eye image, while negative parallax values float the window in front of the

physical projection screen and occlude the left side of the left eye image or the

right side of the right eye image, as seen in Figure 4.14.

Notice that vertical window violations are not an issue. This is due to the

fact that there are no horizontal parallax cues from the top and bottom edges of

the projection frame, thus no cue conflicts arise. The viewer’s precept in cases

where a theoretical vertical window violation would occur is that of a curved

projection surface bowing in to encapsulate such precepts.

4.3.2 Multirigged Cameras

One of the primary challenges of stereoscopy is determining how to fit the ex-

pansive depth of the real world into a valid stereoscopic space, restricted by dis-

play and perceptual limitations. When additionally considering the non-linear

nature of the transform which has the effect of limiting the usable stereo space

for an artist, it becomes understandable how many might find it difficult to set-

tle on a single set of stereoscopic parameters that work for the entirety of a shot

without sacrificing the quality of the precept. For example, when the framing

of a shot dictates the presence of both deep background and close foreground

elements, it becomes desirable to be able to specify two sets of parameters, one

tailored for the foreground elements, and another for the background.

Live action photographers can sometimes achieve this by shooting the near

and far elements separately using a green screen and separate stereo parame-

ters and compositing the two together afterwards. However this can often be

difficult as it requires precise alignment of the stereo camera rigs and multiple
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takes for a single shot. Computer animated films have an advantage in that they

can simply select which scene objects to render and segregate the elements into

multiple stereo camera pairs with varying stereo parameters and render each

set separately with minimal cost or risk of misalignment. This technique is re-

ferred to as multirigging stereo cameras, and is common practice in animated

films, particularly in shots with a large range in depth of viewable objects.

Our visualization allows for multirigged cameras, and can associate separate

stereoscopic parameters for different subsets of scene objects. We will revisit

multirigged cameras later, as it relates to scenegraph representations as well as

being aided by the visualization in terms of identifying depth incongruities.

4.4 Stereoscopic Parameter Space Listings and Groupings

Combining the previously explored classical geometric stereoscopic transfor-

mation model with the preceding expansion and augmentation parameters, we

arrive at the complete listing of all parameters within the stereoscopic transfor-

mation space, both dependent and independent. These are all of the parameters

which can affect the stereoscopic precept of the original geometry by the viewer.

All parameters can be manipulated by the artist using the visualization tool, and

all necessary updates are propagated to other parameters to maintain internal

consistency as needed. For clarity, we organize the parameter space into tra-

ditional 2D camera parameters (Table 4.2), stereoscopic camera parameters (Ta-

ble 4.3), viewer specific parameters (Table 4.4), and additional considerations

and control parameters (Table 4.5).
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Intrinsic and Extrinsic Camera Parameters

(Xw,Yw,Zw) World space coordinates of the geometry.

Camera Camera extrinsic parameters. The position and orientation
of the stereo cameras are identified by an internodal position
(Xc,Yc,Zc), a look-at/target direction (Xt,Yt,Zt), and an up vec-
tor (Xu,Yu,Zu). Note that the world space coordinates and cam-
era definition are frequently combined to define a point in a
coordinate system relative to the camera position and orienta-
tion, or camera space (X0,Y0,Z0).

f Focal length. The focal length of stereo camera lenses.

Wc Camera sensor width. The width of camera sensor.

Rc Camera sensor resolution. The horizontal resolution of the
camera sensor in pixels.

A Aspect ratio. The ratio of the width of the camera sensor to its
height. This is the same as the projection screen aspect ratio.

Table 4.2: Complete standard camera transformation parameters.

Stereoscopic Camera Parameters

t Camera separation. The distance between first nodal points of
two camera lenses, aka interocular, interaxial, etc.

h Sensor offset. The distance each camera sensor is shifted out-
wards from the optical axis of the lens to achieve convergence,
also known as Horizontal Image Translation (HIT).

β Convergence angle. The angle of inward rotation of the stereo
cameras to achieve convergence.

Method Traditionally either Parallel or Converged, although technically
the transformation and the tool support a combination of both.

Pl, Pr Primary camera. Defines the distribution of t, h, and PRS be-
tween the two cameras. Either left (1, 0), right (0, 1), or split
(.5, .5).

c Convergence distance. The distance from the midpoint between
the first nodal points of the two camera lenses and the conver-
gence point, or point of zero parallax. Used in the indirect alter-
nate control mechanism.

Table 4.3: Complete stereoscopic camera transformation parameters.
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Viewer Parameters

e The distance between the centers of the viewers eyes.

(Xv,Yv,Zv) The relative position of the viewer to the center of the screen,
where Zv is the distance of the viewer from the screen, and Xv

and Yv are horizontal and vertical translations from the center
of the screen.

Ws Screen width. The width of the display surface.

γ The maximum comfortable allowed divergence of the viewers
eyes.

Table 4.4: Complete viewer transformation parameters.

Additional Configuration Parameters

s Post render shift. Horizontal Image Translation applied af-
ter image capture, traditionally for depth timing and blending
across cuts.

ns, f s Near and far shift values. The shift values in pixels or percent-
age of screen width for the near and far points, used to define
the Bounded Parallax alternate control mechanism.

nd, f d Near and far distance values. The distance values for the near
and far points, used to define the Bounded Parallax alternate
control mechanism.

FW Floating windows. The parallax in pixels or screen width of the
four corners of the projection plane [FWul, FWur, FWlr, FWll]used
to define the floating window.

Table 4.5: Additional stereoscopic transformation parameters.
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4.5 Complete Unconstrained Transformation

Having augmented the stereoscopic parameter space for completeness, percep-

tual considerations, and alternative control mechanisms, we update and red-

erive the stereoscopic transformation to reflect these additions. From object

space to camera sensor space, (X0,Y0,Z0)→ (Xcl,Ycl), (Xcr,Ycr):

Xcl = f tan
[
arctan

(
t · Pl + X0

−Z0

)
− β

]
− h · Pl

Xcr = − f tan
[
arctan

(
t · Pr − X0

−Z0

)
− β

]
+ h · Pr

Ycl =
Y0 · f

−Z0 cos β + (X0 + t · Pl) sin β

Ycr =
Y0 · f

−Z0 cos β − (X0 − t · Pr) sin β
(4.8)

From camera sensor space to screen space, (Xcl,Ycl), (Xcr,Ycr)→ (Xsl,Ysl), (Xsr,Ysr):

Xsl = Xcl

(
Ws

Wc

)
− s · Pl

(
Ws

Rs

)
Xsr = Xcr

(
Ws

Wc

)
+ s · Pr

(
Ws

Rs

)
Ysl = Ycl

(
Ws

Wc

)
Ysr = Ycr

(
Ws

Wc

)
(4.9)

And from screen space to perceived virtual stereo image in viewer space,

(Xsl,Ysl), (Xsr,Ysr)→ (Xi,Yi,Zi):

Xi =
e (Xsl + Xsr) /2 − Xv (Xsr − Xsl)

e − (Xsr − Xsl)

Yi =
e (Ysl + Ysr) /2 − Yv (Xsr − Xsl)

e − (Xsr − Xsl)

Zi =
−Vze

e − (Xsr − Xsl)
(4.10)
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The updated complete geometric stereoscopic transformation can then be com-

bined and defined, (X0,Y0,Z0)→ (Xi,Yi,Zi):

Xi =

[
e
2
·

(((
f tan

[
arctan

(
t · Pl + X0

−Z0

)
− β

]
− h · Pl

) (
Ws

Wc

)
− s · Pl

(
Ws

Rs

))

+

((
− f tan

[
arctan

(
t · Pr − X0

−Z0

)
− β

]
+ h · Pr

) (
Ws

Wc

)
+ s · Pr

(
Ws

Rs

)))

− Xv ·

(((
− f tan

[
arctan

(
t · Pr − X0

−Z0

)
− β

]
+ h · Pr

) (
Ws

Wc

)
+ s · Pr

(
Ws

Rs

))

−

((
f tan

[
arctan

(
t · Pl + X0

−Z0

)
− β

]
− h · Pl

) (
Ws

Wc

)
− s · Pl

(
Ws

Rs

)))]

∗

[
e −

(((
− f tan

[
arctan

(
t · Pr − X0

−Z0

)
− β

]
+ h · Pr

) (
Ws

Wc

)
+ s · Pr

(
Ws

Rs

))

−

((
f tan

[
arctan

(
t · Pl + X0

−Z0

)
− β

]
− h · Pl

) (
Ws

Wc

)
− s · Pl

(
Ws

Rs

)))]−1

(4.11)

Yi =

[
e
2
·

((
Y0 · f

−Z0 cos β + (X0 + t · Pl) sin β

(
Ws

Wc

))

+

(
Y0 · f

−Z0 cos β − (X0 − t · Pr) sin β

(
Ws

Wc

)))

− Yv ·

(((
− f tan

[
arctan

(
t · Pr − X0

−Z0

)
− β

]
+ h · Pr

) (
Ws

Wc

)
+ s · Pr

(
Ws

Rs

))

−

((
f tan

[
arctan

(
t · Pl + X0

−Z0

)
− β

]
− h · Pl

) (
Ws

Wc

)
− s · Pl

(
Ws

Rs

)))]

∗

[
e −

(((
− f tan

[
arctan

(
t · Pr − X0

−Z0

)
− β

]
+ h · Pr

) (
Ws

Wc

)
+ s · Pr

(
Ws

Rs

))

−

((
f tan

[
arctan

(
t · Pl + X0

−Z0

)
− β

]
− h · Pl

) (
Ws

Wc

)
− s · Pl

(
Ws

Rs

)))]−1

(4.12)
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Zi = −Vze·
[
e −

(((
− f tan

[
arctan

(
t · Pr − X0

−Z0

)
− β

]
+ h · Pr

) (
Ws

Wc

)
+ s · Pr

(
Ws

Rs

))

−

((
f tan

[
arctan

(
t · Pl + X0

−Z0

)
− β

]
− h · Pl

) (
Ws

Wc

)
− s · Pl

(
Ws

Rs

)))]−1

(4.13)
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CHAPTER 5

GRAPHICAL STEREOSCOPIC DISTORTION VISUALIZATION TOOL

5.1 Visualization

In order for our complete expansion of the stereoscopic parameter space to be

useful and effective as a tool, we have developed an intuitive interactive visual-

ization for the parameters and their impact on the perception of scene geometry

(Figure 1.1). This allows artists to simultaneously visualize the relevant param-

eter spaces and controls as well as the resulting distortions of object geometry

while manipulating the parameters.

The visualization is implemented as a standalone Java application with in-

terfaces for access to animation pipelines to import movie sequence, shot, and

frame lists, object, scene, and character geometry and animations, camera trans-

formations and other relevant stereoscopic parameters. The code is compiled

with Java 1.6, and utilizes openly available Vecmath and Java OpenGL libraries

for vector operations and 3D graphics respectively.

The tool provides for the identification and visualization of all of the stereo-

scopic parameter subgroups and relevant controls, and implements the stereo

transformation model as defined by the parameter space. The transformation is

implemented in such a way as to maintain internal consistency within the com-

plete parameter space, and is computed per vertex for each of the vertices of

the original geometry. Scene geometry can be selected and loaded into the tool

from the animation pipeline, and the transformation is applied to the loaded

geometry. Both the original geometry and transformed geometry are visual-
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ized simultaneously. The viewer can subsequently navigate around the scene to

view geometry and parameter visualizations, as well as manipulate the param-

eters to see the affect on the resultant distorted geometry. Figure 5.1 provides

an overview of the tool’s geometry, parameter, and distortion visualizations.

5.1.1 Stereoscopic Parameter Groupings

(a) Original geometry (blue), and stereo cam-
eras, frustums, and convergence plane (red)

(b) Viewer and screen (green)

(c) Stereoscopically transformed geometry
and “ghosted” geometry (black)

(d) Alternative control mechanics (blue)

Figure 5.2: The visualization tool color-codes geometries, parameters, and con-
trol methods into separate groups for ease in identification, distinction, compar-
ison, and control.

For clarity and ease of identification and control, our tool groups the geome-
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tries and parameter, as shown in Figure 5.2. These groupings are the same as,

or an extension of, the parameter groupings as specified previously in Tables

4.2, 4.3, 4.4, and 4.5. The groupings are color-coded to help distinguish between

them. Each of the parameter and geometry visualizations and groupings are

described below.

Original Geometry and Stereoscopic Camera

The original geometry, as loaded into the tool by the artist (Xw,Yw,Zw), is vi-

sualized in blue with respect to the stereoscopic cameras ((Xc,Yc,Zc), (Xt,Yt,Zt),

(Xu,Yu,Zu)) in red (Figure 5.2(a)). The camera icons are visualized as scale ver-

sions of the control parameters; the length is relative to the focal length ( f ), the

width and height are relative to the sensor width (Wc) and sensor height (Wc/A)

respectively, and the sensor offset (h) is represented by a scale horizontal shear-

ing of the camera body. The camera separation (t) and convergence angle (β) are

directly visualized by the translational offset and inwards rotation of the camera

representations.

Additionally, the view frustums of both cameras are shown to assist in the

framing of the shot. Where the two view frustums intersect is the distance at

which there is zero parallax between the left and right images, which indicates

the convergence distance. The manipulatable convergence distance (c) is further

emphasized in the visualization by the presence of the partially transparent red

convergence plane (Figure 5.2(a)). The convergence plane is a good relative

reference for artists, as objects that intersect the plane will appear “at screen”

in the eventual stereo precept. Objects that fall behind the convergence plane

will be perceived as behind the projection plane, and objects that are in front of
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the convergence plane will appear in front of the projection plane. Note that the

use of a post render shift (s) is visualized directly by an offset of the convergence

plane from the intersection of the view frustums, as in Figure 4.8.

Viewer

The counterpart to the image capture component of the stereoscopic system is

the image presentation component, which includes the viewer and screen con-

figuration and is visualized by the tool in green (Figure 5.2(b)). While techni-

cally the position of the viewer and the position of the camera are completely

independent and most likely are not the same, it is easier and more helpful to

visualize them as being at the same position. This unifies distances, directions,

and orientations between the camera and viewer spaces, so that 10 units in front

of the camera is the same position as 10 units in front of the viewer. This vali-

dates direct comparisons of size, scale, position, shape, orientation, etc. between

the two spaces.

Accordingly, the viewer is positioned and visualized as being centered about

the internodal position of the stereo cameras and oriented similarly as well. The

interocular distance between the viewer’s eyes (e) is directly visualized, as is

the positioning of the screen relative to the viewer (Xv,Yv,Zv) and the screen’s

size (Ws, Ws/A). Note that while the screen width may be varied arbitrarily,

the height is pre-determined based on the width of the screen and the aspect

ratio, which is the same as the aspect ratio of the camera sensor. This ensures a

uniform magnification from sensor to screen when the image is projected onto

the projection surface.
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Also, if a floating window (FWul, FWur, FWlr, FWll) is utilized, the corre-

sponding offset of the perceived projection plane from the physical projection

screen is directly visualized, as in Figure 4.13.

Viewer Dictionary

The viewer configuration is one of the least controllable sets of parameters, in

that once a film is finalized and distributed, the artist has minimal direct con-

trol over the actual exhibition and projection of the film. Artists may have an

ideal, expected, anticipated, or even agreed upon viewing configuration, but

the presentation of the film is ultimately up to the theater manager or home-

owner or computer user, and variations from one theater or home or computer

to the next are common. However, despite the large amount of variability and

minimal amount of control, it is absolutely necessary to consider the intended

presentation method, as the differences between a large theatrical screen and a

personal computer monitor can be dramatic. Figure 5.3 demonstrates how scene

elements can be perceived as elongated or compressed, depending on the view-

ing configuration, despite all other parameters being equal. Accordingly, it has

started to become standard practice for artists to reconverge their content for

specific distribution outlets, differentiating between a theatrical release print, a

DVD or Blu-ray pressing, and potentially a downloaded release for handheld

mobile devices.

To aid artists in tailoring stereoscopic content for specific distribution out-

lets, our tool provides a dictionary of various preset viewing configurations.

The artist can individually manipulate the viewing parameters, but can also

snap the entire viewing configuration to one of a set of predefined viewer con-
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(a) PC: 20” screen viewed from 30”

(b) Home Theater: 52” screen viewed from 100”

(c) Theatrical: 40’ screen viewed from 35’

Figure 5.3: A set of default viewer configurations allow artists to tailor their
content for personal, home, or theatrical viewing. Notice how when all other
parameters are held constant, the larger screen viewed at a farther distance ex-
hibits increasing elongation in the perceived geometry (black) when compared
to the original geometry (blue). Note that in (c), the screen plane is too far away
from the convergence plane and geometry to be visualized simultaneously.
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Default Viewer Configurations

Screen Width Viewer Distance Field of View

Personal Computer 20” 30” 37◦

Home Theater 52” 100” 29◦

Theatrical 480” 420” 59◦

Table 5.1: Default viewer configurations based on manufacturer and retail
recommendations, THX standardizations, and average viewing distances and
screen sizes.

figuration dictionary entries. The entries can be categorized as generalizations

of theatrical big screen exhibition, home theater HDTV viewing, and personal

computer viewing on a computer monitor. The specification of the parameter

values for these configurations is based on manufacturer and retail recommen-

dations, THX standardizations, as well as average viewing distances and screen

sizes, and are outlined in Table 5.1. It should be noted that as advancements

in mobile gaming, communications, and computation are made, a fourth case

could soon become standard for personal mobile device distribution and exhi-

bition.

5.1.2 Stereoscopically Transformed Geometry

Finally, the geometry, as transformed by the complete stereoscopic model and

defined by the specified parameters, is visualized in black (Figure 5.2(c)). This

represents the three dimensional precept by the viewer in the theater of the

stereo camera captured original geometry. It exhibits all of the perceptual and

geometric distortions inherent in the stereoscopic parameter space as specified

by the artist. Any time a parameter is modified that affects the resultant precept,

the transformation is recalculated and applied to the original geometry, and the
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visualization is updated.

Ultimately, the purpose of this tool is to visualize the distortions that are

inherent to the stereoscopic parameters specified, and to do that, a more direct

visual comparison between the original geometry and transformed geometry is

required. Visualizing the transformed geometry relative to and in context of the

viewer configuration is an effective way of ensuring proper positioning within

the theatrical space and to verify that no non-diverging objects exist within the

scene. However, beyond the relative positionings of transformed objects to the

projection plane and original objects to the convergence plane, there are very

few directly correlatable elements between the original camera-object space and

the viewer-theater space.

As with 2D images, and perhaps because of our extensive training in watch-

ing two dimensional films, viewers dissociate the perceived size and distance

of a projected object from that of the size and distance of the real object being

captured. For example, when viewing a close-up shot of a person’s face on the

big screen, one does not assume that you are actually seeing a giant head 15 feet

tall from 40 feet away. Instead, viewers dissociate their viewing experience from

their physical presence in the theater and accept that they are closer to a normal

sized human being. This is often referred to as a component of the “4th wall” of

cinema, incorporating the suspension of disbelief in that objects are filmed in a

way that does not acknowledge the presence of the camera. This assumed dis-

sociation is used to create intimacy and emotional connections between content

of the movie and the audience. One explanation for viewers’ ease in accept-

ing such discrepancies between size and distance is that familiarity of an object,

such as the form of a human face, provides a stronger perceptual cue than the
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(a) (b) (c)

Figure 5.4: Close-up examples of “ghosted” geometry. Through the removal
of the appearance of size and position distortions, direct comparisons of varia-
tions in shape and volume distortion between the original (blue) and ghosted
transformed (black) geometries can be made and are more evident. The three
displayed cases correspond to the three default viewer conditions, PC (a), home
theater (b), and theatrical (c).

perception of size or distance.

5.1.3 Ghosted Geometry

The willingness and ability of audiences to dissociate size and distances be-

tween the captured world and the perceived world necessitates the need for a

more directly correlatable comparator between the two spaces for the visualiza-

tion to be effective. This need motivated the development of what we refer to

as “ghosted geometry”, wherein the stereoscopically transformed geometry is

visualized without the impact of size and position discrepancies. The removal

of size and position distortions emphasizes the distortions in shape and volume

between the original geometry and the stereoscopically transformed geometry.

To remove position and size distortions, the ghosted geometry is defined as
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the stereoscopically transformed geometry visualized at the position of the orig-

inal geometry and uniformly scaled to match the size of the original geometry,

as in Figure 5.1 in grey. This enhances the artist’s ability to make direct compar-

isons of orientation, shape, and volume between the two spaces. Discrepancies

like shearing, flattening, depth exaggeration, and the non-linear transformation

effects are more easily visualized and identified with the ghosted geometry,

which accordingly highlights the types of distortions that may more directly

impact a viewer’s association and familiarity with a particular scene element.

Figure 5.4 provides a close-up of the tool which highlights how the ghosted ge-

ometry enhances the artists ability to visualize shape and volume distortions

between the original and stereoscopically transformed geometries.

Near-Affine Invariance

Position and scale are two of the three components of affine transformations,

which, along with rotation, preserve collinearity and ratios of distances between

spaces. Since rotational invariance is guaranteed by the orientational alignment

of the camera and viewer spaces, our ghosted geometry bares significant re-

semblance to affine invariance. However, non-uniform scales which introduce

shearing of geometry are a component of affine transformations. These are

not considered invariant in our ghosted geometry since they violate shape con-

stancy and are an important factor in examining shape distortion. Accordingly,

we prescribe our ghosted geometry visualization to be near-affine invariant, ac-

commodating for rotational, translational, and uniform scale transformations.

Since rotational distortions are inherently non-existent, only translational

and uniform scale distortions need to be computed to properly display the
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ghosted geometry. The translational distortion (Dt) is computed first and is the

vector translation between the computed centroids of the two geometries.

C0[X,Y,Z] =

∑
vertices

[X0,Y0,Z0]

‖vertices‖
(5.1)

Ci[X,Y,Z] =

∑
vertices

[Xi,Yi,Zi]

‖vertices‖
(5.2)

Dt[X,Y,Z] = C0[X,Y,Z] −Ci[X,Y,Z] (5.3)

The scale distortion (Ds) is then computed such that the sum of the L2 norms,

or Euclidean lengths, of the offsets between the original and ghosted geometry

vertices is minimized. This ensures that the scales of the two geometries are

matched. Ds can be computed directly by taking the derivative of the sum of

square L2 norms with respect to Ds, setting it equal to zero, and solving. The

sum of square L2 norms is defined as

∑
vertices

((
Xi −Ci[X]

)
· Ds +Ci[X] + Dt[X] − X0

)2

+
∑

vertices

((
Yi −Ci[Y]

)
· Ds +Ci[Y] + Dt[Y] − Y0

)2

+
∑

vertices

((
Zi −Ci[Z]

)
· Ds +Ci[Z] + Dt[Z] − Z0

)2

(5.4)

Taking the derivative with respect to Ds, setting equal to zero, and solving for Ds

defines the scale distortion between the camera and viewer spaces. For brevity,

the individually written out sums of the X,Y , and Z coordinates are compacted

into sum notation over W = X,Y,Z.

103



Ds = −

∑
vertices

∑
W=X,Y,Z

[(
Wi −Ci[W]

)
·
(
Ci[W] + Dt[W] −W0

)]
∑

vertices

∑
W=X,Y,Z

[(
Wi −Ci[W]

)2
] (5.5)

Dt and Ds are then used to translate and scale the transformed geometry

into a scale and translationally invariant, stereoscopically transformed, ghosted

version. The visualization of this ghosted geometry is also the basis for a metric

to quantize stereoscopic shape distortions. The definition of this metric and its

applications are discussed later.

5.1.4 Alternative Control Mechanisms and Interfaces

Visualizing Bounded Parallax

To facilitate the specification of the stereoscopic parameters via alternative, indi-

rect control mechanisms, the tool provides a visual interface for parameter defi-

nition. The near and far distances (nd, fd) used in the bounded parallax method

of stereo control (Section 4.2.3) are visualized by blue planes, as in Figure 5.2(d).

If the near plane is positioned at the object nearest to the camera within its field

of view and the far plane is positioned at the object farthest from the camera

within its field of view, then the artist-specified near and far shifts (ns, fs) define

the maximum and minimum parallax that will be observed by the viewer. This

gives the artist a good sense of the extent of the range of perceived depths that

the viewer will be exposed to, as visualizing where the nearest and farthest ob-

jects are and will be perceived becomes trivial with the addition of the near and

far planes. The combination of the conceptually simple and easily abstractable
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(a) Camera Controls (b) Stereo Controls (c) Viewer Controls (d) Custom Controls

Figure 5.5: The tool’s display interface enumerates the full parameter space,
allowing for identification and control. The tool groups parameters into camera,
stereo, viewer, and alternative configuration parameters which corresponds to
the geometric visualization groupings.

bounded parallax stereo control method with the embedded visualizations of

the method’s control points provides for a comprehensible and intuitively us-

able method of stereoscopic manipulation.

Control Mechanics

In order to facilitate the complete customizable and configurable nature of the

stereoscopic parameter space beyond the graphical visualizations, the tool also

provides textual listings and control points for all manipulatable parameters.

As indicated in Figure 5.5, the listings provide a detailed enumeration of the

complete parameter space in the proper color-coded groupings. This allows

for more precise control of parameter manipulation, numerical feedback of the

exact parameter values, and improved nomenclature comprehension.
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Figure 5.6: Rendered stereoscopic red/cyan anaglyph stills from the Dream-
Works Animation 2010 feature film, Megamind. These images and the data
that created them are used with the permission of DreamWorks Animation, and
remain the property and under copyright of DreamWorks Animation. Duplica-
tion is prohibited.
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Figure 5.7: Rendered stereoscopic red/cyan anaglyph stills from the Dream-
Works Animation 2010 feature film, Megamind. These images and the data
that created them are used with the permission of DreamWorks Animation, and
remain the property and under copyright of DreamWorks Animation. Duplica-
tion is prohibited.
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Pipeline Integration

Finally, our stereoscopic distortion visualization tool benefits from the ability to

interface with working production animation pipelines. This allows for access

to a vast library of animation content, limited only by the library the tool is inter-

facing with. The content library can provide anything from scene and character

geometry, animation and transformation data, camera and stereo specifications,

to any other data that relates to the stereoscopic parameter space and visualiza-

tion as defined by our tool.

Through the support of DreamWorks Animation, we were permitted limited

access to their internal data and pipeline to test the abilities of our visualization

tool within a production environment. The tool provides an interface to their

pipeline, and allows the artist to query and navigate show, sequence, shot, and

frame lists. Once a particular frame is selected, the tool can automatically find,

load, and convert geometric scene data assets, and parse in animation trans-

form, camera, and stereo parameters.

Figures 5.6 and 5.7 show stills from the DreamWorks Animation 2010 feature

film Megamind. It shows example stereoscopically rendered stills from their

pipeline data in the red/cyan anaglyph format. These stills exemplify the type,

variation, and complexity of data used on a regular basis by production artists,

as well as the artistic output of the studio. The geometry and parameter con-

figurations used in the rendering of these stills are used throughout this thesis

and visualized in our tool, to test it on real world data and conditions. They can

be used to compare the visualization tool geometric representations throughout

with the final rendered stills here. For example, Figure 1.1 is our tool’s visualiza-

tion of the geometry present in the first rendered still of Figure 5.6. These images
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and the data that created them are used with the permission of DreamWorks

Animation, and remain the property and under copyright of DreamWorks Ani-

mation. Duplication is prohibited.

5.2 Interactivity, Feedback, and Control

5.2.1 Distortion Visualization

Through the process of introducing the expanded stereo parameter space and

describing the interactive tool, most of the significant distortion visualizations

have been shown and described. We now iterate through examples of stereo-

scopic distortion visualizations, highlighting some of the remaining unexplored

parameters through the use of our tool.

Figure 5.8 demonstrates the visualization of variations in focal length ( f ),

sensor width (Wc), and eye separation (e). Because of the near linear relationship

between the convergence distance (c) and the focal length, notice how variations

of the focal length directly translate to variations in the convergence distance in

Figures 5.8(a)-(c). For the sensor width, the inverse trigonometric relationship

between it and the field of view implies an increase in the size of the view frus-

tum as the sensor width is increased, as shown in Figures 5.8(d)-(f). Notice how

this is a similar effect to shortening the focal length while simultaneously hold-

ing the convergence distance constant. Finally, in Figures 5.8(g)-(i), notice how

variations in the eye separation have the near opposite effect as variations in

the camera separation (t). Decreases in the eye separation lead to exaggerations

in depth, similar to an increase in camera separation, while increased eye sep-
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aration leads to a visible flattening of the perceived depth towards the screen

plane, similar to decreasing of the camera separation. However, it should be

noted that the two parameters are not completely counteractive, as variations in

the eye separation have no effect on the convergence distance while variations

in the camera separation do.

5.2.2 Floating Window Violations

As discussed previously, our tool allows for the specification, variation, and vi-

sualization of the floating window, a technique used to counter the effects of

stereo window violations. A side benefit of the combination of these interac-

tions with the simultaneous visualization of scene and transformed geometries

is that artists can directly visualize these window violations. Figures 5.9(a)-(b)

and 5.10(a) demonstrate how the visualization trivializes the identification of

window violations.

Through the feedback loop created by simultaneous interaction and visual-

ization, the artist is capable of intuitively setting the floating window to reduce

and eliminate the manifestation of these violations, as in Figures 5.9(c)-(d) and

5.10(b). By directly manipulating the floating window plane, the artist can sim-

ply position the plane in a non-violating configuration without reference to or

knowledge of the specific values used to define the floating window. Thus, this

feedback interaction loop can improve the ability and reduce the time taken by

artists to identify and rectify the occurrence of stereo window violations.
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(a) (b)

(c) (d)

Figure 5.9: Stereo window violations and rectification using floating windows.
Figures (a) and (b) demonstrate the existence of a stereo window violation. No-
tice how the near character breaks the left side of the frame but perceptually
is in front of the stereoscopic window, creating a violation. Figures (c) and (d)
demonstrate how the violation is corrected by applying a floating window to
the left side of the frame so that the character now perceptually appears behind
the stereo framed window. Figure 5.10 provides an alternative perspective of
the same violation and correction.
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(a) Window Violation

(b) Floating Window Correction

Figure 5.10: An alternative view of the same stereo window violation and cor-
rection with floating windows as in Figure 5.9.
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Figure 5.11: Multirig depth incongruities. Chart of real world object distances,
and the perceived depth after stereo transformation in parallax. The foreground
rig, in blue, contains objects from 25 to 35 units from the camera, and based on
its stereoscopic transformation, the objects are mapped to a parallax range of
-20 to +15 pixels of parallax. The background rig, in red, contains objects from
47 units or greater, and based on its stereo transform, the objects are mapped to
a parallax range of 3 pixels or larger. This leads to an overlap of parallax values
in perceived space (red hatched region) of objects in the two rigs that do not
overlap in the real world, creating a depth incongruity and possibly indicating
an incorrect multirig configuration.

5.2.3 Multirigged Camera Incongruities

A similar interactive feedback loop exists for the identification and rectification

of depth incongruities, resulting from misaligned multirigged stereo camera se-

tups. As mentioned previously, the use of multirigged cameras is a technique

that segregates scene objects into stereo cameras with varying stereo parameters

in an attempt to improve the stereo precept of objects in varying foreground and

background regions of the frame. This occurs when a single set of parameters

would not work.

114



Figure 5.12: Visualization of multirig depth incongruities between the camera
space and viewer space, due to simulated incorrect multirig configurations. No-
tice how while in camera space the characters, which are in separate camera rigs,
are at different distances from the camera, while in the viewer perceived space
the characters appear to be at the same depth, indicating the existence of an
overlapping transformation regions, as in Figure 5.11.

One issue that arises with the use of multiple sets of stereo cameras and

parameters is the possibility of incorrectly ordering the perceived depths of ob-

jects. This can potentially occur in the overlapping transformed regions be-

tween two or more multirigged cameras, as in Figure 5.11. Without being able

to simultaneously visualize the complete composited stereo image, it is diffi-

cult to identify such depth incongruities by setting the stereo parameters for

each rig individually. A frequent issue when using multirig setups is that these

depth violations are not immediately identified by artists upon setting the stereo

parameters.

Through our tool, by simultaneously visualizing the stereoscopically trans-

formed geometry, identification of depth incongruities due to stereo multirig

errors becomes straightforward, as demonstrated in Figure 5.12. While rectify-
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ing such depth violations is not as intuitive as it is for stereo window violations,

our interactive tool does provide significant feedback, enabling the artist to ma-

nipulate the separate rig parameters individually and visualize correct multirig

depth ordering.
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CHAPTER 6

DISTORTION METRIC AND PERCEPTUAL CONSTRAINTS

One obvious extension to the development of our interactive visualization

tool for distortions inherent in the stereoscopic parameter space, is the quanti-

zation of the visualized distortion being observed, a metric of stereoscopic qual-

ity. Distortion quantization provides numeric confirmation and feedback to the

artist about the amount or quality of distortion observed in the visualization, a

standardized reference point for distortion comparisons across configurations

and scenes. Additionally, it allows for the visualization of the surface of the dis-

tortion metric across variations in the stereoscopic parameter space. Once the

distortion metric surface is visualized, it is advantageous to consider constraints

imposed on the stereo parameter space by human perceptual limitations. These

constraints can be visualized as boundaries on the distortion metric surface, in-

dicating the valid operating subspace of the full parameter space.

To demonstrate the capabilities and effectiveness of our visualization tool,

we define and implement one prototype of a stereoscopic distortion metric. We

also define and implement a set of perceptual boundary constraints to the pa-

rameter space. Both the constraints and distortion metric are visualized, and

the impact of visualizing a combined parameter and distortion metric space is

discussed.

6.1 Stereoscopic Distortion Metric

As previously discussed, there have been previous attempts to quantize the

quality of the stereoscopic transformation. However, most have suffered from
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assumptions that restrict the configurability of the parameter space, or are de-

fined to measure too particular a metric, such as non-linear depth compression

or expansion, cardboarding, or puppet theater effects, all of which limit its ap-

plicability and generalization. For example, many metrics are computed based

solely on the stereoscopic parameters. In some instances, the positioning of the

character or object of focus is incorporated, and in others reference to the near

and far distances are made. In either case, the actual content of the scene does

not come into play, and thus the impact that the stereoscopic parameters have

on the perceived transformation of that particular scene’s geometry and its re-

sultant distortions from the original is not considered.

To mitigate these limitations, our stereoscopic distortion metric is based

solely on the distortions between the transformed geometry and the original

source geometry, only indirectly referencing the stereoscopic parameter space in

so much as they affect the scene geometry transformation. Thus, beyond being

parameter specific, our quality-of-stereo metric is scene content specific, mea-

suring variations beyond just camera separation or focal and interest distances

to encompass all elements that go into the composition of a shot. Accordingly,

our metric for stereoscopic quality is a quantization of stereoscopic distortion.

6.1.1 Quantization of Distortion

Stereo distortion can be generally defined as variations in perception between

the original geometry as captured by the camera system and the stereoscopically

transformed geometry as perceived by the viewer. Because our visualization

tool implements a comprehensive model for stereoscopic perception and ap-
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plies it to original geometry, we can refine our definition of quantized distortion

to be the geometric discrepancies between the two geometries as maintained by

our tool.

As our perceptual model works on a vertex-by-vertex basis for computing

the stereoscopic transformation between the original and stereo transformed

spaces, it is sensible to compute a distortion metric on a similar scale, making

comparisons and computing the discrepancies between the two geometries on a

vertex-by-vertex basis. Accordingly, our distortion metric is primarily based on

the L2 norm, or Euclidean length, of the distances between points in three-space.

However, previous findings warrant further discussion as to the validity of

a naive implementation of a direct measure of vertex distance discrepancies be-

tween the original and transformed geometries as defined by our tool. Recall

that the camera configuration components and the original geometry are not

in the same space as the viewer configuration and stereoscopically transformed

geometry. Because of the physical disconnect between the capture and display

spaces, the relative positioning and orientation between them can be arbitrarily

defined. Our tool visualizes the two spaces in the same space for the benefit

of the artist, and for the convenience of viewing them simultaneously. They

are positioned relative to each other so that direction, orientation, and scale are

consistent between the two spaces, but otherwise they bare no physical prox-

imity. This same realization led to the development of our visualization of the

ghosted geometry to allow for more direct comparisons of geometries between

spaces, as discussed in Section 5.1.3. Similarly, our definition of a distortion

metric should adhere more directly to a more applicable comparator than the

proximally unassociated spaces.
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We have previously explored in Section 2.1 how the human visual system

primarily perceives depth in relative, and not absolute, terms. This suggests

that the relative depth, or spatial ordering, as well as the accuracy of the percep-

tion of the shape should be prioritized over the exact spatial positioning of the

precept. This further emphasizes the utility of the ghosted geometry over the

base stereoscopically transformed geometry in the comparison with the original

geometry for use as a distortion metric. By reducing the emphasis on the posi-

tioning and scale of the transformed geometry and focusing more on its stereo-

scopically transformed form, our distortion metric can more aptly be considered

to measure distortion in shape. Shape distortions are most easily observed and

computed by comparing the original geometry with the stereoscopically trans-

formed, and position and scale invariant ghosted geometry.

6.1.2 Definition of Shape Distortion

Ghosted geometry is defined as the near-affine invariant stereoscopically trans-

formed geometry. Visualized at the position and size of the original geometry,

it is an attempt to highlight the shape inconstancy inherent in the stereo trans-

formation, precisely what we hope to quantize. The scale and translational dis-

tortions used in the ghosted geometry are determined by Equations 5.3 and 5.5,

reiterated here.

Dt[X,Y,Z] =

∑
vertices

[X0,Y0,Z0]

‖vertices‖
−

∑
vertices

[Xi,Yi,Zi]

‖vertices‖
(5.3)
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Figure 6.1: Visualization of the definition of stereoscopic shape distortion. The
distortion metric is defined as the sum of near-affine invariant square L2 norms
of the vector translational discrepancies (red) between the vertices in the origi-
nal (blue) and stereoscopically transformed geometries (black).

Ds = −

∑
vertices

∑
W=X,Y,Z

[(
Wi −Ci[W]

)
·
(
Ci[W] + Dt[W] −W0

)]
∑

vertices

∑
W=X,Y,Z

[(
Wi −Ci[W]

)2
] (5.5)

Here, Ci is the centroid of the transformed geometry, and for brevity, the indi-

vidually written out sums of the X,Y , and Z coordinates are compacted into sum

notation over W = X,Y,Z.

Recall that in the determination of the scale distortion component of the

ghosted geometry invariance that a metric of shape discrepancy was minimized

with respect to Ds. That metric is the basis of our stereoscopic distortion met-

ric defined here, and is similar except that it is computed after the optimal
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translational (Dt) and uniform scale (Ds) invariants are determined. We define

our quantization of stereoscopic distortion metric (M) as the sum of near-affine

invariant square L2 norms of the vector translational discrepancies between

the vertices in the original and stereoscopically transformed geometries. The

lengths of the vertex discrepancies is illustrated in Figure 6.1.

M =
∑

vertices

((
Xi −Ci[X]

)
· Ds +Ci[X] + Dt[X] − X0

)2

+
∑

vertices

((
Yi −Ci[Y]

)
· Ds +Ci[Y] + Dt[Y] − Y0

)2

+
∑

vertices

((
Zi −Ci[Z]

)
· Ds +Ci[Z] + Dt[Z] − Z0

)2

(6.1)

We use the sum of squared distances instead of just distances as it makes iter-

ation for summation simpler as the individual coordinates can be pulled outside

of the square root to be grouped and summed by coordinate instead of by ver-

tex. Additionally, it applies a second-order penalty to geometry that is more

significantly distorted, which helps to highlight subtle variations in distortion.

Beyond being a numeric representation and reference value for the distor-

tions inherent in the stereoscopic transformation as defined by the complete

parameter space, the metric itself can be visualized by plotting the shape dis-

tortion at varying points within the parameter space. This provides a visual-

ization of the distortion surface over a parametrically enumerated subset of the

parameter space, a graphical representation of the relative goodness or badness

of the stereo transformation. For example, considering variations in the cam-

era separation and sensor offset, we can visualize the impact that modification

of the intrinsic stereo camera parameter subspace has on the stereo precept, as

in Figure 6.2. The X and Y axes represent ranges in the camera separation and

122



Figure 6.2: The distortion metric surface over variations in the intrinsic stereo-
scopic camera parameters. The X and Y axes represent ranges in the camera
separation and sensor offset parameters respectively, and the Z axis is the com-
puted stereo distortion metric. Variations of the two parameters can have a
drastic impact on the quality of the stereo precept as is seen by the contours of
the metric surface, from minimal distortions in blue to significant distortions in
red.

sensor offset parameters respectively, and the Z axis is the computed stereo dis-

tortion metric. The resulting surface shows how variations within the camera

separation-sensor offset subspace can significantly vary the quality of the stereo

transformation.

6.1.3 Culling

Having defined shape distortion as a function of the stereoscopic transforma-

tion of the scene geometry, we need to determine which portions of the scene

geometry should be considered for inclusion in the metric. In particular, when

working within a production animation pipeline, an individual shot may only
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Figure 6.3: View frustum culling. The left plane of the stereo view frustum, in
blue, is defined by a point p on the plane and a normal vector n oriented into
the frustum. Vertices (v) are defined as inside or outside the frustum based on
the sign of their computed distance from the plane. Vertices with a positive
distance (dB > 0) may be inside the frustum, while vertices with a negative
distance (dA < 0) are outside of the frustum and are culled.

frame a small portion of the available geometry, as entire set locations are tra-

ditionally modeled at once to be covered and utilized in multiple shots from

varying angles. Because our distortion metric is intended to measure the visual

distortions between geometries, it makes sense to only consider visible geome-

try in its computation. We briefly outline the importance, inclusion, and imple-

mentation of common culling and geometry rejection algorithms applicable to

the stereo camera and viewer space configurations and the distortion metric.
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View Frustum Culling

View frustum culling is a technique of rejecting geometry that lies outside the

visible field of view of a camera or viewer. As we assume that the viewer

has complete visibility of the entire projection surface, we apply view frustum

culling to the stereo camera field of view only. The algorithm works by defin-

ing the four planes that determine the left, right, top, and bottom edges of the

field of view and rejecting vertices that lie on the non-viewable side of any of

the culling planes. This technique is illustrated in Figure 6.3. Note that, as

mentioned previously, the definition of the stereo field of view is somewhat ar-

bitrary. As before, we use the definition of the stereo view frustum as the field

of view from the point between the stereo cameras of the convergence plane for

the determination of the view frustum culling planes.

The technique for determining plane sidedness for the rejection component

of the algorithm is defined by the equation for the distance (d) of a point (v) from

a plane defined by a point on the plane (p) and the normalized normal vector

(n) to the plane.

d = n · (v − p) = nxvx + nyvy + nzvz − nx px − ny py − nz pz (6.2)

If the normal vector used in the plane definition is the one that points into the

view frustum, then vertices that lie outside the field of view are a negative dis-

tance away from the plane. Accordingly, the culling criterion can be stated as

d(p, n, v) < 0 (6.3)

The algorithm for view frustum culling as implemented for geometry inclu-

sion in the distortion metric is summarized in Algorithm 1, and the impact on

the geometry included in the distortion metric is highlighted in Figure 6.4.
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Algorithm 1 View Frustum Culling

for all vertices v do
for all view frustum planes (pi, ni) | i = 1 to 4 do

if d(pi, ni, v) < 0 then
cull(v)

end if
end for

end for

(a) (b)

Figure 6.4: The effect of view frustum culling within the visualization tool. Fig-
ure (a) shows the geometry of a character partially outside of the view frustum
when no view frustum culling is applied. Figure (b) shows the same character
geometry with view frustum culling applied. This ensures that the distortion
metric is more specific to the geometry visible to the viewer.

Back Face Culling

Back face culling is a technique of rejecting geometry whose normal vector is

oriented away from the viewer or camera. Assuming that the normal vectors

are properly defined on the outward and visible face of a polygon in a water-

tight mesh (without holes or gaps), this algorithm rejects geometry on the back,

non-visible side of an object from the point of view of the stereo camera. While

rejecting geometry on the back side of objects may appear to violate our asser-

tion that the distortion metric quantizes discrepancies in object volume, it is the
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Figure 6.5: Back face culling. Vertices in faces that are oriented away from the
camera are not included in the final stereo precept as they are not seen by the
camera, and should be culled. The orientation of the face is determined by the
dot product of the normal to the face and the camera orientation direction. Faces
with normals oriented in the opposite direction as the camera direction have a
negative dot product and are visible to the camera, while faces with normals ori-
ented in the same direction as the camera direction have a positive dot product
and are not visible to the camera and are culled.

volume as perceived by the viewer that matters, and that perception can only

be based upon what is visible to the viewer.

Back face geometry is determined by the orientation of the normal vector.

If the normal vector is oriented towards the camera, then the surface is visible,

while geometry with normals oriented away from the camera is not visible, as

illustrated in Figure 6.5. Orientation is determined by the dot product of the

normal (n) with the viewing direction ([Xt,Yt,Zt] − [Xc,Yc,Zc]).

b = n · ([Xt,Yt,Zt] − [Xc,Yc,Zc]) = nxXt + nyYt + nzZt − nxXc + nyYc + nzZc (6.4)

If the dot product is negative, then the geometry faces the camera and is visible.

But if the dot product is positive, then the face is oriented along the viewing di-

rection and is not visible and should be culled. Accordingly, the culling criterion

can be stated as

b(n,Camera) > 0 (6.5)
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Algorithm 2 Back Face Culling

for all vertices v do
if b(nv, camera) > 0 then

cull(v)
end if

end for

The algorithm for back face culling as implemented for geometry inclusion

in the distortion metric is summarized in Algorithm 2, and the impact on the

geometry included in the distortion metric is highlighted in Figure 6.6.

Occlusion Culling

Occlusion culling is a technique for rejecting geometry that is occluded from the

camera or viewer by other geometry. The occluding geometry must be opaque

so as to completely block the visibility of the occluded geometry, and can either

be geometry of the same object (self-occlusion) or another object. The algorithm

works by determining the visibility of each vertex that could potentially be in-

cluded in the distortion metric with respect to each possibly occluding surface.

This involves identifying occluding surfaces or polygons, and for each, iterate

over and determine the visibility of every vertex. Because our tool maintains the

connectedness graph, or faces, of the mesh vertex geometry, the set of possible

occluding surfaces is easily defined and populated by the set of visible faces. A

face is considered visible if any of its component vertices is visible. The occlu-

sion culling algorithm is slightly more complex than the previously discussed

culling algorithms, as it is O(n2) in the number of polygons, and should accord-

ingly be computed after the results of the linearly complex culling algorithms

are determined.
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(a)

(b)

Figure 6.6: The effect of back face culling within the visualization tool. Figure
(A) shows the geometry of a character with view frustum culling already ap-
plied, but without back face culling. Figure (B) shows the same geometry but
with back face culling applied, as portions of his head and back that are not vis-
ible from the perspective of the stereo cameras are culled. Again, this ensures
that the distortion metric is more specific to the geometry visible to the viewer.

The rejection criterion is similar to view frustum culling, but where the frus-

tum is determined by the edges of the occluding polygon, and a vertex is re-

jected if it is inside the occluding frustum and behind the surface. Figure 6.7

illustrates an example with one occluding polygon and several rejected and in-

cluded vertices. Accordingly, the culling criterion for an occluding polygon (g)
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Figure 6.7: Occlusion culling. Vertices that are occluded by other geometry in
the scene from the perspective of the stereo cameras will not be visible to the
viewer and should be culled. Vertex occlusion is determined for every vertex-
face pair in the scene. Vertices within the frustum defined by the edges of the
occluding face are culled, where occlusion frustum containment is determined
similarly to view frustum culling by determining the sign of the distance of the
vertex from the planes of the frustum.

can be stated as

d(pg,i, np,i, v) > 0 ∀ frustum planes i of g (6.6)

vz > gz (6.7)

The algorithm for occlusion culling as implemented for geometry inclusion

in the distortion metric is summarized in Algorithm 3, and the impact on the

geometry included in the distortion metric is highlighted in Figure 6.8.

6.1.4 Geometry Grouping

It is necessary to make the distinction between the full scene geometry and the

geometry of individual objects. Individual object geometry is defined as any
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Algorithm 3 Occlusion Culling

for all vertices v do
for all occluding polys g and frustum planes i of g, defined by (pg,i, ng,i) do

if d(pg,i, ng,i, v) > 0 ∀ i then
if vz > gz then

cull(v)
end if

end if
end for

end for

(a) No Culling (b) Occlusion Culling

Figure 6.8: The effect of occlusion culling within the visualization. Figure (a)
shows the complete geometry of a shot, without occlusion culling applied. Fig-
ure (b) shows the same geometry but with occlusion culling applied. The geom-
etry of one of the robots is culled due to occlusion from the stereo cameras by
the geometry of the character inside the viewing frustum as indicated. Occlu-
sion culling ensures that the distortion metric is more specific to the geometry
visible to the viewer.

single instance of an individual geometric model, like a rock or a character or

a car. Thus the full scene geometry can be segmented into geometrically in-

dependent entities. This is important because thus far we have considered the

near-affine invariance of the full scene geometry as a whole. This implied that

there is a single translational distortion vector (Dt) and a single scale distortion

value (Ds) that are applied to all objects collectively. While this might work for
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objects located near the centroid of the full scene geometry, it does not for objects

at the periphery.

This implies that affine invariance and distortion metrics should be com-

puted on an object by object basis to avoid the bias of the full geometry. With

this restriction, it is possible to correctly position and scale the ghosted geome-

try for visualization of the distortion of object shape. It further emphasizes the

use of shape distortion as a metric while still maintaining relative depth and

positioning accuracy.

Accordingly, our tool maintains a set of centroid values (Ci,n), translation

(Dt,n) and scale (Ds,n) distortion invariance values, and distortion metric values

for each object n as defined by the scene and modeling artists.

6.1.5 Object Weighting

As a result of object geometry grouping, our tool maintains a set of distortion

metric values, one for each object in the scene. However, a potentially massive

set of values is less applicable as a single metric to an artist, and the set of values

must be aggregated into a single value for the metric to be effective. As a result,

our tool implements a variety of optional weighting functions to determine a

single distortion metric.

A trivial method would be to sum the distortion metrics of the individual

objects, however the resulting metric would scale with the number of objects

in the scene. The result would not be comparable between scenes with varying

numbers of objects, negating the intent of the metric.
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Alternatively, one could average the individual object distortion values.

Since the original distortion metric is defined as a sum of vertex disparities,

this weighting would scale with the number of vertices in an object. This ef-

fect may be advantageous, as it has the benefit of emphasizing objects with a

larger number of vertices, one measure of object complexity which artists may

consider important. However, a simple vertex count may not be the most ideal

measure of complexity, and complexity may not be the most important factor of

object importance.

Another possible weighting scheme is to average the distortion offset across

all vertices by summing the total object level distortion values and dividing by

total number of non-culled vertices.

M =

∑
objects

n

∑
vertices

v in n

∑
W=X,Y,Z

[(
Wi,v −Ci,n [W]

)
· Ds,n + Dt,n [W] −W0,v

]2

‖vertices‖
(6.8)

where M is the total overall stereoscopic distortion metric for the scene. This

is the most unbiased weighting distribution, and has the advantage of being

normalized across arbitrary scene geometries allowing direct relative compar-

isons between them. As an unbiased value, we use this computed metric as the

baseline for any weighted metrics that an artist might decide to use. Possible

additional weighting functions, such as angular size subtended, artist specified

object importance, distance from point of interest, or other aspects of saliency,

can be easily built upon this baseline value and is left for future work.
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Figure 6.9: Plan view of the distortion metric surface. A visualization of the
impact of variations of the intrinsic stereo camera parameters on the perceived
stereo distortion. Again, blue indicates minimal distortion, while red indicates
significant distortion. The minimal amount of distortion within this parameter
subpsace is indicated, and is known as the orthostereoscopic condition.

6.2 Perceptual Constraints on the Parameter Space

Having formally defined a stereo quality metric, we can revisit and further ex-

plore the implications of visualizing the contours of the distortion metric sur-

face over variations in a subset of the parameter space, as mentioned previ-

ously in Figure 6.2. As a graphical representation of the relative quality of the

stereoscopic transformation over parameter variations in a linear space, we can

quickly identify parameter configuration states that exhibit large amounts of

distortion, and others that exhibit minimal amounts of distortion. Being able

to visualize this surface is important, as it can be ideal for an artist to attempt

to minimize the amount of distortion inherent in the stereoscopic transforma-

tion. However, considerations including the entirety of the distortion metric

surface are impractical, as many include physically invalid, perceptually non-
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ideal, or eye-straining configurations. Accordingly, it is important to observe a

valid subspace of the complete parameter space, as constrained by perceptual

limitations, when considering the distortion metric surface. In the following

sections, we outline the importance of perceptual constraints and the consider-

ations for their practical implementation.

It becomes apparent that an attempt to computationally minimize the dis-

tortion metric with respect to the varying parameters would optimize the per-

ceived distortion in shape resulting from variations in the selected subset of

parameters, as shown in Figure 6.9. In Appendix A, we briefly discuss one tech-

nique for such an optimization, as well as the necessary considerations for its

practical implementation, and discuss its implications.

6.2.1 Unconstrained Vs. Constrained Parameter Space

As previously discussed, there exists a particular stereo parameter configura-

tion where the stereo precept in the display space exactly matches the precept

in the capture space, as if the viewer were observing the scene while being

captured from the position of the stereo cameras. This is known as the or-

thostereoscopic condition. Near orthostereoscopic conditions are visualized in

Figure 6.10. The defining parameters correspond to the absolute minimum of

the distortion metric, or zero distortion, as seen in Figure 6.9. It requires that ev-

ery parameter be matched between the capture and display spaces. The field of

view and convergence distance of the stereo cameras must match the viewer’s

field of view of and distance to the display surface which involves aligning focal

lengths and display widths, and the camera separation must match the interoc-
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Figure 6.10: The orthostereoscopic condition occurs when all stereo parameters
are matched between the capture and display spaces. Namely, the positioning
and size of the convergence plane must match the projection surface implying
matching fields of view, and the camera separation must match the interocular
of the viewer’s eyes. Note that while the orthostereosopic condition provides
the absolute minimal amount of distortion, it is often not the ideal configuration
when human perception and visual comfort are considered.

ular of the viewer’s eyes.

By definition, this parameter configuration would automatically minimize

the distortion metric by providing zero disparity between the two spaces. If an

optimization technique were to freely minimize the distortion metric in a pa-

rameter subspace that included the orthostereoscopic point, it would converge

to it. However, orthostereoscopy heavily restricts the configuration of the scene

by locking the convergence, camera separation, and field of view even before

considering the scene content. Even if artists are willing to sacrifice on stereo-

scopic flexibility in an attempt to achieve orthostereoscopy, without careful at-

tention to the arrangement of the scene, object, and character geometry, the final

result can frequently lead to viewer discomfort due to excessive divergence or

conflicts in accommodation and vergence beyond the comfort threshold.
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Accordingly, we want to limit the parameter space so that the stereo config-

uration stays within the limitations of visual comfort. On the other hand, we

do not want to naively apply visual thresholds to the stereo configuration by

simply filling the virtual stereo space within the limits of visual comfort. This

sort of methodology would ensure a constant presence of stereo precepts at the

thresholds of visual comfort and can cause noticeable fluctuations in stereo pa-

rameters to accommodate for any motion of objects or cameras. In turn, this

leads to aesthetically unappealing distortions and waverings in perceived vol-

ume as the geometry is artificially inflated to maximize the usable stereo space,

not to mention constant comfort threshold visualization without relief.

Ultimately, we need to be smarter about how we treat and consider the valid

parameter space. This suggests the use of boundary constraints, and consider-

ing the stereoscopic distortion metric within the limits of visual comfort. This

strikes an appropriate balance between the theoretically perfect orthostereo-

scopic precept and the perceptual realities of human visual comfort. The two

main perceptual comfort limits used boundary constraints relate to excessive

divergence and conflicts between accommodation and vergence.

6.2.2 Excessive Divergence

As previously discussed, our tool implements an allowed divergence parameter

(γ) inspired by research suggesting that viewers can comfortably diverge their

eyes outward by a small degree, anywhere from 0.25◦ to 3◦. The parameter

can be specified by the artist, and effectively shifts the perceived infinity point

defined in parallax within the virtual viewer space, as illustrated previously
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in Figure 4.7. This results in a maximum allowed parallax value in the stereo

image pair.

pmax = e + 2Zv tan (γ) (6.9)

By combining the maximum allowed parallax value (pmax) with the distance

of the furthest object from the camera (dmax) and applying them to the equa-

tions relating parallax and distance to the intrinsic stereo camera parameters

(Equations 4.5 and 4.4), we can arrive at the definition of our first perceptual

constraint.

h <
f · t
dmax
+

pmax ·Wc

Ws
(6.10)

6.2.3 Accommodation-Vergence Conflict

The second constraint is derived from the limits of the accommodation-vergence

conflict. As discussed previously, the distance of focus and the distance of con-

vergence of human eyes are the same in natural viewing. However, viewing

stereoscopic displays traditionally involves focusing on the plane of the dis-

play surface while converging at various distances in space depending on the

parallax of the display stimulus. This mismatch between accommodation and

vergence distances can be uncomfortable. Percival’s zone of comfort describes

the range of comfortable accommodation for a fixed convergence distance, or,

as is more applicable to stereoscopic displays, the area of comfortable vergence

for a fixed accommodation distance. Percival’s zone of comfort is defined as the
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middle third of the zone of clear and single binocular vision (ZCSBV), which is

the region where stereoscopically viewed objects are still fusible, and thus rela-

tive depth precept is still valid. The ZCSBV, while usually empirically defined

on a person-by-person basis, is traditionally defined as one diopter on either

side of the fixation point, as previously illustrated in Figure 3.15(b).

Accordingly, we use the limits of comfortable convergence as defined by

the distance of the display surface and Percival’s zone of comfort. Figure 6.11

illustrates how Percival’s zone can be applied to the stereoscopic viewing space

and a constraint derived. The ZCSBV is defined in green surrounding a fixed

focal distance, or in our case the screen plane. Percival’s comfort zone, as shown

in yellow, is the middle third of the ZCSBV. Recall that the ZCSBV and Percival’s

zone of comfort are defined in diopter units, which are units of inverse distance.

Thus, the arrangement of the ZCSBV and Percival’s zone are visualized with an

inverse relationship to distance in reference to the viewer.

Notice how depending on the parallax of the stereo precept, the convergence

distance and horopter can be inside Percival’s zone of comfort, inside the zone

of clear and single binocular vision (as in Figure 6.11), or outside the ZCSBV.

Stereo precepts should ideally be limited to Percival’s zone of comfort, or at least

to the ZCSBV. Because of the inverse relationship between diopters and dis-

tance, any non-diverging parallax value defines a stereo precept at least within

the ZCSBV on the far side of a display surface for displays more than one meter

from the viewer. This allows us to use excessive divergence as a far distance

constraint, and use Percival’s comfort zone for a near distance constraint.

To compute the near constraint, we first find the distance of the near bound-

ary of Percival’s comfort zone, or one-third of a diopter nearer to the viewer
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Figure 6.11: When viewing stereoscopic content, the convergence distance fre-
quently mismatches the focal or accommodation distance, a situation that does
not arise in natural viewing. Depending on the amount of screen parallax, the
convergence point (and subsequently the horopter) could be outside Percival’s
Zone of Comfort (defined as the middle 1/3 of the ZCSBV in diopter space) or
even the Zone of Clear Single Binocular Vision, as determined by the focal dis-
tance. The more extreme the situation, the more stressful it is on the viewer’s
visual system and painful it can be for the viewer.
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than the display surface.

(
1
Zv
+

1
3

)−1

(6.11)

Then, the minimum allowed parallax can be computed and reduced based on

the desired distance for the nearest precept and Equation 4.10 which relates par-

allax to perceived distance.

pmin =
eZv

3
(6.12)

As before, by combining the minimum allowed parallax value (pmin) with the

distance of the nearest object to the camera (dmin) and applying them to the equa-

tions relating parallax and distance to the intrinsic stereo camera parameters

(Equations 4.5 and 4.4), we can arrive at the definition of our second perceptual

constraint.

h >
f · t
dmin
+

pmin ·Wc

Ws
(6.13)

A few final assumed and automatic constraints are that the camera separation

is greater than zero, and that the convergence angle or horizontal image trans-

lation are non-zero.

t > 0 (6.14)

h ≥ 0 (6.15)

β ≥ 0 (6.16)
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Figure 6.12: Visualization of the perceptual constraints on the distortion met-
ric surface. The black boundaries are the mathematic constraints on the camera
separation-sensor offset parameter subspace, derived from the perceptual con-
straints of excessive divergence and accommodation-vergence mismatch dis-
comfort. The grey striped regions indicate the invalid space. The shallower
boundary is the excessive divergence constraint, as defined by Equation 6.10,
while the steeper boundary is the accommodation-vergence conflict constraint,
as defined by Equation 6.13.

Figure 6.12 illustrates the constraints on the distortion metric surface. These

constraints correspond to non-imaginary non-2D precepts, and indicate a valid

subspace for parameter variation. Our tool provides the option to constrain the

parameter space to within these perceptual boundaries. Appendix A discusses

the potential application and implications of computationally minimizing the

distortion metric via constrained optimization with respect to a selected subset

of stereo parameters for use in automating the determination of stereoscopic

parameters in animation pipelines.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

We hope to have shown how the study and understanding of depth per-

ception can guide the creation of better stereo 3D content. We have developed

an interactive visualization and interactive pipeline toolset for animation artists

that allows them to view and manipulate the impact of the high-dimensional

stereo parameter space on the resultant stereo precept. Through expansion of

the classically accepted geometric stereoscopic transformation, we have shown

how the updated model allows artists to visualize the impact of information

traditionally abstracted away. By simultaneously viewing both the capture and

display configurations together and by defining the “ghosted” geometry, we

have enabled direct comparisons between the original and transformed spaces,

allowing easy visualization of any distortions in shape and volume inherent to

the expanded stereoscopic transformation. The quantization of stereo quality

through the development of a stereo distortion metric and constraints based on

perceptual limitations provide a consistent and meaningful way for artists to

visualize how variations within a valid parameter subspace affect the quality of

the resultant stereo precept.

By promoting meaningful interaction with and a visualization of the com-

plete and comprehensive stereo pathway, we better enable artists to make fully

informed creative and artistic stereo decisions. This is particularly true early on

in the preliminary production of a film, where the visualization tool can high-

light distortions, enabling artists to reduce them and avoid costly errors and pre-

ventable mistakes. Hopefully, interaction with this tool and the stereo content

it manipulates will allow for greater integration of a stereo mindset throughout
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all aspects of a film’s production, and promote the development of new and

creative stereo techniques and terminology.

While our work in the expansion of the stereoscopic parameter space and

resulting transformation have increased the comprehensiveness, effectiveness,

and applicability of a distortion visualization tool such as ours, it remains in-

complete. There will constantly be new cinematic techniques developed and

stereo control paradigms conceived that can be incorporated into the system,

allowing for control of the parameters and visualization of the resulting trans-

formation. Many techniques, such as depth of field, racking of focus, camera

shake, temporal coherency in camera or object motion, and others, are not cur-

rently considered by the visualization tool or the distortion metric.

Having discussed in detail the need, use, implementation, and possible er-

rors of floating windows and multirigged camera setups, one apparent exten-

sion would be the automation of the rectification of the errors. Floating window

automation could be setup such that it removes all manifestations of window vi-

olations. Automated multirig error correction could adjust the near or far pixel

shift values of a violating rig so as to remove depth incongruities.

Our quantization of stereo quality takes the form of one measure of distor-

tion, namely shape and volume mismatches. It utilizes many culling, grouping,

and weighting techniques to ensure fair and even representation of any distor-

tions visible to the viewer. Other weighting methodologies could be considered

based on perceptual, artistic, or scientific motivations to emphasize certain as-

pects of the scene configuration or other desired elements. Some possibilities

include the size or subtended angle of an object, distance from the convergence

plane, some measure of object complexity or importance, or any other compo-
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nent of saliency.

Alternatively, a completely different approach to defining stereo quality

could be taken. Other aspects of distortion could be emphasized, such as the

amount of non-linearity in the depth transform, or a non-negative metric could

be defined, such as the size of the stereoscopic depth window or the amount of

the comfort zone utilized.

As briefly shown in Appendix A, touching on the potential for automating

the determination of the intrinsic stereoscopic parameters through optimization

of the distortion metric has opened the doors for possible exploration in this

area. A plethora of other optimization metrics could be used, other parameters

could be optimized, enhanced pipeline integration could be implemented, and

so on.

The implications of such automation techniques preliminarily indicated a

reduction in artistic control. Accordingly, new ways to integrate stereo-minded

creative decision making into a movie production should be considered. For ex-

ample, artistic input into the automization process could be incorporated, such

as a floating target for what optimal stereo quality is, based on the preference of

the artist. These inputs could be feed by a depth script that would be defined

by an artist, and could indicate periods of accentuation or restraint of the stereo

depth based on the emotional flow, amount of action, character personality, or

some other determining factor.

Taking multirigging to its natural extreme, it is conceivable that one could

specify separate stereo parameters for each object or even vertex individu-

ally. This could result in interesting and abstract precepts of the stereo space.

145



Through some intelligent interface, one could allow for complete control over

the non-linearity of the stereo transformation. For example, one might desire

to artistically massage the stereo space and define the stereo transformation

by physically sketching the z-depth transformation curves, and the parameters

could be reverse computed to fit.

Finally, while many of the discussions and techniques uniquely apply to an-

imated filmmaking where access to the exact geometry in a digital format is

taken advantage of, there is the possibility for application to live action stereo

capture. Through the use of laser range finders, reverse stereo computations via

camera arrays, manual input, or some other methodology of digitally acquiring

information about the scene content, many of the techniques discussed could

apply to live action. Control feedback loops could be established, creating an

automation methodology for live broadcasts, such as sporting events, without

the need for constant monitoring or hand holding and manipulation.

Interfacing with a working pipeline will certainly increase the value of our

tool. With access to a library of completed filmic content, it facilitates the study

and understanding of pre-compiled artistically determined parameter configu-

rations, layouts, and animations. For novice artists, the tool can be used as a

“sandbox” for exploration, stereo space comprehension, and training. For pro-

duction artists, the tool can be used at any stage of the production pipeline as

a way to verify or get visual feedback on stereo use and visualize distortions

specific to the parameter configuration.

Perhaps, most importantly, our visualization tool has great potential for use

in the earlier and concept stages of animation production, as it can help empha-

size to high-level creative decision makers the impact of stereoscopic choices
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on the resulting image. By visualizing distortions in the early stages of film-

making, artists can prevent the need for costly re-rendering due to situations

where the distortions were not otherwise apparent. The tool also allows for

quick iteration through multiple stereo configurations in the concept stage of

development, which can help set the overall stereo direction and tone of a film

and avoid relegating stereo to a 3D-ization post process.

Integration of a stereoscopic mindset early in the creative process allows the

stereo elements of a film to be a guiding factor in the creative development

of content. Through continued emphasis on interacting with and visualizing

the effect of variations within the complete high-dimensional stereoscopic pa-

rameter space, artists can understand the impact that even traditionally non-

stereo specific parameters, such as focal length, staging, or editing, have on the

resultant stereo precept. This increased association between the basic physi-

cal parameters and the resulting perceived image enables artists to incorporate

stereoscopic understanding into all aspects of filmmaking. Through this pro-

cess, artists can create and develop a new grammar and visual vocabulary spe-

cific to the needs and uses of stereoscopic filmmaking.

Finally, we should not lose sight of the fact that filmmaking is an art. Science

and technology can act in support of its creation and study, but appreciation is

subjective and certain aspects of quality are ultimately up to the preferences and

opinions of the viewer. Thus, we should be attempting to create a space to be

viewed by the visual systems of the audience within the limits of perception, in-

stead of replicating and replacing their function. In other words, filmmaking is

the craft, and stereoscopy is the tool. There is no one right or wrong answer, and

it is up to the artist to decide how best to wield that tool to create something of
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interest and value for their particular purpose and intent and to be appreciated

and consumed by the audience.
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APPENDIX A

OPTIMIZATION AND AUTOMATION

Since our metric for stereoscopic distortion is mathematically defined, the

stereo parameter space can be numerically optimized in an attempt to minimize

distortions with respect to a defined set of parameters. With such an optimiza-

tion technique, our visualization tool can be further expanded to automatically

configure stereo parameters for large sets of preconfigured geometry and cam-

era data, in effect automating the minimization of stereoscopic distortions with

respect to a defined set of parameters. To demonstrate the capabilities and ef-

fectiveness of our visualization tool, we minimize the distortion metric through

a numeric optimization technique with respect to the intrinsic stereoscopic pa-

rameters, and constrained to within the limits of human perception. Finally, we

preliminarily test our implementation of a distortion metric and its optimiza-

tion by implementing it in a working animation production pipeline on existing

content and briefly comparing the results to prior artistically determined pa-

rameters.

A.1 Optimization

When considering an optimization algorithm to minimize the distortion metric,

certain considerations come into play. First, the determination of the stereo-

scopic distortion metric as defined is complex. The non-linear stereo transfor-

mation must first be applied and then the metric must be computed in a two

stage process, first for object level near-affine invariance, and then iterated over

all non-culled vertices which must also be computed. Due to the complexity of

the method, no directly computable gradient or Hessian are available, and must
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be estimated via multiple function evaluations if required by the optimization

algorithm. It also means that the number of function evaluations to recalculate

the distortion metric should be minimized.

Second, while the illustrated optimization surface, as shown in Figure 6.2,

seems to be smooth and well behaved, the illustration is actually heavily scaled

to allow for a reasonable visualization of the surface. In actuality, the valid re-

gion within the constraints is a deep narrow valley. This makes estimations of

the gradient difficult, as it varies greatly and changes sign within a very nar-

row area and even adaptive non-uniform step sizes frequently take traditional

optimizers well outside any reasonable converging region. Additionally, the

estimation of the gradient involves costly additional distortion metric function

evaluations.

Accordingly, great care must be taken in choosing, implementing, and con-

figuring a numeric optimization technique. One optimization technique which

addresses all of these considerations is the complex method, a constrained ver-

sion of the Nelder-Mead direct sequential search technique [NM65]. To provide

a first proof-of-concept, we tentatively implemented the complex method of op-

timization without significant tuning, to simply and quickly gauge the potential

application of automated stereo parameter determination. The complex method

algorithm and implementation details are omitted here, as they are not critical

to the discussion of the implications and relevancy of the minimum, assuming

it is correctly determined. Other optimization techniques may be appropriate

for our purposes, but currently have not yet been explored.

Having defined a metric for the quality of the stereoscopic precept and im-

plemented one methodology for optimizing this metric with respect to a subset
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of stereoscopic parameters, we can explore some of the practical implications

of these techniques. To test the effectiveness of our stereoscopic distortion met-

ric optimization, we automated the minimization algorithm to run on a set of

shot data within the production pipeline of DreamWorks Animation. The tool

iterated over select shots from a particular sequence of the animated film Mega-

mind, one of the studio’s 2010 feature releases. For each shot, our visualization

tool automatically loaded the scene geometry and non-stereo camera parame-

ters for every 12th frame, or every half second of the movie. The optimization

was then automatically run to determine the optimal camera separation and

convergence distance for the scene according to the minimum perceived shape

distortion as defined by our quality-of-stereo metric and the configuration state

of the scene.

This technique attempts to simulate the effect of using the results of the

stereoscopic automation as defined by our tool as a first-pass stereo determina-

tion methodology, after artists have defined character and object animation and

camera movement, but before stereo parameters have been otherwise defined.

Note that this technique does not directly support the ideology frequently toted

in this thesis of early stage stereo mindset integration, instead allowing stereo-

scopic thinking to act as a post process. However, exploration of this method

of automation is partially justified by the cursory validation of the importance

of the distortion metric and perceptual constraints. By comparing the resultant

optimized values with those as artistically determined by DreamWorks Anima-

tion artists through creative and artistic means, both based on the same source

material, we can confirm the significance of the distortion metric.
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A.2 Analysis of Automation

As a brief addendum to the major works of the thesis, this analysis is not a com-

prehensive numerical analysis of the correctness of the optimization technique.

Instead, it is a scope-limited first attempt to validate the potential utility of the

defined distortion metric within the visualization tool environment. Accord-

ingly, without statistically complete or significant data due to content restriction

and time limitations, we only present a graphical representation of the results

to highlight and compare magnitudes and trends within scene variations.

Figure A.1 compares the results of our automated simulations with the ar-

tistically determined stereoscopic parameters for tested shots in the feature film

Megamind from DreamWorks Animation. The top chart shows the camera sep-

aration while the lower chart shows the convergence distance for the tested

shots, as indicated across the top and separated by dividers. The red trendline

shows the results of our distortion metric optimization automation, while the

blue trendline shows the creative determination of the DreamWorks Animation

artists. Shots and portions of shots with a grey background indicate optimiza-

tions that did not converge within a specified maximum number of iterations,

and suggests stereo parameters that are undetermined given the optimization

coefficients.

There is a reasonable amount of noticeable correlation between the two data

sets, both in magnitude and in trending directions of the stereoscopic param-

eters. In some shots, it appears as if the parameters match well between the

automated and artistically determined values suggesting success in optimiza-

tion and of the distortion metric. In other shots, however, the automation of the

152



Fi
gu

re
A

.1
:C

om
pa

ri
so

n
of

st
er

eo
ca

m
er

a
pa

ra
m

et
er

s
be

tw
ee

n
D

re
am

W
or

ks
A

ni
m

at
io

n’
s

ar
ti

st
ic

al
ly

de
te

rm
in

ed
va

lu
es

an
d

th
e

au
to

m
at

ic
al

ly
co

m
pu

te
d

va
lu

es
ba

se
d

on
m

in
im

iz
in

g
th

e
sh

ap
e

di
st

or
ti

on
m

et
ri

c.
T

he
to

p
ch

ar
t

sh
ow

s
th

e
ca

m
er

a
se

pa
ra

ti
on

w
hi

le
th

e
lo

w
er

ch
ar

ts
ho

w
s

th
e

co
nv

er
ge

nc
e

di
st

an
ce

fo
r

th
e

te
st

ed
sh

ot
s,

as
in

di
ca

te
d

ac
ro

ss
th

e
to

p
an

d
se

pa
ra

te
d

by
di

vi
de

rs
.

Th
e

re
d

tr
en

dl
in

e
sh

ow
s

th
e

re
su

lt
s

of
ou

r
di

st
or

ti
on

m
et

ri
c

op
ti

m
iz

at
io

n
au

to
m

at
io

n,
w

hi
le

th
e

bl
ue

tr
en

dl
in

e
sh

ow
s

th
e

cr
ea

ti
ve

de
te

rm
in

at
io

n
of

th
e

D
re

am
W

or
ks

A
ni

m
at

io
n

ar
ti

st
s.

Sh
ot

s
an

d
po

rt
io

ns
of

sh
ot

s
w

it
h

a
gr

ey
ba

ck
gr

ou
nd

in
di

ca
te

op
ti

m
iz

at
io

ns
th

at
di

d
no

tc
on

ve
rg

e
w

it
hi

n
a

sp
ec

ifi
ed

m
ax

im
um

nu
m

be
r

of
it

er
at

io
ns

,
an

d
su

gg
es

ts
st

er
eo

pa
ra

m
et

er
s

th
at

ar
e

un
de

te
rm

in
ed

gi
ve

n
th

e
op

ti
m

iz
at

io
n

co
ef

fic
ie

nt
s.

153



distortion metric and optimization failed, and there appears to be little correla-

tion between the two sets of values.

Through discussions with the artists involved, the cases where the optimiza-

tion failed can be categorized into one of two groups. For some shots, artists

took creative liberties to intentionally expand or constrict the depth of a shot,

varying the stereoscopic parameters from a theoretical artistic norm. This was

the case for some extremely long or extremely short lenses, as well as in shots

where the use of dramatic stereo effect was desired.

For other shots, discrepancies can be attributed to the distortion metric and

optimization process. For example, in some instances mesh geometry is not an

ideal representation of the scene content for the purposes of vertex-by-vertex

distortion computations or the weighting method does not accurately represent

the salient intent of the artist. Additionally, there are several instances where the

quick entry or departure of a near object from the field of view over time or the

sudden movement of an object resulted in the automation providing coarse and

jerky stereo parameter values. Artists traditionally do not use drastic and sud-

den variations in stereo parameters. The implementation of curve smoothing

and temporal coherence methods could potentially ameliorate these unwanted

irregularities.

Despite the apparent shortcomings of this preliminary attempt at stereo au-

tomation, the potential use for such a tool was highlighted by the artists. It was

noted that a large percentage of the simple non-corner case shots emerging from

the distortion metric optimizer were production worthy “as is”. This suggests

the potential utility of the tool as a first-pass baseline method for determining

stereoscopic parameters for straightforward uncomplicated shots. This would
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allow artists to focus more time on the complicated and more elaborate shots

and for greater artistic expression, instead of setting default stereo settings.

While there is not enough data to make statistically supported claims about

accuracy or importance, it may suggest, and certainly warrants further explo-

ration into, correlations between what is artistically determined to be aesthet-

ically correct and good, and what is computed to be perceptually appropriate

and distortionless in shape and volume.

Finally, it should be reiterated that this technique of optimizing the stereo

distortions to the intrinsic stereoscopic parameters limits the scope and impact

of stereoscopic thinking. Instead of allowing a stereo oriented mindset to prolif-

erate into other aspects of filmmaking, it relegates it as a post process mechan-

ical appendage to the content creation process. Methods of artistic input and

higher level creative control are needed to make any stereo optimization tech-

nique artistically effective and impactful. The author intends to continue testing

and exploring these venues, professionally and in possible future research en-

deavors.
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