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ABSTRACT 

Mycoplasma gallisepticum, an avian pathogen most common in poultry, was first 

detected in wild songbirds in 1994, primarily infecting house finches (Carpodacus 

mexicanus) in which it can cause severe eye lesions. Recent studies have revealed that 

M. gallisepticum can infect a greater diversity of avian hosts. Our study attempts to 

determine the host range of M. gallisepticum in a bird community in Tompkins 

County, New York (USA).   This research was conducted between January 2007 and 

June 2010 as part of a larger M. gallisepticum investigation. We tested to what extent 

bird taxonomic affiliation, and seasonal presence influenced the likelihood of being 

infected.   Birds were trapped opportunistically at bird feeders and inspected visually 

for conjunctivitis.  Conjunctival swabs were tested for the presence of M. 

gallisepticum DNA using polymerase chain reaction (PCR); blood samples were 

tested for the presence of M. gallisepticum-specific antibodies using rapid plate 

agglutination (RPA).  The 1,989 individuals sampled comprised 53 species from 19 

avian families. We documented evidence of M. gallisepticum infection in 27 species 

from 15 avian families. Overall, 37/1989 (1.9%) of the individuals showed visible 

signs of conjunctivitis, with 77/1989 (3.9%) testing positive for M. gallisepticum via 

PCR, and 72/1989 (3.6%) testing positive for M. gallisepticum antibodies via RPA.  

Overall, 58/1056 (5.5%) fringillids tested positive via PCR, with 40/331 (12.1%) 

positive results from house finches specifically, and 18/933 (1.9%) from non-

fringillids generally.  We found positive PCR and RPA results in 11 species of 

migratory birds, and no evidence of M. gallisepticum infection in 26 of the species 

sampled (n=57).  Successful isolates of the bacteria were made from seven field 

samples. When combining the results from this study with previous research, there is 

evidence of M. gallisepticum infection in 42 bird species.
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Introduction 

Mycoplasmal conjunctivitis was first observed in 1994 in the Washington D.C. area 

(Fischer et al., 1997; Dhondt et al., 1998).  The disease, caused by a novel strain of 

Mycoplasma gallisepticum, primarily infects house finches (Carpodacus mexicanus) 

in which it can cause severe eye lesions (Ley et al., 1996).   This small passerine, 

native to the western United States, is also present across the eastern part of the 

continent following an introduction by the pet industry in 1940. The epidemic spread 

quickly throughout the eastern population of house finches resulting in significant 

population declines (Dhondt et al., 1998; Hochachka and Dhondt, 2000).  Although a 

well-documented bacterial pathogen in poultry, this marked one of the first instances 

that M. gallisepticum was isolated in wild songbirds (Ley et al., 1997).    

One of the major complexities in the dynamics of M. gallisepticum in house finches is 

the role that other host species might play in local prevalence and transmission.    

Since the initial outbreak in 1994, research has shown that species other than house 

finches may suffer from the same conjunctival disease, or at least have detectable 

levels of M. gallisepticum.  One of the first documented outbreaks of conjunctivitis in 

species other than house finches occurred during the winter of 1998-1999 in Quebec, 

Canada.  Researchers documented numerous cases of conjunctivitis caused by M. 

gallisepticum in evening grosbeaks (Coccothraustes vespertinus) and pine grosbeaks 

(Pinicola enucleator) (Mikaelin et al., 2001).  Since that time, field investigations of 

wild birds in North America have detected M. gallisepticum in seven other bird 

species, while reports from the House Finch Disease Survey and other studies 

documented over 30 species showing signs of conjunctivitis (Table 1; Hartup  
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Table 1: Summary of M. gallisepticum infection in wild birds across all studies. 
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Table 1(Continued) 
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Table 1 (Continued) 
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Table 1 (Continued) 
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et al., 2000, Hartup et al., 2001; Luttrell et al., 2001; Farmer et al., 2005).  Given these 

findings, there is a need for additional investigation into whether M. gallisepticum 

disease dynamics in other species are closely linked to those in house finches.  

Specifically, we need to know if conjunctivitis in house finches is part of an 

interconnected multi-host system.  

While attempts have been made to determine the host reservoir for M. 

gallisepticum, initial studies reported the bacteria primarily in house finches and other 

fringillid species (Hartup et al., 2000; Hartup et al., 2001; Luttrell et al., 2001; Farmer 

et al., 2005). Often, these studies failed to sample all the individuals trapped, opting to 

focus primarily on house finches (Luttrell et al., 1996; Hartup et al., 2001), birds with 

visible eye lesions (Hartup et al., 2000; Luttrell et al., 2001), and birds with strongly 

seropositive blood samples (Luttrell et al., 2001).  The only study to sample every bird 

of all species caught sampled for the bacteria only in the choanal cleft, a location 

where the bacteria is routinely detected in poultry but where it is only occasionally 

detected in infected house finches (Farmer et al., 2005; Sydenstricker et al. 2006; 

unpublished data).  Failing to sample for M. gallisepticum in the conjunctiva, where it 

is most commonly found in house finches, may cause cases of infection to go 

undetected.  Given the large geographic range that this epidemic now covers, it is 

likely that there are more species acting as a reservoir of M. gallisepticum than have 

been documented (Dhondt et al., 1998; Hochachka and Dhondt, 2000).  Research on 

West Nile virus has shown that, while many species may be infected with the virus, 

only a relative few may be competent hosts and able to spread the epidemic 

(Kilpatrick et al., 2006).   Within such epidemics, there can be extreme heterogeneity 
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in transmission that arises from differences in host infectiousness (Woolhouse et al., 

2001; Kilpatrick et al., 2006).   The habitat use and spatial distributions of host 

species, along with variation in susceptibility, immunological competence, and species 

diversity are all important factors in pathogen transmission (Dobson, 2004).   

The objective of this study was to determine the extent to which wild birds 

were infected with M. gallisepticum and the possibility of there being a large 

previously undetected host reservoir for the bacteria.  We will be addressing the 

following four questions in this paper.  1). How widespread is M. gallisepticum in the 

community of birds that associate with house finches and bird feeders?   2). Is there 

any clear taxonomic pattern to M. gallisepticum presence in wild birds?   3). How does 

seasonal variation in the prevalence of M. gallisepticum in host species compare to 

that seen in house finches?  4). Are there any important life-history traits of infected 

host species that are associated with the presence of M. gallisepticum?   To answer 

these questions, we trapped and sampled wild birds for M. gallisepticum over 2.5 

years throughout Tompkins County, NY.  By combining our results with those 

previously published, we provide a more detailed list of free-living hosts of M. 

gallisepticum. 
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Materials and Methods 

The study was conducted between January 2007 and June 2010 in Tompkins County, 

New York (42°46’ N, 76° 45’ W).  Wild birds were trapped using mist nets and cage 

traps under New York State Fish and Wildlife License 39 (Albany, NY) and permit 

22669 from the United States Geological Survey, Department of the Interior (Laurel, 

MD).  All sampling procedures were approved by Cornell University’s Institutional 

Animal Care and Use Committee (permit 2006-094).  Several locations were used for 

year-round sampling throughout Tompkins County.   At each site, bird-feeding 

stations were maintained continuously, using black oil sunflower seeds.  All birds 

trapped opportunistically at the feeding stations were sampled for M. gallisepticum.  

 All birds in the study were marked with a unique aluminum leg band (USGS) 

at the time of initial capture.  The weight (g), tarsus length (mm), and wing chord 

length (mm) were recorded for each individual.  The body condition (0-5 scale) and 

furcular fat deposits (0-5 scale) were also scored. We looked for physiological 

differences between PCR positive and PCR negative individuals using a standard t-

test.  The eyes and conjunctiva were scored for disease on a 0 to 3 scale, where a bird 

with no visible signs of conjunctivitis has a score of 0 and a bird with extreme 

conjunctival eye lesions has a score of 3 (Sydenstricker et al., 2006).    After the 

examination, all individuals were swabbed in each eye using separate Puritan 

polyester tipped aluminum swabs, and both swabs were used to inoculate Frey’s 

bacterial growth media (Ley et al., 1996) whether disease symptoms were present or 

not.  Additionally, a blood sample was taken from the brachial vein using a 27 gauge 

½” hypodermic needle and a heparinized capillary tube for serology screening.   Blood 
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samples were immediately put on ice following sampling.  Within 24 hours of 

sampling, serum was extracted from blood samples in the lab using a 12,000 rpm 

micro-hematocrit centrifuge and tested for M. gallisepticum antibodies via rapid plate 

agglutination (RPA) and a commercially available M. gallisepticum antigen from 

Charles River Laboratories, Inc.   Presence or absence of M. gallisepticum antibodies 

was recorded as such.    

 From 2007-2009, individual eye swabs were tested for M. gallisepticum via 

polymerase chain reaction (PCR).  At that time, no attempts at isolates were made. 

From 2009-2010, field samples taken using Frey’s media were incubated for one week 

to assure bacterial growth.  One 25 microliter aliquot of the medium was divided into 

three samples to be tested for the presence of M. gallisepticum DNA using end-point 

PCR methods (Geary et al., 1994).  All samples were initially screened with 16s rRNA 

gene primers (Lauerman, 1998). Starting in 2009, any samples that were M. 

gallisepticum positive after the initial screening were tested again using the MGC2 

house finch strain specific M. gallisepticum primer. Prior to 2009, attempts were made 

at culturing all positive 16s samples for M. gallisepticum isolation.  After 2010, only 

samples testing positive with the MGC2 primers were used for culture and isolation.  

The study switched from Frey’s media to Copan Universal Transport Medium in 2010 

because of difficulty obtaining M. gallisepticum isolates from PCR positive field 

samples.  
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Results 

3.1 Host range 

Among the 1,989 individuals trapped between 2007 and 2010 we found evidence for 

infection with M. gallisepticum in 27 of 53 species sampled belonging to 19 avian 

families: we observed conjunctivitis in four species; M. gallisepticum DNA was 

detected in conjunctival swabs of 20 species using PCR; and M. gallisepticum-specific 

antibodies were identified in sera of 18 species. Only in the two species with the 

largest sample sizes (house finch, n=537, American goldfinch n=331) all three criteria 

for M. gallisepticum infection were found (Table 2).  Among symptomatic birds, 

31/37 (83.8%) were house finches and 4/37 (10.8%) were American goldfinches.  One 

purple finch and one black-capped chickadee also showed signs of conjunctivitis.  

Overall, 77/1989 (3.9%; 19 species) of samples tested positive for M. gallisepticum 

DNA using the 16s PCR primers (Table 2).  Ten species that tested positive by PCR 

using the 16s primers never showed any clinical symptoms, although it must be noted 

that we were only able to detect M. gallisepticum in one individual of many of these 

species (Table 2).  47/72 (65.3%) of RPA positive results occurred in eleven species 

that also tested positive for M. gallisepticum DNA with the 16s primers.  12/77 

(15.6%) of 16s positive M. gallisepticum results occurred in nine species that never 

tested positive for M. gallisepticum antibodies.  24/77 (31.2%) of positive M. 

gallisepticum antibody results occurred in seven species that never tested positive for 

M. gallisepticum DNA.  We were unable to detect any evidence of M. gallisepticum 

infection in 26 of the species we sampled, although it should be noted that eleven of 

these species are represented by only one individual (Table 1).   
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Table 2: Positive PCR and RPA results of feeder and non-feeder birds in Tomkins 
County, NY, 2007-2010 
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3.2 M. gallisepticum and feeder use  

Detection of M. gallisepticum via PCR in species with different feeding strategies 

varied only slightly in our study.   We found that birds most commonly associated 

with bird feeders tested positive 70/1708 (4.1%) times, while birds not typically 

associated with bird feeders tested positive for the bacteria 6/113 (5.3%) times (Table 

2).  Using a general linear model, we found no statistical significance in the 

coefficients of M. gallisepticum infected feeder vs. non-feeder birds (-3.1990, 

SE=0.1211; -2.7175, SE=0.3902). 

 

3.3 Taxonomic patterns to M. gallisepticum infection 

We detected M. gallisepticum in a large diversity of species, although visible signs and 

detection of the bacteria were still most prevalent in fringillid birds.   36/37 (97.3%) 

cases of observed conjunctivitis were recorded in resident species of the Fringillidae.  

Generally, 58/1056 (5.5%) fringillid birds were PCR positive at the time of sampling.  

Within those results, 40/331 (12.1%) house finches tested PCR positive.   We also 

documented 22/1056 (2.1%) positive RPA results in fringillid species. Our study 

captured an eruption of pine siskins, and while none of the 154 individuals we 

sampled showed any signs of conjunctivitis, we detected M. gallisepticum via PCR 

using 16s primers in two individuals, and M. gallisepticum antibodies in three other 

individuals via RPA.   Conversely, 18/933 (1.9%) non-fringillid birds were PCR 

positive at the time of sampling, with 39/933 (4.2%) non-fringillid birds testing RPA 

positive. We also documented M. gallisepticum infection via PCR in one northern 

cardinal.  In the Paridae family, only one black-capped chickadee was observed to 
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have mild eye lesions.  However, both PCR and RPA results for this individual were 

negative.  Overall, we were unable to detect M. gallisepticum via PCR in any birds in 

this family, although we did have many RPA positive results for both eastern tufted-

titmice and black-capped chickadees [(5/36 (13.9%) and 11/160 (18.3%) 

respectively)].    

Of all 1,989 individuals sampled, we recaptured 187 individuals.  Of those 

individuals, 13 were house finches and 28 were goldfinches.  Although none of the 

goldfinches were PCR or RPA positive at either capture event, several house finches 

differed in disease status between captures.  Three individuals were PCR and RPA 

negative at the initial capture, and either PCR positive, RPA positive, or both at the 

second capture event.   One individual went from being PCR positive at the initial 

sampling to PCR negative in the eight months between capture events, and one 

individual remained PCR positive at both sampling events two weeks apart.  The other 

eight birds had no detectable M. gallisepticum at either sampling events.  We also 

recaptured seven individual black-capped chickadees on at least one other occasion.  

Of these recaptures, three individuals had positive serologic results at least once.  One 

individual was positive on the initial capture date and negative when recaptured six 

and seven months later.  One individual was captured four times over a month and a 

half, testing positive two weeks apart on the last two sampling occasions.  The final 

individual was captured four times over a nearly two month period, testing positive on 

the second sampling occasion one week after the first, and negative 19 days later.    
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3.4 Seasonality of M. gallisepticum infections 

Detected disease prevalence varied systematically across seasons in both house 

finches and more generally in species in which M. gallisepticum infection was 

identified using PCR. These raw M. gallisepticum prevalence data were grouped by 

month across all years and then analyzed separately to test for possible seasonal 

variation in M. gallisepticum prevalence among house finches, resident species, 

summer migrants, and winter migrants (Figure 1).   Among house finches, there is a 

clear fall peak in raw prevalence in September and October with 10/77 (13.0%) and 

6/50 (12.0%) birds testing positive via PCR for M. gallisepticum respectively.  This is 

followed by a second larger peak in late winter, with 20/63 (31.8%) house finches 

testing positive for the bacteria in February (Figure 1).  Among resident species, there 

is a low continual prevalence of M. gallisepticum throughout the year (2.1% average), 

with August being the only month where M. gallisepticum was not detected (n=88).  

Similar to the house finch double peak in the fall and then again in late winter, 

October and February are the only months were M. gallisepticum is detected in winter 

migrants, 1/5 (20.0%) and 3/109 (2.8%) respectively.   We also saw M. gallisepticum 

in summer migrants sampled in May, June, and July; 1/51 (2.0%), 2/39 (5.1%), and 

2/35 (5.7%) respectively. 
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Figure 1.  Monthly prevalence (mean +/- 1SE) of M. gallisepticum infection across 
bird species with differing migration strategies.  Results obtained by PCR. 
 

3.5 M. gallisepticum and life history strategies  

Among the 11 non-resident bird species that tested positive for M. gallisepticum there 

exist three migration strategies.  Eight are neotropical migrants that overwinter in 

Central and South America and breed in North America; two are arctic migrants that 

arrive in Tompkins County during the winter months and migrate north during the 

spring and summer.    White-crowned sparrows, finally, pass through Tompkins 

County during the fall and spring migration  

 

3.6 M. gallisepticum and phenotypic variation 

The standard phenotypic measurements taken did not document any significant 

differences in  weight, fat nor body condition between PCR positive and PCR negative 
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house finches (t-test; t40=2.02, P=0.095;  t41=2.02, P=0.26; t39=2.02, P=0.12 

respectively).   

 

3.7 Culture of  M. gallisepticum field samples 

Between 2009 and 2011, we attempted to make isolates from 51 PCR positive M. 

gallisepticum field samples.  15 M. gallisepticum positive samples were cultured in 

Frey’s media, tested for M. gallisepticum via PCR using the 16s primers and then 

frozen at -80°C.   These 15 samples (13 house finches, one American goldfinch, and 

one downy woodpecker) yielded no M. gallisepticum isolates.   The remaining 36 

samples were tested using Copan Universal Transport Medium (one common redpoll, 

one purple finch, 34 house finches).  These samples were taken from all birds trapped 

on days when we caught symptomatic birds, whether they had eye lesions or not.   We 

successfully cultured seven field isolates of M. gallisepticum, all from symptomatic 

house finches.    
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Discussion 

4.1 Host range 

We sampled 53 avian species during the course of this study, 23 of which had not been 

sampled in other studies.  Although this covers a larger number of species than 

previously sampled, it is far from comprehensive as the number of bird species 

regularly occurring in New York State is well over 400 (Levine, 1998).   We have 

combined the results for all 75 species sampled by us and others in Table 1.  In 42 of 

75 species (56.0 %) evidence for infection by M. gallisepticum was detected.  This 

suggests that there may be a much larger host reservoir for M. gallisepticum than 

previously documented (Hartup et al., 2000), and even than found in this study.   

While visible signs of the disease were most apparent in house finches, we identified a 

large number of asymptomatic bird species that could play a role in transmission of M. 

gallisepticum.  When combining all studies of conjunctivitis and of M. gallisepticum, 

it becomes clear that conjunctivitis had been previously reported in many of the 

species that we found to be  PCR and/or RPA positive in our study but asymptomatic 

at the time of sampling (Table 1; Hartup et al., 2000; Hartup et al., 2001; Mikaelian et 

al., 2001).    This supports the idea that conjunctivitis in these species could result 

from M. gallisepticum infection, rather than from conjunctivitis-causing infections 

such as avian pox.   

 

4.2 M. gallisepticum is detected both in feeder and in non-feeder species  

Among the 42 species across all studies in which evidence of M. gallisepticum 

infection was found, 26 of the species were birds that come regularly to bird feeders 
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(Table 1).  In our study alone, 18 of the species in which evidence of M .gallisepticum 

was found are birds that come regularly to bird feeders (Table 2).  Given that M. 

gallisepticum remains infectious on bird feeders up to 24 hours, these results should 

not be surprising (Dhondt et al., 2007).  Infected birds could be shedding the bacteria 

on the surface of bird feeders and infecting any subsequent individuals feeding at that 

location.  That feeders play a role in transmission is supported by the case of a blue jay 

(Cyanocitta cristata) contracting M. gallisepticum after being housed in a cage that 

previously housed disease house finches (Ley et al., 1997).  Infected feeder birds 

included a downy woodpecker and northern cardinals (Cardinalis cardinalis), a 

species that had previously only tested positive via serology, although there was 

observed conjunctivitis and histologic lesions (Table 1; Farmer et al., 2005; Luttrell et 

al., 2001).   The cardinal cases are interesting as States et al. (2009) demonstrated that 

conjunctivitis prevalence in house finches increased when northern cardinal numbers 

were higher.  Other common feeder bird species that routinely showed evidence for M. 

gallisepticum infection are parids. Combining our results with those from other studies 

black-capped chickadees (antibodies in 12/160), Carolina chickadees (antibodies in 

4/31), and Eastern tufted titmice (antibodies in 45/105; DNA in 12/64) are frequently 

infected (Farmer et al., 2005; Hartup et al., 2000; Luttrell et al., 2001).  Additionally, 3 

of 74 red-winged blackbirds tested positive for M. gallisepticum via PCR (Table 2).  

Of the three, two tested positive in July and one tested positive in April, possibly 

implicating another reservoir species for the bacteria during the breeding season in the 

northern hemisphere. 
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 The 16 species from eight avian families that rarely associate with bird feeders 

in which we found evidence for M. gallisepticum infection (Table 1, Table 2) are 

species of thrushes, flycatchers, warblers, vireos, blackbirds, mimics, waxwings, and 

wrens (Table 1, Table 2).  This shows that M. gallisepticum is not limited to feeder 

birds or birds regularly coming into contact with house finches.  Therefore, there may 

be modes of transmission that are maintaining M. gallisepticum in wild birds that 

cannot be explained by bird feeders contaminated with the bacteria or by direct contact 

with diseased house finches. 

 

4.3 Seasonality of M. gallisepticum infections 

Our study found strong seasonal peaks in M. gallisepticum infection in house finches 

as well as a small year round reservoir of the bacteria in other species based on PCR 

results (Figure 1).  These strong peaks of infection that occur in fall and late winter in 

house finches confirm earlier work that found similar seasonal results, attributing them 

to larger numbers of susceptible juvenile birds in the fall, and stressful conditions late 

in winter (Hartup et al., 2001; Altizer et al., 2004; Jennelle et al., 2007).  Interestingly, 

there seems to be a small continually maintained reservoir for the bacteria circulating 

in resident species as well as in winter and summer migrants.  This low-level 

maintenance may be the source for the reoccurring outbreaks of the disease in house 

finches, especially given the low detection rate of the bacteria during the breeding 

season.  
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4.4 Life history strategies of bird species where M. gallisepticum was detected 

The life history strategies of several of the PCR and RPA positive bird species may 

have important implications in the transmission of this disease.  11 species of 

migratory birds are represented in these positive data.  A possible consequence of 

these migratory species testing positive for M. gallisepticum bacteria is an increased 

likelihood of the pathogen spreading southward along the migration corridors from 

North America through Central and South America as well as northward into the 

arctic. 

 

4.5 Potential pitfalls: potential false negatives and false positive results 

Although in 26 species we did not detect evidence for M. gallisepticum infection this 

could be the result of the small sample sizes for many of these species. In all, except 

the yellow-rumped warbler (n=48), Eastern towhee (n=14), and ruby-crowned kinglet 

(n=14) 5 or fewer individuals were sampled. Larger samples might show M. 

gallisepticum infections in these species also.   

 As others previously, we used the 16s primer to detect M. gallisepticum DNA. 

This primer is known to also react to M. gypsis and M. imitans (Ley et al., 2010), 

which might have generated some false positives. That is why later in the study we 

also used the MGC2 primer for PCR analyses.  This primer is specific for the house 

finch M. gallisepticum strain (Ley et al., 2010).  

Further influencing our ability to detect M. gallisepticum in the wild may be 

differences in the encounter rates of healthy versus infected individuals.   Based on 

previous Capture-Mark-Recapture studies, encounter rates of individuals infected with 
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M. gallisepticum can be lower than those of non-infected birds, resulting in an 

underestimation of infection prevalence (Jennelle et al., 2007).   It is unclear, however, 

if encounter rates also differ between non-infected and asymptomatic infected 

individuals.      

Whereas captive experiments with infected house finches have shown the RPA 

test to be a reliable means for detecting M. gallisepticum antibodies in house finches   

(Kollias et al., 2004), serologic results in previous field studies, as well as our own, 

may be reporting higher positive M. gallisepticum antibody test results.  Feberwee et 

al. (2005) demonstrated that there is both a higher chance of false positive results and 

the possibility of the antigen reacting with M. gallisepticum, M. synoviae, and M. 

imitans when using undiluted serum samples.   Unfortunately, due to the realities of 

field sampling, it is impossible to obtain enough blood to run the RPA test with diluted 

samples.  In nine species, the presence of antibodies was the only evidence for 

infection by M. gallisepticum (Table 2).  
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Conclusions 

The scope of these data, even when considering the issues with the primers and 

serology, give important insight into the natural history of M. gallisepticum.  Because 

our earliest samples were tested using a less specific but more sensitive primer we 

may have inadvertently stumbled upon an important clue to the emergence of this 

infectious disease.  Since M. gallisepticum is a well-studied bacterial pathogen in 

poultry, the long-standing belief was that the bacteria made the jump from poultry to 

wild birds.   There are many strains of Mycoplasma gallisepticum, including the house 

finch strain, widely circulating in numerous bird species that have a diverse variety of 

migration and feeding strategies (Geary et al., 1994; Ley et al., 1997).    These other 

bird species with evidence of M. gallisepticum infection have the potential for being 

both the source of the initial outbreak of the bacteria in house finches, as well as being 

a constant source for re-exposure and infection from non-fringillid species (Lovette, 

pers. com.).  It may even be the case that the strain of M. gallisepticum that is so 

virulent to house finches was commonly circulating in North American bird species 

long before the outbreak of the disease in the mid-1990s.   Widespread detection of M. 

gallisepticum in other species could indicate that the bacteria has been widely and 

benignly present in these bird populations before any evidence of disease was 

discovered, and whether through an increase in virulence or a chance exposure to the 

historically western house finch, the epidemic erupted.  In the future, the culture and 

sequencing of these non-house finch specific strains of M. gallisepticum needs to be a 
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priority in order to determine where these bacteria fall in the relationship to poultry 

and house finch strains. 
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