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Although stochastic volatility models and local volatility model are very

popular among the market practitioner for exotic option pricing and hedging,

they have several critical defects both in theory and practice. We develop a new

methodology for equity exotic option pricing and hedging within the market-

based approach framework. We build stochastic factor models for the whole

surface of European call option prices directly from the market data, and then

use this model to price exotic options, which is not liquidly traded. The fac-

tor models are built based on Karhunen-Loeve decomposition, which can be

viewed as an infinite dimensional PCA. We develop the mathematical frame-

work of centered and uncentered versions of the Karhunen-Loeve decomposi-

tion and study how to incorporate critical shape constraints. The shape con-

straints are important because no static arbitrage conditions should be satisfied

by our factor models. We discuss this methodology theoretically and investigate

it by applying to the simulated data.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

The pricing and hedging of derivatives of (tradable) underlying assets is one of

the most important and interesting topics in financial engineering for both the-

oretical and practical purposes. The value of a derivative depends on the un-

derlying assets, so the modeling of the dynamics of the underlying assets is es-

sential in the derivative pricing and hedging problems. In 1900, Louis Bachelier

[5] introduced Brownian motion as a model for stock prices and Paul Samuel-

son [65] proposed to use geometric Brownian motion as an improvement in

1965. Black and Scholes [10] and Merton [59] derived the famous Black-Scholes

formula for call (put) option prices under the geometric Brownian motion as-

sumption for the dynamics of the underlying assets.

Although the Black-Scholes formula has been very popular among market

practitioners, the geometric Brownian motion assumption is simply unrealistic.

We just mention two main criticisms here. First, the geometric Brownian mo-

tion model implies that the log return must be normally distributed. However,

empirical research show that the log returns of (traded) financial assets are of-

ten leptokurtic (heavy tailed) and skewed. For example, Bollerslev [11] finds

leptokurtosis in monthly log S&P 500 returns, while French, Schwert and Stam-

baugh [35] report skewness in daily log S&P 500 returns. Engle and Gonzales-

Rivera [29] find excess skewness and kurtosis in small stocks and in exchange

rates as well. Secondly, for a fixed underlying asset, there is no single volatility

parameter σ that causes the Black-Scholes formula to give the correct (market)
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price of options written on that asset with a variety of different strikes and expi-

ration times. This is the so-called volatility smile / smirk [22, 26, 43, 34, 44, 63].

Actually, in practice the Black-Scholes formula is very often reduced to a means

of quoting option prices in term of another parameter, the (Black-Scholes) im-

plied volatility, when applied to vanilla call and put options. The implied

volatility σBS
t (K,T) of a call (put) option with strike K and maturity date T is

obtained by inverting the Black-Scholes formula given the market price of the

option. Here we can get the market prices for the call and put options because

call and put options on major stocks, indices or currencies are traded liquidly (at

least for some strikes and maturities) on derivative markets today. Hence it is

possible, and customary, to price these vanilla options according to the market,

instead of using pricing models. Also these market prices of vanilla options can

be used as a benchmark for the performance of pricing models.

There are lots of derivatives that have features making it more complex than

vanilla options, for example, the barrier options, lookback options, and the for-

ward start options. These derivatives are called exotic options and they are usu-

ally traded over-the-counter (OTC), which means that they are traded directly

between two parties, without going through an exchange or other intermedi-

ary. Therefore we need option pricing models to price and hedge these exotic

options. More concretely, on the pricing side, we need models to price exotic

options consistently with the market prices of vanilla options, that is, we want

models that we can calibrate to options that are liquidly traded and then use to

price options that are not traded. On the hedging side, we want models that

we can use to derive the hedging portfolio (static or dynamic) to make the total

portfolio (book plus hedge) to be insensitive to the price changes. Black-Scholes

model is not sophisticated and realistic enough for these purposes and people
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have developed a considerable literature on alternative pricing models.

Here we will focus on equity derivative pricing models and the models in the

continuous framework (we do not discuss the models with jumps in this thesis).

Two main strands of research have been developed and some of the models are

very popular in practice: stochastic volatility models and local volatility model.

Instead of assuming that the volatility of the underlying is constant (the geo-

metric Brownian motion as in Black-Scholes model), stochastic volatility models

view the it as a stochastic process and use SDEs to specify the dynamics of the

volatility (or the variance). Examples are Hull and White model [45], Wiggins

model [74], Stein and Stein model [72], Scott model [69], Heston model [42] and

SABR model [30]. Heston model and SABR model are most popular among the

market practitioner due to their tractability. The Heston model describes the

dynamics of the underlying and the volatility by the following system of SDEs

(in objective measure):

dSt = µStdt+
√

VtStdB1
t ,

dVt = κ(θ − Vt)dt+ σ
√

VtdB2
t ,

〈B1, B2〉t = ρt,

where St is the underlying and B1
t and B2

t are two standard Brownian motions,

〈B1, B2〉t is the quadratic covariation of B1
t and B2

t , given by

〈B1, B2〉t =
1
2

(〈B1 + B2〉t − 〈B
1〉t − 〈B

2〉t).

The SABR model uses the following system of SDEs (in risk neutral measure):

dSt = σtS
β
t dB1

t ,

dσt = ασtdB2
t ,
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〈B1, B2〉t = ρt.

The analytic or semi-analytic formulae for European call option prices are avail-

able in both the Heston and SABR models. This makes the calibration of these

models to the market possible.

Problems often arise in the calibration procedure for stochastic volatility

models. First, the calibration is usually a nonlinear optimization problem that

is computationally expensive. Moreover, if the number of input option prices

exceeds the number of model parameters (this is often the case since in Heston

model or SABR model, for example, there are 4 or 5 parameters while there are

at least 10 to 20 liquidly traded call options written on, for example, S&P 500,

in the market), a conflict arises between different calibration constraints. This

problem, already present at the static level, becomes more acute if one examines

the model dynamics with those observed in the option market. This time insta-

bility of the calibration makes the re-calibration have to be performed in a very

frequent basis and leads to large variations in sensitivities and hedge parame-

ters, which is problematic. Also many empirical evidence [6, 19, 22] has shown

that one factor stochastic volatility models (which of course include the Heston

model and SABR model) do not fit the (market) observed implied volatility pat-

terns well (even after adding simple jumps). These problems make it difficult to

use them in practice to price and hedge exotic options.

The concept of local volatility model was developed when Dupire [27] and

Derman and Kani [24] noted that there is a unique diffusion process consistent

with the risk neutral densities derived from the market prices of European call

options. The idea is to find the diffusion coefficient (local volatility function)

σt = σ(St, t) consistent with the set of market prices of call options with all
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strikes and maturities. Then the model can be used to price exotic options con-

sistently with the observed prices of call options. The famous Dupire formula

is:

dSt = σ(St, t)dBt,

σ(K,T) =
1
K

√√
2∂C(K,T)

∂T

∂2C(K,T)
∂K2

.

The term ”local volatility” has subsequently been extended to cover any deter-

ministic volatility model where forward volatilities are a function of time and

the underlying price. For a detailed review of these models, see [62, 70].

While local volatility model has the advantage of market completeness (the

only random source is from the underlying), it is not very convenient for pricing

exotic options. As we can see, to apply Dupire formula, we need to arbitrarily

pre-interpolate the input call price surface, since we can only observe discrete

set of call prices from the market (with finitely many strikes and maturities)

while in Dupire formula the whole surface is involved. Therefore the results

would be very sensitive to the different ways of interpolation (note that there are

first and second order derivatives involved). A result of the single randomness

in the model is that there is no more freedom to calibrate to exotic options. Also,

since the volatility is a deterministic function of the underlying in local volatility

model, these kind of models are not very well used to price cliquet options or

forward start options, whose values depend specifically on the random nature

of volatility itself. Moreover, as the case in stochastic volatility models, local

volatility surface is also very instable over time [26].

The inability of stochastic volatility models and local volatility model is due

to several reasons. First, the stochastic process used for describing the under-

lying dynamics (together with the dynamics of the volatility) might be mis-

5



specified in the first place, that is, the parametric form might be wrong (we

don’t know the number of randomness sources and the forms). Then it is natu-

ral that there would be problems in the calibration procedures. Moreover, since

the creation of organized option markets in 1973, these markets have become

increasingly autonomous and option prices are driven not only by the move-

ments in the underlying asset, but also by internal supply and demand in the

option market itself. This fact is supported by some empirical evidence on the

relationship between the option markets and their underlying markets [2, 7].

An alternative approach has been developed to overcome these difficulties in

stochastic volatility models and local volatility model, which is called the mar-

ket models for implied volatility (or the market-based approach). This approach

is inspired by the fact that many European call options are liquidly traded and

their prices are given by the market. The approach with the same spirit has

been applied to the pricing and hedging for interest rate derivatives, that is the

famous HJM methodology [41]. This idea was first applied to the equity deriva-

tives in Lyons [58], Schönbucher [66] and Ledoit et al. [51] and later developed

in Schweizer and Wissel [67, 68], Wissel [75], Jacod and Protter [46] and Car-

mona and Nadtochiy [16]. In the market-based model framework, the European

call option prices (or Black-Scholes implied volatilities, or other parametriza-

tions) are jointly modeled by a system of (infinitely many) SDEs, together with

the underlying price dynamics.

Such a framework has several immediate advantages over the stochastic

volatility models and local volatility model. First, option prices (or Black-

Scholes implied volatilities) are market observables which are reasonable to

be incorporated into the model. They are directly derived from market with-
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out making any modeling assumptions. By contrast, the local volatility or spot

volatility (which is modeled in stochastic volatility models) are not directly ob-

servable and has to be ”calibrated” with option price data or assumed to have

some parametric forms.

Secondly, even if a perfect calibration to market data is possible for some

stochastic volatility model at a given time, the parameters may not be stable and

model prices resulting from this calibration may deviate from the market prices

as time evolved. By contrast, market models are not only perfectly calibrated to

market prices at initial time by construction, but can also better match the future

states of the markets.

Thirdly, market models can recognize the extra sources of randomness spe-

cific to the option market (other than randomness in the underlying price dy-

namics) and incorporate the statistical features of their dynamics into the model

while stochastic volatility models and local volatility model don’t consider ran-

domness that may affect the derivative pricing and hedging other than the un-

derlying dynamics.

Finally, market models can serve as a framework for hedging exotic deriva-

tives with liquidly traded options (vanilla call options, for example).

While possessing these advantages, the market-based approach has its own

shortcomings. To serve the purpose of pricing and hedging for exotic options,

we need to rule out the arbitrage opportunities (both static arbitrage and dy-

namic arbitrage). For the static arbitrage, We will investigate in more details in

Section 3.1. For the dynamic arbitrage, it was first pointed out by Lyons [58]

and Schönbucher [66] that for such a model to be arbitrage-free, the coefficients
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in the system of SDEs cannot be arbitrarily specified, but must be linked by cer-

tain relations, which is called drift restrictions. This is similar to the case in HJM

models. If one takes these drift restrictions into account, the question whether

the system of SDEs admits a solution turns out to be nontrivial.

The parametrization plays a significant role in solving this problem. We find

some ”good” parametrizations in which the no static arbitrage conditions and

drift restrictions are simple enough to deal with and the existence of the solu-

tions under these conditions can be proved at the same time. That means, we

need to get the necessary and sufficient conditions for a no-arbitrage market

model to exist in some parametrization. When we consider the whole call op-

tion price surface (with all strikes and maturities), the naive parametrization

(call option price itself) and the Black-Scholes implied volatility are both not

proper for this purpose. Local volatility is a relatively simple parametrization

and it has some economic interpretations. This parametrization has been used

in [16], in which Carmona and Nadtochiy consider the full option price surface

models and give the drift restrictions (no static arbitrage condition is simply

that the local volatility is nonnegative). However, if we use local volatility as

the parametrization and consider the full option price surface models, the exis-

tence theorem (sufficient conditions) is too difficult to prove and there has not

been this kind of results. As I know, the best result up to now is given in [75],

where Wissel considers models for a family of call option prices with all strikes

in K = {K1, · · ·KN} and maturities in T = {T1, · · ·TM}. The parametrization used

is the local implied volatility and the price level, which is very complicated

mathematically and difficulty to interpret in economics. The drift restrictions

and existence theorem for this kind of models are given in [75]. However, mod-

els for the full option price surface, that is, with all K > 0 and T > 0, are too
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complicated and there has not been similar results in this case. Even for the

finitely many strikes and maturities case in [75], the parametrization and the

model itself are so complex that it has thus far prevented the implementation of

such a model.

The goal of this thesis is to move a step forward in the direction of market

based approach and investigate some of the properties (no static arbitrage con-

ditions) in this class of models.

1.2 Another Framework in the Market-Based Approach

As described above, we will work in the market-based approach framework

and hence we will view the European call option prices observed from the mar-

ket as an input and build a models for the call price surface for exotic derivative

pricing and hedging. However, the framework in this thesis is different from

the market models introduced in Section 1.1 in the sense that it will not assume

a system of SDEs to describe the call price surface in advance, but will try to in-

vestigate the properties of the call price surface and build a model for it directly

from the market data. Then this model can be used for pricing and hedging

purposes for exotic derivatives.

1.2.1 Connecting Implied Volatility and Spot Volatility

Here we present some explanation how the model for call price surface (im-

plied volatility surface) can serve the purpose for exotic derivative pricing and

hedging.
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In the general framework of mathematical finance (or more specifically, con-

tinuous time option pricing), the (single underlying asset) market is modeled by

filtered probability space (Ω, (Ft),F ,P), where the filtration (Ft) is generated by

a d-dimensional Brownian motion Xt. St > 0 is the price process for the under-

lying asset and the short rate process r t is progressive (with respect to (Ft)) and

bounded. We suppose that there is at least one risk-neutral measure (that is, the

market is arbitrage-free) and P is a risk-neutral measure. Then by the Martin-

gale Representation Theorem [48], it can be shown that there exits a progressive

σt, and 1-dimensional Brownian motion Bt, with respect to (Ft), such that

dSt = σtStdBt + r tStdt,

where σt is the spot volatility of the underlying asset. If we assume the dy-

namics of σt can be describe by some SDE, then we get a stochastic volatility

model.

Instead of specifying the dynamics of σt in advance, we would like to con-

struct it from the market data. This is possible by the results in [28], if we have

a model for the implied volatility (call option price) surface. In [28], Durrle-

man shows that under some relax regularity conditions, the implied volatility

for at the money call option (that means, the strike is equal to the underlying

asset price) will converge to the the spot volatility when the maturity goes to

the current time level (that is, when T − t −→ 0).

1.2.2 Factor Models for the Call Option Price (Implied Volatil-

ity) Surface

Now in this framework, the plan is:
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Step 1. Build a model without arbitrage for the European call price surface

from the market data. We will build this model following the market-based

philosophy, that means, building the model from the observed market data (call

option prices) without specifying any parametric form in advance.

Step 2. Use the inverse Black-Scholes formula to transform the call price into

the implied volatility, hence we get a model for the implied volatility surface.

Step 3. Apply Durrleman’s result to get a description of the spot volatility

from the implied volatility surface.

Once Step 3 is applied, the remaining things for pricing and hedging are the

same as in stochastic volatility models (For details, see [9, 15, 38, 52], for exam-

ple). Notice that in Step 1, the model is built directly from the market data, this

methodology has advantages over stochastic volatility models and local volatil-

ity model in the sense that they avoid the problematic calibration procedures

and capture the randomness specific to the option market it self other than the

underlying asset market.

The reason we use the call price instead of the implied volatility is that the

no static arbitrage conditions are much simpler for call price than for implied

volatility. Since we want to apply this model for exotic option pricing and hedg-

ing, we definitely want to insist on no arbitrage in the model. We will investigate

the no static arbitrage conditions in details in Section 3.1.

Since Step 2 and Step 3 are trivial (at least, theoretically), in this thesis we will

focus on Step 1, that is, build a model for the call price surface without arbitrage.

It can be viewed as a foundation for a market-based approach for modeling the

dynamics of the options market.
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The methodology we will adopt is based on a statistical technique called

Karhunen-Loéve decomposition and its variants and the model for the call price

surface turns out to be a factor model. Factor models have been used to de-

scribe and analyze implied volatility surface dynamics by several authors in

the literature. For example, Fengler, Härdle and Mammen [31] propose a semi-

parametric factor model to approximate the implied volatility surface in a finite

dimensional function space. In particular, their approach is tailored to the de-

generated design of the market data for implied volatility. Hafner [38] uses

time series method (AR(1) process) and Principle Component Analysis (PCA)

to analyze and identify factors and build a four-factor model for the DAX im-

plied volatility surface. However, these factor models do not incorporate the no

static arbitrage conditions in their construction and hence the pricing and hedg-

ing with these models might be problematic. By contrast, our aim is to build

factor models without static arbitrage opportunities. Also, the way to identify

the factors and to construct the model in this thesis is different from the works

mentioned above.

1.3 Relevant Literatures

As mentioned, our methodology to build the factor model is inspired by the

Karhunen-Loéve decomposition, which can be viewed as infinite dimensional

Principle Component Analysis (PCA). The features and dynamic properties of

implied volatility time series have been studied using PCA and functional PCA

by many authors in the literature. In particular, Avellaneda and Zhu [77] per-

form a PCA of the term structure of at-the-money implied volatilities and model

it with a GARCH process. Fengler, Härdle and Schmidt [32] carry out a similar
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study on the term structure of the VDAX and report the presence of level, shift

and curvature components in the deformation of the term structure. Skiadopou-

los et al. [71] perform a PCA of implied volatility smiles of S&P 500 American

options traded on the CME for different maturity buckets and distinguish two

significant principal components. Alexander [3] performs a similar analysis but

using the deviation of implied volatilities from the at-the-money volatility. Fen-

gler, Härdle and Villa [33] use a common principle components approach to

perform a joint PCA on implied volatility smiles of different maturities. While

these works focus on implied volatility with a single strike (at-the-money, for

example) or a single maturity (then use common principle components to com-

pare among several different maturities), our aim is to consider modeling the

whole surface of call option price containing all available maturities and strikes

in the market simultaneously.

Cont and Fonseca [20] model the joint dynamics of all implied volatilities

quoted on the market and showed the randomness might be captured by a small

number of random factors. Their approach is based on the standard Karhunen-

Loéve decomposition. However, they also don’t consider the static arbitrage

opportunity in the model and hence their model can be used for risk manage-

ment purpose but not for exotic option pricing and hedging. Actually all the

works mentioned above deal with implied volatility but not call price (in fact

the object in [20] is the logarithm of implied volatility), which makes the no

static arbitrage constraints become very messy.

Our goal is to build a factor model of the call price surface without static

arbitrage so that it can be used for exotic option pricing and hedging. For this

purpose, we will develop some variants of the standard Karhunen-Loéve de-
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composition. We will see this in more details in Sections 2.2 and 3.2.

1.4 Outline of the Thesis

Throughout this thesis, we focus on the central theme: building a model for

the call price surface which is static arbitrage free. To achieve this goal, we will

modify the standard Karhunen-Loéve decomposition and develop a framework

and apply it to the call option price surface. The detailed organization of the

thesis is as follows.

Chapter 2 gives a general, as well as rigorous mathematical framework of the

standard Karhunen-Loéve decomposition and develop an ”uncentered” version

of it. Mathematically it is given by the spectral decomposition of some operator.

The mathematical framework is built in the language of functional analysis.

Chapter 3 investigates the no static arbitrage conditions for call price sur-

face and the violations of these conditions in the truncation of the Karhunen-

Loéve decomposition and the uncentered Karhunen-Loéve decomposition

when building the factor model. Then we try to modify this methodology to

satisfy these conditions.

Chapter 4 describes the implementation of the Karhunen-Loéve decomposi-

tion and the uncentered Karhunen-Loéve decomposition and then applies this

method to analyze the simulated data for call price options. A simulation study

of the procedure is also given.

Chapter 5 includes a brief summary and some future research directions in

the market-based approach framework.
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CHAPTER 2

MATHEMATICAL FRAMEWORK OF CENTERED AND UNCENTERED

KARHUNEN-LOÉVE DECOMPOSITION

2.1 Introduction

Karhunen-Loéve decomposition was proposed independently by Karhunen

[49] and Loéve [55]. But the method itself is known under a variety of names

in different fields: Empirical Component Analysis [56], Quasiharmonic Modes

[13], Proper Orthogonal Decomposition [57] and others. This method is used

widely in the areas of quantum physics, meteorology, geophysics, electrical

engineering (statistical recognition) and computer science (image processing).

Mathematically, Karhunen-Loéve decomposition / expansion is a representa-

tion of a stochastic process as an infinite linear combination of orthogonal func-

tions with random variable coefficients, analogous to a Fourier series represen-

tation of a deterministic function on a bounded interval. It is easy to generalize

this method to high-dimensional case (random field case), like the multivariate

Fourier series. Remember our purpose is to build models for the call price (im-

plied volatility) surface, which depends on two variables (the strike K and the

maturity T), therefore we will consider the random surface case in the next two

sections of this chapter.

When applied to a discrete and finite process, that is, random vector case,

Karhunen-Loéve decomposition degenerate to the well-known statistical tech-

nique principal component analysis (PCA), for which the vast theory is quite

mature (see, for example, [4, 8]). PCA can be carried out by eigenvalue de-

composition of a data covariance matrix or singular value decomposition of a
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data matrix, usually after mean centering the data for each attribute. While the

Karhunen-Loéve decomposition can be viewed as an infinite dimensional PCA,

we need to be careful because the significant concepts in the procedure, ”eigen-

value”, ”eigenvetor” becomes much more complicated in mathematics when

we work in the infinite dimensional space. Although the Karhunen-Loéve pro-

cedure is described in many literatures (textbooks, research papers, technical

reports), most of these descriptions are not satisfactory mathematically. We give

a rigorous mathematical framework using functional analysis language for the

centered and uncentered Karhunen-Loéve procedures in this chapter. Since we

want to apply this method to call price surface, we will work on the random

surface case. However, the ideas are the same if we consider random fields in

any dimension and there is no technical difficulty to generate this framework to

other dimensional random fields cases.

2.2 Karhunen-Loéve Decomposition

Functional analysis is a powerful tool when we deal with problems in infinite

dimensional space. Consider the infinite dimension nature of the Karhunen-

Loéve decomposition for random surface, it is necessary to draw support from

some concepts and theorems in functional analysis in order to describe the pro-

cedure rigorously.

For simplicity, we will not give the rigorous definition for most of the basic

concepts and the detailed proof for the theorem in functional analysis needed in

this thesis. For the detailed treatments of these concepts and theorems, we refer

to the standard references [64, 76].
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Consider a random surface U(x) in some probability space (Ω,F ,P), where

x ∈ [a,b] × [c,d] = A ⊂ R2. We can think of U(x) as the call option price surface

at some time point and x = (K,T) where K is the strike and T is the maturity.

We wish to rigorously define the Karhunen-Loéve expansion for U(x). For this

purpose, we need a further assumption: U(x) is square-integrable, which means

that
∫
Ω×A

U2(ω, x)dωdx< ∞. Using functional analysis language, this assumption

says that U(x) is an element of the Hilbert space L2(Ω × A) = L2(Ω) ⊗ L2(A). For

any fixed ω0 ∈ Ω, U(ω0, x) gives a square-integrable surface (U(ω0, x) ∈ L2(A))

and for any fixed x0 ∈ A, U(ω, x0) gives a square-integrable random (U(ω, x0) ∈

L2(Ω,F ,P)).

Notice that PCA in finite dimensional space is done after mean centering,

we do the same thing to U(x), that is, subtracting E(U(x)) from U(x). (We will

discuss a similar decomposition without mean centering in the next section.)

Since E(U(x)−E(U(x))) = 0, we can consider a new U(x) with E(U(x)) = 0 without

loss of generality.

Consider the covariance function K(x, y) = Cov(U(x),U(y)). It is a function

defined on A× A ⊂ R4. Since E(U(x)) = 0, we have

K(x, y) = Cov(U(x),U(y)) = E(U(x)U(y)) =
∫
Ω

U(ω, x)U(ω, y)dω.

Note that K(x, y) is symmetric by definition. Furthermore, K(x, y) defines a linear

operator K on the Hilbert space L2(A) in the way that

K( f )(x) =
∫

A
K(x, y) f (y)dy

for any element f (x) in L2(A) (that is, any L2 surface defined on A). Linear opera-

tor can be viewed as an analogue of matrix. Here the linearity ofK is guaranteed

by the linearity of integration.
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The operator K has some nice properties:

1. K is symmetric (or more precisely, K is a self-adjoint operator). This

means that

〈 f ,K(g)〉 = 〈K( f ),g〉, ∀ f ,g ∈ L2(A).

This can be seen immediately from the definition of K and the symmetry of

K(x, y)

〈 f ,K(g)〉 =
∫

A
f (x)K(g)(x)dx

=

∫
A

f (x)
∫

A
K(x, y)g(y)dydx

=

∫
A×A

K(x, y) f (x)g(y)dxdy

=

∫
A

∫
A

K(y, x) f (x)dxg(y)dy

= 〈K( f ),g〉.

2. K is positive semidefinite (or more precisely, K is a positive operator).

This means that

〈 f ,K( f )〉 ≥ 0 ∀ f ∈ L2(A).

This is easy to proof by some calculation

〈 f ,K( f )〉 =
∫

A
f (x)K( f )(x)dx

=

∫
A×A

K(x, y) f (x) f (y)dxdy

=

∫
A×A

f (x) f (y)
∫
Ω

U(ω, x)U(ω, y)dωdxdy

=

∫
Ω

∫
A

U(ω, x) f (x)dx ·
∫

A
U(ω, y) f (y)dydω

=

∫
Ω

(
∫

A
U(ω, x) f (x)dx)2dω

≥ 0.
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3. K is a compact operator, which means thatK(B1) is a compact set in L2(A),

where B1 is the unit ball in L2(A). This is a standard result but not that easy to

prove and we omit the proof here. However, this property is very important

for us since there is an elegant theory for the spectrum of compact operator in

functional analysis (Rieze-Schauder theory) and the spectrum can be viewed as

a correspondence concept for eigenvalues. We shortly investigate this theory

and use it to describe the Karhunen-Loéve expansion.

In the finite dimensional case, we know that every n × n matrix A can be

viewed as a linear operator on the Euclidean space Rn. For any λ ∈ R, one and

only one of the following statements holds:

(1) (λI −A) is invertible. This means (λI −A)−1 exists as a matrix. Here I is the

identity matrix.

(2) λ is an eigenvalue of A. This means ∃v0 ∈ Rn, s.t. Av0 = λv0.

However, when we consider the infinite dimensional case in functional anal-

ysis, things becomes much more complicated. Let A be a linear operator on a

Hilbert space X. (To be rigorous,A should be not only linear, but also bounded.

It is easy to show that the operator K defined above is bounded, so there is no

problem.) For any λ ∈ R, one and only one of the following statements holds

(1) (λI −A) is invertible. This means (λI −A)−1 is a well-defined operator on

X;

(2) (λI −A) is not one-to-one;

(3) (λI − A) is a one-to-one mapping of X onto a dense proper subset of X,

that is, (λI −A) = X;
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(4) λ does not satisfy any of (1) to (3), that is, (λI − A) is one-to-one, but

(λI −A) , X.

The set of λ for which (2) or (3) or (4) hold are called the spectrum of A,

usually denoted by σ(A). σ(A) can be divided into three disjoint sets: the point

spectrum, the continuous spectrum and the residual spectrum, corresponding

to λ satisfy (2), (3) and (4).

The Rieze-Schauder theory tells us that, ifA is a compact operator, then it has

only countably many point spectrum (no continuous and residual spectrum)

except for 0. Hence for the spectrum of a compact operator A, there are only

three possibilities:

(1) σ(A) = {0};

(2) σ(A) = {0, λ1, λ2, · · · , λn}; or

(3) σ(A) = {λ1, λ2, · · · , λn, · · · ,0}, and λn −→ 0.

Moreover, if λ ∈ σ(A) and λ , 0, then λ is an eigenvalue of A and the

corresponding eigenspace is ker(λI − A). Each v ∈ ker(λI − A) (except v = 0) is

an eigenvalue ofA, satisfyingAv = λv.

We have mentioned that the operator K defined by the covariance function

is compact, so now we can consider the eigenvalues of K . From the discussions

above, we know that there are at most countably many eigenvalues ofK . Rieze-

Schauder theory also tells us that the invariant space for each eigenvalue λ of

a compact operator is finitely many dimensional. (similar to the case in linear

algebra, the dimension of this invariant space are called the multiple of λ.) We

denote them by {λ1, λ2, · · · , λn, · · ·} and assume that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · ·. Here
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we count eigenvalues with multiples greater than one many times.

Moreover, since K is a positive operator, each eigenvalue λi will be nonneg-

ative. This is easy to see. For any λi and a corresponding eigenvector f , 0, we

have

0 ≤ 〈K( f ), f 〉 = λi〈 f , f 〉.

We know that 〈 f , f 〉 > 0 since f , 0, so that λi ≥ 0.

Note that K is also symmetric, by the Hilbert-Schmit Theorem in functional

analysis, we know that for λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · · ≥ 0, there is a corresponding

orthonormal basis { fi} for L2(A), such that

K( fi) = λi fi ,

that is, fi is the corresponding eigenvetor for λi . Note that it is possible that

linearly independent fi’s are corresponding to the same λi (multiple greater than

one case). Moreover, for each v ∈ L2(A), we have

v =
∞∑

i=1

〈v, fi〉 fi ,

K(v) =
∞∑

i=1

λi〈v, fi〉 fi .

This representation is the mathematical foundation of Karhunen-Loéve decom-

position.

Remember that for any fixed ω0 ∈ Ω, U(ω0, x) is an element in the Hilbert

space L2(A). We can expand it with respect to the orthonormal basis { fi}

U(ω0, x) =
∞∑

i=1

〈U(ω0, x), fi(x)〉 fi .

Therefore we have generally an expansion for the random surface U(ω, x):

U(ω, x) =
∞∑

i=1

〈U(ω, x), fi(x)〉 fi .
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Now we define

Ui = 〈U, fi〉 =
∫

A
U(x) fi(x)dx, i = 1,2,3, · · · .

Easy to see that Ui ∈ L2(Ω) and we can write U(x) =
∑∞

i=1 Ui fi(x). This is the

Karhunen-Loéve decomposition of the random surface U(x).

This expansion has several nice properties:

1. In this expansion, the randomness is separated from dependence of the

parameter x. Note that each term of the expansion is a product of a random

variable and a deterministic function (surface). This gives a factor model repre-

sentation (with infinitely many factors) of the random surface U(x) and we can

truncate the series to get an N-factor model.

2. The eigenmodes fi’s are orthonormal. This means:

〈 fi , f j〉 =

∫
A

fi(x) f j(x)dx= 0, ∀i , j

‖ fi‖ =
∫

A
f 2
i (x)dx= 1, ∀i.

3. The random coefficients Ui’s have mean 0 and they are uncorrelated with

each other. The mean 0 property is from the assumption E(U(x)) = 0:

E(Ui) = E(
∫

A
U(x) fi(x)dx) =

∫
A

E(U(x)) fi(x)dx= 0, ∀i.

The Ui’s are uncorrelated by the orthogonality of { fi}:

Cov(Ui ,U j) = E(UiU j)

=

∫
Ω

(
∫

A
U(ω, x) fi(x)dx

∫
A

U(ω, y) f j(y)dy)dω

=

∫
A×A

∫
Ω

U(ω, x)U(ω, x)dω fi(x) f j(y)dxdy
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=

∫
A×A

K(x, y) fi(x) f j(y)dxdy

=

∫
A

∫
A

K(y, x) fi(x)dx fj(y)dy

= 〈K( fi), f j〉

= λi〈 fi , f j〉

= 0, ∀i , j.

This property together with property 2, show that (Ui · fi) are orthogonal both as

random variables (elements in L2(Ω)) and as surfaces (elements in L2(A)), which

makes the Karhunen-Loéve decomposition very convenient for computational

purposes.

4. As an infinite dimensional analogue of PCA, Karhunen-Loéve decom-

position has the distinction of being the optimal orthogonal transformation for

keeping the subspace that has largest ”variance”. So if we truncate the series

from this decomposition and get an N-factor model, it captures greater vari-

ance structure of the random surface U(x) than any other N-factor model with

property 2. and 3. This property is again a consequence of a property of com-

pact operator. From functional analysis, we know that for the compact positive

operator K , ∃g0 ∈ L2(A), such that

〈K(g0),g0〉 = sup
‖ f ‖=1
〈K( f ), f 〉

and

K(g0) = λ1g0, ‖g0‖ = 1.

Now we can choose f1 = g0 and we get

λ1 = sup
‖ f ‖=1
〈K( f ), f 〉.
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Similarly, we can repeat this procedure to find

λi = sup
‖ f ‖=1
{〈K( f ), f 〉 | f ⊥ span{ f1, · · · , fi−1}}.

Also note that ∀ f ∈ L2(A), we have

Var(〈U, f 〉) = E(〈U, f 〉2)

=

∫
Ω

(∫
A

U(ω, x) f (x)dx

)2

dω

=

∫
Ω

(
∫

A
U(ω, x) f (x)dx

∫
A

U(ω, y) f (y)dy)dω

=

∫
A×A

∫
Ω

U(ω, x)U(ω, x)dω f (x) f (y)dxdy

=

∫
A×A

K(x, y) f (x) f (y)dxdy

=

∫
A

∫
A

K(y, x) f (x)dx f(y)dy

= 〈K( f ), f 〉.

Now we see that for every deterministic surface f , the projection of the random

surface U on f will have variance 〈K( f ), f 〉. This together with the property of

λi

λi = sup
‖ f ‖=1
{〈K( f ), f 〉 | f ⊥ span{ f1, · · · , fi−1}}

shows that Karhunen-Loéve decomposition captures the maximum variance

structure of U(x).

Now we briefly summarize the key idea of Karhunen-Loéve decomposition.

We can represent the random surface U(ω, x) ∈ L2(Ω × A) as the infinite sum

U(x) = u(x) +
∞∑

i=1

Ui fi(x),

where u(x) = E(U(x)) and fi’s are the normalized eigenvectors for eigenvalues

of K , such that

K( fi) = λi fi .
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The operator K is defined by

K( f )(x) =
∫

A
K(x, y) f (y)dy, ∀ f ∈ L2(A)

where K(x, y) is the covariance function

K(x, y) = Cov(U(x)U(y)) = E(U(x)U(y)) − E(U(x))E(U(y)).

The Ui’s are orthogonal as random variables and fi’s are orthogonal as deter-

ministic surfaces. This expansion captures the maximum variance structure of

U(x).

We can compute the variance of U(x) at each x ∈ L2(A) as

Var(U(x)) = Var(u(x) +
∞∑

i=1

Ui fi(x))

= Var(
∞∑

i=1

Ui fi(x))

=

∞∑
i=1

f 2
i Var(Ui) +

∑
i, j

fi f jCov(Ui ,U j)

=

∞∑
i=1

f 2
i Var(Ui)

=

∞∑
i=1

f 2
i Var(〈U, fi〉)

=

∞∑
i=1

f 2
i 〈K( fi), fi〉

=

∞∑
i=1

f 2
i λi〈 fi , fi〉

=

∞∑
i=1

λi f
2
i

and the total variance of U(x) is∫
A

Var(U(x))dx =
∫

A

∞∑
i=1

λi f
2
i dx

25



=

∞∑
i=1

∫
A
λi f

2
i dx

=

∞∑
i=1

λi‖ fi‖

=

∞∑
i=1

λi < +∞.

Here
∑∞

i=1 λi < +∞means that K belongs the so-called trace class operators.

We can truncate this infinite series and get an N-factor model for U(x)

U(x) ≈ u(x) +
N∑

i=1

Ui fi(x).

The total variance of this N-factor model is∫
A

Var(u(x) +
N∑

i=1

Ui fi(x))dx =
∫

A
Var(

N∑
i=1

Ui fi(x))

=

N∑
i=1

λi‖ fi‖

=

N∑
i=1

λi .

The ratio
∑N

i=1 λi/
∑∞

i=1 λi can be interpreted as how much total variance is ex-

plained by this N-factor model. If this ratio is close to 100%, this model is a

good approximation.

2.3 Uncentered Karhunen-Loéve Decomposition

We investigated the Karhunen-Loéve decomposition for random surfaces in last

section. In this section we develop a variant of it—-the uncentered version of

this expansion.
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Remember that in the Karhunen-Loéve decomposition, we first subtract the

mean from the random surface U(x) and then expanded U(x) − E(U(x)) with

respect to the basis { fi}. The main reason for the centering is that we want the

function K(x, y) used for defining the operator K to be equal to the variance:

K(x, y) = E(U(x)U(y)) =
∫
Ω

U(ω, x)U(ω, y)dω.

Then the variance of the projection of U(x) on any element in L2(A) can be rep-

resented as

Var(〈U, f 〉) = 〈K( f ), f 〉

and we can detect how much total variance can be explained by the first N fac-

tors where we truncate the infinite expansion.

We should notice that one price for the centering is that some important

features, for example, the shape of the original random surface U(x) will not be

captured by the basis functions (eigenmodes) in the truncated model. This is not

an issue for most problems where Karhunen-Loéve decomposition is used. In

most problems the random object (random vector, stochastic process, random

surface, or random field) to be analyzed has no shape constraint, hence in these

problems the shape of truncated model does not matter and there is no need for

investigating the shape of the eigenmodes.

However, for the purpose of option pricing and hedging, the shapes of the

random surface U(x) and the its model are not arbitrary. There are no static arbi-

trage conditions for the call price surface U(x) and these conditions are nothing

but shape constraints for U(x). These shape constraints should be satisfied in

the factor model for the call price surface. Otherwise the existence of statics ar-

bitrage in the model may lead to unreasonable prices and imperfect hedging for

exotic options.
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In this section we investigate what happens if we give up the centering

(hence the explanation of total variance) in the Karhunen-Loéve decomposition.

We still use notations in last section.

Consider the random surface U(ω, x) ∈ L(Ω × A) and the function

M(x, y) = E(U(x)U(y)) =
∫
Ω

U(ω, x)U(ω, y)dω.

Now M(x, y) may not be the covariance function anymore since the mean of U(x)

may not be zero. But it still defines a linear operatorM on L2(A) by

M( f )(x) =
∫

A
M(x, y) f (y)dy, ∀ f ∈ L2(A).

M(x, y) is symmetric andM is a symmetric positive compact operator. The ar-

gument is the same as the case for K

〈 f ,M(g)〉 =
∫

A
f (x)M(g)(x)dx

=

∫
A

f (x)
∫

A
M(x, y)g(y)dydx

=

∫
A×A

M(x, y) f (x)g(y)dxdy

=

∫
A

∫
A

M(y, x) f (x)dxg(y)dy

= 〈M( f ),g〉

and

〈 f ,M( f )〉 =
∫

A
f (x)M( f )(x)dx

=

∫
A×A

M(x, y) f (x) f (y)dxdy

=

∫
A×A

f (x) f (y)
∫
Ω

U(ω, x)U(ω, y)dωdxdy

=

∫
Ω

∫
A

U(ω, x) f (x)dx ·
∫

A
U(ω, y) f (y)dydω

=

∫
Ω

(
∫

A
U(ω, x) f (x)dx)2dω

≥ 0.
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The compactness again depends on some functional analysis argument and

we do not give the details of the proof here. We refer to [64, 76] for the rigorous

proof.

ThereforeM has at most countably many positive eigenvalues η1 ≥ η2 ≥ · · · ≥

ηn ≥ · · · ≥ 0. Again, by Hilbert-Schmidt Theorem, we choose a orthonormal

basis {gi} for L2(A), s.t. ∀v ∈ L2(A), we have

M(gi) = ηigi , ∀i

v =
∞∑

i=1

〈v,gi〉gi

M(v) =
∞∑

i=1

ηi〈v,gi〉gi

and moreover,

ηi = sup
‖ f ‖=1
{〈M( f ), f 〉 | f ⊥ span{g1, · · · ,gi−1}}.

We can expand U(x) with respect to {gi} as

U(x) =
∞∑

i=1

Vigi(x), (2.1)

where Vi is defined by

Vi = 〈U,gi〉 =

∫
A

U(x)gi(x)dx, i = 1,2,3, · · · .

(2.1) can be called uncentered Karhunen-Loéve decomposition. In this ex-

pansion, the random coefficients (factors) may not be uncorrelated anymore,

since now we have

E(ViVj) =
∫
Ω

(
∫

A
U(ω, x)gi(x)dx

∫
A

U(ω, y)gj(y)dy)dω = ηi〈gi ,gj〉 = 0, ∀i , j,

although E(ViVj) may not be the covariance anymore. However, the eigenmodes

gi’s are still orthogonal to each other.

29



The variance of 〈U, f 〉may not be equal to 〈M( f ), f 〉, we only have

E(〈U, f 〉2) = 〈M( f ), f 〉.

Similarly, we now have

E(U2(x)) = E[(
∞∑

i=1

Vigi(x))2]

=

∞∑
i=1

g2
i E(V2

i ) +
∑
i, j

gigjE(ViVj)

=

∞∑
i=1

g2
i E(V2

i )

=

∞∑
i=1

g2
i E(〈U,gi〉

2)

=

∞∑
i=1

g2
i 〈M(gi),gi〉

=

∞∑
i=1

g2
i ηi〈gi ,gi〉

=

∞∑
i=1

ηig
2
i

and ∫
A

E(U2(x))dx =
∫

A

∞∑
i=1

ηig
2
i dx

=

∞∑
i=1

∫
A
ηig

2
i dx

=

∞∑
i=1

ηi‖gi‖

=

∞∑
i=1

ηi .
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Again we can truncate this infinite series and get an N-factor model for U(x):

U(x) ≈
N∑

i=1

Vigi(x).

Therefore it follows that ∫
A

E[(
N∑

i=1

Vigi(x))2]dx=
N∑

i=1

ηi .

It is easy to see that in the uncentered Karhunen-Loéve expansion, the ratio∑N
i=1 ηi/

∑∞
i=1 ηi cannot be interpreted as how much total variance is explained by

the first N factors anymore.

However, while unable to interpret variance by its factors, the uncentered

Karhunen-Loéve decomposition has another elegant interpretation. The trun-

cated uncentered Karhunen-Loéve expansion was the best approximation of the

original random surface U(x) in the sense that it reduces the total mean-square

error resulting of its truncation. Because of this property, it is often said that the

Karhunen-Loéve expansion optimally compacts the energy.

More specifically, given any orthonormal basis {hi}, we may expand U(x) as:

U(x) =
∞∑

i=1

Xihi(x),

where

Xi = 〈U,hi〉 =

∫
A

U(x)hi(x)dx, i = 1,2,3, · · ·

and we may approximate U(x) by the truncated finite sum

U(x) ≈
N∑

i=1

Xihi(x)

for some positive integer N. We claim that of all such approximations, the ap-

proximation given by the truncated uncentered Karhunen-Loéve decomposi-

tion is the one that minimizes the total mean square error (provided we have
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arranged the eigenvalues in decreasing order). Here the total mean square error

is the distance in the Hilbert space L2(Ω × A), which is defined by

‖Z1 − Z2‖ =

∫
A

E[(Z1(x) − Z2(x))2]dx=
∫
Ω×A

(Z1(ω, x) − Z2(ω, x))2dωdx

for any elements Z1 and Z2 in L2(Ω × A).

Now we show why this claim is true. First, for any such {hi} and {Xi}, we

have

〈hi ,hj〉 =

∫
A

hi(x)hj(x)dx= 0, ∀i , j

and hence

E(XiXj) =
∫
Ω

(
∫

A
U(ω, x)hi(x)dx

∫
A

U(ω, y)hj(y)dy)dω = ηi〈hi ,hj〉 = 0, ∀i , j.

Also we have

E(X2
i ) = E(〈U,hi〉

2) = 〈M(hi),hi〉.

Moreover,

E(U2(x)) = E[(
∞∑

i=1

Xihi(x))2]

=

∞∑
i=1

h2
i E(X2

i ) +
∑
i, j

hihjE(XiXj)

=

∞∑
i=1

h2
i E(X2

i )

=

∞∑
i=1

h2
i E(〈U,hi〉

2)

=

∞∑
i=1

h2
i 〈M(hi),hi〉

and hence ∫
A

E(U2(x))dx=
∫

A

∞∑
i=1

〈M(hi),hi〉h
2
i dx=

∞∑
i=1

〈M(hi),hi〉.
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Similarly, for the difference U(x) −
∑N

i=1 Xihi(x) =
∑∞

i=N+1 Xihi(x), we have

E[(
∞∑

i=N+1

Xihi(x))2] =
∞∑

i=N+1

h2
i E(X2

i ) +
∑

i, j>N,i, j

hihjE(XiXj)

=

∞∑
i=N+1

h2
i E(X2

i )

=

∞∑
i=N+1

h2
i E(〈U,hi〉

2)

=

∞∑
i=N+1

h2
i 〈M(hi),hi〉

and hence∫
A

E[(U(x) −
N∑

i=1

Xihi(x))2]dx=
∫

A

∞∑
i=N+1

〈M(hi),hi〉h
2
i dx=

∞∑
i=N+1

〈M(hi),hi〉.

Remember that {gi} and {Vi} have the nice property

ηi = sup
‖ f ‖=1
{〈M( f ), f 〉 | f ⊥ span{g1, · · · ,gi−1}},

we have
N∑

i=1

〈M(hi),hi〉 ≤

N∑
i=1

ηi =

N∑
i=1

〈M(gi),gi〉.

Note that ∫
A

E[(U(x) −
N∑

i=1

Xihi(x))2]dx=
∫

A
E(U2(x))dx−

N∑
i=1

〈M(hi),hi〉

and ∫
A

E[(U(x) −
N∑

i=1

Vigi(x))2]dx=
∫

A
E(U2(x))dx−

N∑
i=1

〈M(gi),gi〉.

Therefore it follows that∫
A

E[(U(x) −
N∑

i=1

Vigi(x))2]dx≤
∫

A
E[(U(x) −

N∑
i=1

Xihi(x))2]dx.

We have shown that the uncentered Karhunen-Loéve decomposition can be

viewed from another perspective. That is, the truncated (first N-term) uncen-

tered Karhunen-Loéve expansion is the solution of a optimization problem over
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an infinite dimensional space L2(Ω × A):

min
∫

A
E[(Y(x) − U(x))2]dx, such thatY(x) has ”rank”N.

Here U(x) is the original random surface which we want to model and ”rank” N

means that Y(ω, x) can be represented as Y(ω, x) =
∑N

i=1 Xi(ω)hi(x). Even though

hi here may not be a part of an orthonormal basis, we can always orthogonalize

and normalize it and then expand it to an orthonormal basis of L2(A).

We have presented the mathematical framework of centered and uncentered

Karhunen-Loéve decomposition. As mentioned, to apply this methodology to

our problem, we need to incorporate some shape constraints (the no static arbi-

trage conditions). We will develop these ideas in the next chapter.
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CHAPTER 3

STATIC ARBITRAGE AND SHAPE CONSTRAINTS

3.1 Static Arbitrage Conditions for Call Price Surface

When building models for the European call price surface (or the Black-Scholes

implied volatility) for exotic option pricing, one main challenge is to guarantee

that these models are arbitrage-free. An arbitrage opportunity is a costless trad-

ing strategy which at some future time provides a positive profit with positive

probability, but has no possibility of a loss. When we investigate the whole sur-

face of the European call price, the prices of call options with different strikes

and maturities have to satisfy some relations, otherwise there will be arbitrage

opportunity no matter what model is assumed. These conditions are called

static arbitrage conditions (or no static arbitrage conditions). We use the term

”static” here since the this kind of arbitrage opportunity (if exists) are model in-

dependent. However, Carr, Gémen, Madan and Yor [17] use of the term ”static

arbitrage” has a more delicate meaning and we do not consider it in this thesis.

In this section we investigate the static arbitrage conditions in details. A tech-

nical note here is that we assume, for simplicity, the interest rate is zero in this

thesis.

Recall that a European call option is a contract that gives the owner the right

to buy one unit of a risky asset (underlying) at an expiration time (maturity) T at

a strike price K agreed upon today (time 0). We use C(K,T) to denote the price

of the call option with strike K and maturity T. When we consider the whole

surface C(K,T), (K,T) ∈ [0,+∞] × [0,+∞], certain conditions have to be satisfied

if we want to rule out several arbitrage opportunities.
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Define calendar spread (also called a time spread or horizontal spread) as,

C(K,T1) ≤ C(K,T2), ∀T1 ≤ T2, K.

This follows from Jensen’s inequality if we view C(K,T) as the conditional ex-

pectation of the future payoff. However, here we give a model independent

argument since the conditional expectation argument may not work in some

situations (specifically, in some local martingale models, as we will see below).

Suppose there exists T1 < T2,K, such that C(K,T1) > C(K,T2). We can im-

plement the following strategy and get an arbitrage. (We use S to denote the

underlying asset). At time 0, short 1 share C(K,T1) and long 1 share C(K,T2).

This gives us positive amount of money since C(K,T1) > C(K,T2). At T1, there

are 2 scenarios.

Scenario (1): ST1 ≤ K. In this case, the call option with maturity T1 is out of

money and our short position costs us 0. The long position on the call option

with maturity T2 will always have nonnegative value. So we get positive profit.

Scenario (2): ST1 > K. In this case, we can borrow 1 share underlying from

the market and change it with the buyer of the option for K dollars. Then at time

T2, we can use this K dollar to buy 1 share underlying (we can do this since we

hold the call option with strike K and maturity T2) and return it to the market.

So we also get positive profit.

Calendar spread shows that the European call price is increasing with re-

spect to the maturity T.

We should mention here that in some research papers (for example, [21, 61]),

it is shown that in some models in which the underlying is a strict local martin-

gale instead of a martingale under the risk-neutral measures, C(K,T1) > C(K,T2)
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is possible. According to the first fundamental theorem of asset pricing [23, 39],

if the underlying asset price is a local martingale, then the model should be

arbitrage-free. This seems to contradict the calendar spread at the first look.

However, after careful investigation, we find that the arbitrage-free here means

that admissible arbitrage opportunity does not exist. Any admissible arbitrage

strategy have to be self-financing and bounded below (since we want to avoid

infinite loss). We can see that if the underlying asset dynamics follows a strict

local martingale, then the strategy we carry in the argument above may not be

bounded below and hence is not admissible. There is no contradiction.

Next, define vertical spread as

−1 ≤
C(K2,T) −C(K1,T)

K2 − K1
≤ 0, ∀T, K1 , K2.

Again we show this by construct arbitrage strategy in the case that this condition

is violated.

(1) Suppose there exists T, K1 ≤ K2, such that C(K2,T)−C(K1,T)
K2−K−1 > 0. Assume

K2 > K1, this gives C(K2,T) − C(K1,T) > 0. At time 0, we long 1 share C(K1,T)

and short 1 share C(K2,T). This gives us positive amount of money. At the

maturity T, the value of our portfolio is (ST − K1)+ − (ST − K2)+ ≥ 0. So we get

positive profit. The case that K2 < K1 is the same.

(2) Suppose there exists T, K1 ≤ K2, such that C(K2,T)−C(K1,T)
K2−K1

< −1. Assume

K2 > K1, this gives C(K1,T) −C(K2,T) > K2 − K1 > 0. At time 0, we long 1 share

C(K2,T) and short 1 share C(K1,T). This gives us positive amount of money

greater than K2− K1. At the maturity T, the value of our portfolio is (ST − K2)+ −

(ST −K1)+ ≥ K1−K2. We have [(ST −K2)+− (ST −K1)+] + (K2−K1) ≥ 0. This means

we get positive profit. The case that K2 < K1 is the same.
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Vertical spread shows that the European call price is decreasing with respect

to the strike K and the decreasing rate cannot be too high.

Lastly, define butterfly spread as

C(
K1 + K2

2
,T) ≤

1
2

[C(K1,T) +C(K2,T)], ∀T,K1,K2.

This follow from the convexity of the payoff function of European call option.

Suppose there exists T, K1 ≤ K2, such that C( K1+K2
2 ,T) > 1

2[C(K1,T)+C(K2,T)].

At time 0, we long 1
2 share C(K1,T) and 1

2 share C(K2,T) and short 1 share

C( K1+K2
2 ,T). This gives us positive amount of money. At the maturity T, the

value of our portfolio is (ST −
K1+K2

2 )+ − 1
2[(ST − K1)+ + (ST − K2)+] > 0. So we get

positive profit.

Butterfly spread shows that the European call price is convex with respect to

the strike K.

Besides the three spread conditions above, we still need some other condi-

tions to exclude static arbitrage. One obvious condition is

C(K,T) ≥ 0, ∀K,T

and boundary conditions are

C(0,T) = S, ∀T,

C(K,0) = (S − K)+, ∀K.

Other than static arbitrage conditions, a further economically reasonable re-

quirement is that

lim
K→+∞

C(K,T) = 0, ∀T,
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which gives another boundary condition.

We end this section by a result for the other direction of the above conditions.

Fora given function C(K,T) ≥ 0, if it satisfies

1. C(K,T) is increasing with respect to T for any K,

2. C(K,T) is decreasing and convex with respect to K for any T, and

3. limK→+∞C(K,T) = 0 for any T and C(0,T) = S0.

Under these conditions there exists a martingale St, such that C(K,T) =

E[(ST − K)+], for all K,T. This means that C(K,T) is the price of the European

call option with strike K and maturity T, written on the underlying asset St.

The proof of this result depends on very deep theorems and very complicated

argument in analysis. Instead of giving the proof here, we refer to [25, 50, 73].

3.2 Shape Constraints from Static Arbitrage Conditions

We do want to exclude static arbitrage in our model for the call price surface.

Therefore some shape constraints are put on the call price surface by the static

arbitrage conditions. If we further assume some smoothness of the call price

surface C(K,T), these constraints can be written as

1.
∂C(K,T)
∂T

≥ 0,

2.
∂2C(K,T)
∂K2

≥ 0,

3. −1 ≤
∂C(K,T)
∂K

≤ 0, and

4. C(0,T) = S, C(K,0) = (S − K)+, lim
K→+∞

C(K,T) = 0, ∀K,T.

39



Constraints 1, 2 and 3 are the shape constraints and constraint 4 is the boundary

conditions.

These constraints are necessary conditions for a model of call price surface to

have no static arbitrage opportunity. What we care about more is the converse,

that is, the sufficient condition for a model without static arbitrage. According

to Gyöngy-Dupire theory [27, 37] for local volatility, if we have a surface C(K,T)

satisfying constraints 1, 2 and 4 above and some relax regularity conditions,

then we can define the local volatility:

σ(K,T) =
1
K

√√
2∂C(K,T)

∂T

∂2C(K,T)
∂K2

,

(note that here constraints 1 and 2 can guarantee σ(K,T) is well-defined) and set

dŜt = σ(Ŝt, t)ŜtdBt

and then C(K,T) can be viewed as the price of a European call option written

on underlying asset St with strike K and maturity S, where St has the same

marginal distribution as Ŝt. This coincides with the result in [12] that the 1-

dimensional marginal density (under risk-neutral measure) of the underlying

asset St is fully determined by the call price surface C(K,T)

fST (s) =
∂2C(K,T)
∂K2

∣∣∣∣∣∣
K=s

.

Actually after studying the 4 constraints above, we find that constraint 3 can

be implied from constraints 1, 2 and 4.

Proposition 1 Let C(K,T) be a twice differentiable function defined on [0,+∞) ×

[0,+∞). Suppose C(K,T) satisfies ∂C(K,T)
∂T ≥ 0, ∂2C(K,T)

∂K2 ≥ 0 and C(0,T) = S, C(K,0) =

(S − K)+, limK→+∞C(K,T) = 0, ∀K,T for some constant S ≥ 0. Then C(K,T) must

have satisfy −1 ≤ ∂C(K,T)
∂K ≤ 0.
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Proof. First, we claim that
∂C(K,T)
∂K

≥ −1.

From constraint 2, we know that ∂C(K,T)
∂K is increasing. So we just need to show

that
∂C(K,T)
∂K

∣∣∣∣∣
K=0
≥ −1.

Note that C(K,T) is increasing with respect to T, then

C(K,T) −C(0,T)
K − 0

=
C(K,T) − S

K
≥

(S − K)+ − S
K

≥ −1, ∀K > 0.

Hence
∂C(K,T)
∂K

∣∣∣∣∣
K=0
= lim

K→0+

C(K,T) −C(0,T)
K − 0

≥ −1.

Then, we claim that
∂C(K,T)
∂K

≤ 0.

Suppose there ∃K0, s.t.
∂C(K,T)
∂K

∣∣∣∣∣
K=K0

> 0.

By constraint 2, we have

∂C(K,T)
∂K

> 0, ∀K ≥ K0.

This contradicts the condition in constraint 4 that

lim
K→+∞

C(K,T) = 0.

�

The goal becomes to build factor models for the call price surface C(K,T)

satisfying shape constraints

1.
∂C(K,T)
∂T

≥ 0;
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2.
∂2C(K,T)
∂K2

≥ 0;

3. C(0,T) = S, C(K,0) = (S − K)+, lim
K→+∞

C(K,T) = 0, ∀K,T.

Now the reason why we choose call price surface instead of Black-Scholes

implied volatility to model is obvious. By some simple computations, we see

that if we choose implied volatility, the shape constraints 1 and 2 become

St

√
T − te−

d2
1
2

√
2π

∂σBS
t

∂T
+

σBS
t St

2
√

2π(T − t)
≥ 0

and
St

√
T − te−

d2
1
2

√
2π

∂2σBS
t

∂K2
+

Std1e−
d2
1
2

√
2πKσBS

t

∂σBS
t

∂K
+

Ste−
d2
1
2

√
2π(T − t)K2σBS

t

≥ 0,

where σBS
t is the Black-Scholes implied volatility computed by inverting the

Black-Scholes formula for call price.

These shape constraints are much more complicated and difficult to deal

with than in the call price surface case.

We look at in the next section how to incorporate these shape constraints

with the centered and uncentered Karhunen-Loéve decomposition.

3.3 Incorporating Shape Constraints with Karhunen-Loéve De-

composition

Following the notations in chapter 2, we use U(x) to denote the call price surface.

Here x = (x1, x2) = (K,T) ∈ [a,b] × [c,d] = A ⊂ R2. Here we assume (K,T) ∈

[a,b] × [c,d] = A instead of [0,+∞] × [0,+∞], because we can only observe call
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price with (K,T) ∈ {(Ki ,T j), i = 1,2, · · ·M, j = 1,2, · · ·N} ⊂ [a,b] × [c,d]. Also

to apply the results in Chapter 2, K(x, y) in section 2.1 and M(x, y) in Section 2.2

must be defined over bounded range to make the operators K andM compact.

Now we have the call price surface U(x) = U(ω, x1, x2) ∈ L2(Ω × A). However

we still need some smoothness for U(x) so that we can represent the no static

arbitrage conditions into the shape constraints in Section 3.2. This is to say that

U(x) has to be at least twice differentiable. It is tempting to require that U(x) ∈

L2(Ω) ⊗ (L2(A) ∩ C2(A)). However this is not correct since L2(A) ∩ C2(A) is not a

well-defined Hilbert space. Strictly speaking, we need to require that U(x) is an

element in the Sobolev space L2(Ω) ⊗ H2,2(A) and the derivative is taken in the

Schwartz-Sobolev sense instead of the usual sense. The details requires much

further knowledge in functional analysis and very complicated. To make things

easy and clear, we simply assume that U(x) = U(ω, x1, x2) ∈ L2(Ω × A) and it

has second order derivative with respect to x1 and first order derivative with

respect to x2. This will not affect the procedure and the results. We refer the

readers interested in these functional analysis details to [64, 76].

In the centered Karhunen-Loéve expansion, U(x) is represented as

U(x) = u(x) +
∞∑

i=1

Ui fi(x)

and we truncate this infinite series to get an N-factor model

U(x) ≈ u(x) +
N∑

i=1

Ui fi(x),

where u(x) = E(U(x)), Ui’s are random variables and fi’s are orthogonal normal-

ized functions.

From the discussions in Section 3.2, we know that U(x1, x2) satisfies shape
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constraints
∂2U

∂x2
1

≥ 0,
∂U
∂x2
≥ 0.

However, these constraints might be violated by the N-factor model u(x) +∑N
i=1 Ui fi(x) since it is just an approximation to the original U(x) with difference∑∞
i=N+1 Ui fi(x).

It is easy to see that the center u(x) still satisfy the shape constraints

∂2u

∂x2
1

=
∂2

∂x2
1

E(U(x1, x2)) = E

[
∂2U(x1, x2)

∂x2
1

]
≥ 0,

∂u
∂x2
=

∂

∂x2
E(U(x1, x2)) = E

[
∂U(x1, x2)

∂x2

]
≥ 0.

However, the eigenmodes fi(x1, x2) generally does not satisfy these constraints.

We need to modify this N-factor model from Karhunen-Loéve expansion to ex-

clude the static arbitrage opportunity. This is done by modifying the eigen-

modes. We first investigate each fi , i = 1,2, · · · ,N to see if they satisfy the shape

constraints. For those violating the constraints, we look at how they violate

them and use modified eigenmodes to replace them. These modified eigenfunc-

tions are computed by constrained spline functions. We discuss this in details

on the simulated data set in the next chapter.

In the uncentered Karhunen-Loéve expansion, things are similar. U(x) is

represented as

U(x) =
∞∑

i=1

Vigi(x)

and we truncate this infinite series to get an N-factor model

U(x) ≈
N∑

i=1

Vigi(x).

We do not have the u(x) term as in the centered case. However, we can show

that the first eigennmode g1 satisfies the shape constraints.
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First, from the construction of g1 we know that g1(x) ≥ 0, ∀x ∈ A or g1(x) ≤

0, ∀x ∈ A. Otherwise g1 will not correspond to the largest eigenvalue η1 ofM.

We omit the details for this step here since it involves the construction in the

Hilbert-Schmidt procedure. Again we refer to [64, 76]. Hence we can choose

g1 ≥ 0, otherwise we can simply take −g1.

Note thatM(g1) = η1g1, so we have

∂g1

∂x2
1

=
1
η1

∂M(g1)

∂x2
1

=
1
η1

∂

∂x2
1

∫
A

M(x1, x2, y1, y2)g1(y1, y2)dy1dy2

=
1
η1

∫
A

∂

∂x2
1

M(x1, x2, y1, y2)g1(y1, y2)dy1dy2.

We know that

U(x1, x2) ≥ 0,
∂2U

∂x2
1

≥ 0.

Then we have

∂

∂x2
1

M(x1, x2, y1, y2) =
∂

∂x2
1

E
[
U(x1, x2)U(y1, y2)

]
= E

[
∂

∂x2
1

U(x1, x2)U(y1, y2)

]
≥ 0.

This together with g1(x1, x2) ≥ 0 and η1 ≥ 0 give

∂g1

∂x2
1

=
1
η1

∫
A

∂

∂x2
1

M(x1, x2, y1, y2)g1(y1, y2)dy1dy2 ≥ 0.

The constraint ∂g1

∂x2
≥ 0 can be proved similarly.

Also notice that

V1 = 〈U(x),g1(x)〉 =
∫

A
U(x)g1(x)dx≥ 0.
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We can see that if we use 1-factor model U(x) ≈ V1g1(x) for the call price surface

U(x), then the shape constraints for no static arbitrage are satisfied. However,

1-factor model is hardly expected to have more capability than stochastic mod-

els there are 2 random factor drive the call price in most stochastic models, one

from the Brownian motion drives the underlying and the other from the Brow-

nian motion drives the spot volatility. Hence we should use N-factor model

with N ≥ 3. Then the N-factor model
∑N

i=1 Vigi(x) needs to be modified since the

eigenmodes gi , i ≥ 2 would not satisfy the shape constraints generally.

We can incorporate the shape constraints into the optimization formulation

in section of uncentered Karhunen-Loéve decomposition and investigate this

problem in a more geometric way. The N-factor model we want can be viewed

as the solution of a constrained optimization problem over an (infinite dimen-

sional) Hilbert space L2(Ω × A) (actually, more accurately, the Sobolev space

L2(Ω) ⊗ H2,2(A)):

min
Y∈L2(Ω×A)

∫
A
E[(Y(x) − U(x))2]dx

s.t. Y(x) has ”rank”N

∂2Y(ω,x1,x2)
∂x2

1
≥ 0, ∂Y(ω,x1,x2)

∂x2
≥ 0.

(3.1)

Consider the subset corresponding to the first constraint in (3.1): RN = {Y ∈

L2(Ω × A) |Yhas rankN} ⊂ L2(Ω × A). If the first constraint is the only constraint,

then the solution would be the projection of U(x) on the subset RN. Although it

is to see that RN is not convex, we can still solve this problem by the Karhunen-

Loéve procedure—-the solution is just the N-truncated expansion.

Consider the subset corresponding to the second constraint in (3.1): C = {Y ∈

L2(Ω×A) | ∂
2Y
∂x2

1
≥ 0, ∂Y

∂x2
≥ 0} ⊂ L2(Ω×A). If the first constraint is the only constraint,
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then the solution would be the projection of U(x) on the subset C. C is a closed

and convex. While the convexity is obvious, the closeness need some technical

argument in functional analysis, which we omit here.

When combining these two constraints together, the solution is the projec-

tion of U(x) on the subsetRN∩C. It seems that the subsetRN∩C does not have any

good property. A heuristic approach is then the alternating projection. The idea

is to start from U(x) and iteratively project it first onto one subset (C or RN) and

then onto the other. Since we have the Karhunen-Loéve procedure and the pro-

jection onto a closed convex subset is relatively easy, each step in this alternating

projection procedure would not be difficult. However, the problem is that there

is no guarantee for the convergence with this approach. Existing results show

that under some regularity conditions, alternating projection method converges

locally with a linear rate [53, 54]. But these results are for finite dimensional

spaces / manifolds and need some smoothness / differential structures, which

is not the case in our problem setup. Therefore we do not apply the alternating

projection method but we use the same strategy as in the centered Karhunen-

Loéve case, that is, modifying the eigenmodes gi , ∀i = 2,3, · · · ,N. More details

about this is given in the next chapter.
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CHAPTER 4

SOME NUMERICAL ANALYSIS

4.1 Introduction

In the last two chapters, we built the mathematical framework for the centered

and uncentered Karhunen-Loéve decomposition and discussed the shape con-

straints that should be put on the eigenmodes in the model for all price surface.

Now we investigate how this method works on a simulated data set, which

might enlighten the application in practice. The whole procedure is:

1. Apply centered and uncentered Karhunen-Loéve decompositions to ana-

lyze a simulated data set for samples of European call option price with different

strikes and maturities, finding the factors and the eigenmodes.

2. See how the eigenmodes violate the shape constraints, justifying our dis-

cussions in Chapter 3.

3. Use constrained spline method to modify these eigenmodes.

Details of the simulation procedure and the data set is given in Section 4.2.

Then we discuss some issues about the implementation of Karhunen-Loéve de-

composition in Section 4.3. Section 4.4 contains the details about how to modify

the eigenmodes which violate the shape constraints. Finally, some numerical

results are summarized in Section 4.5.
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4.2 Description of Simulated Data

We simulate the samples of the underlying asset price and the European call

price from the well-known Heston model [42]. The main advantage with this

model is that there is a semi-analytical formula for the European call price if

the underlying price dynamics follows Heston model, which is the main reason

why this model is popular in financial industry. Here semi-analytical formula

means that an explicit expression for the Fourier transform (or characteristic

function) of the European call price with strike K and maturity T is available.

Carr and Madan [18] propose a method to value call options with fast Fourier

transform (FFT) when the characteristic function of the call price is known an-

alytically. This method is much quicker than using a numerical integration es-

pecially when we deal with many options with different strikes and maturities

simultaneously. We give a description (without proofs) of this method and ap-

ply it to simulate the call price data.

Recall that the underlying dynamics in Heston model is described by

dSt = µStdt+
√

VtStdB1
t ,

dVt = κ(θ − Vt)dt+ σ
√

VtdB2
t ,

〈B1
t , B

2
t 〉 = ρt.

(4.1)

Using FFT, the price of European call option is given by

C(K,T) =
exp(−α logK)

π

∫ +∞

0
exp(−iv logK)

ψ(v− (α + 1)i, κ, θ, σ, ρ,S,V)
α2 + α − v2 + i(2α + 1)v

dv.

In this formula, i is the imaginary unit, α is a dampening parameter for FFT,

ψ(u, κ, θ, σ, ρ,S,V) is a function of u with parameters κ, θ, σ, ρ,S,V. The parame-

ters κ, θ, σ, ρ are given in Heston model in (4.1) and S,V are the level of underly-

ing and the variance at the time point that the call price is evaluate. The function
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ψ is defined as

ψ(u, κ, θ, σ, ρ,S,V) = exp(iu logS +C + DV),

where

C =
θκ

σ2

[
(κ − ρσiu − d)T − 2 log(

1− gexp(−dT)
1− g

)

]
,

D =
(κ − ρσiu − d)(1− exp(−dT))

σ2(1− gexp(−dT))
,

d =
√

(κ − ρσiu)2 + σ2(iu + u2),

g =
κ − ρσiu − d
κ − ρσiu + d

.

The data set is divided into 2 groups. In each group, 10000 samples of un-

derlying price and variance are simulated with parameters κ = 2, θ = 0.04, σ =

0.1, ρ = −0.25,S0 = 1,V0 = 0.04 at time t = 0.25 (year) (group 1), and

κ = 2, θ = 0.04, σ = 0.2, ρ = −0.4,S0 = 1,V0 = 0.04 at time t = 0.25 (group 2).

Note that here the parameter ρ should be negative to match the empirically ob-

served stylized facts in equity derivative market [42]. Then call option prices

are computed using the formula above based on these 2 groups of simulated

underlying price and variance. Strikes are chosen to be from 0.8 to 1.2 with grid

0.1 and maturities are chosen to be from 0.5 to 2.75 with grid 0.25. Actually, if

standing at time t = 0, the maturities is from 0.75 to 3.

Now in each group, we have 10000 samples of call price at t = 0.25 with 50

different pairs of strike and maturity (5 strikes and 10 maturities). These can be

viewed as samples of 50 points on a random surface C(K,T). We simulate sam-

ples of 50 points instead of the whole surface because we can only observe call

price with finitely many strikes and maturities in the market. After simulating

10000 samples, we find that there are several (less than 10) small negative values

for the call price. These unreasonable values are due to the numerical errors in
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the computation procedure, especially in the numerical integration procedure.

We use 5000 samples (each sample containing 50 call prices with different strikes

and maturities), which are all positive, out of the total 10000 for the proceeding

numerical analysis and compare the results between 2 groups with different

paramters.

The data set above is simulated with Matlab. All the codes are presented in

the Appendix A.

4.3 Numerical Implementation Details for Karhunen-Loéve

Procedure

4.3.1 Standard Implementation

As discussed in Section 2.1 and Section 2.2, performing centered and uncen-

tered Karhunen-Loéve decompositions are formally eigenvalue problems for

operators K and M in L2(Ω × A). The standard method for solving this kind

of problem is to reduce them to finite dimensional problems with the stochastic

Galerkin procedure [36].

Taking the operator K and the basis { fi} for example, the idea of Galerkin

method is to expand each eigenfunction fi on some basis {hi} and to take the

truncated sum of first J terms

fi(x) ≈
J∑

j=1

ai j hi(x).
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Substituting the truncated sum into the equation

K( fi)(x) =
∫

A
K(x, y) fi(x, y)dy= λi fi(x)

yields an error term

εiJ =

∫
A

K(x, y)
J∑

j=1

ai j hi(y)dy− λi

J∑
j=1

ai j hi(x) =
J∑

j=1

ai j

(∫
A

K(x, y)hi(y)dy− λihi(x)

)
.

The Galerkin method consists in requiring that the error term εiJ be orthogonal

to h1,h2, · · · , hJ. The orthogonality condition can be written as a system of linear

equations, the solution of which gives the coefficients ai j and an approximation

λ̂i of the true eigenvalue λi .

When applied to our problem, there are several defects with this standard

implementation procedure.

1. The results of stochastic Galerkin procedure heavily depends on the choice

of the number and forms of the basis functions in the expansion. However, there

is no optimal way to select {hi} and J.

2. It is possible that the operatorK has infinitely many (countable) eigenval-

ues. However, the Galerkin method can only give at most J approximations of

them. This causes problem when we analyze the variances.

3. It is difficult to control the error in the results given by solving the orthog-

onality condition.

4. Remember that we do not observe the samples of the whole random sur-

face U(x1, x2) = C(K,T), (K,T) ∈ [a,b] × [c,d], but only the sample of the random

matrix Ui j = C(Ki ,T j) where the entries are points on the surface. Especially,

in the simulated data set, there are 5000 samples for a 5 × 10 random matrix (5
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strikes and 10 maturities). In order to obtain K andM, we need to first interpo-

late or smooth the discrete data. This makes the results depend heavily on the

choice of the interpolation / smoothing.

Due to these defects, we apply another implementation procedure, which is

described in the next section.

4.3.2 2-Dimensional Array PCA Implementation

Notice that in the simulated data set, as well as in practice, what we have is

discrete data, instead of whole surface of call price. This makes it reasonable

to reduce the centered and uncentered Karhunen-Loéve procedures for random

surfaces to the PCA and spectral decomposition procedures for random matri-

ces. However, what is different from the usual PCA is that we deal with samples

for random matrix instead of random vector. Formally, we expand the 5 × 10

random matrix C(Ki ,T j) as

C(Ki ,T j) = c(Ki ,T j) +
50∑
l=1

Ul fl(Ki ,T j)

and

C(Ki ,T j) =
50∑
l=1

Vlgl(Ki ,T j)

where c(Ki ,T j) = E(C(Ki ,T j)), fl and gl are the ”eigenmatrix” of the four dimen-

sional arrays Cov(C(Ki ,T j)C(Km,Tn)) and E(C(Ki ,T j)C(Km,Tn)).

We should mention here that one important reason why this reduction can

be performed is that all the samples are with the same grid of strikes and matu-

rities. This might not be true in the real market observed data, since the strikes
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and maturities, especially the strikes, of the liquidly traded call options in the

market might change everyday.

Since R5×10 is equivalent to R50 as inner product spaces (finite dimensional

Hilbert spaces) and hence L2(Ω) ⊗ R5×10 is equivalent to L2(Ω) ⊗ R50 as Hilbert

spaces, the procedures can be further reduced to the centered and uncentered

PCA for the 50×1 random vector U. This is done by viewing those 5×10matrices

as 50× 1 vectors. Results are presented in Section 4.4.

After computing the eigenvectors, we change them back to the matrix form

and interpolate or smooth them to get the eigenmode surfaces. In this proce-

dure, there is no information lost again because all the samples are with the

same grid of strikes and maturities.

All data analysis in Section 4.5 is performed with the statistical software R.

All the codes are presented in the Appendix B and C.

4.4 Shape Constrained Eigenmodes

What remains now is to interpolate or smooth the eigenmode matrices to sur-

faces. This is not the usual interpolation / smoothing, since the resulting surface

are supposed to satisfy the shape constraints in Section 3.2. First and second or-

der derivatives are involved in these constraints.

We do not develop new methods or techniques for constrained interpolation

or smoothing, since this is not the focus of our research. Some methods has been

proposed for interpolate or smooth discrete data set of call prices or implied

volatilities to the whole surface satisfying some shape constraints [1, 14, 47]. We
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apply the constrained quantile B-splines [40, 60] and implement this method

with the ”cobs” package in R.

A note here is that this ”cobs” method, as well as other method, are mostly

for smoothing 1-dimensional data to curves, but not for high-dimensional cases.

However, we can still apply this method since our final goal is to getting the de-

scription of the spot volatility σt from implied volatility σBS
t (K,T), as mentioned

in section 1.2.1. The connection comes from the relation

lim
T−t→0

σBS
t (St,T) = σt

where St is the price of the underlying (that is, the implied volatility is got from

at the money call option). Hence we only need to analyze and modify the eigen-

modes fi(K,T) and gi(K,T) at K = S0 and get modified eigenmode functions

f̂i(S,T) and ĝi(S,T).

Again we need to mention that this method is possible for simulated data

since the the samples for at the money call prices are with the same strike S0.

However, when considering real market data, one problem is that the strike for

at the money call is always changing since the underlying price is not constant.

4.5 Numerical Analysis Results

4.5.1 Centered Karhunen-Loéve Decomposition

We apply the usual (centered) Karhunen-Loéve expansion to the simulated data

set described in Section 4.2.
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For the first group of data (κ = 2, θ = 0.04, σ = 0.1, ρ = −0.25,S0 = 1,V0 =

0.04), the centering matrix is shown in Table 4.1 and Table 4.2.

0.5 0.75 1.0 1.25 1.5
0.8 0.206236715 0.211036421 0.2159182 0.220755026 0.225496158
0.9 0.126418897 0.135023409 0.14284645 0.150060693 0.156785685
1.0 0.067869918 0.078427562 0.087722099 0.096119989 0.103837349
1.1 0.031841285 0.041461899 0.050213214 0.058285776 0.065811279
1.2 0.013178614 0.020123966 0.026995352 0.033681049 0.040147742

Table 4.1: Centering (mean) matrix in PCA (part): Strikes: 0.8, 0.9, 1.0, 1.1, 1.2;
Maturities: 0.5, 0.75, 1.0, 1.25, 1.5. Group 1

1.75 2.0 2.25 2.5 2.75
0.8 0.23012068 0.234622983 0.239004135 0.243267778 0.24741926
0.9 0.163107236 0.169088504 0.174777693 0.18021255 0.185423413
1.0 0.111015334 0.117751677 0.124117418 0.13016629 0.135940059
1.1 0.072883853 0.079573771 0.085934739 0.092009094 0.097830758
1.2 0.04639123 0.052419399 0.058244382 0.063879683 0.069338641

Table 4.2: Centering (mean) matrix in PCA (part): Strikes: 0.8, 0.9, 1.0, 1.1, 1.2;
Maturities: 1.75, 2.0, 2.25, 2.5, 2.75. Group 1

As discussed in Section 3.3, the centering matrix satisfies the shape con-

straints. This can be justified from the above tables. We then interpolate

the mean (a 5 × 10 matrix) into a surface with the usual (unconstrained) 2-

dimensional spline functions, which is illustrated in Figure 4.1.

It is easy to see that this surface satisfies the shape constraints, that is, in-

creasing with respect to the maturity and convex with respect to the strike.

The principal components might violate the shape constraints. For example,

it is easy to see from Figure 4.3 that the at the money (K = S0 = 1) part of

the first component in PCA is decreasing with respect to T. Constrained spline

functions are used for smoothing to avoid the violation of the shape constraints.

The result is shown in Figure 4.4. Notice that in Figure 4.4, the curve becomes a
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Figure 4.1: Surface interpolated from the center matrix in PCA, with uncon-
strained spline functions. Group 1

horizontal line. The discrete data is strictly decreasing, for which an increasing

curve is fitted in. Hence the best result is a constant line.

For the second component, Figure 4.7 shows that at the money part is in-

creasing with respect to T, satisfying the constraint. Since the shape constraints

are not violated, usual (unconstrained) spline functions can be applied for

smoothing and the result is shown in Figure 4.8.

Component 1 Component 2 Component 3
Standard deviation 0.4224074 0.034211851 0.0057996510

Proportion of Variance 0.9932649 0.006515611 0.0001872431
Cumulative Proportion 0.9932649 0.999780482 0.9999677254

Table 4.3: Summary of the first 3 components in PCA. Group 1

The case for the third component is similar to the first one above. From
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Figure 4.2: Surface interpolated from the center matrix in PCA, with uncon-
strained spline functions. Group 2

Table 4.3, we find that the first 3 components can explain more than 99.9% of

the variance, which means that the factor model built from these 3 factors is

quite good.

For the second group of data (κ = 2, θ = 0.04, σ = 0.2, ρ = −0.4,S0 = 1,V0 =

0.04), again the centering matrix satisfies the shape constraints. We interpo-

late the center (a 5 × 10 matrix) into a surface with the usual (unconstrained)

2-dimensional spline functions, which is illustrated in Figure 4.2.

It is easy to see that this surface satisfies the shape constraints, that is, in-

creasing with respect to the maturity and convex with respect to the strike.

Again, the principal components might violate the shape constraints. For ex-

ample, it is easy to see from Figure 4.5 that the at the money (K = S0 = 1) part of
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Figure 4.3: At the money (K = S0 = 1) part of the first component in PCA. Group
1

the first component in PCA is decreasing with respect to T. Constrained spline

functions are used for smoothing to avoid the violation of the shape constraints.

The result is shown in Figure 4.6.

For the second component, Figure 4.9 shows that at the money part is in-

creasing with respect to T, satisfying the constraint. Since the shape constraints

are not violated, usual (unconstrained) spline functions can be applied for

smoothing and the result is shown in Figure 4.10.

Component 1 Component 2 Component 3
Standard deviation 0.4191405 0.038507003 0.007283338

Proportion of Variance 0.9912550 0.008366535 0.000299314
Cumulative Proportion 0.9912550 0.999621502 0.999920816

Table 4.4: Summary of the first 3 components in PCA. Group 2

The case for the third component is similar to the first one above. From

Table 4.4, we find that the first 3 components can explain more than 99.9% of

the variance, which means that the factor model built from these 3 factors is
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Figure 4.4: At the money (K = S0 = 1) part of the first component in PCA,
smoothed by constrained spline functions. Group 1

quite good.

Comparing the results for 2 groups of data, high similarity can be seen. This

means that the pattern displayed in the centered Karhunen-Loéve procedure

might not depend on the parameters in the model, but from some features of

the model itself.

4.5.2 Uncentered Karhunen-Loéve Decomposition

We apply the uncentered Karhunen-Loéve expansion to the simulated data set

described in Section 4.2.

For the first group of data (κ = 2, θ = 0.04, σ = 0.1, ρ = −0.25,S0 = 1,V0 =

0.04), the first eigenmode matrix is shown in Table 4.5 and Table 4.6. Actually

what the tables show are the negative of what R gives as the first eigenmode.
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Figure 4.5: At the money (K = S0 = 1) part of the first component in PCA. Group
2

We take the negative to make the all the entries positive.

0.5 0.75 1.0 1.25 1.5
0.8 0.211972486 0.215167846 0.2186403 0.222224949 0.225837716
0.9 0.137477988 0.144092313 0.150306915 0.156155154 0.161682213
1.0 0.078901414 0.088132264 0.096285616 0.103665852 0.110455401
1.1 0.039769422 0.049199741 0.057589069 0.065217703 0.072258027
1.2 0.017688535 0.025217605 0.032347909 0.039092296 0.045487585

Table 4.5: First eigenmode matrix in uncentered Karhunen-Loéve (part): Strikes:
0.8, 0.9, 1.0, 1.1, 1.2; Maturities: 0.5, 0.75, 1.0, 1.25, 1.5. Group 1

As discussed in section 3.3, the first eigenmode satisfies the shape con-

straints. This can be justified from the above tables. We then interpolate it

(a 5 × 10 matrix) into a surface with the usual (unconstrained) 2-dimensional

spline functions, which is illustrated in Figure 4.11. Again it is easy to see that

this surface satisfies the shape constraints, that is, increasing with respect to the

maturity and convex with respect to the strike.

However, again the other eigenmodes might violate the shape constraints.
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Figure 4.6: At the money (K = S0 = 1) part of the first component in PCA,
smoothed by constrained spline functions. Group 2

1.75 2.0 2.25 2.5 2.75
0.8 0.229433052 0.232987026 0.236487125 0.239926299 0.243301727
0.9 0.166929304 0.171931157 0.176716703 0.181309828 0.185730819
1.0 0.116774923 0.122708476 0.128317522 0.133648748 0.138738553
1.1 0.078825305 0.08500143 0.090846913 0.096408116 0.101721439
1.2 0.051571812 0.057379763 0.062941428 0.068282539 0.073425047

Table 4.6: Second eigenmode matrix in uncentered Karhunen-Loéve (part):
Strikes: 0.8, 0.9, 1.0, 1.1, 1.2; Maturities: 1.75, 2.0, 2.25, 2.5, 2.75. Group 1

For example, it is easy to see from Figure 4.12 that the at the money (K = S0 = 1)

part of the third component in uncentered Karhunen-Loéve decomposition is

not increasing with respect to T.

Constrained spline functions are used for smoothing to avoid the violation

of the shape constraints. The result is shown in Figure 4.13.

The second eigenmode is similar to the first and third components in PCA

in Section 4.5.1.
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Figure 4.7: At the money (K = S0 = 1) part of the second component in PCA.
Group 1

For the second group of data (κ = 2, θ = 0.04, σ = 0.2, ρ = −0.4,S0 = 1,V0 =

0.04), again the first eigenmode satisfies the shape constraints. We interpolate

it (a 5× 10 matrix) into a surface with the usual (unconstrained) 2-dimensional

spline functions, which is illustrated in Figure 4.14. Again it is easy to see that

this surface satisfies the shape constraints, that is, increasing with respect to the

maturity and convex with respect to the strike.

The other eigenmodes might violate the shape constraints. For example, it

is easy to see from Figure 4.15 that the at the money (K = S0 = 1) part of the

third component in uncentered Karhunen-Loéve decomposition is not increas-

ing with respect to T. Constrained spline functions are used for smoothing to

avoid the violation of the shape constraints. The result is shown in Figure 4.16.

The second eigenmode is similar to the first and third components in PCA in

Section 4.5.1.
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Figure 4.8: At the money (K = S0 = 1) part of the secon component in PCA,
smoothed by usual (unconstrained) spline functions. Group 1

Comparing the results for 2 groups of data, high similarity can be seen again.

This means that the pattern displayed in the centered Karhunen-Loéve proce-

dure might not depend on the parameters in the model, but from some features

of the model itself.

From the results above, it can be seen that centered and uncentered

Karhunen-Loéve decompositions might identify components and eigenmodes

independent with the model parameters, but capturing some nature features of

structure in the data set itself.
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Figure 4.9: At the money (K = S0 = 1) part of the second component in PCA.
Group 2
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Figure 4.10: At the money (K = S0 = 1) part of the secon component in PCA,
smoothed by usual (unconstrained) spline functions. Group 2
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Figure 4.11: Surface interpolated from the first eigenmode in uncentered
Karhunen-Loéve, with unconstrained spline functions. Group 1
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Figure 4.12: At the money (K = S0 = 1) part of the third component in uncen-
tered Karhunen-Loéve. Group 1
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Figure 4.13: At the money (K = S0 = 1) part of the third component in uncen-
tered Karhunen-Loéve, smoothed by constrained spline functions. Group 1
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Figure 4.14: Surface interpolated from the first eigenmode in uncentered
Karhunen-Loéve, with unconstrained spline functions. Group 2
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Figure 4.15: At the money (K = S0 = 1) part of the third component in uncen-
tered Karhunen-Loéve. Group 2
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Figure 4.16: At the money (K = S0 = 1) part of the third component in uncen-
tered Karhunen-Loéve, smoothed by constrained spline functions. Group 2
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CHAPTER 5

SUMMARY AND FUTURE RESEARCH

5.1 A Brief Summary

Exotic option pricing and hedging has long been the central topic in mathe-

matical finance. The oversimplification and incapability of Black-Scholes model

has led to a considerable literature on alternative option pricing models. The

goal of this thesis is to move a step forward in the direction of market-based

approach for exotic option pricing and hedging, which is a recently developed

methodology in this area. We first build factor models for European call option

price surface based on centered and uncentered Karhunen-Loéve decomposi-

tions, and then transform it to the Black-Scholes implied volatility. Since the

spot volatility can be described by the asymptotic behavior of implied volatility,

the models for implied volatility can give a description of the market dynamics

and hence help pricing and hedging for exotic options.

In Chapter 2, a rigorous mathematical framework for Karhunen-Loéve de-

composition is given and a variant of it, the uncentered Karhunen-Loéve de-

composition is developed. In Chapter 3, we discuss the static arbitrage con-

straints for call option price surface in details and proposes methods to incorpo-

rate these shape constraints into the centered and uncentered Karhunen-Loéve

procedures. In Chapter 4, we apply the methodologies discussed in chapter 2

and chapter 3 to a simulated data set of call price surface samples. Some numer-

ical analysis results is reported for samples simulated from Heston model with

2 different groups of parameters. Analysis and comparision for these results is

carried out.
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5.2 Some Future Research Directions

5.2.1 Real Data Issues

Real data is not dealt with in this thesis since there are many realistic issues

which may seriously affect the results when considering real market observed

data. These issues are very complicated and beyond the scope of this thesis.

However, they are important for the implementation of the market-based ap-

proach in practice. We list several of them below for future research.

1. How to determine which call option is liquidly traded and which is not?

The idea of market-based approach relies on the fact that call options are liq-

uidly traded in the market and the prices of them can be directly quoted. How-

ever, in practice, one can find that only several call options, with particular

strikes and maturities, have large trading volumes in the market, while other

call options’ trading volume are very small, even 0 in some cases. Hence it is

important to propose realistic criteria for the liquidity of call options. A call op-

tion is liquidly traded or not should be determined according to these criteria.

The proposition for these criteria relies on empirical research on the real data

from call option market. Also economic analysis on the supply and demand for

call options might be helpful.

2. Bid-ask spread (also known as buy-sell spread). It is known that there is

a difference between the prices quoted (either by a single market maker or in a

limit order book) for an immediate sale (ask) and an immediate purchase (bid)

for call options (actually, for most kind of securities) in the market. A problem

is what price we should use as the input in the market-based approach. The
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use of any prices other than the ask price might cause problem when hedging

if performed, since the call option needed might not be available in the market

with that price. Similarly, using just the ask price might give overvaluation of

the options. Also the size of the bid-ask spread in a security is one measure of

the liquidity of the market and of the size of the transaction cost. So the bid-ask

spread issue might be related to the liquidity issue. However, we do observe

call options in the market with relatively large bid-ask spread and small trading

volume. The real situation might be very complicated.

3. In the real data for call option prices, there is special structures. The sam-

ple is from a time series of daily prices of call options quoted from the market.

The strike and maturities for liquidly traded call options usually changes every

trading day, which means that the strikes and maturities in each sample are dif-

ferent. Special statistical estimators and procedures, especially for the surface

interpolation / smoothing and covariance estimation, should be developed for

this structure.

5.2.2 The General Structure of Market-Based Approach

There are many interesting topics in the general structures of the market-based

approach. Several of them are listed here.

1. Can we go beyond the Brownian motion setup? For example, a few re-

search has been done on adding jumps to the stochastic volatility models and lo-

cal volatility model. Inspiring by this, we might try to add jumps in the market-

based approach framework to generalize the Brownian motion assumption.
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2. Market completeness. It is well-known that the market completeness can

be related with the uniqueness of pricing measure (equivalent local martingale

measure) by the second fundamental theorem in asset pricing. European call

options are added as the primary securities in the market based approach and

this enlarges the set of attainable claims. On the other hand, the adding of these

call options also shrink the set of pricing measures. It is interesting to investigate

the relations between these two sets and how much these call options improve

the market completeness in the model.

3. Consistency problem. In HJM model, it is possible to determine all the

possible finite factor models from a geometric point of view, i.e. the finite-

dimensional realizations. Similarly, it would be interesting to ask if this can

be done in the market-based approach. Actually, this problem is expected to be

difficulty since the system of SDE is much more complicated for the call price

surfaces than for the forward rate curves. However, this is no doubt an interest-

ing problem in the market-based approach framework.
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APPENDIX A

MATLAB CODE FOR DATA SIMULATION

This part gives all the Matlab code generating data set described in section

4.2.

10000 samples of pairs of the underlying price and variance are simulated in

Heston model with parameters κ = 2, θ = 0.04, σ = 0.1, ρ = −0.25,S0 = 1,V0 =

0.04. Then the call option prices are computed from these underlying prices

and variances with the same parameters. The Matlab code is given below. For

another group of data, with parameters κ = 2, θ = 0.04, σ = 0.2, ρ = −0.4,S0 =

1,V0 = 0.04, the code is similar.

Code for simulating underlying price and variance:

function [ HestonSample ] = HestonSim( kappa, theta, sigma, rho, S0, V0, t, N,

rep )

V = [V0*ones(rep, 1), zeros(rep, N)];

S = [S0*ones(rep,1),zeros(rep, N)];

NormRand1 = randn(rep, N);

NormRand2 = randn(rep, N);

dt = t / N;

for i = 1 : N

S(:, i+1) = S(:, i) + sqrt(V(:, i)) .∗ S(:, i) .∗ NormRand1(:, i) ∗ sqrt(dt);

V(:, i+1) = V(:, i) + kappa ∗ (theta-V(:, i)) ∗ dt + sigma ∗ sqrt(V(:,i)) .∗ (rho ∗Norm-

Rand1(:, i) + sqrt(1-rho∧2)∗ NormRand2(:, i)) ∗ sqrt(dt);

V(:, i+1) = abs(V(:, i+1));

end
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HestonSample = [S(:, N+1), V(:, N+1)];

end

HestonSample = HestonSim(2, 0.04, 0.2, -0.4, 1, 0.04, 0.25, 1000, 10000);

Code for computing call prices:

function [ phi ] = phiHeston( kappa, theta, sigma, rho, u, T, S, V )

d = sqrt( (rho ∗ sigma ∗ 1i ∗ u - kappa) ∧ 2 + sigma ∧ 2 ∗ (1i ∗ u + u ∧ 2) );

g = (kappa - rho ∗ sigma ∗ 1i ∗ u - d) / (kappa - rho ∗ sigma ∗ 1i ∗ u + d);

C = (theta ∗ kappa / sigma ∧ 2) ∗ ( (kappa - rho ∗ sigma ∗ 1i ∗ u - d) ∗ T - 2 ∗

log((1 - g ∗ exp(-d ∗ T)) / (1-g)) );

D = (kappa - rho ∗ sigma ∗ 1i ∗ u -d) ∗ (1 - exp(-d ∗ T)) / (1 - g ∗ exp(-d ∗ T)) /

sigma ∧ 2;

phi = exp(1i ∗ u ∗ log(S) + C + D ∗ V);

end

function [ call price ] = CallPriceHeston( kappa, theta, sigma, rho, K, T, S, V, al-

pha, umax )

function y = psifun( v )

z = exp(-1i ∗ log(K) ∗ v) ∗ phiHeston( kappa, theta, sigma, rho, v-1i ∗ (alpha+1),

T, S, V ) / (alpha ∧ 2 + alpha - v ∧ 2 + 1i ∗ (2 ∗ alpha+1) ∗ v); y = real(z);

end

call price = exp(-alpha ∗ log(K)) ∗ quadv(@psifun, 0, umax) ./ pi;

end
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rep = 10000;

strike = [0.8 : 0.1 : 1.2];

maturity =[0.5 : 0.25 : 2.75];

for i = 1 : rep

for j = 1 : length(strike)

for k = 1 : length(maturity)

CallPriceSamp(j, k, i) = CallPriceHeston(2, 0.04, 0.1, -0.25, strike(j), maturity(k),

HestonSamp(i, 1), HestonSamp(i, 2), 1.5, 1000);

end

end

end
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APPENDIX B

R CODE FOR CENTERED AND UNCENTERED KARHUNEN-LOÉVE

ANALYSIS

This part gives all the R code for centered and uncentered Karhunen-Loéve

analysis described in section 4.3.

Centered Karhunen-Loéve decomposition:

SimCallComp = princomp(SimCallPCA);

summary(SimCallComp);

Centermat = matrix(nrow = 5, ncol = 10);

Center = as.vector(SimCallComp $ center);

for (i in 1:10) {

Centermat[,i] = Center[(5 ∗ (i-1)+1) : (5 ∗ i)];

}

Comp1 = as.vector(SimCallComp $ loadings[,1]);

Comp2 = as.vector(SimCallComp $ loadings[,2]);

Comp3 = as.vector(SimCallComp $ loadings[,3]);

Comp1mat=matrix(nrow = 5, ncol = 10);

Comp2mat=matrix(nrow = 5, ncol = 10);

Comp3mat=matrix(nrow = 5, ncol = 10);

for (i in 1:10) {

Comp1mat[,i] = Comp1[(5 ∗ (i-1)+1) : (5 ∗ i)];

}

for (i in 1:10) {

Comp2mat[,i] = Comp2[(5 ∗ (i-1)+1) : (5 ∗ i)];
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}

for (i in 1:10) {

Comp3mat[,i] = Comp3[(5 ∗ (i-1)+1) : (5 ∗ i)];

}

Uncentered Karhunen-Loéve decomposition:

SecMomSimCall = matrix(nrow = 50, ncol = 50);

for (i in 1:50) {

for (j in 1:50)

{

SecMomSimCall[i,j] = as.numeric(SimCallPCA[,i]) % ∗% as.numeric(SimCallPCA[,j]);

}

}

KLdecomp = eigen(SecMomSimCall);

Mode1 = KLdecomp $ vectors[,1];

Mode2 = KLdecomp $ vectors[,2];

Mode3 = KLdecomp $ vectors[,3];

Mode1mat = matrix(nrow = 5, ncol = 10);

for (i in 1:10) {

Mode1mat[,i] = Mode1[(5 ∗ (i-1)+1) : (5 ∗ i)]; }

Mode2mat = matrix(nrow = 5, ncol = 10);

for (i in 1:10) {

Mode2mat[,i] = Mode2[(5 ∗ (i-1)+1) : (5 ∗ i)]; }

Mode3mat = matrix(nrow = 5, ncol = 10);
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for (i in 1:10) {

Mode3mat[,i] = Mode3[(5 ∗ (i-1)+1) : (5 ∗ i)];

}
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APPENDIX C

R CODE FOR CONSTRAINED AND UNCONSTRAINED SPLINE

SMOOTHING

This part gives all the R code for constrained and unconstrained spline

smoothing described in section 4.4.

Unconstrained spline smoothing for the center in centered Karhunen-Loéve

decomposition and the first eigenmode in uncentered Karhunen-Loéve decom-

position:

y1 = as.vector(Centermat);

y2 = as.vector(-Mode1mat);

strike = rep(seq(.8,1.2,length=5),10);

maturity = rep(seq(.5,2.75,length=10),each = 5);

CenterSurf = gam(y1 s(strike, maturity));

CenterSurf2 = gam(y1 te(strike, maturity));

vis.gam(CenterSurf, main = ”Center in PCA”)

vis.gam(CenterSurf2, main = ”Center in PCA”)

Constrained spline smoothing for the first component in centered Karhunen-

Loéve decomposition and the third eigenmode in uncentered Karhunen-Loéve

decomposition:

Component1 ATM = Comp1mat[3,];

Mode3 ATM = -Mode3mat[3,];

maturity = seq(0.5,2.75, length = 10);

ConComp1 ATM < − cobs(maturity, Component1 ATM, constraint = ”in-
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crease”);

ConMode1 ATM < − cobs(maturity, Mode3 ATM, constraint = ”increase”);

plot(ConComp1 ATM)

plot(ConMode1 ATM)
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