The New York State College of Veterinary Medicine at Cornell University in Ithaca, New York, is the primary health resource for the state's multi-billion-dollar animal population.

The college's mission, mandated by the citizens of New York State through their legislators, is to promulgate animal and human health through education, research, and public service.

This report is a compendium of the activities, during the 1982–83 year, of the students, faculty, and staff who worked to accomplish the mission and thereby to justify the public trust.
September 1, 1983
Frank H. T. Rhodes
President
Cornell University

Dear President Rhodes:

Pursuant to the requirements of the laws of New York State, I present herewith a report of the activities and the accomplishments of the faculty and staff of the New York State College of Veterinary Medicine for the year ending June 30, 1983, this being the eighty-sixth annual report of this college.

Respectfully submitted,

Edward C. Melby, Jr.
Dean

September 14, 1983

The Board of Trustees of Cornell University, the Chancellor and Board of Trustees of the State University of New York, and the Governor of the State of New York

Ladies and Gentlemen:

In accordance with the requirements of Section 5711 of Article 115 of the State Education Law, I am pleased to submit, on behalf of Cornell University, the report of the New York State College of Veterinary Medicine for the year beginning July 1, 1982, and ending June 30, 1983.

Sincerely yours,

Frank H. T. Rhodes
President

September 28, 1983

The Board of Regents, the Governor, and the Legislature of the State of New York

Ladies and Gentlemen:

Pursuant to the law, the 1982–83 Annual Report of the New York State College of Veterinary Medicine at Cornell University is herewith submitted.

Very respectfully yours,

Clifton R. Wharton, Jr.
Chancellor
In a somewhat ironic twist, research—especially that which involves living creatures—has itself become a prime topic for study. It is being subjected to intense scrutiny from many quarters and often resembles a target more than a topic. Not all of the probing is being conducted according to principles of scientific investigation: the issue is highly charged with emotional, moral, and religious overtones. These tend to generate powerful crosscurrents that culminate in explosive reactions as they swirl and collide.

The questions, and the stances that are adopted in response, constitute a major portion of the evolving field of bioethics. Bioethics is a new term, if not an entirely new concept, appearing in most dictionaries and the media only during the last few years. Scarcely any branch of human endeavor—medical, social, military, political—is untouched by the storms of controversy it has spawned.

At the root of much of the confusion and the disagreement is the question of rights—human rights, animal rights, and protection-of-the-environment rights. No longer are most people sure of where to draw the lines when the rights of two or more segments of the biological universe are in conflict. Those who think they know do not easily remain comfortable with their decisions in the face of formidable challenges from myriad directions.

Astounding increases in medical technology have been a major factor in generating the dilemmas. With the capability to transplant human organs and to sustain life at various levels with the aid of complex machinery has come a flood of questions concerning the who, when, and how of those who will benefit from the potential. When, to what extent, and under what conditions some human beings can, should, or must deprive other creatures of life or comfort are questions with which all of society must grapple.

The rise of consumerism with its twin demands for speed and safety in the production of drugs and other products related to health has exerted added pressures on those who seek to resolve the issues. The clamor for more and better answers to more and tougher questions in medicine is unrelenting. The search for methods—for ways to meet the enormous costs, for processes by which the highly specialized capabilities of one group of scientists can be joined to those of another specialty, for safeguards against the dire events that could result from human frailty or evil—threatens at times to transcend the search for knowledge.

Perhaps one of the most positive outgrowths of the entire imbroglio is the sharp increase in human awareness of the immutable interlock not only among the human and animal species of the earth but among all animal, vegetable, and mineral components of the known universe. People may indeed be "in command," with the awesome responsibilities that position carries, but they do not—and cannot—live alone or too much apart from their fellow travelers through time and space.
Although endless opinions are offered on its origin or merits, the fact that human beings exert greater control over the temporal world than any other species affords little room for dispute. Given the inherent drive for survival, it follows that the betterment of human life must emerge as a prime motivating force for human decisions. Even the destructive tools born of human hands and minds are prompted by a desire to protect or improve the lives of some of the human inhabitants of earth, and even when people act to preserve and protect other forms of life—the forests, fields, and wildlife—and other elements of the planet—water, minerals, soil, and air—the goals are to increase in some way the potential for human survival and joy in this or future generations.

Certainly then it can surprise no one that millions of animals are grown for the express purpose of providing food for people, that billions of tons of plant materials are produced for the same reason, and that uncounted numbers of wild creatures are harvested from the waters and the forests of the earth for the same purpose. Nor should it then be surprising that other living beings are produced or harvested or slaughtered for their value in promoting health in ways other than nourishment.

The resources and methods employed in making wholesome, nutritious bacon, eggs, and milk available to large portions of society are not very different from those used to produce insecticides, antiseptics, and medicines for treating human illness or to develop ways to transplant organs, replace hip joints, and treat cancer. Biomedical research is the common denominator linking this complex mélange of human goals and achievements.

All medicine—veterinary and human—springs from research that, at some stage, depends on the observation and manipulation of living things. Viruses and bacteria are, after all, alive. Many human lives are devoted to finding ways to destroy some of those that cause disease, so that other creatures can survive. By discovering ways to destroy parasites in animals as well as people, scientists have made it possible for livestock to live longer and better—and thus help feed the world—and have also made it possible for dogs, cats, horses, and other companion animals to thrive, adding their measure of joy and comfort to human lives. Indeed, the production of an adequate crop of grains and cereals for human or animal consumption depends on the destruction of insects and rodents. All along the line, birth and death among all the forms of life are controlled to a greater or lesser extent by people, and the goals usually relate to human needs and wants.

Nevertheless, no one at the college takes these issues lightly. The need to study, to learn, to devise practical ways to diagnose, control, and prevent disease is continually balanced against the costs, tangible and intangible.
The conduct of productive research in any field depends on a complex array of resources that can be grouped into five major categories: funds, personnel, facilities, materials, and a conducive overall atmosphere or environment. Most of these, in turn, consist of a variety of components.

While knowledgeable and experienced faculty members make up the primary research personnel at an academic institution, the projects they design and direct depend heavily on the skills and efforts contributed by graduate students and technicians. Appropriate facilities must include not only space, often specifically designed, but a vast range of equipment from test tubes and surgical instruments to electron microscopes and computers. In the category of materials, the demands of biomedical research outstrip those of other arenas, for living creatures, and the wherewithal to maintain them, are essential components, along with thousands of items of a chemical, mineral, and plant nature.

The final category, while the most elusive of definition, may well be the fulcrum on which the other components stand or fall. Interaction with colleagues; encouragement and support from them, from the college and University administration, and from alumni; the prestige and reputation of the institution itself; and broad public awareness and approval are all elements that create a climate in which research can flourish.

Although all five components are required in the development and maintenance of a vigorous research program, it is perhaps interesting to note that the last four are also the requisites on which the acquisition of funds depends. In the final analysis an institution that can demonstrate it has a superior capability to pursue research is in a good position to attract the funds needed to do so.

Volume

Growth in the college research program is one of the most remarkable features of a program characterized by outstanding lineaments. Total research funding from sources outside the college for the year just past—almost $9.5 million—was nearly twice that of five years ago and almost triple the under $3.5 million generated a brief seven years ago. Although the inflated cost of maintaining a consistent level of activity absorbed a portion of the increased income, the program also has expanded steadily during those years.

Perhaps no one familiar with the college's research potential is surprised by the fact that it contends with only one or two other veterinary colleges in the nation for top place in terms of dollars received for research in animal diseases. Although much of this money comes from New York State, a goodly share is in the form of grants from federal agencies.

There may be less awareness of the college's vast program in human health-related research. Again, however, in comparison with other institutions capable of pursuing such investigations and, therefore, of competing for funds from the same pool, the college has achieved a position of high rank. During the past year it was in the top 7 percent of all institutions in the nation in terms of the volume of research dollars received from the United States Department of Health and Human Services. It outranked all colleges of optometry and nursing; all but one out of seventy-two colleges of pharmacy; all but one veterinary college and one state health department; all but four out of seventy-two colleges of public health; all but five out of fifty-nine colleges of dentistry; and more than one-quarter of the colleges of human medicine.
Several factors have made such notable growth possible even during a period when government funds have been relentlessly cut. Not the least of this is the prestige of the faculty. Other personnel, including those involved in research administration, those responsible for the physical plant, the large group of individuals who oversee the care and handling of laboratory animals, support technicians, library staff, graduate students, and the professional-degree candidates, all contribute to the college's outstanding capability to conduct productive research. Add to this the world-renowned library resources, continually expanded and updated facilities, and the pride and dedication based on an enviable tradition of excellence, and the reasons for success in winning outside support become more apparent.

New Approaches to Support

While a premier position in the tightening competition for government and foundation funds has been maintained through prodigious effort, it appears this may no longer be adequate to ensure sufficient support for continued excellence. A broader financial base is required if the college is to sustain its outstanding research program.

Within the last decade some new methods for funding and for coupling diverse skills have emerged. In the private sector million-dollar corporations have been formed on the grounds that the time is right and the future bright for genetic engineering. This, one of the modern world's newest technologies, is aimed at making practical use of the skills of those chemists and biologists who have learned how to manipulate genes to alter biological development through adding, removing, and splicing components of the mechanisms that control the inherited characteristics of cells.

Although the potential for applying these capabilities in negative directions may excite the imaginations of fiction writers and doomsayers, the fact is that the possibilities for positive applications in such vital areas of human concern as medicine and food production are at least as abundant and auspicious. Production of human and animal interferons, vaccines, high-efficiency fertilizers, growth hormones, and a host of other products that can profoundly enhance disease control or markedly increase harvestable animal and vegetable foodstuffs are some of the promises that genetic engineering is already beginning to fulfill.

The emergence of these corporations also presents an entirely new potential for collaborative research in which the expertise of biomedical researchers can be wedded to that of the genetic engineers and, supported by the corporations' financial resources, pave the way for giant steps in medical progress. Faculty and administrators at the College of Veterinary Medicine have been working with University officials and representatives of several genetic engineering corporations to develop arrangements for just such collaboration. One agreement has recently been signed and another is in
and institutes around the nation and the world—the basic patterns and procedures for collaborative work are already established. But, because the entrepreneurs who are funding the work must look ahead to profits to be realized from products developed, while college researchers must have their scholarly opportunities assured and the academic institutions process. Both will provide the needed guidelines whereby college faculty members will handle certain aspects of a defined research project and the genetic engineers will deal with other elements of the problem, the combined effort leading to a product aimed at solving a specific veterinary medical problem.

Since the scientific staffs of the genetic engineering companies are composed almost exclusively of former members of the academic world—protein chemists, molecular biologists, and nucleic acid chemists drawn from colleges, universities, have need of yet another set of safeguards, the contracts are necessarily complex.

One example of the kind of work that appears eminently suited to this sort of combined attack is the production of vaccines. For purposes of illustration, let it be assumed that virologists at the college have identified a virus that causes a serious disease. They would also have determined which protein in the organism is responsible for activating the immune response in the host animal. Perhaps, however, they have not yet pinpointed precisely what part of the nucleic acid of that virus carries the genetic code that causes the immunity-stimulating protein to develop.

At this point the genetic engineers would take over, identifying and removing that particular genetic element from the virus and inserting it into an innocuous plasmid derived from another organism. That material would then be put into a living vector (bacteria, yeast, or cell culture) to produce a vaccine containing a high concentration of the desired component. Expectations would be that the new product would be superior in several significant ways to that which could be produced from the actual virus. Because only one tiny part of the virus, which has nothing to do with causing disease, is used, the level of safety would be at or above that of an inactivated-virus vaccine. But, since the new product would contain a greater antigenic mass, and in pure form, its efficacy should meet or exceed that of the existing vaccine.

Nevertheless, the only way to determine the actual response of animals vaccinated with the product would be to run tests in the natural host to demonstrate and measure the biological activity that ensues, so the next step in such a scenario would be for experimental quantities of the product to be sent back to the college researchers for that phase of the work. Just as the procedure, skills, and equipment to extract the key genetic component from the virus and insert it into the plasmid are frequently beyond the resources of the college researchers, so are the skills, procedure, and materials needed to do the testing outside the expertise of the genetic engineers. Awareness on the part of both groups that a union of the two sets of resources constitutes a formidable mechanism for achieving desired results has prompted the development of arrangements for collaborative efforts.

In a move designed to foster similar collaboration involving scientists from several colleges and from major corporations, Cornell University has established the Biotechnology Institute. The College of Veterinary Medicine is one of the University academic units currently designated to participate in the newly established consortium, whereby University faculty members will work with scientists from the
sponsoring corporations. Research efforts will be aimed at manipulating genes in plants and animals in order to increase food production and quality, energy production, and economic growth in the state's agriculture, food, chemical, and pharmaceutical industries.

Dimensions

About one-fourth of the outside support for research at the college is in the form of grants and contracts with the United States Department of Health and Human Services. Because receipt of such awards is dependent not only on the intrinsic merit of a proposed study and the recipient's potential for success but also on the relevance of the research to human health, it follows that at least that proportion of college research has bearing on human-health problems. The proportion is, in fact, considerably higher, partly because many studies designed to solve specific animal-health problems have sometimes predictable, sometimes surprising, ramifications beyond the original goal.

Dozens of investigations at the college, focused on one or more animal species, are designed to produce basic information applicable to other animals and to human beings. Among these are studies on various aspects of immunology, including genetic factors in immunity, which have relevance to organ transplants as well as prevention and control of infectious diseases.

Research in comparative anatomy and gastroenterology, metabolism, labor and parturition in mammals, and bacterial resistance to drugs will provide the needed foundations for ensuing projects at the college and elsewhere, many of which will be directed to improving human medical care. Current college efforts in research methodology, procedure, and materials—electron microscopy techniques, development of monoclonal antibodies in the recently established cell hybridization facility at the Baker Institute, and the design and construction of a unique meter for measuring blood flow—are basic contributions to all biomedical research.

Much progress has been made in solving human-health problems via the model approach, in which a certain disease of a specific animal parallels its counterpart in people in such a way that, while the primary aim is to find answers to the human problem, the work can be done with animals. Hepatitis, epilepsy, diabetes, and Dejerine-Sottas disease in children are some of the topics of research at the college in which woodchucks, rats, sheep, and dogs, respectively, are serving as models. Efforts to learn more about a congenital and hereditary skeletal disease in cattle have revealed that it may be a model for human osteogenesis imperfecta, and congenital stationary night blindness, a human ailment, appears to be capable of study via an eye disease of Tibetan terriers, in which all the classic symptoms of the human disease are shown.
cancer) that is caused by a virus and that can be prevented by a vaccine - results that are even more pertinent to basic biomedical research.

The further recognition that the causative organism is a herpesvirus, that herpesviruses have been implicated in several kinds of human cancer, and that MD, therefore, serves as a model for the study of oncogenic herpesviruses in general has far-reaching significance. The discovery that infections with MD herpesvirus induce atherosclerosis in chickens even in the absence of high dietary cholesterol is another outgrowth of MD research, one that holds great promise for understanding and controlling human atherosclerosis.

The importance of the dairy industry to New York State's economic health and the vital role of dairy products in the nutrition of all residents make cattle health of paramount importance to researchers at the college. The several dozen studies are predictably aimed primarily at the arenas of major concern: prevention, cure, or control of ailments that threaten production directly - such as mastitis and reproductive failure - or that reduce production and increase costs by debilitating or destroying some of the cattle population.

The approach to the control of mastitis includes work on a variety of vaccines against the different causative organisms, improved diagnostic procedures for early-stage detection, and better therapeutic measures for treating cases that occur. Research into the genetic factors that relate to the development of immunity has potential for the fight against other infectious diseases - respiratory, gastrointestinal, and reproductive - as well as mastitis.

Significant strides in improved reproductive procedures have resulted from many years of in-depth studies of the basic reproductive biology of cattle, a subject that continues to command the attention of several college researchers. Bovine nutritional needs, metabolic disorders, and health-management procedures are other topics of study. Results of much of this work also have relevance for veal and beef-cattle production, as do several investigations directed primarily to those industries. Collaboration with faculty members in other colleges and units at the University with expertise and interests that relate to cattle is facilitated by the Bovine Research Center at Cornell. The center also provides a means for the exchange of ideas with dairy and beef-cattle organizations concerning research needs.

Increased quality and quantity of food production is also the motivation behind much of the research dealing with ailments of domestic livestock other than cattle and with aquatic species. Because it is not economically feasible to diagnose or treat individual chickens, ducks, or turkeys, the "flock" approach to the control of disease, depending heavily on vaccines and other preventive measures, has long been the standard. For the same reason, developing programs to study diseases of fish and shellfish are being designed in a similar manner.

Broader public awareness of the value of companion animals to human mental and physical health only serves to reinforce Cornell's long-standing commitment to the improvement of canine and feline health. At the James A. Baker Institute for Animal Health investigators continue to explore such diverse canine afflictions as parvovirus infection, hip dysplasia, neurological diseases, thyroid malfunctions, and reproductive disorders, along with developing better...
Diet - the components and balance of nutrients needed for optimum growth and vigor, and the potential hazards of incorrect feeding regimes—and malfunctions of the digestive system, such as colic, are topics of several equine investigations. Other projects are aimed at better control of parasites, prevention and treatment of skin tumors, eye problems, improved surgical procedures, and the toxic effects of drugs and poisons.

Animals

One element that has given the college an edge over some of its competitors in grant applications and has proven basic to much research success is the scope and quality of its laboratory animals and related facilities and services. The colonies of specific-pathogen-free (SPF) dogs, cats, and chickens that have been maintained for many generations have had a profound positive impact on research achievements at the Baker Institute, in the Department of Avian and Aquatic Animal Medicine, in the Department of Microbiology, and in the Feline Health Center and continue to play important roles. More recently the erection of a facility for rearing and maintaining SPF cattle as part of the Bovine Research Center and plans to establish stocks of defined aquatic animals at the Laboratory for Marine Animal Health vastly increase the potential for research with those species.

Carefully controlled and monitored stocks of the more common laboratory animals, such as mice, rats, hamsters, gerbils, and guinea pigs, have long been a college feature, and collections of less-usual species have also been developed. An extensive colony of woodchucks has been housed and nurtured over the past few years as part of an intensive investigation in viral hepatitis.
Animals are involved in about three-fourths of the more than 170 investigations under way at the college. These range from electric eels and other aquatic species to horses, cattle, sheep, goats, pigs, poultry, cats, and dogs, in addition to baboons, woodchucks, and the typical laboratory species such as mice, rats, and rabbits. A variety of animals play a part in research on the human-companion animal bond and on reproduction in domestic ruminants.

Cattle are the subjects of the most studies—44 of the approximately 130 projects involving animals—while equine species figure in some 25 and dogs in 21. Poultry and rats are the subjects of a dozen studies each. In general, whenever the less complex or valuable animals such as rats, mice, chickens, or invertebrates can meet the research needs, they are substituted. Frequently, preliminary work—on development of a vaccine, for example—is done with tissue or cell cultures or other laboratory reagents until the later stages, when testing with the actual species to be protected is necessary to establish dosage, measure efficacy, and demonstrate safety.

Inevitably the question arises whether researchers, in their zeal to unravel biological mysteries or find practical solutions to pressing health problems, might develop a too-casual approach toward the experimental use of animals. The response must be that the safeguards against such a possibility are both numerous and multifaceted. Most basic of all, perhaps, is the fact that the researchers are humane people. Almost all researchers at the college are veterinarians, as are many of those who work in the research departments of medical schools and other institutions. Others have M.D. degrees, and some have both.

Although such training does not guarantee higher ethical standards in its recipients, it must be recognized that some out-of-the-ordinary motivations have been required to enable those individuals to pursue and complete such rigorous and demanding training periods, and it would seem to be a fair assumption that for most that motivation must have included a profound desire to make a positive contribution to the well-being of living creatures.

Nevertheless, ethical and motivational theories do not provide sufficient practical assurance to society as a whole—particularly since there is the clear possibility of ethics and motives colliding when confronted with the need to impose suffering or loss of life here in order to preserve or improve life there. For this reason, detailed guidelines and safeguards have been laid down by the federal government, New York State, the profession's own association, Cornell University, and the College of Veterinary Medicine itself to ensure the humane care and handling of animals involved in any way in research. Thick handbooks spell out specifications for housing, sanitation, food, water, bedding, records, disease control and treatment, and a multitude of other details.

These regulations must be applied not only to the thousands of animals involved in research at the veterinary college but also to the enormous number and remarkable diversity of species kept in other academic units of the University. As many as ten thousand fish, large numbers of domestic livestock, and such predictable laboratory creatures as mice, hamsters, and rabbits, plus many more unusual species, including vampire bats, miniature kangaroos, and South American tree frogs, are subjects of study in Ithaca.
New York City another eighty thousand mice at the Sloan-Kettering Institute and about twenty thousand chickens, mice, livestock, and other creatures at the Medical College appear in an average daily census.

Dr. Fred W. Quimby, with a dual appointment at the College of Veterinary Medicine and the Medical College, heads the Cornell Center for Research Animal Resources and is charged with providing appropriate care in all its many aspects to this vast community of beings. He heads the staff of veterinarians, technicians, and others who make sure the University is in compliance with all applicable regulations and guidelines.

Among the most critical regulations are those established by the National Institutes of Health (NIH). Failure to comply with every detail of NIH requirements would jeopardize the millions of dollars in research funds received from that agency annually and would be very poor business, apart from the moral and ethical questions. Since 1977, however, when the Cornell College of Veterinary Medicine became the third veterinary college to receive accreditation by the American Association for Accreditation of Laboratory Animal Care (AAALAC), site visits by NIH representatives have been unnecessary. The extensive records and routine visits by AAALAC representatives that are required to maintain accreditation by that association are accepted by NIH as assurance that their guidelines are being met.

Maintaining the huge numbers of research animals and meeting the high standards that have been adopted is, however, costly. While it is impossible to calculate precisely, the best estimate is that providing for the optimal care and well-being of all laboratory animals in all the University's units carries a price tag of around $3.3 million annually. The dedication of human effort and other resources represented by that figure should constitute adequate assurance to all concerned persons that nothing has been spared in the effort to reduce to its minimum level the exploitation of animals through research. It is an assurance cherished by these investigators who cope with the personal traumas, however large or small, born of causing some suffering to some creatures in their pursuit of that larger goal—helping to save or improve the lives of untold numbers of others.

Personnel

The national and worldwide preeminence of a large proportion of senior faculty members at the veterinary college; the addition in recent years of others who, though new to Cornell, are recognized world authorities in their fields; and the impressive array of skills and knowledge represented by the aggregate as well as by the individuals constitute a remarkable potential for research achievement and present a formidable challenge to competitors for funds. The newest faculty unit—those selected to develop the program of the fledgling Department of Pharmacology—has been responsible for the flow of almost three-quarters of a million dollars in research funds into the college in the less than two years since the department was established.

The faculty is aided substantially in maintaining the requisite barrage on the portals of funding agencies by the college's assistant dean for research administration and his staff. Ultimately all grants and contracts come under the supervision of the University's central sponsored research office, but, for faculty members in many of Cornell's academic units, help in the early stages of the search for funds is scarce.

In addition, funding cutbacks in recent years have made the procedure not only more competitive but more burdened with paperwork and red tape. Whereas, less than a decade ago, one or two proposals well constructed and judiciously targeted might have yielded needed support, a dozen or more proposals may now be required, each organized specifically to appeal to one of the holders of purse strings. The distended state
of the art of grantsmanship is manifested by the fact that paperwork done by the college’s research administration staff in pursuit of grants and contracts has more than tripled in the past two years.

Because so much of the biomedical research conducted in this country is done under the supervision of individuals with advanced degrees in veterinary medicine and involves the work of others who are themselves pursuing advanced degrees in the profession, the quantity and quality of current graduate training is of paramount importance in maintaining a vigorous research program. The decline in the number of students who hold D.V.M. degrees from veterinary colleges in this country and who enter graduate school is cause for considerable concern on that score. Six years ago an increase in stipends yielded an upsurge in applications to the graduate Field of Veterinary Medicine at Cornell, but that response was brief and has been followed by a steady drop-off.

A promising step toward reversal of this trend is a training grant received in June 1983 by the Department of Pathology to provide a summer research experience for thirty-five professional-degree students over a five-year period. The award, from the National Institute of Allergy and Infectious Diseases, is designed to stimulate student interest in biomedical research careers. However, the cost of preveterinary and professional-degree training is such that few individuals, no matter how powerfully motivated, can sustain the additional expenses and loss of income required to continue their studies.

Response to the mounting crescendo of questions relevant to disease control and health maintenance must include plans for increasing the pool of well-trained research personnel along with the development of new methods and new sources of funding.

Support Systems

Conduct of the College of Veterinary Medicine’s vast research program, in tandem with its instructional and public service missions, is possible in no small measure because of its extensive and efficient support systems.

The very walls that encompass this complex array of activities seem to shrink visibly at times. Additions and renovations to help meet expanding and changing needs during the past year included completion of the bovine and canine specific-pathogen-free facilities on Snyder Hill; renovation of a Warren Road building for the Equine Drug Testing and Research Program; placement of two modular office units east of Schurman Hall, providing eighteen hundred square feet; remodeled laboratories for pharmacology research; modifications to the new animal holding wing at Baker Institute to improve humidity and temperature maintenance; and fencing and grading of animal exercise areas.

Additional space for library collections and services remains a pressing need. Development of audiovisual materials continues—twenty-two new videotapes were produced by faculty members and staff of Biomedical Communications in 1982–83. Use of the Autotutorial Center increased by 15 percent during the year, with a total of 4,462 separate viewings of slides, tapes, and closed-circuit television recorded. Space to accommodate this activity is severely limited, with seating for only seventeen individuals at one time. Other library services and use of them expanded in spite of space limitations. A 47-percent increase was seen in computer-assisted literature searches for purposes ranging from development of research grant proposals to treatment of hospital patients.

Researchers, along with all faculty and staff as well as students, are making increased use of the college’s expanding computer facilities. The installation of terminals in the library and other locations, the addition of word-processing programs and hardware, and the development of computerized billing and accounts receivable for the Teaching Hospital are some of the major innovations during the past year.
A new publication to convey health information on horses, dogs, cats, and other pet animals to owners and other interested persons was begun during the past year. Entitled Animal Health Newsletter, the eight-page piece includes research results from the New York State College of Veterinary Medicine and elsewhere. It is published monthly by the Animal Care Newsletter Associates of New York City and is mailed nationwide on a subscription basis. Dr. Charles G. Rickard, associate dean at the College of Veterinary Medicine, serves as editor; Dean Melby and thirteen college faculty members make up the rest of the editorial advisory board.

Other publications designed to keep friends of the college aware of news and research are published by staff of the Baker Institute, the Feline Health Center, extension service, and college public information personnel. In addition to publications, close ties and an exchange of ideas are maintained with alumni and other interested persons through letters, personal visits, and meetings on and off campus.

A record number of members paid dues to the college alumni association during 1982–83, and eight hundred alumni donors contributed $276,548 to the annual Veterinary College Fund. For the fourth consecutive year nonalumni friends' gifts increased, reaching a total of $544,197 for 1982–83.

In December 1982 the college was selected to be one of four centers in the nation for a new program designed to serve the pharmaceutical needs of minor food-animal species. Dr. John Babish, assistant professor in the Department of Preventive Medicine, was named Northeast regional animal drug coordinator to head the program. He will coordinate research at the college to provide data needed by the FDA to register drugs for use in such species as rabbits, ducks, pheasants, goats, and sheep. Dr. Babish also will direct research aimed at developing a biochemical basis for predicting effective drug regimes for a variety of species, which it is hoped may eliminate the need for experiments with large numbers of animals in order to achieve FDA registration of the drugs.

During the first full year of its operation, the Laboratory for Marine Animal Health (LMAH) at Woods Hole, Massachusetts, directed by Dr. Louis Liebovitz, of the college's Department of Avian and Aquatic Animal Medicine, processed nearly eleven hundred accessions. More than twice that number of animals and specimens were examined for diagnostic purposes. About 20 percent of these were submitted by the Marine Biology Laboratory, where the LMAH is situated, and other marine institutions in the community, with the remaining 80 percent coming from individual marine-animal researchers.

Staff and sponsors of the LMAH, who recognize the negative influence on marine-animal research posed by the lack of healthy laboratory animals and by the current inadequacy of standards for defining and recognizing healthy specimens, view this use of LMAH expertise as a significant forward step. While development of disease-free, standardized, cultured marine laboratory animals is the ultimate goal, the LMAH is helping researchers develop transitional corrective measures to recognize, prevent, and control disease in the stocks now available.

Eight professional-degree candidates at Cornell and eight from the Pennsylvania School of Veterinary Medicine, along with sixteen from other veterinary medical colleges,
completed the 1983 session of Aquavet at Woods Hole. Eight individuals, recruited primarily from graduates of the six previous Aquavet sessions, attended the newly established Aquavet II, held concurrently and focused, in its first year, on the health and maintenance of confined fish populations. Several Aquavet students stayed at research laboratories in the Woods Hole community for two months of summer work.

Four members of the College of Veterinary Medicine, including Dean Edward C. Melby, Jr., and Associate Dean Charles G. Rickard, spent from one week to three months during 1982—83 at the King Faisal University in Saudi Arabia to lend their expertise to the administration and faculty of KFU as part of the Arabian university's broad development effort. Entitled the Jamiah Project, the plan involves United States educational institutions and corporations of which the prime four are Cornell, Harvard, Texas A & M, and Rice, each of which is to provide assistance in selected areas.

Dr. Fred W. Quimby, director of Cornell's Center for Research Animal Resources and a faculty member of the College of Veterinary Medicine, did a survey and analysis of the needs of KFU for laboratory animals, personnel, and facilities throughout its various colleges. Eugene W. Slater, manager of medical records at Cornell's College of Veterinary Medicine, designed a computerized medical records system for the veterinary teaching hospital at KFU. Dr. Melby and Dr. Rickard served as consultants on organizational and administrative procedures. Dr. John N. Telford, of Cornell's Division of Biological Sciences, accepted a long-term assignment to aid in the development of procedures and practices for use of the electron microscope in teaching and research.

Faculty and Staff Changes

New Appointments
Ahmed Sayed Ahmed, Visiting Fellow
Steven P. Arnoczky, Adjunct Associate Professor
Gary J. Bennett, Field Veterinarian
Juanell N. Boyd, Research Associate
John S. Chandler, Postdoctoral Associate
Gerald Culhane, Medical Illustrator
Stephen G. Dill, Instructor
Nathan Joel Edwards, Adjunct Associate Professor
Adel A. El-Badry, Visiting Fellow
Mohammed O. Farah, Visiting Fellow
Clare M. Fewtrell, Assistant Professor
Tracy W. French, Assistant Professor
Hanania Gloobe, Visiting Professor
Charles L. Guard, Assistant Professor
Michael A. Hannwacker, Instructor
John L. Hardy, Executive Staff Assistant
Jin-Shan Jin, Visiting Instructor
Matthew J. Krsulich, Director of Laboratory Operations
Jean E. Maguire, Field Veterinarian
Adele L. Martel, Postdoctoral Fellow
James F. McCabe, Director of Financial Systems

Suzanne B. Neuenschwander, Postdoctoral Fellow
Hai T. Nguyen, Adjunct Assistant Professor
Janet M. Scarlett Kranz, Assistant Professor
Hal F. Schulte III, Field Veterinarian
Sonjia M. Shelly, Postdoctoral Fellow
Mordechai Shemesh, Visiting Associate Professor
Mary Lou Tortorello, Postdoctoral Associate
Daniel Weinstock, Postdoctoral Fellow
John D. Welsh, Research Associate

Promotions and Title Changes
David Abbott, Instructor (from Resident)
Sharon A. Center, Assistant Professor (from Instructor)
Completed Terms
John Danius, Visiting Fellow
Samuel Edelstein, Visiting Associate Professor
Michael A. Hannwacker, Instructor
Brigit R. Holm, Visiting Fellow
Susan A. Levine, Instructor
Armando Mateos, Visiting Fellow
Bintara Her Sasangra, Visiting Fellow
Robert J. Seiler, Instructor
Francois R. Sugnaux, Postdoctoral Associate

Resignations
Brandford O. Brooks, Research Associate
James A. Brooks, Administrative Manager
Christine Eckers, Postdoctoral Associate
Edward L. Jarroll, Jr., Senior Research Associate
Norman A. LaFaunce, Assistant Professor
Douglas M. MacCoy, Assistant Professor
Thomas O. Manning, Assistant Professor
Gerard M. Meenan, Director of Laboratory Operations
Howard Moraff, Senior Research Associate
Joan P. Opdebeeck, Assistant Professor
Charlene C. Sherwood, Assistant Librarian

Retirements
Helen A. Greisen, Research Associate
Wesley E. Linquist, Supervising Veterinarian

Deaths
Joseph G. Ebel, Director of Laboratory Operations
Herbert L. Gilman, Professor Emeritus
Table 1
Continuing Education, 1982–83

<table>
<thead>
<tr>
<th>Program</th>
<th>Participants</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anesthesia and Supportive Care for the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veterinary Technician</td>
<td>39</td>
<td>20</td>
</tr>
<tr>
<td>Conference for Veterinarians, 75th Annual</td>
<td>630</td>
<td>27</td>
</tr>
<tr>
<td>Equine Reproduction Workshop</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Farrier's Conference</td>
<td>82</td>
<td>10</td>
</tr>
<tr>
<td>Feline Health Seminar</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Pathology Short Course, Olafson</td>
<td>65</td>
<td>40</td>
</tr>
<tr>
<td>Small Animal Endoscopy Short Course</td>
<td>24</td>
<td>10.5</td>
</tr>
<tr>
<td>Lendings, autotutorial programs: 55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2
Laboratory Animals Housed and Cared for by the Division of Laboratory Animal Services, 1982–83

<table>
<thead>
<tr>
<th></th>
<th>Daily Average</th>
<th>Annual Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calves</td>
<td>10</td>
<td>59</td>
</tr>
<tr>
<td>Cats (SPF)</td>
<td>191</td>
<td>196</td>
</tr>
<tr>
<td>Cats (other)</td>
<td>54</td>
<td>135</td>
</tr>
<tr>
<td>Chicks</td>
<td>365</td>
<td>3,037</td>
</tr>
<tr>
<td>Dogs</td>
<td>254</td>
<td>342</td>
</tr>
<tr>
<td>Ferrets</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Frogs</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Goats</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Guinea pigs</td>
<td>14</td>
<td>40</td>
</tr>
<tr>
<td>Hamsters</td>
<td>68</td>
<td>140</td>
</tr>
<tr>
<td>Mice</td>
<td>1,996</td>
<td>6,345</td>
</tr>
<tr>
<td>Opossums</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Primates</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>Rabbits</td>
<td>127</td>
<td>300</td>
</tr>
<tr>
<td>Raccoons</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rats</td>
<td>157</td>
<td>1,389</td>
</tr>
<tr>
<td>Sheep</td>
<td>6</td>
<td>69</td>
</tr>
<tr>
<td>Squirrels</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Woodchucks</td>
<td>247</td>
<td>346</td>
</tr>
</tbody>
</table>

Table 3
Graduate Student Enrollment, Field of Veterinary Medicine, 1982–83

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates for the Ph.D. degree</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>Candidates for the M.S. degree</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Table 4
Degrees Awarded, 1982–83

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D.V.M. (with Distinction: 4)</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>M.S.</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Ph.D.</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Table 5
Predoctoral Student Enrollment, 1982–83

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates for the D.V.M. degree Class of 1983</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Class of 1984</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Class of 1985</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Class of 1986</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>319</td>
</tr>
<tr>
<td>Cornell undergraduates taking courses in the college (full-time equivalents)</td>
<td></td>
<td>48</td>
</tr>
</tbody>
</table>

Table 6
Library Use, 1982–83

On campus
- Reserve books (in-library use) | 13,815
- Books lent (home use) | 23,159
- Photocopy items provided (in lieu of loans) | 10,461
- Audiovisuals used | 4,462
- Total on campus | 51,897

Interlibrary
- Books lent | 80
- Photocopy items provided | 447
- Books borrowed | 91
- Photocopy items received | 752
- Total interlibrary | 1,370
Table 7
Clinical and Diagnostic Accessions, 1982

<table>
<thead>
<tr>
<th></th>
<th>Horses</th>
<th>Cattle</th>
<th>Goats</th>
<th>Swine</th>
<th>Dogs</th>
<th>Cats</th>
<th>Poultry</th>
<th>Others</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical and surgical</td>
<td>1,902</td>
<td>846</td>
<td>133</td>
<td>11</td>
<td>9,942</td>
<td>3,807</td>
<td></td>
<td>126</td>
<td>16,767</td>
</tr>
<tr>
<td>Ambulatory Clinic</td>
<td>1,900</td>
<td>36,200</td>
<td>850</td>
<td>980</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>39,935</td>
</tr>
<tr>
<td>Clinical pathology specimens</td>
<td>4,675</td>
<td>3,402</td>
<td>287</td>
<td>17</td>
<td>11,699</td>
<td>2,780</td>
<td></td>
<td>1,016</td>
<td>23,876*</td>
</tr>
<tr>
<td>Diagnostic Laboratory</td>
<td>15,992</td>
<td>656,639</td>
<td>4,162</td>
<td>1,157</td>
<td>16,290</td>
<td>6,180</td>
<td>210</td>
<td>1,646</td>
<td>702,276</td>
</tr>
<tr>
<td>Necropsies</td>
<td>382</td>
<td>763</td>
<td>182</td>
<td>80</td>
<td>708</td>
<td>293</td>
<td>13</td>
<td>59</td>
<td>3,019</td>
</tr>
<tr>
<td>Surgical pathology</td>
<td>485</td>
<td>380</td>
<td>53</td>
<td>22</td>
<td>6,279</td>
<td>1,188</td>
<td>59</td>
<td>151</td>
<td>8,617</td>
</tr>
<tr>
<td>Laboratory animal examinations</td>
<td>276</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,194</td>
<td>1,532†</td>
</tr>
<tr>
<td>Aquatic animal accessions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,068</td>
<td>1,068</td>
</tr>
<tr>
<td>Poultry Disease Laboratories</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,935</td>
<td>8,749</td>
</tr>
<tr>
<td>Mastitis Control Program</td>
<td>5</td>
<td>241,485</td>
<td>88</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>241,582</td>
</tr>
<tr>
<td>Total</td>
<td>25,341</td>
<td>939,715</td>
<td>5,755</td>
<td>2,271</td>
<td>45,197</td>
<td>14,312</td>
<td>7,217</td>
<td>7,613</td>
<td>1,047,421</td>
</tr>
</tbody>
</table>

*The Clinical Pathology Laboratory performed 35,604 tests on the 23,876 specimens.
†The Division of Laboratory Animal Services maintained 12,448 animals; the daily census averaged 3,525.

Table 8
Geographic Distribution of Accepted Applicants, Class of 1987

<table>
<thead>
<tr>
<th>Legal Residence</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>58</td>
</tr>
<tr>
<td>Connecticut</td>
<td>2</td>
</tr>
<tr>
<td>Maryland</td>
<td>4</td>
</tr>
<tr>
<td>Michigan</td>
<td>1</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>2</td>
</tr>
<tr>
<td>New Jersey</td>
<td>7</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>2</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>2</td>
</tr>
<tr>
<td>Vermont</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 9
Library Holdings, 1982–83

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bound volumes</td>
<td></td>
</tr>
<tr>
<td>At beginning of year</td>
<td>71,958</td>
</tr>
<tr>
<td>Acquisitions</td>
<td>1,180</td>
</tr>
<tr>
<td>Less withdrawals</td>
<td>84</td>
</tr>
<tr>
<td>Total bound volumes</td>
<td>73,054</td>
</tr>
<tr>
<td>Audiovisual items</td>
<td>18,344</td>
</tr>
<tr>
<td>Periodicals and annuals</td>
<td>1,030</td>
</tr>
</tbody>
</table>

Table 10
Qualifications of Accepted Applicants, Class of 1987

<table>
<thead>
<tr>
<th></th>
<th>Number of Applicants</th>
<th>Percentage of Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of preveterinary preparation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fewer than four years of college</td>
<td>8</td>
<td>10.00</td>
</tr>
<tr>
<td>Four years of college</td>
<td>42</td>
<td>52.50</td>
</tr>
<tr>
<td>More than four years of college (graduate level)</td>
<td>30</td>
<td>37.50</td>
</tr>
<tr>
<td>Institution previously attended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornell University</td>
<td>34</td>
<td>42.50</td>
</tr>
<tr>
<td>Other</td>
<td>46</td>
<td>57.50</td>
</tr>
<tr>
<td>Field of preparatory study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal science (or related)</td>
<td>22</td>
<td>27.50</td>
</tr>
<tr>
<td>Biological sciences (or related)</td>
<td>37</td>
<td>46.25</td>
</tr>
<tr>
<td>Other</td>
<td>21</td>
<td>26.25</td>
</tr>
</tbody>
</table>
Table 11
Summary of Grants and Contracts Awarded, 1982–83

<table>
<thead>
<tr>
<th>Recipient</th>
<th>For 1982–83</th>
<th>For Subsequent Years</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>$406,550</td>
<td>$151,552</td>
<td>$588,102</td>
</tr>
<tr>
<td>Anatomy</td>
<td>$43,745</td>
<td>$0</td>
<td>$43,745</td>
</tr>
<tr>
<td>Avian and Aquatic Animal Medicine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department Program</td>
<td>$196,109</td>
<td>$365,817</td>
<td>$561,926</td>
</tr>
<tr>
<td>Poultry Disease Laboratories</td>
<td>203,620</td>
<td>0</td>
<td>203,620</td>
</tr>
<tr>
<td>Total Avian and Aquatic Animal Medicine</td>
<td>$399,729</td>
<td>$365,817</td>
<td>$765,546</td>
</tr>
<tr>
<td>Clinical Sciences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department Program</td>
<td>$1,018,002</td>
<td>$783,785</td>
<td>$1,801,787</td>
</tr>
<tr>
<td>Mastitis Control Program</td>
<td>346,380</td>
<td>0</td>
<td>346,380</td>
</tr>
<tr>
<td>Total Clinical Sciences</td>
<td>$1,364,382</td>
<td>$783,785</td>
<td>$2,148,167</td>
</tr>
<tr>
<td>Diagnostic Laboratory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture and Markets Contract</td>
<td>$976,000</td>
<td>$0</td>
<td>$976,000</td>
</tr>
<tr>
<td>Equine Drug Testing and Research Program</td>
<td>2,804,971</td>
<td>0</td>
<td>2,804,971</td>
</tr>
<tr>
<td>Other</td>
<td>35,000</td>
<td>0</td>
<td>35,000</td>
</tr>
<tr>
<td>Total Diagnostic Laboratory</td>
<td>$3,815,971</td>
<td>$0</td>
<td>$3,815,971</td>
</tr>
<tr>
<td>Microbiology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department Program</td>
<td>$921,235</td>
<td>$513,466</td>
<td>$1,434,701</td>
</tr>
<tr>
<td>Baker Institute for Animal Health</td>
<td>682,928</td>
<td>502,379</td>
<td>1,185,307</td>
</tr>
<tr>
<td>Total Microbiology</td>
<td>$1,604,163</td>
<td>$1,015,845</td>
<td>$2,620,008</td>
</tr>
<tr>
<td>Pathology</td>
<td>$376,754</td>
<td>$955,522</td>
<td>$1,332,276</td>
</tr>
<tr>
<td>Pharmacology</td>
<td>$306,634</td>
<td>$567,605</td>
<td>$874,239</td>
</tr>
<tr>
<td>Physiology</td>
<td>$885,082</td>
<td>$369,370</td>
<td>$1,254,452</td>
</tr>
<tr>
<td>Preventive Medicine</td>
<td>$291,449</td>
<td>$70,348</td>
<td>$361,797</td>
</tr>
<tr>
<td>Grand Total</td>
<td>$9,494,459</td>
<td>$4,279,844</td>
<td>$13,774,303</td>
</tr>
</tbody>
</table>

Table 12
Interns and Residents, 1982–83

<table>
<thead>
<tr>
<th></th>
<th>1982–83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interns</td>
<td>12</td>
</tr>
<tr>
<td>Residents</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 13
Admission Summary; Class of 1987

<table>
<thead>
<tr>
<th>Area</th>
<th>Applicants</th>
<th>Interviewed</th>
<th>Accepted</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>292</td>
<td>123</td>
<td>58</td>
</tr>
<tr>
<td>Contract states</td>
<td>127</td>
<td>65</td>
<td>17</td>
</tr>
<tr>
<td>Other</td>
<td>97</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>516</td>
<td>210</td>
<td>80</td>
</tr>
</tbody>
</table>
Tables 14 and 15 are summaries of the income and expenditures of the New York State College of Veterinary Medicine for the fiscal years July 1, 1981, through June 30, 1982, and July 1, 1982, through June 30, 1983. These figures do not include expenditures for indirect costs, estimated for 1982–83 at $2,677,565 for general support services and $4,019,076 for salary fringe benefits.

Table 14

Source of Funds

<table>
<thead>
<tr>
<th></th>
<th>1982–83</th>
<th>1981–82</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. State appropriation</td>
<td>$7,945,391</td>
<td>$7,448,977</td>
</tr>
<tr>
<td>B. Federal appropriation</td>
<td>209,342</td>
<td>302,111</td>
</tr>
<tr>
<td>C. Grants and contracts</td>
<td>9,640,255</td>
<td>8,689,881</td>
</tr>
<tr>
<td>D. College income</td>
<td>6,814,910</td>
<td>6,406,841</td>
</tr>
<tr>
<td>Total</td>
<td>$24,609,898</td>
<td>$22,847,810</td>
</tr>
</tbody>
</table>

Table 15

Use of Funds

<table>
<thead>
<tr>
<th></th>
<th>1982–83</th>
<th>1981–82</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Instruction and departmental research</td>
<td>$3,291,743</td>
<td>$3,209,934</td>
</tr>
<tr>
<td>F. Teaching Hospital</td>
<td>3,996,672</td>
<td>3,996,873</td>
</tr>
<tr>
<td>G. Organized research</td>
<td>9,249,292</td>
<td>8,641,413</td>
</tr>
<tr>
<td>H. Extension and public service</td>
<td>5,139,471</td>
<td>4,579,515</td>
</tr>
<tr>
<td>I. Academic support</td>
<td>227,628</td>
<td>237,769</td>
</tr>
<tr>
<td>J. Student services</td>
<td>193,259</td>
<td>178,791</td>
</tr>
<tr>
<td>K. Institutional support</td>
<td>1,994,598</td>
<td>1,519,278</td>
</tr>
<tr>
<td>L. Plant maintenance and operation</td>
<td>317,025</td>
<td>299,653</td>
</tr>
<tr>
<td>M. Student aid</td>
<td>200,210</td>
<td>184,584</td>
</tr>
<tr>
<td>Total</td>
<td>$24,609,898</td>
<td>$22,847,810</td>
</tr>
</tbody>
</table>
Administrators and Advisers

Cornell University

Executive Officers
Frank H.T. Rhodes, President
W. Keith Kennedy, University Provost
Thomas H. Meikle, Jr., Provost for Medical Affairs
William G. Herbster, Senior Vice President
W. Donald Cooke, Vice President for Research
William D. Guowitz, Vice President for Campus Affairs
Robert T. Horn, Vice President and Treasurer
Robert M. Matyas, Vice President for Facilities and Business Operations
Richard M. Ramin, Vice President for Public Affairs
James A. Sanderson, Chief Investment Officer
Joan R. Egner, Associate Provost
Alison P. Casarett, Vice Provost
Kenneth M. King, Vice Provost
Larry I. Palmer, Vice Provost
James W. Spencer, Vice Provost
Walter J. Relihan, Jr., University Counsel and Secretary of the Corporation

Trustees
Jansen Noyes, Jr., Chairman
Charles T. Stewart, Vice Chairman
Lilyan H. Affinito
Gordon M. Ambach*†
Warren M. Anderson*
Albert E. Aren	
Thomas N. Armstrong III
Donald P. Berens
Karen Brazell
Richard A. Church
James M. Clark
Marilyn K. Cook
Raymond R. Corbett
Ezra Cornell
Robert A. Cowie
Mario Cuomo*
Alfred DelBello*
Kenneth T. Derr

William Donohue, Jr.*
John S. Dyson
Robert G. Engel
Howard E. Evans
Stanley Fink*
Earl R. Flansburgh
Joseph Gerace*
John R. Geresi
James Lowell Gibbs, Jr.
Marjorie L. Hart
Molik Hashim
Robert S. Hatfield
Walter Hlawitschka
Barbara W. Hunter
Samuel C. Johnson
Austin H. Kiplinger
Charles F. Knight
William A. Levin
Sol M. Linowitz
Stephen H. Lockhart
Frances L. Loeb
Walter R. Lynn
Robert J. McDonald
E. Howard Molisani
Stephen N. Nesterak
Ronald B. Parks
Eve W. Paul
Samuel R. Pierce, Jr.
Bernard W. Potter*
Ernesta Procope
George G. Reader
Frank H.T. Rhodes*
Lillian Roberts*
Aubrey P. Robinson, Jr.
Harvey E. Sampson
Nelson Schaenen, Jr.
Jacob Sheinkman
Daniel G. Sisler
Patricia Carry Stewart
James D. Stocker
Harold Tanner
Carol C. Tatkon
Richard F. Tucker
Stephen H. Weiss

*Ex officio.
†Inactive.

Note: The persons listed on pages 27—29 were holding the indicated offices on June 30, 1983. Two appointments to the State University of New York Board of Trustees were pending.
State University of New York

Administration
Clifton R. Wharton, Jr., Chancellor
William H. Anslow, Associate Vice Chancellor for Finance and Business
Elliott G. Ballard, Deputy to the Chancellor for Planning and Budgeting
Murray H. Block, Deputy to the Chancellor
John F. Buckhoff, Jr., Executive Vice President, Research Foundation
William F. Claire, Director of the Washington Office
Martha J. Downey, Secretary of the University
George D. Frangos, Associate Vice Chancellor for Graduate Studies
Irving H. Freedman, Acting Deputy to the Chancellor for Community Colleges
Thomas M. Freeman, Associate Vice Chancellor for Institutional Research and Planning
Herbert B. Gordon, Deputy to the Chancellor for Governmental Relations
Alden N. Haffner, Vice Chancellor for Research, Graduate Studies, and Professional Programs
J. Norman Hostetter, Associate Vice Chancellor for Educational Services
Jerome E. Komisar, Provost
Oscar E. Lanford, Vice Chancellor for Capital Facilities
Thomas M. Law, Acting Deputy to the Chancellor for Special Programs
Wilbert J. LeMelle, Associate Vice Chancellor for International Programs
Sanford Levine, University Counsel and Vice Chancellor for Legal Affairs
Kenneth M. MacKenzie, Associate Vice Chancellor for Academic Programs and Planning
John J. Mather, Associate Vice Chancellor for Continuing Education Programs and Public Service
Donald D. O'Dowd, Executive Vice Chancellor of the University

Sherry H. Penney, Vice Chancellor for Academic Programs, Policy, and Planning
Robert Perrin, Vice Chancellor for University Affairs and Development
Thomas J. Peterson, Jr., Deputy to the Chancellor for Central Administration Services
James S. Smoot, Vice Chancellor for Employee Relations and Educational Services
Harry K. Spindler, Vice Chancellor for Finance and Business

Trustees
Donald M. Blinken, Chairman
George L. Collins, Jr.
Robert R. Douglass
Judith Lasher Duken
Arnold B. Gardner
John L.S. Holloman, Jr.
Nan Johnson
Edward V. Mele
Judith Davidson Moyers
Mrs. Edward Siegel
Jeanne Thayer
James M. Tierney
Thomas Van Arsdale
Darwin R. Wales

New York State College of Veterinary Medicine

Administration
Edward C. Melby, Jr., Dean
Charles G. Rickard, Associate Dean for Academic Programs
Lennart P. Krook, Associate Dean for Postdoctoral Education
Robert B. Brown, Assistant Dean for Administration
Roy V. Pollock, Assistant Dean for Curriculum Development
Richard Rostowsky, Assistant Dean for Hospital Administration
John C. Semmler, Assistant Dean for Facilities and Research Administration
Ann Marcham, Assistant to the Dean for Instruction and Special Projects
Rita Harris, Director of Personnel
Ralph A. Jones, Director of Public Affairs
John M. Lewkowicz, Director of the Computing Facility
James F. McCabe, Director of Financial Systems
Donald S. Postle, Director of Financial Aid
Fred W. Quimby, Director, Division of Laboratory Animal Services, and Director, Center for Research Animal Resources
Marcia J. Sawyer, Director of Student Affairs and Admissions
Charles E. Short, Director of Continuing Education
Neil L. Norcross, Secretary of the College

Advisory Board
Robert B. Brown, Assistant Dean for Administration
Bruce W. Calnek, Chairman, Department of Avian and Aquatic Animal Medicine
Raymond H. Cypess, Chairman, Department of Preventive Medicine, and Director, Diagnostic Laboratory
Alexander de Lahunta, Chairman, Department of Clinical Sciences
Howard E. Evans, Chairman, Department of Anatomy
William Hansel, Chairman, Department of Physiology/Section of Physiology
Lennart P. Krook, Associate Dean for Postdoctoral Education

Robert M. Lewis, Chairman, Department of Pathology
Douglas D. McGregor, Director, James A. Baker Institute for Animal Health
Charles G. Rickard, Acting Chairman, Department of Microbiology, and Associate Dean for Academic Programs
Geoffrey W. G. Sharp, Chairman, Department of Pharmacology
Neil L. Norcross, Secretary of the College*

*Serving as secretary to the Advisory Board

Advisory Council
MacDonald Holmes, Chairman, Practitioner
Stanley M. Aldrich, Practitioner
James L. Bittle, Scripps Clinic and Research Foundation
Joseph H. Boyd, Manager, State Government Relations, Pfizer Pharmaceutical Company
Jerry J. Callis, Director, Plum Island Animal Disease Center
Holly Cheever, Practitioner
Herbert E. Doig, Assistant Commissioner for Natural Resources, New York State Department of Environmental Conservation
Roger D. Estep, Vice President, Howard University
David Hardie, Dairyman
Jean Holzworth, Member of the Staff, Angell Memorial Hospital, MSPCA
Barbara Hunter, Executive Vice President, Dudley-Anderson-Yutzy
Edwin J. Kersting, Dean and Director, College of Agriculture and Natural Resources, University of Connecticut
Edgar A. King, Deputy Commissioner, New York State Department of Agriculture and Markets
Joseph P. King, Consultant, Genesee Valley Regional Market Authority
William A. Levin, Chairman of the Board, Gold Mills, Incorporated
Dan W. Lufkin, Columbia Pictures Industries

Gerald P. Murphy, Director, Roswell Park Memorial Institute
Gilbert H. Porter, Vice President, Research and Development, Agway, Incorporated
Charles R. Robinson, Practitioner
Isadore Rosenfeld, President, Foundation for Biomedical Research, and Clinical Professor of Medicine, Cornell Medical College
E. Barry Ryan, Thoroughbred Breeder and Trainer
Ersan Sipher, Dairyman
Robert A. Squire, Associate Professor, Division of Comparative Medicine, School of Medicine, The Johns Hopkins University
Dale Stansbury, Director, Governmental Relations, National Association of State Universities and Land Grant Colleges
John V. Steiner, Practitioner
Arnold N. Weinberg, Professor of Medicine, Harvard Medical School
Stephen H. Weiss, Managing Partner, Weiss, Peck, and Greer
John E. Willson, Associate Director, Johnson and Johnson Research Foundation
Anyone interested in further information about the college or its programs is encouraged to request such information by mail or telephone. Writers are reminded to include the appropriate zip code for return mail.

Callers should be aware that most college offices are connected to the main switchboard, which may be reached between the hours of 8:00 a.m. and 5:00 p.m. on business days by dialing 607/256-5454. Individuals or offices may then be requested by name or by the appropriate extensions, given in the following lists as four-digit numbers preceded by an x. The seven-digit numbers that appear are for those college telephones not connected to the main switchboard. When those numbers are called, the main switchboard number should not be dialed.

General Inquiries

General inquiries should be directed to
Edward C. Melby, Jr., Dean
New York State College of Veterinary Medicine
Cornell University
Ithaca, New York 14853.
Telephone: x 2729

Statistical Supplements

The following supplements, containing detailed statistical material compiled on the basis of the calendar year (1982), are available:

- Report of Necropsies
- Report of Parasitological Examinations
- Poultry Disease Diagnostic Laboratories

Requests for any of the above should include the name of the document desired and should be addressed to

Special Programs and Units

Requests for information concerning the following special programs or facilities should be directed to the appropriate persons as listed below. All addresses are at the New York State College of Veterinary Medicine, Cornell University, Ithaca, New York 14853. See paragraph 2 on this page for an explanation of telephone numbers and the procedure for calling.

Admissions and Student Affairs
Ms. Marcia Sawyer
C117
Telephone: x 2700

Baker Institute
Dr. Douglas D. McGregor
James A. Baker Institute for Animal Health
Telephone: 277-3044

Biomedical Communications
Ms. Sandra Berry
L21
Telephone: x 2234

Biomedical Electronics
Mr. H. Donald Hinman
621 Research Tower
Telephone: x 2600

Bovine Research Center
Dr. Donald H. Schlafer
325C Research Tower
Telephone: x 2352

Comparative Medicine
Dr. George C. Poppensiek
315 Research Tower
Telephone: x 2770

Computing Facility
Mr. John Lewkowicz
624 Research Tower
Telephone: x 2606

Continuing Education
Dr. Charles E. Short
426 Research Tower
Telephone: x 2208
Development and Public Affairs
Mr. Ralph A. Jones
G1 Research Tower
Telephone: x 2744

Diagnostic Laboratory
Dr. Raymond H. Cypess
207 Diagnostic Laboratory
Telephone: x 2640

Equine Drug Testing and Research
Dr. George A. Maylin
Telephone: 256-6555

Equine Infectious Diseases, Laboratory for
Dr. James H. Gillespie
216 Research Tower
Telephone: x 2402

Equine Research Park
Dr. Jack E. Lowe
517 Research Tower
Telephone: 256-7753

Extension Service (Veterinary)
Dr. Michael A. Brunner
205 Diagnostic Laboratory
Telephone: x 2640

Feline Health Center
Dr. Fredric W. Scott
618A Research Tower
Telephone: x 2414

Graduate Study, Field of Immunology
Dr. S. Gordon Campbell
E317
Telephone: x 2395

Graduate Study, Field of Veterinary Medicine
Dr. Leland E. Carmichael
Graduate Field Office
227 Research Tower
Telephone: x 2276

Laboratory Animal Services, Division of, and Center for Research Animal Resources
Dr. Fred W. Quimby
221B Research Tower
Telephone: x 2524

Library (Flower Veterinary Library)
Ms. Susanne Whitaker
C201
Telephone: x 2510

Mastitis Control Program
Ms. Frances D. Barnes-Palleson
Telephone: 533-7852

Poultry Diagnostic Laboratories
Dr. Bruce W. Calnek
E117
Telephone: x 2365

Teaching Hospital
Dr. Robert W. Kirk
423 Research Tower
Telephone:
(Large-Animal Clinic) x 2100
(Small-Animal Clinic) x 2000
(Dr. Robert W. Kirk) x 2029

Published by the New York State College of Veterinary Medicine, Cornell University, 1983
Text by Nita Jager
Design by Claude R. Schuyler
Produced by the Office of University Publications, Cornell University
Photographs by Sol Goldberg, Russell C. Hamilton, Jon Reis, and the College of Veterinary Medicine

Cornell University is an equal opportunity, affirmative action educator and employer.