The Class of 1988 has graduated! See pages 2 & 3 for news on what they're doing, and who was honored at this year's Honor Day.
HONOR DAY - 1988

THE HORACE K. WHITE PRIZES
Awarded for the best Senior Seminar
Caroline H. Griffitti
Suzanne J. Bobnick

THE GRANT SHERMAN HOPKINS PRIZE
Awarded on the basis of interest, ability, perseverance, and performance in anatomy
Mark C. Herr

THE NEW YORK STATE VETERINARY MEDICAL SOCIETY PRIZE
Awarded for the best Senior Seminar
Michael C. Klossner

ADMISSIONS PROCESS CHANGES TO MEET NEEDS
By Marcia James Sawyer Director of Student Affairs & Admissions

In response to and anticipation of the changing needs of the Veterinary Medical profession as we look toward the twenty-first century, an ad hoc committee of the faculty was appointed this past year to thoroughly evaluate the policies and procedures of the current admissions process. The committee made an extensive review of the literature regarding admissions criteria, particularly as they relate to performance in medical school, sought the opinions of our students through a formal survey and gained faculty approval this last spring for several modifications to our admissions practices. The committee will continue to work this summer and next fall addressing the more fundamental question of necessary prerequisite course work as preparation for admission to the College.

Applications for the 1988-89 admissions year will be evaluated as follows:

Cumulative Grade Point Average 30%
Graduate Record Aptitude Examination 30%
Animal/Veterinary and Laboratory Experience 20%
Extracurricular Activities 10%
Personal Qualities 5%
Essay 5%

Those students who are accepted or who are on the alternate list will be invited to the school in small groups throughout the spring for informational sessions. The applicants will have a chance to speak with faculty members and students, tour the school and generally have their questions answered. The school is also committed to providing all eligible applicants with a financial aid package before they decide whether or not to accept an offer of admission.

Those students wishing to apply this fall may write for an application to the Office of Student Affairs and Admissions, New York State College of Veterinary Medicine, C-117 Schurman Hall, Cornell University, Ithaca, NY 14853. Applications will be available in mid-August and have a deadline this year of November 1.

THE PRIZE OF THE AUXILIARY OF THE AMERICAN VETERINARY MEDICAL ASSOCIATION
Awarded to a member of the 4th year class who has best advanced the standing of the College by special contributions of an extracurricular nature
William J. Falcheck

THE JAMES GORDON BENNETT PRIZE
Awarded to the student who shows the greatest humaneness in handling animals, with special reference to the use of anesthesia.
Sandra A. Laden

THE ANNA OLAFSON SUSSEX PATHOLOGY AWARD
Awarded to the 3rd year class member on the recommendation of the people actively engaged in teaching pathology.
Keith W. Clement

THE MARY LOUISE MOORE PRIZE
Awarded for the best work in bacteriology
Brigid T. Nicholson
David C. VanMetre

THE CHARLES GROSS BONDY PRIZE
Awarded for the best work in the courses in practical medicine and surgery of small animals.
Suzanne J. Bobnick

THE AMERICAN ANIMAL HOSPITAL ASSOCIATION STUDENT AWARD
Awarded to the senior in recognition of outstanding proficiency in small animal medicine and surgery.
Howard J. Lawrence

THE PHI ZETA AWARD
Awarded to the senior who has attained the highest grade in the course of avian medicine
Maria A. Castiglione

THE CHARLES GROSS BONDY AWARD
Awarded for the best work in bacteriology
Brigid T. Nicholson
David C. VanMetre

THE JACOB TRAUM AWARD
Awarded to the student who has shown an interest in equine practice and a high level of proficiency in the field
Kim J. Anderson
Eileen A. Fatcheric

THE JANE MILLER PRIZE
Awarded to members of the 2nd year class who have done the best work in veterinary physiology
Pamela J. Hutchinson

THE MERCK MANUAL AWARDS
Awarded to students for contributions made to essential student functions
Philip H. Aquadro
Kim A. Slade

THE GENTLE DOCTOR AWARD
Awarded to a 4th year student who demonstrates perseverance, scholastic diligence, and dedication to the delivery of excellent veterinary patient care.
Naomi E. Bierman

THE J. DONALD D. DELAHANTY MEMORIAL PRIZE
Awarded to a 4th year student who has shown an interest in equine practice and a high level of proficiency in the field
Kim J. Anderson
Eileen A. Fatcheric

THE AMERICAN ASSOCIATION OF FELINE PRACTITIONERS AWARD
Awarded to the 2nd year student with special interest and accomplishment in feline medicine and surgery
Susan E. Wylegala

THE A. GORDON DANKS LARGE ANIMAL SURGERY AWARD
Awarded to the 4th year student who exemplifies enthusiasm, motivation and dedication to the delivery of excellent veterinary patient care.
Naomi E. Bierman

THE ANNE BESSE PRIZES
Awarded for the best work in large animal medicine
Suzanne J. Bobnick
Michael C. Klossner

THE PHILOTHERIAN PHOTOGRAPHIC PRIZES
Photographs of animals submitted by students or their spouses are judged on the basis of individuality of the animal and its enjoyment of its surroundings.
Robert A. Duhaime
Ilse H. Stalis

THE DONALD D. DELAHANTY MEMORIAL PRIZE
Awarded to a 4th year student who has shown an interest in equine practice and a high level of proficiency in the field
Kim J. Anderson
Eileen A. Fatcheric

THE PHILOTHERIAN PHOTOGRAPHIC PRIZES
Photographs of animals submitted by students or their spouses are judged on the basis of individuality of the animal and its enjoyment of its surroundings.
Robert A. Duhaime
Ilse H. Stalis

THE GENTLE DOCTOR AWARD
Awarded to the 4th year student who exemplifies enthusiasm, motivation and dedication to the delivery of excellent veterinary patient care.
Naomi E. Bierman

THE AMERICAN ASSOCIATION OF FELINE PRACTITIONERS AWARD
Awarded to the 4th year student with special interest and accomplishment in feline medicine and surgery
Susan E. Wylegala

THE A. GORDON DANKS LARGE ANIMAL SURGERY AWARD
Awarded to the 4th year student who exemplifies enthusiasm, motivation and dedication to the delivery of excellent veterinary patient care.
Naomi E. Bierman

THE ANNE BESSE PRIZES
Awarded for the best work in large animal medicine
Suzanne J. Bobnick
Michael C. Klossner

THE DONALD D. DELAHANTY MEMORIAL PRIZE
Awarded to a 4th year student who has shown an interest in equine practice and a high level of proficiency in the field
Kim J. Anderson
Eileen A. Fatcheric

THE PHILOTHERIAN PHOTOGRAPHIC PRIZES
Photographs of animals submitted by students or their spouses are judged on the basis of individuality of the animal and its enjoyment of its surroundings.
Robert A. Duhaime
Ilse H. Stalis

THE GENTLE DOCTOR AWARD
Awarded to the 4th year student who exemplifies enthusiasm, motivation and dedication to the delivery of excellent veterinary patient care.
Naomi E. Bierman

THE AMERICAN ASSOCIATION OF FELINE PRACTITIONERS AWARD
Awarded to the 4th year student with special interest and accomplishment in feline medicine and surgery
Susan E. Wylegala

THE A. GORDON DANKS LARGE ANIMAL SURGERY AWARD
Awarded to the 4th year student who exemplifies enthusiasm, motivation and dedication to the delivery of excellent veterinary patient care.
Naomi E. Bierman
THE HILL'S AWARD FOR EXCELLENCE IN CLINICAL NUTRITION
Awarded to three 4th year students submitting the best essays or case reports describing the role dietary management played in the care of a patient.
1st Gregory A. John
2nd Elizabeth W. Uhl
3rd Caroline H. Griffitts

THE MYRON G. FINCHER PRIZE
Awarded to a 4th year student who has demonstrated the best work in courses dealing with large animal obstetrics and reproductive diseases.
Philip H. Aquadro

THE GARY BOLTON MEMORIAL CARDIOLOGY AWARD
Awarded to a 4th year student who has demonstrated understanding and expertise in cardiology and an empathy for patients.
Karin E. Madison

THE PHARMACOLOGY FACULTY AWARD FOR OUTSTANDING PERFORMANCE IN PHARMACOLOGY
Awarded to a member of the graduating class who has demonstrated an outstanding ability to incorporate the principles of pharmacology into the treatment, maintenance and care of patients.
Naomi E. Bierman

THE WILD BIRD RESEARCH AND REHABILITATION AWARD
Awarded to the 4th year student who has demonstrated concern for the rehabilitation of wild birds or who has been involved in research related to wild bird treatment and rehabilitation.
Michael Bonda

THE BEECHAM AWARD FOR RESEARCH EXCELLENCE
Dr. Sharon A. Center

THE UPJOHN CLINICAL AWARDS
Awarded to the students considered to be the most proficient in the practice of large and small animal medicine.
Large Animal Medicine: Scott G. Coblenz, Jonathan E. Kemp
Small Animal Medicine: Dayna E. Wiedenkeller

THE HUGH DUKES PRIZE IN EXPERIMENTAL PHYSIOLOGY
Awarded to a veterinary student who has done excellent work in physiology laboratory courses and shows potential for teaching and contributing new knowledge to physiology.
Mark C. Heit

THE E.L. STUBBS AWARD
Awarded to the 4th year student who has demonstrated the most outstanding competence and motivation in various areas of avian medicine.
Della M. Garell

THE NEUROANATOMY-CLINICAL NEUROBIOLOGY PRIZE
(In Memory of Dr. Wm. B. Forsythe) Awarded to the 4th year student who has demonstrated the most outstanding expertise and interest in neuroanatomy and clinical neurology.
Mark C. Heit, Russell S. Katz

WHERE ARE THEY GOING?
The Class of 1988 has officially entered the ranks of the veterinary medical profession and it is interesting to see where the class's seventy-eight members are employed. According to statistics supplied by the Office of Student Affairs & Admissions:
- 59% entered private practice
- 25% are undecided
- 13% entered internships
- 3% chose other, including research, positions.
- Of those entering private practice, 72% are working in small animal, 17% in mixed animal and 11% in large animal practices.

FIRST WILDLIFE MEDICINE PROFESSORSHIP ENDOURED AT CORNELL
WHAT IS BELIEVED to be the first endowed professorship in wildlife medicine in the United States has been established by a gift from an internationally known whale doctor.

"We need to know more about the care and management-the nutrition and breeding, the environment and medical needs-of wild animals and birds," said veterinarian Dr. Jay Hyman of Pearl River, N.Y., in explaining why he endowed the Jay Hyman Professorship in Wildlife Medicine at Cornell's New York State College of Veterinary Medicine.

"Learning more about the health of wild birds and animals will enable us to do a better job of sustaining all the species that live on the globe," said Dr. Robert D. Phemister, Dean of the College of Veterinary Medicine. "Veterinarians have a special responsibility for the comparative aspects of medicine-the way diseases behave in different species. What we learn about diseases of wild animals can be applied to other species as well."

When Hyman earned the DVM degree from Cornell in 1957, the traditional education focused on veterinarians' most likely patients: farm animals and household pets. He opened and successfully operated a small-animal veterinary practice in New York City for several years, treating thousands of cats, dogs and domesticated birds.

Then his interest shifted to animals in their natural habitat, and Hyman learned marine biology "on the job" at the New York Aquarium, beginning to specialize in whales and porpoises. In 1968, he became one of the first veterinarians to devote his full time to the care and study of whales. He took his veterinary skills wherever marine mammals were injured, sick or stranded.

At Cornell, the Hyman Professorship will be devoted to research and teaching about wild animals and birds of all kinds. Except for those working with zoos and public aquariums, most veterinarians will not make a full-time career with wild animals, according to Phemister. Instead, graduates of the Cornell College of Veterinary Medicine will be better equipped to treat the occasional wild animals - "from eagles to skunks," as Dr. Hyman puts it - that they see as part of their more routine practices.

Research is needed for the many unanswered questions about wild birds and animals in captivity and those on the verge of extinction. Dr. Hyman said. He pointed to the mystery in the care of orcas, the large dolphins known as killer whales, whose magnificent dorsal fins "flop over" when males are kept in captivity. "Something is missing, perhaps some trace mineral in their natural diet, that we don't know enough to provide."

Wildlife medicine research is the key to reintroducing nearly extinct animals in their natural environment, Dr. Hyman said. Continued on page 7.
IMAGING SYSTEM OPENS WAY FOR NEW STUDIES IN LIVE CELLS

With its recent acquisition of research equipment valued at nearly one quarter of a million dollars the College of Veterinary Medicine has stepped into a new era of cell biological research. The equipment, the latest in integrated fluorescence imaging and electrophysiology systems, will allow the college to establish a system in which fluorescence measurements can be made simultaneously in a cell from which electrophysiological recordings are also being made. Very simply, fluorescent indicators within cells are visualized using a light microscope. When excitation light of a defined wavelength is shone on the cells, fluorescence is emitted at a different wavelength. The system's image processor digitizes and stores images of this cell fluorescence and these images can then be quantified, analyzed and enhanced for video display. The changes in these fluorescence signals provide a means for measuring a variety of different events within individual cells. At the same time, movements of ions across the cell membrane can be measured using electrophysiological techniques.

Dr. Clare Fewtrell in the Department of Pharmacology has overall responsibility for the establishment and operation of the integrated fluorescence imaging and electrophysiology system. Dr. Paul Millard, a research associate in Dr. Fewtrell's laboratory, is responsible for the initial set-up and subsequent running of the system. The availability of this equipment at the college makes quantitative imaging of fluorescence in individual living cells accessible to a wider group of investigators by providing a flexible system that is relatively easy to use and which is suitable for studies in a variety of biological systems.

With the new imaging system, Dr. Fewtrell's study of the role of calcium in cell secretion, particularly the secretion of histamine, can concentrate on what happens to calcium inside single cells. Dr. Geoffrey Sharp and Dr. William Hansel will study calcium movements in other cell types. Says Fewtrell, "Although we now know a considerable amount about the electrophysiological properties of calcium channels in single cells and about the changes in free ionized calcium in populations of cells, the relationship between the two is less well understood. With the advent of digital imaging techniques and sensitive microscopic photon counting systems, the way is open for studies in which changes in free ionized calcium are measured simultaneously in a cell from which electrophysiological recordings are being made."

Such an approach is not restricted to studies with calcium. For example, Dr. Gregory Weiland will be able to use the system to study the regulation of continued on page 7

NEW LOOK AT JAMES A. BAKER INSTITUTE

Renovations and expansion have given a new look to the James A. Baker Institute for Animal Health. At a cost of approximately $1 million, the Institute added nearly 4,500 feet in new laboratory and office space and renovated existing facilities including a centralized research service, and expanded public service areas. According to Dr. Douglas McGregor, director of the Institute, the new space was needed not only to support current initiatives in microbiology, particularly in the areas of infectious diseases, arthritis and reproductive diseases, but also to provide new faculty with laboratory space. The main building of the Institute dates from 1950 when it was known as the Veterinary Virus Research Institute. The complex of buildings that has continued to grow from this core was renamed after the Institute's founder, Dr. James A. Baker, in 1975.

Dr. Douglas McGregor and Dean Robert Phemister look over changes to the James A. Baker Institute.
BEECHAM AWARD FOR RESEARCH EXCELLENCE GOES TO CLINICIAN

Dr. Sharon Center is the 1988 recipient of the Beecham Award for Research Excellence, an award presented annually by Beecham Laboratories to a young investigator whose research achievements are likely to have a significant impact on our understanding of the biology or medical management of animals. Dr. Center’s research involves the use of a serum bile acids to assess hepatic function. Her work has demonstrated the usefulness of this test for clinicians in private practice, teaching and research. The Gastroenterology Laboratory at Cornell’s College of Veterinary Medicine now is considered the standard for this test.

An associate professor in the Department of Clinical Sciences, Dr. Center combines teaching responsibilities with full-time clinical work on the medicine service of the Small Animal Clinic. It was in the course of testing for and treating liver disease that Dr. Center realized that currently accepted tests for hepatic function did not lend themselves to common practice situations. These tests required that samples be tested immediately, an impracticality if there was a delay in in-house testing or if samples had to be mailed to a laboratory. Subsequent research and rejection of various testing techniques led Dr. Center to adapt a serum bile acid assay for clinical use. The test had been reported in the medical literature, but had never been used routinely by laboratories or applied to patients in veterinary medicine.

The serum bile acid assay is an all-chemical, enzymatic-linked procedure. The testing procedure is simple and reliable because samples do not deteriorate during transport to the laboratory, which can be a problem for clinicians in private practice who must use outside laboratories. The test has also proven to be more reliable than analysis of blood ammonia which had previously been used as a measure of liver function in companion animals. In addition to adapting this assay to small companion animals, the test has been used to assess liver function in large animals and in woodchucks infected with woodchuck hepatitis, an active research program at the College of Veterinary Medicine.

Dr. Sharon Center is a 1975 graduate of the University of California, School of Veterinary Medicine at Davis. She first joined the staff of the College of Veterinary Medicine in 1975 as an intern. In 1977 she entered private practice in California, returning three years later to Cornell as a medicine resident, followed in 1981 by an appointment as an instructor and a postdoctoral research associate. Dr. Center has authored several book chapters and numerous scientific articles concerning the diagnosis and management of liver disease in the small animal patient. She is the author of a chapter on “Pathophysiology and clinicopathologic diagnosis of liver disease” in Ettinger’s Small Animal Internal Medicine, and coauthor of “Liver disease in the pediatric patient” in the Textbook of Pediatric Medicine, edited by J. Hoskins. She is a frequent speaker at practitioner education seminars on the diagnosis and treatment of liver disease in the dog and cat. Dr. Center is a member of the American Veterinary Medical Association, the American Animal Hospital Association, the American Association of Veterinary Clinicians, the Comparative Gastroenterology Society and a diplomate of the American College of Veterinary Internal Medicine. She received the Norden Distinguished Teacher Award in 1985.

Generally, the Council on Education evaluation report was complimentary, noting the library’s superb resources, the college’s extensive research activities, and the quality of the faculty and students. The report recommended that the Facilities Master Plan, with its projected increase in space and facilities, be pursued vigorously. It was also recommended that the admissions requirements explicitly include courses in the humanities or social studies, and mathematics. Noting a decrease in the food animal accessions in the hospital, the committee’s report also urged that students receive more clinical exposure to swine, small ruminants and beef cattle.

Dr. S. Gordon Campbell, who was responsible for compiling the college’s self-evaluation, observed that the committee’s recommendations in most part dovetail with the college’s own plans for expansion of physical facilities and a revamped admissions procedure. Said Campbell, “There is no doubt the committee’s findings will be helpful in planning the college’s facilities development. But it is particularly gratifying that the committee chose to grant the college the full seven years of accreditation, a mark of their confidence in our ability to meet the challenges of expansion and change.”

At its April 1988 meeting, the American Veterinary Medical Association’s Council on Education voted continued full accreditation for up to seven years for the College of Veterinary Medicine at Cornell.

The accreditation review began with the College’s own self-evaluation - an indepth look at the college’s objectives, organization, finances, physical facilities and equipment, clinical resources, library, enrollment, admissions, faculty, curriculum, postdoctoral education, all academic departments, and the teaching hospital.

In September, 1987, the Education Council’s evaluation committee conducted a three-day comprehensive site visit with a full schedule of faculty and staff interviews and a comprehensive site visit. The evaluation team consisted of our members of the Committee for Education and representatives of the New York State Veterinary Medical Society and the Canadian Veterinary Medical Association, as well as staff members from the American Veterinary Medical Association. An observer from the U.S. Department of Education was also present. The final report with the committee’s recommendations was filed some months later.
HEPATITIS-LIVER CANCER RESEARCH IN WOODCHUCKS GETS $8.9 MILLION

by Susan S. Lang

For people who are chronically infected with the hepatitis B virus, the chance of developing liver cancer is 200 times higher than for the normal population, a risk factor that is higher than for any other known carcinogen. In fact, this risk is about 5 times greater than the risk of heavy smokers developing cancer. What are the chances of dying if liver cancer develops? “Virtually 100 percent,” says Bud C. Tennant, D.V.M., a clinical scientist at the New York State College of Veterinary Medicine at Cornell University, who has been studying the link between the virus and liver cancer for almost a decade.

To examine in depth the role of the hepatitis B virus infection in hepatitis and liver cancer and to improve methods of combating these diseases, the National Institute of Allergies and Infectious Diseases at the National Institutes of Health has awarded Dr. Tennant and his lab more than $8.9 million to study a similar virus disease that affects woodchucks.

Around the world—particularly in China, Southeast Asia, and tropical Africa, some 250 million people are chronic hepatitis B virus carriers; about 300,000 people die from liver cancer every year. Although these diseases are relatively uncommon in the U.S., about 3500 infants a year are born to infected mothers and are therefore a high risk. Other high risk populations include those who become infected from blood or blood products before serologic tests became available in the 1970’s, their offspring, certain immigrant populations and their offspring, male homosexuals, intravenous drug users, and persons who have sexual relationships with anyone who is a carrier.

Why does Tennant’s work focus on woodchucks? For years, scientists had trouble studying the hepatitis B virus because it could not be grown in tissue cultures and because most mammals are not susceptible to it. Although the chimpanzee was known to contract hepatitis when infected, research with chimpanzees is limited by unavailability and high cost. About ten years ago, however, researchers in Philadelphia observed unusually high rates of liver cancer among captive woodchucks. They then found that most of these animals also were victims of the woodchuck hepatitis B virus which is genetically and biologically similar to the human virus.

When the scientists tried to infect woodchucks with the woodchuck hepatitis B virus, though, to see if the animals would develop liver cancer, they found that the adults almost always recovered from the disease, just as human adults do when exposed to hepatitis B virus. High rates of chronic hepatitis B virus infection are maintained in certain human populations because infants that are infected by their carrier mothers frequently become chronic carriers. The Cornell group suspected that if neonatal woodchucks, with their immature immune systems, were infected, they would be much more likely to become chronic carriers.

First, Tennant and his colleagues had to learn how to breed woodchucks in the laboratory, to develop uninfected colonies, and to raise the animals in controlled environments to eliminate all other potential carcinogens. They had to develop means of reproducing the disease experimentally, of testing the blood for various antibodies that develop during the course of infection, and for biochemical markers of tumor formation.

Finally, after several years of research, the scientists had developed an animal model that closely resembled the pattern of the human disease. When woodchuck neonates were infected with the virus, they became chronic carriers at about the same rate as human infants: about 60 percent of the time. And for the first time, Cornell researchers showed that the woodchuck hepatitis virus induced formation of liver tumors. “Essentially every woodchuck that became chronically infected with the woodchuck hepatitis virus developed liver cancer,” Tennant says.

Although epidemiological studies had incriminated hepatitis B virus infection as a risk factor in liver cancer in humans, Tennant’s work provides strong experimental evidence that the virus actually causes cancer. So far, just a handful of other viruses is strongly linked to cancer, such as the Epstein-Barr virus in Burkitt lymphoma and the papilloma virus in cervical cancer. “If the cycle of neonatal infection can be broken with a vaccine and the chronic carrier state can be prevented, we could literally vaccinate against a human cancer and prevent it,” explains Dr. John L. Gerin, Professor of Microbiology, Georgetown University School of Medicine and a close collaborator with Dr. Tennant in the woodchuck studies. “This has never been done before.”

Currently, thousands of Asian and African infants, as well as other high risk populations including infants of infected mothers in the U.S., are receiving a costly vaccine early in life to prevent hepatitis B, one of the most common infectious diseases among humans in the world. Although the vaccine has been proven to be safe and effective against hepatitis B virus infection, scientists will not know for decades whether it will prevent liver cancer. Tennant’s goal is to test the vaccine strategy against viral hepatitis and liver cancer in woodchucks, to validate the approach and hopefully improve methods of vaccinating high-risk human populations. “We’re also strongly committed to developing a therapeutic approach to cure the 250 million chronic hepatitis B virus carriers of the infection,” Tennant says. A major thrust of future research will be to test new antiviral drugs for their ability to inhibit viral replication and facilitate recovery.

The implications of Tennant’s work, however, may go even beyond the millions of people with hepatitis B virus infection. The woodchuck and human hepatitis B viruses are very simple organisms with probably no more than four genes. They provide, therefore, relatively simple systems to examine the molecular mechanisms that initiate or promote tumor development. “Although only a few viruses actually have been shown experimentally to cause cancer, viruses may be far more important in carcinogenesis than is now recognized,” Tennant says. “The woodchuck appears to have great promise for development of practical methods for the control and prevention of viral hepatitis and liver cancer. Its ultimate value as an animal model, however, may be in enhancing our understanding of the key molecular genetic events that are fundamental in the process of carcinogenesis.”

Susan S. Lang is a freelance writer who often covers health and medical topics.
RESEARCH PATHOLOGIST RECEIVES AAP AWARD
Beth A. Valentine, D.V.M., a Ph.D. candidate at the College of Veterinary Medicine, was one of two research fellows to receive Experimental Pathologist-Training Awards at the May meeting in Las Vegas of the American Association of Pathologists. Selection of the award was based on an abstract of the paper Dr. Valentine presented at the meeting, entitled "Canine X-Linked Muscular Dystrophy: An Animal Model of Duchenne Muscular Dystrophy," co-authored with B.J. Cooper, N.J. Winand, J.E. Sylvester and E.P. Hoffman.

Dr. Valentine graduated summa cum laude from C.W. Post College in Greenvale, N.Y., received her D.V.M. from the New York State College of Veterinary Medicine in Ithaca, and is a diplomate of the American College of Veterinary Pathologists. She was a postdoctoral fellow in the Department of Comparative Pathology at Johns Hopkins University School of Medicine from 1982 to 1984, senior resident at New York State College of Veterinary Medicine from 1985 to 1986 and the following year was in charge of the Neuromuscular Disease Laboratory there. She is currently an NIH postdoctoral fellow at Cornell.

IMAGING SYSTEM
continued from page 4
nicotinic acetylcholine receptor function; Dr. Robert Oswald plans to study the mobility of these same receptors on the surface of muscle cells; while Dr. Linda Nowak will use the system to study excitatory amino acid neurotransmitter receptors and ion channels in cultured mammalian neurons. Dr. Fewtrell emphasizes that these are all studies in live cells. Says Millard, "Our understanding of cellular function at the single cell level is expanding rapidly thanks to computer-assisted microscopic image enhancement and analysis. These techniques allow us to visualize and analyze quantitatively such diverse cellular functions as mitosis, motility, stimulus-secretion coupling, phagocytosis, growth and chemotaxis to name only a few. For example, with this instrument we can watch the cell secrete and monitor changes in intracellular calcium as they occur." New techniques and instrumentation for imaging molecules that are involved in signal transduction are also being developed in several laboratories.

Unlike many of the imaging systems in use around the country, the college's system has been developed as a modular imaging/microspectrofluorometric system that has at its core a commercial fluorescence measurement system that can be used immediately without modification. Selected components will then be added to enhance speed, data storage capacity, and flexibility, to meet the individual needs of the investigators involved. Using this modular approach, it will be fairly easy to upgrade or enhance components for future projects. The enormous potential of the fluorescence imaging and electrophysiology system is only beginning to be recognized and researchers at the college hope to develop methods and approaches for exploiting the possibilities of this new and exciting technique.

PROFESSORSHIP
continued from page 2
Hyman said. Maintaining the last remaining stock of any endangered animal in captivity is difficult enough, he said. But those efforts will be of little use if veterinarians don't know when the animals—or their environments—are ready for their return.

Dr. Hyman advises veterinary students that it is possible to make a living in wildlife medicine, "although it's not the most financially rewarding field." (He is endowing the Cornell professorship with proceeds from his successful real estate management business.) The directors of many of the world's greatest zoos began their careers—or their environments—are ready for their return.

Dr. Hyman advises veterinary students that it is possible to make a living in wildlife medicine, "although it's not the most financially rewarding field." (He is endowing the Cornell professorship with proceeds from his successful real estate management business.) The directors of many of the world's greatest zoos began their careers as veterinarians specializing in wildlife medicine, he notes, and field research in wildlife medicine has its own rewards. "You do what you enjoy doing."

Roger Segelken Cornell News Service

DR. HARVEY RECEIVES 1988 DISTINGUISHED TEACHER AWARD
The pleasure he finds in teaching and his appreciation of students' abilities have earned Dr. Jay Harvey the Norden Distinguished Teacher Award for the second time at the College of Veterinary Medicine, Cornell University. First honored in 1981, Dr. Harvey again was selected for the honor by students in the D.V.M. program at the College.

In addition to instructing and supervising students on the Small Animal Clinic's surgery service, Dr. Harvey teaches the small animal surgery & medicine course to third-year students, and general medicine and surgery to second-year students in the second semester. Asked why he preferred the academic career to private practice, Dr. Harvey explained that he liked the atmosphere of a teaching hospital, "I like working with other people with similar interests, seeing the types of cases we treat." What makes this all worthwhile, though, is working with the students. Said Harvey, "Students are why we are here. I enjoy them." He's continually amazed at how well-rounded today's students can be and at their ability to focus on veterinary medicine while maintaining a broader scope of interests. He encourages his students to build on that ability.

Dr. Jay Harvey is an associate professor within the department of clinical sciences. He received his DVM degree from Kansas State University in 1971 then completed an internship at the Animal Medical Center, NYC, in 1972, followed by a two-year residency at the University of California at Davis. He entered private practice in Pennsyl­vania in 1974, then returned to the Animal Medical Center in 1975 as a staff surgeon until 1979 when he joined the faculty of the College of Veterinary Medicine at Cornell. Dr. Harvey is a diplomate of the American College of Veterinary Surgeons and also the 1981 recipient of the Norden Distinguished Teacher Award.
**A CAMEL FROM MAINE**

Surgeons in the Teaching Hospital’s Large Animal Clinic are accustomed to an assortment of livestock, including the occasional llama. Ozzie was another story. The two-year old camel was sent from a Maine wildlife farm with a fracture of his left tibia (hindlimb) to be repaired. Dr. David Robertshaw, chairman of the physiology department and with a research interest in camel physiology, was able to recommend an appropriate anesthetic protocol. Dr. Normand Ducharme and Dr. Peter Rakestraw performed the surgery that placed a plate in “Ozzie’s” leg for internal fixation. At first the prognosis was guarded but seven weeks after surgery, Dr. Rakestraw has removed the camel’s cast. “A big question was whether the camel would tolerate a hindlimb cast,” said Rakestraw “because we needed the additional support while the leg was healing.” Generally, Ozzie has been easy to work with but according to Rakestraw the patient doesn’t tolerate pain well. “He was a little belligerent when he had to have shots,” he said, “but once the shots stopped he was fine. And it helped that we found he likes apples.”

*Dr. Peter Rakestraw holds “Ozzie” for radiographs of the camel’s leg.*

---

**Veterinary Viewpoints**

The New York College of Veterinary Medicine
Cornell University
Ithaca, New York 14853