JAMES LAW HALL, the college's first main building, is gone now, along with the wood frame building where our early faculty, students and patients posed. Back then, the entire campus consisted of James Law Hall and five buildings housing the mortuary, operating theatre, a general ward, isolation facilities, and the groom. With time, these buildings were outgrown and new ones built but historically the college has found itself short on space. For a look at what the college might be in the next millennium, see inside.
AVERY TO HEAD MICROBIOLOGY

AFTER AN exhaustive applicant search, a chairman of the Department of Microbiology at the New York State College of Veterinary Medicine, Cornell has been named. Dr. Roger J. Avery, head of the Department of Microbiology at Houghton Poultry Research Station, Houghton, England, joined the college’s faculty as Chairman of Microbiology on November 1st. He will be responsible for direction of an historically productive and diverse faculty group including virologists, immunologists, parasitologists and bacteriologists. The college’s Department of Microbiology has established a nationally recognized reputation for work in infectious disease research and further development is now expected with the addition and development of Dr. Avery’s field of interest, molecular biology.

In his undergraduate training in biochemistry at the University of Leeds, UK, Dr. Avery became interested in both nucleic acids and viruses, interests that earned him a first class honors degree in biochemistry in 1966. As a result, molecular virology was the central theme of his subsequent research work, and three years later he earned his Ph.D. in biochemistry/microbiology from the University of Newcastle-upon-Tyne, UK. As the recipient of a Carnegie Institution Postdoctoral Research Fellowship in Washington, DC, from 1969–1971 he studied the DNA’s of the T-even bacteriophages and gained experience in the technique of molecular hybridization under the guidance of Drs. R. J. Britten and D. E. Kohne. Dr. Avery credits this instruction as an “extremely powerful tool in his later investigation of nucleic acids.”

Returning to the United Kingdom in 1971 to take a post as lecturer in biological sciences at the University of Warwick in Coventry, Dr. Avery began work on the replication and transcription of the RNA genome of influenza virus. In the course of his work he also studied phages, amphibian viruses, insect viruses, fowl pest virus, infectious bronchiitis virus and interferon. From April until December in 1975 he was a Visiting Medical Research Council Fellow in cancer studies at the University of California, Medical Center in San Francisco, and from June 1976 to October 1984 until the present time, he has served as the head of the college’s Department of Pharmacology, the World Veterinary Poultry Association, the European Tumor Virus Group, and the Biochemical Society. In addition to two fellowships, he has received the William Waldorf-Astor Foundation Award to visit some of the leading U.S. research centers. Dr. Avery has been awarded research grants from England’s Medical Research Council, Science Research Council, the Cancer Research Campaign, and the Agricultural Research Council. He has also received grants from the United States Department of Agriculture and the National Science Foundation. He is the author or co-author of over sixty scientific publications. He referees articles for many professional journals including Nature, the Journal of General Virology, Journal of Virological Methods, Biochemical Society Transactions, and Nucleic Acids Research.

Outside the laboratory, Dr. Avery finds too little time to pursue an interest in sports, especially soccer, squash and rugby. However, the Avery family, Roger, his wife Polly, and their two daughters, enjoy camping so the family joins him after Christmas.

TRACKING DRUGS BY COMPUTER

UNTIL RECENTLY, veterinary students had to wade through charts and graphs and learn a series of equations if they wanted to understand the absorption, distribution, metabolism and excretion of an administered drug, that is, its pharmacokinetics. Today, they still learn the equations, but the process may be a little more instructive and involve a little less rote memorization. A computer assisted instruction and utility program has been developed that can help students understand how long a drug will remain in the body and what factor or combination of factors will slow or speed the process.

Students in Dr. Robert Oswald’s Pharmacokinetics Laboratory were introduced to the software program in small group sessions using Macintosh computers. The software is so “user-friendly” even a confirmed “cyber-phobe” can run the program. Dr. John Babish, associate professor in the college’s Department of Pharmacology, and Dr. Arthur L. Craigill at the University of California developed the software and Dr. Oswald modified it for the Macintosh system. In the instructional portion of the program, students are shown how changes in various external and internal factors may affect drug residues. In the graphics section, students make changes in any of the physiological factors that influence absorption or elimination of chemical residues or change external factors such as dose and dosage interval. Graphs then show what happens to the drug. Unlike a chart in a book, the curves in these graphs are plotted right before their eyes and change according to the data the student inputs. Such graphs can show the effect a decrease in the rate of elimination may have on drug residues in the body, or how withdrawal times are affected when the animal is dehydrated or given multiple doses of a drug. Like most of her classmates, Andrea Looney ’89, was enthusiastic about the program, “It pulls things together. There are a lot of facts in the books, but the program summarizes it all in easy terms.”

A cyberphobe is someone who has a fear of automation, in this case, of computers.
DEVELOPING A FACILITIES' MASTER PLAN

IN 1984, prompted by the realization that the College of Veterinary Medicine had reached a crucial point in its development - a future endangered by outdated physical facilities, severe space constraints and significant changes in the practice of veterinary medicine - the State University Construction Fund commissioned the architectural team of Davis, Brody & Associates/Russo + Sonder to study the college and develop a facilities master plan. After interviews with faculty, staff and students, a detailed study of the physical condition of the existing buildings and services, and a comparative study of other colleges of veterinary medicine, a plan was formulated to take the college through the next decade and chart a logical progression for facilities development as it approaches the next millennium.

The Problems of Success

The buildings housing our clinics and combined teaching/research facilities were built in the fifties; considerable changes have occurred in veterinary medicines since that time. The body of knowledge that students must assimilate has burgeoned to the point where auto-tutorial laboratories, expanded laboratory and classroom space, and lecture rooms adequately equipped for the clear presentation of clinical cases are necessities. As more veterinarians enter specialized fields in their profession, additional facilities and equipment must also be dedicated for instructional and clinical use. Research has also made its demands. Twenty years ago, cell sorters, nuclear microscopes, and anaerobic culture laboratories were uncommon if not unknown technology. Today, such equipment must be accommodated or research and treatment lag behind competitive institutions.

Faculty and staff members have set the pace for veterinary medicine. Two of our early graduates traced the transmission of certain diseases to insects, an important discovery that lead directly to the control of malaria in the early 1900's and to the control of the often fatal equine encephalitis today. Another graduate and the first recipient of a DVM degree in the U.S., Dr. Daniel Salmon, described the causative organism and gave his name to salmonellosis. In more modern times, brucellosis and tuberculosis have been effectively eradicated from dairy herds in New York State thanks, in large part to the college's diagnostic work. Faculty research has also established the first scientific guidelines for equine nutrition, demonstrated early evidence for immunological treatment of virus-induced leukemias, proved

The usefulness of polyclonal vaccine in which multiple vaccines may be administered in one preparation, and revealed a link between attherosclerosis and herpesvirus. Presently, we lead the colleges of veterinary medicine in attracting grant and contract dollars from federal, state and private sources. In competing for federal research grants and contracts, the college has the highest overall level per faculty member compared to all veterinary faculty in the U.S.

Such success has attracted faculty, staff and students. The college's faculty is increasing at an average rate of 3 to 4 positions per year. Over the last twenty-five years the faculty has increased from 37 to 129, while, in the same time period the DVM student body has increased from 206 to 320 and the number of graduate students has gone from 24 to 106. The number of interns and residents went from 7 to 33 and senior research associates from number 26, up from 3 in the past 25 years. Meanwhile, the number of employees has grown from 184 to 950. But will the best faculty members be attracted by over-crowded facilities? Researchers receive 40 times the amount of funding they did in the 1950's but a researcher's office and laboratory space may be scattered between two or more buildings or be located off-campus. Even the relatively new Veterinary Research Tower is packed to capacity and will not accommodate the projected 35% research growth over the next ten years.

Will the brightest students attend a professional school where lecture rooms barely hold them much less necessary audio-visual equipment, where there is no hospital facility for the presentation of clinical cases to classes, or where the library seats only a small percentage of users? According to a formula utilized by the State of New York, the Flower Veterinary Library, a national resource, is currently 37% below recommended size and acquisition of a new library book requires that another book be removed and placed in storage. Students may also be frustrated in attempts to use the autotutorial center, a facility physically separate from the library and too small to accommodate the numbers of students needing to view instructional tapes.

Space problems will soon affect service. The Diagnostic Laboratory's service shows a 5-fold increase and the Mastitis Control Program has doubled in size but the laboratory is undersized and has no room to expand and the Mastitis Program has already been forced to move off-campus. In the Teaching Hospital, clinical service rounds, conferences, telephone consultations, and the daily traffic of patients, treatments, and staff overflows into hallways and wards. The 50-foot wide Small-Animal wing is served by a single corridor onto which every conceivable area empties — the wards, the intensive care unit, surgeries, supply and treatment rooms. In the college, basements are locker rooms, offices are conference and lecture spaces, closets are computer rooms and offices. Student gathering areas are non-existent, shared lockers are common and students on clinic night duty catch a few hours sleep in the client waiting room. There are problems of access and circulation, of ventilation and vibration, and of inadequate electrical wiring.

The college is literally growing out of its skin. More room is needed immediately — a projected 50% increase in building area.

New & Old—Renovations and Construction

Projections show that by 1995, the College of Veterinary Medicine will require an increase to 691,000 square feet of space from the existing 455,000 square feet. A total of 236,000 gross square feet of new construction is proposed with 35,000 gsf for a new teaching center and library expansion, 77,000 gsf for new research and office space, and 96,000 gsf new space for the Teaching Hospital. The balance of new space is given over to laboratory animal services, mechanical space and storage. An additional 79,500 gsf will be gained from renovated space. While all of the major buildings on the site will continue to be useful, some show serious deficiencies in function and configuration. Reassigning functions will extend the life and efficiency of many areas. Vacated teaching laboratories and lecture rooms will be con-
verted primarily to academic offices. The Small Animal Clinic Wing will be converted to office space for the clinical science faculty and administrative services. Existing obsolete research space will be reused for expansion of the Diagnostic Laboratory and the Large Animal Clinic will undergo phased renovation to expand the surgical suite, upgrade the large-animal wards and to introduce a teaching amphitheater. Construction for two-thirds of the proposed increase in space is needed immediately with the remaining to be built over the next ten years.

Some needs are more pressing than others; the Teaching Hospital space requirements are immediate and the Diagnostic Laboratory needs about half of its projected space increase as soon as possible to allow it to expand its research activities and augment the service laboratories. College Administration Services, which include the library, laboratory animal services and student support facilities also need most of the additional space at once. About one-third of the total expansion space in the Basic and Clinical Science departments should provide some easing of problems associated with overcrowded lecture rooms and offices and inadequate support space.

The Architects' Plans in the Clinics

To accommodate the future growth, the College of Veterinary Medicine will expand outward and upward, changing radically in shape and size. In the first phase of expansion, a new Small Animal Hospital and an extension of the Large Animal Hospital, along with a new shared-service module, would be constructed. An academic/research center would be extended primarly to academic offices.

The Architect's Plans in the Clinics

The remaining northern portion of the Large Animal Clinic, the present-day hospital, will keep its present configuration but an amphitheater will be added and renovations and upgrading to wards and expansion of the surgical suite will continue.

Room in the Classroom and Laboratory

The Academic Research Center, a 153,000 gsf complex, will extend the Schurman Hall corridor to link with the Veterinary Research Tower, the Diagnostic Laboratory, and the Clinical Sciences Wing at the former Small Animal Clinic. It will house storage and mechanical rooms in its basement, new lecture halls on the ground levels, a library extension and new teaching laboratories on its first floor, new extended breezeway will be a large animal reception, and outpatient examination, with access to the services core. The remaining northern portion of the Large Animal Clinic, the present-day hospital, will keep its current configuration in the VRT.

In the second phase of building, scheduled within the next ten years, the research laboratory would be extended by adding to the existing laboratory animal services wing behind the VRT.

More information on the Facilities Master Plan of the New York State College of Veterinary Medicine is available in the booklet, "A Building Strategy For The Next Decade and Beyond," prepared by Davis, Brody & Associates/Russo + Sonder. Copies may be obtained by writing to the Office of the Dean, New York State College of Veterinary Medicine, Cornell University, Ithaca, New York 14853.

Packed to capacity now, the Veterinary Research Tower houses laboratories and offices for some of the faculty members who lead all colleges of veterinary medicine in attracting research dollars.

Programs such as the 3-Disease Program and the Bovine Research Center address problems that cost the cattle industry more than $200 million annually.

Training in all recognized specialty areas of veterinary medicine is provided at the college.
THE UPSIDE

MANY PEOPLE may know that the College of Veterinary Medicine is the only veterinary college in New York State and one of three veterinary schools in the Northeast. But they may not know the extent of the college’s research, teaching and service programs, nor the impact these have on the health and well-being of animals in the state, the country and even the world.

The Students:
- For the past five years, the entering classes of this college have had higher scores on the Graduate Record Examination than those at any other college of veterinary medicine in the U.S.
- The College of Veterinary Medicine provides training in all recognized specialty areas of veterinary medicine.
- Cornell graduates receive the highest average beginning salaries in private practice of any graduates of veterinary medical colleges in the country. (These salaries, however, remain in the low to mid-20’s and cannot be compared to those of graduating MD’s.)
- There were approximately 300 job vacancies in the placement files for the 66 members of the graduating class seeking employment in practice.

The Faculty:
- Faculty members lead all colleges of veterinary medicine in attracting grant and contract dollars from all sources, federal, state and private.
- Faculty inventions have resulted in 74 active license agreements to corporations involved in production of animal products or services utilizing technology developed at the college.
- The U.S. Patent Office has issued 21 patents to college faculty.
- Faculty members serve as consultants to the United Nations, World Health Organization and the Southeast Asian Treaty Organization and to organizations and veterinary medical facilities around the world. Ten faculty members have served on National Institutes of Health study sections, and twelve have served in NIH advisory or consulting positions. Six of our faculty have been National Academy of Science National Research Council committee members.

Research:
- The college is the only facility in New York State that can devote critical time to basic research or development effort to animal disease vaccines for use by small populations, for example the duck farmers of Long Island.
- Vaccines of major impact developed at Cornell include canine distemper, infectious canine hepatitis, canine parvovirus, feline rhinotracheitis, feline calicivirus, leptospirosis, feline pneumonitis, hog cholera, transmissible gastroenteritis in swine, and bovine virus diarrhea. In the past, research has produced the first successful vaccine for any cancer (Marek’s disease).
- Current studies center on the development and field testing of vaccines against mastitis, brucellosis, equine influenza, avian influenza, equine strangles, salmonellosis, and hepatitis, all diseases of major importance in animals.
- The college is one of four centers in the nation selected to participate in a new program addressing the pharmaceutical needs of minor food-animal species.
- Researchers at the New York State College of Veterinary Medicine study some of the diseases of greatest concern to mankind: leukemia, atherosclerosis, muscular dystrophy, diabetes, genetic disorders, immunology of aging, hepatitis, cancer, AIDS, the inheritance of disease resistance.

Service:
- The Teaching Hospital currently treats more than 13,000 small companion animals, 2,300 large animals including horses, cattle, sheep and goats, while the Ambulatory Clinic services approximately 36,000 animals per year.
- Our equine research and drug testing programs aid the $3 billion racing industry which contributes $250 million in annual betting revenues to the state treasury. Laboratories are located at all New York State pari-mutuel tracks with a reference and research center in Ithaca. More than 225,000 samples are tested each year.
- The only Contagious Equine Metritis (C.E.M) quarantine facility in New York State, is located at the college’s equine annex and testing for the disease is conducted at the Diagnostic Laboratory.
- College programs address the problem of cattle diseases that cost the cattle industry more than $200 million annually, for example, the Diagnostic Laboratory’s newly funded 3-Disease Program to control and eventually eradicate John’s disease, bluetongue and bovine leukemia, from New York State’s dairy herds. At the same time, Cornell’s Bovine Research Center focuses on programs to improve the health, productivity and well being of cattle.
- The Diagnostic Laboratory is one of a very few facilities certified by a human health department, permitting the extraordinary latitude to study both human and animal samples in the event of a zoonotic disease outbreak. The Laboratory conducts about 700,000 tests a year. In 1985, the first cattle in 30 years were exported to mainland China from the U.S., thanks in part to the Diagnostic Laboratory and their ability to perform some 10,000 tests on 850 cattle as part of the animals’ health certificate requirements.
- The Laboratory for Marine Animal Health at Woods Hole, directed by faculty members from the college’s Department of Avian and Aquatic Animal Medicine is setting standards for marine animal research while helping to develop measures to recognize, prevent and control disease in marine stock.

The Diagnostic Laboratory’s services show a 5-fold increase, services that emphasize disease prevention and control.

The Teaching Hospital annually treats more than 13,000 small companion animals, and 2,300 large animals, while the Ambulatory Clinic services approximately 36,000 animals.
AN HISTORICAL PERSPECTIVE—THE GENERATIONS OF CHANGE & GROWTH

IN 1869, Dr. James Law made do with a room in Morrill Hall where he could teach twenty students. More room wasn’t forthcoming until 1894 when Governor Roswell P. Flower signed into law the act to establish a State Veterinary College at Cornell University. Accompanying the law was a grant to the college of $50,000 “for the purpose of constructing and equipping suitable buildings for such college upon the grounds of said university.” Through a bill introduced by Assemblyman Stewart of Ithaca $100,000 more was appropriated and the first veterinary building, later known as James Law Hall, was built near the present site of Ives Hall on the Cornell University campus.

By 1911 the college had outgrown its clinical facilities and the State Legislature appropriated $140,000 for a group of three buildings placed along Garden Avenue, buildings that now house the School of Industrial and Labor Relations. Dr. Ellis P. Leonard began his tenure there in 1948 as Professor of Small Animal Surgery and Director of the Small Animal Clinic. He remembers the crowded conditions of the old facilities and the general feeling of relief when plans were begun for the new college and teaching hospital. In 1957 the entire college - clinics, offices, barns and farriery - moved almost a mile up Tower Road to new facilities. The change was more in location and accoutrements than size; in terms of space allotted to each department, the move was an even exchange. According to Dr. Leonard, only the departments of Anatomy, Physiology and Large Animal Surgery moved into roomier quarters, because they had intended to expand their facilities in the old buildings and architectural plans had already been drawn up. At the time of construction, it was decided that any department with architectural plans for expansion would receive more room on the new campus.

The configurations of the main buildings including Schurman Hall and the entire Basic Science Wing gave little thought to future development. Each basic science department—which at that time consisted of a few academic offices, a number of small research laboratories, a lecture room and a teaching laboratory—occupied a wing, or portion of a wing. While this provided a snug retreat for the department, it also curtailed expansion. By the 1960s, there was no way to equitably absorb growth in faculty numbers and the concomitant need for office and lab space. An increase in class size from 60 to 80 students added pressure to the teaching spaces within departments. Overcrowding occurred in some teaching areas while others were underutilized because they were not designed to be shared by multiple disciplines. The addition of the ten story Veterinary Research Tower in 1974 and the two-story Diagnostic Laboratory in 1978 temporarily took pressure off available laboratory and office space, but continued and projected growth has made it abundantly clear that the next generation of change is overdue.
CORNELL RESEARCHERS STUDY THE X-LINKED MUSCULAR DYSTROPHY—AN ANIMAL MODEL FOR A HUMAN DISEASE

A FORM Of muscular dystrophy found in the dog is being studied by researchers at the New York State College of Veterinary Medicine. A progressive degeneration of muscle tissue, the disease is carried by the unaffected mother and passed on to her male offspring. This characteristic, says Dr. Barry Cooper, associate professor of pathology at the college, indicates that the disease is an X-linked form of muscular dystrophy because the gene for the disease is carried on the X chromosome. While this finding is important to an understanding of the disease in dogs, it is of particular interest to Dr. Cooper and his associates because canine X-linked muscular dystrophy also may be a very appropriate animal model for a devastating and inheritable form of muscular dystrophy in humans.

The human disease, Duchenne's dystrophy, like the canine X-linked muscular dystrophy, involves progressive degeneration of the muscles. The victims are usually males who may show signs of the disease when they are only 2 to 4 years old. By the early teens, victims have been progressively deprived of usable muscle by severe scarring of muscle fibers.

The canine form of muscular dystrophy is not quite as severe, although clinical signs do appear in dogs at 8-10 weeks of age. The most significant similarity lies in the way in which both diseases are passed from one generation to the next, because it is known that the genetic information on the X chromosome is very similar in all mammals.

The gene for the abnormal muscle is found on the X chromosome. Cells of females have two X chromosomes, although only one is active. Males, on the other hand, have one X chromosome and one Y chromosome. Females will rarely suffer from the disease because half of their cells have a normal X chromosome, which apparently provides enough genetic information to develop healthy muscle. They may however act as carriers of the disease, passing the defective X chromosome on to their male offspring. Males, with only one X chromosome providing genetic information, have a 50/50 chance of inheriting the defective one. If they do, they will show signs of the X-linked disease.

Dr. Beth Valentine, a Ph.D. student in pathology, is studying the offspring of affected males and carrier females. Thus far, it has been determined that the muscle cells are abnormal even at birth, and although they are replaced, the regenerated cells are also abnormal. In two affected puppies, levels of creatine kinase, an enzyme released by damaged muscle, are far above normal levels at one week of age, indicating very early onset of muscle damage.

No one knows exactly why muscles degenerate in the X-linked form of muscular dystrophy but Dr. Cooper and his associates hope to identify the defective gene and discover what gene products are responsible for the abnormal muscle. As human carriers are difficult to identify, the carrier state in canine X-linked muscular dystrophy is also being investigated. In both humans and dogs current diagnostic tests call for repeated testing of young females for the presence of increased serum enzymes such as creatine kinase. With additional research a faster, more reliable method of determining carrier status may be found.

RAFFLE OF BATEMAN PRINT FOR AVIAN CLINIC

A SIGNED ARTIST'S proof by well-known naturalist-artist Robert Bateman will be raffled off during the 1987 Annual Conference for Veterinarians, January 13-15, 1987, with proceeds to benefit the Avian Clinic. Donated by Mill Pond Press, the print is "Dipper By The Waterfall," a scene Mr. Bateman captured not far from a log cabin he built in the north woods. According to the artist, "Although dippers do not occur in our area, I put it in this picture because dippers are always the spirit of little woodland rivers and streams." Robert Bateman's works have been exhibited worldwide and are represented in collections on four continents. Raffle tickets will be on sale in the lobby of Schurman Hall throughout the Conference with a drawing for the winner at noon Thursday in the Hagan Room.

BELMONT: A SEMINAR & RACE

THERE WAS standing room only for the October 6th Equine Seminar at Belmont Race Track and the first public presentation of a major recent study of breakdowns in racehorses. The Monday morning seminar began promptly at 10:00 a.m. with Dr. Theodore Hill from New York Racing Association describing how the study was conducted at various tracks. Dr. Lennart Krook, professor of pathology at the New York State College of Veterinary Medicine and principal investigator in the study, followed with a detailed discussion and slides of his findings. The study is published in the October, 1986 issue of The Cornell Veterinarian.

The annual Cornell College of Veterinary Medicine Race was also run at Belmont. Jacinto Vasquez, jockey of last year's race winner, Find Happiness, again rode the winning horse, London Pass. The two-year-old filly owned by Paul W. Krystock and trained by F. I. Wright, ran seven furlongs in 1:27:2 to win the race. The names of the 1986 winner and the filly's owner will be engraved on the silver loving cup on permanent display at the College of Veterinary Medicine.

MERCK FUNDS CORNELL AVIAN CLINIC EQUIPMENT

THANKS TO a grant from the Merck Company Foundation, the Avian Clinic at the New York State College of Veterinary Medicine at Cornell will acquire specialized equipment to care for injured wild and pet birds. Presentation of the check was made to Dr. Lloyd Dillingham, faculty advisor to the Avian Clinic, by Dr. R. Lee Seward, associate director of clinical research, Merck Sharp & Dohme Research Laboratories, a division of Merck & Company.

The grant for $9700 supports the purchase of orthopedic surgical equipment designed for the repair of smaller, lighter bones and a Helio optic arthroscope for direct internal visualization of air sacs and lungs for the diagnosis of infectious processes and for sexing birds where sexual dimorphism does not exist. The Avian Clinic will also purchase an additional x-ray viewer and a scale sensitive to the lighter weights of birds where accurate weight determination is vital to the administration of anesthesia or drugs. In addition, accommodations for in-hospital stays will be be upgraded.

The Avian Clinic of the New York State College of Veterinary Medicine is a student-run project for the care and treatment of sick or injured wild birds. Begun nearly seven years ago with four students and a faculty advisor, the Avian Clinic now has an annual case load of 150-175 patients with over forty student participants and faculty cooperation throughout the veterinary college. The Avian Clinic trains veterinary students in wild bird medicine while providing high quality medical attention for injured wild birds and serving as a resource for local, state and federal agencies. Research in the area of wild avian medicine is also pursued and approximately eight papers dealing with cases from the Avian Clinic have been published in national journals.

NEW AND RENEWED GRANTS

Comparative Studies of Pregnancy and Histocompatibility. Principal Investigator: Douglas F. Antczak, VMD, Ph.D. Co-Investigator: W. R. Allen, BVSc, Ph.D. of the Thoroughbred Breeders' Assoc. Equine Fertility Unit, Animal Research Station, Cambridge, UK. $83,317 from the National Institute of Child Health and Human Development

Genetics of Resistance to Trichinella Spiralis. Principal Investigator: Robin G. Bell, Ph.D. $93,416 from the National Institute of Allergy and Infectious Diseases.

SPCA NAMES TWO "HUMANITARIANS OF THE YEAR"

Dr. Jay Harvey and Dr. William Hornbuckle have been selected "Humanitarians of the Year for 1986" by the Tompkins County Society for the Prevention of Cruelty to Animals. Their compassion and sincere interest in the well-being of homeless animals were cited in the presentation of the award during ceremonies at the SPCA's annual meeting. Drs. Harvey and Hornbuckle are the 15th recipients of the Tompkins County SPCA's Humanitarian Award. Both are veterinarians in the Small Animal Clinic of the New York State College of Veterinary Medicine. The clinic provides emergency care and treatment for adoptable SPCA animals and also conducts a weekly spay and neuter program for adoption-ready animals at the SPCA facilities. Drs. Harvey and Hornbuckle were nominated for the award by the staff of the Tompkins County SPCA who have worked closely with both clinicians.

Dr. Hornbuckle earned his DVM degree at Oklahoma State University in 1967 and after private practice and seven years as staff clinician at the Angell Memorial Animal Hospital, he joined the New York State College of Veterinary Medicine faculty in 1977. He is an associate professor of Small Animal Medicine within the Department of Clinical Sciences and a diplomate of the American College of Veterinary Internal Medicine. Dr. Hornbuckle received the 1979 Norden Laboratories Distinguished Teacher Award.

NEW IMAGE FOR GAMMA CAMERA

The section of Radiology recently purchased a new gamma camera that will greatly expand nuclear imaging capabilities in the Teaching Hospital. In addition to normal imaging studies of small and large animals, the new equipment can evaluate the function of various organ systems, such as cardiovascular, hepatic and renal.

For nuclear imaging, the patient is given a compound labelled with radioactive material known to accumulate in specific organs or spaces within the body. A Gamma camera is a detection device, taking a photo of the resulting build-up of radioactivity. Not only does it aid in early diagnosis of problems such as tumors, abscesses, and bone build-up or loss, it also displays some lesions that are difficult to detect using standard radiography. The new gamma camera has combined these capabilities with a computer that stores information on studies. Manipulations of this information as a function of time and location allows determination of functional organ characteristics, such as cardiac stroke volume, heart wall motion, renal blood flow, blood flow to the kidneys and filtration of waste products. Color scans indicating intensity of radioactivity in various organ systems are possible. In addition to being visually attractive, the color scans allow a more precise interpretation of individual studies.

HUNTER/PACE TWICE THE SUCCESS

The annual Hunter/Pace, held on two days this year, October 11th and November 1st, raised nearly $1,800 for the programs and facilities of the Equine Research Park at the College. Altogether, nearly 150 competitors enjoyed prime weather, the fall colors of the 100-acre park, and a course that offered something for every level of rider. Refreshments and prizes, including an award for "Oldest Horse" to our cover's 22-year old "Grey Friar", were generously donated by Ithaca's Antler's Restaurant and Agway Inc. Friar was ridden by Dr. Jill Parker, surgery resident in the Large Animal Clinic of the Teaching Hospital.

OPEN HOUSE at the New York State College of Veterinary Medicine is April 11, 1987. Self-guided tours of student-prepared exhibits are featured from 9 a.m. until 4 p.m. Free admission and parking.