BEECHAM AWARDS FOR RESEARCH

IN THE FIRST presentation of the award at the New York State College of Veterinary Medicine, Drs. Karel Schat and Douglas F. Antczak have received Beecham Awards for Research Excellence. Given by Beecham Laboratories, the awards honor young investigators whose research achievements are likely to have a significant impact on our understanding of the biology or medical management of animals.

Dr. Douglas Antczak was recognized for his studies of fetal-maternal interactions in equine pregnancy. This work encompasses two aspects of early fetal life. The first concerns the unique immune responses to histocompatibility antigens that are mounted by mares in early pregnancy. The second aspect is the nature of the cellular interactions between tissues of the uterus and placenta which are required for normal fetal development. In collaboration with Dr. W. R. Allen of the British Thoroughbred Breeders' Association Equine Fertility Unit, Dr. Antczak has studied the effects of placental formation and fruition of cross-species pregnancies established by embryo transfer among members of the horse family. This work may shed light on normal and abnormal developmental processes in both animals and humans. A 1973 graduate of the University of Pennsylvania, College of Veterinary Medicine, Dr. Antczak completed a Ph.D. at Cambridge University in England before joining the staff of the James A. Baker Institute for Animal Health at Cornell in 1978. The Baker Institute is a section of the Department of Veterinary Microbiology in the College of Veterinary Medicine.

Dr. Karel A. Schat has been instrumental in the development and production of a bivalent vaccine against Marek's disease, a cancer causing virus affecting poultry. In 1975, Dr. Schat isolated SB-1, a non-onocogenic Marek's disease virus strain. Following the appearance of a particularly virulent Marek's virus in 1983, the SB-1 vaccine failed to fully protect chickens against the disease. However, when SB-1 was used in combination with turkey herpes virus, field trials determined that the bivalent vaccine offered better protection than any single vaccine. Dr. Schat received his DVM from Utrecht, the Netherlands, and his Ph.D. from Cornell University. He joined the faculty of the New York State College of Veterinary Medicine in 1978.

Nominees for the Beecham Award for Research Excellence must be permanent faculty of senior research associates at the New York State College of Veterinary Medicine and must have completed their formal training not more than eight years prior to being nominated. The majority of the research shall have been conducted at Cornell within three years of the time of nomination.

TEACHING AWARD HONORS DR. MOISE

DR. N. SYDNEY MOISE is the 1986 recipient of The Norden Distinguished Teacher Award at the New York State College of Veterinary Medicine, Cornell. An assistant professor in the Department of Clinical Sciences, Dr. Moise lectures and conducts clinical instruction in cardiopulmonary medicine. She received her undergraduate degree from Texas A & M University and, in 1977, the degree in veterinary medicine. She is a diplomate of the American College of Internal Medicine.

The Norden Distinguished Teacher Award recognizes a full-time member of the veterinary medical faculty who demonstrates continued excellence in teaching. Two nominations for the award are made by each of the four veterinary classes. The final selection is determined by a committee composed of two previous winners, a junior and a senior student.
THIS FALL, the Class of 1990 begins the first year in the DVM program. The students in this class share certain characteristics with previous classes: they're uniformly bright, well-educated, and eager to begin. There is no significant difference between this class’s GPA or GRE scores and those of students over the last ten years. As in the past, some of the new arrivals have advanced degrees, while others are entering veterinary college after only 3 years of college. Marcia James Sawyer, Director of Students Affairs and Admissions, can easily say, "We are still selecting from the best people for the class."

There is one slight difference between the Class of 1990 and all previous years: 71% of this class's members are female. This is the highest percentage of female students ever admitted to a class at the New York State College of Veterinary Medicine.

It is the policy of Cornell University actively to support equality of educational opportunities and for this reason all applicants are considered on their merits. In conducting their evaluation of an application, the college's faculty committee on admissions specifically looks at grade point average, graduate record exam scores, animal experience, extracurricular activities, personal qualities and an interview. According to Sawyer, "Women compete very well with men for places in the class."

But the male-female ratio might also be a sign of the times; fewer men are admitted because the proportion of men applying gets smaller every year.

Where are the male applicants going? Says Sawyer, "My guess is they're going into other professions that require less than eight years of higher education and where there is more money, for example, engineering or computer sciences or business - professions that are now highly valued by society." Certainly, in comparison to other occupations, veterinary medicine may seem to offer only hard work, long hours, and low starting salaries. This may discourage many bright, motivated students from entering the profession, especially when equal time isn't given to its rewards.

Sawyer believes practitioners are in an ideal position to encourage careers in veterinary medicine. "The first positive impression children have of the profession may come from their veterinarians. Further down the line, high school students who may be interested in observing a typical practice will either be encouraged or discouraged by the practitioners they visit."

Time will tell if the increasing proportion of female to male applicants is a temporary turn or a trend of the future. In the meantime, the application deadline for the Class of 1991 is November 15, 1986.

DACOS AND S-PLUS IV.

CLINICAL PATHOLOGY recently took delivery on a DACOS chemistry system and a S-Plus IV hematology instrument, two units too large to navigate the stairway to the second floor offices in the Teaching Hospital so a crane was brought in to complete the "airlift" delivery to clinical pathology's laboratories.

The DACOS chemistry system is a faster, more efficient system, running an entire series of tests on each sample in its turn, and replacing an old system that ran one test at a time on an accumulated batch of samples. The DACOS' individual testing capabilities also mean that, unlike the old batching system, samples do not need to be accumulated before tests can be run. Samples may be handled immediately or in their turn, speeding results to veterinarians and clinicians. The system's testing is state of the art, with computer software that increases the number of tests DACOS will perform as the program is modified. The computer comes with a menu of tests that are routinely run, but capacity is great enough to accommodate a program for almost any test desired. By next summer, a program will be written that will allow DACOS to interface with the college-wide computer system speeding data handling that until then must be done manually. Right now, DACOS has an impressive computer capacity to store, retrieve, plot graphs and compare quality control data. The new, more automated, chemistry system is also labor saving, requiring less technician involvement.

S-Plus IV performs hematology tests as a multi-channel blood cell analyzer. The unit, modified for veterinary medicine, aspirates a sample volume of whole blood, dilutes it, then counts and sizes cells. It will give a plot or histogram of cell size distribution which aids in evaluating anemic patients. The S-Plus IV also counts platelets, a process that was once done manually. Testing time for all these procedures is less than a third of the time required for the old testing system.

Both instruments are programmed to recognize and flag sources of error to alert the technician to check the results manually. Acquisition of these instruments places Cornell's clinical pathology laboratory among the best equipped veterinary laboratories in the country.
COMPUTER PARASITES

BEAUTY IS IN THE EYE of the beholder and in the eyes of Dr. Jay Georgi and other parasitologists, strongylid nematodes are indeed beautiful, despite a reputation as the most damaging parasites of horses. Members of the family Strongylidae often have petal-like arrangements forming the “leaf crown” around the mouth, while others of these parasites develop varied and sometimes extremely complicated structures of the mouth parts. Researchers use these structures to identify the many different adult species of this family, Strongylidae, in which some 54 species have been recorded in the horse.

As varied as the adults may be, their eggs are equally as plain. Dauntingly alike even under a compound microscope, parasites at this level of development defy accurate identification, making it difficult to diagnose the type of strongylid infection in a living animal, to track the “booms & busts” of specific parasite populations, or to accurately measure the effect of such management techniques as worming on populations of parasites.

The human eye, even with the aid of a microscope, can’t accurately identify the species of an egg, but Dr. Jay Georgi has found that to an “eye” that can note, quantify, and record even the slightest physical differences, correctly identifying an unknown parasite egg is as easy as drawing a line around it.

The “eye” is an electromagnetic digitizing tablet, a gift of the college’s alumni, and two microcomputers, provided through Project Ezra and monies from the Travers Fund. The Travers Fund and its support of equine research projects comes through the Travers Celebration, an event held in connection with the Travers Stakes in Saratoga Springs; Project Ezra is a project funded by Cornell University to provide both hardware and software to staff, faculty and students. Miles McCredie, a Cornell undergraduate student from Project Ezra, is helping in the programming of Dr. Georgi’s microcomputers.

As Dr. Georgi looks at an egg in the microscope’s field, a split beam superimposes the image of the grid from a digitizing tablet beside the microscope. Move the cursor with your hand on the tablet, and the lighted cursor in the microscope’s field moves in the same direction. Use the cursor on the tablet to outline a single egg under the microscope and the points are fed to the computer. This data on parameter, area, and form factors is processed for a statistical analysis. The analysis helps to distinguish between eggs by maximizing the differences between them. The ultimate goal is to develop a data base of known species parameters that will allow the computer to measure an unknown parasite egg and give a correct species identification.

Considerable progress has been made. In one test in which the computer was given 5 eggs from 10 different species, the species was correctly identified 82% of the time. Eventually it should be possible to identify eggs of twenty or more common equine parasites. As a diagnostic tool in the study of transmission and control of equine parasites, it will make it possible to determine the populations of certain parasites and identify which species are more numerous during different times of the year or under what circumstances. In the treatment of equine colic, or gastrointestinal disorders, there will be substantial benefits in knowing if a horse is infected with an anthelmintic-resistant species. This would be particularly good news to horsemen, and it is appropriate that a grant of $7,095 from the Travers Fund - money raised through the 1985 Travers Celebration - is being used to provide a microcomputer, software, an assistant, and to cover operating expenses for the project. Dr. Georgi also receives funding through the NIH Student Research Fellowship, under which a DVM student interested in pursuing a career in research gains practical experience in an ongoing project.

Dr. Georgi in his laboratory with the microcomputer “eye.”

The College is proud of the following alumni who were awarded Honor Roll status at the AVMA Annual Meeting in Atlanta, GA in July.

1937
Carl Kellman, Bayside, NY
George C. Schloemer, Sarasota, FL

1938
Harry J. Fallon, Huntington, NY
William E. Glindmyer, Scotia, NY
Robert B.M. Morris, Great Neck, NY
Stephen J. Roberts, Woodstock, VT

1939
Dr. Clarence F. Bent, Clearwater, FL
Clarence C. Combs, Colts Neck, NJ
Norbert A. Lasher, Pompano Beach, FL

1940
Rebecca G. Lloyd, Pittsfield, MA
Bernard W. Rosen, Far Rockaway, NY

1941
Morton Meisels, Elmwood Park, NJ
Alvin W. Rice, Roanoke, VA

1943
Milford E. Becker, Altamont, NY
Norman F. Lewis, Canandaigua, NY

1946
Henry M. Doremus, Vero Beach, FL
RISksy BUSINESS:
Putting the Profit Back Into Herd Productivity

HERD PRODUCTIVITY is herd profitability and in today's economic climate, even a slim profit can mean success rather than failure. A Cornell study in "risk epidemiology" may put success rather than failure. A Cornell mate, even a slim profit can mean will help dairy farmers decide how epidemiology in the Department of the profit back into production. Dr. Curtis are conducting a survey that will help dairy farmers decide how financially sound or risky it is on a long-term basis to keep a sick calf in the herd.

The survey was prompted by the current economic climate in which many farmers can ill afford to treat a calf, heifer or cow when the profit margin on milk is minimal.

Funded by the USDA, the study began by looking at calf scours and calf pneumonia syndromes to see if the illnesses had a long-term effect on cows in their first lactation. Pneumonia and calf scours are very common with more than 15% of all calves showing some signs of diarrhea or respiratory disease. How does this early illness influence lifetime performance? Does the sick calf recover with more than 15% of all calves showing some signs of diarrhea or respiratory disease. How does this early illness influence lifetime performance? Does the sick calf recover if the calves, now heifers, bred easily or if they experienced any metabolic disorders. In the winter of 1985-86, clinicians from the college's Ambulatory Clinic visited the participating farms and performed pregnancy checks on any heifer in the project who'd been bred but where the outcome was unknown. Estimates were then made of the heifer's age at first breeding and estimates of her age and size at first calving.

The animals in the study have only just begun to have calves so the analysis of information is far from complete. In time, the study will look at milk production, comparing the production of cows in the study to the milk production of healthy cows. When the study is finished, the results should help dairy farmers determine how financially sound it is to treat and raise to adulthood calves once affected with pneumonia or scours.

INFORMATIONS CENTER RECEIVES GRANT
THE NATIONAL LIBRARY of Medicine has awarded a three-year grant to Dr. Roy Pollock, director of the Center for the Study of Medical Informatics at the New York State College of Veterinary Medicine at Cornell, to study computer-based knowledge nets for medical information. The center, the first of its kind in veterinary medicine, was established last year to research methods for using computer technology to better organize, store and deliver veterinary medical information. Among its current projects are the analysis of coding systems for medical information, and the development of knowledge nets and computer-assisted diagnosis programs. A knowledge net is an indexing system that not only indicates key words, but also what an article says about the relationships among them.

"We are particularly delighted with this award," said Dr. Pollock, "because it underscores the potential of computers in both veterinary and human medicine. Electronic information systems will undoubtedly play an important role in the future practice of medicine, and much fundamental work remains to be done on knowledge representation, search strategies and diagnostic algorithms."

The principal goal of the knowledge net research is to develop and test a method of organizing medical knowledge, using canine medicine as a model, that makes the information optimally useful for developing and updating computer-aided diagnostic programs. Efficient methods of updating such programs are critical, since the effort involved will likely be far greater than that required to devise them in the first place, and the programs will be useful only so long as they remain current.

Dr. Pollock is a member of the Computer Committee of the AAHA and serves as special consultant to the Committee on Standard Nomenclature and Coding of the AVMA.

HUNGER Pangs
A Husband & Wife Team Look at Hunger

IS YOUR STOMACH GROWLING? In humans, hunger pangs might make you order pizza, but how do other mammals know when to eat, what to prefer and when to stop eating? A husband and wife team of physiologists at the New York State College of Veterinary Medicine, Drs. Katherine A. and T. Richard Houpt, study the changes occurring at an organ level that produce feelings of hunger and appetite satisfaction or satiety in domestic animals. During the past decade, the Houpt's research has focused on the digestive behavior of hoofed animals with an emphasis on gastrointestinal and body fluid factors in hunger and appetite satisfaction. They have found that when it comes to food preferences, pigs have a sweet tooth and that the gut hormone cholecystokinin is responsible for producing the feeling of satiety that makes an animal stop eating. They've also identified a second satiety factor. It seems that osmotic pressure, or the number of particles present, in the intestine rather than in the blood stream determines when the animal stops eating.

In their present research Drs. Katherine and Richard Houpt hope to make clear the mechanisms that underlie digestive behavior in domestic animals. They are primarily interested in exploring the changes in brain catecholamines, messenger substances or neurotransmitters that result when previously identified satiety factors are administered. Eventually, it should be possible to explain, neuron by neuron, the body's basic mechanisms and controls for hunger, thirst and satiety and to quantify the changes that stimulate activation of those neurons.

Over the next year, Dr. Katherine Houpt with her husband will continue the work on ingestive behavior with Dr. B. A. Baldwin at the Agriculture and Food Research Council (AFRC) Institute of Animal Physiology, Babraham, Cambridge, England, thanks to a Senior International Fellowship awarded to her by the Fogarty International Center. An associate professor of veterinary physiology at the college, Dr. Katherine Houpt holds a joint appointment in the Section of Physiology, Division of Biological Sciences of Cornell University. She is also the director of the Cornell Animal Behavior Clinic and acts as a behavioral consultant to the Teaching Hospital of the New York State College of Veterinary Medicine.

GRANTS & AWARDS
Environmental Pathology Training Program. Program Director: Dr. Robert M. Lewis. $87,251 from the National Institute of Environmental Health Sciences.

Students in Health Professional Schools. Program Director: Dr. Robert M. Lewis. $15,217 from the National Institute of Allergy and Infectious Diseases.

Mediator of Cellular Immunity, Principal Investigator: Dr. Douglas D. McGregor, James A. Baker Institute for Animal Health. $81,133 from the National Institute of Allergy and Infectious Diseases.

Identification and Artificial Synthesis of the Peptide of S. EQUINUMOSAL IMMUNITY. Principal Investigator: John F. Timoney. $107,205 from the United States Department of Agriculture.
COUPLES IN VETERINARY COLLEGE

How Do They Do It?

IN 1986, there were thirty-four married students in the DVM program. Some are married to other students, others have spouses who may be pursuing different careers, caring for the family, or who are students themselves in other programs. Since veterinary college is considered to be, at best, time-consuming and, at its worst, stressful, how do some people successfully juggle academics and marriage?

I Going Through It Together

Lisa Wierzbiicki Johnson and Bill Johnson, both 1986 graduates, married at the end of their third year in the DVM program. The departure from the single state didn't mean an appreciable departure from their normal schedules, as they still had the time-consuming demands of clinic duties and studying. Lisa and Bill met as undergraduates, were both accepted into veterinary college in their junior years, and very early on established the habits of studying together. They admit that a friendly competition sprang up, especially if it was in a favorite subject. But more often than not, because they studied together, they would get the same things right—and wrong—on their tests.

The last of their four years has been the most hectic for the couple. Despite being side-by-side in the alphabet, just by chance they were never on the same rotation or in the same part of the clinics. Fortunately, they arranged vacations together. They were also used to conflicting schedules because both held jobs while in school; Lisa worked in a pet shop, and Bill at the Cornell sheep barns. Bill feels that this ruled out a relocation to a big city. For example, each made the home too. For example, each made

Lisa will work in a practice outside of Poughkeepsie, NY, a 35-minute commute from their new home in Pine Plains where Bill is working. As luck would have it, the two locations are connected by a state parkway and Lisa's future practice is right on an exit. They do have Sundays together, though; they like to have a practice, preferably mixed, with veterinary medical students. It's an impression that grew from attendance at many conferences and from talking with veterinary students around the country. They "define" it's not the rule for them to begin a family, when both parents are on hand and schedules can be juggled.

As they begin their professional lives, Lisa and Bill feel they and their classmates are better prepared than other veterinary medical students. It's an impression that grew from attendance at many conferences and from talking with veterinary students around the country. They "define" it's not the rule for them to begin a family, when both parents are on hand and schedules can be juggled.

As they begin their professional lives, Lisa and Bill feel they and their classmates are better prepared than other veterinary medical students. It's an impression that grew from attendance at many conferences and from talking with veterinary students around the country. They "define" it's not the rule for them to begin a family, when both parents are on hand and schedules can be juggled.

II Vet. School vs. Med. School

After five years of marriage, Dr. Frank Smith and May Plan-Smith have some words of wisdom for married students. Be independent. They learned that lesson when May was an undergraduate at Harvard and Frank was at Dartmouth—2½ hours apart.

Other things won't change. "We're both really family-oriented," says Frank, "so we'll make compromises at work before we'll make compromises in the relationship."

II Vet. School vs. Med. School

After five years of marriage, Dr. Frank Smith and May Plan-Smith have some words of wisdom for married students: Be independent. They learned that lesson when May was an undergraduate at Harvard and Frank was at Dartmouth—2½ hours apart.

Things didn't improve when they were engaged—Frank was 6 hours away at Cornell.

As with Lisa and Bill Johnson, flexibility might also be the key to May and Frank's partnership. They married just as May graduated from Harvard and Frank finished his second year of veterinary college at Cornell. May had planned on going right to medical school. Instead, she came to Cornell and worked first in the Diagnostic Laboratory and then as a technician in Dr. Geoffrey Sharp's laboratory. Shortly afterwards, she began work on her master's in pharmacology.

Meanwhile, Frank earned his DVM degree but May wanted to finish her master's, so he applied for a small animal internship at Cornell. By the time her graduate degree was earned in 1985, Frank had begun a two-year residency and May put off medical school a year to pursue her Ph.D. Now with Frank's residency completed, May will finally enter the master's program at SUNY at Stonybrook. Work on her Ph.D. continues, and she hopes to finish most of the work during school vacations. Says May, "Things really worked out well—even though we didn't stick to our original schedule."

Marriage did complicate their student lives. The first casualty was Frank's grade point average while he was a veterinary student. Thinking back on that time, Frank says, "There was a lot of stress due to the amount of time devoted to job and school commitments. Fortunately, we both enjoyed the work we were doing and we always reserved some time each day to do things together."

Both Frank and May have had a long interest in medicine and science. Will dual careers in health fields create competition? The Smiths don't think so. In the past May and Frank didn't experience a problem because their work was so different. For the future, May is looking forward to talking over her studies with Frank, and drawing comparisons between veterinary and human medicine.

What will life be like when roles shift and May becomes the student and Frank begins regular hours working for CARDIOPET, a cardiology consulting firm? Well, right now, "give-and-take" is the rule at home: domestic chores are shared, with May doing the majority because her work hours are more regular. They expect the situation will be reversed next year.

Other things won't change. "We're both really family-oriented," says Frank, "so we'll make compromises at work before we'll make compromises in the relationship."

Terrier Field Days

TERRIER FIELD DAYS at the Equine Research Park has become a yearly tradition, eagerly anticipated by terrier-owners throughout the northeast. This year's event drew a good number of competitors, not a few of whom were from the college. Dr. Jay Harvey and his border terrier, "Sullivan", competed, as did Barb van Arkel, administrative aide from the Diagnostic Laboratory, and her Jack Russell "Samba". Margie Neaderland, an ophthalmology resident, introduced her puppy "Crouton" to the intricacies of "go-to-ground", hurdles, and flat races. Terrier Field Days has a serious side too; it raises money to support equine research projects at the park.
they both passed the state boards; then they gradually built up their own practice. While the practice provided more than enough work to occupy the skills of one veterinarian, there really wasn't enough for two and Dorothy admits it was hard to equitably divide her time between a practice, child care and housekeeping. A microbiology major in school, she applied for an assistantship in microbiology and entered graduate school. She says, "If you have kids, you can't go back to graduate school unless you also have a reliable person to care for them. We were very lucky; my mother-in-law moved to Groton and offered to care for them." She believes the change was a good one. "There's no doubt there are a lot of stresses if two people in the family have the same profession. We seem to have avoided that problem because our work is so very different now; I couldn't walk into a practice and Wally claims he has no idea of what I'm doing in the lab." Dr. Dotty Holmes also adds, "I'm a fatalist. If it's supposed to work out, it will." However, there are still hazards to the profession and married life; "You haven't lived," she says, "until your spouse leaves coveralls left over from a retained afterbirth in the car for three days."

Dr. Howard Evans

DR. EVANS RETIRES

"IT'S THE EXCITEMENT of watching people learn. It's almost like putting a puzzle together. They have some of the pieces, and I can help them find that missing piece." Dr. Evans has been helping students find the missing pieces of information for over 40 years, 36 of which were spent in the Department of Anatomy at the College of Veterinary Medicine. Speaking to Veterinary Viewpoints on the first day of his retirement, July 1, Professor of Veterinary and Comparative Anatomy Emeritus Howard Evans looked back on those years.

Dr. Evans was appointed to the veterinary faculty in 1950 as assistant professor. He became a full professor in 1960 and served as secretary of the college for twelve years. He has been Chairman of the Department of Anatomy since 1976, and a professor at large in the Division of Biological Sciences since 1975. He helped teach the Gross Anatomy of the Horse and Cow for seven years, which overlapped the 36 years of Gross Anatomy of the Dog. His studies of parakeet anatomy appear in Petrak's *Diseases of Cage and Aviary Birds* and his reptile studies provided a chapter for Fowler's book on *Zoo and Wildlife Medicine*. His investigations of cyclopia in sheep were cooperative ventures with the USDA's poisonous plant laboratory in Utah and the Medical School of the University of Pennsylvania. Dr. Evans has co-authored Miller's *Guide to the Dissection of the Dog*, which he is currently revising with Dr. DeLaHunta. He plans, after completing a revision of Miller's *Anatomy of the Dog*, to write a book on the *Anatomy of Fishes*. This summer, Dr. Evans and his wife, Erica, will be travelling to the Netherlands for a conference on Avian Nomenclature and then on to Hungary for a meeting of the European veterinary anatomists. In Switzerland they will visit members of Mrs. Evans' family and they will be guests of the Brain Institute in Bern where the director is studying cyclopia. Later this year, they'll lead with Dr. Jack & Louise Kingsbury, the 4th Cornell Adult University Natural History Tour of Hawaii - a trip that includes 42 people and visits to 3 islands.

If you have the impression Dr. Evans' interests cover a lot more than anatomy - you're right. At home, he has a mineral, seed, and seashell collection and the Evanses make a hobby of visiting botanical gardens. He has taught short courses for Cornell Adult University on the pondlife and wildflowers of Mohonk, NY, the structure of birds, tropical marine biology, and many other aspects of animal work. He says he was "always interested in natural history, including plants, fossils, the entire study of nature." The interest may have been stirred in his precollege days when he worked at the American Museum of Natural History after school making the leaves and rocks for Akeley African Hall and unpacking the lizards and snakes sent back by expeditions in Australia.

Dr. Evans just completed a five-year term on the Cornell University Board of Trustees. He is an honorary member of the AVMA and Phi Zeta, and both veterinary fraternities. He is a past president of the Cornell chapter of Sigma Xi, Phi Kappa Phi, the American Association of Veterinary Anatomists, and was president from 1979 until 1983 of the World Association of Veterinary Anatomists. He has lectured all over the world including Taiwan, New Zealand, Australia, the Philippines, Japan and South Africa.

On the first day of his retirement, Dr. Evans was letting the reality of retirement settle in - with little notable success. His desk was still piled with papers and drawings, his phone still rang with questions and requests from the Cornell community, and he was making plans that should keep him busy for another 20 years. He is even now making plans for next summer and the World Veterinary Congress in Montreal where he will serve as vice-chairperson of a session on "Veterinary Education in the World: Present Status." But there was one aspect of retirement he liked already. "Now when I go down-campus for movies and seminars or visit with friends and family," he said, "I won't have to worry about class schedules or committee meetings."
THERE IS AN AMAZING battery of diagnostic tools now available to veterinary medicine, some of which had their first applications in human medicine. They probe bone and tissue, compute chemical balances, and calculate blood cell numbers to track the source or course of a disease. Yet sometimes, regardless of the seductive array of diagnostic and therapeutic methods, veterinary medicine can do no more than offer supportive care. In these cases, treatment may rely on those old constants - time, patience and the body's own recuperative powers.

Nicci, a 3 year old female cocker spaniel, was referred to the Small Animal Clinic with a history of acute onset of pain in the abdomen and difficulty in using her rear legs. Over a period of 24 hours, Nicci's condition continued to deteriorate until she was unable to stand and support weight in the rear. The referring veterinarian considered several different diagnostic possibilities and recommended additional tests at the Clinic.

Examination by Dr. Andy Cox, an intern in the Small Animal Clinic, showed that Nicci was totally paralysed in the rear legs. She had lost control of urination and defecation and there was deep pain sensation remaining in only the left hindlimb. The paralysis could have been caused by a slowly prolapsing disc but spinal x-rays and a mylegram failed to support this diagnosis. Cerebrospinal fluid taken from the area surrounding the spinal column showed protein and white and red cells, evidence there had been hemmorrhage into the fluid. There was also some indication of inflammation but no real sign of infection. On Nicci's first night in the clinic, Dr. Cox called the owner at work to report on the tests and, because these were inconclusive in pinpointing a cause of the paralysis, to tell her a neurologist would be looking at Nicci in the morning. In the meantime, the dog would be kept comfortable and receive supportive care.

The day after admission a neurology consultation was scheduled and Nicci was examined by Dr. deLahunta. He diagnosed Nicci's problem as very severe, probably irreversible, spinal cord injury, probably from embolic disease. He suggested a waiting period of 5-7 days to assess Nicci's condition for change but due to the severity of damage, the prognosis for recovery was very poor.

A poor prognosis is not unusual in this type of case. The embolic disease, really a fibrocartiliginous embolism or blood clot, had blocked the circulation of blood somewhere in Nicci's spinal cord, resulting in nerve damage. This vascular insult to the spinal cord - the equivalent of a stroke - is poorly understood in animals. In most cases, the onset is acute and painful, with pain quickly subsiding. In Nicci's unusual case, the progression of the disease was over a period of three days.

Cortisone is usually prescribed in the treatment of a stroke's effects, but there is no proven efficacy for its use. Instead, Nicci received supportive therapy, including hand feeding, watering and assistance in eliminating urine and feces. She was also given physical therapy and kept on a water bed which helped to prevent pressure sores from developing while Nicci was unable to move. In two days, sensation returned to her right hindlimb and seven days after being admitted, Nicci appeared to regain control of her bladder. This is usually the point at which the patient can be sent home with a guarded prognosis and a need for lots of nursing care. Before releasing Nicci, Dr. Cox warned that the dog's care was a long term nursing proposition and it would not be known how much function Nicci would regain in her rear legs. They might look for improvement over a week to 10 days but they would not know for some time how far the legs would improve.

Fortunately, Nicci's owners were willing to take on the nursing duties, which included supporting Nicci while she walked and cleaning and feeding her. As is turned out, there was good reason to be optimistic about Nicci's recovery. A month after Nicci's discharge, she was almost walking with the assistance of a towel support-sling under her hips and was strong enough to stand. Two months after discharge, Nicci's owners report she is now walking.