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1. Fuzziness: An Introduction

Large, small, pure, polluted, satisfactory, unsatisfactory,
sufficient, insufficient, excellent, good, fair, poor and so
on are words often used to describe various attributes or
performance measures of water resources systems. These
descriptors do not have ‘crisp’, well-defined boundaries
that separate them from others. A particular mix of eco-
nomic and environmental impacts may be more acceptable
to some and less acceptable to others. Plan A is better than
Plan B. The water quality and temperature is good for
swimming. These qualitative, or ‘fuzzy’, statements con-
vey information despite the imprecision of the italicized
adjectives.

This chapter illustrates how fuzzy descriptors can be
incorporated into optimization models of water resources
systems. Before this can be done some definitions are
needed.

1.1.  Fuzzy Membership Functions

Consider a set A of real or integer numbers ranging from
say 18 to 25. Thus A� [18, 25]. In classical (crisp) set
theory, any number x is either in or not in the set A. The
statement ‘x belongs to A’ is either true or false depending

135

Fuzzy Optimization

The precise quantification of many system performance criteria and parameter and
decision variables is not always possible, nor is it always necessary. When the values
of variables cannot be precisely specified, they are said to be uncertain or fuzzy. If
the values are uncertain, probability distributions may be used to quantify them.
Alternatively, if they are best described by qualitative adjectives, such as dry or wet,
hot or cold, clean or dirty, and high or low, fuzzy membership functions can be used
to quantify them. Both probability distributions and fuzzy membership functions of
these uncertain or qualitative variables can be included in quantitative optimization
models. This chapter introduces fuzzy optimization modelling, again for the
preliminary screening of alternative water resources plans and management policies.

5 

on the value of x. The set A is referred to as a crisp set.If
one is not able to say for certain whether or not any num-
ber x is in the set, then the set A could be referred to as
fuzzy. The degree of truth attached to that statement is
defined by a membership function. This function ranges
from 0 (completely false) to 1 (completely true).

Consider the statement, ‘The water temperature
should be suitable for swimming’. Just what temperatures
are suitable will depend on the person asked. It would 
be difficult for anyone to define precisely those temper-
atures that are suitable if it is understood that temper-
atures outside that range are absolutely not suitable.

A membership function defining the interval or range
of water temperatures suitable for swimming is shown in
Figure 5.1. Such functions may be defined on the basis of
the responses of many potential swimmers. There is a
zone of imprecision or disagreement at both ends of the
range.

The form or shape of a membership function depends
on the individual subjective feelings of the ‘members’ or
individuals who are asked their opinions. To define this
particular membership function, each individual i could
be asked to define his or her comfortable water temper-
ature interval (T1i, T2i). The membership value associated
with any temperature value T equals the number of
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individuals who place that T within their range (T1i, T2i),
divided by the number of individual opinions obtained.
The assignment of membership values is based on
subjective judgements, but such judgements seem to be
sufficient for much of human communication.

1.2. Membership Function Operations

Denote the membership function associated with a fuzzy
set A as mA(x). It defines the degree or extent to which any
value of x belongs to the set A. Now consider two fuzzy
sets, A and B. Set A could be the range of temperatures
that are considered too cold, and set B could be the range
of temperatures that are considered too hot. Assume these
two sets are as shown in Figure 5.2.

The degree or extent that a value of x belongs to either
of two sets A or B is the maximum of the two individual
membership function values. This union membership
function is defined as:

mA∪B(x) � maximum(mA(x), mB(x)) (5.1)

136 Water Resources Systems Planning and Management

This union set would represent the ranges of tempera-
tures that are either too cold or too hot, as illustrated in
Figure 5.3.

The degree or extent that a value of a variable x is
simultaneously in both sets A and B is the minimum of
the two individual membership function values. This
intersection membership function is defined as:

mA∩B(x) � minimum (mA(x), mB(x)) (5.2)

This intersection set would define the range of tempera-
tures that are considered both too cold and too hot. 
Of course it could be an empty set, as indeed it is in this
case, based on the two membership functions shown in
Figure 5.2. The minimum of either function for any value
of x is 0.

The complement of the membership function for
fuzzy set A is the membership function, mA

c(x), of Ac.

mA
c(x) � 1 – mA(x) (5.3)

The complement of set A (defined in Figure 5.2) would
represent the range of temperatures considered not 
too cold for swimming. The complement of set B (also
defined in Figure 5.2) would represent the range of
temperatures considered not too hot for swimming. The
complement of the union set as shown in Figure 5.3
would be the range of temperatures considered just right.
This complement set is the same as shown in Figure 5.1.

2. Optimization in Fuzzy
Environments

Consider the problem of finding the maximum value of 
x given that x cannot exceed 11. This is written as:

Maximize U � x (5.4)

E0
20

10
8d

0 5 10 15 20 25 30 35 40 45 50
0

1

Co

E0
20

10
8e

0 5 10 15 20 25 30 35 40 45 50
0

1

Co

set too coldA set too hotB

Figure 5.1. A fuzzy membership function for suitability of
water temperature for swimming.

Figure 5.2. Two membership functions relating to swimming
water temperature. Set A is the set defining the fraction of all
individuals who think the water temperature is too cold, and
Set B defines the fraction of all individuals who think the
water temperature is too hot.
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Figure 5.3. Membership function for water temperatures that
are considered too cold or too hot.
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Fuzzy Optimization 137

subject to:

x � 11 (5.5)

The obvious optimal solution, x �11, is shown in 
Figure 5.4.

Now suppose the objective is to obtain a value of x sub-
stantially larger than 10 while making sure that the maxi-
mum value of x should be in the vicinity of 11. This is no
longer a crisp optimization problem; rather, it is a fuzzy one.

What is perceived to be substantially larger than 10
could be defined by a membership function, again repre-
senting the results of an opinion poll of what individuals
think is substantially larger than 10. Suppose the mem-
bership function for this goal, mG(x), reflecting the results
of such a poll, can be defined as:

mG(x) � 1/{1 � [1/(x – 10)2]} if x � 10
mG(x) � 0 otherwise (5.6)

This function is shown in Figure 5.5.
The constraint on x is that it ‘should be in the vicinity of

11’. Suppose the results of a poll asking individuals 
to state what they consider to be in the vicinity of 11 results
in the following constraint membership function, mC(x):

mC(x) � 1/[1 � (x – 11)4] (5.7)

This membership function is shown in Figure 5.6.
Recall the objective is to obtain a value of x substan-

tially larger than 10 while making sure that the maximum
value of x should be in the vicinity of 11. In this fuzzy
environment the objective is to maximize the extent to
which x exceeds 10 while keeping x in the vicinity of 11.
The solution can be viewed as finding the value of x that
maximizes the minimum values of both membership
functions. Thus, we can define the intersection of both
membership functions and find the value of x that maxi-
mizes that intersection membership function.

The intersection membership function is:

mD(x) � minimum{mG(x), mC(x)}

� minimum{1/(1 � [1/(x � 10)2]), 
1/(1 � (x � 11)4)} if x � 10

� 0 otherwise (5.8)

This intersection set, and the value of x that maximizes its
value, is shown in Figure 5.7.

This fuzzy decision is the value of x that maximizes the
intersection membership function mD(x), or equivalently:

Maximize mD(x) � max min{mG(x), mC(x)} (5.9)

Using LINGO®, the optimal solution is x � 11.75 and
mD(x) � 0.755.
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Figure 5.4. A plot of the crisp optimization problem defined by
Equations 5.4 and 5.5.
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Figure 5.5. Membership function defining the fraction of
individuals who think a particular value of x is ‘substantially’
greater than 10.
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Figure 5.6. Membership function representing the vicinity of 11.
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3. Fuzzy Sets for Water Allocation

Next consider the application of fuzzy modelling to the
water allocation problem illustrated in Figure 5.8.

Assume, as in the previous uses of this example prob-
lem, the problem is to find the allocations of water to each
firm that maximize the total benefits TB(X):

Maximize TB(X) � �6x1 � x1
2� � �7x2 � 1.5x2

2�
� �8x3 � 0.5x3

2� (5.10)

These allocations cannot exceed the amount of water
available, Q, less any that must remain in the river, R.
Assuming the available flow for allocations, Q – R, is 6,
the crisp optimization problem is to maximize Equation
5.10 subject to the resource constraint:

x1 � x2 � x3 � 6 (5.11)

The optimal solution is x1�1, x2�1, and x3�4 as
previously obtained in Chapter 4 using several different
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optimization methods. The maximum total benefits,
TB(X), from Equation 5.10, equal 34.5. 

To create a fuzzy equivalent of this crisp model, the
objective can be expressed as a membership function 
of the set of all possible objective values. The higher the
objective value the greater the membership function
value. Since membership functions range from 0 to 1, the
objective needs to be scaled so that it also ranges from 
0 to 1.

The highest value of the objective occurs when there is
sufficient water to maximize each firm’s benefits. This
unconstrained solution would result in a total benefit of
49.17 and this happens when x1 � 3, x2 � 2.33, and 
x3 � 8. Thus, the objective membership function can be
expressed by:

m(X) � ��6x1 � x1
2� � �7x2 � 1.5x2

2�

� �8x3 � 0.5x3
2���49.17 (5.12)

It is obvious that the two functions (Equations 5.10 and
5.12) are equivalent. However, the goal of maximizing
objective function 5.10 is changed to that of maximizing
the degree of reaching the objective target. The optimiza-
tion problem becomes:

maximize m(X) � ��6x1 � x1
2� � �7x2 � 1.5x2

2�
� �8x3 � 0.5x3

2���49.17

subject to:

x1 � x2 � x3 � 6 (5.13)

The optimal solution of (5.13) is the same as (5.10 and
5.11). The optimal degree of satisfaction is m(X) � 0.70.
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Figure 5.7. The intersection membership function and the
value of x that represents a fuzzy optimal decision.

Figure 5.8. Three water-
consuming firms i obtain 
benefits Bi from their allocations
xi of water from a river whose
flow is Q.
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Fuzzy Optimization 139

Next, assume the amount of resources available to be
allocated is limited to ‘about 6 units more or less’, which
is a fuzzy constraint. Assume the membership function
describing this constraint is defined by Equation 5.14 and
is shown in Figure 5.9.

mc(X) � 1 if x1 � x2 � x3 � 5

mc(X) � [7� (x1 �x2 �x3)]/2 if 5 � x1 � x2 � x3 � 7

mc(X) � 0 if x1 � x2 � x3 � 7 (5.14)

The fuzzy optimization problem becomes:
Maximize minimum (mG(X), mC(X))

subject to:

mG(X) � ��6x1 � x1
2� � �7x2 � 1.5x2

2�
� �8x3 � 0.5x3

2���49.17

mC(X) � [7 � (x1 � x2 � x3)]/2 (5.15)

Solving (5.15) using LINGO® to find the maximum of a
lower bound on each of the two objectives, the optimal
fuzzy decisions are x1 � 0.91, x2 � 0.94, x3 � 3.81, 
m(X) � 0.67, and the total net benefit, Equation 5.10, is
TB(X) � 33.1. Compare this with the crisp solution of 
x1 � 1, x2 � 1, x3 � 4, and the total net benefit of 34.5.

4. Fuzzy Sets for Reservoir Storage
and Release Targets

Consider the problem of trying to identify a reservoir
storage volume target, TS, for the planning of recreation
facilities given a known minimum release target, TR, and
reservoir capacity K. Assume, in this simple example,
these known release and unknown storage targets must
apply in each of the three seasons in a year. The objective
will be to find the highest value of the storage target, TS,

that minimizes the sum of squared deviations from actual
storage volumes and releases less than the minimum
release target.

Given a sequence of inflows, Qt, the optimization
model is:

Minimize D � ∑
t

3

�(TS � St)
2 � DRt

2� � 0.001TS (5.16)

subject to:

St � Qt � Rt � St�1 t � 1, 2, 3; if t � 3, t � 1 � 1
(5.17)

St � K t � 1, 2, 3 (5.18)

Rt � TR � DRt t � 1, 2, 3 (5.19)

Assume K � 20, TR � 25 and the inflows Qt are 5, 50 and
20 for periods t � 1, 2 and 3. The optimal solution, yield-
ing an objective value of 184.4, obtained by LINGO® is
listed in Table 5.1.

Now consider changing the objective function into
maximizing the weighted degrees of ‘satisfying’ the reser-
voir storage volume and release targets.

Maximize ∑
t

(wSmSt � wRmRt) (5.20)

where wS and wR are weights indicating the relative impor-
tance of storage volume targets and release targets respec-
tively. The variables mSt are the degrees of satisfying storage
volume target in the three periods t, expressed by Equation
5.21. The variables mRt are the degrees of satisfying release
target in periods t, expressed by Equation 5.22.

mS = { St /TS for St � TS (5.21)

(K�St)/(K�TS) for TS � St

mR = Rt /T
R for Rt � TR (5.22){ 1     for Rt � TR
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Figure 5.9. Membership function for ‘about 6 units more or less’.
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target storage for each period

reservoir storage volume at beginning of period 1

reservoir storage volume at beginning of period 2

reservoir storage volume at beginning of period 3

reservoir release during period 1

reservoir release during period 2

reservoir release during period 3

variable

R

R

s

1

1

2

2

3

3

value

15.6

19.4

7.5

20.0

14.4

27.5

18.1

remarks

Table 5.1. The LINGO® solution to the reservoir optimization
problem.
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Equations 5.21 and 5.22 are shown in Figures 5.10 and
5.11, respectively.

This optimization problem written for solution using
LINGO® is as shown in Box 5.1.

Given weights wS � 0.4 and wR � 0.6, the optimal
solution obtained from solving the model shown in Box
5.1 using LINGO® is listed in Table 5.2.
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If the objective Equation 5.20 is changed to one of
maximizing the minimum membership function value,
the objective becomes:

Maximize mmin � maximize minimum {mSt, mRt} (5.23)

A common lower bound is set on each membership
function, mSt and mRt, and this variable is maximized. The
optimal solution changes somewhat and is as shown in
Table 5.3.

This solution differs from that shown in Table 5.2
primarily in the values of the membership functions. The
target storage volume operating variable value, TS, stays
the same in this example.

5. Fuzzy Sets for Water Quality
Management

Consider the stream pollution problem illustrated in
Figure 5.12. The stream receives waste from sources

1.0

0.5

0.0
K0

m
S

E0
20

10
8o storage St

T s

Figure 5.10. Membership function for storage volumes.
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Figure 5.11. Membership function for releases.
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R

R
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value remarks

M

M

M

M

M

M

1

1

2

2

3

3

s

R

s

s

R

R

20.00

1.00

25.00

0.60

30.00

0.88

20.00

0.00

1.00

1.00

0.80

1.00

1.00

20.00

20.00

0.00

2.48

storage volume at beginning of period 1 

storage volume at beginning of period 2 

storage volume at beginning of period 3 

reservoir release in period 1 

reservoir release in period 2 

reservoir release in period 3

sum weighted membership values period 1

sum weighted membership values period 2

sum weighted membership values period 3

storage volume membership value period 1

storage volume membership value period 2

storage volume membership value period 3

reservoir release membership value period 1

reservoir release membership value period 2

reservoir release membership value period 3

Box 5.1. Reservoir model written for 
solution by LINGO®

SETS:
PERIODS /1..3/: I, R, m, ms, mr , s1, s2, ms1, ms2;
NUMBERS /1..4/: S;
ENDSETS
!*** OBJECTIVE ***; max = degree + 0.001*TS;
!Initial conditions;  s(1) = s(TN + 1);
!Total degree of satisfaction; degree = @SUM(PERIODS(t): m(t));
!Weighted degree in period t; @FOR (PERIODS(t):
m(t) = ws*ms(t) + wr*mr(t);
S(t) = s1(t) + s2(t);
s1(t) < TS ;   s2(t) < K – TS  ;
!ms(t) = (s1(t) /TS) – (s2(t)/(K –TS)) =  rewritten in case dividing by 0;
ms1(t)*TS = s1(t);   ms2(t)*(K –TS) = s2(t);  ms(t) = ms1(t) – ms2(t);
mr(t) < R(t) /TR ;    mr(t) < 1;  S(t+1) = S(t) + I(t) – R(t););

DATA:
TN = 3; K = 20; ws = ?; wr = ?;     I = 5, 50, 20;  TR = 25;
ENDDATA

E0
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90
3d

Table 5.2. Solution of fuzzy model for reservoir storage
volumes and releases based on objective 5.20.
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Fuzzy Optimization 141

located at Sites 1 and 2. Without some waste treatment at
these sites, the pollutant concentrations at Sites 2 and 3
will exceed the maximum desired concentration. The
problem is to find the level, xi, of wastewater treatment
(fraction of waste removed) at Sites i � 1 and 2 required
to meet the quality standards at Sites 2 and 3 at a

minimum total cost. The data used for the problem
shown in Figure 5.12 are listed in Table 5.4.

The crisp model for this problem, as discussed in the
previous chapter, is:

Minimize C1(x1) � C2(x2) (5.24)

subject to:

Water quality constraint at site 2:

[P1Q1 � W1(1�x1)]a12 /Q2 � P2
max (5.25)

[(32)(10) � 250000(1�x1)/86.4] 0.25/12 � 20

which, when simplified, is:  x1 � 0.78

Water quality constraint at site 3:

{[P1Q1 � W1(1�x1)]a13 

� [W2(1�x2)]a23}/Q3 � P 3
max (5.26)

{[(32)(10) � 250000(1�x1)/86.4] 0.15 
� [80000(1�x2)/86.4] 0.60}/13 � 20

which, when simplified, is: x1 � 1.28x2 � 1.79

Restrictions on fractions of waste removal:

0 � xi � 1.0 for sites i � 1 and 2 (5.27)

For a wide range of reasonable costs, the optimal solution
found using linear programming was 0.78 and 0.79, or
essentially 80% removal efficiencies at Sites 1 and 2.
Compare this solution with that of the following fuzzy
model.

To develop a fuzzy version of this problem, suppose
the maximum allowable pollutant concentrations in the
stream at Sites 2 and 3 were expressed as ‘about 20 mg/l
or less’. Obtaining opinions of individuals of what 
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storage volume at beginning of period 1

storage volume at beginning of period 2

storage volume at beginning of period 3
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0.556

1.000
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0.556

0.556

0.556

storage volume membership value period 1

storage volume membership value period 2

storage volume membership value period 3

reservoir release membership value period 1

reservoir release membership value period 2

reservoir release membership value period 3

Table 5.3. Optimal solution of reservoir operation model
based on objective 5.23.
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Figure 5.12. A stream pollution
problem of finding the waste
removal efficiencies (x1, x2) that
meet the stream quality
standards at least cost.
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they consider to be ‘20 mg/l or less’, a membership
function can be defined. Assume it is as shown in 
Figure 5.13.

Next, assume that the government environmental
agency expects each polluter to install best available
technology (BAT) or to carry out best management
practices (BMP) regardless of whether or not this is
required to meet stream-quality standards. Asking experts
just what BAT or BMP means with respect to treatment
efficiencies could result in a variety of answers. These
responses can be used to define membership functions 
for each of the two firms in this example. Assume these
membership functions for both firms are as shown in
Figure 5.14.
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Finally, assume there is a third concern that has to do
with equity. It is expected that no polluter should be
required to treat at a much higher efficiency than any
other polluter. A membership function defining just what
differences are acceptable or equitable could quantify this
concern. Assume such a membership function is as
shown in Figure 5.15.

Considering each of these membership functions as
objectives, a number of fuzzy optimization models can be
defined. One is to find the treatment efficiencies that
maximize the minimum value of each of these member-
ship functions.

Maximize m � max min{mP, mT, mE} (5.28)
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Q m 10 flow just upstream of site 11

Q2

Q3

w
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te W 250,000 pollutant mass produced at site 1kg/day1

P 32 concentration just upstream of site 1mg/l1

P2

P3

W2

a12

a13

a23

po
llu
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nt
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nc

.
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y
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on

3/s

unit

--

12 flow just upstream of site 2

80,000 pollutant mass produced at site 2

13 flow at park

20 maximum allowable concentration upstream of 2

20 maximum allowable concentration at site 3

0.25 fraction of site 1 pollutant mass at site 2

0.15 fraction of site 1 pollutant mass at site 3

0.60 fraction of site 2 pollutant mass at site 2

value remark

m3/s

m3/s

kg/day

mg/l

mg/l

--

--

Table 5.4. Parameter values selected for
the water quality management problem
illustrated in Figure 5.12.
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Figure 5.13. Membership function for ‘about 20 mg/l or less’.
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Figure 5.14. Membership function for best available
treatment technology.
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Fuzzy Optimization 143

If we assume that the pollutant concentrations at sites 
j�2 and 3 will not exceed 23 mg/l, the pollutant
concentration membership functions mPj are:

mPj � 1� p2j /5 (5.29)

The pollutant concentration at each site j is the sum of
two components:

pj � p1j � p2j (5.30)

where

p1j � 18 (5.31)

p2j � (23�18) (5.32)

If we assume the treatment plant efficiencies will be
between 70 and 90% at both Sites i � 1 and 2, the treat-
ment technology membership functions mTi are:

mTi � (x2i /0.05) � (x4i /0.10) (5.33)

and the treatment efficiencies are:

xi � 0.70 � x2i � x3i � x4i (5.34)

where

x2i � 0.05 (5.35)

x3i � 0.05 (5.36)

x4i � 0.10 (5.37)

Finally, assuming the difference between treatment
efficiencies will be no greater than 14, the equity mem-
bership function, mE, is:

mE � Z � (0.5/0.05) D1 � 0.5(1 � Z) 

� (0.5/(0.14 � 0.05)) D2 (5.38)

where

D1 � 0.05Z (5.39)

D2 � (0.14 � 0.05) (1�Z) (5.40)

x1 � x2 � DP � DM (5.41)

DP � DM � D1 � 0.05(1�Z) � D2 (5.42)

Z is a binary 0, 1 variable. (5.43)

The remainder of the water quality model remains the same:
Water quality constraint at site 2:

[P1Q1 � W1(1�x1)] a12 /Q2 � P2 (5.44)

[(32)(10) � 250000(1�x1)/86.4] 0.25/12 � P2

Water quality constraint at site 3:

{[P1Q1 � W1(1�x1)] a13 � [W2(1�x2)] a23}/Q3 � P3

(5.45)

{[(32)(10) � 250000(1�x1)/86.4] 0.15 

� [80000(1�x2)/86.4] 0.60}/13 � P3

Restrictions on fractions of waste removal:

0 � xi � 1.0 for sites i � 1 and 2. (5.46)

Solving this fuzzy model using LINGO® yields the results
shown in Table 5.5.

This solution confirms the assumptions made 
when constructing the representations of the member-
ship functions in the model. It is also very similar to 
the least-cost solution found from solving the crisp LP
model.
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Figure 5.15. Equity membership function in terms of the
absolute difference between the two treatment efficiencies.
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M minimum membership value

variable

X

P

X

P

1

2

3

value remarks

M

M 2

3

p

p 0.93

0.94

0.81

18.28

0.81

18.36

0.93

treatment efficiency at site 1

pollutant concentration just upstream of site 2

treatment efficiency at site 2

pollutant concentration just upstream of site 3

membership value for pollutant concentration site 2

membership value for pollutant concentration site 3

2

M

M 1
T

T 0.93

0.93 membership value for treatment level site 1

membership value for treatment level site 22

M membership value for difference in treatment1.00E

Table 5.5. Solution to fuzzy water quality management model
Equations 5.28 to 5.46.
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6. Summary

Optimization models incorporating fuzzy membership
functions are sometimes appropriate when only qualita-
tive statements are made when stating objectives and/or
constraints of a particular water management problem or
issue. This chapter has shown how fuzzy optimization
can be applied to some simple example problems associ-
ated with water allocations, reservoir operation, and
pollution control. This has been only an introduction.
Those interested in more detailed explanations and
applications may refer to any of the additional references
listed in the next section.
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