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ABSTRACT 

 

Many wetlands of the Great Lakes region are increasingly dominated by species of 

cattails, including the native Typha latifolia, the introduced Typha angustifolia, and 

their hybrid Typha glauca.  Cattails are observed to form dense stands of live and dead 

biomass that may reduce plant diversity and compromise wetland habitat value.  

Cattail expansion has been used as an indicator of environmental change in the 

Everglades, but a broad analysis of the distribution and impacts of the northern species 

has not been conducted.  In this study, I examined the patterns of cattail distribution 

across the Great Lakes, explored one mechanism by which cattails attain dominance in 

several Lake Ontario wetlands, and experimentally measured the effect of cattail 

biomass on plant species diversity in one wetland. 

 

Patterns at the regional scale were addressed by analyzing vegetation surveys of 90 

wetlands around the Great Lakes.  Surveys were conducted in collaboration with 

scientists from the University of Minnesota – Duluth and the University of Wisconsin 

– Madison as part of an EPA-funded research program, the Great Lakes 

Environmental Indicators project.  I compared patterns of dominance of invasive 

Typha (T. angustifolia and T. glauca) with those of five co-occurring, native 

graminoids, Typha latifolia, Sparganium eurycarpum, Calamagrostis canadensis, 

Carex lacustris and Schoenoplectus tabernaemontani.  In contrast to the native 

species, the invasive Typha species represented a larger proportion of the plant cover 

in wetlands where they occurred (16% vs. 2 - 9% for natives), and their occurrence 

was associated with lower species density (7.1 vs. 8.6- 9.7 spp/m2 for natives).  Unlike 

the native species, the relative cover of invasive Typha was positively related to an 

index of agricultural intensity calculated for a wetland’s watershed (p<0.001). 



Agriculture uniquely explained 10% of the variation in the relative cover of invasive 

Typha, after accounting for variation due to lake identity (21%) and mean water depth 

(6%).

 

Among six Lake Ontario wetlands, I investigated the relationship between cattail 

abundance, litter accumulation, and species density in two hydrogeologic settings.  I 

hypothesized that litter biomass would be higher in the Typha-dominated, open 

embayment wetlands than the protected wetlands that contained a mixed marsh 

meadow community.  The mean biomass of all litter was higher in the open wetlands 

(1.7 - 2.6 vs. 0.4 -1.2 kg/m2 for protected sites) and litter biomass was negatively 

related to species density (r2=0.88, p=0.005).  I further explored whether variation in 

litter biomass could be explained by differences in production, decomposition or 

hydrology.  Peak live biomass was similar across the six sites.  Decomposition rates in 

the fallen litter layer explained some of the variation in total litter (standing and 

fallen), but could not account for the overall higher accumulation in the open 

wetlands.  Between May and September 2004, wetlands open to the lake experienced a 

narrower range of monthly water levels than the protected wetlands.  The more stable 

water levels and the higher density of standing cattail litter in the open wetlands may 

be limiting the physical removal of litter, resulting in greater litter biomass. 

  

Within one cattail-dominated wetland, I experimentally tested the hypothesis that an 

accumulation of cattail litter reduced species density.  I added and removed both 

standing and fallen litter, and transplanted test seedlings into all plots.  After 14 weeks, 

I found that fallen litter negatively influenced seedling survival (p=0.061) and species 

density (p=0.024), but the effect of standing litter was insignificant.  In summary, both 



observational and experimental data indicate a negative relationship between cattail 

litter biomass and species density.   Therefore, factors affecting cattail litter production

(e.g., agriculture) and decomposition (e.g., water levels) could have important 

implications for cattail dominance and species diversity in Great Lakes wetlands.   
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1 

CHAPTER ONE 

Establishing a framework: Species invasiveness or wetland 

invasibility? 

 

INTRODUCTION 

Loss of plant diversity and increasing dominance by invasive species are widespread 

phenomena in wetland environments, particularly around the Great Lakes (Mills et al. 

1993).  Plant species that invade and dominate new environments may influence 

ecosystem development (Vitousek et al. 1987), nutrient cycling (Ehrenfeld 2003), 

marsh formation (Rooth et al. 2003), water relations (Smith et al. 1998), and wildlife 

value (Chambers et al. 1999) and impose heavy societal costs (Pimentel et al. 2000).  

When an exotic species or foreign genotype appears that is very similar to a native 

relative, as in the case of Phragmites australis or the hybrid Typha glauca, evaluation 

of the invasion and its impacts may be delayed (Saltonstall 2002; Petit 2004).    

 

In many marshes of the Great Lakes region, cattails (Typha latifolia L, Typha 

angustifolia L., and Typha glauca Godr. (pro sp.)) have become the dominant species, 

often forming dense, nearly monotypic stands of live and dead biomass.  In Lake 

Ontario wetlands, an increasing abundance of cattail over the last 60 years has been 

associated with a simultaneous decrease in species of wet meadow communities 

(USGS 2004; Wilcox et al. 2004).   Although there is some debate about the origin of 

Typha angustifolia, most wetland ecologists agree that it is a potentially invasive 

species that is detrimental to wildlife and plant diversity (Newman et al. 1998; 

Galatowitsch et al. 1999; Keddy 2000; Woo and Zedler 2002; Farnsworth and 

Meyerson 2003; King et al. 2004).  Galatowitch (1999), Stuckey and Salamon (1987; 

1993) have documented the range expansion of  Typha angustifolia from isolated 
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Atlantic marshes in 1820 to its current cosmopolitan status throughout the Eastern and 

Midwestern US.  Such increases in the abundance of a native or non-native plant 

species will only occur when both the species’ characteristics and environmental 

conditions are favorable.   

 

Because Typha species are well studied and morphologically plastic, they present an 

interesting case study for understanding how the environment, a species’ biology, and 

plant-environment feedbacks could facilitate invasion and dominance.  The abiotic 

conditions and competitive abilities enabling Typha domingensis Pers. (southern 

cattail) to invade and dominate saw grass marshes in the Florida Everglades have been 

investigated through several experimental and observational studies (e.g., Newman et 

al. 1998; Lorenzen et al. 2000; Miao et al. 2000; Weisner and Miao 2004).  Although 

wetland managers around the Great lakes have a keen interest in controlling the 

expansion of northern Typha species (Motivans and Apfelbaum 1987), a careful 

examination of Typha species distributions, competitive interactions, and ecological 

impacts in the region has not been conducted (Ruiz et al. 1999).   

 

The overall objective of this thesis is to identify distributional patterns and evaluate 

the mechanisms of cattail dominance across the Great Lakes region.  This first chapter 

reviews the relevant plant community and invasion ecology literature in order to 

establish a theoretical framework for the subsequent species-specific and regional-

focused investigation.  Previous work on cattails is examined to develop hypotheses 

about factors facilitating their success in the Great Lakes.   This introduction reviews 

theoretical and empirical work that address three factors likely to influence Typha spp. 

in the Great Lakes region: (1) characteristics of invasive species, (2) environmental 
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parameters associated with invasion and dominance, and (3) feedbacks between a 

species’ ecology and its environment (sensu Lonsdale 1999). 

 

THE ECOLOGY OF INVASION AND DOMINANCE 

Species Characteristics: Predicting Invasiveness 

Many studies have sought to generalize about the characteristics of invasive species by 

comparing them with co-occurring, native species.  Such studies have addressed 

differences in growth and physiology (Baruch and Goldstein 1999; Nagel and Griffin 

2001), nutrient use (Kuhn et al. 2002; Miao 2004), reproduction (Cadotte and Lovett-

Doust 2001; Smith and Newman 2001; Woitke and Dietz 2002) , competitive effect 

(Farnsworth and Meyerson 2003; Hager 2004), morphology (Williamson and Fitter 

1996a), natural enemy assembly (Agrawal and Kotanen 2003), and genetics 

(Ainouche et al. 2004; Petit 2004).  Few consistent patterns have emerged.  For 

example, in a study of the invasive and native flora of Ontario, Cadotte and others 

(2001) found that ruderal life history traits were more common in exotic than the 

native species (short life span, flowering season of four or more months, 

hermaphrodite sex habit, and small fruit size).  In contrast, Williamson and Fitter 

(1996a) conducted a similar analysis of the British native and exotic flora and found 

that distribution (near populated areas), abundance (in a plant’s native range), and 

morphology (tall, broad) were more important than life history and reproductive traits 

in distinguishing native and exotic species.  Although plant trait comparisons have 

provided important insights into how specific invasive species are able to compete in 

their new environments, [e.g., Myrica faya in Hawaii (Vitousek et al. 1987), or Typha 

domingensis in the Everglades (Weisner and Miao 2004)], cross-habitat, cross-taxa 

generalities and the ability to predict future invaders have remained elusive (Mack 

1996; Daehler 2003).  
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Successful exotic plant invasions are subject to the same principles governing 

competition and dominance within established plant communities, despite historical 

dissociation (Davis et al. 2001; Thompson et al. 2001).  Brown (1984) demonstrated 

that locally abundant native species also occur across a broad geographic range.  The 

characteristics (e.g., environmental tolerance) that allow a species to occupy many 

sites within an area should also permit that species to occur across a wide geographic 

range.  Thus invasive species that achieve high population densities locally would be 

expected to have a broad ecological range.  In some cases the data supports this 

expectation, as in the analysis of exotics of the British Isles (Williamson and Fitter 

1996a) but there are numerous exceptions.  Typha angustifolia and T. latifolia, are 

both described as cosmopolitan species with broad ecological amplitude.  The genus 

Typha is one of 50 genera that are found on all the continents, except Antarctica. 

(Good 1974).  In the US, T. latifolia occurs in all 50 states, and T. angustifolia is 

found in 40 (USDA and NRCS 2004).  The wide distribution of Typha species 

suggests that they should also be abundant locally. 

 

It is difficult to determine the rate at which a particular exotic species has been 

imported to a new region, and thus evaluate the role of propagule pressure in 

determining invasive success.  Almost all generalizations about species or ecosystem 

properties governing exotic introductions will be hindered by the challenges of 

quantifying propagule pressure (Lonsdale 1999).   Williamson and Fitter (1996b) have 

argued that differences in propagule pressure may underlie many of the observed 

relationships.  For example, characteristics, such as frequent cultivation, high 

abundance, and establishment in populated or disturbed areas, are correlated with 

successful invasions because these characteristics contribute to high levels of seed 

transport (Williamson and Fitter 1996a; Mack et al. 2000).   
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The investigations described here are primarily focused on the causes and impacts of 

the wide variation in cattail dominance among Great Lakes wetland sites.  The three 

northern Typha species occur in all the states bordering the Great Lakes (USDA and 

NRCS 2004).  In the vegetation surveys made in conjunction with my work, at least 

one of the three Typha species was found in 81% of the Great Lakes wetlands visited 

(Chapter Two).  We can assume that Typha seeds reached and will continue to reach 

most Great Lakes wetlands; thus differences in propagule pressure are probably less 

important to its success than its competitive abilities and the characteristics of the 

wetland site.   

 

Ecosystem Properties: Predicting a Site’s Vulnerability  

Ecologists have attempted to explain the success of an invader in terms of the 

“invasibility” of an area, either as a function of the existing plant or animal 

community, or as a function of the abiotic environment.  Several aspects of 

community composition are thought to influence its invasibility, including the 

competitive abilities of native species; the phylogenetic and functional groups present 

(Mack 2003); the abundance of natural enemies (Agrawal and Kotanen 2003); and 

species or trophic diversity (Tilman 1997; Prieur-Richard and Lavorel 2000; Kennedy 

et al. 2002).  Lonsdale (1999) found that globally, exotic and native species richness 

were positively correlated after controlling for island or reserve status.  This result has 

two important implications:  1) on a community or regional scale, local diversity does 

not seem to be a barrier to invasion; and 2) the factors controlling native species 

richness also influence exotic species establishment, e.g., habitat diversity, latitudinal 

gradients or abiotic conditions.  Thus, an understanding of dominance and diversity in 

natural plant communities may help to explain patterns of invasion. 
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The abiotic environment also will influence the success of an invading plant.  Daehler 

(2003) reviewed studies that compared the growth of native and non-native co-

occurring species under different environmental conditions.  He found that invading 

species consistently out-competed native species under all growth conditions in only 

6% of 55 studies.  Interestingly, the native species most often out-performed the 

invasive species under low resource conditions (nutrients, light, or water) or under a 

simulated natural disturbance regime (Daehler 2001; Daehler 2003).  Such work 

suggests that habitat parameters and anthropogenic activities partially explain plant 

community invasion and dominance. 

 

Grime’s view of dominance 

The causes of diversity and dominance have been the subject of extensive theoretical 

and conservation-oriented research (e.g. Ehrlich and Ehrlich 1981; Huston 1994), with 

important implications for understanding the patterns of Typha spp. dominance of 

wetland communities.  J. P. Grime’s (1974; 1977; 2001) investigations of plant 

strategies and vegetation processes provide a useful framework. Grime theorized that 

biological communities are controlled primarily by the degree of stress (e.g., resource 

limitation, salinity, or anoxia) and the degree of disturbance (herbivory, fires, erosion, 

or storms) in a given area.  The level of stress and the frequency and intensity of 

disturbance will determine which species are able to survive and compete over time, 

and in turn, influence the balance between species co-existence and dominance 

 

Species diversity may be reduced at both the high and low ends of the stress or 

disturbance gradients, but for different reasons.  Few species are adapted to highly 

stressful or highly disturbed habitats; thus, low species richness will be observed under 

physically challenging conditions (e.g., salt marshes).  In contrast, low stress and low 
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disturbance (e.g., ungrazed, fertile grasslands) will promote the growth of highly 

competitive plants capable of excluding other species (Grime 1973a; Grime 1973b).  

In productive environments, light and/or space become limiting, granting larger plants 

an advantage disproportionate to their size because they can better access resources 

and prevent light from reaching smaller neighbors.  This size asymmetric competition 

is thought to reduce species co-existence (Zobel 1992; Newman et al. 1996; Rajaniemi 

2003).  These processes predict a hump-backed curve of species richness in response 

to stress or disturbance gradients.  Grime’s work suggests that changes in resource 

availability or physical disturbance will influence community dominance. 

 

Resource availability 

Consistent with Grime’s predictions, plant productivity and soil fertility have been 

widely associated with species richness, observationally and experimentally; however, 

the patterns depend on the scale of the study and the range of soil fertility studied.  

Evaluations of natural productivity gradients across biomes or across communities 

most frequently find a unimodal relationship, with diversity peaking at intermediate 

productivity levels; however, within communities the relationship varies widely 

among studies or shows no clear pattern (Waide et al. 1999; Gross et al. 2000; 

Mittelbach et al. 2001).  Fertilization experiments most frequently reveal that species 

richness declines with experimental additions of nutrients (Ditommaso and Aarssen 

1989; Gough et al. 2000).   

 

Although less well studied, similar patterns have emerged in wetland systems, both 

along gradients and in response to fertilization treatments (Wisheu and Keddy 1989; 

Moore and Keddy 1989a; Wheeler and Shar 1991; Bedford et al. 1999).  In contrast to 

terrestrial systems, species richness appears to peak at the low end of a fertility 
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gradient in wetlands.  Such a difference might develop because factors other than soil 

nutrients strongly influence productivity in wetlands, complicating the relationship 

between productivity and diversity (Cornwell and Grubb 2003). 

 

Disturbance and stress 

In wetlands, environmental stress (anoxia, salinity) and disturbance (water 

fluctuations, wave action) exert important controls over plant community composition.  

In salt marshes, salinity is a stronger predictor of species richness than standing 

biomass, although both are significant (Garcia et al. 1993; Gough et al. 1994).  In 

highly variable systems such as riverine wetlands, time since flooding and fertility 

together influence species richness (Shipley et al. 1991).  Keddy and colleagues have 

established a predictive relationship between water level fluctuations and river or 

reservoir shoreline vegetation, demonstrating that increasing fluctuations increase 

plant diversity until a threshold is reached (Keddy and Reznicek 1986; Hill and Keddy 

1992; Hill et al. 1998).  Indeed, both hightly amplified and damped annual water level 

fluctuations in regulated lakes reduced community and species diversity of lake shore 

communities in Minnesota (Wilcox and Meeker 1991), in a range of natural New 

Zealand lakes (Riis and Hawes 2002), and in regulated rivers in Sweden (Nilsson et al. 

1991; Jansson et al. 2000).  These patterns are consistent with Grime’s hump-backed 

relationship between species richness and disturbance. 

 

Disturbance also can promote greater environmental variation and community 

diversity.  In naturally fluctuating lakes, high water levels limit the downward 

encroachment of upland shrubby species, and low water level periods limit the upward 

spread of aggressive emergents, such as cattails, creating a zone of wet meadow 

(Keddy 1991; Keddy 2000).  The diversity of both plants and animals is often 
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positively correlated with environmental heterogeneity, presumably because spatial 

variation limits direct competitive interactions and competitive exclusion (Huston 

1994; Vivian-Smith 1997; Lundholm and Larson 2003; Pausas et al. 2003; Tews et al. 

2004).  In wetlands, topographic variation occurs as a result of sedge tussocks, tipped 

trees, muskrat mounds, groundwater flow, channelization, wave exposure or animal 

trampling (Hewitt and Miyanishi 1997; Zedler et al. 1999), and can be vulnerable to 

human activities (Werner and Zedler 2002; King et al. 2004).  Thus, factors that affect 

temporal or spatial variability in a wetland may influence competition and dominance 

of the plant community.  

 

Feedbacks Promoting Dominance 

There is increasing recognition that feedbacks between a plant and its environment 

may help predict invasion trajectories and plant succession.  Grime (2001) and others 

have described a species’ ability to dominate as the result of two factors: (1) its ability 

to achieve a larger size (vertically or horizontally) than its neighbors, and (2) its ability 

to reduce the fitness of its neighbors, either through resource depletion or physical 

inhibition.  In many cases a feedback between these two components develops, in 

which increased growth allows the dominant species to further inhibit other species.  

The production and accumulation of plant litter is one mechanism by which a plant’s 

success may reduce the fitness of its neighbors or impede the colonization of new 

species.   Typha species are highly productive (Mitsch and Gosselink 2000) and their 

dead stems remain upright for longer than other wetland graminoids (Davis and Van 

Der Valk 1978).  As a result, a litter layer is common in cattail-dominated marshes and 

may influence plant species co-existence.  The role of litter is discussed in detail and 

addressed experimentally in Chapter Three. 
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The role of plant litter 

In a quantitative review of 35 studies that experimentally measured the effects of 

persistent litter on vegetation, Xiong and Nilson (1999) found that: (1) litter had an 

overall negative effect on germination, establishment, above ground biomass and 

species richness when all studies were combined;  (2) germination and species 

richness were most strongly affected by litter; and (3) the effect of litter depended on 

the type of litter and the ecosystem.  In some systems, such as grasslands, litter can aid 

regeneration of certain species by retaining moisture, insulating the soil, protecting 

seeds from predators (Jarvis 1964), altering competitive interactions (Facelli 1994), 

adding nutrients, or changing pH (Dzwonko and Gawronski 2002).  Negative 

responses result from chemical inhibition of germination (McNaughton 1968), a 

reduced probability of seeds reaching the soil (Foster and Gross 1997), diminished 

light penetration (Facelli and Pickett 1991), increased seed and seedling herbivory 

(Facelli 1994), elevated risk of fungal attack (Facelli 1994), alteration of germination 

cues such as temperature fluctuations (Sydes and Grime 1981b), or physical 

interference with root or shoot growth (Sydes and Grime 1981b).  Although not 

reviewed by Xiong and Nilson (1999), the few litter removal or addition experiments 

conducted in wetlands revealed similar results; litter reduced seedling density and 

species richness in lacustrine marshes (Van der Valk 1986), salt marshes (Jordan et al. 

1990), and temperate riparian areas (Nilsson et al. 1999).   

 

The mechanism by which litter affects plant communities is not always clear; but it is 

often considered to be a physical inhibition of seedling regeneration (e.g., Van der 

Valk 1986).  Experiments comparing plastic pseudo-litter and plant litter have shown 

that surface area was more important than the composition of litter (i.e., plastic 

pseudo-litter and organic litter caused similar results), further indicating that litter 
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induces a primarily physical effect on seeds or seedlings (Sydes and Grime 1981b; 

Jordan et al. 1990).  Some litter also may contain allelopathic chemicals that inhibit 

the growth of other species.  Ecologists have identified allelopathic effects among 

aquatic angiosperms, which may use the compounds to compete for light and space 

(Gross 2003).   Potentially allelopathic compounds in marsh plants have been isolated 

and bio-assayed in the lab (McNaughton 1968; Bonasera et al. 1979; Gallardo-

Williams et al. 2002); however, field investigations of allelopathy have yielded mixed 

conclusions.  High leaching and decomposition rates are thought to dampen the effects 

of allelopathic chemicals in wetlands. However, a full understanding of the role of 

phenolic compounds in decomposing litter may require improved methodologies.   

 

Litter and community composition 

Several lines of evidence suggest that litter may mediate the relationship between 

fertility and plant species diversity (Berendse 1999).  Many models predicting species 

diversity have included litter, typically as an additional component of aboveground 

biomass (Grime 1973a; Moore and Keddy 1989a; Foster et al. 2004).  In a nutrient 

limited system, fertilization increases living and dead biomass over time, but in 

herbaceous communities litter can accumulate faster than living biomass (e.g. Tilman 

1993).  Litter in turn may influence seed germination and establishment, thus factors 

causing an increase in litter biomass may inhibit the recruitment of new species 

(Xiong and Nilsson 1999).  Results of fertilization and biomass removal studies that 

partitioned the effects of litter and living biomass on plant community composition 

have not been consistent.   In some studies litter biomass was closely correlated with 

species richness (Tilman 1993; Foster and Gross 1998; Xiong et al. 2003), while in 

other studies the living biomass or stem density was a more important determinant of 

species richness (Stevens et al. 2004).  Therefore, the role of litter varies among 
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systems and may depend on the importance of seedling recruitment to plant 

community composition. 

 

Plant responses to litter vary among species; thus, the way litter accumulates has the 

potential to structure communities (Sydes and Grime 1981a; Facelli and Pickett 1991; 

Facelli 1994; Xiong et al. 2001).  In some cases, litter perpetuates a given dominance 

structure, as in the case of tree litter suppression of forest herbs that compete with tree 

seedlings (Sydes and Grime 1981b).  Xiong (2001) determined that seed mass and 

seed persistence were positively correlated with a species’ ability to survive under 

riverine litter deposits, and that relative growth rate and plant height were not related 

or were negatively correlated with success under litter.  In riparian areas, the presence 

of litter may favor species that otherwise would be less competitive, thus promoting 

species co-existence.   

 

If a feedback is to promote the continued dominance of a species, the dominant must 

be immune to its mechanism of suppression; otherwise, vegetative succession or 

boom-bust population cycles will result (Grime 2001).  The litter of a number of 

macrophytes inhibits the germination of conspecific seeds, as in the case of Typha 

latifolia (McNaughton 1968), Phragmites australis (Van der Putten et al. 1997), or 

Scirpus maritimus (Clevering and Vanderputten 1995).  Many monocots, particularly 

hydrophilic species, maintain and expand their populations primarily via vegetative 

growth.  Translocation of energy reserves along rhizomes may help new shoots push 

through dense layers of litter.  Clonal species do not need to propagate from seeds in 

their immediate vicinity; therefore, an accumulation of recalcitrant litter or a release of 

allelochemicals would not reduce their own reproductive fitness.  
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Litter accumulation patterns also have the potential to shape plant communities 

indirectly through impacts on soil properties.  For example, the litter of Phragmites 

australis traps sediment better than native species; therefore its invasion enhances 

marsh accretion (Rooth et al. 2003).  Deciduous tree litter can raise the fertility and pH 

of forest soils (Dzwonko and Gawronski 2002) and the litter of heathland grasses can 

elevate rates of N mineralization (Berendse et al. 1994).  In marshes, dead cattails 

contribute to the buoyancy of vegetation stands (Hogg and Wein 1988).  Thus litter 

and the factors that influence the production or accumulation of litter can create 

multiple feedback effects with implications for ecosystem and community structure. 

 

CATTAIL EXPANSION IN THE GREAT LAKES  

Species Characteristics: The Genus Typha 

In North America, the genus Typha includes four morphologically similar species that 

can colonize a wide range of wetland habitats.  Typha latifolia (wide-leaved cattail) is 

found from Alaska south into the tropics, and from sea level up to 2125 m (Grace and 

Harrison 1986).  T. latifolia is common in late-successional, stable, peat-forming 

wetlands, in addition to more disturbed habitats (Smith 1967; Grace and Harrison 

1986).  T. angustifolia (narrow-leaved cattail) has spread across most of Eastern and 

Midwestern North America in the last 150 years, but its distribution remains restricted 

to areas south of 50°N (Smith 1967; Galatowitsch et al. 1999).  T. angustifolia is more 

prevalent in early-succesional wetlands, on mineral soils, and in saline or alkaline 

environments (Mcmillan 1959; Grace and Wetzel 1982; Grace and Harrison 1986).  

When the two species co-occur, T. latifolia generally occupies the shallower water 

zone and T. angustifolia colonizes water depths up to 100 cm (Grace and Wetzel 

1981).  Typha domingensis usually occurs well south of 40°N and therefore is not 

considered in this evaluation of Typha in the Great Lakes region.  A viable hybrid 
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between T. latifolia and T. angustifolia (Typha glauca) has been recognized in Europe 

for over 100 years, but only recently has this hybrid been synthesized experimentally 

(Smith 1967) and validated with molecular techniques in the United States (Kuehn 

1999b).  The limited ecological information known about this highly variable hybrid is 

discussed below. 

 

Invasion and hybridization 

Although there is some doubt about the nativity of Typha angustifolia, its 

distributional history suggests an exotic origin (Stuckey and Salamon 1987) and its 

aggressive expansion in the last 100 years qualifies it as invasive (Galatowitsch et al. 

1999; Woo and Zedler 2002; Farnsworth and Meyerson 2003).  It is thought that T. 

angustifolia originally came from Europe, where both T. latifolia and T. angustifolia 

are native, although this has not been substantiated with molecular evidence.  Stuckey 

and Salamon (1987) report that the narrow-leaved cattail was absent from early 

botanical surveys in Boston, Philadelphia, and New York until 1820, when subsequent 

floras began noting the sparse presence of T. angustifolia in Atlantic high marshes.  In 

1880 a narrow- and a wide-leaved cattail were documented in Central New York 

(Dudley 1886), and in 1890 T. angustifolia was first reported in southern Lake 

Michigan (Stuckey and Salamon 1987).  The use of cattail species for food, pillow 

stuffing, and matting, and the development of canals, railroads, and highways 

probably facilitated its spread (Grace and Harrison 1986; Mills et al. 1993). 

 

Most of the sympatric Typha species can form hybrids, although the hybrids are not 

always fertile (Les and Philbrick 1993).  Both early morphological analyses of T. 

glauca and the more recent molecular investigation indicate that T. glauca occurs 

wherever the two parent species overlap (Fassett and Calhoun 1952; Smith 1967; 
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Galatowitsch et al. 1999; Kuehn 1999b).  As part of a broad survey of Typha genetics, 

Kuehn (1999b) found that 65% of specimens from the eastern Great Lakes region 

were T. glauca, demonstrating its importance in this area.  Kuehn also (1999a) 

documented the extreme phenotypic variability within T. latifolia, T. angustifolia, and 

their hybrid, and the resulting challenges for field identification.  Presently, stands of 

T. glauca are largely F1 hybrids. Although its abundance is thought to be increasing, 

clear evidence for introgression and advanced generation hybrids remains scarce 

(Kuehn 1999b).  Vegetative reproduction often allows moderately sterile hybrids to 

persist, particularly in aquatic environments (Les and Philbrick 1993).   Reportedly 

low fertility and developmental difficulties of hybrids may currently maintain their 

distinct genetic identity; however, given the extent of hybridization and the massive 

seed production of Typha species, fertile hybrids and introgression may become more 

widespread (Kuehn 1999b).  To date, limited isozyme evidence indicates more 

prevalent backcrossing of T. glauca with T. angustifolia than with T. latifolia (Lee and 

Fairbrot 1973; Sharitz et al. 1980).   

 

It is likely that the widespread hybridization of all Typha species has contributed to 

their genetic variability and wide environmental tolerances.  In contrast with current 

understanding of T. glauca, Smith (1967) found higher fertility and more robust 

evidence for introgression in putative T. latifolia x T. domingensis hybrids.  He argues 

that backcrossing between the hybrid and T. latifolia contributed to the development 

of ecotypes that are surprisingly well adapted to the distinct central California climate.  

The hybrid of T. latifolia and T. angustifolia also seems to be well suited to its 

environment.  Initial experimental work suggests that T. glauca individuals have 

inherited the wide-leaf morphology of T. latifolia, the deep water tolerance of T. 
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angustifolia, and a greater plasticity in response to environmental gradients (Smith 

1967; Waters and Shay 1990; Waters and Shay 1992).  

 

Around the Great Lakes, the native Typha latifolia, the introduced Typha angustifolia, 

and their hybrid Typha glauca co-occur, hybridize, and form a structurally similar part 

of the plant community (Kuehn 1999b).  In this document, the term cattail is used to 

refer to all three species collectively.  References to the “invasive Typha species” 

apply to Typha angustifolia and Typha glauca.  Genetic work indicates that most 

hybrids are F1 generation with limited fertility.  Thus, the presence of T. glauca is 

dependent on the relatively recent invasion and colonization of T. angustifolia at a site 

and the two species are tightly linked.  T. latifolia is native to North America, although 

Chapter Two investigates whether its distribution and ability to dominate are 

quantitatively different from the invasive species around the Great Lakes.  

 

Competitive ability 

Typha species are among the most productive plant species (Wetzel 1983; Mitsch and 

Gosselink 2000); however, their performance is strongly influenced by the 

environment.  Cattails are physiologically better able to tolerate permanently flooded 

conditions than are many other emergent species.  Cattail seeds can germinate without 

oxygen (Lorenzen et al. 2000), the adult plants are able to maintain high rates of 

photosynthesis under low soil redox conditions (Pezeshki et al. 1996; Lorenzen et al. 

2000), and the roots are able to oxygenate their rhizosphere without showing signs of 

oxygen deficiency (Chabbi et al. 2000).  Interestingly, the growth of Typha latifolia 

was sensitive to drought conditions; the species reduces immediate photysynthetic 

rates and long-term biomass allocation in dry soils (Li et al. 2004).   
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Grace and Wetzel (1981; 1982) demonstrated that, without competition, T. latifolia 

and T.  angustifolia both reached maximum stand biomass in waters 50 cm deep.  

However, T. latifolia could exclude T. angustifolia from the shallower depths, and T. 

angustifolia could better colonize depths up to 100 cm, thus, producing consistent 

zonation patterns along lakeshores.  Waters and Shay (1992) revealed that mono-typic, 

naturally occurring stands of Typha glauca reached maximal biomass at 25 and 100 

cm depths, with relatively constant biomass (about 750g/m2) between the two peaks.  

Shoot height, weight, and density varied widely along this water depth gradient, 

presumably allowing a stand to maximize light capture and tolerate different water 

depths (Waters and Shay 1990).  These studies indicate that T. glauca demonstrates 

even greater morphologic and physiologic plasticity than its parental species, allowing 

it to survive more extreme water depths.  This may explain the prevalence of T. glauca 

in highly variable Great Lakes wetlands.   

 

Typha species also show higher plasticity in response to nutrient availability than do 

other emergent species, such as Cladium jamaicense, Eleocharis interstincta 

(Newman et al. 1996), and Carex species (Woo and Zedler 2002).  Miao and others 

(2000) found that genetically identical genets of Typha domingensis growing in a 

nutrient-enriched area accumulated 11 times more biomass after 7 months and 16 

times more biomass after 2.5 years than did individuals in the un-enriched area.   In 

low-nutrient soils, the T. domingensis plants did not produce a single ramet, and 

instead allocated their limited resources towards larger, longer-lived shoots.  Miao 

(2004) further observed that T. domingensis responded differently to soil nutrients 

from the native C. jamaicence in its ability to concentrate more phosphorus in its 

leaves, allocate more biomass to vegetative reproduction, and expand into a larger area 

when limiting nutrients became available.  This work demonstrates that nutrient 
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availability can accelerate the expansion of Typha species, and that Typha species can 

effectively modify their growth strategy in response to nutrient availability.   

. 

Reproduction and clonal expansion 

Typha species can produce large numbers of seeds and spread via lateral shoots, 

allowing them to expand within and among wetland areas.  A single Typha 

inflorescence will produce 20,000 to 700,000 seeds, each with numerous gynophore 

hairs that facilitate wind dispersal when dry.  When the fruit reaches water, the 

pericarp releases the seed, allowing it to sink into the sediment (as described by Grace 

and Harrison 1986).  Seed germination requires saturated soils, high light, and 

alternating temperatures (Lombardi et al. 1997).   Although germination can occur 

under low oxygen and nutrient conditions, cattail seeds will not germinate if buried 

(Stewart et al. 1997; Lorenzen et al. 2000).  New seedlings seem to establish 

infrequently in mature stands of cattails and maintenance of the population primarily 

occurs through asexual production of new ramets (McNaughton 1968).  

 

The degree to which cattails are able to spread vegetatively probably determines 

whether they co-exist with or dominate other species.  Once established, an 

individual’s growth rate, biomass allocation, morphology, and clonal expansion are 

highly dependent on a site’s water depth and fertility (Waters and Shay 1990; Miao et 

al. 2000; Miao 2004; Weisner and Miao 2004).  A single seedling can produce 6-7 

new ramets and grow to cover a square meter over the course of a growing season 

under favorable conditions (Miao et al. 2000).  Grace and Wetzel (1981) studied the 

intra- and inter- population differences in local ecotypes of T. latifolia through field 

surveys, a common garden experiment and reciprocal transplants.  They found that 

biomass allocation to flowering, vegetative reproduction, and nutrient acquisition 
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depended on both plant origin (genotypic) and the present growth conditions 

(phenotypic).  Their work demonstrates the ability of cattails to modify its 

reproductive strategy in response to the degree of disturbance, nutrient stress and light 

limitation of a given environment.  This flexibility could allow for powerful feedbacks 

between cattails and the environment. 

 

Ecosystem Properties:  The Great Lakes Basin 

Experimental, observational, and modeling studies have identified conditions 

associated with the expansion of Typha species into different environments.  The 

natural occurrence of T. latifolia on lakeshores has been associated with areas of high 

fertility and low disturbance (Day et al. 1988).  Cases in which cattails are expanding 

into a new region generally support the theory that fluctuating resources promote 

invasion (Davis et al. 2000).  For example, Woo and Zedler (2002) demonstrated that 

nutrient-rich run-off alone promoted the expansion of Typha glauca into a sedge 

meadow.  In two cases, the invasion of Typha angustifolia was correlated with areas 

impacted by road salt (Wilcox 1986; Panno 1999).  Salt contamination decreased 

native vegetation, which may have made resources available for T. angustifolia.  

Wilcox (1984) found that hydrologic alterations facilitated the invasion of Typha into 

a sedge meadow.  Investigations of the expansion of Typha domingensis into sawgrass 

marshes of the Everglades re-affirm that Typha is able to spread aggressively when a 

combination of elevated nutrient levels, altered hydrology, and modified disturbance 

(e.g., muck fires or canal structures) co-occur (Newman et al. 1998; King et al. 2004).  

Lessons learned in other ecosystems have parallels in the Great Lakes region. 

 

Wetlands have been impacted both directly by human activities and indirectly by 

invasive species introduced by humans.  Mills and others (1993) documented the 
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introduction of 139 non-indigenous organisms into the Great Lakes basin since the 

1800s, including 59 plant and 24 algal species.  The development of canals, railroads, 

and commercial transportation likely facilitated the spread of these organisms.  Thirty 

percent of these invasions occurred after the opening of the St. Lawrence Seaway, 

demonstrating the importance of human activities in the spread of non-natives (Mills 

1993).  The Great Lakes have lost 70% of their original (pre-European settlement) 

wetland area due to filling, draining, and development of coastal areas (Dodge and 

Kavetsky 1995).  There is evidence that the remaining wetlands have experienced both 

reduced natural disturbance and increased nutrient inputs, both of which may facilitate 

invasion and promote dominance. 

 

Disturbance and productivity 

The water levels of the Great Lakes fluctuate seasonally and inter-annually, altering 

the extent, flooding regime and community composition of the wetlands.  Annual 

mean water levels of the unregulated Great Lakes can vary over a meter from year to 

year (Hunter and Croley 1993).  High water years disrupt shrub and wet meadow 

species and low water years expose mud flats and allow the seed bank to germinate.  

Currently, dams on the outflows of Lake Superior and Lake Ontario regulate water 

levels dampening the natural cycle of disturbance and renewal.   Lake Erie is shallow 

and holds the smallest volume of water of the major Great Lakes, making it very 

responsive to changes in inflow.  Hydrograph’s for lakes Huron and Michigan show 

high inter-annual variability and no effect of regulation.  The headwater position and 

the large lake-to-watershed ratio of Lake Superior naturally stabilize the intra- and 

inter-annual water level variation, in comparison to the downstream lakes (Brinkmann 

2000).   As a result, most studies have been unable to detect changes in Lake 
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Superior’s water regime that can be attributed to regulation alone (Quinn 2002; 

Changnon 2004). 

 

Lake Ontario is the only Great Lake that shows a very clear response to flow 

modifications.  In 1960, the Moses-Saunders power dam was constructed on the St. 

Lawrence River, on the outlet from Lake Ontario.  The flow across the dam is 

regulated in order to “reduce the range of Lake Ontario water levels, and to provide 

dependable flow for hydropower, adequate navigation depths and protection for 

shoreline and other interests downstream in the Province of Quebec” (IJC 2004).  

Currently, there is no explicit mention of wetland or aquatic health in this mandate.  

Lake Ontario’s levels are regulated within a target range of 74.15 and 75.37 m above 

sea level (IJC 2004).  Given that annual discharge over the Moses-Saunders dam is 

about 13% of Lake Ontario’s volume and monthly discharge reaches 22 km3, 

regulation can influence lake levels on an annual and monthly basis.  Since 1960, Lake 

Ontario has experienced a dampened inter-annual variation and an increased intra-

annual fluctuation of water levels (Lenters 2001; Quinn 2002). 

 

Given the importance of water level fluctuations for the maintenance of diverse 

wetland communities, (Keddy and Reznicek 1986; Wilcox and Meeker 1991; Wilcox 

1995; Hill et al. 1998), increasing dominance on regulated lakes might be expected.  

Using historical imagery and field surveys at elevations with known water level 

histories, Wilcox argues that stabilized water levels on Lake Ontario are causing a 

decrease in sedge meadow plants and an increase in cattail-dominated communities 

(USGS 2004; Wilcox et al. 2004).   He also suggests that post-regulation water levels 

have increased on average, which reduces the competitive ability of sedge meadow 

plants and improves the growth of cattails, as seen in the Everglades.  Without the 
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natural disruption of water-level extremes, cattails may be able to expand landward 

into marsh meadows.  

 

Human activities also are adding growth-limiting nutrients to the water and wetlands 

of the Great Lakes.  Total phosphorus inputs to the lakes have decreased due to the 

removal of phosphates from detergents and improved municipal sewage treatment; 

however, run-off from agricultural fields and urban areas continues to carry nutrients 

into the lakes (Elster 2000).   Embayments are still vulnerable to eutrophication due to 

the high residential use of the shoreline, their large tributary input, and relatively slow 

flushing time (Makarewicz 2000).  In many Great Lakes wetlands, nutrients may no 

longer be limiting due to phosphorus-rich run-off and atmospheric nitrogen deposition.  

Thus, space and light may be the primary limiting factors, promoting size asymmetric 

competition and diminished species co-existence (Rajaniemi 2003). 

 

Interpreting vegetation patterns  

Great Lakes wetlands are experiencing many types of environmental change that could 

be promoting the spread and dominance of invasive species like Typha angustifolia 

and Typha glauca.  An analysis of cattail abundance in relation to the five lakes and 

different land uses could provide insight into which factors are most influential.  

Studies that have attempted to correlate plant composition and human activities have 

had mixed results. Wilcox et al. (2002) found that inter-annual water level changes, 

typical of the unregulated Great Lakes, created variation in vegetation such that the 

relationship between human activities and biotic communities was hard to quantify.   

However, other studies of wetlands along the Canadian Great Lakes coast have found 

that the percentage of agriculture in a watershed was correlated with turbid, nutrient 

rich sediments (Crosbie and Chow-Fraser 1999) and lower diversity of submerged 
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aquatic plants (Lougheed et al. 2001).  Lougheed et al. (2001) also discovered that 

land use was more tightly correlated with the water and sediment characteristics of 

inland wetlands than with coastal wetlands (Lougheed et al. 2001).  Logically, lake 

currents and seiches will act to dilute pollutants delivered by streams; however, there 

may be other important abiotic gradients driving variation in Great Lake wetlands, 

such that the effect of land use is obscured.   

 

Vegetation also is strongly driven by geologic and climatic variation around the Great 

Lakes (Smith et al. 1991; Lougheed et al. 2001).  Smith (1991) suggests that the easily 

eroded sedimentary rocks of the southern Great Lakes produce shallow water zones 

with fine textured substrates favorable for marsh formation.  In contrast, the older 

igneous and metamorphic bedrock of the northern Greats Lakes results in exposed 

shorelines and infertile wetlands (Smith et al. 1991)   Indeed, Lougheed and others 

(2001) have observed that in comparison with the southern lakes, wetlands on lakes 

Huron and Superior contain species adapted to the short growing season and low 

substrate fertility, such as Scirpus, Eleocharis, Equisetum, and Isoetes.  Productive 

marsh species, such as Typha, and a more diverse submerged aquatic community are 

typical of the southern eco-province.  Agriculture and urban growth are also 

widespread in the southern province, due to the fertile soils and longer growing 

season.  Thus, both wetland development and human settlement patterns are driven in 

part by these same physiographic factors, creating co-linearity between disturbance 

gradients when considering the Great Lakes as a whole. 

 

Feedbacks Promoting Dominance: Lessons from the Everglades 

In the Everglades, the importance of interactions between the biology of an invasive 

species and the environment has been widely recognized.  Many experimental studies 
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have investigated the competitive advantages of Typha domingensis over Cladium 

jamaicense (sawgrass).  T. domingensis is able to vary its ramet and genet morphology 

and flourish in high water and high nutrient conditions, as described above (Newman 

et al. 1996; Miao 2004; Weisner and Miao 2004).  In contrast, Cladium jamaicense 

has typical adaptations for low nutrient environments: slower growth rate, higher leaf 

longevity, chemically defended leaves, high tissue nutrient resorption, and effective 

vegetative spread (Richardson et al. 1999; Miao 2004).   Comparisons have 

highlighted how each species’ growth strategy could promote its own persistence by 

producing litter that either speeds (as in the case of Typha) or slows (Cladium) overall 

nutrient recycling.  All Typha species are highly productive and their leaves senesce 

every fall in temperate climates; thus, substantial inputs of cattail litter could create 

important feedbacks for plant community and ecosystem dynamics.   

 

The Everglades have become more vulnerable to invasion and dominance due to 

human settlement patterns.  In the first half of the twentieth century, an extensive 

system of canals and levees was built to allow urban and agricultural expansion into 

the northern part of the Everglades.  As a result, some sections of the remaining 

marshes now experience deeper waters, extended hydroperiods, and nutrient-rich 

agricultural run-off.  As might be predicted from the physiological advantages of T. 

domingensis, elevated nutrient levels, higher water levels, longer flooding periods, 

muck fires, and canal structures are closely correlated with zones of cattail invasion 

(Newman et al. 1998; King et al. 2004).  Neither hydroperiod nor nutrients alone 

predicts the distribution of T. domingensis, indicating that restoration of many aspects 

of the system is required (David 1996).  The rapid invasion of T. domingensis into 

impacted sawgrass marshes demonstrates the importance of considering both the 

characteristics of the invading species and factors associated with habitat invasibility.  
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Unfortunately, the expansion of Typha angustifolia and T. glauca into more northern 

wetlands is not as well understood.    

 

PRECIS OF THESIS 

As described above, three primary factors influence the balance between dominance 

and diversity in plant communities:  

1) Characteristics of the invading species’ biology and ecology 

2) Properties of the wetland environment 

3) Feedbacks between a plant’s ecology and its environment 

 

The following two chapters present the results of research addressing the following 

two questions: What factors and processes promote the dominance of cattails across 

the Great Lakes? and What are the implications of cattail dominance for plant 

community composition?  Because the ecology and biology of Typha species are fairly 

well documented, this research focuses on the second and third factors noted above.  

Chapter Two examines the relationship between the abundance of Typha species, 

species density and environmental conditions.  Chapter Three addresses how litter 

accumulation may be acting as a feedback mechanism, promoting the dominance of 

cattails.   A strong understanding of the physiology, ecology and variability of cattails, 

as outlined in this first chapter, provide a foundation for the interpretation of the 

forthcoming research results.  The following objectives and specific research questions 

guide the next two chapters.  
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Chapter Two:  Patterns of Typha dominance and species density in wetlands 

across the Great Lakes 

The objectives of this study were to (a) identify how environmental conditions 

influence the distribution, percent cover, and dominance of Typha species across the 

Great Lakes, (b) assess the species richness associated with Typha species and (c) 

determine whether other dominant wetland graminoids show similar patterns.  This 

work was guided by several predictions:  

• The invasive Typha species, T. angustifolia and T. glauca, will occur across a 

range of hydrologic and physiographic conditions. 

• Invasive Typha will occur more frequently and have a higher percent cover in 

wetlands around lakes with controlled water levels.   

• The percent cover and the relative abundance of invasive Typha will be 

positively correlated with the amount of agriculture in a wetland’s watershed.    

• Species density will be negatively correlated with the percent cover of invasive 

Typha species. 

By comparing the invasive Typha species (T. angustifolia and T. glauca) to other 

native members of the plant community, I hoped to determine if invasive Typha 

species exhibited similar ecological interactions compared to other plants, or whether 

the environment primarily determined diversity and dominance, regardless of plant 

species composition. 

 

Chapter Three:  The role of litter dynamics in mediating the dominance of 

cattails (Typha spp.) in Great Lakes wetlands 

Around Lake Ontario the biomass of live and dead cattails varies: southern lakeshore 

wetlands within open embayments are visibly dominated by cattail, while wetlands 

behind barrier beaches along the eastern shore of the lake maintain a more diverse 
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plant community.  Given the potential for cattails to attain high levels of productivity 

(Brinson et al. 1981) and the resistance of its litter to fragmentation and decay (Davis 

and Van Der Valk 1978), an accumulation of cattail litter might be suppressing other 

species.  I further hypothesized that litter dynamics would differ between the two 

hydrogeologic settings, potentially explaining their vulnerability to dominance by 

cattail.  The objective of this research was to evaluate whether (1) the accumulation of 

cattail litter promoted the dominance of cattails by inhibiting other species, and (2) 

whether cattail litter production or decay differed among two hydrogeologic settings. 
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CHAPTER TWO 

Patterns of Typha dominance and species density  

in wetlands across the Great Lakes 

  

INTRODUCTION 

The natural and anthropogenic factors influencing plant community diversity and 

dominance are of widespread interest from both a theoretical and a conservation 

standpoint (e.g., Ehrlich and Ehrlich 1981; Huston 1994; Grace 1999).  An 

understanding of the relative importance of external factors (e.g., land use or 

disturbance) and intrinsic factors (e.g., the presence or identity of an exotic species) 

influencing species dominance will determine how we manage invasive species and 

potentially use plant community metrics as indicators of anthropogenic stress (e.g., 

Niemi et al. 2004a; Brazner et al. in review).  In the last 50 years, North American 

wetlands have been particularly vulnerable to invasions by non-native species such as 

Lythrum salicaria (purple loosestrife), Phragmites australis (common reed), Phalaris 

arundinacea (reed canary grass), and Typha angustifolia (narrow-leaved cattail) 

(Galatowitsch et al. 1999; Zedler and Kercher 2004).  Efforts to identify the 

characteristics of invasible ecosystems and invasive exotics have generally concluded 

that similar factors govern the dispersal, establishment and competition of native and 

non-native species (Levine 2000; Davis et al. 2001; Thompson et al. 2001).  Because 

few introduced exotics ever become abundant or problematic, it is important to 

investigate the later stages of invasion, specifically, where, how and why exotic 

species dominate communities and impact invaded ecosystem (Levine et al. 2003).  In 

some cases, the particular disturbances that create opportunities for invasive species 

can be identified; however, generalizations have been slow to emerge (Zedler and 

Kercher 2004).  Few studies have been able to examine the pattern and impact of
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invasions across a large heterogeneous landscape like the Great Lakes basin.  This 

study compares an invasive species to five native, co-occurring species with respect to 

their patterns of dominance, associated plant species diversity and the relative 

importance of natural and anthropogenic factors in promoting their abundance.   

 

Anthropogenic activities and invasive species may be shifting the balance between 

dominance and diversity in Great Lake wetlands.  The Great Lakes region has lost 

70% of the original (pre-European settlement) wetland area (Snell 1987; Dodge and 

Kavetsky 1995) and many of the remaining wetlands experience dampened water level 

fluctuation and elevated nutrient loading (Williams and Lyon 1997; Crosbie and 

Chow-Fraser 1999; Quinn 2002).  Agriculture, urban development, and atmospheric 

nitrogen deposition in the basin have increased nutrient and sediment loads into Great 

Lakes coastal waters (Detenbeck et al. 1999).  Currently dams on the outflows of Lake 

Superior and Lake Ontario regulate water levels and minimize inter-annual variation, 

which provides a natural source of disturbance in the other lakes.  Both highly 

amplified or dampened annual water-level fluctuations reduced wetland species 

diversity of managed lakes in Minnesota (Wilcox and Meeker 1991), in a range of 

natural New Zealand lakes (Riis and Hawes 2002) and in regulated rivers in Sweden 

(Nilsson et al. 1991; Jansson et al. 2000).  A similar decline in plant diversity may be 

occurring in Great Lake wetlands. 

  

Cattails (Typha spp.) dominate many Great Lake marshes, often forming dense stands 

of live and dead biomass (Frieswyk et al. 2005).  On Lake Ontario, limited work has 

documented the expansion of cattail-dominated communities and the simultaneous 

decrease in wet meadow communities during the last 60 years (U.S.G.S. 2004; Wilcox 

et al. 2004).   The three northern cattail species, the native Typha latifolia L, the 
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introduced Typha angustifolia L., and their hybrid, Typha glauca Godr. (pro sp.), co-

occur, hybridize and form a structurally similar part of the plant community (Kuehn 

1999b).  Typha angustifolia was first observed in Atlantic coastal marshes in 1820 and 

has since spread throughout much of the Southeastern and Midwestern US (Stuckey 

and Salamon 1987; Stuckey 1993; Galatowitsch et al. 1999).  Both Typha angustifolia 

and Typha glauca are considered invasive species that can be detrimental to wildlife 

and plant diversity (Newman et al. 1998; Galatowitsch et al. 1999; Keddy 2000; Woo 

and Zedler 2002; Farnsworth and Meyerson 2003; King et al. 2004).  However, it is 

unclear whether T. latifolia or other native graminoids are quantitatively different in 

their patterns of distribution and dominance.  Typha glauca is described as more 

morphologically and ecologically variable than either parent species; thus, its 

distribution may be less responsive to hydrologic or climatic gradients than the 

distribution of other co-occurring native species (Waters and Shay 1990; Waters and 

Shay 1992).   

 

Models of plant community dominance may help explain the success of the invasive 

Typha species, Typha angustifolia and Typha glauca, during the last 100 years.  

Factors that increase plant community biomass, such as elevated fertility and reduced 

disturbance, can promote the dominance of a few competitive species and facilitate the 

exclusion of subordinate species (Grime 1973a; 1973b).  Consistent with Grime’s 

model (as described in Chapter 1), an increasing abundance of Typha species has been 

associated with changes in nutrient-rich run-off (Woo and Zedler 2002) and 

hydrologic alterations (Wilcox et al. 2003).  In the Everglades, Typha domingensis is 

expanding into areas of sawgrass marsh that are simultaneously affected by elevated 

nutrient levels, altered hydrology, and a modified disturbance regime (e.g., muck fires 

or canal structures) (Newman et al. 1998; King et al. 2004).  Thus, theoretical and 
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experimental work indicate hydrology and land use may affect the dominance of 

Typha around the Great Lakes. 

 

The objectives of this study were to (a) identify how environmental conditions 

influence the abundance and dominance of Typha species across the Great Lakes, (b) 

assess the species richness associated with Typha species, and (c) determine whether 

other dominant wetland graminoids show similar patterns.  A comparison of the 

invasive Typha species (T. angustifolia and T. glauca) and other native members of 

the plant community, will help determine if invasive Typha species exhibit unique 

ecological characteristics compared to other plants, or whether the environment is the 

primary determinant of diversity and dominance, regardless of plant community 

composition. 

 

METHODS 

Site Selection and Sampling Design 

To evaluate abiotic factors associated with the distribution and abundance of Typha 

spp., I analyzed data from an extensive wetland vegetation survey.  The surveys were 

conducted on 90 wetlands across the five major Great Lakes as part of a large, multi-

investigator project designed to identify biotic indicators of human disturbance to 

coastal systems, [Great Lakes Environmental Indicators project (GLEI), Gerald Niemi 

and Carol Johnston, principal investigators].  Michael Bourdaghs was responsible for 

the field sampling on lakes Superior and Huron, Christin Frieswyk sampled around 

Lake Michigan, and I conducted the surveys on lakes Erie and Ontario.   Fieldwork 

focused exclusively on plant communities within non-forested wetlands with at least 

some emergent wetland vegetation.   
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Sites were selected using a stratified random sampling design, outlined by Danz et al. 

(2005).  Sites were chosen to include roughly equal numbers of wetlands from the 

Laurentian Mixed Forest (northern) and the Eastern Broadleaf forest (southern) Eco-

provinces (Bailey 1995) from three geomorphic settings (protected, river influenced, 

and coastal), and across several types of disturbance gradients, including intensity of 

agriculture, human population density, atmospheric deposition, and point source 

contamination (Figure 2.1).   

 

Vegetation was sampled along linear transects whose end points were randomly pre-

selected using a Geographic Information System and a program called Sample 

(http://www.quantdec.com/sample).  Transects were initiated at the transition from 

woody to herbaceous wetland vegetation and continued until water depths exceeded 1 

meter or the zone of submerged vegetation ended, roughly paralleling the hydrologic 

gradient.  One-meter squared vegetation plots were placed at randomly generated 

intervals along each transect; plot spacing was approximately 20 m.  The target 

number of survey plots in each wetland was proportional to the size of the wetland (20 

quadrats/ 60ha).  A minimum of 12 plots was surveyed in each wetland.  Surveys were 

conducted during the summers of 2001-2003.   

 

For each sampling plot, water depth and the coverage of water, soil, litter, moss, rocks, 

and all vascular plant species were recorded.  Species were identified to the lowest 

taxonomic division possible according to the Interagency Taxonomic Information 

System (ITIS,  http://www.itis.usda.gov).  Coverage was estimated using a modified 

Braun-Blanquet cover class scale of 0 to 6, (1= <1%, 2= 1-5%, 3= 5-24%, 4 = 25-

49%, 5= 50- 74%, 6= 75-100%) (ASTM 1997).  The midpoint for each cover class 

was used (0.5, 3, 15, 37.5, 62.5 and 87.5 respectively) for analyses of percent cover.   
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Eastern  
Broadleaf Forest 

Laurentian 
Mixed Forest

CANADA 

Figure 2.1.  Map of the Great Lakes showing locations of wetlands sampled as part of 
the GLEI project and used in this study.  Locations of the two eco-provinces in which 
study sites occurred are indicated. 
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Herbaceous plant communities are often layered; thus, the sum of all observations in a 

given plot could total more than 100%.  The field teams met three times during the 

study period to improve consistency in species identification and cover estimates. 

 

Study Species 

Observations of Typha angustifolia and Typha glauca were combined into a single 

measurement, “invasive Typha species”.  Recent genetic work has revealed that T. 

latifolia and T. angustifolia readily hybridize wherever they co-occur; however, most 

hybrids appear to be F1 generations with limited ability to produce viable seeds and 

disperse (Kuehn 1999b).  Vegetative reproduction generally allows F1 clones to 

spread throughout contiguous areas of suitable wetland habitat.  Thus, based on 

current observations of hybridization, the presence of T. glauca is dependent on the 

relatively recent invasion and colonization of T. angustifolia in a site.  Both T. glauca 

and T. angustifolia are considered invasive due to their recent spread across most of 

the United States and their aggressive growth within sites, and are often considered 

together ecologically (Motivans and Apfelbaum 1987; Stuckey and Salamon 1987; 

Galatowitsch et al. 1999; Woo and Zedler 2002).  Typha species demonstrate wide 

phenotypic plasticity, limiting the utility of leaf width and flowering spike width in 

identification across a range of habitats, especially where hybridization is widespread, 

as in the Southern Great Lakes (Kuehn 1999a).  I felt confident in our ability to 

consistently distinguish non-flowering T. latifolia from T. angustifolia and T. glauca, 

but because this data set combines observations from three different field teams that 

sampled over the course of three seasons, I was hesitant to separate our observations 

of the two invasive species.  Field measurements reveal that in comparison with T. 

latifolia, T. glauca and T. angustifolia both had a higher mean percent cover, and in 

plots where they occurred there were fewer species and the vegetation canopy was 
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taller (Appendix A).   These observations indicate that T. angustifolia and T. glauca 

are structurally and ecologically similar in our Great Lake wetlands and can be 

considered together.   Thus, I refer to T. angustifolia and T. glauca together as 

invasive Typha, but refer to T. latifolia explicitly by full name.   

 

To determine whether Typha species exhibit unique patterns of distribution or 

abundance, I compared the invasive Typha species and T. latifolia to similar abundant, 

potentially co-occuring emergent species.  I chose the four most frequently-observed 

graminoid species that typically occupy wetter areas of marshes: Calamagrostis 

canadensis (Michx.) Beauv. (blue joint grass), Carex lacustris Willd. (lake shore 

sedge), Schoenoplectus tabernaemontani (K.C. Gmel.) Palla. (softstem bulrush), and 

Sparganium eurycarpum Engelm. ex Gray (giant burreed).  

 

Indices of Anthropogenic Stress 

To assess the relationship between the abundance of a species and urban or 

agricultural development, I used two comprehensive indicators of anthropogenic 

influence: an agricultural index and an urbanization index.  Both indicators were 

developed and calculated by the Great Lakes Environmental Indicator (GLEI) project 

with leadership from Nick Danz, Tom Hollenhorst and Terry Brown (Danz et al. 

2005).  The region of land that drained into each wetland complex was delineated 

using digital elevation models and drainage maps.  The potential impact from 

agriculture within a watershed was estimated using twenty-six publicly available GIS 

data layers from the United States Department of Agriculture (USDA) and Natural 

Resources Conservation Service (NRCS) that provide spatially referenced estimates of 

pesticide, nutrient and sediment run-off.  The urbanization index was created using 

three variables: population density (calculated from the 2000 US Census Bureau data), 
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road density (calculated from the US Census 2000 TIGER line files) and urban land 

cover (calculated using the United States Geological Service (USGS) National Land 

Cover Database 2001).  A value for each variable was calculated for each of the 

watersheds that drained into a wetland study site.  The 26 agriculture and the 3 

urbanization variables were each combined in two principal components analyses 

designed to reduce the redundancy among the variables (Danz et al. 2005). The PC 

scores for the first axis explained 75% and 76% of the variance in the original 

variables for the agriculture PCA and urbanization PCA, respectively.  The PC scores 

provide an integrated index of agricultural intensity and urbanization for each 

wetland’s watershed.  

 

Calculations and Statistical Analyses 

I assessed patterns of abundance by determining the relative percent cover of each 

study species.  For each wetland, all recorded cover values for a particular species 

were totaled and then divided by the summed cover of all plant species to yield a 

proportional cover for each species (0 – 100%), here termed as “relative percent 

cover” or “relative abundance”. To equalize variances across the range of predicted 

values and normalize residuals, relative percent cover was square-root transformed.  

The pattern of dominance of the six study species was further assessed by looking at 

three characteristics: (1) frequency of occurrence across a wetland, calculated as the 

number of plots in which a species occurred divided by total number of plots per site;  

(2) the mean percent cover in plots of occurrence within a wetland, which was 

estimated visually in the field without considering how many other species or how 

many canopy layers might be present in a plot; (3) the mean species density in plots in 

which the species occurred within a wetland.   Data from each wetland were averaged 
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before assessing patterns across wetlands.  Standard errors and regression statistics 

were calculated using SAS Version 9 (SAS 2002). 

 

This work compares the effect of five main factors on the relative cover and the 

species density associated with each study species.  Three natural factors are 

considered: (1) the mean water depth across a wetland, measured in the field at the 

time of sampling; (2) the lake on which a wetland is located (Superior, Huron, 

Michigan, Erie or Ontario); (2) the setting of a wetland, which combines the 

geomorphology (coastal, riverine or protected) and the eco-province (Eastern 

deciduous forest or Laurentian mixed forest, following Bailey 1995) resulting in 6 

wetland settings.  Two anthropogenic factors are also evaluated by using: (4) the 

urbanization index and (5) the agricultural index.  Several of these variables may vary 

collinearly; for example, agriculture is more widespread in the southern eco-province, 

potentially obscuring the effect of a wetland’s location on a particular lake.  Thus, it is 

important to simultaneously analyze the five variables to determine the importance of 

each, independent of the other variables.   

 

To compare the independent influence of external factors on the abundance of the 

study species, I used a hierarchical partitioning (HP) analysis (Chevan and Sutherland 

1991).  The technique evaluates the importance of each variable by comparing a 

nested series of models that utilize the factors of interest in all possible combinations.  

The average incremental improvement in model fit (R-square) with the addition of a 

variable is calculated across all models, including those with less than the original 

number of variables.  HP does not select one best model, it assesses the independent 

and the joint explanatory power associated with each variable.  As a result, the method 

is relatively robust against issues that plague multiple regression model building 
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techniques, such as co-linearity among predictor variables and inflated R-square 

values (Mac Nally 2000; Graham 2003).  I used the hier.part package in the statistical 

software R version 2.1.1 for this analysis (Walsh and Mac Nally 2004). The variance 

explained by a factor was compared to the results generated by 100 randomized 

datasets, providing an estimate of statistical significance (Z score). 

 

RESULTS 

In the 2010 plots from the 90 sites surveyed across the Great Lakes, we identified 488 

taxa of vascular plants, nearly half of which occurred in only one or two wetlands 

(Johnston et al. in review).  Twenty-four plants occurred in a third of the sites and 

were consistently abundant in wetlands where they occurred.  The invasive Typha 

species were observed in more wetlands and in sites where they occurred exhibited a 

higher relative cover than all other vascular plant species (Figure 2.2).   

 

An examination of patterns within each wetland indicates that the aboveground 

biomass of the native species typically covered a relatively small percentage of each 

plot (0.5- 25%) (Figure 2.3).  In contrast, in 53% of the plots studied the cover of the 

invasive Typha species was greater than 25% (a mean cover of 37.5% or higher).   The 

range in species richness values recorded in relation to the cover of each study species 

revealed that high cover of either the native graminoids or invasive Typha was 

associated with lower than average species density.  However, the species density in 

plots with a low to moderate cover of the native species was higher than in plots with 

an equivalent cover of invasive Typha.  For example, areas with 5-25% cover of T. 

latifolia had a mean species density of 9.0 (SE= 0.5) species/m2, and areas with a 

similar cover of invasive Typha had a mean of 6.7 (SE= 0.3) species/m2.  Thus, the 

invasive Typha species when considered together were more dominant than the native  
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Figure 2.3  Number of times each species occurred at each percent cover class (left 
column) and the number of species in those plots (right column).  Species density 
range box represents the middle 50% of observations at each percent cover value, 
line within box indicates the median value, and dot represents the mean value. 
Straight line marks the mean species density in plots without the species. 
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Figure 2.3 (Continued). 
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species in three respects: they occurred more frequently within a wetland (Figure 

2.4b), they achieved a higher percent cover in plots where they occurred (Figure 2.4c), 

and they co-existed with fewer species even when occupying a similar percentage of a 

plot (Figure 2.4d). 

 

The hierarchical partitioning analysis indicates that the mean water depth across a 

wetland, the lake on which a wetland is located, and the intensity of agriculture in the 

watershed draining into a wetland each had a significant independent influence on the 

relative cover of the invasive Typha species (Table 2.1).  The urban index and the 

wetland setting (Northern riverine, protected or coastal, or Southern riverine, protected 

or coastal) were not significantly correlated with the relative cover of invasive Typha 

(Appendix B).  The relative cover of the native graminoids, except S. 

tabernaemontani, was significantly related to at least two of the four factors: lake, 

water depth, agriculture index or the setting associated with a wetland.  The cover of 

S. tabernaemontani did not exhibit a significant relationship with any of the factors. 

 

The lake on which a wetland is located explained more variation in the cover of all six 

wetland species than the other natural and anthropogenic factors (Figure 2.5).  The 

invasive Typha species were more abundant in wetlands around the southern lakes, 

Lake Ontario, Erie and Michigan (Figure 2.6a)  C. canadensis occurred with a cover 

similar or greater than that of invasive Typha around Lakes Huron, Michigan and Erie.  

On Lake Superior, C. lacustris and S. eurycarpum exhibited high relative cover in 

wetlands where they occurred.  The relative cover of invasive Typha and the mean 

depth of standing water in wetlands around Lake Ontario were significantly higher 

than in wetlands of the other lakes (Figure 2.6).  The depth of standing water across a 

wetland explained 6% of the variation in the relative cover of invasive Typha and 11%  
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Figure 2.4. Comparison of dominance patterns of the invasive Typha species (T. 
angustifolia and T. glauca), T. latifolia, C. canadensis, C. lacustris, S. 
tabernaemontani, and S. eurycarpum, based on mean relative cover across wetland (a), 
mean frequency of occurrence within wetland (b), mean percent cover in plots of 
occurrence (c), and mean species density in plots of occurrence (d) in sites where each 
species was observed.  Error bars represent 1 SE.  Letters denote significantly different 
means at the alpha = 0.05 level using Hsu’s multiple comparison with best. 
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Table 2.1. Variation in the relative cover of each study species, invasive Typha (T. 
angustifolia and T. glauca), Typha latifolia, Calamagrostis canadensis, Carex lacustris, 
Schoenoplectus tabernaemontani,and Sparganium eurycarpum, that can be 
independently explained by mean water depth, wetland setting, lake identity, 
agricultural index, and the urbanization index associated with a wetland. 

Note: Relative percent cover was square root transformed to normalize variances.  
Var = proportion of variance independently explained by factor, Z = test statistic 
from a comparison with results generated by 100 randomized datasets. Overall R-
Square indicates the variance explained by the full model.  Factors significant at the 
alpha= 0.05 level are bolded and italicized. 

Invasive 
Typha

Typha 
latifolia

Calamagrosotis 
canadensis

Carex 
lacustris

Schoenoplectus 
tabernaemontani

Sparganium 
eurycarpum

Mean water depth Var 0.06 0.11 0.1 0 0.01 0.08
Z 3.14 5.32 2.62 -0.47 0.25 3.1

Wetland setting Var 0.08 0.08 0.13 0.17 0.09 0.08
 Z 0.53 0.63 2.62 3.23 1.09 0.58

Lake identity Var 0.21 0.15 0.16 0.17 0.10 0.18
 Z 6.33 3.75 3.14 3.97 1.53 4.12

Agricultural Index Var 0.1 0.03 0.02 0.05 0.01 0.04
Z 6.88 0.9 0.12 2.72 0.3 1.95

Urbanization Index Var 0.02 0.01 0.02 0 0 0
Z 0.4 0.3 0.74 -0.31 -0.47 -0.38

0.47 0.38 0.43 0.39 0.21 0.38
61 41 59 48 59 54

 

Species

 

 

 

 

MODEL STATISTICS
Overall R-Square
Number of wetlands
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Figure 2.5  Percent of variance in mean species density and the relative cover of the 
invasive Typha species (T. angustifolia and T. glauca), Typha latifolia, Calamagrostis 
canadensis, Carex lacustris, Schoenoplectus tabernaemontani,and Sparganium 
eurycarpum that could be independently explained by each natural and anthropogenic 
factor.  Table 2.1 includes a test of significance for each factor. 
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Figure 2.6. Mean relative cover of the study species: invasive Typha (T. angustifolia 
and T. glauca), Typha latifolia, Calamagrostis canadensis, Carex lacustris, 
Schoenoplectus tabernaemontani and Sparganium eurycarpum (a) and mean height 
of water above soil surface (+/- SE) (b) around each of the Great Lakes.  Mean 
relative cover was calculated for wetlands where each species occurred. 
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of the variation in T. latifolia (Table 2.1).  The mean water depth in plots occupied by 

the graminoid study species was slightly lower than the mean water depth across all 

sites, except in the case of S. tabernaemontani and S. eurycarpum which tended to 

occupy wetter areas (Figure 2.7).  In addition, the frequency of different substrate 

types varied among lakes (Appendix C), and was correlated with the percent cover of 

many plants species, including the Typha species (Appendix D, Johnston et al. in 

review).   

 

In wetlands more likely to be impacted by agricultural activities (i.e., wetlands with a 

high agricultural index value), the invasive Typha species were more abundant.  The 

agricultural index uniquely explained 10% of the variation in the relative cover of 

invasive Typha after accounting for the lake, water depth and setting associated with a 

wetland.  The invasive Typha species were the only taxa that showed a significant and 

positive relationship with the agricultural index; the native graminoid species tended 

to be less abundant in wetlands with a high agricultural index value (Figure 2.8).  The 

urban index was not significantly correlated with the abundance of any of the six study 

species after accounting for the variation due to the other four factors. 

 

To assess the relationship between a particular plant species and the mean number of 

species per meter-squared plot (species density), one must first evaluate factors that 

are simultaneously influencing species density and a plant species’ abundance.  Three 

external factors explained a significant component of the variation in mean species 

density: the identity of the lake (16%), the agriculture index (14%), and the mean 

water depth (9%) associated with a wetland (Table 2.2).  These same three factors 

were similarly important in determining the relative cover of invasive Typha (Figure 

2.5).  An additional 5% of the variation in species density was correlated with the  



48 

 

Figure 2.7.  Mean height of water above soil surface (+/- SE) in areas of 
occurrence for each study species: invasive Typha (T. angustifolia and T. glauca), 
Typha latifolia, Calamagrostis canadensis, Carex lacustris, Schoenoplectus 
tabernaemontani and Sparganium eurycarpum.  
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Figure 2.8. Relationship between the agricultural index and the relative cover of invasive 
Typha (T. angustifolia and T. glauca) (a), Typha latifolia (b), Calamagrostis canadensis 
(c), Carex lacustris (d), Schoenoplectus tabernaemontani (e) and Sparganium eurycarpum 
(f).  Relative cover values are square-root transformed.  The p-value is reported for 
relationships significant at the alpha = 0.05 level. 
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Mean 
species 
density Significant?

Mean water depth Var 0.09  
Z 6.24 *

Wetland setting Var 0.08
 Z 0.68
Lake identity Var 0.16  
 Z 4.04 *
Agriculture Index Var 0.14  

Z 8.38 *
Urban Index Var 0.01

Z -0.26

Invasive Var 0.05  
Typha Z 3.00 *
Typha Var 0
latifolia Z -0.54
Calamagrosotis Var 0.02
canadensis Z 0.67
Carex Var 0.02
lacustris Z 0.37
Schoenoplectus Var 0.01
tabernaemontani Z 0.10
Sparganium Var 0
eurycarpum Z -0.55

 

Note: Var = variance independently explained by 
factor, Z = test statistic resulting from comparison 
with randomized data.  Factors significant at the 
alpha= 0.05 level are bolded and marked with *.  
The importance of the relative cover of each 
species was tested sequentially, with only the 
upper variables included. 

Table 2.2. Variation in mean species density that 
can be independently explained by mean water 
depth, wetland setting, lake identity, agricultural 
index, urbanization index, and relative cover of 
the six study species. 
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relative cover of invasive Typha; however, the cover of the other graminoid species 

was not significantly related to species density after accounting for external factors 

(Table 2.2). 

 

Regionally, areas with invasive Typha tended to have a lower species density (Figure 

2.5d) and the relative cover of invasive Typha across a wetland was negatively 

correlated with the mean species density of the wetland (Figure 2.9).  Such a 

relationship could develop if the expansion of invasive Typha and plant species 

diversity were directly influencing each other or if both parameters were 

independently responding to external factors.   For example, a higher agricultural 

index value for a wetland’s watershed was associated with both lower species density 

(Figure 2.10) and a higher cover of invasive Typha (Figure 2.8a).   The relationship 

between the agricultural index and species density was similar in areas with and 

without invasive Typha, suggesting that the presence of invasive Typha was not 

changing the way agricultural activities impacted plant species diversity (Figure 2.10).  

However, the lake on which a wetland was located did seem to influence the 

relationship between invasive Typha and species diversity.  In plots where invasive 

Typha occurred, there was a significant negative correlation between the percent cover 

of invasive Typha and species density in wetlands around Lake Ontario and Lake 

Michigan, but not in the wetlands around the other lakes (Figure 2.11).  A direct 

comparison of the mean species density in plots with and without invasive Typha 

within a wetland revealed that in 45% of the wetlands mean species density was 

higher in areas with invasive Typha.  Thus, the degree to which the invasive Typha 

species dominate the plant community is variable and may be governed by external 

factors, such as agricultural run-off or the hydrology of particular lakes.   
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Figure 2.9.  Relationship between the mean species density and the relative cover of 
invasive Typha (square root transformed).   R2 and p values for single variable 
regression are reported. 
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Figure 2.10. Relationship between the agricultural index and mean species density in 
areas with (n=60) (a), and without (n=90) (b) invasive Typha present.  The regression 
equation, R2 and p values are reported. 
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Figure 2.11.  Relationship between mean cover per meter-squared of invasive 
Typha and the means species density in plots of occurrence within each lake. The 
regression equation, R2 and p value are reported for the relationship within each 
lake. 



55 

 

DISCUSSION 

This work revealed several important ecological differences between populations of 

the invasive Typha species (T. angustifolia and T. glauca) and those of five native, co-

occurring graminoids (Typha latifolia, Calamagrostis canadensis, Carex lacustris, 

Schoenoplectus tabernaemontani, and Sparganium eurycarpum).  In comparison with 

the native species, the invasive Typha species occurred more frequently within a 

wetland, achieved a higher percent cover per meter-squared, and were associated with 

a lower density of plant species.  The relative abundance of invasive Typha across a 

wetland was positively correlated with an index of agricultural intensity for the 

watershed draining into the wetland.  This pattern contrasted with that of the native 

species, whose relative cover tended to decline, and from overall plant species density, 

which significantly decreased in relation to the agricultural index.  These results 

demonstrate that T. angustifolia and T. glauca have the ability to grow at high 

densities around the Great lakes, their abundance is associated with reduced plant 

species diversity, and their growth is promoted by agricultural activities.  Geographic 

patterns of plant species density and the dominance of invasive Typha across the Great 

Lakes suggest that the invasive Typha species are primarily a symptom rather than an 

independent cause of stress to native plant communities.  Therefore an understanding 

of their distribution and abundance could lend insight into the threats facing the Great 

Lakes. 

 

Geographic Patterns of Dominance 

The higher abundance of the invasive Typha species in the southern lakes and the 

relatively constant abundance of T. latifolia among the five lakes may reflect 

differences in the species’ climatic tolerance.  Typha latifolia occurs from Alaska 

south into the tropics, and from sea level up to 2125m, and thus can tolerate the full 
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climatic range across the Great Lakes.  In contrast, in North America, T. angustifolia’s 

distribution remains restricted to areas south of 50° N; and therefore, it may be 

approaching a latitudinal limit in the Northern Great Lakes region (Grace and Harrison 

1986).  Climate warming may shift the distribution of T. angustifolia in the future. 

 

Differences in each lake’s history, geology or hydrology may be further influencing 

vegetation patterns.  The lake on which a wetland is located was the most important 

determinant of abundance for the six plant taxa studied, after accounting for variation 

due to surrounding urban and agricultural development and the wetland’s geomorphic 

setting.  Each lake experiences a unique pattern of inter- and intra- annual lake level 

fluctuation, which affects wetland plant establishment and competition.  Variable 

water levels provide natural disturbances in marshes; high water years inhibit the 

success of woody species and low water years allow marsh meadow species such as 

sedges to flourish.  Keddy and colleagues have established a predictive relationship 

between water level fluctuations and river or reservoir shoreline vegetation, 

demonstrating that increasing fluctuations increase plant diversity until a threshold is 

reached (Keddy and Reznicek 1986; Hill and Keddy 1992; Hill et al. 1998).   

 

Water level regulation could explain why the invasive Typha species are particularly 

abundant in wetlands around Lake Ontario (Figure 2.7).  Currently, dams on the 

outflows of Lake Superior and Lake Ontario regulate water levels; however, most 

studies can only detect hydrologic changes attributable to regulation on Lake Ontario 

(Brinkmann 2000; Lenters 2001; Quinn 2002).  Historical hydrographs of lakes 

Huron, Michigan and Erie show high inter-annual variability, low intra-annual 

fluctuations, and no effect of regulation.  Since 1960, when the Moses-Saunders power 

dam was constructed on the outlet from Lake Ontario, water levels have been 
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regulated within a target range of 75.15 and 75.37 m above sea level.  Lake Ontario 

now experiences less inter-annual variation in water levels, but the intra-annual range 

from summer high water periods to winter low water periods has actually increased 

(Quinn 2002).  Using historical imagery and field surveys at elevations with known 

water level histories, Wilcox (USGS 2004; Wilcox et al. 2004) argues that stabilized 

water levels on Lake Ontario are causing a decrease in sedge meadow plants and an 

increase in cattail-dominated communities.  He believes that higher summer water 

levels since 1960, and the absence of extreme water levels, reduce the competitive 

ability of sedge meadow plants and allow Typha species to expand landward around 

Lake Ontario.  Our field surveys, which were each conducted at discrete sampling 

dates during the summers of 2001-2003, indicate that mean water levels were higher 

in the wetlands of Lake Ontario than the other four lakes.  These results support the 

hypothesis that the hydrologic regime of wetlands on Lake Ontario is distinct and 

facilitates the success of invasive Typha.    

 

The high prevalence of invasive Typha species in the Eastern Great Lakes may also 

reflect the invasion history of T. angustifolia.  In the last 150 years, T. angustifolia has 

spread across much of Eastern and Midwestern North America (Galatowitsch et al. 

1999).  Botanical records indicate that Typha angustifolia was first introduced into 

brackish marshes of the Atlantic coast in the early 1800s and has since spread 

westward through New York state (Stuckey and Salamon 1987; Galatowitsch et al. 

1999).  The time since T. angustifolia first established in a wetland could influence the 

degree to which it is able to dominate the plant community today, suggesting that 

western marshes may experience greater levels of dominance in the future. 
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The Role Anthropogenic Stress 

The relative cover of the invasive Typha species was higher and mean species density 

was lower in wetlands with a higher agricultural index value, indicating that 

agriculture around the Great Lakes represents an important threat to coastal wetlands.  

Agricultural land uses have been shown to increase the sediment, pesticide and 

nutrient loads within downstream rivers and wetlands (Herlihy et al. 1998; Jones et al. 

2001).  Experimental work demonstrates that sedimentation can influence the 

establishment of seedlings, disrupt the plant canopy, lower species richness, reduce 

topographic heterogeneity, and ultimately promote the growth of a few competitive 

plants such as Typha glauca and Phalaris arundinacea (Werner and Zedler 2002; 

Kercher and Zedler 2004; Mahaney et al. 2004a).  Nutrient enrichment also influences 

plant competition and has facilitated the invasion of Typha species in a sedge meadow 

(Woo and Zedler 2002) and in the Everglades (Childers et al. 2003).  Typha 

domingensis has been a successful invader of sawgrass marshes in the Everglades in 

part because it is better able to respond to increased nutrient loading by concentrating 

more nutrients in its leaves, allocating more biomass to vegetative reproduction and 

growing faster (Newman et al. 1996; Lorenzen et al. 2001).   Similar adaptations may 

explain why T. glauca and T. angustifolia, unlike the native graminoid species, are 

more abundant in wetlands more heavily impacted by agriculture.   Many wetland 

ecologists have observed anecdotally that cattails seems to be more common in highly 

impacted wetlands (e.g., Grace and Harrison 1986; Keddy 2000).  However, this is the 

first time a broad survey has revealed a relationship between agriculture and invasive 

Typha abundance outside of the Everglades.   

 

Surprisingly, urbanization was not related to the abundance of any of the study species 

nor did it seem to influence overall plant species density, even though urban areas are 
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known to influence aquatic ecosystems in several ways.  Streams within urbanized 

catchments contain high levels of phosphorus and nitrogen; however, the area 

dedicated to agriculture in the Great Lakes region is much larger and probably 

constitutes a more important source of biologically available nutrients.    Impervious 

surfaces and efficient storm water drainage systems associated with urban areas 

decrease infiltration and increase the frequency and magnitude of flooding events in 

connected streams (Allan 2004).  Flashy flows can scour riparian areas, transport 

sediments and disrupt native wetland communities, potentially facilitating invasions 

(Kercher et al. 2004).  Urban run-off and waste water treatment effluent elevate the 

conductivity, biological oxygen demand, suspended solids, hydrocarbons and metals 

in urban streams (as reviewed by Paul and Meyer 2001).  Although fish and aquatic 

invertebrate populations are influenced by the amount of urban area in a watershed 

(Allan 2004),  wetland plants may be less sensitive to chemical contaminants.  

Urbanization also causes an overall loss of wetland area, therefore wetlands heavily 

impacted by urbanization may be under-represented in this analysis.  In summary, this 

work indicates that natural geographic variation and agricultural land uses are more 

important than urbanization in determining the abundance of invasive Typha species 

and overall species density in Great Lakes coastal wetlands. 

 

Species Density 

Across the Great Lakes, areas where the invasive Typha species occurred had lower 

species density than areas with the native graminoids (Figure 2.5), and the relative 

abundance of invasive Typha showed a significant negative correlation with a 

wetland’s mean species density.  Both species density and the cover of invasive Typha 

in a wetland were related to external factors, but 5% of their variation was uniquely 

and significantly correlated.  Other observational studies have found a positive 
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correlation between native species richness and invasibility (measured as number of 

exotic species), which indicates that factors governing diversity (e.g., immigration 

rates, disturbance and resource availability) affect both exotic and native species 

(Lonsdale 1999; Levine 2000; Brown and Peet 2003; Stohlgren et al. 2003).  If an 

exotic is a “strong” invader it could exhibit a negative relationship with native species 

diversity if it competitively excludes other species (e.g., Ortega and Pearson 2005).  

Yet, even some strong invaders, such as Lythrum salicaria, are associated with high 

plant diversity in some cases (Farnsworth and Ellis 2001; Hager and Vinebrooke 

2004).  Thus many factors, including time since invasion, the environment, and 

species traits will influence the relationship between the cover of an established exotic 

and community diversity (Levine et al. 2003; Zedler and Kercher 2004).    

 

The negative relationship between invasive Typha and species richness could result 

from several processes: (a) communities with lower species density may be less 

resistant to invasive Typha, (b) invasive Typha may be better able to tolerate stressful 

conditions or overcome dispersal obstacles that limit the survival of other species, or 

(c) invasive Typha may be directly inhibiting the co-existence of other species.  

Distinguishing between the above hypotheses requires that we separate the factors 

facilitating the abundance of invasive Typha from the processes limiting species 

density (MacDougall and Turkington 2005).  Although it is impossible to establish a 

conclusive causative relationship with observational data, several lines of evidence 

suggest that external factors independently influence species density and the 

dominance of invasive Typha.  Within a wetland, the species density of areas with and 

without invasive Typha is not significantly different, indicating that invasive Typha 

species are able to establish and co-exist within a diverse plant community in some 

cases.  The relationship between mean species density and the agricultural index is 
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similar in areas with and without invasive Typha.  Although species density seems to 

decline as invasive Typha become more abundant, the cover of invasive Typha is 

positively correlated with the agricultural index.  Thus, agricultural activities within 

the watershed seem to simultaneously lower wetland species density and promote the 

dominance of invasive Typha.  Among the wetland graminoids studied, the invasive 

Typha species are unique is their ability to dominate a wetland, but their dominance is 

sensitive to external conditions, such as the lake or the degree of agriculture associated 

with a wetland.  In summary, these analyses suggest that invasive Typha dominance is 

one mechanism through which natural and anthropogenic factors impact the plant 

community rather than an independent cause of plant diversity decline. 

 

CONCLUSIONS  

Although cattails are often lumped together as a single conservation issue, the 

distribution and associated species density of the native and invasive Typha species 

indicate that they exhibit important ecological differences.  In the wetlands surveyed, 

Typha latifolia and the native graminoids, S. eurycarpum, C. canadensis, C. lacustris 

and S. tabernaemontani were on average a smaller proportion of a site’s plant 

community, they were associated with higher species density and their relative cover 

was less responsive to agricultural impacts, in contrast with the invasive Typha 

species.   Previous research on the ecology and physiology of cattails revealed that 

they tolerate a wide range of water depths and are able to rapidly utilize increases in 

available nutrients (Waters and Shay 1992; Newman et al. 1996; Miao 2004; Weisner 

and Miao 2004).  As might be expected, in the Great Lakes region the invasive Typha 

species occur across a range of wetland settings and are more common and dominant 

in wetlands surrounded by greater agricultural activity.   
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Patterns observed across the Great Lakes have important implications for the 

management of invasive Typha species.  Although apparently limited by climate in the 

northern regions, invasive Typha may be particularly hard to control around the 

southern lakes because they can flourish in wetlands impacted by agriculture.  

Invasive Typha species form a larger proportion of the plant community in wetlands 

around Lake Ontario, and these wetlands tend to have higher mean water depths and 

less inter-annual water level variation.  The relationship between agricultural intensity 

and both species density and invasive Typha suggests that the abundance of invasive 

Typha is an indicator of the degree to which external factors are shifting the balance 

between dominance and diversity.  In order to protect Great Lakes wetland plant 

communities, we may need to simultaneously alleviate agricultural impacts, alter Lake 

Ontario’s water level regulation, and minimize the spread of invasive Typha. 
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CHAPTER THREE 

The role of litter dynamics in mediating the dominance of cattail 

(Typha spp.) in Great Lakes wetlands 

 

 

INTRODUCTION 

Ecologists have long observed that plant species diversity varies in a uni-modal 

relationship with biomass (e.g., Grime 1973a; 1973b).  Grime’s original model 

considered biomass to include live and dead plant material but, according to a review 

by Grace (1999), only some of the many subsequent studies have explicitly 

incorporated litter biomass.  Several lines of evidence suggest that litter may mediate 

the relationship between increased nutrient loading to terrestrial and aquatic 

ecosystems and plant species diversity (Berendse 1999).  Numerous studies have 

established the positive relationship between nutrient availability and production of 

live plant biomass (e.g., Venterink et al. 2001).  Increasing soil fertility also can cause 

litter biomass to accumulate at faster rates than living biomass, particularly in 

herbaceous communities (e.g., Tilman 1993).  Litter in turn has been shown to 

influence seed germination and establishment (Xiong and Nilsson 1999).   

 

Results of fertilization and biomass removal studies that partitioned the effects of litter 

and living biomass on plant community composition have been inconsistent.  In some 

studies, living biomass or stem density was more tightly correlated with species 

richness (Stevens et al. 2004), while in other studies litter biomass was a more 

important determinant of species density (Tilman 1993; Foster and Gross 1998; Xiong 

et al. 2003).  Still others found that propagule additions overwhelmed the effect of 

living and dead biomass (Foster et al. 2004). Foster and Gross (1998) showed 
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experimentally that either additions of litter or fertilizer to an old field grassland 

caused an identical decline in species recruitment, presumably because each attenuated 

light to a low level.   Berendse and others (1994) observed further that additions of 

fertilizer and litter to a Dutch heath not only had similar effects on plant biomass 

production but also affected rates of succession within the community, suggesting that 

litter influences competitive interactions between established plants.  

  

Cattails (Typha spp.) have become the dominant species in many marshes of the Great 

Lakes region, often forming dense stands of live and dead biomass which appear to 

reduce the diversity of other wetland species (Frieswyk et al. 2005).  On Lake Ontario, 

an increasing abundance of cattail over the past 60 years has been associated with a 

simultaneous decrease in wet meadow communities (USGS 2004; Wilcox et al. 2004).  

While these changes appear to be related to regulation of water levels on Lake 

Ontario, they have occurred simultaneously with increased nutrient loading to the lake 

and its wetlands (Detenbeck et al. 1999).  Given the potential for cattails to attain high 

levels of productivity (Brinson et al. 1981) and the resistance of its litter to 

fragmentation and decay (Davis and Van Der Valk 1978), accumulation of cattail litter 

might facilitate its own increasing dominance in Great Lakes wetlands by suppressing 

other species.   

 

The degree to which cattails dominate Great Lakes wetlands varies and offers an 

opportunity to examine both the factors associated with dominance by cattail and the 

relationship of cattail live and dead biomass to species diversity.  Unlike the native 

cattail species, Typha latifolia L., the percent cover of the invasive cattails, Typha 

angustifolia L. and Typha glauca Godr.(pro sp.), is negatively correlated with plant 

species richness and positively correlated with agricultural activity (Chapter 2).  T. 
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angustifolia and T. glauca occur more frequently around Lake Ontario than the other 

Great Lakes, suggesting that this lake’s unique water level regulation may be a 

contributing factor (Chapter 2).  However, even around lake Ontario, cattail 

abundance varies; southern lakeshore wetlands within open embayments are visibly 

dominated by cattails while wetlands behind barrier beaches along the eastern shore of 

the lake maintain a more diverse plant community.  

 

Approach and Predictions 

In this study, I first characterized the litter dynamics of six Lake Ontario wetlands in 

terms of live and dead biomass of cattail and other species, rates of litter 

decomposition for cattail, and species density.  Based on observed differences in 

cattail abundance between open embayment wetlands and those behind barrier 

beaches, I hypothesized that litter dynamics would differ between the two 

hydrogeologic settings, potentially explaining their vulnerability to dominance by 

cattail.  Specifically, I expected that litter biomass and abundance of live cattail would 

be positively correlated and that litter biomass and species density would be 

negatively correlated, i.e., that litter biomass would be higher and species density 

lower in open embayment wetlands.  I also expected that litter dynamics, i.e., plant 

production and decomposition, would be driven by water level fluctuations which 

would differ as a function of the wetland’s hydrogeologic setting. 

 

In the second part of this study, I conducted a litter manipulation experiment in one of 

the Lake Ontario wetlands to help explain the patterns observed in the first part of the 

study and identify the mechanisms by which cattail litter affects other plant species.  

To this end, I manipulated both standing and fallen litter, added seedlings of a 

common species to different litter treatments, measured seedling survival and growth, 
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and determined the species density of treatment plots.  I hypothesized that increasing 

the amount of cattail litter would reduce plant species diversity, that fallen litter would 

inhibit the establishment of seedlings, and that standing litter would reduce the size of 

seedlings once established. 

 

METHODS 

Litter Dynamics in Lake Ontario Wetlands 

Study area 

In order to characterize litter production and decomposition around Lake Ontario, I 

chose six study wetlands from two distinct hydrogeologic settings.  Three of the sites 

are located along the southern shore of Lake Ontario in embayments that are open to 

the lake (hereafter termed “open” wetlands).  Calcium-rich glacial till covers the 

bedrock in this area.  The other three sites are located on the eastern shore of Lake 

Ontario where an extensive network of sand bars and barrier beaches has formed.  The 

study wetlands are located behind sand bars and are hydrologically connected to Lake 

Ontario only by intermittent or indirect surface water openings or ground water 

(hereafter called “protected” wetlands).  In each site, I quantified (1) hydrologic 

fluctuations, (2) plant species composition, (3) live and dead biomass, and (4) 

decomposition rates. 

 

Hydrology 

In each wetland, hydrologic and vegetation measurements were made along a transect 

that ran from upland to water’s edge and bisected an area of herbaceous vegetation 

typical of that site.  Water table wells were installed at six equally spaced locations 

along the transect, within the zone of emergent, non-woody vegetation.  Water table 

elevation was measured monthly at each of the wells and recorded continuously at the 
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fourth well from water’s edge by a capacitance rod connected to a data logger, from 

May-September of 2004.  Measurements made by hand indicated that water table 

elevations recorded by the data loggers were within 1-4 cm of actual water levels. 

 

Vegetation 

Vegetation was sampled at four intermediate locations along the transect where mean 

water depth was 5- 20 cm and Typha species (primarily Typha angustifolia and T. 

glauca) were most abundant.   Sampling stations were 10-30 meters apart, depending 

on the length of the full transect.  Plant species were identified in meter-squared plots 

placed at a random direction and distance (1-3m) from each water table well.  Four 

plots were surveyed at each sampling station to calculate a mean species density.   

Aboveground biomass of the vegetation and litter were quantified by harvesting a 0.5 

m2 area adjacent to each of the four sampling stations in late July, 2003.   The 

vegetation was separated into five categories at the time of harvest: Live cattail 

biomass, live non-cattail biomass, standing cattail litter, fallen cattail litter, and non-

cattail litter.  Plant material was dried at 65° C to constant weight and then weighed.   

 

Decomposition rates 

In order to quantify the rate of cattail litter decomposition in the fallen litter layer, I 

used standard litter-bag techniques (Robertson et al. 1999).  Senesced cattail plants 

typically remain upright for 6-18 months before fragmenting, toppling over, and 

forming a litter layer (Davis and Van Der Valk 1978).  To mimic this second stage of 

the decomposition process, I collected litter in July from Typha angustifolia plants that 

had senesced the previous fall and remained upright during the winter (as in Kuehn et 

al. 2000).  Litter was collected only from the Mudge Creek wetland so that all 

variation in decomposition could be attributed to the location of the litter bag.  Litter 
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bags measuring 10 x 20 cm were made out of fiberglass window screening with a 

1mm mesh size.  Each bag was filled with 10 grams of intact, air-dried litter with 

roughly equal amounts of leaf and upper stem material.  Fifty grams of litter were 

oven dried to provide a dry weight correction factor.  

 

Thirty-nine bags were placed at each of the six study sites during the second week of 

August, 2003.  Three bags were immediately collected from each wetland and 

processed in the lab to correct for any mass lost during transport.  Nine bags were left 

at each of the four sampling stations in each wetland.  Litter bags were collected at 

four points during the following year: November 2003, April 2004, June 2004, and 

August 2004.   During the first three collection dates, eight bags were retrieved from 

each site (two from each sampling station), and the remaining 12 bags were collected 

on the final pick-up date.  The remaining litter was gently rinsed with de-ionized water 

to remove silt and macro-invertebrates, oven dried to constant weight at 65° C, and 

weighed.   An annual decomposition rate (k) was calculated for each wetland by fitting 

a fixed intercept, exponential curve to a graph of mean percent mass remaining for 

each plot over the course of the year.  I assumed exponential decay:  e-k*(years) = 

fraction of mass remaining. 

 

Analysis 

Relationships between peak biomass production, decomposition rates, species density 

and litter biomass were assessed using general linear model regression analyses in 

SAS (PROC GLM, SAS 2002).  Measurements within each wetland were averaged 

before assessing variation among sites.  In addition, a ratio of litter biomass to the 

biomass of live aboveground tissue (the litter:live ratio) was calculated to provide an 

estimate of how much litter remains in a wetland relative to the amount produced.  
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In a temperate wetland, the aboveground production of cattails will die and become 

litter each fall; thus, peak aboveground biomass should be equivalent to annual litter 

fall.  In an ecosystem with constant production and decomposition rates and negligible 

physical removal of biomass (e.g., due to fire, water transport, or herbivory), mass lost 

during decomposition should equal production of litter (inputs) and the system should 

maintain a predictable amount of organic litter (T).  Annual cattail litter inputs and 

losses were calculated following the model of Olson (1963) for systems with discrete 

annual litter fall in which L = k’ * T, where L is annual litter inputs (peak live 

biomass) within a meter-squared, k’ is the annual fraction of mass lost from litter bags 

(1- e-kt), and T is the maximum litter layer biomass (peak live biomass + late summer 

litter layer).  I compared peak live biomass of cattails (litter inputs) with estimated 

mass lost during decomposition to determine whether current rates of litter decay were 

equivalent to litter inputs.  I also predicted the biomass of litter that should be 

maintained if cattail growth and decay were constant over time and T(predicted)  = L / 

k’ as described by Olson (1963).  The predicted and measured litter layer were 

compared to determine how well current rates of production and decomposition 

explained litter biomass within each wetland setting.  The difference between the 

predicted and measured litter layer is an indication of the importance of other litter 

input (e.g., changes in production over time) or loss factors (e.g., physical removal of 

litter). 

 

Litter Manipulation Experiment 

Study site 

To assess the role of cattail litter in structuring wetland plant communities, I 

manipulated the litter cover in a cattail-dominated marsh.  The study was conducted 

within Mudge Creek, a large wetland complex that was used in the previous 
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comparison study as an open site.  The wetland is located near Wolcott, NY, on East 

Bay, a shallow embayment that opens directly onto Lake Ontario.  Water levels in the 

marsh fluctuate with Lake Ontario’s water levels, with high water levels in the 

summer months and low water conditions in the winter.  The embayment has a 

watershed of 66 km2 of which 46 % is agricultural land (pasture or row crop), 43% is 

forested, 6% is residential and 5% is wetland or open water.   During the growing 

season, the shallow groundwater of the site typically has a pH between 6 and 7, 

electrical conductivity between 250 and 350 Microsiemens/cm, and a temperature 

between 14 and 19° C.  

 

The wetland plant community is dominated by Typha angustifolia (cattail) with an 

under story of Thelypteris palustris Schott (marsh fern).  A number of herbaceous 

species are present in low densities, including Impatiens capensis Meerb., 

Calamagrostis canadensis (Michx.) Beauv. (blue joint grass),  Comarum palustre L. 

(marsh cinquefoil), Decodon verticillatus (L.) Ell. (whorled loosestrife), Polygonum 

amphibium L. (water smartweed), and Peltandra virginica (L.) Schott (arrow arum).  

A few shrubs, such as Alnus incana ssp. rugosa (Du Roi) Clausen (alder), 

Cephalanthus occidentalis (button bush), and Cornus sericea L. (silky dogwood), are 

scattered throughout the marsh. 

 

Study design 

In May 2003, I manipulated the cover of standing and fallen litter and monitored 

changes in the plant community during the following growing season.  Dead stems 

and their attached leaves that remained upright at an angle of 45° or greater were 

considered “standing” litter.  “Fallen” litter was defined as the surface layer of dead 

leaves and the dead stems at an angle of less than 45°.  Standing and fallen litter were 
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removed and added to plots independently to produce six treatment combinations: 

removal, addition, and control for each litter type (standing and fallen).  To avoid 

excessive disturbance to the plots and to simulate a more realistic scenario, standing 

litter was manipulated with a natural layer of fallen litter in place, while fallen litter 

was manipulated after removing all standing dead stems.   

 

For manipulations of standing litter, the erect dead stems and attached leaves were cut 

from the standing litter removal plots and inserted upright into the standing litter 

addition plots. A network of persistent stems held these new stems in place for the 

duration of the experiment.  For manipulations of fallen litter, I cut and removed the 

surface litter layer to the depth where root colonization was evident.  These dead stems 

and leaves were then evenly distributed in the fallen litter addition plots.  Thus, litter 

addition plots experienced approximately twice the amount of litter typical for that 

area of the marsh. 

 

Litter manipulations were replicated in three areas of the wetland (blocks) that 

naturally varied in the abundance of Typha angustifolia (Table 3.1). A completely 

randomized block design was used, consisting of three blocks each with six 1 x 4 m 

subplots in which litter was removed, added, or left intact.   Above ground biomass 

measurements were made adjacent to each of these blocks allowing estimation of litter 

biomass within the manipulation plots.  To minimize edge effects, a half-meter wide 

buffer of similar treatment conditions surrounded treatment subplots.  Measurements 

made within the four-m2 subplot were averaged or totaled before performing statistical 

tests.   
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In addition to measuring changes in the existing plant community, I transplanted eight 

test seedlings into each of the treatment and control plots to provide a standardized 

assessment of growth conditions for establishing plants.  One hundred forty-four 

Peltandra virginica seedlings were gathered from a similar, neighboring wetland in 

May, 2003.  At the time of collection, each seedling was 15-20 cm tall, with 1-2 leaf 

blades and no root branching.  The seedlings could be collected with minimal 

disturbance because they were floating in standing water and were not yet rooted in 

the substrate.  Within 24 hours, the seedlings were placed in the study plots where 

similar moisture conditions prevailed.  I placed the base of each plant into the litter 

layer such that at least 5 cm of the stem and all of the leaves emerged.  Initially, the 

roots did not necessarily contact the soil surface, depending on the depth of the fallen 

Block 1 
Higher 

abundance of 
live cattails

Block 2 
Intermediate 
abundance of 

live cattails

Block 3 
Lower 

abundance of 
live cattails

Biomass of live cattails (g/m2) 1070 777 595
Density of cattails in May (stems/ m2) 21 17 15
Density of cattails in Sept. (stems/m2) 27 25 26
Final height of cattails (cm) 251 245 252

Biomass of total litter (g/m2) 3115 2812 2141
Ratio of standing:fallen 0.7 0.4 0.6
Fallen litter depth in May (cm) 28 20 16

Water depth in May (cm) 10 11 2
Water depth in September (cm) 0 0 0

SPECIES RICHNESS
Control plot species density (spp/m2) 1.75 2.5 6.25

LITTER

LIVE CATTAILS

HYDROLOGY

Block 1 
Higher 

abundance of 
live cattails

Block 2 
Intermediate 
abundance of 

live cattails

Block 3 
Lower 

abundance of 
live cattails

Biomass of live cattails (g/m2) 1070 777 595
Density of cattails in May (stems/ m2) 21 17 15
Density of cattails in Sept. (stems/m2) 27 25 26
Final height of cattails (cm) 251 245 252

Biomass of total litter (g/m2) 3115 2812 2141
Ratio of standing:fallen 0.7 0.4 0.6
Fallen litter depth in May (cm) 28 20 16

Water depth in May (cm) 10 11 2
Water depth in September (cm) 0 0 0

SPECIES RICHNESS
Control plot species density (spp/m2) 1.75 2.5 6.25

LITTER

LIVE CATTAILS

HYDROLOGY

Table 3.1. Live and dead cattails, mean water depth, and species density in control 
plots within each block of litter manipulation treatments. 
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litter.  After one month, over 80 % of the seedlings were alive and after four months, 

55 % were alive.  In mid September the seedlings were measured, dried and weighed.   

  

Analysis  

Differences in final species density, test seedling survival, and test seedling biomass 

were assessed.  Analysis of variance was performed using the general linear model 

procedure (SAS 2002).  Because litter was manipulated within a single treatment plot 

within each block, interactions between treatment and block could not be evaluated.  

Block locations were selected to represent a natural gradient in cattail biomass (Table 

3.1), and are therefore considered fixed effects.  The standing and fallen litter 

treatments were analyzed separately.  Tukey’s error correction for all pairwise 

comparisons was used when assessing differences among litter levels (SAS 2002).  

The assumptions of equal and normally distributed variance were met in all cases. 

 

RESULTS 

Comparison of Lake Ontario Wetlands 

The relative abundance of live cattails and the biomass of plant litter differed between 

the open embayment wetlands and the barrier-beach protected wetlands (Figure 3.1).  

The biomass of cattails was, on average, 89-92% of the total live biomass in the open 

wetlands, and only 25 - 47% of the live biomass in the wetlands closed to Lake 

Ontario.   Peak live biomass did not differ significantly between the wetland settings; 

the mean above-ground peak biomass was between 816 and 1077 g/m2 at all sites, 

with the exception of one closed wetland that produced 414 g/m2 in aboveground 

herbaceous biomass.  In contrast, the mean biomass of standing and fallen litter was 

much higher in sites open to Lake Ontario.  Thus the amount of total litter per unit of 

live biomass (ratio of litter:live biomass) was higher in the open wetlands (mean = 
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2.0) than closed wetlands (mean = 1.5), although the difference was not statistically 

significant.  The ratio of cattail litter to live biomass was significantly higher in the 

open wetlands (mean = 2.0) than the closed wetlands (mean = 0.76), suggesting that a 

higher proportion of live cattail biomass accumulates as litter in the wetlands open to 

Lake Ontario. 

 

The closed wetlands had a higher mean plant species density (8.75 - 9.75 species/ m2) 

than open embayment wetlands (6.75 to 8 species/m2).  Simple regression analyses 

revealed that mean biomass of litter was negatively related to the species density of a 

wetland (p=0.005, R2 = .88) and the biomass of non-cattail species (p= 0.041, R2=.69) 

(Figure 3.2).  Thus, although aboveground production was similar across sites, cattails 

constituted a larger proportion of the live biomass, litter biomass was higher, and 

species density was lower in the wetlands open to Lake Ontario. 

  

Figure 3.1. Mean biomass of vegetation and litter in late July 2003, in three open 
wetland sites (left) and three protected wetland sites (right).  
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Figure 3.2.  Relationship between the mean biomass of all litter and (a) the mean 
biomass of non-cattail species, and (b) mean species density in open and protected 
wetland sites.  Bars indicate +/- 1 SE (n=4). 
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Hydrology 

The pattern of water table fluctuations in the six wetlands varied according to their 

hydrogeologic setting (Figure 3.3).  The wetlands open to the lake tracked the weekly 

fluctuations and seasonal trends of Lake Ontario.  The daily lake level fluctuations 

were not as pronounced within the open wetlands, because the embayment moderates 

wind driven currents.  Water levels decreased between June and September in Lake 

Ontario in the open wetlands with the exception of Sodus Bay, which exhibited 

virtually no change.  The water level recorder at Sodus Bay was located close to a 

water channel in a stand of cattails that may have been floating and thus rising and 

falling with the lake water level.  As Typha species are known to form floating mats 

(Hogg and Wein 1988), such an interpretation is reasonable.  Water levels on Lake 

Ontario and the open wetlands are influenced by precipitation patterns across the 

entire Great Lakes basin, but remain relatively stable due to the large volume of water 

in the lake and the regulated outflow across the Moses-Saunders dam on the St. 

Lawrence River.   

 

In contrast with the open wetlands, the wetlands with only indirect or temporary 

connections to Lake Ontario experienced a more variable pattern of water table 

fluctuations and an overall greater seasonal and monthly range of water levels (Table 

3.2).   The hydrograph for each of the closed wetlands differed, depending on its 

unique connection to Lake Ontario (Figure 3.3).    For example, the outlet from Deer 

Creek into Lake Ontario is usually filled with sand, but it periodically blows open 

causing gradual increases and sharp drops in water levels.  South Pond wetland is 

connected to Lake Ontario via a series of channels and ponds, such that the seasonal 

trends in water level correspond with those of Lake Ontario, but the water table rises 

more dramatically after rain events due to slower drainage.  Seasonal water levels in  
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Figure 3.3. Hydrologic fluctuations in the protected wetland sites (a), in Lake Ontario 
(b), and in the wetlands open to the lake (c).  Water level measurements are relative to 
the soil surface in each wetland.  Data were collected every half hour from May to 
September 2004. 
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Snake Swamp were variable but did not track Lake Ontario because this wetland has 

no surface water connection to the lake.  Precipitation was higher than average during 

the summer of 2004 and water levels remained high overall.   Barrier beaches 

restricted flow out of the protected wetlands, causing them to respond more strongly to 

local precipitation events than did the open wetlands. 

 

Litter dynamics 

Given the similarity in peak production across wetland sites, rates of decomposition 

were expected to be lower in the open wetlands where litter biomass was higher.  

After a full year, the percent of litter remaining varied from 78.8 % (+/- 1.3) to 59% 

(+/- 1.2) among the six wetlands; however, the range of mean decay rates within the 

two hydrogeologic settings was comparable (Figure 3.4).   Surprisingly, the estimated 

decomposition rate constant (k) did not directly correspond to the mean or variance in  

SODUS MUDGE BEAVER SNAKE DEER SOUTH

SEASONAL 
Average (cm) 4.3 5.5 16.4 15.0 27.0 24.2 p = 0.065
Standard deviation 1.3 5.0 7.2 5.9 13.1 7.4 p = 0.196
Maximum 7.7 14.7 27.5 67.9 57.2 44.7 p = 0.011
Minimum 2.7 -6.2 -2.5 3.5 3.7 4.8 p = 0.083
Range 5.0 20.9 30.0 64.4 53.6 39.9 p = 0.029
MONTHLY   
Standard deviation 0.4 1.9 2.8 4.5 9.4 4.5 p = 0.066
Range 2.0 8.4 11.3 20.4 33.4 19.1 p = 0.033

setting 
difference

Wetlands open to lake Wetlands protected from lake

SODUS MUDGE BEAVER SNAKE DEER SOUTH

SEASONAL 
Average (cm) 4.3 5.5 16.4 15.0 27.0 24.2 p = 0.065
Standard deviation 1.3 5.0 7.2 5.9 13.1 7.4 p = 0.196
Maximum 7.7 14.7 27.5 67.9 57.2 44.7 p = 0.011
Minimum 2.7 -6.2 -2.5 3.5 3.7 4.8 p = 0.083
Range 5.0 20.9 30.0 64.4 53.6 39.9 p = 0.029
MONTHLY   
Standard deviation 0.4 1.9 2.8 4.5 9.4 4.5 p = 0.066
Range 2.0 8.4 11.3 20.4 33.4 19.1 p = 0.033

setting 
difference

Wetlands open to lake Wetlands protected from lake

Table 3.2. Characteristics of seasonal and monthly water levels relative to soil surface 
(cm), between May and September 2004, in the six study sites.  ANOVA was used to 
test whether a parameter differs significantly (bolded) between open and protected 
wetlands. 
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Figure 3.4.  Annual decomposition rate constant (+/- SE) (a), and mean summer 
height of water above the soil (+/- STD) (b) in the six study sites. 
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Figure 3.5.  Percent of original mass of cattail litter remaining at each of the four 
collection dates during the 12-month study.  Points represent mean values for each 
of the open wetlands (open symbol) and protected wetlands (filled) (n = 4).  
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Figure 3.6. Relationship between mean litter biomass and mean rate of 
decomposition in open and protected wetland sites.  Bars indicate +/- 1 SE (n = 4). 
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water table elevation (Figure 3.5).  Hydrologic measurements taken at a single 

location within a wetland over the course of four months may not have captured the 

variation relevant to decomposition rates.  

 

Differences in decay rates could not account for the overall higher amounts of all litter 

types in the open wetlands (Figure 3.6).   Peak live biomass and decomposition rate 

together explained only 66% of the variation in litter biomass.  However, 

decomposition rate combined with either wetland setting or the proportion of cattails 

could explain 99% of the variation in litter biomass (Table 3.3).    

 

In all six wetlands, peak aboveground cattail biomass (litter inputs) was higher than 

the estimated cattail litter decay losses.  However, the ratio of cattail decomposition to 

production differed significantly between wetland settings (p = 0.006); estimated 

decay losses were on average 79% of live cattail biomass in the open wetlands, and 

only 45% of peak live biomass in the protected wetlands (Figure 3.7).  Current rates of 

cattail production and decomposition could maintain 42% more litter biomass than 

actually measured in the open wetlands, and 400% more cattail litter biomass than 

measured in the protected wetlands (Figure 3.8).  Deviations from the 1:1 line for both 

results indicates that either: (1) cattail growth and decay are not constant, i.e., 

aboveground production was lower or decomposition was higher in past and the 

systems are accumulating litter; or (2) some litter is physically transported out of the 

wetland, explaining with the biomass of litter is lower than predicted.   The larger 

discrepancy for the protected wetlands suggests that cattail abundance or litter 

accumulation are changing more rapidly, or more litter is transported out of these  
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wetlands in comparison with wetlands open to Lake Ontario.  In sites where cattails 

are less abundant there is a larger imbalance between decomposition and production 

(Figure 3.9). 

 

 

 Table 3.3. Relationship between mean litter biomass and potential 
predictor variables (live biomass, proportional abundance of cattails, 
wetland setting and decomposition rate).  Results from several single 
and multi-variable regression models are compared. 

Note: Full model R2 indicates the proportion of the variation in biomass 
that can be explained by the variables in the model. The p value in 
parentheses indicates the significance of the predictor variable, within 
the regression model. 

Full model 
R-square

Live biomass (all species) 0.005
(p=0.8913)

Decomposition rate 0.422
(p=0.163)

Relative abundance of cattails (cattail/ total live biomass) 0.628
(p=0.0600)

Wetland setting 0.772
(p= 0.0211)

Decomposition rate Live biomass 0.631
(p=0.1094) (p=0.2830)

Decomposition rate Wetland setting 0.996
(p= 0.0004) (p= 0.0002)

Decomposition rate Relative abundance of cattails 0.992
(p=0.0029) (p=0.0007)

 

Variable predicting mean litter biomass
(partial p value)

Single variable model

Multi-variable model
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Litter Manipulation Experiment 

At the end of the 14-week experiment, in which we investigated the relationship 

between cattail litter accumulation and the co-existence of other plant species, species 

density varied among litter manipulation treatments and locations within the wetland, 

from a mean of 9.25 to one species/m2.  Fallen litter significantly reduced species 

density (p= 0.024), but the effect of standing litter treatments was not consistent 

(Figure 3.10).   

 

Survival of the test seedling, Peltandra virginica, provides a standardized indicator of 

how litter additions and removal affected conditions for seedling establishment.  On 

average, 55% of the transplanted seedlings were alive, green and apparently 

R2 = 0.93
p = 0.002
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Figure 3.9 Relationship between the relative abundance of cattails and the ratio of 
estimated cattail litter decomposition to litter production.  Error bars represent 1 SE. 
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established in September 2003.  The survival of the eight phytometer seedlings planted 

in each 4-m2 plot ranged from 0 to 100 %, depending on the litter treatment and 

location within the wetland block.  Additions of fallen litter reduced the survival of the 

test seedling (p = 0.061); however, manipulating the standing litter alone had no 

measurable effect (p = 0.651) (Figure 3.11a).  Contrary to expectation, neither 

standing nor fallen litter treatments significantly affected the final size of the seedlings 

(Figure 3.11b). 

 

The biomass of live and dead Typha angustifolia and community composition 

naturally varied among the three blocks within Mudge Creek (Table 3.1) and 

influenced experimental results (Table 3.4).  Litter-addition treatments were applied 

by adding all of the litter from an equally sized, neighboring plot; therefore the 

biomass of litter in the control and addition plots differed among blocks.  Final species 

density and seedling survival were negatively related to the combined biomass of 

fallen and standing litter in the treatment plots (Figure 3.12).   Species density and 

seedling survival responded consistently to litter biomass, despite natural variation 

among blocks.  In fact, both response variables, species density and seedling survival, 

were significantly correlated (p= 0.0027), particularly within blocks 1 and 2 

(intermediate and high abundance of Typha glauca) (Figure 3.13).  The three 

treatment blocks capture a range of both cattail abundance and species richness that 

may reflect an underlying abiotic gradient.  At a given biomass of litter, both species 

density and seedling survival were lower in blocks with a higher abundance of Typha 

angustifolia.  The significant influence of the location within the wetland (block 

effect) indicates that litter is only one factor controlling species density within a cattail 

marsh.   
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Figure 3.10. Species density (+/-1 SE) after 14 weeks (n = 3) in litter manipulation 
treatments. Letters indicate significantly different means at the p < 0.05 level.  The 
significance of the overall effect of each type of litter is reported (p-value).  
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Figure 3.11  Seedling survival (+/- 1 SE) (n = 24) (a), and dry weight of surviving test 
seedlings (+/- 1 SE) (n = 10 - 24) (b) after 14 weeks in litter manipulation treatments.  
Letters indicate significantly different means at the p < 0.05 level.  The significance of 
the overall effect of each type of litter is reported (p-value).   
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Block 1 
Higher abundance of live 

cattails

Block 2 
Intermediate abundance 

of live cattails

Block 3 
Lower abundance of live 

cattails
Typha angustifolia Typha angustifolia Typha angustifolia
Thelyptris palustris Thelyptris palustris Thelyptris palustris

unknown seedling Lysmachia thyrsiflora
Triadenum virginicum
Impatiens capensis

Polygonum amphibium
Boehmeria cylindrica

Scutellaria galericulata
Asclepias incarnata

Impatiens capensis Cornus amomum Cicuta bulbifera
Lythrum salicaria Cephalanthus occidentalis
Galium tinctorium Galium tinctorium

Lysmachia thyrsiflora Acer rubrum
Scutelaria galericulata Alnus incana

Calamagrostis canadensis
Lythrum salicaria Osmundo regalis Scutellaria galericulata

Poa sp. Poa sp. Asclepias incarnata
Galium tinctorium Decodon verticillatus Solidago seedling

Campanula aparinoides Carex seedling
Unknown seedling Poa sp.
Osmunda regalis Osmunda regalis

Decodon verticillatus

Species found 
only in control 
and fallen litter 
removal plots

Species found 
only in fallen 
litter removal 
plots

Species found in 
all fallen litter 
treatment plots

Block 1 
Higher abundance of live 

cattails

Block 2 
Intermediate abundance 

of live cattails

Block 3 
Lower abundance of live 

cattails
Typha angustifolia Typha angustifolia Typha angustifolia
Thelyptris palustris Thelyptris palustris Thelyptris palustris

unknown seedling Lysmachia thyrsiflora
Triadenum virginicum
Impatiens capensis

Polygonum amphibium
Boehmeria cylindrica

Scutellaria galericulata
Asclepias incarnata

Impatiens capensis Cornus amomum Cicuta bulbifera
Lythrum salicaria Cephalanthus occidentalis
Galium tinctorium Galium tinctorium

Lysmachia thyrsiflora Acer rubrum
Scutelaria galericulata Alnus incana

Calamagrostis canadensis
Lythrum salicaria Osmundo regalis Scutellaria galericulata

Poa sp. Poa sp. Asclepias incarnata
Galium tinctorium Decodon verticillatus Solidago seedling

Campanula aparinoides Carex seedling
Unknown seedling Poa sp.
Osmunda regalis Osmunda regalis

Decodon verticillatus

Species found 
only in control 
and fallen litter 
removal plots

Species found 
only in fallen 
litter removal 
plots

Species found in 
all fallen litter 
treatment plots

Table 3.4. Species occurring in fallen litter treatment plots after 14 weeks, listed by 
block. 
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Figure 3.12. Relationship between the biomass of all litter and (a) species density, and (b) 
seedling survival, within the three blocks after 14 weeks of experimental litter 
manipulation.  R2 indicates how much variation is explained by both block and litter 
biomass.  The partial p value indicates the significance of the relationship between litter 
biomass and species density (a) or seedling survival (b), after accounting for the natural 
variation due to block. 
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Figure 3.13. Relationship between seedling survival and species density within the 
three blocks after 14 weeks of experimental litter manipulation.  R2 indicates how 
much variation is explained by both block and litter biomass.  The partial p value 
indicates the significance of the relationship after accounting for the natural variation 
due to block. 
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DISCUSSION 

The Effect of Litter on Species Co-existence 

A comparison of Lake Ontario wetlands indicates that total litter biomass or live 

cattails could be directly inhibiting other species; however, an underlying factor could 

be influencing both species density and litter accretion independently.  Among the six 

study wetlands, species density was negatively correlated with the biomass of litter, 

but was not significantly related to aboveground live biomass.  This pattern was 

underlain by differences in the vegetation of wetlands hydrologically open and closed 

to Lake Ontario.  Although aboveground live biomass was similar across wetland 

settings, cattails constituted a larger proportion of the living biomass and there was 

more organic litter in the wetlands open to the lake, where species density was lower.  

All six wetlands had relatively deep peat soils (1-4m) and the water table was 

consistently above the soil surface during the growing season.  However, the more 

diverse, closed wetlands tended to have deeper, more variable water levels and more 

microtopographic variation, both factors that influence plant diversity (Vivian-Smith 

1997; Hill et al. 1998; Riis and Hawes 2002; Werner and Zedler 2002) and may 

influence litter decay.   

  

My field manipulation demonstrated that cattail litter, independent of other factors, 

does influence species density in marshes.  Experimentally increasing the cover of 

cattail litter, without changing the density of live cattails, reduced species density and 

seedling survival.  In plots where all litter was removed, juvenile plants of many 

species were observed, the standard test seedling survived better, and species density 

increased.   This field experiment isolated the role of cattail litter, but environmental 

variation and long term competitive interactions also drive differences in species 

density within or between wetlands.     
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Litter has been shown to have a positive or negative effect on seed germination, 

seedling establishment, plant growth, and species diversity, depending on the 

ecosystem, the type of litter, and the species involved (as reviewed by Xiong and 

Nilsson 1999).   In the cattail marsh studied, three lines of evidence suggest that cattail 

litter may reduce species density by impacting seed germination and establishment 

processes: (1) fallen litter had a stronger impact than even a dense layer of standing 

litter, (2) the survival of the test seedling and the final species density of a plot were 

closely correlated suggesting a similar mechanism may be responsible for both 

responses, and (3) the growth of the test seedlings that survived was not affected by 

litter cover, indicating that established plants were less sensitive to litter. 

    

The mechanism by which litter impacts plant community composition is often hard to 

determine.  In some systems, such as grasslands, litter is thought to benefit the 

regeneration of certain species by retaining moisture, insulating the soil, protecting 

seeds from predators (Jarvis 1964), altering competitive interactions (Facelli 1994), 

and adding nutrients or changing the pH (Dzwonko and Gawronski 2002).  In other 

situations, litter has been shown to hinder species recruitment due to chemical 

inhibition of germination (McNaughton 1968), reduced chances of seeds reaching the 

soil (Foster and Gross 1997), diminished light penetration (Facelli and Pickett 1991), 

increased seed and seedling herbivory (Facelli 1994), elevated risk of fungal attack 

(Facelli 1994), alteration of germination cues such as temperature fluctuations (Sydes 

and Grime 1981b), and physical interference with root or shoot growth (Sydes and 

Grime 1981b).  In wetlands, two experiments comparing plastic pseudo-litter and plant 

litter, found that the amount of litter was more important than the actual type of litter 

(i.e., plastic pseudo- or organic litter) indicating that litter induced a primarily physical 

effect on seeds or seedlings (Sydes and Grime 1981b; Jordan et al. 1990).  Potentially 
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allelopathic compounds in marsh and aquatic plants have been isolated and bio-

assayed in the lab; however, field investigations of allelopathy have yielded mixed 

results (McNaughton 1968; Bonasera et al. 1979; Gallardo-Williams et al. 2002; Ervin 

and Wetzel 2003; Gross 2003).   This study cannot distinguish between potential 

physical or chemical causes of the reduced seedling survival, as both mechanisms 

would be more pronounced in a thicker layer of litter. 

 

Litter Dynamics 

The observed relationship between litter and species density in marsh systems lends 

importance to the question of why litter biomass varies among wetlands.  It is 

surprising that peak herbaceous biomass and decomposition rates, when considered 

alone or together, were relatively poor predictors of a wetland’s mean biomass of 

litter, but the hydrogeologic setting of a wetland was significantly related to litter 

biomass (Table 3.3).  These patterns indicate that abiotic, or compositional differences 

between the open and protected wetlands are responsible for the unexplained variation 

in litter biomass. 

 

The type of plant material, the way litter is fragmented, microbial activity, and 

flooding will influence the rate at which litter is transformed into soil organic matter, 

DOC or CO2.  Litter also may be physically removed from wetlands regularly 

impacted by waves, fires, or ice scouring.  The litter-bag technique used in this study 

provides an integrated measure of conditions affecting decomposer activity (e.g., 

oxygen availability, pH, moisture, light) for a specific type of litter, in the spot where 

the bag is located.  My litter bags incorporated both the stem and leaf material that 

constitute fallen litter.  The calculated decay rates are somewhat lower than other 

studies using Typha litter, in part due to the inclusion of stems (Mason and Bryant 
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1975; Davis and Vandervalk 1978).  Aquatic invertebrates are important decomposers 

in wetlands (Dezozaya and Neiff 1991) and many were found inside the litter bags.  

This study did not measure decay rates of dead leaves or stems that remained upright.  

Thus, measuring mass loss from litter bags quantifies only one component of litter 

loss; factors influencing plant senescence, aerial decay, standing litter fragmentation 

or litter removal may be equally important and variable among wetlands.    

 

An analysis of just cattail biomass minimizes variation due to plant species and further 

illustrates the differences between wetland settings.  In the hydrologically variable, 

protected wetlands the estimated losses due to decomposition were equivalent to only 

half of the annual production of cattail litter; and the layer of cattail litter measured 

was four times lower than would be predicted based on the current rates of production 

and decomposition (Figure 3.7 and 3.8).  Estimated losses due to decomposition better 

matched current rates of litter production in the open wetlands.   There are two likely 

explanations for the discrepancy, both of which could be more pronounced in the 

protected wetlands: (1) cattail abundance is increasing, resulting in more live biomass 

relative to litter; and (2) biomass is physically removed from the system, accounting 

for the difference in litter inputs and losses.  Cattail communities may be expanding, 

particularly in the diverse wet meadows of the protected wetlands.  Limited 

documentation indicates that cattails have become more abundant around Lake 

Ontario in the last 40 years (Wilcox et al. 2004).  In addition, some litter fragments are 

probably transported out of the wetlands during flooding events, even from the areas 

sampled, which were at least 20m from open water.   The protected wetlands are 

adjacent to small ponds or slow moving creeks and the open wetlands occupy shallow 

embayments that are not exposed to waves.  The more variable flooding regime in the 

protected wetlands likely removes more plant material than the relatively stable water 
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levels in the open wetlands, affecting the degree to which litter accumulates and 

inhibits the growth of other species. 

 

The higher density of live cattails and upright dead stalks in the open wetlands may 

further limit the movement and breakdown of litter.  Sites with a lower abundance of 

cattails have less standing litter (Figure 3.1) and have a larger imbalance between litter 

inputs and decay losses (Figure 3.9); if the imbalance indicates the degree to which 

litter is physically washed out of the wetlands, then cattails may be limiting the 

movement of litter in wetlands open to Lake Ontario.  Davis and Van Der Valk (1978) 

found that fully 50% of the biomass of a senesced cattail stand remained standing 

through the winter until the following June, and some stems remained upright for two 

years.  They further observed that this standing litter stage lasted longer for Typha 

glauca than for ecologically similar graminoids from the genera Scirpus, Sparganium, 

and Carex, even though decomposition rates of fallen litter were similar among the 

species (Davis and Van Der Valk 1978).   Although the hydrologic regime was not 

well correlated with measured decay rates, flooding could weaken or fragment dead 

stems, influencing the transfer of standing litter to the fallen litter layer.  Typically 

decomposition accelerates after stems topple and flood because the moisture limitation 

is relieved and micro and macro fauna can access the litter (Dezozaya and Neiff 1991; 

Van der Valk et al. 1991; Kuehn and Suberkropp 1998).  Thus wetland communities 

with a higher proportion of cattails likely have a more persistent layer of standing 

litter, which in turn may slow overall litter breakdown and inhibit the movement of 

litter during flooding. 
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Implications for Great Lakes Plant Communities  

A wetland’s response to litter will depend on the degree to which it relies on 

regeneration by perennial species and vegetative growth as opposed to seed 

recruitment and colonization.  Results of the litter manipulation experiment indicated 

that seedling survival was sensitive to litter biomass, but the final size of the 

established test seedlings did not depend on the amount of litter present.  This is 

consistent with the finding of Foster and Gross (1997) that litter inhibited the success 

of seeds but did not affect mature transplanted individuals.  Variable systems, such as 

prairie potholes and riparian wetlands, typically rely on the germination of buried 

seeds after cycles of flooding and drawdown (Van der Valk and Davis 1978; Wilson 

1993), and litter has been shown to influence seed germination and community 

composition in these systems (Van der Valk 1986; Xiong and Nilsson 1997; Xiong et 

al. 2001). 

 

Lake Ontario’s water levels are currently regulated to minimize inter-annual variation, 

but before lake-level control began in 1960, wetlands open to the lake probably 

experienced more temporal variation and species turnover.  The increase in species in 

the litter removal plots at Mudge Creek, a wetland open to the lake, indicates that 

species adapted to take advantage of ephemeral openings in the canopy or litter layer 

are still present   Even though cattails make up 89% of aboveground biomass in 

Mudge Creek wetland, natural seed dispersal or seed banks appear to be a viable and 

diverse source of new species.   Water levels fluctuations have been shown to increase 

wetland species diversity by killing vegetation during high water periods and later 

exposing bare mudflats (Van der Valk and Davis 1978; Keddy and Reznicek 1986).  

This study suggests that moderate fluctuations that remove litter but not necessarily 

live plants could also increase species diversity. 
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Plant community response to litter is often species specific and thus, the way litter 

accumulates has the potential to structure communities (Sydes and Grime 1981a; 

Facelli and Pickett 1991; Facelli 1994; Xiong et al. 2001).  Annual or non-clonal, 

herbaceous plants with less below ground storage may be particularly vulnerable to 

the accumulation of litter.  For example, Scutelaria galericulata, and Galium 

tinctorium, were observed in the control but not in the fallen litter addition plots, 

indicating that they may have failed to germinate or emerge as a result of the thick 

litter layer (Table 3.1).   In contrast, clonal species, such as Thelyptris palustris and 

Lysmachia thyrsiflora, occurred even in plots with additional fallen litter.  Cattails also 

store resources in their network of rhizomes, allowing them to regenerate quickly in 

the spring and push through dense layers of litter (Grace 1993).  Species like cattails 

that reproduce vegetatively do not need to propagate from seeds in their immediate 

vicinity, making them insensitive to their own litter accumulation or allelochemicals 

that might suppress other species (Ervin and Wetzel 2003). 

 

The dense layer of litter in the lake controlled, open wetlands may be preventing the 

regeneration of sedge meadow species, even during lower water-level periods.  Given 

that water levels are similar or lower in the open wetlands, it is surprising that wet 

meadow species are nearly absent from the cattail-dominated, open wetlands.  This 

study found that many of the wet meadow species common to the protected wetlands 

are present as subordinate plants and seeds in the open wetlands.  For example, species 

of the genera Poa, Carex and Solidago, which occur widely in the protected wetlands, 

appeared as seedlings in the fallen litter removal plots of Mudge Creek.  Many Carex 

species regenerate from rhizomes and should be relatively tolerant of litter.  Sustained 

high water levels or a major disturbance, followed by years of competition with the 

taller cattail species probably eliminated them.  The relatively rapid response of 
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Mudge Creek to litter removal indicates that restoration of a more diverse plant 

community may be possible if the litter of Typha angustifolia was reduced and a 

natural disturbance to the litter layer was recreated. 

 

CONCLUSIONS 

A species’ ability to dominate is determined, in part, by its ability to achieve a larger 

size and reduce the fitness of its neighbors (Grime 2001).  This study reveals that the 

production and accumulation of plant litter is one mechanism by which cattails can 

impede the survival of other species.  Across Lake Ontario wetlands, litter biomass 

was negatively correlated with species density and litter biomass was higher in cattail-

dominated marshes.  Experimental results indicate that a persistent layer of fallen 

cattail litter can negatively influence seedling survival and, as the biomass of litter 

increases, species density and seedling survival decline.   

 

In Lake Ontario wetlands, the proportion of cattail production that accumulates as 

litter appears to depend on both the decomposition rate and the hydrogeologic setting.   

More litter relative to the amount produced remains in cattail-dominated wetlands that 

are stabilized by Lake Ontario’s water levels.  In contrast, protected wetlands 

experience more hydrologic variability, both standing and fallen litter are less 

persistent, and more litter appears to move out of the wetland.  Cattail stems and 

leaves are known to remain upright longer than those of other wetland graminoids and 

a network of standing stems may inhibit the removal of litter during flooding.  Thus 

hydrologic stability and cattail abundance may be creating a positive feedback 

promoting a persistent layer of standing litter, greater fallen litter accumulation, and 

increased cattail dominance. 
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The relationship between plant biomass and species diversity has been the subject of 

much research; however, the importance of senescence and the fate of plant litter has 

been under-appreciated.  This research demonstrates that litter dynamics in Lake 

Ontario wetlands are influenced by hydrology and community composition, and litter, 

in turn, can influence the structure and diversity of these wetlands.  Understanding 

these dynamics is crucial because production and decomposition processes are 

sensitive to anthropogenic activities.  In the Great Lakes, nutrient enrichment could 

increase plant production of litter, and regulated water levels could reduce the 

fragmentation of standing litter.  Understanding how the live and dead phase of 

cattails is influenced by human activities, and how this ultimately affects plant 

communities will be vital to the preservation of lakeshore wetlands. 
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CHAPTER FOUR 

Conclusions 

 

The overarching objectives of this research were to describe the patterns and 

investigate the mechanisms of cattail dominance in the Great Lakes region.  Cattails 

have become a ubiquitous component of natural and created freshwater wetlands 

throughout temperate North America.  Because cattails represent such a familiar icon, 

the species does not evoke the widespread concern associated with other invasive 

species such as Lythrum salicaria or Phragmites australis.  Botanists have called 

Typha species “weeds” (Grace and Harrison 1986) and assigned Typha latifolia the 

lowest ranking within a floristic quality assessment, an indication that the plant is 

common to many habitats (Herman et al. 2001).  However, a thorough investigation 

into the causes and implications of its dominance has not been conducted outside of 

the Everglades.  This work investigated the relationship between cattail dominance 

and internal (e.g., species density) and external (e.g., surrounding land use) 

characteristics of wetlands across the Great Lakes (Chapter Two).   More intensive 

work around Lake Ontario explored the hypothesis that litter accumulation creates a 

positive feedback promoting cattail dominance (Chapter Three).   

 

Results of this research demonstrated, as have previous studies, that cattails can 

survive under a variety of wetland conditions, but the extent to which cattails 

dominate wetland plant communities depends upon the environment.  In an analysis of 

their distribution across the Great Lakes, I found that the relative cover of cattails 

varied among wetlands, depending on the associated ecoprovince, land use, lake, and 

water depth.  Further investigation of Lake Ontario wetlands revealed that although 

cattails occurred in both protected and open wetlands, they had a greater aboveground 
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biomass and were associated with lower species richness in wetlands hydrologically 

open to Lake Ontario. 

 

A study of the five Great lakes revealed that cattails were most abundant around Lake 

Ontario, the one lake where regulation has noticeably damped inter-annual water level 

fluctuations.  Around Lake Ontario, cattails were more dominant in wetlands that 

closely tracked the water levels of Lake Ontario in contrast with hydrologically more 

variable protected wetlands.  This suggests that stabilized water levels positively 

influence the growth and competitive ability of cattails and/or negatively influence the 

survival and competitive ability of other species.  This interpretation is consistent with 

findings from other regulated lakes in which diminished water level fluctuations 

promoted the growth of certain species and reduced species diversity (e.g., Keddy and 

Reznicek 1986; Wilcox and Meeker 1991).   

 

In both observational and experimental studies, I found a negative relationship 

between invasive cattail abundance and species density, at the plot and site level.  

Native species did not exhibit this relationship.  Experimental manipulation of cattail 

litter indicated a causal relationship between cattail biomass and the survival of other 

species.  Although cattails probably affect neighboring plants in several ways, this 

work highlights the role of cattail litter as one mechanism by which cattails reduce 

species density.  Thus, factors that promote the production of cattails and the 

accumulation of their litter will promote further exclusion of other species. 

 

This work underscores the importance of litter as a component of community biomass 

in herbaceous wetlands.  In a regional survey of Great Lakes wetlands, I found that 

litter cover was associated with lower species density.  Among six intensively studied 
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Lake Ontario wetlands, where litter biomass sometimes exceeded peak live production 

by a factor of three, species density was negatively correlated with litter biomass, but 

was not related to live biomass.  During an experimental manipulation of cattail litter, 

species density declined as litter biomass increased, even when live cattail biomass 

remained constant.  These results are consistent with the hypothesis that litter 

accumulation mediates the relationship between cattail abundance and species 

diversity in herbaceous wetlands.  

 

Results of the litter manipulation confirmed that cattail litter reduces species density 

and seedling survival.   Species density was higher in plots without a litter layer, in 

part, because seed germination and establishment were higher, as evidenced by the 

high number of new seedlings and the improved survival of the test seedlings.   This 

mechanism by which cattail litter affects species density has implications for how my 

results apply to other wetlands or other types of plant litter.  The litter manipulation 

experiment was conducted in a cattail-dominated marsh, in which water levels were 

only slightly above the soil surface during the growing season.  Within the marsh, the 

degree to which litter removal increased species density varied, suggesting that the 

response to litter might vary even more widely among systems.  If seed germination 

requires exposed, dry soils, a marsh with higher water levels might not experience a 

similar increase in seedling recruitment.  In deeper water, the physiological tolerance 

of seeds and seedlings will limit their survival, and therefore accumulated litter might 

provide a dry substrate for the establishment of some species.  For example, tussocks 

produced by Carex stricta roots and litter are associated with higher species diversity 

because they provide a range of seed germination conditions (Werner and Zedler 

2002).  Thus, the effect of litter in wetlands will depend on the species involved and 

the wetland environment. 
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The study of litter dynamics in Lake Ontario wetlands indicates that litter 

accumulation depends on a wetland’s hydrogeologic setting and the abundance of 

cattails.  In the study, both hydrology and plant composition varied between the two 

hydrogeologic settings (open and protected); thus it was impossible to determine 

which was a more important determinant of litter biomass.  Cattail stems and leaves 

are known to remain upright longer than those of other wetland graminoids and a 

network of standing stems can probably support itself.  Water level fluctuations could 

weaken or disrupt standing litter.  Thus hydrologic stability and cattail abundance may 

both promote a persistent layer of standing litter, and ultimately speed litter 

breakdown 

 

I proposed that, under the right conditions, cattail production promotes a positive 

feedback by increasing litter accumulation, thus excluding other species, and in turn 

promoting further dominance of cattails.  This mechanism implies that cattail 

abundance is promoted by slower decay of its litter.  This feedback process contrasts 

with other theories about how competitive plants modify their environment.  For 

example, leaves typical of fast growing, competitive plants (e.g., leaves with a shorter 

lifespan, less chemical and physical defense, and higher nutrient content) decompose 

more quickly (e.g., Reich et al. 1992; Wright et al. 2001).  The more rapid cycling of 

organic matter and nutrients promoted by their litter is thought to be advantageous to 

fast growing plants with high nutrient demands.  Although cattail growth is known to 

respond positively to increased nutrient availability, my work implies that cattails gain 

an advantage from slower decomposition.  This study did not test whether cattails 

grow better under a high accumulation of litter, or whether they benefit by excluding 

other species, which are important aspects of a positive feedback cycle.  Although not 
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formally tested here, cattails also may benefit indirectly by an accumulation of organic 

matter.  Persistent cattail litter can form floating mats that allow cattails to colonize 

open water areas, thereby increasing their habitat.  Thus in wetland systems the traits 

associated with competitive plant species may not speed organic matter 

decomposition, and faster decomposition necessarily be advantageous for a species 

like cattails. 

 

This work contributes to our understanding of the conditions and processes that allow 

one group of species to become dominant.  The relationship between plant community 

biomass and species diversity has received considerable attention; however, the 

importance of plant litter dynamics in determining competitive interactions has been 

under-appreciated.  Factors affecting cattail litter production and decomposition could 

have important implications for plant communities, and thus should guide future 

restoration and preservation efforts.  Although not experimentally tested within my 

studies, my results strongly suggest that agriculture within a wetland’s drainage basin 

influence cattail growth, especially that of the invasive species, and water level 

regulation influences the way senesced plants fragment and decompose.  Thus both 

watershed and lake factors may need to be addressed simultaneously in order to 

protect Great Lakes wetlands. 
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Appendix A.  Comparison of T. latifolia, T. angustifolia, Typha spp. and T. glauca 
with respect to their mean percent cover per meter-squared (a), the mean height of 
vegetation in plots of occurrence (b), and the mean species density in plots of 
occurrence (c) across 90 Great Lakes wetlands.  Observations recorded as T. 
angustifolia, T. glauca or Typha spp. were combined in calculations of invasive 
Typha species in Chapter Two. 
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Appendix B.  Relative cover of invasive Typha (+/- SE) in six different wetland 
settings: coastal, protected and riverine wetlands within the Laurentian mixed 
forest and the Eastern broad leafed forest eco-provinces.  The means are not 
significant at the alpha = 0.05 level.  Results reported in Chapter Two. 
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Appendix C. Frequency of occurrence in different Great Lakes of four types of substrate: 
organic soil (      ), sand (     ), silt (      ), and clay (     ).  Data recorded during vegetation 
surveys conducted for the Great Lakes Environmental Indicators (GLEI) project.  
Variation in wetland substrate may explain or reflect the differences in plant community 
composition described in Chapter Two.   
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Appendix D.  Mean percent cover (+/- SE) in plots with different substrates, for the 
invasive Typha species (     ), and Typha latifolia (     ).  Means and standard errors 
were calculated based on plots where each species occurred.  Letters indicate 
significant differences at alpha= 0.05.   Substrate type was recorded during vegetation 
surveys conducted for the Great Lakes Environmental Indicators (GLEI) project.  
Variation in wetland substrate may explain or reflect the differences in plant 
community composition described in Chapter Two.  
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