INFANTS’ PERCEPTION OF
MUSICAL RHYTHM AND METER:
EARLY ABILITIES AND DEVELOPMENTAL CHANGE

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

by
Erin Eileen Hannon
August 2005
© 2005 Erin Eileen Hannon
INFANTS’ PERCEPTION OF
MUSICAL RHYTHM AND METER:
EARLY ABILITIES AND DEVELOPMENTAL CHANGE

Erin Eileen Hannon, Ph.D.
Cornell University 2005

Perception of the temporal structure, or “meter”, of music enables a range of socially and culturally significant musical behaviors such as synchronized dancing and singing. This dissertation combines developmental and cross-cultural comparisons to examine the perception of musical meter and its development during infancy. The first chapter reports that 7-month-old infants can categorize simple rhythms according to a common underlying meter. Infants also detect contingencies between positions in the meter and individual pitches, an ability that may bootstrap acquisition of knowledge about musical pitch structure. Chapter II shows that Western adults’ knowledge of Western meter interferes with their ability to detect rhythmic disruptions in a foreign, Balkan meter. By contrast, adults exposed to both Western and Balkan music throughout childhood perform accurately in either context. Six-month-old infants, who have had relatively limited exposure to music, can detect metrical disruptions in either Western or Balkan contexts, which seems to indicate culture-general perception of meter. Chapter III reports a decline in 12-month-olds’ performance only in the foreign musical context, which is consistent with the emergence of culture-specific metrical biases by this age. After 12-month-old infants and adults receive one or two weeks of brief, daily exposure to foreign music, infants can detect the rhythmic disruptions in foreign metrical contexts, but adults cannot. Overall, the findings document early sensitivity to culture-general aspects of metrical structure but rapid developmental change in response to culture-specific musical experiences.
BIOGRAPHICAL SKETCH

Erin Eileen Hannon was born in August, Georgia on July 18, 1976. Throughout her childhood she lived in various places throughout the United States, such as Florida, Washington, California, and Nevada. She attended Reno High School from 1990-1994, and devoted most of her time and energy to literature, theater, foreign language study (German and Japanese), and classical piano performance. Erin graduated high school one semester early so she could participate in the Year Abroad Program through the American Field Service, which took her to Japan to attend high school and live with a Japanese host family. Her experience in Japan initiated a strong interest in academic study, and after returning to the United States Erin went to New College of Florida. There she enjoyed the flexibility and intellectual stimulation of a small liberal arts college that emphasized narrative evaluations and individualized contracts over grades and requirements. Erin continued to pursue her interest in music, but also became fascinated with links between music, psychology, and culture, which led her to pursue a double concentration in Psychology and Music. She became involved in many music-making activities, such as directing a vocal ensemble that performed Balkan folk music. Erin spent the spring of her fourth year in Nepal, where she completed a cognitive ethnomusicology project involving a community study of a remote mountain village, a collection of folk song recordings and transcriptions, and a music perception experiment. After finishing her B.A., Erin enrolled in the Ph.D. program in Psychology at Cornell University. Her interest in culture naturally led her to a developmental and cross-cultural approach to psychological research, and to multiple collaborations with faculty members at Cornell and University of Toronto. In the fall, Erin will be residing in Boston, MA with her husband Joel Snyder, and she will begin working as an assistant professor of Psychology at Harvard University.
To my wonderful husband Joel.
ACKNOWLEDGMENTS

The research in this dissertation would not have been possible without help and support of many individuals. I am deeply grateful to Sandra Trehub, who has been my unofficial supervisor for the last two years. She supervised the design, data collection, analysis, and writing of my recent research. Sandra is a truly inspiring mentor, thinker, and human being who has taught me a great deal both professionally and personally. She took me under her wing when she barely knew me, and she has continued to be generous, patient, and supportive. I would like to acknowledge my committee chair, Scott Johnson, who has mentored and supported me despite geographic distance and my research interests being outside of his expertise. Michael Owren, Morten Christiansen, and Barb Finlay have provided me with excellent support, advice, and inspiration throughout my graduate studies. During the last five years several students and professors have collaborated with me, assisted me, or encouraged me: Carol Krumhansl, Tuomas Eerola, Ed Large, Myque Harris, Loretta Falco, Saba Ul-Haq, Tara Vongpaisal, Glenn Schellenberg, and Alex Lamont. Carol was especially helpful in guiding the design, analysis, and publication of my earliest research at Cornell. On a personal note, I am very grateful for the friendship of Bethany, Dima, Monica, Sara, Jessica, and Patrick. Finally, I cannot imagine my life without my best friend and husband, Joel Snyder, who is unfailingly supportive, patient, fun, and adoring. Thank you! I also acknowledge the support of NIH grant R01-HD40432 and NSF grant BCS-0094814 (to Scott Johnson) and NSERC grant (to Sandra Trehub).
TABLE OF CONTENTS

BIOGRAPHICAL SKETCH .. iii
DEDICATION ... iv
ACKNOWLEDGEMENTS ... v
LIST OF FIGURES ... x

I. INFANTS USE METER TO CATEGORIZE RHYTHMS AND MELODIES:

IMPLICATIONS FOR MUSICAL STRUCTURE LEARNING .. 1

1.1. Introduction ... 1

1.2. Experiment 1 ... 7

 1.2.1. Method ... 8

 1.2.1.1. Participants ... 8

 1.2.1.2. Stimuli ... 8

 1.2.1.3. Apparatus .. 13

 1.2.1.4. Procedure .. 13

 1.2.2. Results and Discussion ... 14

1.3. Experiment 2 ... 16

 1.3.1. Method .. 18

 1.3.1.1. Participants .. 18

 1.3.1.2. Stimuli .. 18

 1.3.1.3. Apparatus and Procedure .. 20

 1.3.2. Results and Discussion ... 20

1.4. Experiment 3 ... 24

 1.4.1. Method .. 24

 1.4.1.1. Participants .. 24

 1.4.1.2. Stimuli .. 25

 1.4.1.2.1. Experimental Stimuli ... 25
3.1. Introduction .. 54

3.2. Experiment 1 ... 56
 3.2.1. Method ... 56
 3.2.1.1. Participants .. 56
 3.2.1.2. Stimuli ... 57
 3.2.1.3. Apparatus and Procedure .. 59
 3.2.2. Results and Discussion .. 61

3.3. Experiment 2 ... 62
 3.3.1. Method ... 62
 3.3.1.1. Participants .. 62
 3.3.1.2. Stimuli ... 63
 3.3.1.3. Apparatus and Procedure .. 64
 3.3.2 Results and Discussion .. 64

3.4. Experiment 3 ... 65
 3.4.1. Method ... 65
 3.4.1.1. Participants .. 65
 3.4.1.2. Stimuli ... 66
 3.4.1.3. Apparatus and Procedure .. 66
 3.4.2. Results and Discussion .. 67

3.5. General Discussion ... 70

IV. SUMMARY ... 72
 4.1. Main Findings .. 72
 4.2. Implications and Future Research ... 74
 4.2.1. Is Rhythm Learned Before Other Aspects of Music? 74
 4.2.2. When Do Adult-like Representations of Rhythm and Meter Emerge? . 75
 4.2.3. Parallels Between Rhythm in Music and Speech 77
4.3. Conclusion.. 79
APPENDIX ... 80
REFERENCES ... 81
LIST OF FIGURES

Figure 1.1. A metrical hierarchy ... 3
Figure 1.2. An iconic depiction of a rhythmic segment ... 9
Figure 1.3. Rhythmic patterns used in Experiment 1 .. 10
Figure 1.4. The average proportion of event and accent occurrence in Experiment 1 11
Figure 1.5. Mean looking times after habituation in Experiment 1 15
Figure 1.6. Rhythmic patterns used in Experiment 2 .. 17
Figure 1.7. The average proportion of event and accent occurrence in Experiment 2 20
Figure 1.8. Mean looking times after habituation in Experiment 2 21
Figure 1.9. One pair of frequency-matched melodies .. 27
Figure 1.10. Mean looking times after habituation in Experiment 3 30
Figure 2.1. Alternating strong (S) and weak (W) events in a metrical hierarchy 36
Figure 2.2. Simple and complex meter stimuli .. 41
Figure 2.3. North American adults’ dissimilarity judgments 45
Figure 2.4. Bulgarian and Macedonian adults’ dissimilarity judgments 47
Figure 2.5. Six-month-old infants’ looking times ... 50
Figure 3.1. Isochronous and non-isochronous familiarization excerpts 58
Figure 3.2. Isochronous and non-isochronous variations 60
Figure 3.3. Twelve-month-old infants’ looking times in Experiments 1 and 2 63
Figure 3.4. Adults’ accuracy scores across test sessions 70