BIOGRAPHICAL SKETCH

Angela R. Lieverse received her Bachelor of Arts (with Distinction) degree from the University of Alberta in 1996, and her Master of Arts in Anthropology degree, also from the University of Alberta, in 1999. Since 1997, her research has focused on the human skeletal and dental remains of middle Holocene hunter-gatherers from the Cis-Baikal region of Siberia. Dr. Lieverse’s Masters thesis examined human taphonomy from the Serovo-Glaskovo cemetery of Khuzhir-Nuge XIV in order to explain the unusual and highly variable skeletal preservation documented at that site. Since then, her research interest has turned to health and lifestyle reconstruction and has expanded to include a number of the region’s rich cemetery populations. Concurrent with the beginning of her doctoral studies at Cornell University in 2000 was her association with a Major Collaborative Research Initiative (MCRI) grant funded by the Social Sciences and Humanities Research Council (SSHRC) of Canada and headed by Andrzej Weber (University of Alberta). The primary focus of this $2.5 million research project, entitled *The Baikal Archaeology Project*, was the investigation of the circumstances surrounding a fifth millennium BC biocultural hiatus in the Cis-Baikal, specifically the biological and cultural characteristics of the preceding and succeeding populations. Dr. Lieverse’s involvement was as a valued member of the project’s Osteology Module, and this dissertation is the culmination of her work to date. Her post-doctoral research, tenured at the Memorial University of Newfoundland and also funded by SSHRC, will build on that presented here. It will entail an in depth examination of musculoskeletal stress markers from a number of cemetery populations in order to more fully reconstruct mobility and activity patterns in the mid-Holocene Cis-Baikal and to provide a more detailed understanding of hunter-gatherer adaptation in the region.
For John
ACKNOWLEDGEMENTS

The completion of this dissertation and the research presented herein was made possible through the assistance and support of a number of individuals and institutions.

I am indebted to my graduate supervisor, Dr. Kenneth A.R. Kennedy, for his support and guidance throughout my doctoral program, and to the other the members of my graduate committee, Dr. M. Anne Katzenberg (University of Calgary) and Dr. Nerissa Russell (Cornell University), for their invaluable assistance during this process. Special thanks to Dr. William B. Provine (Cornell University), who agreed to serve as a proxy committee member for my defense examination, for the additional insights he offered. I am honored to have learned from such distinguished scholars.

This research was funded by a Major Collaborative Research Initiative (MCRI) grant supported through the Social Sciences and Humanities Research Council (SSHRC) of Canada and by a research travel grant from the Mario Einaudi Center for International Studies (Cornell University). Financial assistance was also provided by a SSHRC Doctoral Fellowship and Cornell University’s Graduate School and Human Biology Program.

I am grateful to all the scholars involved with The Baikal Archaeology Project (largely funded by SSHRC’s MCRI), particularly those with whom I worked directly: Dr. Andrzej W. Weber (University of Alberta), Dr. M. Anne Katzenberg (University of Calgary), Mr. Vladimir Ivanovich Bazaliiskiy and Dr. Olga Ivanovna Gorionova (Irkutsk State University), Dr. Jay Stock (Cambridge University), Dr. Caroline Haverkort (University of Alberta), Ms. Andrea Hiob (University of Alberta), Ms. Kathleen Faccia (University of Calgary), and Mr. Mike Metcalf (University of Alberta).
On a personal note, I would like to express my appreciation to my family, especially to my husband, Dr. David Natcher, for his unfailing confidence and support, to our new son, John, for the motivation he has provided, and to my parents, John and Dorothy Lieverse, for teaching me well. Finally, thank you to my Great Uncle Adriaan Lieverse, who offered the additional incentive of a promise to call me “Dr. Lieverse” once (but only once) if ever I earned it. I hope this will suffice.
TABLE OF CONTENTS

Biographical Sketch ... iii
Acknowledgements ... v
Table of Contents ... vii
List of Figures ... ix
List of Tables ... xii

Chapter One. Context and Objectives ... 1
 1.1 Introductory Remarks .. 1
 1.2 Biogeographical Context .. 2
 1.3 Archaeological Context ... 9
 1.3.1 History of Archaeological Research and Culture History Debate 9
 1.3.2 Current Understanding of Cis-Baikal Culture History 14
 1.4 Research Objectives .. 21

Chapter Two. Enamel Hypoplasia as a Reflection of Physiological Stress 26
 2.1 Introduction ... 26
 2.2 Materials and Methods .. 28
 2.3 Presentation of Results .. 43
 2.4 Discussion ... 51
 2.5 Summary and Conclusions .. 62

Chapter Three. Osteoarthritis: Reconstructing Mobility and Activity Patterns 65
 3.1 Introduction ... 65
 3.2 Materials and Methods .. 67
LIST OF FIGURES

Figure 1.1 Siberia and the Cis-Baikal Region ... 3
Figure 1.2 Location of Cemetery Sites within the Cis-Baikal 5
Figure 2.1 Distribution of Observable Dentition by Site and Tooth Type (n=2768) 44
Figure 2.2 Proportion of Observable Teeth Affected by Enamel Hypoplasia 45
Figure 2.3 Proportion of Observable Individuals Affected by Enamel Hypoplasia 45
Figure 2.4 Proportion of Observable Adults and Subadults Affected by Enamel Hypoplasia ... 46
Figure 2.5 Proportion of Observable Males and Females Affected by Enamel Hypoplasia ... 47
Figure 2.6 95% Confidence Intervals for MNS Means: All Observable Individuals 48
Figure 2.7 95% Confidence Intervals for MNS Means: All Observable Adults ... 48
Figure 2.8 95% Confidence Intervals for MNS Means: All Observable Subadults 49
Figure 2.9 95% Confidence Intervals for MNS Means: All Observable Males ... 50
Figure 2.10 95% Confidence Intervals for MNS Means: All Observable Females 50
Figure 2.11 95% Confidence Intervals for MNS Means: Adults versus Subadults 51
Figure 2.12 95% Confidence Intervals for MNS Means: Males versus Females ... 52
Figure 3.1 Proportion of All Affected Individuals Exhibiting Osteoarthritis for Each Joint Region ... 80
Figure 3.2 Proportion of Observable Individuals Affected by Osteoarthritis 81
Figure 3.3 Age of Osteoarthritic Onset Across Sites 83
Figure 3.4 Proportion of Affected Males Exhibiting Osteoarthritis for Each Joint Region ... 84
Figure 3.5 Proportion of Affected Females Exhibiting Osteoarthritis for Each Joint Region ... 84
Figure 3.6 Age of Osteoarthritic Onset among Lokomotiv Males and Females ... 86
Figure 3.7 Age of Osteoarthritic Onset among Shamanka II Males and Females ... 86

Figure 3.8 Age of Osteoarthritic Onset among Ust'-Ida I Serovo Males and Females ... 87

Figure 3.9 Age of Osteoarthritic Onset among Ust'-Ida I Glaskovo Males and Females ... 87

Figure 3.10 Age of Osteoarthritic Onset among Khuzhir-Nuge XIV Males and Females ... 88

Figure 3.11 Proportion of Affected Lokomotiv Males and Females Exhibiting Osteoarthritis for Each Joint Region 89

Figure 3.12 Proportion of Affected Shamanka II Males and Females Exhibiting Osteoarthritis for Each Joint Region 90

Figure 3.13 Proportion of Affected Ust'-Ida I Serovo Males and Females Exhibiting Osteoarthritis for Each Joint Region 90

Figure 3.14 Proportion of Affected Ust'-Ida I Glaskovo Males and Females Exhibiting Osteoarthritis for Each Joint Region 91

Figure 3.15 Proportion of Affected Khuzhir-Nuge XIV Males and Females Exhibiting Osteoarthritis for Each Joint Region 91

Figure 4.1 Distribution of Dental Pathology by Tooth Type and Location (n=286) 117

Figure 4.2 Distribution of Skeletal Pathological Conditions Observed (n=46) 118

Figure 4.3 Distribution of Dental Pathological Conditions Observed (n=56) 120

Figure 4.4 Proportion of Observable Individuals Affected in Each Skeletal Pathological Category ... 124

Figure 4.5 Distribution of Traumatic Conditions Observed (n=13) 125

Figure 4.6 Distribution of Metabolic Disorders Observed (n=6) 134

Figure 4.7 Distribution of Congenital Anomalies by Skeletal Location (n=12) ... 140

Figure 4.8 Distribution of Neoplastic Conditions (n=8) 147

Figure 4.9 Distribution of Infections (n=5) .. 154

Figure 4.10 Proportion of Observable Individuals Affected in Each Dental Pathological Category ... 160
Figure 4.11 Proportion of Observable Males and Females Affected by Periodontitis/Antemortem Tooth Loss …………………………………………………………………………………. 161

Figure 4.12 Proportion of Observable Adults Affected by Periodontitis/Antemortem Tooth Loss …………………………………………………………………………………………………. 162
LIST OF TABLES

Table 2.1 Individuals Observable for Enamel Hypoplasia (n = 154) 30
Table 2.2 Dentition Observable for Enamel Hypoplasia (n=2768) 33
Table 2.3 Distribution of Enamel Hypoplasia Affectation by Age 41
Table 2.4 Distribution of Enamel Hypoplasia Affectation by Sex 41
Table 2.5 Comparison of Hypoplastic Prevalence Among Archaeological Populations (adapted from Nelson 1999) ... 57
Table 3.1 Individuals Observable for Osteoarthritis (n=175) 69
Table 3.2 Seven Major Joint Regions and their Articular Surfaces Observed for Osteoarthritis (adapted from Larsen 1982 and Larsen et al. 1995) 72
Table 3.3 Joint Regions Affected by Osteoarthritis 74
Table 3.4 Age of Osteoarthritic Onset Across Sites 82
Table 4.1 Individuals Observable for Skeletal Pathology (n=271) 106
Table 4.2 Individuals Observable for Dental Pathology (n=111) 109
Table 4.3 Skeletal Elements Affected by Pathological Conditions 111
Table 4.4 Dental Elements Affected by Pathological Conditions (n=286) 114
Table 4.5 Comparison of Fracture Prevalence Among Archaeological Populations ... 127
Table 4.6 Comparison of Violent Traumatic Prevalence Among Archaeological Populations ... 130
Table 4.7 Comparison of Cribra Orbitalia/Porotic Hyperostosis Prevalence Among Archaeological Populations ... 135
Table 4.8 Comparison of Neoplastic Prevalence Among Archaeological Populations ... 153
Table 4.9 Comparison of Periostitis Prevalence Among Archaeological Populations ... 158
Table 4.10 Comparison of Periodontitis/Antemortem Tooth Loss Prevalence Among Archaeological Populations ... 164

Table 4.11 Comparison of Caries Prevalence Among Archaeological Populations .. 166