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Gregory Philip Muller, Ph.D.

Cornell University 2010

This work studies the application of non-commutative projective geometry to the

ring of differential operators on a smooth complex variety, or more generally a Lie

algebroid on such a variety. Many classical results true about complex projective

space have analogs which are proven, including Serre Finiteness, Serre Vanishing,

Serre Duality, the Gorenstein property, the Koszulness property, and the Beilin-

son equivalence. Applications to the study of ideals, projective modules and the

Grothendieck group are explored.
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CHAPTER 1

INTRODUCTION.

1.1 Objects of Study.

This thesis studies the application of non-commutative projective geometry to the

ring of differential operators on a smooth, irreducible affine variety of dimension

n. We now briefly explain what this means, and why it is of interest.

1.1.1 Non-commutative Projective Geometry.

The ideas of modern algebraic geometry have been remarkably effective at studying

commutative algebras, by assigning enriched spaces (schemes) to them, and then

applying geometric intuition and techniques. One of the fundamental results along

these lines is the Affine Serre Equivalence, which says that the category of modules

of a commutative ring is equivalent to the category of quasi-coherent modules on

the corresponding affine scheme. Thus, any module-theoretic question about a

commutative ring can be translated into a sheaf-theoretic question on the scheme,

and vice versa.

In the analogous world of graded algebras and projective schemes, it is not

true that graded R-modules are equivalent to quasi-coherent sheaves on Proj(R).

However, there is a suitable quotient category QGr(R) of the category Gr(R) of

graded R-modules which is equivalent to QCoh(Proj(R)); this is the Projective

Serre Equivalence. An advantage of this equivalence is that the sheaf cohomology

of a quasi-coherent sheaf on Proj(R) can be understood in the language of graded
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modules as a ‘section functor’ ω : QGr(R) → Gr(R) of the quotient functor

π : Gr(R)→ QGr(R) (see Section 3.2.2 for details).

The main idea is to notice that the construction of QGr(R) at no point used the

fact that R was commutative. Therefore, it is possible to take a non-commutative

graded algebra A and associate to it a category QGr(A) which plays the role of the

category of quasi-coherent modules on the non-existent scheme Proj(A); similarly,

there is a category qgr(A) which plays the role of the category of coherent modules.

We have many constructions analogous to the commutative case; in particular, we

have a section functor ω : QGr(A)→ Gr(A) and its higher derived functors which

very naturally play the role of the sheaf cohomology functors. It is natural, then,

to try to apply the techniques and intuition of commutative projective geometry

to the study of non-commutative graded rings; this goes under the name non-

commutative projective geometry. This idea has its origin in Gabriel’s thesis [18],

and was more explicitly explored by Artin and Zhang in [1]

1.1.2 Differential Operators and QGr(D̃).

Throughout, we assume the base field is C. Let X be a smooth irreducible affine

variety of dimension n, and let D(X) (or D) denote the ring of algebraic differential

operators on X. The ring D has a natural filtration by the order of an operator,

with D<0 = 0 and D0 = OX . We can then form the (graded) Rees algebra D̃ of D

by letting

D̃i = Di · ti

where t is a central variable we introduce for bookkeeping. The algebra D̃ then a

non-commutative graded algebra which contains all of the information of the ring
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of differential operators on X. So, especially in light of the previous section, it is

natural to study the category QGr(D̃) and its geometric properties.

There is significant motivation for the study of the category QGr(D̃), aside

from its intrinsic appeal. In [10], Berest and Wilson realized a classification of the

right ideal classes in D(C) (the first Weyl algebra) in terms of homological infor-

mation coming from ‘information at infinity’ in the projective geometry QGr(D̃).1

This approach to classification of right ideal classes was extended to all smooth

complex curves by Ben-Zvi and Nevins in [5]. They do this by proving a Beilinson

equivalence for QGr(D̃), which is a derived equivalence from QGr(D̃) to a simpler

algebra, and studying what happens to ideal classes.

A central philosophy in the approach of Ben-Zvi and Nevins is to notice that the

algebra D̃ is a deformation of the symmetric algebra SymX(TX ⊕OX), where TX

is the tangent bundle on X. We then notice that Proj(SymX(T ⊕OX)) = TX , the

fiber-wise compactification of TX into a Pdim(X)-bundle. Therefore, the category

QGr(D̃) should be ‘close’ to the category QCoh(TX), and so it should enjoy many

of the properties of projective space, suitably redefined for the relative setting.

The thesis as a whole is in the slightly larger generality of Lie algebroids on a

smooth variety. The justification for this is that it requires no extra work in the

proofs, and in some cases the proofs require passing through this larger generality.

It also has the advantage of including the commutative case as a special case, rather

than as a ‘nearby’ case. See Section 2.2.5 for details. However, this introduction

will stay in the narrower setting of differential operators.

1While right ideal classes in D(C) were first classified in [14], the classification of Berest and
Wilson had several advantages, including naturally explaining the Calogero-Moser matrices that
arose in the earlier classification [9] and setting the framework for [5].
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1.2 Results.

This thesis proves for QGr(D̃) analogs of many of the known results about pro-

jective space Pn and Pn-bundles. In what follows, we review in each case the

commutative result, and then the non-commutative version proven here. The no-

tation has been simplified from how the results appear in the body of the text,

because the appropriate terminology hasn’t been built up yet and so the statements

look more directly analogous to their commutative counterparts.

1.2.1 The Gorenstein Property.

One important technical result about Pn is that it satisfies the Gorenstein property.

Lemma 1.2.1.1. [12, 3.6.10.] Let C be an R = C[x0, ...xn]-module by letting xi

act by zero. Then

ExtiGr(R)(C, R(j)) =

 C if i = −j = n+ 1

0 otherwise


where ExtGr(R) denotes the higher derived functors of HomGr(R).

From this, one can deduce many important homological properties of Pn and

Pn-bundles.

The case of D̃ is no different, provided we make the appropriate relative state-

ment. Let ω denote the canonical bundle to X.

Lemma (4.2.4.1). (The relative Gorenstein property) Let D be the ring of dif-

ferential operators, let D̃ denote its Rees algebra, and let OX denote the structure
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sheaf of X (as a graded D̃ concentrated in degree zero).

Exti
Gr(D̃)

(OX , D̃(j)) =

 ω if i = −j = n+ 1

0 otherwise


1.2.2 Serre’s Theorems.

For projective space Pn, the cohomology of coherent sheaves satisfies three standard

theorems of Serre.

Theorem 1.2.2.1. [19, Theorem III.5.2 and Theorem III.7.1] Let M be any co-

herent sheaf of modules on Pn. Then

• (Serre Finiteness) H i(M) is a finite dimensional C-vector space for all i.

• (Serre Vanishing) H i(M(j)) = 0 if i > n and any j, or if i 6= 0 and j is

sufficiently large.

• (Serre Duality) If M is locally-free, then H i(M) = Hn−i(M∗(−n − 1))∨,

whereM∗ = Hom(M,OPn) is the dual, and ∨ denotes the dual as a complex

vector space.

Again, we have relative versions of each of these results.2

Theorem (4.2.5.1). Let M∈ qgr(D̃).

• (Serre Finiteness) H i(M) is a finitely-generated OX-module for all i.

• (Serre Vanishing) H i(M(j)) = 0 if i > n and any j, or if i 6= 0 and j is

sufficiently large.

2Here, we are using Hi to denote the functor which will later be written Riω0.
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Serre Duality is a more delicate matter, because the relative version of the

vector space dual ∨ is no longer an exact functor. Composing higher derived

functors like cohomology functors often behaves badly; this is usually remedied by

considering derived categories and derived functors there. The advantage of this

change is that we no longer need to restrict to locally-free sheaves.

The ‘bounded homotopy category’ Kb(A) of an abelian category A is the cat-

egory whose objects are cochain complexes in A and whose morphisms are chain

maps up to homotopy. The ‘bounded derived category’ Db(A) of A is the quotient

category of Kb(A) after formally inverting all quasi-isomorphisms (chain maps

which induce isomorphisms on cohomology).

Let RH denote the derived cohomology functor, and let ∗M denote the de-

rived left dual of M, as induced on the category Db(QGr(D̃)) from the derived

dual in Db(Gr(D̃)). These constructions are derived versions of the more familiar

functions; definitions can be found in 2.4.

Theorem (7.2.2.2). (Serre Duality) Let M∈ Db(qgr(D̃)). Then

RH(M) = RHom−X(RH( ∗M), ω)[−n](n+ 1)

6



1.2.3 The Beilinson Equivalence.

A rather less-known fact about Pn is the Beilinson equivalence. Let R≤i :=

C[x0, ...xn]≤i denote the space of polynomials of degree i or less. Then let

Qn :=



R0 R≤1 R≤2 · · · R≤n

0 R0 R≤1 · · · R≤n−1

0 0 R0 · · · R≤n−2

...
...

...
. . .

...

0 0 0 · · · R0


The space Qn is naturally an algebra, with multiplication following usual rules for

matrix multiplication. The algebra Qn is usually called the nth Beilinson quiver

algebra, because it can be constructed as a quiver algebra in a natural way; see

[13].

Theorem 1.2.3.1. [4](The Beilinson equivalence) There is a natural equivalence

of triangulated categories

Db(Coh(Pn)) ' Db(mod(Qn))

This is the most basic example of a standard technique in the theory of derived

categories called ‘tilting’, see Section 2.4.3.

The Beilinson equivalence has a particularly nice analog in the case of qgr(D̃).

Let

E :=



D0 D≤1 D≤2 · · · D≤n

0 D0 D≤1 · · · D≤n−1

0 0 D0 · · · D≤n−2

...
...

...
. . .

...

0 0 0 · · · D0


7



which is again an algebra in a natural way.

Theorem (6.1.3.1). (The Beilinson equivalence for qgr(D̃)) There is a natural

equivalence of triangulated categories

Db(qgr(D̃)) ' Db(mod(E))

The algebra E is much nicer than D̃ in many ways; it is a finite module over OX

and has n idempotents which can be used to break modules down into pieces. As

a consequence of this last fact, we can compute the Grothendieck group of qgr(D̃).

Theorem (8.2.1.1).

K0(qgr(D̃)) = K0(X)⊕(n+1)

1.3 The Structure of the Thesis.

This work is arranged into several Chapters. Much of the content of Chapters 4,

5 and 6 appeared in [28].

2. Preliminaries. This chapter collects many disparate topics which are well-

established in the literature, but are included for completeness and for the

convenience of the reader. It also collects the notational conventions we

establish for ease of reference.

3. Projective Geometry. This chapter reviews the basics of (commutative) pro-

jective geometry on the level of Hartshorne [19], and non-commutative pro-

jective geometry from Artin and Zhang [1]. It then discusses some specifics

of the quotient category QGr(D̃).
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4. Koszul Theory. This chapter proves analogs of the Koszul theory for D̃. The

main results are the exactness of the Koszul complex (Theorem 4.2.2.1),

the Gorenstein property (Lemma 4.2.4.1) and the Finiteness and Vanishing

theorems of Serre (Theorem 4.2.5.1).

5. Tensor Products. The first section of this chapter establishes the necessary

ground work for taking tensor products in non-commutative projective ge-

ometry. The second section then uses techniques from the Koszul theory

to resolve the diagonal, produces canonical resolutions of objects in qgr(D̃)

(Theorem 5.2.2.1).

6. The Beilinson Equivalence. This chapter proves the Beilinson equivalence for

qgr(D̃) (Theorem 6.1.3.1) and writes down some explicit examples.

7. Duality. This chapter proves the Local duality theorem, and the Serre duality

theorem, as well as computing the cohomology of the structure sheaf on

QGr(D̃). This chapter only depends on Chapters 1-4.

8. A Cohomological Criterion for Projectivity. An application of Local Duality

to the study of projective D-modules is proven, as well as some useful lemmas

and explicit computations.

9. Applications. The first section of this chapter discusses the application of

projective geometry to ideals in D, as well as some of the history and known

results about these ideals. The second section then studies the Grothendieck

group of qgr(D̃).

1.4 Notational Conventions and Assumptions.

• The base field of all schemes and vector spaces will be C.

9



• X is a smooth, irreducible, affine variety over C.

• D will denote the universal enveloping algebra of a Lie algebroid (X,L);

we will be principally interested in the case when D is ring of algebraic

differential operators on X. We will exclude the trivial case that L = 0.

• n will denote the the fiber dimension of the Lie algebroid; that is, the rank

of the projective module L. Since we assume the Lie algebroid is non-trivial,

it is always a positive integer. In the case that D is the ring of differential

operators, n is equal to dim(X).

• For a ring R, Mod(R) will denote the category of left R-modules, while

mod(R) will denote the category of finite left R-modules. All modules will

be left modules unless otherwise specified.

• IfM andN areR-bimodules, HomR−(M,N) will denote the homomorphisms

as left modules, while Hom−R(M,N) will denote homomorphisms as right

modules. This notation will occasionally be used to highlight the distinction

between left and right even when M or N is not an R-bimodule.

• For a graded ring R, Gr(R) will denote the category of graded left R-modules,

while gr(R) will denote the category of finite graded left R-modules. For

M,N ∈ Gr(R), HomGr(R)(M,N) will denote the graded Hom, which is

⊕i∈ZHomGr(R)(M,N(i)). In general, an underline will be used to denote

appropriate graded versions of certain constructions.

• Superscripts will denote cohomological indices, while subscripts will denote

filtration orders and grading degrees.

• Soft brackets (n) will denote a shift in the grading degree, while hard brackets

[n] will denote a shift in the cohomological degree. Therefore, if M is a graded

complex, then M i
p(q)[j] = M i+j

p+q.
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CHAPTER 2

PRELIMINARIES.

2.1 Filtrations and Gradings.

For this section, let k be a field, and let A be a unital k-algebra. We will discuss

various additional structures that can be put on A to introduce the notions of

‘order’ or ‘degree’. Details may be found, for instance, in [16].

2.1.1 Graded Algebras and Modules.

A grading on A is, a family of k-subspaces Ai ⊆ A, i ∈ Z, such that1

1 ∈ A0, A =
⊕
i∈Z

Ai and Ai · Aj ⊆ Ai+j

A non-zero element a is called homogeneous if there is some i such that a ∈ Ai;

this i is called the degree of a and is denote deg(a). Zero is typically considered a

homogeneous element which has either all degrees, or degree −∞. By definition,

degree satisfies deg(ab) = deg(a) + deg(b) if ab 6= 0; in particular, the product of

homogeneous elements is homogeneous. The space Ai is called the ith graded

component, and

A≤i :=
⊕

j∈Z, j≤i

Aj and A≥i :=
⊕

j∈Z, j≥i

Aj

A graded algebra is called

• Positively-graded if Ai = 0 for all i < 0

1As a general rule of thumb, subscripts will denote the index of filtrations and gradings, so
that superscripts can be used for cohomological degrees.
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• Connected if it is positively graded, and A0 is spanned by the unit of A.

• Regular-graded if it is generated as an algebra by A0 and A1. Note that

it is then automatically positively graded.

The standard examples of graded algebras include the ring of polynomials in n

variables, with the generators having degree 1.

If A is a graded k-algebra, and M is a left A-module, a grading on M is a

family of k-subspaces Mi, i ∈ Z such that

M =
⊕
i∈Z

Mi and Ai ·Mj ⊆Mi+j

Homogenous elements of M and their degree are defined the same as above. A

graded or homogeneous submodule of M is an A-submodule N , such that the

subspaces Ni := N ∩Mi define a grading on N . The quotient of M by a graded

submodule has a natural grading.

Given two graded A-modules M and N , a graded morphism (or a morphism

of degree zero) is an A-module map f : M → N such that f(Mi) ⊆ Ni for all

i. Denote the k-space of all such maps by HomGr(A)(M,N). This defines the

category of all graded (left) A-modules Gr(A).

If M is a graded A-module, then let M(i) denote the graded A-module which

is isomorphic to M as an A-module, but the grading is given by (M(i))j := Mi+j.

This is functorial in the obvious way, and is called the ith shift functor, or the

shift functor when i = 1. Define the internal or graded Hom to be the graded

k-space

HomGr(A)(M,N) :=
⊕
i∈Z

HomGr(A)(M,N(i))

An element in HomGr(A)(M,N(i)) is called a morphism of degree i.
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If M is a graded left A-module and N is a graded right A-module, then the

tensor product N ⊗A M may be given the structure of a graded k-space, where

(N ⊗AM)i is spanned by elements of the form n⊗Am with n and m homogeneous

and deg(n) + deg(m) = i; this is called the graded tensor product over A. We

define the degree zero tensor product to be the k-space

N }AM = (N ⊗AM)0

which is the degree zero part of N ⊗AM .

2.1.2 Filtered Algebras and Modules.

An (ascending) filtration on A is, for every integer i, a k-subspace Ai ⊆ A, such

that

1 ∈ A0, Ai ⊂ Ai+1 and Ai · Aj ⊆ Ai+j

The filtration is positive if A−1 = 0, it is exhaustive if
⋃
i∈ZAi = A, and it is

separated if
⋂
i∈ZAi = 0.

If a is a non-zero element in an exhaustive, separated filtered k-algebra A, then

the smallest i such that a ∈ Ai is called the order of a, and is denoted ord(a). By

the definition of ascending filtrations, order is sub-tropical (where a, b ∈ A):

ord(ab) ≤ ord(a) + ord(b) and ord(a+ b) ≤ max(ord(a), ord(b))

Examples of filtered k-algebras include rings of (continuous/ smooth/ analytic/

algebra) differential operators from an an appropriate space to k, and any quotient

of a graded algebra (see next section).

If A is a filtered k-algebra, and M is a left A-module, an (ascending) filtra-
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tion on M is, for every integer i, a k-subspace Mi ⊆M , such that

Mi ⊆Mi+1 and Ai ·Mj ⊆Mi+j

Exhaustive and separated filtrations on M are defined the same as above, as is the

order of an element of M . If m,n ∈M and a ∈ A, then

ord(am) ≤ ord(a) + ord(m) and ord(m+ n) ≤ max(ord(m), ord(n))

A filtered submodule of M is a submodule N , together with a filtration such

that Ni ⊆ Mi for all i. A submodule N of M may always be made into a filtered

submodule by defining the induced filtration Ni := N ∩ Mi, though not all

filtered submodules arise this way. The quotient of M by a filtered submodule

has a natural filtration. Notice that a submodule of a graded module had at most

one compatible grading, while a submodule of a filtered module has at least one

compatible filtration.

A graded algebra A may always be regarded as a filtered algebra, by using the

forgetful filtration {A≤i}; similarly, graded modules may be made into filtered

modules. Since all submodules can be filtered in a natural way, the quotient of

a graded algebra or module still has a natural filtration, where the order of an

element in the quotient is given by the smallest degree of any pre-image.

2.1.3 Rees Algebras and Modules.

There is a standard way to construct a graded algebra from a filtered algebra A

called the Rees construction. Define the Rees algebra Ã of A to be the graded

algebra such that

Ã :=
⊕
i∈Z

Ai · ti
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where t is a formal variable which is central, and the graded multiplication maps

Ãi⊗ Ãj → Ãi+j are given by the filtered multiplication maps Ai⊗Aj → Ai+j and

the ts are commuting and keeping track of degree.

If M is a filtered A-module, then the Rees module of M is defined as the

graded Ã-module

M̃ :=
⊕
i∈Z

Mi · ti

with the action of Ã coming from the action maps Ai ⊗Mj → Mi+j. Again, ts

commute past other elements, and collect on the right, keeping track of degree.

An exhaustive filtered algebra A may be recovered from Ã, by quotienting Ã by

the two-sided ideal 〈t− 1〉 generated by t− 1. By giving Ã the forgetful filtration

and 〈t − 1〉 the induced filtration as a submodule, the quotient A = Ã/〈t − 1〉 is

filtered; this recovers the original filtration on A. An exhaustive filtered A-module

M may be recovered from M̃ the same way, or equivalently by tensoring A⊗Ã M̃ .

Therefore, the algebra Ã and the category of graded Ã-modules contains all the

information of A and its filtered modules. However, not every graded Ã-module

N is the Rees module of a filtered A-module. A necessary and sufficient condition

is that t ∈ Ã is not a zero divisor on N ; in this case, N ' Ã⊗Ã N .

2.1.4 Associated Algebras and Modules.

For an exhaustive filtered algebra A, the Rees algebra Ã and its graded modules

contain all the information of A and its filtered modules; but it also contains some

extraneous information, in the form of elements killed by t. We introduce an

algebra which can be used to study this extraneous information separately. Define
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the associated graded algebra of A to be

A := Ã/〈t〉

where 〈t〉 is the two-sided ideal generated by t. Since t is a homogeneous element,

it generates a homogeneous ideal and so the quotient A is also graded. The graded

components have a straight-forward presentation:

(A)i = Ai/Ai−1

Any degree i element a ∈ A can be assigned to σ(a) ∈ Ai, where σ(a) is the image

of a in Ai/A(i−1). If the filtration is separated, then this defines a map σ on all of

A called the symbol map; however, in general this map is not even additive!

Filtered A-modulesM also have associated graded modules; they can be defined

as the tensor A⊗Ã M̃ or as quotients M̃/tM̃ . If the filtration on M is exhaustive

and separated, then there is also a symbol map σ : M 99K M ; the dash is to imply

this map is only a map of sets. A filtration on a finitely-generated A-module M is

called a good filtration if M is a finitely generated Ã-module.

One of the most useful properties of passing to associated graded modules is

that isomorphisms can still be characterized in many cases.

Lemma 2.1.4.1. Let M and N be exhaustive filtered A-modules such that Mi =

Ni = 0 for i� 0, and let f : M → N be an A-module map such that f(Mi) ⊆ Ni

for all i (a filtered map). Then the induced map f : M → N is an isomorphism if

and only if f is.

Proof. Assume that f is an isomorphism; this means

f i : Mi/Mi−1 → Ni/Ni−1
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is an isomorphism for all i. Let m (resp. n) be the smallest integer such that

Mm is non-zero (resp Nn). Since Mm is non-zero while Mm−1, Mm is necessarily

non-zero; similarly, Nn/Nn−1 = Nn is non-zero. We claim n = m. Otherwise, in

degree min(m,n), the map fmin(m,n) is an isomorphism between a non-zero group

and zero. Therefore, Mi = Ni = 0 for i < m.

We now prove by induction that f restricts to an isomorphism of abelian groups

between Mi and Ni for all i ≥ m. For i = m, Mm = Mm and Nm = Nm, and the

map fm is the restriction of f . Therefore, f is an isomorphism on Mm.

Now assume that f restricts to an isomorphism on Mi. Then there is a map of

short exact sequences

0 → Mi → Mi+1 → M i+1 → 0

↓ ↓ ↓

0 → Ni → Ni+1 → N i+1 → 0

By the inductive hypothesis, the left vertical arrow is an isomorphism. By the

assumption that f i+1 is an isomorphism, the right vertical arrow is an isomorphism.

Hence, by the Five Lemma (see [36]), the middle vertical arrow is an isomorphism.

Thus, by induction, f is an isomorphism on every Mi, and so by the exhaustiveness

of the filtration, f is an isomorphism.

2.2 Differential Operators and Lie Algebroids.

In this section, we recall the basics of the ring of differential operators on a smooth,

affine, irreducible varietyX of dimension n over C. We then introduce a generalized

concept called a Lie algebroid which simultaneously generalizes both differential

operators and Lie algebras.
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2.2.1 Differential Operators.

The filtered ring of differential operators D(A) on a commutative k-algebra A can

be defined by induction as follows. Let D(A)−1 := 0, and for any i ∈ N,

D(A)i := {δ ∈ Endk(OA) | ∀f ∈ A, [f, δ] ∈ D(A)i−1}

Equivalently, elements of D(A)i are k-linear endomorphisms of A such that for any

collection of i+ 1 elements {fj} ∈ A, the iterated commutator is zero:

[f1, [f2, [...[fi+1, δ]...]]] = 0

By the linearity of commutators, each of the D(A)i is a subspace of Endk(A).

From the Leibniz rule for commutators ([a, bc] = [a, b]c + b[a, c]), it follows that

D(A)i · D(A)j ⊆ D(A)i+j, where multiplication is given by composition.

Define the ring of differential operators D(A) (or just D, when A is clear) as

the union over all D(A)i. This is a filtered ring which is exhaustive and positively-

filtered (therefore, separated) by construction. Every element f ∈ A commutes

with every other element, and so f ∈ D0; in fact, the induced map

A →̃ D0

is an isomorphism of algebras.

Example. Let A = C[x1, ...xn] be the ring of complex polynomials in n vari-

ables. Then

D(A) = C[x1, ...xn, ∂1, ...∂n]

is the nth Weyl algebra, where the above generators commute except for the rela-

tions [∂i, xi] = 1.
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It follows immediately from the definition of D that [D0,Di] ⊆ Di−1; from the

Jacobi identity, the more general fact follows:

[Di,Dj] ⊆ Di+j−1

This means that for any two differential operators δ, δ′, the products δδ′ and δ′δ

are equal, up to terms of lower order. Since lower order terms are killed in the

associated graded algebra, the algebra D is commutative. This will be an eternally

useful fact.

The above definition and observations were true for any commutative algebra

A; we now turn to the case where A = OX , where X is a smooth, affine, irreducible

variety of dimension n over C. The ring of differential operators is typically denoted

D(X) rather than D(OX). In this case, we have several facts (for proofs, see [27]).

• The ring D(X) is a simple Noetherian ring without zero divisors.

• The ring D(X) is generated as a C-algebra by finitely many elements of

degree zero and one.

• The associated graded algebra D(X) is canonically isomorphic to O(T ∗X),

the ring of functions on the cotangent bundle to X.

• The ring D(X) has global dimension n.

This list of nice properties is also remarkably delicate, in terms of varying the

hypotheses. If X is singular, then D(X) is in general no longer generated in

degrees zero and one, and can be infinitely generated and non-Noetherian.2 If C

is replaced by an algebraically closed field of positive characteristic, then the ring

D(X) will have a very large center, and hence it will be non-simple. Also, it can

2In fact, it is an outstanding conjecture of Nakai’s [29] that D(X) is generated by elements of
order zero and one if and only if X is smooth.
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be infinitely-generated, non-Noetherian and possess zero divisors, even when X is

smooth (see Smith, [34]).

The only assumption which is not critical is that X is affine; however, in the

non-affine case, all the appropriate definitions must be sheafified. Provided this is

done correctly, all the above properties are still true.

2.2.2 Lie Algebroids.

Lie algebroids are a simultaneous generalization of rings of differential operators

and of Lie algebras. Studying them can be very useful for understanding those as-

pects of the representation theory of Lie algebras which have an analogous state-

ment for the representation theory of differential operators. However, there are

many interesting Lie algebroids which are neither Lie algebras nor differential op-

erators. For a more detailed reference, consult [26].

The study of Lie algebroids is meant to be the study of families of infinitesmal

symmetries, in the way that the study of Lie algebras is the study of infinitesmal

symmetry.

Let X be as in the previous section; a smooth, irreducible, affine variety of

dimension n over C. An (algebraic) Lie algebroid on X is a finitely-generated

projective3 OX-module L with

• a Lie bracket on L which makes it into a Lie algebra over C.

3Lie algebroids can be defined with the projectivity requirement. However, since such Lie
algebroids are both qualitatively very different than projective ones, and not amenable to the
techniques of this paper, such a possibility is ignored. Also, in the case when X is not affine, the
condition must be relaxed to ‘locally projective’.
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• an anchor map, an OX-module map τ : L→ TX .4

The bracket and the OX-module structure on L are not necessarily compatible

in the simplest way; instead, the bracket and the OX-multiplication satisfy the

relation:

[l, al′] = a[l, l′] + dτ(l)(a) · l′

One consequence of the relation is that OX ⊕ L becomes a Lie algebra by the

bracket [(r, l), (r′, l′)] = (dτ(l)(r
′)− dτ(l′)(r), [l, l

′]).

The idea is that sections of L describe families of ‘infinitesimal symmetries’

on X, which can be moving in directions both along X and in hidden ‘internal’

directions. The two basic examples reflect each of these possiblities:

1. (Differential Operators, or the Tangent Lie Algebroid) Let L = TX , endowed

with the Lie bracket coming from the commutator of vector fields, and the

anchor map being the identity map TX → TX . Then L is a Lie algebroid;

here, all the infinitesmal symmetries being described by sections of L are

along X, since they are given by vector fields.

2. (Lie algebras) Let X = C, and let L = g be any finite-dimensional Lie algebra

over C. Since TC = 0, the anchor map is the zero map. This defines a Lie

algebroid over C; here, all the infinitesmal symmetries are internal, in that

sections of L are describing directions which are not coming from directions

along X.

A Lie algebroid is called trivial if L is the zero module, and it is called abelian

if both the Lie bracket and the anchor map are zero.

4Here, and throughout this thesis, TX will denote the tangent bundle to X
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A Lie algebroid comes with instructions on how to commute two sections of L

past each other (the bracket) and how to commute sections of L past sections of

OX (the anchor). This naturally leads to the consideration of the universal algebra

generated by L and OX which obey the given commutation relations. Let D(X,L)

be the quotient of the universal enveloping algebra of the Lie algebra OX⊕L by the

relations (1, 0) = 1 and (a, 0)⊗ (a′, l) = (aa′, al) (1 the unit, a ∈ OX , and l ∈ L);

this is called the universal enveloping algebra of L. The algebra D(X,L) will

be denoted D when X and L are clear. In the case of the tangent Lie algebroid

(X, T ), the enveloping algebra D is the ring of algebraic differential operators.

The ring OX has a canonical structure of a left D-module, by the action a ·a′ =

aa′ and l · a = dτ(l)(a) for a, a′ ∈ OX and l ∈ L. The ‘action on 1’ map D → OX

which sends σ to σ · 1 is a left D-module map which presents OX as a quotient

of D as a left module over itself. Note however, that there is no canonical right

D-module structure on OX .

The algebra D is naturally filtered by letting the image of OX be degree 0

and the image of L be degree 1. The subspace D1 is a (not necessarily central)

OX-bimodule which fits into a short exact sequence of OX-bimodules:

0→ OX → D1 → L→ 0

The Rees algebra of D can be defined directly as a quotient of the tensor algebra

TXD1 by the relation ∂ ⊗ ∂′ − ∂′ ⊗ ∂ = [∂, ∂′]⊗ t, where ∂, ∂′ ∈ D1 and t denotes

1 ∈ OX ⊂ D1 (as opposed to the unit of the algebra).

Other examples of Lie algebroids. We conclude with other interesting

examples of Lie algebroids.

• (Vector Bundles) If L is any f.g. projective OX-module, then L can be given
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both a trivial Lie bracket and a trivial anchor map, making (X,L) into an

abelian Lie algebroid. Geometrically, this corresponds to an algebraic vector

bundle V with no meaningful extra structure. In this case, the universal en-

veloping algebra D is commutative, and is isomorphic to the ring of functions

on the dual vector bundle V ∗.

• (OX-Lie algebras) A Lie algebroid (X,L) with trivial anchor map is the same

thing as a Lie algebra object in the category of f.g. projective OX-modules.

Geometrically, this amounts to an algebraic vector bundle with each fiber

equipped with a Lie bracket, such that the brackets vary algebraically.

• (Foliations) If the variety X is equipped with a foliation by constant-

dimensional submanifolds (called leaves), then there is a subbundle L of

the tangent bundle consisting of the tangent bundles of the leaves. Sections

of this bundle are vector fields which are tangent to the leaves. The com-

mutator of two of these vector fields is still tangent to the leaves; hence, the

space of sections of L is a Lie subalgebra of the space of vector fields (sections

of T ). The inclusion of bundles L ↪→ T defines the anchor map, which makes

(X,L) into a Lie algebroid.

• (Poisson Varieties) If the variety X is equipped with a Poisson structure,

then the cotangent bundle T ∗ has the structure of a Lie algebroid. The

bracket of exact 1-forms is defined by

[df, dg] := d({f, g})

This bracket is well-defined, and can be extended to non-exact 1-forms by first

computing the bracket locally on exact forms, and checking that it patches

together. The anchor map T ∗ → T is also defined locally on exact 1-forms,

by sending df to the vector field corresponding to the derivation {f,−}.
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2.2.3 The PBW Theorem for Lie Algebroids.

Because the commutator of a degree i element and a degree j element in D is of

degree at most i+ j− 1, the associated graded algebra D is commutative. In fact,

the structure of the associated graded algebra is well-known.

Theorem 2.2.3.1. (PBW theorem for Lie algebroids)[32, Theorem 3.1]The nat-

ural maps

D0 = D0 →̃ OX and D1 = D1/D0 →̃ L

extend to a canonical isomorphism of algebras

D →̃ SymXL

where SymXL is the symmetric algebra of L over X.

The ring SymXL is also isomorphic to f ∗(OL∗), the total space of the dual

bundle to L pushed forward along the bundle map f : L∗ → X.

The PBW property implies many of the most important properties of D.

Corollary 2.2.3.1. 1. For all i, Di is projective and finitely-generated as both

a left and right OX-module (though not as a bimodule).

2. D is a Noetherian ring without zero divisors.

Proof. (1) By the PBW theorem, Di/Di−1 = Di = (SymXL)i is f.g. projective,

and so Di has a finite composition sequence consisting entirely of f.g. projectives.

Therefore, Di is f.g. projective.

(2) Let

I0 ⊆ I1 ⊆ I2 ⊆ ...
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be an ascending chain of left ideals in D. Each left ideal is naturally filtered as a

submodule of D, and the inclusions Ii ↪→ Ii+1 are filtered maps. Therefore, there

is an ascending chain of ideals in D

I0 ⊆ I1 ⊆ I2 ⊆ ...

Since D = SymXL, and SymXL is Noetherian, all but a finite number of the above

inclusions are isomorphisms. However, by Lemma 2.1.4.1, this implies that all but

a finite number of the original inclusion maps were also isomorphisms. Thus, D is

left Noetherian. A similar argument shows that D is right Noetherian.

The ring D has no zero divisors because D = SymXL has no zero divisors.

2.2.4 Localization.

As was mentioned before, Lie algebroids are compatible with localization; that is,

the localization of a Lie algebroid naturally has a Lie algebroid structure. To wit,

let X ′ be an affine open subscheme of affine X defined by a multiplicative subset

S of OX , and let L′ := OX′ ⊗X L.

Lemma 2.2.4.1. If (X,L) is a Lie algebroid, then (X ′, L′) has a unique Lie alge-

broid structure which is compatible with the inclusion L→ L′.

Proof. For any l ∈ L and s ∈ S, the anchor map defines the derivative of s along l

to be dτ(l)(s). Therefore, there is only one choice for the derivative of s−1 along l,

dτ(l)(s
−1) := −s−2dτ(l)(s)

because dτ(l) must be a derivation. In this way, the anchor map L → TX extends

canonically to an anchor map L→ TX′ . The OX′-module structure on TX′ means

that this map extends uniquely to a map L′ → TX′ .
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Elements in L′ are of the form s−n ⊗ l, for s ∈ S and l ∈ L, and so the

compatibility of the anchor map with the Lie bracket implies that

[s−n ⊗ l, s′−m ⊗ l′] = s−ndτ(l)(s
′−m) · l′ + s′−m[s−n ⊗ l, l′]

= s−ndτ(l)(s
′−m) · l′ − s′−mdτ(l′)(s

−n) · l + s′−ms−n[l, l′]

Since this final expression only depends on the Lie bracket in L, and the extended

anchor map, the Lie bracket on L′ is completely determined.

The above technique for localizing Lie algebroids is clearly compatible with

compositions of localizations, and defines a sheaf of Lie algebroids on X, for X

affine. In the case of X not affine, this local data may be sheafified; we will call

any sheaf of Lie algebroids obtained this way a Lie algebroid on X.

For X affine, and X ′ an affine open subscheme, D(X ′, L′) = OX′⊗XD(X,L) =

D(X,L) ⊗X OX′ . This means that localizing enveloping algebras is the same on

the left and on the right; so from now on we can refer to localizing them without

refering to a side. An OX-bimodule which has the property that left localization

is isomorphic to right localization will be called nearly central; since it means

that as a sheaf on X ×X, it is supported scheme-theoretically on the diagonal.

The universal enveloping algebra of a non-affine Lie algebroid (X,L) will be

defined as the sheaf of algebras D(X,L) which is affine-locally the enveloping

algebra of (X,L). Since enveloping algebras are nearly central, this is a quasi-

coherent sheaf as both a left and right OX-module.

It is worth noting that, while the global sections of a Lie algebroid (X,L) is

again a Lie algebroid (Γ(X),Γ(L)), the global sections of D(X,L) is not necessarily

the enveloping algebra of (Γ(X),Γ(L)). For example, take the tangent bundle on
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P1. The global Lie algebroid is (C, sl2) with trivial anchor map, but the global

sections of DP1 is the algebra Usl2/c, where c is the Casimir element; see e.g. [15]

2.2.5 The Relevance of Lie Algebroids.

While the main objects of interest of this thesis are rings of differential operators

D(X), there are two reasons to care about the larger generality of Lie algebroids.

The first is that all the results presented here are true in this larger generality, and

so there is an argument that can be made for stating things in the largest possible

generality.

The second is that some of the proofs require the larger generality of Lie al-

gebroids. For example, the exactness of the Koszul complex (Theorem 4.2.2.1) is

proven first for abelian Lie algebroids and then deformed to the non-abelian case.

This particular strategy of proof would not work if only the case of differential

operators were considered.

However, because the majority of results and proofs are the same for both

differential operators and other Lie algebroids, the distinction between the two

cases will often be downplayed, with the letter D used to denote either the ring of

differential operators, or the universal enveloping algebra of a Lie algebroid.

2.3 Quotients of Abelian Categories.

In this section, we review the techniques for ‘quotienting’ an abelian category by

a subcategory which is to be sent to zero. For more details, see [31].
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2.3.1 Quotients and Localizing Subcategories.

Given an abelian category C, and a full subcategory L, what is simplest category

C/L with a functor π : C → C/L such that every object in L becomes isomorphic

to the zero object? Such a category C/L is called the the quotient category of

C by L.5 However, the set of subobjects L needs an additional property if the

quotient is to be nice. The full subcategory L is called a dense subcategory of

C if for every short exact sequence

0→ A→ B → C → 0

in C, B is in L if and only if A and C are.

The general idea behind the construction of C/L is this. Consider the set of

morphism ΣL whose kernel and cokernel are in L. Then, let C/L be the category

whose objects are the same as C, but whose morphisms are generated by morphisms

in C and by formal inverses to every morphism in ΣL (this is called the (additive)

localization of C by ΣL). Modulo some concerns about the resulting Homs being

sets, this category can always be defined, and shown to have a universal property

with respect to sending L to zero.

Theorem 2.3.1.1. [31, Thm 4.3.8] Let C be a locally small6 abelian category, and

let L be a dense subcategory. Then there is an abelian category C/L and an exact

functor

π : C → C/L

such that for any other additive functor F : C → D with F (L) ' 0, there is a

5This category is also sometimes called the localization category. The reason for the
seemingly-conflicting terms is that objects in L go to zero (like in quotients of rings), while
morphisms in L and more generally ΣL go to invertible morphisms (like in localizations of rings).

6Locally small here means that, for all X ∈ C, the class of isomorphism classes of monomor-
phisms into X is a set.
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unique additive functor G : C/L → D such that G ◦ π = F . Furthermore, a

morphism π(f) is an isomorphism if and only if f ∈ ΣL.

However, it can be difficult to work in the category C/L, because it is defined

in a very abstract way. Morphisms in C/L are defined as formal fractions of

morphisms in C by those in ΣL. In order to get a more concrete category, it is

often useful to try to embed C/L in the category C, which is typically easier to

work in. The standard way to do this is to ask if the functor π has a right adjoint.

If the functor π : C → C/L has a right adjoint ω, then L is called a localizing

subcategory and ω is called the section functor. If ω exists, then πω is the

identity functor on C/L; hence the name ‘section functor’.

Lemma 2.3.1.1. [31, Prop. 4.5.2] Let L be a dense subcategory of a locally small

abelian category C with enough injectives. Then L is localizing if and only if, for

every M ∈ C, the set of subobjects N ⊆M with N ∈ L has a greatest element.

If L is localizing, then assigning to everyM ∈ C its largest submodule τ(M) ∈ L

is functorial. In fact, the functor τ : C → L is right adjoint to the inclusion functor

ι : L → C (which is exact by the density of L). The functor ιτ will often be

denoted τ when no confusion will arise.

A straight-forward argument shows that an additive functor between two

abelian categories which is a right adjoint is left exact, and left adjoints are right

exact. This has the immediate consequence that the section functor ω and the

maximal L-subobject functor τ are left exact. Since ι is exact, ιτ is also left exact.
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2.3.2 Properties of Quotients.

When L is a localizing subcategory, the quotient cateogry C/L often inherits the

nice properties of C.

Lemma 2.3.2.1. Let L be a localizing subcategory of a locally small abelian

cateogory C. Then C/L has each of the following properties if C has the corre-

sponding property.

1. Enough injectives. [31, Prop 4.5.3]

2. The Ab3 condition. That is, the existence of arbitrary direct sums. [31, Prop.

4.6.1]

3. The Ab4 condition. That is, arbitrary direct sums of short exact sequences

are still short exact. [31, Prop. 4.6.1]

4. The Ab5 condition. That is, the direct limit of a directed family of short exact

sequences is still short exact. [31, Prop. 4.6.1]

5. The existence of a generator. That is, there is some object T such that for

any distinct parallel morphisms f, g : M → N , there is some h : T → M

such that fh 6= gh. [31, Lemma 4.4.8.]

It should be noted that the module category of any ring satisfies these condi-

tions, and hence, so does the localization of any module category.

An important consequence of the Ab5 condition is that it means derived func-

tors are compatible with direct limits.

Proposition 2.3.2.1. Let C have enough injectives, let D be an Ab5-category, and

let Fj : C → D be a direct system of left exact functors. Then for all i and all
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M ∈ C,

lim−→RiFj(M) = Ri
(
lim−→Fj(M)

)
Proof. The Ab5 condition says that direct limits of short exact sequences are short

exact. As an immediate consequence, the ith cohomology of a direct limit of

complexes is the direct limit of the ith cohomology of the complexes.

Let I• be an injective resolution of M . Then

lim−→RiFj(M) = lim−→H i(Fj(I
•)) = H i(lim−→Fj(I

•)) = Ri(lim−→Fj(M))

Thus, it is proven.

2.4 Derived Categories.

To any abelian category A, we can define the corresponding derived category

D(A), which will be a quotient of the category of chain complexes in A. The

underlying idea behind the study of derived categories is that the cohomology of

a chain complex is slightly too weak an invariant of the chain complex. We wish

to instead identify two chain complexes when there is a chain map which induces

an isomorphism on the cohomology; call such a map a quasi-isomorphism. Of

course, by transitivity, this means we will ultimately identify chain complexes C

and D where there are a chain of intermediate complexes Ii and a diagram of

quasi-isomorphisms

C → I0 ← I1 → ...← In → D

We then say that C and D are quasi-isomorphic.
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All complexes will be cohomological, and denoted by superscripts. Shifts in

the grading of complexes will be denoted by hard brackets [i]. For more details on

derived categories, see [13].

2.4.1 Derived Categories.

We review the standard construction of the derived category of A, by passing

through the homotopy category. Let Com(A) denote the category of chain com-

plexes in A. Let Com+(A) be the full subcategory of complexes whose cohomology

vanishes in sufficiently low degree, Com−(A) the full category of complexes whose

cohomology vanishes in sufficiently high degree, and

Comb(A) := Com+(A) ∩ Com−(A)

Each of these categories is an abelian category in a natural way.

To each of these categories Com?(A), we associate a new category K?(A) with

the same objects, but where a morphism is given by a homotopy class of chain

maps between two complexes; these are called homotopy categories. These new

categories are very similar to the old categories, with one crucial exception: they

are no longer abelian. They are still additive categories, but because an injective

map may be homotopic to a non-injective map, it no longer makes sense to speak

of kernels, cokernels or images. A new structure has replaced these old ones that

still contains information of exactness; that of exact triangles.

To any chain map f : A→ B, there is a chain complex Mf called the mapping

cone of f given by

M i
f = Ai+1 ⊕Bi
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and differential

diMf
=

 dA 0

f i+1 dB


There are then natural chain maps B → M f and M f → A[1], which fit together

into a diagram

A→ B →Mf → A[1]

called a ‘distinguished triangle’. We then call any diagram

A→ B → C → A[1]

isomorphic to a distinguished triangle an exact triangle.

Now, to each of these categories K?(A), define the derived category D?(A)

to be the localization of the category on the set of quasi-isomorphisms. That is,

D?(A) is the universal additive category such that any map of additive categories

K?(A) → C factors through the map K?(A) → D?(A). The objects of D?(A)

are still complexes; however, a map between two complexes C and D in Db(A)

is given by a map between two complexes C ′ and D′ which are quasi-isomorphic

to C and D, respectively. This means that we can freely replace a complex by a

quasi-isomorphic one.

The categories D?(A) still have a notion of exact triangle, which is still defined

as any triangle isomorphic to a distinguished triangle; however, because more

complexes are isomorphic, more triangles are exact. For any object C ∈ D?(A), we

can consider its ith cohomology H i(C) ∈ A; this is well-defined because equivalent

complexes will all be quasi-isomorphic. For any exact triangle in D?(A),

A→ B → C → A[1]

there is an associated long exact sequence in A of cohomologies

· · · → H i−1(C)→ H i(A)→ H i(B)→ H i(C)→ H i+1(A)→ · · ·
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Often, one has a pair of derived categories a ⊂ A, where the category a has

nice finiteness properties but the category A has enough injectives. For example,

when R is a ring, we have the abelian categories mod(R) ⊂ Mod(R) of finite R-

modules and all R-modules. In these cases, it is customary to denote by D?(a) the

subcategory of D?(A) of complexes whose cohomology is in a. This allows us to

replace objects in a with their injective resolutions, even though such a resolution

might not have the right finiteness properties.

2.4.2 Derived Functors.

The abelian categoryA sits inside D?(A) by associating to A ∈ A the complex with

A concentrated in degree 0. Short exact sequences in A give rise to exact triangles

in D?(A). As an object in the derived category, an object A is isomorphic to any

complex whose cohomology is A; in particular, any resolution of A is isomorphic

to A. This means we can freely replace A by any resolution, which allows for many

homological constructions to arise naturally.

Now let us assume that A has enough injective objects. Then, every complex

in Com+(A) can be resolved by an injective complex; that is, there is a quasi-

isomorphic complex with entirely injective objects.

Lemma 2.4.2.1. [13, Coro. 2.7] Let I ∈ Com+(A) be an injective complex, and

A any complex in Com+(A). Then HomK+(A)(I, A) ' HomD+(A)(I, A); that is,

every map I → A in the derived category comes from a homotopy class of chain

maps I → A.

Therefore, D+(A) ' K+(Inj(A)), where K+(Inj(A)) is the homotopy cate-

gory of bounded below injective complexes.
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Thus, we can compute the maps HomD+(A)(A,B) by resolving A by an injective

complex, and finding homotopy classes of maps.

Now let F : A → B be a left exact functor between two exact categories. This

gives the derived functor

RF : K+(Inj(A))→ K+(B)

given by directly applying to the terms in the complex. This induces a map of

derived categories, which we also call RF ,

D+(A)→̃K+(Inj(A))→ K+(B)→ D+(B)

In practice, RF (A) is computed by finding an injective resolution I of A, applying

F to that resolution, and considering the derived object F (I). If A ∈ A, then

define the ith derived functor

RiF (A) := H i(RF (A))

Under mild hypotheses on two left exact functors F and G, the composition

derives well: R(F ◦ G) = RF ◦ RG. Explicit computations of these compositions

can often be technically complicated; this a philosophical origin of the study of

‘spectral sequences’, a subject we will pass by in respectful silence.

Derived functors take exact triangles to exact triangles; that is, if we have an

exact triangle in D+(A)

A→ B → C → A[1]

then we have an exact triangle

RF (A)→ RF (B)→ RF (C)→ RF (A)[1]
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Then, for any short exact sequence in A, there is a corresponding long exact

sequence of the ith derived functors applied to that sequence.

An important example of a derived functor is RHom. Given an object M ∈

Db(A), the functor HomDb(A)(M,−) is left exact, and so RHomDb(A)(M,−) may

be defined, as above. For N ∈ Db(A), we define RHomDb(A)(M,N) to be this

functor, evaluated on N . A priori, this is a functor to the category of abelian

groups, but if A or M has extra structure, this functor can be defined in a richer

category.

One could also consider the functor RHomDb(A)(−, N), which is a left exact

functor on Db(Aop), and so it can be derived. We might worry that this would

give a second, competiting definition of RHomDb(A)(M,N). However, this is the

same object; that is,

[
RHomDb(mathcalA)(M,−)

]
(N) =

[
RHomDb(A)(−, N)

]
(M)

This is referred to as the ‘balanced property of RHom’ or, on cohomology, as the

‘balanced property of Ext’. A proof of it can be found in [36].

In general, RF does not send objects in Db(A) to objects in Db(B). We say F

has finite homological dimension when there is some i such that for all j ≥ i

and A ∈ A, Rj(A) = 0. In this case, RF sends Db(A) to Db(B). In the case that

A has finite global dimension, then every left exact functor has finite homological

dimension.

When the category A has enough projectives, the dual statements to all the

above theory hold. Bounded above complexes may be replaced by projective com-

plexes, and right exact functors G : A → B may be applied to these complexes to

get left derived functors LG.
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Identities which hold for a class of objects in A will often hold in the derived

category for objects that can be resolved by complexes of those objects, where

functors have been replaced by their derived analogs. If R is a Noetherian ring of

finite global dimension, then every object in mod(R) has a finite resolution by finite

projectives, and so many of the best theorems that only hold for finite projectives

hold here. Let M ∈ Db(mod(R)), N,N ′ ∈ Db(Mod(R)) and B ∈ Db(Bimod(R)).

• (Reflexivity) RHomR(RHomR(M,R), R) 'M .

• (Dual Factoring) RHomR(M,N) ' RHomR(M,R)⊗L
R N .

• (Hom−⊗ Adjunction) RHomR(B⊗L
RN,N

′) ' RHomR(N,RHomR(B,N ′)).

In an arbitrary abelian category, there might not be a notion of ‘finitely-generated’.

However, this can be replaced by the notion of a compact object; an object A ∈ A

is compact if HomA(A,−) commutes with arbitrary direct sums. Note that in

a module category, the compact objects are exactly the finitely generated ones.

An object in Db(A) is called perfect if it is quasi-isomorphic to a finite complex

of compact projective objects; the full subcategory of perfect objects is written

Perf(A). Then Reflexivity and Dual Factoring hold in Perf(A).

2.4.3 Tilting and Derived Equivalence.

Another advantage of studying derived categories is that two very different-seeming

abelian categories A and B can have equivalent derived categories, and that this

equivalence is describing a hidden relation between the two categories. A particular

striking example is given as follows.
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Let Coh(P1
C) be the category of coherent sheaves on P1

C. Let Q denote the 4-

dimensional C-algebra spanned by elements e0, e1, x and y, with the multiplication

e2
0 = e0, e2

1 = e1, e1x = xe0 = x, e1y = ye0 = y

and all other products zero. Then

Theorem 2.4.3.1. [4] Db(Coh(P1
C)) and Db(mod(Qop)) are equivalent.

The algebra Q is an example of a quiver algebra, which we won’t define here.

For larger n, Db(Coh(PnC)) is equivalent to the category of finite modules of a

finite-dimensional algebra Qn called the Beilinson algebra. This means that any

homological problem involving coherent sheaves on PnC can be translated into a

homological problem in the modules of a finite-dimensional algebra; or as Beilinson

puts it, into a linear algebra problem.

Derived equivalences of this sort often arise in a uniform way. Start with a

derived category Db(A), and produce a compact object T such that

1. Every object can be resolved by a finite complex consisting of finite sums of

summands of T .

2. For i > 0, ExtiA(T, T ) = 0.

3. End(T ) := HomA(T, T ) is a Noetherian algebra.

In such a case, we say T is a tilting object, and we have

Theorem 2.4.3.2. ([2],[11]) Let T be a tilting object in the category A. Then the

derived functor

RHomA(T,−) : Db(A)→ Db(mod(End(T )op))

is an equivalence of categories, with inverse functor T ⊗L
End(T ) −.
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CHAPTER 3

PROJECTIVE GEOMETRY.

In this chapter, we discuss the algebraic geometry of graded algebras. For a com-

mutative algebra A, a grading can be interpreted as a C∗-action on the spectrum

Spec(A). The space Proj(A) is then the scheme of faithful C∗-orbits, which has

almost all the information of A, losing only the information of the fixed-point set in

Spec(A). The category of quasi-coherent modules on Proj(A) can be constructed

directly from the category of graded A-modules.

For non-commutative graded algebras, the absence of the scheme Spec(A) pre-

vents the above construction from working. However, it is still possible to construct

a category which mimics the category of quasi-coherent modules on Proj(A). It is

this category which is the central object of study in the sequel. It was introduced

by Artin and Zhang in [1], who also proved several basic and important results.

One of the more compelling aspects of this approach is the way geometric construc-

tions and intuition can still remain valid, even in the absence of a corresponding

scheme.

We apply this general construction to the study of D, to construct a category

QGr(D̃) which emulates the category of quasi-coherent modules on Proj(D). A

reoccurring theme in the study of QGr(D̃) is that it behaves like a Pd-bundle over

X. It should be regarded as a non-commutative analog of a fiberwise compactifi-

cation of Spec(D), thought of as a bundle over X.
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3.1 Commutative Projective Geometry.

For this section, let A be a regular-graded commutative k-algebra. We review the

standard construction of the scheme Proj(A), references can be found at, e.g. [19,

pg. 160].

3.1.1 The Scheme.

Define an action of C∗ on A as follows. For λ ∈ C∗ and a a non-zero homogeneous

element in A, define

λ · a := λdeg(a)a

It is immediate that this defines a group action of C∗ on A, acting by algebra

automorphisms. By the functoriality of Spec, this gives a group action of C∗ on

Spec(A).1

Conversely, if Y is an affine scheme with an algebraic action of C∗, it defines an

action of C∗ on OY . Let (OY )i denotes the subspace of OY consisting of functions

f such that λ · f = λif for all λ ∈ C∗, and let

ŎY := ⊕i∈Z(OY )i

This algebra is naturally graded, and when X is of finite type over C, we have that

ŎY = OY . Thus, the study of commutative graded algebras is closely related to

the study of schemes with a C∗-action.

We now define a scheme Proj(A) which is meant to parametrize faithful C∗

orbits in Spec(A). Let A>0 denote the ideal of A spanned by elements of strictly

1Technically, this is a group action of the opposite group (C∗)opp. However, because C∗ is
commutative, we implicitly identify it with its opposite group.
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positive degree, called the irrelevant ideal.

• Let Proj(A) denote the set of homogeneous prime ideals which do not contain

A>0.

• For any homogeneous ideal I ⊂ A, the set of homogeneous prime ideals V (I)

which contain I defines a closed subset of Proj(A); extend this to define the

Zariski topology on Proj(A).

• For any homogeneous prime ideal I which doesn’t contain A>0, the com-

plement (V (I))c is a basic open set of Proj(A). Define a sheaf OProj(A)

on Proj(A) which, on (V (I))c, is (AI)0, the degree zero subspace of the

localization of A at the prime ideal I.

This defines a locally-ringed space, which can be shown to be a scheme [19, Prop

2.5.]. Furthermore, the natural map of algebras A0 → A induces a natural map of

schemes

Proj(A)→ Spec(A0)

In the case that A is finitely-generated over A0, this map is projective, in the sense

that it can be expressed as a composition

Proj(A) ↪→ Spec(A0)×k Pik → Spec(A0)

for some i large enough, and this composition is a proper morphism [19, Prop.

7.10].

3.1.2 The Module Category and the Serre Equivalence.

In the same way that a quasi-coherent sheaf πN on Spec(A) maybe be assigned to

an A-module N , there is a way to assign a quasi-coherent sheaf πM on Proj(A)
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to any graded A-module M . However, in contrast with the affine case, this con-

struction is not an equivalence of categories; some graded modules M are sent to

zero by this construction.

Let Qcoh(Proj(A)) denote the abelian category of quasi-coherent sheaves of

modules on Proj(A). To any gradedA-moduleM , there is a natural quasi-coherent

sheaf πM on Proj(A). For a homogeneous prime ideal I, let πM |(V (I))c be (AI ⊗A

M)0, the degree zero part of the localization of M at I, and extend this to a sheaf

πM on Proj(A). By definition, πA = OProj(A).

This construction defines an exact functor

S : Gr(A)→ Qcoh(Proj(A))

Some modules are killed by S. Call M a A>0-torsion module if, for every element

m ∈M , there is some i� 0 such that (A>0)i ·m = 0. A module is A>0-torsion if

and only if SM = 0.

Let Tors(A) denote the full subcategory of Gr(A) consisting of A>0-torsion

modules. Since every object in Gr(A) has a maximal A>0-torsion submodule, the

subcategory Tors(A) is a localizing subcategory in the sense of Section 2.3. Define

the quotient category

QGr(A) := Gr(A)/Tors(A)

Then by the universality of quotient categories (Theorem 2.3.1.1), the functor S

descends to a functor

S ′ : QGr(A)→ QCoh(Proj(A))

Theorem 3.1.2.1 (The Projective Serre Equivalence). Let A be a regular-graded

commutative k-algebra. Then the functor S ′ is an equivalence of abelian categories

QGr(A) →̃ QCoh(Proj(A))
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This equivalence allows many constructions in the graded category to be defined

geometrically in QCoh(Proj(A)). Define the ith Serre twist (πM)(i) of πM ∈

QCoh(Proj(A)) to be π(M(i)); this has a geometric construction not needed here.

Continuing in this vein, for M,N ∈ QCoh(Proj(A)), define

HomQCoh(Proj(A))(M,N ) :=
⊕
i∈Z

HomQCoh(Proj(A))(M,N (i))

Because Tors(A) is a localizing subcategory, there is a right adjoint to S

ω : QCoh(Proj(A)) →̃ QGr(A)→ Gr(A)

which sends Serre twists to shifts. The meaning of this functor is easy to deduce.

For M∈ QCoh(Proj(A)), the ith graded component of ω(M) is equal to

HomGr(A)(A, (ω(M)(i))) = HomGr(A)(A, (ω(M(i))))

= HomQCoh(Proj(A))(πA,M(i))

= Γ(M(i))

Here, Γ is the global sections functor HomQCoh(Proj(A))(OProj(A),−). Therefore,

ω(M) is the sum over all i of the global sections of M(i); hence, we call it the

graded global section functor.

Since ω is a right adjoint functor, it is left exact, and so it can be right derived.2

The sheaf cohomology functors H i in algebraic geometry are the right derived

functors of the global section functor; therefore, the groups Riω(M) collect all

the sheaf cohomology groups, summed over all twists. As such, the functors Riω

should be thought of as graded cohomology functors.

2Technically, to justify the ability to derive functors, we should prove that QCoh(Proj(A))
has enough projectives or enough injectives. The category (famously) does not have enough
projectives, but it does have enough injectives.[19, Caution 6.5.2.]
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3.1.3 Filtrations in Commutative Projective Geometry.

Projective geometry is useful for shedding light on the intrinsic geometric meaning

of a grading on an algebra. Through the Rees construction, it can also be used to

understand the geometric meaning of a filtration on an algebra.

Let A be an exhaustive, positively-filtered commutative algebra over k. The

natural quotient map of graded algebras Ã→ A induces a closed inclusion

Proj(A) ↪→ Proj(Ã)

The closed subscheme is defined by a single equation, so it is a hypersurface.

Now consider the localization Ã[t−1] of Ã at t; that is, adjoining an inverse of

t. The map Ã[t−1]→ A which sends t to 1 induces an isomorphism

Spec(A) →̃ Proj(Ã[t−1])

which can be seen by showing that every homogeneous prime ideal in Ã[t−1] is

induced from some prime ideal in A.

So, the localization map Ã→ Ã[t−1] which sends t to 1 induces an open inclu-

sion

Spec(A) →̃ Proj(Ã[t−1]) ↪→ Proj(Ã)

Then the following proposition reveals the geometric nature of filtrations.

Proposition 3.1.3.1. The closed subscheme Proj(A) of Proj(Ã) is the comple-

ment of the open subscheme Spec(A).

Therefore, a filtration defines a way of adding a closed hypersurface to Spec(A).
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This correspondence can go the other way, as well. If X is a scheme with a

closed hypersurface X∞ such that X\X∞ is affine, then OX\X∞ can be filtered by

assigning an order to a function f given by the order of its pole along X∞ in the

function field of X. Provided X∞ contains no irreducible components of X, then

X = Proj(ÕX\X∞)

A relevant example of this comes from vector bundles over an affine scheme.

Let Spec(R) be some affine scheme, and let V be some vector bundle of rank r

over Spec(R). The total space of this vector bundle can be realized as the affine

scheme

Spec(SymR(Γ(V ))∗)

where SymR denotes the symmetric tensor algebra over R, and (Γ(V ))∗ denotes

the R-dual of the global sections of V . The ring SymR(Γ(V ))∗ is naturally graded

by word-length, and so it is filtered by the forgetful filtration (ie, the order of an

element is its graded degree). Then taking the Rees algebra and then Proj defines

a scheme V̂ . We have a diagram

V ↪→ V̂

↓ ↓

Spec(R) ' Spec(R)

The k-fibers of the left map are k-vector spaces of dimension r. The k-fibers of the

right map are copies of Prk. Therefore, V̂ is the fiberwise projective compactification

of V . This idea will be important later, in the non-commutative setting.

While adding extra pieces to an affine scheme might seem like it makes the

situation more complicated (for instance, non-affine), there are two reasons for

doing this. First, if an algebra A has a natural filtration, it would be morally
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reprehensible to ignore this extra information completely. Second (and less moral-

istic), certain aspects of the study of projective schemes are simpler than the study

of affine schemes. In particular, affine schemes and their modules typically have

infinite-dimensional spaces of global sections, and no higher cohomology. Pro-

jective schemes over R and their modules, however, often have finitely-generated

global sections and non-trivial cohomologies, which will be used extensively (see,

Serre Finiteness in 4.2.5).

3.2 Noncommutative Projective Geometry.

If A is a non-commutative algebra, then there is no general consensus as to what

sort of object Spec(A) should be, or even if can exist at all. However, instead of

trying to build a locally ringed space to call Spec(A), we can simply work with

the category Mod(A), thought of as the category of quasi-coherent sheaves on the

non-existent Spec(A). Since most questions one might ask about a scheme can be

restated as a question about its category of modules, this allows many questions

of a geometric flavor to be answered.

If A is positively-graded, then the similar complaints will prevent the construc-

tion of a scheme Proj(A). As above, we can bypass the need for a space Proj(A)

and instead concern ourselves with its category of modules. The projective Serre

equivalence provides a recipe for what this category should be.
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3.2.1 The Categories QGr(A) and qgr(A).

Let A be a positively-graded algebra. Let Gr(A) be the category of graded left

A-modules, and let Tors(A) be the full subcategory of modules such that, for every

m ∈ T ∈ Tors(A), A≥n · m = 0 for some n. Let gr(A) denote the category of

finitely generated graded left modules, and tors(A) := gr(A) ∩ Tors(A). Then

Tors(A) (resp. tor(A)) is a localizing subcategory of Gr(A) (resp. gr(A)), and so

we define

QGr(A) := Gr(A)/Tors(A)

qgr(A) := gr(A)/tors(A)

For not-necessarily commutative A, we will think of QGr(A) :=

Gr(A)/Tors(A) as the category of quasi-coherent modules on the undefined space

Proj(A). This perspective was first put forward by Artin and Zhang in [1], which

also proved the majority of the results in this section.

The quotient functor π : Gr(A)→ QGr(A) is exact, by Thm 2.3.1.1. As a rule

of thumb, M,N ,O, ... will denote objects in QGr(A) without a specific choice of

preimage under π in mind, while πM, πN, πA, ... will denote objects in QGr(A)

where a specific pre-image has been chosen or emphasized.

The shifting functors descend to functors on QGr(A) which are the non-

commtutative analogs of the Serre twists; however for simplicity they will still

be called ‘shifts’. The graded Hom is well-defined, by

HomQGr(A)(M,N ) :=
⊕
i∈Z

HomQGr(A)(M,N (i))

The category QGr(A) has enough injectives (Lemma 2.3.2.1); however, qgr(A)

does not. This makes attempts to make homological constructions work in qgr(A)
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almost impossible, and is the main justification for working with the larger category

QGr(A), even though the interesting objects of study typically lie in qgr(A).

3.2.2 The Graded Global Section Functor.

Because Tors(A) is localizing, the quotient functor π has a right adjoint ω :

QGr(A)→ Gr(A) which is left exact. The same as the commutative case,

ω(M) = HomGr(A)(A, ω(M)) = HomQGr(A)(πA,M)

and so ω(M) should be regarded as the graded global section functor.

Since it is a right adjoint, it is left exact, and so it can be right derived. The

functors Riω are the graded cohomology functors. More generally, we have a

derived functor

Rω : D(QGr(A))→ D(Gr(A))

which is right adjoint to the quotient functor π : D(Gr(A)) → D(QGr(A)). For

anyM∈ QGr(A), we have that πω(M) =M, and so it follows that π(Rω(M)) =

M in the derived category.

If A is left Noetherian, then the composition ωπ(M) can be computed as a

limit [1, pg. 234]

ωπ(M) = lim
→
HomGr(A)(A≥n,M)

Because graded module categories are Ab5 (see Section 2.3), the higher derived

functors can also be computed as limits (by Prop 2.3.2.1)

Riωπ(M) = lim
→
ExtiGr(A)(A≥n,M)
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Again in the case of A left Noetherian, there is a more useful definition of

Rωπ(M).

Lemma 3.2.2.1. Let A be left Noetherian. For M ∈ Gr(A), there is an isomor-

phism in D(Gr(A)):

Rωπ(M) ' Rωπ(A)⊗L
AM

Proof. This follows from the isomorphisms

RHomGr(A)(A≥n,M) ' RHomGr(A)(A≥n, A)⊗L
AM

by taking homologies and passing to the limit.

Applying this for M = Rωπ(A),

Corollary 3.2.2.1. There is an isomorphism in the derived category:

Rωπ(A)⊗L
ARωπ(A) ' Rωπ(Rωπ(A)) = Rωπ(A)

Proof. The first isomorphism is the preceding lemma, and the second follows from

π ◦ Rω = Id.

3.2.3 The Torsion Functor.

Every module M ∈ Gr(A) has a maximal submodule τ(M) in Tors(A), called the

torsion of M [1, pg.233]. Since Tors(A) is a subcategory of Gr(A), the object

τ(M) can be thought of either in Tors(A) or in Gr(A), and the difference will

rarely be noted. It can be explicitly defined by

τ(M) := lim
→
HomGr(A)(A/A≥n,M)
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where the left A-module structure on τ(M) comes from the right A-module struc-

ture on A/A≥n.

The torsion τ is a left exact functor, and its derived functors Riτ(M) coincide

with the ith local cohomology of M at the ideal A≥1, when A is generated in degree

0 and 1. As for ω, the higher derived functors can be computed as limits

Riτ(M) = lim
→
ExtiGr(A)(A/A≥n,M)

If A is left Noetherian, the defining inclusion τ(M) ↪→ M and the adjunction

map M → ωπ(M) fit together to give an exact triangle in D(Gr(A)) [1, pg. 241]:

Rτ(M)→M → Rωπ(M)→ Rτ(M)[1] (Torsion)

It is important enough to name; call this the torsion exact triangle.

Of course, the higher derived functors of the identity functor vanish, and so

the higher cohomologies of the middle term in the torsion exact sequence are zero.

Taking the long exact sequence of cohomology, we have an exact sequence

0→ τ(M)→M → ωπ(M)→ R1τ(M)→ 0

and isomorphisms Riωπ(M) ' Ri+1τ(M) for i ≥ 1. Since Ri+1τ(M) ∈ Tors(A),

the higher cohomology functors Riωπ(M) are torsion for i > 0.

In the case that the graded components Ak are f.g. projective A0-modules, then

the derived functors ExtiA(A/A≥i,M) can be built up out of copies of the simpler

derived functors ExtiA(A0,M). In particular, the vanishing of the latter implies

the vanishing of the former.

Lemma 3.2.3.1. Assume that Ak is a f.g. projective A0-module for all k. Let

M ∈ Gr(A), and let i and j be integers such that(
ExtiGr(A)(A0,M)

)
≥j

= 0
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Then (Riτ(M))≥j = 0. In particular, if ExtiGr(A)(A0,M) = 0, then Riτ(M) = 0.

Proof. For any k, there is a short exact sequence of A-modules:

0→ Ak(−k)→ A≤k → A≤k−1 → 0

where Ak(−k) is the left A0-module Ak concentrated in degree k, and given an

A-module structure by allowing A≥1 to act trivially. Applying HomGr(A)(−,M)

to this sequence gives an exact triangle of derived objects

RHomA(A≤k−1,M)→ RHomA(A≤k,M)→ RHomA(Ak,M(k))→

By adjunction,

RHomA(Ak,M) = RHomA(A0 ⊗A0 Ak,M)

= RHomA0(Ak,RHomA(A0,M))

= RHomA0(Ak, A0)⊗L
A0

RHomA(A0,M)

= HomA0(Ak, A0)⊗A0 RHomA(A0,M)

In particular, if ExtiA(A0,M) vanishes in degree j, then for all k, the space

ExtiA(Ak,M) vanishes in degree j.

Considering now the long exact sequence of cohomology coming from the above

exact triangle, we observe that the natural map

ExtiA(A≤k−1,M)→ ExtiA(A≤k,M)

is a surjection in degree j if ExtiA(A0,M) vanishes in degree j + k.

Now assume that ExtiA(A0,M)≥j = 0. Then for any j′ > j, we have a system

of surjections

ExtiA(A0,M)j′ → ExtiA(A≤1,M)j′ → ...→ ExtiA(A≤k,M)j′ → ...
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However, the first term ExtiA(A0,M)j′ vanishes by assumption, and so the whole

system vanishes. This implies the limit

Riτ(M)j′ = lim−→ExtiA(A≤k,M)j′ = 0

for all j′ > j.

The proof also implies a weaker vanishing result in negative degrees.

Corollary 3.2.3.1. Let A be as above. Let M ∈ Gr(A) and let i and j be such

that (
ExtiGr(A)(A0,M)

)
≤j

= 0

Then ∀k, (
ExtiGr(A)(A≤k,M)

)
≤j−k

= 0

3.2.4 The χ-condition.

There is an important technical condition which controls the size of the modules

ExtiGr(A)(A/A≥n,M) which approximate the torsion of M .

Definition. [1, pg. 243] A module M ∈ Gr(A) is said to satisfy the χ-condition

if, for all d and all i, there is an n0 such that for all n ≥ n0, ExtiGr(A)(A/A≥n,M)≥d

is a finitely-generated A module.

If every finitely-generated A-module M satisfies the χ-condition, we say A sat-

isfies the χ-condition.

The χ-condition is relatively easy to satisfy; the Rees ring D̃ will satisfy it

(Lemma 4.2.5.2). We then have the following theorem.
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Theorem 3.2.4.1. [1, pg. 273] Let A be left Noetherian and satisfy χ, and let

M ∈ gr(A). Then, for all i ≥ 1, the dth graded component of the ith graded

cohomology Riωπ(M)d is a finitely generated A0-module for all d, and is zero if d

is sufficiently large.

3.3 Projective Geometry of D̃.

We now focus on the projective geometry of D̃. As above, let QGr(D̃) and qgr(D̃)

denote the categories Gr(D̃)/Tors(D̃) and gr(D̃)/tors(D̃), respectively. We know

that D and D are Noetherian rings with no zero divisors, which are generated in

degrees zero and one, and so the same is true of D̃.Therefore, the results of the

previous section are valid for D̃. Note, however, that D̃ is no longer simple, it has

two-sided ideals of the form D̃≥n.

3.3.1 Behavior at Infinity.

The ring D is commutative, and by the PBW theorem, it is isomorphic to SymXL.

Therefore, Spec(D) is the dual vector bundle L∗, and so Proj(D) is the space P(L∗)

of 1-dimensional subspaces of fibers of L∗.

Geometrically, the Rees algebra D̃ is defining a slightly larger space QGr(D̃)

than the filtered algebra D. There is the extra hyperplane defined by t; this will

be referred to as the hyperplane at infinity, QGr(D̃). However, because D is

commutative, the category QGr(D̃) is the category of modules on an honest-to-

God scheme P(L∗). This allows the conceptual geometry of QGr(D̃) to be linked

to the actual geometry of QGr(D̃).
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The quotient map of graded algebras D̃ → D̃/〈t〉 ' D defines pullback, push-

forward, and exceptional pullback functors.

i∗∞ : Gr(D̃)→ Gr(D), i∗∞(M) = DDD̃ ⊗D̃M

i∞∗ : Gr(D)→ Gr(D̃), i∞∗(N) = HomD( DDD̃, N) = D̃DD ⊗D N

i!∞ : Gr(D̃)→ Gr(D), i!∞(M) = HomD̃( D̃DD,M)

Each of these functors sends Tors(D̃) to Tors(D) or vice versa, and so they each in-

duce functors between the corresponding quotient categoriesQGr(D̃) andQGr(D̃);

these functors will be denoted by the same symbol by abuse of notation.

In Gr(D̃), the multiplication-by-t map D̃(−1) → D̃ fits into a short exact

sequence

0→ D̃(−1)→ D̃ → D → 0

Applying the exact functor π gives

0→ πD̃(−1)→ πD̃ → πD → 0

More generally, let M be a filtered D-module. Then multiplication-by-t in M̃ is

an inclusion, so there is a short exact sequence

0→ M̃(−1)→ M̃ →M → 0

Applying π gives

0→ πM̃(−1)→ πM̃ → πM → 0

By applying Rω to this short exact sequence, we get the infinity exact triangle

which will come up frequently.

RωπM̃(−1)→ RωπM̃ → RωπM → RωπM̃(−1)[1] (Infinity)

The utility of this exact triangle is that it allows us to relate RωπM̃ , the coho-

mology we wish to study, to RωπM , which is a cohomology computation on the

scheme P(L∗).
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3.3.2 Ideals.

So far, the driving force in the study of the projective geometry of D̃ has been the

study of one-sided ideals in rings of differential operators on X. This idea was first

introduced by Le Bruyn [24] in the case ofD(A1) (the first Weyl algebra), though he

uses a different filtration and hence a different theory of projective geometry. These

ideas were expanded by Berest and Wilson [9], [10] and interpreted in terms of A∞-

algebras by Berest and Chalykh [6]. Ben-Zvi and Nevins [5] then reinterpreted the

A∞ classification of Berest and Chalykh in terms of the filtration and projective

geometry featured here, also generalizing to the case of an arbitrary smooth curve

X, paralleling results obtained by Berest and Chalykh [7] using more directly

algebraic methods.

One of the main reasons ideals in rings of differential operators are interesting

is because of the following classic result of Stafford.

Theorem 3.3.2.1. [35] Let D be the ring of algebraic differential operators on An
C

(n-dimensional affine space), and let M be a projective D-module. Then either M

is a free D-module, or M is isomorphic to a left ideal in D.

This means that every interesting projective D-module is given by some ideal,

when D is the ring of differential operators on An. The analog of Stafford’s theorem

for an arbitrary smooth affine irreducible X is still an open question.

Since we are interested in ideals as modules, two ideals will be consider equiv-

alent if there is an isomorphism between them as D-modules. Two equivalent

ideals will have filtrations that differ by a shift. The following lemma shows that

an ideal I can be recovered up to isomorphism from πĨ.
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Lemma 3.3.2.1. Let I be a left ideal in D, with its natural filtration inherited

from D. Then ωπĨ = Ĩ.

Proof. Recall the Torsion exact sequence (Section 3.2.3)

0→ τ(Ĩ)→ Ĩ → ωπ(Ĩ)→ R1τ(Ĩ)→ 0

Thus, it will suffice to show that τ(Ĩ) = R1τ(Ĩ) = 0. Showing τ(Ĩ) = 0 is easy.

After all, an element of τ(Ĩ) is an element in Ĩ which is killed by every element in

D̃ of sufficiently high degree. However, D has no zero-divisors, so such an element

must be zero.

Showing R1τ(Ĩ) = 0 is harder. Recall that

R1τ(Ĩ) = lim
n→∞

Ext1
gr(D̃)

(D̃≤n, Ĩ)

Since D̃ is a projective module over itself, the above ext groups can be computed

using the resolution:3

0→ D̃≥n+1 → D̃ → D̃≤n → 0

Therefore,

Ext1
gr(D̃)

(D̃≤n, Ĩ) = Homgr(D̃)(D̃≥n+1, Ĩ)/Homgr(D̃)(D̃, Ĩ)

So the theorem follows if it can be shown that every graded D̃-module map f :

D̃≥n → Ĩ extends to a graded D̃-module map f̂ : D̃ → Ĩ.

Let f be such a map of degree i. Let σ ∈ D̃n−1. Then tσ ∈ D̃n (it is the

same differential operator, thought of in one higher degree). The goal is to show

that f(tσ) ∈ t · Ĩ(n+i−1). Let σ′ be any element in D1, the first order differential

3It isn’t necessarily true that D̃≥n is projective; to compute the n-th right derived functor of
some object, one only needs a resolution which is projective in the first n steps. [36]
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operators. Then

σ′f(tσ) = f(σ′tσ) = f(tσ′σ) = tf(σ′σ)

Notice that f(σ′σ) ∈ Ĩn+i ⊂ D̃n+i, so it is a (n+ i)-th degree differential operator.

This means that f(tσ) ∈ Ĩn+i ⊂ D̃n+i is a differential operator such that left

multiplication by any first order differential operator is of degree at most n + i.

Therefore, f(tσ) must be of degree at most n + i − 1. Since the filtration on

I is inherited from the inclusion into D, the differential operator f(tσ) must be

(I)n+i−1.

From this construction, one concludes that any map f : D̃≥n → Ĩ can be

extended to a map f ′ : D̃≥n−1 → Ĩ, and so by induction it can be extended to a

map f̂ : D̃ → Ĩ. Thus, the above Ext groups vanish, and so R1τ(Ĩ) is zero.

As a consequence, the ideals in D can be classified by classifying their images

in QGr(D̃).

3.3.3 Commutative Analogy.

The reoccurring theme of this thesis is the ways in which D̃ behaves like a regular

graded-local commutative ring, and the ways in which the category QGr(D̃) be-

haves like the category QCoh(PXL∗).4 The main conceptual difference is that D̃ is

not graded-local, and so the subring/module OX plays the role of the ground field

k. Hence, many of the results will be ‘relative’ versions of familiar commutative

results, where k has been replaced by OX . This can be seen in the definition of

the quadratic dual algebra, the relative Frobenius and Gorenstein theorems, the

4Here, PXL∗ is the projectivization of the dual bundle L∗. In the case of differential operators,
this is PXT ∗, the projectivized cotangent bundle.
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‘relative quiver algebras’ that appear in the Beilinson equivalence, and the rela-

tive versions of Matlis, Local and Serre duality. The proofs even adher closely to

standard proofs in the graded-local commutative case.

In some ways, it is not surprising that there would be such similarities to the

commutative case; after all, the theory of non-commutative projective geometry

was designed to replicate the module-theoretic features of commutative projective

geometry. Furthermore, every Lie algebroid is a deformation of an abelian one5,

and when (X,L) is abelian, QGr(D̃) = QCoh(PXL∗). Therefore, the general case

is a deformation of the commutative case.

However, in some ways it is also very surprising how much the category QGr(D̃)

behaves like QCoh(PXL). When D is the ring of differential operators, all modules

of D are quite large. The most straight-forward theorem to this effect is that D

has no finite-dimensional modules; this follows from a trace-based argument. Much

stronger and deeper results are given by studying the characteristic variety of a

D-module M , which can be defined as the support of any ‘good’ deformation of M

to a module on the commutative scheme T ∗. Then Bernstein’s Inequality asserts

that

dim(Char(M)) ≥ dim(X)

while Gabber’s Theorem [17] states that Char(M) is always a coisotropic subva-

riety of the symplectic variety T ∗ (the latter theorem implies the former). This

means that while the two categories QGr(D̃) and QCoh(PXL∗) are deformations

of each other, it is very far from being true that every module on PXL∗ deforms

to an object in QGr(D̃).

This difference also manifests itself in the difference in homological dimension;

5Simply scale the bracket and anchor map to zero.
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dim(PXL∗) = 2n−1 while dim(QGr(D̃)) = n (again, this is in the case of differen-

tial operators). From this perspective, it is very surprising that statements about

the whole category QGr(D̃) are the appropriate deformations of the correspond-

ing statements about QCoh(PXL∗). Take, for instance, the Beilinson equivalence

(Theorem 6.1.3.1), which is a derived equivalence to a kind of matrix algebra E;

where the algebra is E is a deformation of the commutative case in the most

obvious way.
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CHAPTER 4

KOSZUL THEORY.

This section will develop the Koszul theory for the algebra D over X. The two

main results of this will be:

• A canonical projective resolution of OX as a left D̃-module, called the left

Koszul resolution.

• For any πM ∈ QGr(D̃), a resolution of πM by objects of the form πD̃(−i)

for i ∈ {0, ...N}, called the Beilinson resolution.

4.1 The Quadratic Dual Algebra.

The key observation is that the definition of the universal enveloping algebra gives

a surjective map TXD1 → D̃, whose kernel is generated by elements of degree 2

in TXD. This is similar to the case of ‘quadratic algebras’, which are quotients of

TkV by degree 2 elements (for k some field and V some k-space). [30]

In the theory of quadratic algebras, there is a notion of the quadratic dual,

which, in the case of special algebras called Koszul algebras, is the same as the

self-Ext algebra of the ground field k. Here, we develop the analogous techniques

in this relative case, and reap the standard rewards.
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4.1.1 The Construction of the Quadratic Dual Algebra.

A relatively quadratic algebra over X is an algebra with a surjective map from

TXB for a OX-bimodule B, whose kernel is generated in degree 2. The following

construction is valid for any relatively quadratic algebra, though the subsequent

properties of the dual algebra will not always be true.

Let R be the OX-bimodule which is the kernel of the map D1 ⊗X D1 → D2.

Note that R is the degree 2 part of the kernel of TXD1 → D̃, which generates the

whole kernel as a two-sided ideal. By the definition of the universal enveloping

algebra, this is the OX-bimodule generated by

∂ ⊗ ∂′ − ∂′ ⊗ ∂ − [∂, ∂′]⊗ 1

for ∂, ∂′ ∈ D1.

From now on, for M any right OX-module, let M∗ denote the left OX-module

Hom−X(M,OX) (as right OX-modules)1; analogously, for M any left OX-module,

let ∗M denote the right OX-module HomX−(M,OX). When M is a OX-bimodule,

M∗ and ∗M are also OX-bimodules, which are potentially non-isomorphic.

Let J i be ∗(Di) , which is called the bimodule of i-jets.2 Since the Di are

finitely generated and projective as right OX-modules, there is an isomorphism

∗(D1 ⊗X D1) ' ∗(D1)⊗X ∗(D1) ' J1 ⊗X J1

The map D1⊗X D1 → D2 then induces an inclusion J2 ↪→ J1⊗X J1, which can be

characterized as the subset of right OX-module maps D1 ⊗X D1 → OX which kill

1Hom−X will denote the Hom as right OX -modules, when there is also a left OX -structure.
Similarly, HomX− will denote the Hom as left OX -modules.

2The reason for the superscript on J i is that it will occur naturally as the degree -i part of
a complex, and so this is in keeping with the convention that superscripts denote cohomological
data.
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R ⊂ D1 ⊗X D1.

Now, let D̃! denote the quotient of the tensor algebra TXJ
1 by the two-sided

ideal generated by J2 as sitting inside the degree 2 part. The algebra D̃! is called

the Koszul dual to D̃, or the quadratic dual algebra.3 In contrast with the usual

notation for graded algebras, the ith graded component of D̃! will be denoted D̃!i.

This is because in Section 4.2.3, it is shown that D̃! = Ext•D̃−(OX ,OX), where Ext

is the graded Ext. Therefore, the grading on D̃! is naturally cohomological, and

deserves a superscript.

4.1.2 The Structure of the Quadratic Dual Algebra.

We now explore the structure of D̃! as an algebra. Recall that L is the Lie algebroid,

and is T in the case of differential operators. Note that J1 fits into a short exact

sequence of OX-bimodules,

0→ L∗ → J1 → OX → 0

The ‘action on 1’ map D → OX is a map of left D-modules. It restricts to a map

of left OX-modules e : D1 → OX , and so it determines an element e ∈ J1 and its

image in D̃!. Since e acts as the identity on OX ⊂ D1, its image under the map

J1 → OX is the identity in OX .

Next, define the L-exterior derivative µ : L∗ → L∗ ⊗X L∗ = (L⊗X L)∗ by

µ(σ)(l ⊗ l′) :=
1

2

[
dτ(l)(σ(l′))− dτ(l′)(σ(l))− σ([l, l′])

]
3Note that we have made an asymmetric choice, in looking at the dual of D1 as a left OX -

module, rather than as a right OX -module. Then, perhaps, this should be called the left Koszul
dual. This choice was motivated by the fact that J1 has much nicer properties than (D1)∗, which
results in a nicer presentation of D̃!. However, the right Koszul dual algebra would still have
been sufficient for the purposes of this paper.
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The name comes from the case when L = T , where µ : T ∗ → T ∗ ⊗X T ∗ is the

usual exterior derivative.

Since explicit computations are looming, it is now worth explicitly describing

some of the constructions already implicitly described.

• The way the OX-bimodule structure on J1 = ∗(D1) was defined, (ae)(∂) =

e(∂a).

• From the isomorphism ∗(D1) ⊗X ∗(D1) = ∗(D1 ⊗X D1), for σ, σ′ ∈ ∗(D1),

(σ ⊗ σ′)(∂ ⊗ ∂′) = σ′(∂ · σ(∂′)).

• From the definition of D, we see that for ∂ ∈ ker(e) and a ∈ OX , then

[∂, a] = dτ(∂)(a).

The following lemma explains how the element e commutates with other ele-

ments in D̃!.

Lemma 4.1.2.1. The element e ∈ D̃! satisfies

1. e2 = 0.

2. ae− ea = τ∨(da), for a ∈ OX , and where τ∨ : T ∗ → L∗ is dual to the anchor

map L→ T .

3. σe+ eσ = µ(σ), for σ ∈ L∗ ∈ J1.

Proof. The easy relation to show is (2), because it is a degree 1 relation. Consider

the element ae− ea ∈ J1, and apply it to any ∂ ∈ D1.

(ae− ea)∂ = e(∂a)− e(a∂) = e([∂, a]) = dτ(∂)(a) = ιda(τ(∂)) = τ∨(da)∂

and so (ae− ea) = τ∨(da).
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The other two relations are degree 2, so they are true if and only if they are in

J2; that is, if they kill R ∈ D1 ⊗X D1. Remember that R is spanned by elements

of the form ∂ ⊗ ∂′ − ∂′ ⊗ ∂ − [∂, ∂′]⊗ 1.

(1) e⊗ e.

(e⊗ e)(∂ ⊗ ∂′ − ∂′ ⊗ ∂ − [∂, ∂′]⊗ 1)

= e(∂e(∂′))− e(∂′e(∂))− e([∂, ∂′]e(1))

= e(∂′)e(∂) + e([∂, e(∂′)])− e(∂)e(∂′)− e([∂′, e(∂)])− e([∂, ∂′])

= [∂, e(∂′)]− [∂′, e(∂)]− e([∂, ∂′])

It suffices to check that this final expression vanishes in several cases.

• If both ∂ and ∂′ are in OX , then all the commutators vanish.

• If one of ∂ and ∂′ is in OX and the other is in the kernel of e, then one of

the terms vanish and the other two terms are identical.

• If both ∂ and ∂′ are in the kernel of e, then this is also true of their commu-

tator, and so all three terms vanish.

(3) σ ⊗ e+ e⊗ σ − µ(σ).

(σ ⊗ e+ e⊗ σ)(∂ ⊗ ∂′ − ∂′ ⊗ ∂ − [∂, ∂′]⊗ 1)

= [e(∂σ(∂′))− e(∂′σ(∂))] + [σ(∂e(∂′))− σ(∂′e(∂))− σ([∂, ∂′]e(1))]

= e(∂σ(∂′))− e(∂′σ(∂)) + e(∂′)σ(∂)− e(∂)σ(∂′)− σ([∂, ∂′])

= e([∂′, σ(∂)])− e([∂, σ(∂′)])− σ([∂, ∂′])

= [∂′, σ(∂)]− [∂, σ(∂′)]− σ([∂, ∂′])

= dτ(∂)(σ(∂′))− dτ(∂′)(σ(∂))− σ([∂, ∂′])
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Compare to

µ(σ)(∂ ⊗ ∂′ − ∂′ ⊗ ∂ − [∂, ∂′]⊗ 1)

=
1

2

[
dτ(∂)(σ(∂′))− dτ(∂′)(σ(∂))− σ([∂, ∂′])

]
− 1

2

[
dτ(∂′)(σ(∂)) + dτ(∂)(σ(∂′)) + σ([∂′, ∂])

]
− 1

2

[
dτ([∂,∂′])(σ(1))− dτ(1)([∂, ∂

′])− σ([[∂, ∂′], 1])
]

= dτ(∂)(σ(∂′))− dτ(∂′)(σ(∂))− σ([∂, ∂′])

Therefore, σ⊗e+e⊗σ−µ(σ) kills R ∈ D1⊗XD1, and so it is a relation in D̃!.

For any element D̃!, the above (graded) commutators allow e to collected on

one side (for instance, to the right). Since e2 = 0, an element in D̃! can have at

most one e in it. The following theorem then establishes that D̃! is a rank 2 module

over the subalgebra of elements without an e.

Theorem 4.1.2.1. The map L∗ → J1 extends to an inclusion Λ•XL
∗ → D̃!. This

map fits into a short exact sequence of graded Λ•XL
∗-bimodules

0→ Λ•XL
∗ → D̃! → Λ•XL

∗(−1)→ 0

where e ∈ D̃! goes to 1 ∈ Λ•XL
∗(−1).

Proof. First, it is easy to see that, for σ, σ′ ∈ L∗, σ⊗σ′+σ′⊗σ is a relation in D̃!.

(σ ⊗ σ′ + σ′ ⊗ σ)(∂ ⊗ ∂′ − ∂′ ⊗ ∂ − [∂, ∂′]⊗ 1)

= σ′(∂σ(∂′)) + σ(∂σ′(∂′))− σ′(∂′σ(∂))− σ(∂σ′(∂′))

= σ(∂′)σ′(∂) + σ′(∂′)σ(∂)− σ(∂)σ′(∂′)− σ′(∂′)σ(∂) = 0

It is not much harder to see that any relation in L∗ ⊗X L∗ is fixed by the map

which sends σ ⊗ σ′ to σ′ ⊗ σ. Therefore, elements of the form σ ⊗ σ′ + σ′ ⊗ σ
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generate the relations in L∗ ⊗X L∗. It follows that the submodule L∗ ⊂ J1 ⊂ D̃!

generates a copy of the algebra Λ•XL
∗.

Now, let C denote the cokernel of Λ•XL
∗ → D̃!, as a Λ•XL

∗-bimodule. Note

that the previous lemma showed that the (graded) commutator of e with any

element of J1 lies in L∗ ⊂ J1. Therefore, the image of e in D̃! → C is (graded)

central. Furthermore, since e2 = 0, e generates C, and so there is a surjective map

Λ•XL
∗(−1)→ C which sends 1 to e.

For this not to be an isomorphism, there would have to be a relation of the

form σe − Υ, for σ ∈ L∗ and Υ ∈ L∗ ⊗X L∗. Let ∂ be an element in D1 which is

not killed by σ. Then

(σ ⊗ e)(∂ ⊗ 1− 1⊗ ∂) = e(∂σ(1))− e(σ(∂)) = σ(∂)

By construction, this is not zero. However, Υ must kill ∂⊗ 1− 1⊗ ∂ since L∗ kills

1 ∈ D1. Therefore, there cannot be such a relation, and the map Λ•XL
∗(−1)→ C

is an isomorphism.

Since Λ•XL
∗ is an algebra which is finitely generated projective as a OX-module

on either side and zero in large enough degree, we can deduce identical facts about

D̃!.

Corollary 4.1.2.1. For all i, D̃!i is a finitely generated, projective OX-module on

the left and right.

Corollary 4.1.2.2. If i > n+ 1, then D̃!i = 0.
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4.1.3 The Relative Frobenius Property.

Let ωL denote Λn
XL
∗, the top exterior power of the dual to L. From the Lemma, it

is clear that D̃!n+1 = ωL. This now gives a pairing between elements of D̃! whose

degree adds to n+ 1. We then have

Lemma 4.1.3.1. (The relative Frobenius property) For any i, the multiplication

map

D̃!i ⊗X D̃!(n+1−i) → ωL

is a ‘perfect pairing’. That is, the adjoint maps

D̃!(n+1−i) → HomX−(D̃!i, ωL), and D̃!i → Hom−X(D̃!(n+1−i), ωL)

are isomorphisms of OX-bimodules.

Proof. Explicitly, the adjoint map D̃!(n+1−i) → HomX−(D̃!i, ωL) takes an element

µ ∈ D̃!(n+1−i) and sends it to the map γ ∈ D̃!i → µ · γ ∈ ωL. Consider the short

exact sequence of OX-bimodules

0→ Λn+1−i
X L∗ → D̃!n+1−i → Λn+i

X L∗ → 0

If µ ∈ Λ
(n+1−i)
X L∗ ∈ D̃!(n+1−i), then µ · γ only depends on the image of γ under the

map D̃!i → Λi−1
X L∗. Similarly, if we know that γ ∈ Λi

XL
∗ ⊂ D̃!i, then µ · γ only

depends on the image of µ under the map D̃!(n+1−i) → Λn+i
X L∗. This means that

the adjoint map above splits into a map of short exact sequences

Λn+1−i
X L∗ → D̃!(n+1−i) → Λn−i

X L∗

↓ ↓ ↓

HomX−(Λi−1
X L∗, ωL) → HomX−(D̃!i, ωL) → HomX−(Λi

XL
∗, ωL)

The left and right maps are isomorphisms, because they are both adjoint to mul-

tiplication maps of the form Λj
XL
∗ ⊗X Λn−j

X L∗ → ωL. Therefore, the middle map

is an isomorphism. The proof for the other adjoint map is identical.
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This can be restated in a more compact form.

Corollary 4.1.3.1. There are isomorphisms of OX-bimodules

(D̃!i)∗ = ω∗L ⊗X D̃!(n+1−i), ∗(D̃!i) = D̃!(n+1−i) ⊗X ω∗L

Proof.

D̃!(n+1−i) ' HomX−(D̃!i, ωL) = HomX−(D̃!i,OX)⊗X ωL = ∗(D̃!i)⊗X ωL

Similarly, D̃!(n+1−i) = ωL⊗X (D̃!)∗. Since ωL is a line bundle, tensoring these with

ω∗L on the left or right gives the theorem.

4.2 Koszul Complexes.

The quadratic dual algebra and its properties allows for the construction of several

important complexes, called Koszul complexes.

4.2.1 The Left Koszul Complex.

The multiplication map mD̃! : D̃!i−1 ⊗X J1 → D̃!i induces a right dual map

m∨D! : (D̃!i)∗ → (D̃!i−1 ⊗X J1)∗ ' (J1)∗ ⊗X (D̃!i−1)∗ ' D1 ⊗X (D̃!i−1)∗

Define a composition map,

k−i : D̃(−i)⊗X (D̃!i)∗ → D̃(−i)⊗X D1 ⊗X (D̃!i−1)∗ → D̃(−i+ 1)⊗X (D̃!i−1)∗

where the first map is the above map m∨D!
, and the second map is the multiplication

map mD : D̃(−i) ⊗X D1 → D̃(−i + 1). Let K−i(X,L) (or K−i when X and L are
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clear) denote the left D̃-module D̃(−i) ⊗X (D̃!i)∗. Note that K−i = 0 if i < 0 or

i > n+ 1.

Theorem 4.2.1.1. The map k−i : K−i → K1−i makes K• into a complex of left

D̃-modules called the left Koszul complex.

Proof. The square of the Koszul boundary, (k)2, is mDm
∨
D!mDm

∨
D! . However, the

middle two maps can be commuted, since they involve disjoint terms in the tensor

product. Therefore, k2 = (mD)2(m∨D!)
2, which is the composition

D̃(−i)⊗X (D̃!i)∗ → D̃(−i)⊗X D1 ⊗X D1 ⊗X (D̃!i−2)∗ → D̃(−i+ 2)⊗X (D̃!i−2)∗

The map (m∨D!)
2 is the map

HomX−(D̃!i,OX)→ HomX−(D̃!i−2 ⊗X J1 ⊗X J1,OX)

right dual to multiplication. Everything in the image of this map necessarily kills

D̃!i−2 ⊗X J2 ⊂ D̃!i−2 ⊗X J1 ⊗X J1, which translates to the image of (m∨D!
)2 being

contained in R ⊗X (D̃!i−2)∗. Then, it is clear that the multiplication map (mD)2

kills anything in D̃(−i)⊗X R⊗X (D̃!i−2)∗. Therefore, k2 = 0.

The construction of the left Koszul complex commutes with localization in the

natural way, as per the following lemma.

Lemma 4.2.1.1. Let X ′ ⊂ X be an open subscheme of X, and L′ the localization

of L. Then the left Koszul complex K•(X′,L′) of the Lie algebroid (X ′, L′) is equal to

the localization of the left Koszul complex K•(X,L).
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Proof. On the level of terms of the complex,

OX′ ⊗X D̃(X,L)(−i)⊗X (D̃(X,L)
!i

)∗

= ˜D(X ′, L′)(−i)⊗X (D̃(X,L)
!i

)∗

= ˜D(X ′, L′)(−i)⊗X′ OX′ ⊗X (D̃(X,L)
!i

)∗

= ˜D(X ′, L′)(−i)⊗X′ ( ˜D(X ′, L′)
!i

)∗

Note that the key is that the enveloping algebra is nearly central (see Section

2.2.4), and so localizing on the left localizes on the right. Finally, it is immediate

to show that the Koszul boundary is the correct one, because the Koszul boundary

was defined in terms of multiplication in D(X,L), and localization is an algebra

homomorphism.

4.2.2 The Exactness of the Koszul Complex.

We are finally ready for the most meaningful fact about the left Koszul complex,

that it resolves OX as a left D̃-module.

Theorem 4.2.2.1. The natural quotient map K0 = D̃ → OX makes K• into a

resolution of OX ; that is, the complex K• is exact in negative degrees, and its

cohomology in degree zero is exactly the image of the augmentation map.

Proof. The strategy of the proof will be a succession of cases of increasing gener-

ality.

• X = Spec(k) (k a field), L abelian. This is the classical case of Koszul

duality for SymkL and ΛkL. A proof can be found in [36], page 114.
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• X a regular local ring, L abelian. Because X is local, L being projective

implies that it is free, specifically that L = OX ⊗k L/m where k is the

residue field. The Rees algebra D̃ is isomorphic to the symmetric algebra

SymXL = OX ⊗k SymkL/m. The quadratic dual algebra D̃! is then the

corresponding exterior algebra AltXL
∗ = OX ⊗k AltkL

∗/m. The left Koszul

complex K•(X,L) is then OX ⊗kK
•
(Spec(k),L/m), where L/m is the Lie algebroid

restricted to the residue field k. Since the theorem is true for K•(Spec(k),L/m)

by the previous case, it is then true here.

• X arbitrary, L abelian. Let π : Xp → X be the open embedding corre-

sponding to localization at some prime p, and let Lp = π∗L. By the lemma

before the theorem, π∗K•(X,L) = K•(Xp,Lp). Since localization is exact, we have

that

π∗H i
(
K•(X,L)

)
= H i

(
π∗K•(X,L)

)
The two facts together imply that π∗H i

(
K•(X,L)

)
= H i

(
K•(Xp,Lp)

)
. The

previous case of the theorem implies that this second group vanishes for

i > 0, and is isomorphic to OXp for i = 0. Since this fact is true at any prime

p, it is true everywhere, and so the theorem is true.

• X arbitrary, L arbitrary. Consider a family of Lie algebroids (X,L~),

~ ∈ C, where the bracket [−,−]~ := ~[−,−] and τ~ := ~τ . In this notation,

L1 is the original Lie algebroid, and L0 is the Lie algebroid with zero bracket

and anchor. This gives a graded algebra D̃~, which is isomorphic as a left

D̃-module to D̃ ⊗C[~]. There is a corresponding quadratic dual algebra D̃⊥~

and a left Koszul complex K•~ .

The left Koszul complex K•~ is filtered by ~-degree; this filtration is bounded

below and exhaustive, so the associated spectral sequence converges. The
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spectral sequence coming from this filtration has

E0
pq = Fp(K

q
~)/Fp−1(Kq

~)

Each column is isomorphic to K•0 , and so by the previous step, is a resolution

of OX . The E1 is then concentrated the ray p ≥ 0 and q = 0, and so the

boundary is zero. Thus, the natural map gr(K•~)→ gr(OX ⊗C[~]) becomes

an augmentation map. By Lemma 2.1.4.1, the original map K•~ → OX⊗C[~]

is an augmentation map.

Let C1 := C[~]/(~− 1). Since (X,L~) is flat over C[~], we have that

H i(K•~ ⊗C[~] C1) = H i(K•~)⊗C[~] C1

Therefore, K•~ ⊗C[~] C1 is a resolution of OX ⊗C[~]⊗C[~] C1 = OX . However,

K•~ ⊗C[~] C1 is the left Koszul resolution corresponding to (X,L) with the

undeformed bracket and anchor map.

Since D!i is a f.g. projective right OX-module, then (D!i)
∗ is a f.g. projective

left OX-module. Therefore, Ki is a projective left D̃-module, and the left Koszul

resolution is a projective resolution of OX as a D̃-module.

Recall the derived torsion functor Rτ and the derived global section functor

Rωπ from Section 3.2.3 and 3.2.2, respectively.

Corollary 4.2.2.1. The functor Rτ has dimension n + 1, and the functor Rωπ

has dimension n; that is, Riτ(M) = 0 if i > n+ 1 and Riωπ(M) = 0 if i > n.

Proof. The Koszul resolution is a length n + 1 projective resolution of OX , and

so, for all M , ExtiD̃−(OX ,M) = 0 when i > n + 1. Therefore, by Lemma 3.2.3.1,
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Riτ(M) = 0 when i > n + 1. Since Riωπ(M) ' Ri+1τ(M) when i > 0, the

statement follows.

There is also a right Koszul complex K•right whose terms are (D̃!i)∗ ⊗X D̃(−i),

with boundary right dual to the multiplication map D1 ⊗X D̃i−1 → D̃i. This is

again a projective resolution of OX , this time as a right D̃-module. The proofs are

analogous.

4.2.3 The Quadratic Dual as an Ext Algebra.

The following theorem about D̃! follows from the exactness of the Koszul complex,

which partially explains the significance of D̃! a postieri.

Theorem 4.2.3.1. D̃! is isomorphic to Ext•D̃−(OX ,OX) as a graded algebra, where

J1 = ∗(D1) ⊂ D̃! has graded degree -1.

Proof. It is easy to see this isomorphism, on the level of graded OX-modules.

Lemma 4.2.3.1. D̃! is isomorphic to Ext•D̃−(OX ,OX) as a graded OX-module.

Proof. The left Koszul resolution K• is a left projective resolution of OX . There-

fore,

RHom•D̃−(OX ,OX) = HomD̃−(K•,OX)

=
n⊕
i=0

HomD̃−(D̃(−i)⊗X (D̃!i)∗,OX)

=
n⊕
i=0

HomX−((D̃!i)∗,OX)(i)

=
n⊕
i=0

D̃!i(i)
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Since each term in the complex is concentrated in a different graded degree, the

boundary vanishes, and so the cohomology is isomorphic to D̃!.

Showing that this is an isomorphism of algebras will require more work. Let

B• denote the normalized left bar resolution of OX (see [36], page 284 for

details). This is the complex of graded left D̃-modules with B−i = D̃ ⊗X (D̃≥1)⊗X i

where the boundary sends a1 ⊗X a2 ⊗X ...⊗X an to

n−1∑
i=1

(−1)ia1 ⊗X a2 ⊗X ...⊗X aiai+1 ⊗X ...⊗X an

The complex B• is a left projective resolution of OX , with the augmentation map

B0 = D̃ → OX the natural projection onto graded degree zero.

Therefore, Ext•D̃−(OX ,OX) is the cohomology algebra of the differential graded

algebra (dga) HomD̃−(B•,B•), where the multiplication is the composition of

maps. The augmentation map B• → OX gives a quasi-isomorphism of complexes

HomD̃−(B•,B•)→ HomD̃−(B•,OX). Since

HomD̃−(B−i,OX) = HomD̃−(D̃ ⊗X (D̃≥1)⊗X i,OX)

= HomX−((D̃≥1)⊗X i,OX)

= [ ∗(D̃≥1)]⊗X i

Thus, HomD̃−(B•,OX) is isomorphic to TX
∗(D̃≥1) as a graded OX-module, and

the natural multiplication on the tensor algebra makes it into a dga.

In fact, the quasi-isomorphism

HomD̃−(B•,B•)→ HomD̃−(B•,OX) = TX
∗(D̃≥1)

is a map of dgas. To see this, let us construct a section of this map. Let φ ∈

[ ∗(D̃≥1)]⊗X i, then for any j > i, there is a natural map

D̃ ⊗X (D̃≥1)⊗Xj → D̃ ⊗X (D̃≥1)⊗X(j−i)
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given by applying φ to the first i terms on the left. It is easy but tedious to verify

that this gives a map of dgas TX
∗(D̃≥1) → HomD̃−(B•,B•) which is a section of

the above map. Therefore, Ext•D̃−(OX ,OX) is the cohomology algebra of the dga

TX
∗(D̃≥1).

The dga TX
∗(D̃≥1) has both a cohomological degree (coming from the usual

grading on a tensor algebra) and a graded degree (coming from the grading on

D̃≥1). Because ∗(D̃≥1) is concentrated in graded degree ≤ −1, [ ∗(D̃≥1)]⊗X i is con-

centrated in graded degree ≤ −i. Therefore, if one restricts the complex TX
∗(D̃≥1)

to graded degree −i, the resulting complex is non-zero in cohomological degrees j,

0 ≤ j ≤ i.

However, we do actually know the cohomology of this complex, due to Lemma

4.2.3.1. Specifically, we know that in graded degree −i, the cohomology is con-

centrated in cohomological degree i. Since the corresponding complex is concen-

trated in cohomological degrees ≤ i, the cohomology must be the cokernel of the

boundary map. We therefore have a map of dgas TX
∗(D̃≥1) → D̃!, which is a

quasi-isomorphism.

Note that, for an element in TX
∗(D̃≥1) to have graded degree −i and cohomo-

logical degree i, it must be the tensor product of i elements of graded degree −1

elements; therefore, (TX
∗(D̃≥1))(−i,i) = [ ∗(D̃1)]⊗X i = (J1)⊗X i. If we let TXJ

1 be a

dga with zero boundary, this extends to a map of dgas TXJ
1 → TX

∗(D̃≥1), which

is the identity in degree (−i, i) and zero elsewhere.

The composition

TXJ
1 → TX

∗(D̃≥1)→ D̃!

is then a surjection of dgas; since their boundaries are zero, we can think of them
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as algebras again. Since it is an isomorphism in graded degree −1 on the J1’s, its

kernel must be exactly generated by J2 ⊂ J1 ⊗X J1. The theorem follows.

4.2.4 The Relative Gorenstein Property.

The following lemma should be regarded as a relative version of the Gorenstein

property for graded algebras. Recall that ωL := Λn
XL
∗.

Lemma 4.2.4.1. (The relative Gorenstein property)

ExtiD̃−(OX , D̃) =

 ωL(n+ 1) i = n+ 1

0 otherwise

Proof. ResolveOX by the left Koszul resolution K•. Using Corollary 4.1.3.1, which

says that (D̃!i)∗ = ω∗L ⊗X D̃!(n+1−i) and ∗(D̃!i) = D̃!(n+1−i) ⊗X ω∗L,

HomD̃−(Ki, D̃) = HomD̃−(D̃(−i)⊗X (D̃!i)∗, D̃)

= HomD̃−(D̃(−i)⊗X ω∗L ⊗X D̃!(n+1−i), D̃)

= HomX−(ω∗L ⊗X D̃!(n+1−i),OX)⊗X D̃(i)

= ∗(D̃!(n+1−i))⊗X ωL ⊗X D̃(i)

= ωL ⊗X (D̃!(n+1−i))∗ ⊗X D̃(i)

Since the duality map is adjoint to the multiplication map, the boundary map on

this complex is the right Koszul differential. Therefore,

RHomD̃−(OX , D̃) = ωL(n+ 1)[−n− 1]⊗X K•right

Since K•right is a resolution of OX , the theorem follows.

Corollary 4.2.4.1. The derived torsion functor Riτ(D̃)j vanishes if i 6= n+ 1 or

if j > −n− 1.
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Proof. This follows from the Gorenstein property and Lemma 3.2.3.1.

4.2.5 Serre Finiteness and Vanishing for D̃.

The Gorenstein property can also be used to show that the ring D̃ satisfies the

χ-condition (Definition 3.2.4), which will in turn imply the Serre Finiteness and

Vanishing Theorems.

Lemma 4.2.5.1. Let M be a f.g. D̃-module. For n large enough, the induced map

ExtiD̃−(OX , D̃≥n ·M)→ ExtiD̃−(OX ,M)

is zero for all i.

Proof. We use the left Koszul resolution, where we get a map on complexes

HomD̃−(K•, D̃≥n ·M)→ HomD̃−(K•,M)

For any m ∈ D̃≥nM , there are δ ∈ D1 and m′ ∈M such that m = δm. Therefore,

any composition

(D̃!i)∗ → D̃≥nM(−i) ↪→M(−i)

(where the second map is the natural inclusion) can be factored as

(D̃!i)∗ → D1 ⊗X M(−i− 1)→M(−i)

A cohomology class in H i(HomD̃−(K•, D̃≥n ·M)) is represented by a map (D̃!i)∗ →

D̃≥nM(−i), and its image is the composition with the inclusion to M(−i). Thus,

the image of any representative of the cohomology class has a preimage in

(D̃!i+1)∗ ⊗X M(−i− 1), and so it is exact.
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Lemma 4.2.5.2. Let M be a f.g. D̃-module. Then there is some n such that for

all i and j,

(a)
(
ExtiD̃−(OX ,M)

)
≥n

= 0.

(b)
(
ExtiD̃−(D̃≤j,M)

)
≥n

= 0.

(c) (Riτ(M))≥n = 0.

Therefore, D̃ satisfies the χ-condition.

Proof. We consider the long exact sequence coming from applying HomD̃−(OX ,−)

to

0→ D̃≥nM →M →M/D̃≥nM → 0

By the preceeding lemma, the map

ExtiD̃−(OX , D̃≥n ·M)→ ExtiD̃−(OX ,M)

is zero, and so the map

ExtiD̃−(OX ,M)→ ExtiD̃−(OX ,M/D̃≥n)

is an inclusion. Now, because M is finitely generated, there is some n′ such that

D̃≥nM ⊆M≥n′ , and so the above inclusion factors through

ExtiD̃−(OX ,M)→ ExtiD̃−(OX ,M/M≥n′)

Thus, this map is an inclusion.

Now, M/M≥n′ is concentrated in finitely many graded degrees. This means

that the Koszul complex which computes ExtiD̃−(OX ,M/M≥n′) is not acylic in

finitely many graded degrees, and so ExtiD̃−(OX ,M/M≥n′) is as well. This proves

the first part. The other two parts follow from Lemma 3.2.3.1.

78



Part (a) of the theorem is the χ◦ condition of Artin and Zhang, and by Propo-

sition 3.8 in [1, pg.243], this together with the fact that Di is a finitely-generated

OX-module for all i imply the χ-condition.

Theorem 4.2.5.1. Let M∈ qgr(D̃).

• (Serre Finiteness) Riω(M)j is a finitely-generated OX-module for all i, j.

• (Serre Vanishing) Riω(M)j = 0 if i > n and any j, or if i 6= 0 and j is

sufficiently large.

Proof. The χ-condition and Theorem 3.2.4.1 immediately imply finiteness and van-

ishing in sufficiently high graded degree. Vanishing in cohomological degree greater

than n was shown in Corollary 4.2.2.1.
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CHAPTER 5

TENSOR PRODUCTS.

5.1 Tensoring and Fourier-Mukai Transforms.

We need to generalize an important technique from commutative projective ge-

ometry to the non-commutative setting; that of the Fourier-Mukai transform. Let

X be a scheme, and let K be any module on X × X, or more generally any de-

rived object in Db(Mod(X ×X)) (equivalently, K is a derived OX-bimodule). Let

p1 and p2 denote the projections of X × X onto the first and second coefficient,

respectively.

Given any M ∈ Db(Mod(X)), K ⊗L
X p
∗
2(M) ∈ Db(Mod(X ×X)), and so it can

be pushed forward along the projection p1 : X × X → X onto the first factor to

give Rp1∗(K ⊗L
X p
∗
2(M)) ∈ Db(Mod(X)). The functor M → Rp1∗(K ⊗L

X p
∗
2(M)) is

called the Fourier-Mukai transform of K. These have been studied extensively,

for references check [20].

5.1.1 Tensor Products.

For A a positively-graded algebra, the categories Gr(A) and gr(A) don’t have a

tensor product in the sense of a bifunctorial map Gr(A)× Gr(A) → Gr(A). The

tensor product here is a bifunctorial map

⊗A : Gr(Aop)×Gr(A)→ Gr(C)

Subsequently taking the degree zero part gives a map

}A : Gr(Aop)×Gr(A)→ V ect
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Naively, one would hope that this descends to some kind of map }A : QGr(Aop)×

QGr(A) → V ect. However, for this to descend to a map on quotient categories,

we would need that T}AM = M ′}AT
′ = 0 for T ∈ Tors(Aop) and T ′ ∈ Tors(A).

This is just not true; take, for example, A0}AA or A}AA0, which are both iso-

morphic to A0 as a vector space.

So, instead of trying to push the multiplication forward along π, we can pull the

multiplication back along ω. Given πM ∈ QGr(Aop) and πN ∈ QGr(A), define

πM}AπN := ωπM}AωπN = (ωπM⊗AωπN)0

The derived analog of this bifunctor is (RωπM⊗L
ARωπN)0 (for πM ∈

Db(QGr(Aop)) and πN ∈ Db(QGr(A))). Note that this is neither the left nor

right derived functor of the previous functor, and so in particular they might not

agree in cohomological degree zero.

5.1.2 The Category of Quotient Bimodules.

The point of these tensoring constructions is to be able to define the Fourier-Mukai

transforms on this category; however, we still need to know where the kernels of

the transforms live. Let Ae := A ⊗ Aop, which has the property that left Ae-

modules are the same as A-bimodules; note that it is a bigraded algebra. Let

Gr(Ae) be the category of bigraded Ae-modules, which is the same as the category

of bigraded A-bimodules. Let Tors(Ae) be the subcategory of Gr(Ae) such that,

for every m ∈ T ∈ Tors(Ae), there is some n such that A≥nmA≥n = 0. Let

qgr(Ae) denote the quotient category Gr(Ae)/Tors(Ae). For an account of non-

commutative projective geometry of polygraded algebras, at least in the case of

connected algebras, see [3].
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The category qgr(Ae) satisfies all the same properties that were listed for

QGr(A), or at least analogous properties. The only difference is the structure

of the functors ω and τ , which may be given by (where Hom now denotes a bi-

graded Hom)

ωπ(M) := lim
n→

HomGr(Ae)(A≥n ⊗ A≥n,M)

τ(M) := lim
n→

HomGr(Ae)((A⊗ A)/(A≥n ⊗ A≥n),M)

In certain nice cases, the derived functor Rωπ has a more useful definition.

Lemma 5.1.2.1. Let A be left and right noetherian. For M ∈ Gr(Ae), there is

an isomorphism in D(Gr(Ae)):

Rωπ(M) ' Rωπ(A)⊗L
AM⊗L

ARωπ(A)

Proof. Consider the directed systemA≥m⊗A≥m′ , asm andm′ run over the integers,

with the maps being the natural inclusions. This directed system has a sub-directed

system A≥n⊗A≥n which is coinitial, in the sense that any object A≥m⊗A≥m′ has

a inclusion from some A≥n⊗A≥n (for instance, n = max(m,m′)). Therefore, there

is an isomorphism of direct limits:

lim
n→

RHomGr(Ae)(A≥n ⊗ A≥n,M) ' lim
m→

lim
m′→

RHomGr(Ae)(A≥m ⊗ A≥m′ ,M)

By adjunction, this second RHom becomes

lim
m→

lim
m′→

RHomGr(A)(A≥m,RHomGr(Aop)(A≥m′ ,M))

= lim
m→

lim
m′→

RHomGr(A)(A≥m, A)⊗L
ARHomGr(Aop)(A≥m′ ,M)

= lim
m→

lim
m′→

RHomGr(A)(A≥m, A)⊗L
AM⊗L

ARHomGr(Aop)(A≥m′ , A)

The last two equalities use that A≥m is noetherian as a left and right A-module.

This final expression is then equal to Rωπ(A)⊗L
AM⊗L

ARωπ(A).
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5.1.3 Fourier-Mukai Transforms.

Now, given any object K ∈ Db(Gr(Ae)), define the derived functor FK on

Db(QGr(A)) by:

FK(πM) := π(Rωπ(K)⊗L
ARω(πM))•,0

This has a simpler form for nice A.

Lemma 5.1.3.1. If A is left and right noetherian, then

FK(πM) = π(K }L
A Rωπ(M)) = π(Rωπ(K) }L

AM)

Proof. By Lemma 5.1.2.1 and Lemma 3.2.2.1, this is equal to

π(Rωπ(A)⊗L
AK⊗L

ARωπ(A)⊗L
ARωπ(A)⊗L

AM)•,0

By Corollary 3.2.2.1, this is

π(Rωπ(A)⊗L
AK⊗L

ARωπ(A)⊗L
AM)•,0 (5.1)

Applying Lemma 3.2.2.1 twice and using that πRωπ = π, this is equal to

π(Rωπ(A)⊗L
AK⊗L

ARωπ(M))•,0 = π(Rωπ(K ⊗L
A Rωπ(M))) = π(K }L

A Rωπ(M))

Instead, we could apply Lemma 5.1.2.1 to Equation (5.1) to get

π(Rωπ(K)⊗L
AM)•,0 = π(Rωπ(K) }L

AM)

This concludes the proof.

Given any exact triangle A → B → C → A[1] in Db(Gr(Ae)), there is an

associated exact triangle of functors FA → FB → FC → FA[1], in the sense that

for any πM ∈ Db(QGr(Ae)), there is an exact triangle:

FA(πM)→ FB(πM)→ FC(πM)→ FA(πM)[1]
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Therefore, a functor FK may be resolved by other, simpler functors by resolving

πK into simpler objects in Db(Gr(Ae)).

5.1.4 The Diagonal Object.

Even the identity functor on Db(QGr(A)) arises as a Fourier-Mukai transform. Let

∆̃ be the bigraded A-bimodule such that ∆̃i,j = Ai+j, where Ak = 0 in negative

degrees. ∆̃ has the property that ∆̃ }AM = (∆̃⊗AM)•,0 = M for all M ∈ Gr(A).

As an immediate corollary, ∆̃ is flat as a right A-module. If A is noetherian, the

Fourier-Mukai transform F∆̃(M) is π(∆̃ }A Rω(M)), which is π(Rω(M)) = M.

Therefore, F∆̃ is the identity functor.

However, ∆̃ is not the only object in Gr(Ae) whose corresponding Fourier-

Mukai transform is the identity. After all, all that matters is the image under π

in qgr(Ae). Let ∆ be the diagonal object, the bigraded A-bimodule such that

∆i,j = Ai+j when i ≥ 0 and j ≥ 0, and zero otherwise. There is a natural inclusion

∆ ↪→ ∆̃, and (∆̃/∆)i,j = 0 if i ≥ 0 and j ≥ 0. ωπ(∆̃/∆) = 0, and so π(∆) = π(∆̃).

Then, the Fourier-Mukai transform F∆ is also the identity.

The point of this is now that producing a resolution of ∆ in Gr(Ae) will give

a resolution of the identity, which in turn will give a resolution of any object in

Gr(A).
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5.2 The Resolution of the Diagonal.

The homological computations of the past several sections finally start to yield

results relevant to the projective geometry of D̃. The next step is to combine the

left and right Koszul complexes into a Koszul bicomplex, which can then be used

to extract a resolution of the diagonal bimodule ∆. The reader should prepare

emotionally for bigraded bicomplexes, and the quadruple indices that entails.

5.2.1 The Koszul Bicomplex.

Let Ki,j be the D̃-bimodule D̃(−i)⊗X (D̃!(i+j))∗⊗X D̃(−j). The left Koszul bound-

ary map acts on the first two terms, and sends Ki,j to Ki−1,j; the right Koszul

boundary map acts on the last two terms, and sends Ki,j to Ki,j−1.

Lemma 5.2.1.1. These two boundary maps, kleft and kright, make Ki,j into a

bicomplex of D̃-bimodules called the Koszul bicomplex (making sure to obey the

Koszul sign rule for commuting odd-degree maps).

Proof. It is immediate that the two boundaries square to zero themselves. Thus,

all that remains to check is that (kleft+kright) squares to zero, which by the Koszul

sign rule is equivalent to kleft and kright commuting.

Since multiplication in D̃! is associative, the multiplication map J1⊗X D̃!i−2⊗X

J1 → D̃!i doesn’t depend on the order of multiplication. Dualizing gives the desired

fact that kleft and kright commute.

The terms of the Koszul bicomplex are bigraded D̃-bimodules, and so an ele-

ment in this complex can have a graded bidegree (it’s bigrading as a D̃-bimodule)
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as well as a homological bidegree (which term of the bicomplex it is in). The

space of elements with graded bidegree (p, q) and homological bidegree (i, j) will

be denoted Ki,j
p,q, and it is equal to Dp−i ⊗X (D̃!(i+j))∗ ⊗X Dq−j.

5.2.2 The Resolution of the Diagonal Object.

Define the complex K∆ to be such that Ki∆ = ker(dr : Ki,0 → Ki,−1), together with

the boundary dl inherited from K. Because K0,−1 = 0, we have that K0
∆ = K0,0 =

D̃ ⊗X D̃.

As in Section 5.1.4, let ∆ ∈ Gr(D̃e) be the diagonal object, the bigraded A-

bimodule such that ∆i,j = Ai+j when i ≥ 0 and j ≥ 0, and zero otherwise. There

is a canonical surjection D̃⊗X D̃ → ∆, which in bidegree (p, q) is the multiplication

map Dp ⊗X Dq → Dp+q.

Theorem 5.2.2.1. The canonical surjection K∆ → ∆ makes K∆ into a resolution

of ∆. Accordingly, the complex K∆ is called a resolution of the diagonal.

Proof. First, we show that the mapK0
∆ → ∆ gives an augmentation of the complex;

that is, it kills the image of K1
∆ in K0

∆. By definition, K1
∆ is the kernel of

D̃(−1)⊗X D1 ⊗X D̃ → D̃(−1)⊗X D̃(1)

This map is given by multiplying the last two terms. However, since the compo-

sition map K1
∆ → K0

∆ → ∆ is given by multiplying all the terms of K1
∆ together,

and because multiplication in D is associative, this composition must be zero.

Now, define the truncated Koszul bicomplex K̂i,j to be equal to Ki,j when

j ≥ 0, and 0 otherwise. For a fixed graded bidegree (p, q), the term K̂i,j
p,q vanishes
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for i > p, j > q or i+j < 0. Therefore, in any fixed graded bidegree, the bicomplex

K̂ is bounded. This means that both the horizontal-then-vertical spectral sequence

and the vertical-then-horizontal spectral sequence converge to total cohomology of

K̂.

Taking horizontal cohomology first, the rows are all right Koszul complexes

tensored with D̃, and so we get

Ei,j
1 =

 D̃(j)⊗X OX(−j) if j = −i ≥ 0

0 otherwise


Therefore, the spectral sequence collapses on the first page, and we have

H0(Tot(K̂)) =
∞⊕
j=0

D̃(j)⊗X OX(−j), H 6=0(Tot(K̂)) = 0

Taking vertical cohomology first, the rows are either left Koszul complexes

tensored with D̃, or they are left Koszul complexes which have been brutally

truncated. Therefore,

Ei,j
1 =


OX(j)⊗X D̃(−j) if j = −i ≥ 1

Ki∆ if i ≥ 0, j = 0

0 otherwise


Therefore, the spectral sequence collapses on the second page, and we have

H0(Tot(K̂)) = H0(K∆)⊕

(
∞⊕
j=1

OX(j)⊗X D̃(−j)

)
, H i 6=0(Tot(K̂)) = H i(K∆)

Comparing the two results, K∆ is exact outside degree zero, and we have that

H0(K∆)⊕

(
∞⊕
j=1

OX(j)⊗X D̃(−j)

)
=

∞⊕
j=0

D̃(j)⊗X OX(−j)

Looking in graded bidegree (p, q), we have that H0(K∆) = Dp+q if and only if

p, q ≥ 0. Therefore, the map H0(K∆) → ∆ induced by the augmentation is an

isomorphism.
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The power of this theorem comes from the structure of K∆. To see this struc-

ture, define Ωi
R to be the kernel of the i-th boundary in the right Koszul complex:

dr : (D̃!i)∗ ⊗X D̃(−i)→ (D̃!i−1)∗ ⊗X D̃(−i+ 1)

Since D̃!j = 0 for j > n + 1, Ωj
R = 0 for j > n. It is clear from the definition of

K∆ that Ki∆ = D̃(−i)⊗X Ωi
R(i).

Corollary 5.2.2.1. The resolution of the diagonal then has the form:

∆← D̃⊗XD̃ ← D̃(−1)⊗XΩ1
R(1)← ...← D̃(−i)⊗XΩi

R(i)← ...← D̃(−n)⊗XΩn
R(n)

There is a mirror image version of this, where K∆ is replaced by ker(dl : K0,i →

K−1,i). Defining

Ωi
L := ker

(
dl : D̃(−i)⊗X (D̃!i)∗ → D̃(−i+ 1)⊗X (D̃!i−1)∗

)
,

all the same arguments work to show that the following is also a resolution of the

diagonal:

∆← D̃⊗XD̃ ← Ω1
L(1)⊗XD̃(−1)← ...← Ωi

L(i)⊗XD̃(−i)← ...← Ωn
L(n)⊗XD̃(−n)

5.2.3 The Beilinson Resolution.

The resolution of the diagonal then gives a resolution for every object πM in

QGr(D̃).

Theorem 5.2.3.1. Every object π(M) ∈ QGr(D̃) has a resolution of the form:

π
(
D̃ ⊗L

X Rωπ(M)0

)
← ...← π

(
D̃(−i)⊗L

X

(
Ωi
R(i) }L

D̃ Rωπ(M)
))
← ...
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Proof. The resolution of the diagonal gives a complex of Fourier-Mukai transforms.

Applying each of these to some πM ∈ QGr(D̃), we get

F∆(πM)← FD̃⊗XD̃(πM)← ...← FD̃(−i)⊗XΩi
R(i)(πM)← ...FD̃(−n)⊗XΩn

R(n)(πM)

The first object is πM , by the design of ∆. The Fourier-Mukai transform is

FD̃(−i)⊗XΩi
R(i)(πM) = π(Rωπ(D̃(−i)⊗X Ωi

R(i))⊗L
D̃Rωπ(M))•,0

By Lemma 5.1.2.1,

= π
(
Rωπ(D̃)⊗L

D̃

(
D̃(−i)⊗LX Ωi

R(i)
)
⊗L
D̃Rωπ(D̃)⊗L

D̃Rωπ(M)
)
•,0

which simplifies to

π
(
Rωπ(D̃(−i))⊗L

X

(
Ωi
R(i) }L

D̃ Rωπ(M)
))

= π
(
D̃(−i)⊗L

X

(
Ωi
R(i) }L

D̃ Rωπ(M)
))

Note that when πM ∈ qgr(D̃), the object
(

Ωi
R(i) }L

D̃ Rωπ(M)
)

is a derived

object in Db(Coh(X)) (it is bounded by the Serre Finiteness Theorem 3.2.4.1).

Since X is affine and smooth, every object in Coh(X) has a surjection from a

finitely-generated free module OmX .

Corollary 5.2.3.1. Every object πM ∈ qgr(D̃) has a surjection from a finite sum

of the objects πD̃, πD̃(−1), ... πD̃(−n).
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CHAPTER 6

THE BEILINSON EQUIVALENCE.

This section contains the first major result about the category qgr(D̃). We

show that the derived category Db(qgr(D̃)) is equivalent to the derived category

Db(E) of an algebra E, which is smaller and more tractable than the ring D. This

can be used to turn questions about the abstract abelian category qgr(D̃) into

questions about complexes of E-modules.

6.1 Tilting and the Beilinson Equivalence.

The previous section proved that any πM ∈ qgr(D̃) has a finite resolution by

finite sums of the objects πD̃, πD̃(−1), ... and πD̃(−n). This means that the de-

rived category Db(qgr(D̃)) can be completely understood by studying these n+ 1

objects and the relations between them; specifically, by studying the derived endo-

morphism algebra of their sum. This typically goes by the name of ‘tilting theory’.

The end result will be an equivalence of derived categories between Db(qgr(D̃))

and Db(E), for E a rather simple algebra.

Typically in tilting theory, the derived equivalent algebra E is a quiver alge-

bra; which can be thought of as a finitely-generated algebra over a semi-simple

ring ⊕ni=0C for some n. However, as has been a reoccuring theme in the study of

QGr(D̃), the role of the ground field is being played by the D̃-module OX . There-

fore, as one would expect, the algebra E is finitely-generated over the algebra

⊕Ni=0OX ; in fact, it is finitely generated as a module over this subalgebra. Thus,

the algebra E is behaving like a ‘loop-free quiver algebra over X’.
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6.1.1 The Tilting Object T and the Algebra E.

Instead of studying the n + 1 different objects πD̃(−i), it is simpler to study

one object which contains them all, in the most straight-forward way. Define the

tilting object T by

T :=
n⊕
i=0

πD̃(−i)

By Corollary 5.2.3.1, if πM ∈ qgr(D̃), there is always some surjection T⊕i → πM

for large enough i. This property says that the object T is called a generator for

the category qgr(D̃).

We then turn to study the derived endomorphism algebra of T . The rel-

ative Gorenstein property is the key lemma in computing the structure of

RHomqgr(D̃)(T, T ).

Theorem 6.1.1.1. For i > 0, Exti
qgr(D̃)

(T, T ) = 0, and

E := Homqgr(D̃)(T, T ) =



OX D1 D2 · · · Dn

0 OX D1 · · · Dn−1

0 0 OX · · · Dn−2

...
...

...
. . .

...

0 0 0 · · · OX


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Proof. Replacing T = ⊕ni=0πD̃(−i) gives that

RHomqgr(D̃)(T, T ) = RHomqgr(D̃)(⊕
n
i=0πD̃(−i),⊕ni=0πD̃(−i))

=
⊕

0≤i,j≤n

RHomqgr(D̃)(πD̃(−i), πD̃(−j))

=
⊕

0≤i,j≤n

RHomqgr(D̃)(πD̃, πD̃(i− j))

=
⊕

0≤i,j≤n

RHomgr(D̃)(D̃,RωπD̃(i− j))

=
⊕

0≤i,j≤n

[Rωπ(D̃)]j−i

The derived object Rωπ(D̃) fits into the torsion exact triangle in Db(gr(D̃))

Rτ(D̃)→ D̃ → Rωπ(D̃)→

However, by Lemma 4.2.4.1, the derived torsion Rτ(D̃) vanishes above graded

degree −n− 1. Therefore, Rωπ(D̃)k ' D̃k = Dk for k ≥ −n, and so

RHomqgr(D̃)(T, T ) =
⊕

0≤i,j≤n

Dj−i

Therefore, the higher Exts vanish completely, and the endomorphism algebra of

T is given by the above algebra.

6.1.2 The Tilting Functor.

Given any πM ∈ qgr(D̃), RHomqgr(T, πM) has a right action by Homqgr(T, T ) by

composition, and so it is a left E module. In this way, the functor RHomqgr(T,−)

defines a functor from Db(qgr(D̃)) to Db(mod(E)).

This functor can be expressed in terms of the functor Rωπ. After all, as derived
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right OX-modules,

RHomqgr(D̃)(T, πM) = RHomqgr(D̃)(⊕
n
i=0πD̃(−i), πM)

=
n⊕

0=i

RHomqgr(D̃)(πD̃(−i), πM)

=
n⊕

0=i

RHomgr(D̃)(D̃,RωπM(i))

=
n⊕

0=i

[Rωπ(M)]−i

The extra structure needed to make
⊕n

i=0[Rωπ(M)]−i into a derived left E-module

is the collection of action maps

D̃j−i ⊗X [Rωπ(M)]−j → [Rωπ(M)]−i

which come from Rωπ(M)’s left D̃-module structure.

6.1.3 The Equivalence Theorem.

Either way one writes it, it defines an equivalence of derived categories.

Theorem 6.1.3.1. (The Beilinson Equivalence) The functor RHomqgr(T,−) =⊕n
0=i[Rωπ(−)]−i defines an equivalence of triangulated categories (in fact, of dg

categories)

Db(qgr(D̃)) ' Db(mod(E))

with inverse given by T ⊗L
E −.

Proof. The theorem will follow from the following lemma.

Lemma 6.1.3.1. Let A be an abelian category, and let T be an object in A which

is:
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• Compact: The functor HomA(T,−) commutes with direct sums.

• Generator: For any object M ∈ A, there is a surjection T⊕I → A for some

index set I.

• Finite Dimension: There is some i such that ExtjA(T,M) = 0 for all

j > i and M ∈ A.

• ExtiA(T, T ) = 0 for i > 0.

Then RHomA(T,−) defines a quasi-equivalence of triangulated categories (and in

fact, an equivalence of dg categories)

Db(A) ' Db(mod(End(T )op))

with inverse T ⊗L
End(T )op −.

Proof. Theorem 4.3 in [22] (see also Theorem 8.5 in [23]) provides a a

quasi-equivalence of dg categories Db(A) ' Perf(Mod(End(T )op)), where

Perf(Mod(E)) is the category of perfect complexes. However, by the finite dimen-

sionality, the image of the functor takes bounded complexes to bounded complexes.

Therefore, Perf(Mod(End(T )op)) ' Db(mod(End(T )op)).

The compactness of T is immediate, because π is a compact functor and T is

π of a f.g. object. The fact that T is a generator was Corollary 5.2.3.1. The Serre

Finiteness Theorem (Theorem 3.2.4.1) proves that Rωπ has finite homological

dimension, and so then RHomqgr(T,−) does as well. Finally, the vanishing of

higher Exts was Theorem 6.1.1.1.

One interpretation of this theorem is that an object πM ∈ qgr(D̃) can be

completely determined by knowing Rωπ(M) in degrees −n to 0, together with
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knowing the action maps

D̃j−i ⊗X [Rωπ(M)]−j → [Rωπ(M)]−i

In fact, any object in Db(qgr(D̃)) can be constructed by giving n + 1 objects

N−i ∈ Db(OX), together with action maps D̃j−i⊗XN−j → N−i which are required

to be associative in the natural way.

6.2 Examples.

The generality of Lie algebroids means that this theorem encompasses a wide array

of different examples. We review some of these examples now.

6.2.1 Polynomial Algebras.

This is the case X = Spec(C), and L abelian. The bundle L is then a vector

space with trivial Lie bracket. If {x1, x2, ...xn} is a basis for L, D is C[x1, x2, ..., xn]

and D̃ = C[t, x1, x2, ...xn]. Therefore, qgr(D̃) = Coh(Pn), by the projective Serre

equivalence. Then the main theorem becomes the derived equivalence of Pn and

the algebra

C C⊕ L C⊕ L⊕ Sym2L · · · C⊕ L⊕ ...⊕ SymnL

0 C C⊕ L · · · C⊕ L⊕ ...⊕ Symn−1L

0 0 C · · · C⊕ L⊕ ...⊕ Symn−2L

...
...

...
. . .

...

0 0 0 · · · C


This algebra is usually written as the path algebra of a quiver Qn, called the nth

Beilinson quiver. The equivalence Db(mod(Pn)) ' Db(mod(Qn)) is the original
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Beilinson equivalence [4].

6.2.2 Lie Algebras.

This is the case X = Spec(C), and L = g, some Lie algebra. The enveloping

algebra is then the usual enveloping algebra Ug of the Lie algebra, and Ũg is the

homogenization. The categories qgr(Ũg) were first introduced by [25] under the

name quantum space of a Lie algebra. The main theorem becomes the derived

equivalence of this category and the algebra

C (Ug)1 (Ug)2 · · · (Ug)n

0 C (Ug)1 · · · (Ug)n−1

0 0 C · · · (Ug)n−2

...
...

...
. . .

...

0 0 0 · · · C


This algebra again can be written as the path algebra of a quiver, which will look

like the nth Beilinson quiver with its relations deformed by the Lie bracket.

6.2.3 Example: Differential Operators.

In this case, X is any irreducible smooth affine variety, and L is the tangent

bundle T . Then, D is the ring of differential operators. The category qgr(D̃) is
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then derived equivalent to the algebra

OX D1 D2 · · · Dd

0 OX D1 · · · Dd−1

0 0 OX · · · Dd−2

...
...

...
. . .

...

0 0 0 · · · OX


Not much else can be said in this level of generality. However, for a powerful

application of this in the form of curves, see Section 8.1.

6.2.4 Non-Examples.

It is worth noting that D̃ is not the most general class of graded algebra for which

the techniques here work, and for which a similar version of the main theorem

applies. For example, let PP~ denote the algebra over C generated by w1, w2, and

w3, subject to the relations

[w1, w3] = [w2, w3] = 0, [w1, w2] = 2~w2
3

One can check that this is not the homogenization of any universal enveloping

algebra of a Lie algebra.

However, in [21], a similar Koszul theory is developed, as well as a similar

Beilinson equivalence, which is then used for a monad-theoretic construction of

the moduli space of certain kinds of modules.

Another non-example of a relatively quadratic algebra which has an identical

Koszul theory and Beilinson transform is the D̃op, the opposite algebra of the

enveloping algebra of a Lie algebroid. This is equivalent to showing that the
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category of graded right D̃-modules has a quotient qgr(D̃)op which satisfies all the

theorems of this paper. Every proof in this paper works in this case, occasionally

with slight modification (actually, the proof of the relative Gorenstein property is

a little bit shorter).

So then, what is the most general setting where the above proof of

the Beilinson equivalence holds? The answer is that the proofs in this paper

will work for any relatively quadratic algebra A, such that

• A is Koszul, in that the left and right Koszul complexes are resolutions of

OX .

• A! is a finitely generated projective left and right OX-module and relatively

Frobenius over OX . That is, Corollaries 4.1.2.1, 4.1.2.2 and 4.1.3.1 hold.
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CHAPTER 7

DUALITY

This chapter uses the homological consequences of the Koszul theory to prove a

number of dualizing results about the category QGr(D̃). This section in particular

should feel strongly analogous to the case of a commutative algebra which is graded

local; ie, connected. For the commutative analog of these results, see Bruns and

Herzog [12].

7.1 Local Duality.

In this section, we regard the torsion functor τ as analogous to the local coho-

mology of a connected, commutative graded algebra. The main result is a non-

commutative, relative analog of Local Duality theorem of Grothendieck [12].

7.1.1 The Graded Dualizing Object J.

We start by introducing the object which will be doing the dualizing.

Lemma 7.1.1.1. As graded OX-bimodules, there is a canonical isomorphism

HomX−(D̃, ω) = Hom−X(D̃, ω)

Proof. For any i, define OX-bimodule maps ω ⊗ OX → HomX−(Di, ω) and ω ⊗

OX → Hom−X(Di, ω) by µ⊗ f → (δ → δ(f)µ) and µ⊗ f → (δ → fδ(µ)). These

maps are surjective, and have isomorphic kernel. The theorem follows.
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Therefore, let J := HomX−(D̃, ω) = Hom−X(D̃, ω). Each of these has an

obvious structure of a left or right D̃-module, which together make J into a graded

D̃-bimodule.

The importance of J is the functor HomD̃−(−, J) from left D̃-modules to right

D̃-modules, and the analogous Hom as a map of right modules. As the following

lemma shows, this functor is equivalent to HomX−(−, ω), which is then equipped

with a right D̃-module structure.

Lemma 7.1.1.2. Let M be a left D̃-module, and N a right D̃-module. Then

HomD̃−(M, J) ' HomX−(M,ω)

as right OX-modules, and

Hom−D̃(N, J) ' Hom−X(N,ω)

as left OX-modules.

Proof. The lemma follows from the (Hom,⊗) adjunction.

HomD̃−(M,HomD̃−(D̃, ω)) ' HomX−(D̃ ⊗D̃M,ω) = HomX−(M,ω)

Summing over all twists gives the graded isomorphism. The proof for N is similar.

The next lemma shows that the derived endomorphism algebra of J is just D̃.

Lemma 7.1.1.3. As algebras and as D̃-bimodules,

RHomD̃−(J, J) = RHom−D̃(J, J) = D̃
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Proof. As D̃-bimodules, we have

RHomD̃−(J, J) = RHomD̃−(Hom−X(D̃, ω), HomX−(D̃, ω))

= RHomX−(Hom−X(D̃, ω), ω) = D̃

The last equality follows from the projectivity of D̃ as a right OX-module which

is f.g. in each graded degree.

7.1.2 Matlis Duality.

We now establish the Matlis duality theorem, which says that the functors

RHomD̃−(−, J) and R−D̃(−, J) are mutual inverses on sufficiently nice modules.

Theorem 7.1.2.1. (Matlis duality) Let N be a f.g. left D̃-module. Then

RHom−D̃(RHomD̃−(N, J), J) ' N

Proof.

RHom−D̃(RHomD̃−(N, J), J) = RHom−D̃(RHomD̃−(N, D̃)⊗L
D̃ J, J)

= RHom−D̃(RHomD̃−(N, D̃),RHom(J, J))

= RHom−D̃(RHomD̃−(N, D̃), D̃) = N

7.1.3 Rτ(D̃) and RωπD̃.

Next, to relate Matlis duality to cohomology computations, we need to relate J to

cohomology.
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Lemma 7.1.3.1. There is an isomorphism of D̃-bimodules

Rτ(D̃) = J[−d− 1](d+ 1)

Proof. First, we show they are isomorphic as graded OX-bimodules. The Goren-

stein Lemma says that ExtiD̃−(OX , D̃) vanishes outside graded degree −d− 1 and

cohomological degree d+ 1. Therefore, Lemma 3.2.3.1 and Corollary 3.2.3.1 imply

that Extd+1

D̃−
(D̃≤j, D̃) is concentrated in graded degrees between −d − j − 1 and

−d− 1. Consider the short exact sequence of left D̃-modules 1

0→ Dj(−j)→ D̃≤j → D̃≤j−1 → 0

Applying RHomD̃−(−, D̃) and taking the long exact sequence, the above vanishing

conditions imply that there is a short exact sequence

0→ Extd+1

D̃−
(D̃≤j−1, D̃)→ Extd+1

D̃−
(D̃≤j, D̃)→ Extd+1

D̃−
(Dj, D̃(j))→ 0

However, because Dj is a f.g. projective left OX-module, we have that

Extd+1

D̃−
(Dj, D̃(j)) = HomX−(Dj, Extd+1

D̃−
(OX , D̃(j)))

= HomX−(Dj, ωL(j + d+ 1))

= J−j(j + d+ 1)

As a consequence, Extd+1

D̃−
(Dj, D̃(j)) is concentrated in graded degree −j − d− 1.

Therefore, the map

Extd+1

D̃−
(D̃≤j−1, D̃)k → Extd+1

D̃−
(D̃≤j, D̃)k

is an isomorphism of OX-bimodules when k 6= −d− j−1. Since Extd+1

D̃−
(D̃≤j−1, D̃)

is concentrated between graded degree −d− j and −d− 1, the map

Extd+1

D̃−
(D̃≤j, D̃)−j−d−1 → Extd+1

D̃−
(Dj, D̃(j))−j−d−1 = J−j

1Here Dj is a graded D̃-module concentrated in degree zero on which D̃≥1 acts trivially; that
is, it is the module induced from the left OX -module Dj .
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is an isomorphism of OX-bimodules.

Therefore, the limit

lim−→Extd+1

D̃−
(D̃≤j, D̃)k

is an isomorphism in all degrees except when j = k + d+ 1. Therefore,

Rd+1τ(D̃)k = Extd+1

D̃−
(Dk+d+1, D̃(j))k = Jk+d+1

Putting this together in each graded degree, we have an isomorphism Rd+1τ(D̃) =

J(d + 1). Since Riτ(D̃) vanishes in all other degrees, this implies that Rτ(D̃) =

J[−d− 1](d+ 1).

As a corollary, we deduce the structure of the derived global sections of πD̃,

which is playing the role of the structure sheaf.

Corollary 7.1.3.1. There is an exact triangle in Db(Gr(D̃))

D̃ → RωπD̃ → J[−d](d+ 1)→ D̃[1]

7.1.4 Local Duality.

We recall Watt’s Theorem, from homological algebra.

Lemma 7.1.4.1. (Watt’s Theorem [33]) Let R and S be rings, and let

F : Mod(R)→Mod(S)

be a contravariant functor which is additive, left exact and preserves direct sums.

Then F (R) is naturally a R− Sop-bimodule, and we have a natural equivalence of

functors

F (−) ' HomR(−, F (R))
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We can then prove local duality. This proof was heavily influenced by a similar

proof of Yekutieli and Zhang [37].

Theorem 7.1.4.1. (Local Duality) Let N be a f.g. left D̃-module. Then

Rτ(N) ' RHom−D̃(RHomD̃−(N, D̃), J)[−d− 1](d+ 1)

Proof. First, note that Rτ has homological dimension d+ 1. Since the left Koszul

complex is a projective resolution ofOX by projective D̃-modules of length d+1, the

Ext groups ExtiD̃(OX , N) = 0 for i > d+ 1. Thus, by Lemma 3.2.3.1, Riτ(N) = 0

for i > d+ 1.

Therefore, Rτ(N) is concentrated between degrees 0 and d+ 1. Therefore,

RHomD̃−(Rτ(N), J)[−d− 1](d+ 1)

is zero in negative cohomological degrees. Therefore,

HomD̃−(Rd+1τ(−), J)(d+ 1)

is a left exact functor. Since it also commutes with direct sums, by Watts’ Theorem,

its representable by the functor

HomD̃−(−, Hom−D̃(Rd+1τ(D̃), J)(d+ 1)) = HomD̃−(−, Hom−D̃(J, J))

Since Hom−D̃(J, J) = D̃, this is just the usual dual.

The higher derived functors of HomD̃−(Rd+1τ(−), J)(d + 1) vanish on D̃(i)

for all i (by the previous lemma and the fact that D̃ is a graded projective OX-

module). Therefore, by the universality of derived functors, we have an equivalence

of functors

RHomD̃−(−, D̃) ' RHomD̃−(Rτ(−), J)[−d− 1](d+ 1)

Applying Matlis duality to both sides, we get the theorem.
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7.2 Serre Duality.

Using the tools of the previous section, we prove the appropriate form of Serre

duality for the category qgr(D̃).

7.2.1 Serre Duality for πD̃.

The first step is to prove Serre duality for the structure sheaf πD̃. Recall that we

have a quasi-isomorphism (Corollary 3.2.2.1)

RωπD̃ ⊗L
D̃ RωπD̃ → RωπD̃

Composing this with the map RωπD̃ → J[−d](d+ 1), we get a map

RωπD̃ ⊗L
D̃ RωπD̃ → J[−d](d+ 1)

Lemma 7.2.1.1. The map RωπD̃ ⊗L
D̃ RωπD̃ → J[−d](d + 1) is a derived perfect

pairing. That is, the natural adjoint map

RωπD̃ → RHom−D̃(RωπD̃, J[−d](d+ 1))

is a quasi-isomorphism in Db(Gr(D̃)).

Proof. For this proof, let F denote RHom−D̃(−, J)[−d](d+1). By Corollary 7.1.3.1,

we have an exact triangle

D̃ → RωπD̃ → J[−d](d+ 1)→

Applying F to this, we get another exact triangle

F (J[−d](d+ 1))→ F (RωπD̃)→ F (D̃)→
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By Lemma 7.1.1.3, we know that the action map D̃ ⊗L
D̃ J→ J is a perfect pairing;

that is, that the map

D̃ → RHom−D̃(J, J) =: F (J[−d](d+ 1))

is a quasi-isomorphism. This isomorphism fits into a commutative square

D̃ → RωπD̃

↓ ↓

F (J[−d](d+ 1)) → F (RωπD̃)

Similarly, the multiplication map J⊗L
D̃ D̃ → J gives an quasi-isomorphism

J[−d](d+ 1)→ RHom−D̃(D̃, J[−d](d+ 1)) =: F (D̃)

This fits into a commutative diagram (in fact, a map of exact triangles)

D̃ → RωπD̃ → J[−d](d+ 1) →

↓ ↓ ↓

F (J[−d](d+ 1)) → F (RωπD̃) → F (D̃) →

The first and the third maps are quasi-isomorphisms, so by the Five-Lemma for

triangulated categories (see, for instance, [13]), the middle map is also a quasi-

isomorphism.

7.2.2 Serre Duality.

From this, we deduce the first form of Serre Duality.

Theorem 7.2.2.1. (Serre Duality, Version 1) Let M ∈ gr(D̃), and let ∗M =

RHomD̃−(M, D̃). Then

RωπM ' RHom−D̃(Rωπ( ∗M), J)[−d](d+ 1)
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Proof. The theorem follows from a string of known identities.

RωπM ' RωπD̃ ⊗L
D̃M

' RωπD̃ ⊗L
D̃ RHom−D̃( ∗M, D̃)

' RHom−D̃( ∗M,RωπD̃)

' RHom−D̃( ∗M,RHom−D̃(RωπD̃, J[−d](d+ 1)))

' RHom−D̃( ∗M ⊗L
D̃ RωπD̃, J[−d](d+ 1))

' RHom−D̃(Rωπ( ∗M), J[−d](d+ 1))

This can be rewritten in a form more familiar to the commutative case. For

this, let

∗M := π(RHomD̃−(RωM, D̃))

Note that this is an object in Db(QGr(D̃op)), the derived category of the quotient

category of right D̃-modules.

Theorem 7.2.2.2. (Serre Duality, Version 2) Let M∈ qgr(D̃). Then 2

RωM' RHom−X(Rω( ∗M), ωX)[−d](d+ 1)

Proof. This is a straightforward rewriting of the previous theorem, using Lemma

7.1.1.2.

While in general, the left-hand side of this identity contains three derived func-

tors, in many cases several of these vanish. If M is projective (this is the analog of

M being locally free), then the dual ∗M has no higher derived functors. If X is

2Here, ωX denotes the canonical bundle of X, while ω denotes the section functor of the
quotient categories. Apologies for the confusing notation.
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a point, then J is injective, and the outer RHom has no higher derived functors.

Therefore, in either of these cases, the above quasi-isomorphism gives a spectral

sequence; while in the intersection of these cases, it gives an outright isomorphism

on cohomology.
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CHAPTER 8

APPLICATIONS.

8.1 Ideals.

We review some of the applications of this theory to the study of right ideals in

rings of differential operators.

8.1.1 The Affine Line.

Let X = A1, the affine line, so that OX = C[x]. In this case, D is the first Weyl

algebra, generated by x and ∂. For a right ideal I in D, the inherited filtration from

D is almost an invariant of an ideal class. Two equivalent ideals will have filtrations

which differ by a shift. This shift can be fixed with the following observation.

Lemma 8.1.1.1. [14] Every right ideal I in D is equivalent to an ideal J such

that J0 6= 0 and J−1 = 0.

An ideal I such that I0 6= 0 is called fat. The fat ideals will be the represen-

tatives in an ideal class of ‘minimum shift’, so we can fix the shift in the filtration

by requiring that a representative be fat.

Let I be a fat ideal. The Beilinson equivalence says that to understand I, it

suffices to understand RωπĨ0 and RωπĨ−1, together with an action of D1 between

them. However, we know that ωπĨ = Ĩ and

0 = R≥2ωπĨ0 = R≥2ωπĨ−1
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so the only cohomology groups in question are R1ωπĨ0 and R1ωπĨ−1. Let

V := R1ωπĨ−1

Then we have

Lemma 8.1.1.2. [5, Theorem 4.6.] The C[x]-module V is a finite-dimensional

vector space. Furthermore, the Infinity long exact sequence (Section 3.3.1) becomes

0→ I0 → C[x]→ V → R1ωπĨ0 → 0

Denote by i the map C[x]→ V occurring in the lemma. As a consequence, we

have that RωπĨ0 is equivalent to the complex given by C[x] → V , with C[x] in

degree zero; and that RωπĨ−1 is equivalent to V [−1].

The final data to describe I is the action map

D1 ⊗L
X


V

↑

0

→


V

↑

C[x]


We may compute this as follows. Let n denote the dimension of V as a vector

space, and choose a basis ei for V . The action of C[x] on V is determined by the

action of x, which may be expressed as a matrix X in the chosen basis. This gives

a free resolution of V as

V ← C[x]n ←x−X C[x]n ← 0

Choosing a representative of the action map, we get a commutative square in the

homotopy category:

D1 ⊗X C[x]n →a1 V = Cn

↑x−X ↑i

D1 ⊗X C[x]n →a0 C[x]
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Let h∂ : Cn → C[x] be the unique linear map such that, for all v ∈ Cn,

a0(∂ ⊗ v) + xh∂(v)− h∂(Xv) ∈ C ⊂ C[x]

This is possible by starting with the highest degree term in a0(∂ ⊗ Cn) and pro-

ceeding by downward induction. Let h : D1 ⊗X C[x]n → C[x] be the OX-module

map defined by h(f ⊗ g) = 0 and h(∂ ⊗ v) = h∂(v). Then the chain homotopy of

the above diagram defined by h sends a0 to a′0 such that a′0(∂ ⊗ v) ∈ C. We apply

this homotopy, and by abuse of notation denote the resulting maps by a0 and a1.

These maps restricted to D0 ⊆ D1 must be the natural maps coming from the

previous resolution of V . Therefore, we need only determine the maps a0 and a1

on elements of the form ∂ ⊗ ei. We let j : Cn → C be defined by

j(v) := a0(∂ ⊗ v)

and Y ∈Matn,n(C) be defined by

Y (v) := a1(∂ ⊗ v)

The commutativity of the above diagram implies that we have the matrix

identity

Id+XY − Y X = ij

This is the Calogero-Moser equation, and a pair of matrices (X, Y ) satisfying it

are called Calogero-Moser matrices (i and j are usually surpressed). A different

choice of a basis for the space V will conjugate the matrices X and Y . Define the

nth Calogero-Moser space CMn to be the algebraic quotient of space of n× n

Calogero-Moser matrices by the conjugation action of PGLn.

Then by the Beilinson equivalence, we have a natural injection from the set of

ideal classes in D to the union over all the Calogero-Moser spaces.
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Theorem 8.1.1.1. [9, Theorem 1.1] The map constructed above, from right ideal

classes in D to
∏

n∈NCMn, is a bijection.

Furthermore, if G = Aut(D), then there are natural G actions on D and on each

CMn; it can be shown that the bijection is G-equivariant, and that it is transitive

on each of the CMn [9, Theorem 1.3.].

It is worth mentioning that this parametrization of ideals in the Weyl algebra

was first discovered by very different means. Cannings and Holland [15] first clas-

sified ideal classes by considering their images when acting on OX in terms of an

‘adelic Grassmannian’ (though they did not call it such), and Berest and Wilson

[9] first characterized this parameterization in terms of Calogero-Moser matrices.

The connection with projective geometry was introduced by Lebruyn in [24],

and developed by Berest and Wilson in [10]; though in that case it was with the

filtration on D with x and ∂ both having order 1 (the Bernstein filtration). The

advantage of this filtration over the present case is that the cohomology groups con-

sidered are automatically finite-dimensional vector spaces, making the appearance

of matrices more natural.

8.1.2 Smooth Affine Curves.

To generalize the above story to general smooth affine curves, it is necessary to

develop techniques that generalize appropriately. The Bernstein filtration has no

analog in D for an arbitrary curve, and so the differential filtration we have been

considering throughout is more naturally suited to this case.

The discussion of the previous section still works; every ideal is equivalent to
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a fat one and R1ωπĨ−1 is always finite dimensional. This leads to the following

classification of right ideals in D.

Theorem 8.1.2.1. [5, Theorem 4.3.] Let I be an ideal in D for X a smooth affine

curve. Then

1. (Rωπ(Ĩ))−1 = V [−1], where V is a finite-length sheaf on X.

2. (Rωπ(Ĩ))0 = Cone(i : J → V ), where J is some ideal on X and i is some

OX-module map.

3. The action map a : D1 ⊗X (Rωπ(Ĩ))−1 → (Rωπ(Ĩ))0 restricts on OX to the

natural map 
V

↑

0


→IdV

→0


V

↑

J


Furthermore, any choice of such V , J , i and a will determine a derived E-module

which corresponds to an ideal under the inverse Beilinson equivalence.

It is worth mentioning that a simultaneous characterization of these ideal classes

was obtained by Berest and Chalykh [7] using a different technique of deformed

preprojective algebras. Deformed preprojective algebras have frequently come up

in this theory, and offer interesting generalizations in the direction of replacing

OX with a quiver algebra. However, as such directions are perpendicular to our

discussion, we instead direct the interested reader to [7].
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8.1.3 Projective Ideals.

One possible direction in which to take the previous story is to investigate right

ideals in D when X has dimension greater than 1. However, differences from

the 1-dimensional case appear immediately. Not every ideal is equivalent to a fat

one, and not every ideal is projective. This presents problems for most known

classification techniques; but also for the applications of ideal classes. In the one

dimensional case, ideal classes can be used to produce everything from algebras

Morita equivalent to D, to new examples of wave operators which satisfy Huygen’s

principle.

Therefore, we address the potentially simpler question, of how to classify the

projective ideal class in D; this has the advantage of being a more well-behaved

class of ideals, while being closer to the applications known in the 1-dimensional

case. Also, in light of Stafford’s theorem (Theorem 3.3.2.1), this are intrinsically

interesting for the Weyl algebra because they are the only non-free projectives.

However, in general, very little is known about projective D-modules for higher

dimensional X so far. The only general classes of examples are those induced

from the 1-dimensional cases. When X can be written as X = X ′ × X ′′, for

X ′ a curve, then any ideal I in D(X ′) induces a projective ideal I ⊗ D(D′′) in

D(X). Furthermore, if X is 2-dimensional, then D has global dimension 2, and

intersections of projective ideals are still projective.
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8.1.4 Quasi-Invariants.

There is also a very specific but interesting class of projective ideals in the higher

Weyl algebras coming from the theory of quasi-invariants. Let h be a d-dimensional

vector space with a non-degenerate inner product, and let W be a Coxeter group

acting on h by reflections. Each simple reflection si ∈ W defines an invariant

hyperplane Hi; let vi denote the normal vector to Hi. Assign to every invariant

hyperplane Hi a positive integer ci so that this is invariant under the action of W .

Then the ring of quasi-invariants Qc is the subring of the ring Oh = C[h]

consisting of functions f such that

∀Hi, ∀j, 1 ≤ j ≤ ci; (∂2j−1
vi

f)(Hi) = 0

That is, for every hyperplane Hi, the first ci odd derivatives of f normal to Hi

vanish along Hi. Note that if we required every odd derivative normal to Hi

vanishes along Hi, then the function would be globally invariant by reflection across

Hi. Hence the name ‘quasi-invariants’; they are those functions which appear

invariant across Hi to 2cith order.

The significance of the ring Qc is that the ring of differential operators on

Spec(Qc) is isomorphic to the eH1,ce, the spherical subalgebra of the rational

Cherednik algebra at c. This is another story about which we will say very little,

except that it is a very well-developed theory studying non-commutative deforma-

tions of the ring (C[h]⊗C[h∗]) oW . In particular, there are many powerful tools

which do not generalize to other settings well.

Let Ic denote the right ideal of differential operators δ inD(h) such that δ(Oh) ⊆

Qc. Using representation theory of the Cherednik algebra, Berest, Etingof and

Ginzburg [8] showed that Ic is a projective ideal, with EndD(Ic) = D(Qc). In
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dimension greater than 2, these constitute essentially the only known examples of

projective ideals which are not constructed from 1-dimensional examples.

8.1.5 Projective Geometry and Projective Ideals.

A main justification for the theory of projective geometry developed in this thesis

has been to create the tools for producing an analogous classification to the 1-

dimensional case. We review what such a classification would look like for a d-

dimensional variety.

First, the shift on ideal classes must be fixed; since not every projective ideal

is fat, this is a more delicate question than the 1-dimensional case. The Beilinson

equivalence then reduces to studying the (d+1)2 cohomology groups RiωπĨ−j, and

the various connecting morphisms between them. The hope is that projectivity,

possibly in conjunction with other conditions, will imply that many of these co-

homology groups vanish, and the rest are given by ‘small’ modules (not necessary

finite-dimensional over C, but with small support). Such hopes are born out by

explicit computation with examples, but so far no general theory is forthcoming.

8.2 Grothendieck Groups and Chern Classes.

An application of the Beilinson equivalence is computing the Grothendieck group

K0(qgr(D̃)) of the category qgr(D̃), because the Grothendieck group depends only

on the bounded derived category. Furthermore, K0(mod(E)) is easy to compute

because, like a quiver, it can be shown that the Grothendieck group depends only

on the diagonal part of E (the vertices) and not on the above diagonal part (the
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arrows).

8.2.1 Grothendieck Group.

Lemma 8.2.1.1. K0(mod(E)) = K0(coh(X))⊕(n+1).

Proof. Let M ∈ mod(E), and let e−i denote the idempotent in E which is 1 ∈ OX

in the (n + 1 − i, n + 1 − i) entry in the matrix. Recall that M can be described

by the OX-modules M−i := eiM ∈ coh(X), together with a collection of action

maps U1⊗X M−i →M−i+1. Note that M has a filtration by submodules M≥−i :=

(
∑i

j=0 e−i)M , with the action maps the same as M where they aren’t necessarily

zero. The successive quotients M≥−i/M≥−i+1 = M−i, and so [M ] =
∑n

i=0[M−i].

Therefore, K0(mod(E)) is generated by the class of modules of the form M−i for

some M .

Let N and N ′ be two OX modules, and let e−iN and e−iN
′ be the corre-

sponding E-modules. Then [e−iN ] = [e−iN
′] only if [N ] = [N ′] in K0(coh(X)).

Furthermore, [e−iN ] = [e−jN
′] for i 6= j only if both are the zero class. There-

fore, the group K0(mod(E)) decomposes into K0(coh(X))⊕(n+1), where [M ] goes

to ([M0], [M−1], ...[M−n]).

Theorem 8.2.1.1. K0(qgr(D̃)) ' K0(coh(X))⊕(n+1).

Explicitly, under this isomorphism, [πM ] goes to

([Rωπ(M)0], [Rωπ(M)−1], ...[Rωπ(M)−n])
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8.2.2 Chern Classes.

This decomposition can be used to define the notion of a K0(coh(X))-valued ith

Chern class for an object in qgr(D̃). Let the i-th Chern class of πM be defined as

ci(πM) :=
n∑
j=0

(
i

j

)
[Rωπ(M)−j] ∈ K0(coh(X))

where
(
i
j

)
= 0 if j > i. In the case of Pn, this will coincide with the usual Chern

class of a module, see [12].

This amounts to a change of basis of K0(qgr(D̃)) from the natural basis coming

from the idempotents ei, to a basis corresponding in form to powers of a hyper-

plane divisor (if hyperplane divisors existed). A hyperplane divisor should have

a resolution of the form πD̃(−1) → πD̃, and intersections of hyperplane divisors

will have resolutions corresponding to tensor products of this resolution, we can

deduce what its class in the Grothendieck group should be.

Note that the Chern class introduced here is distinct from the ‘local second

Chern class’ of a D-bundle introduced in [5].
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