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Connectivity of wireless networks has been widely studied. Within the

framework of wireless sensor networks, asymptotic results have been

provided for the probability that a network realization will be connected.

However, exact formulas for finite network deployments are missing.

This dissertation solves selected connectivity problems arising in wire-

less sensor networks of finite size. We approach the problem through

stochastic geometry and combinatorial techniques.

The main topic considered in this dissertation is the connectivity of

finite, randomly deployed, wireless sensor networks. The problem is

to calculate the probability of connectivity given certain conditions like

field of interest, number of node platforms deployed, type of infrastruc-

ture, and communication channel model. We provide analyses for mul-

tiple scenarios comprising one- and two-dimensional networks.

For one-dimensional network deployments, exact formulas for the

probability of connectivity are given when deterministic communication

links are considered along infrastructure. We also present an analysis

of a network composed of nodes having random communication radii

and provide a formula for general distribution functions.

For the two-dimensional network deployments approximate formu-

las for the probability of connectivity are provided. We consider deter-

ministic and random communication links. In addition, we study the

effects of partially connected wireless sensor network, where we allow



the existence of few isolated node platforms and thus can improve other

network metrics, like node energy consumption.

Finally, we present an application of the obtained connectivity re-

sults. We focus on the extension of network functional lifetime through

a topology control scheme. The scheme is based on the correlation of

information obtained by the node platforms in the deployment. This

analysis helps to illustrate the use and relevance of our results when

designing wireless sensor networks.
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CHAPTER 1

INTRODUCTION

1.1 Topological Properties of Wireless Sensor Networks

A wireless sensor network (WSN) is composed of communicating nodes

with sensing capabilities, called node platforms, [26, 43, 46, 65]. WSNs

represent a special type of ad hoc wireless networks [36, 37]. In gen-

eral, WSNs have large number of node platforms [65]. The use of great

number of node platforms in a WSN demands a special type of analysis,

different from traditional wireless networks [4, 46]. When deploying a

large number of node platforms in a given environment, for a particu-

lar sensing application, it may be complex and expensive to perform a

structured deployment [43, 46]. As a result, a random deployment of

node platforms may be necessary in order to be able to use vast quanti-

ties of such platforms in a feasible and economical manner.

When designing a WSN to be comprised of a random deployments

of node platforms, it is important to know the probability that the re-

sulting wireless network will be connected. In particular, in order to

provide certain guarantees that the resulting network will be connected

with certain probability, it is necessary to estimate the number of node

platforms that should be deployed. A network design engineer has the

challenge to minimize this amount of nodes in order to provide a cost

effective design.

In this dissertation we analyze some topological characteristics, as
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defined below, of WSNs. In particular we study the connectivity prob-

ability of WSNs with finite number of node platforms. Also, we present

a simple topology control mechanism that helps to extend the network

functional lifetime. Current methods researching wireless network con-

nectivity issues focus on the probability of connectivity based on asymp-

totic results on the number of nodes in the network deployment. These

asymptotic approaches provide estimates for the probability of network

connectivity, as opposed to exact results, which are possible when ana-

lyzing a wireless network with finite number of nodes.

Once a network realization is connected and functional, it is impor-

tant to estimate the energy consumption of the resulting topology with

the goal of finding a way to improve the network functional lifetime of

the given deployment. This dissertation proposes a simple topology con-

trol scheme that is capable of extending the network functional lifetime

after the network has been established.

The practical relevance of this dissertation is as follows. In real

world installations of WSNs the deployed quantities of node platforms

are finite. Some application of such networks include monitoring phys-

ical structures—such as tunnels, bridges, or buildings, where WSNs are

used to observe the mechanical conditions of the structures and to eval-

uate their possible damage [18]. As a result, in these types of environ-

ments it is relevant to have reliable estimates of the required finite num-

ber of node platforms to be deployed and take them into consideration

when planning a network [28]. In addition, it is important to accurately

model the communication channel, not only in a deterministic fashion
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(Boolean-type communication links), but also in a random way, such as

consideration of fading—for example log-normal shadowing, a technique

that models obstructions.

Additionally, note that when node platforms are embedded into phys-

ical structures, like the ones mentioned above, having a wireless net-

work functioning for long periods is of utmost relevance [52]. This fol-

lows given that it may be impossible to replace the source of energy of

the node platforms—either because they are embedded or due to their

sheer numbers. Even though there are some types of node platforms

that are able to harvest energy [62], it is a desirable design approach

to utilize the available energy in the most efficient way. A topology con-

trol mechanism is a viable and reasonable way to extend the network

functional lifetime.

1.1.1 Background on WSNs

WSNs are a recent technology resulting from the miniaturization of both

radio components and sensor devices [67]. A wireless sensor network

(WSN) is composed of small devices with communication and sensing

capabilities. These small devices are called node platforms, sensor plat-

forms, motes, or simply nodes—in this work we will use any of these

names interchangeably. These characteristics of WSNs allow for fine

spatio-temporal sensing and monitoring of any given environment. But,

on the other hand, they also create complex design challenges, includ-

ing routing algorithms [46], energy consumption, time synchronization,

3



mobility [51], and security and privacy [59].

WSNs have multiple applications, including the broad areas of mil-

itary tracking, habitat monitoring, and patient health monitoring [50,

80,86]. Some of these applications require a large number of node plat-

forms to be deployed in the fields of interest in order to be able to obtain

useful data while maintaining network robustness and architecture re-

liability. In particular, WSNs with high-densities of node platforms can

be embedded into physical structures. For example WSNs can be used

for the monitoring of buildings, bridges, and tunnels, for the purpose

of performing techniques of Structural Health Monitoring (SHM). Cur-

rently, in new cutting-edge bridges and smart buildings there are wired

SHM analyses being performed. It is of great interest to be able to per-

form such SHM analyses in a wireless fashion [58,82].

In a general sense, network topology for traditional wired and wire-

less networks is defined by their deployment scheme. There are two wide

category types of such deployments (1) structured—for example star or

mesh topology—and (2) random—following a given distribution [46]. As

a result of the kind of deployment, other characteristics of the networks

are directly affected, for example connectivity [48, 76, 85] and cover-

age [1, 42, 49, 54, 55, 77], which in turn affect the capacity of the net-

work deployment [39]. Thus the network connectivity and coverage can

be considered topological characteristics of a network. Note that, given

some conditions, connectivity can imply coverage in a wireless sensor

network [3,56,79].

The topological characteristic of connectivity and coverage in wire-

4



less networks are crucial in WSNs given that certain design requirements

should be met in order for a network to be able to perform its functions.

In particular, connectivity is very relevant for wireless sensor networks

because it allows a network user to be able to extract information out of

the environment under sensing. Besides the number of node platforms

being deployed, the characteristics of the environment where the plat-

forms are deployed can greatly affect the level of connectivity of a WSN.

Since WSNs should be robust and reliable when designed for real world

applications, it is necessary to consider the type of channels where the

nodes will be operating in order to be able to maintain the network con-

nectivity even in harsh conditions.

In this dissertation we focus on the connectivity analysis of multi-

hop, mesh-type topology, WSNs resulting from random deployments of

node platforms. Note that when WSNs are used for monitoring physi-

cal structures, like in SHM, they have to be very energy efficient, given

that node platforms will remain in place for long periods. Thus, after

analyzing how to have a connected network, with a given probability,

this work presents a mechanism that exploits the relation between the

connectivity aspects and their impact on functional lifetime in a WSN.

1.1.2 Connectivity Problem in WSNs

The level of connectivity in general wireless networks is a relevant, in-

trinsic quality, since it allows the networks to fulfill their primary or

elementary function of communication between the node platforms—

5



including sinks or base stations, if applicable—belonging to the net-

work. Connectivity of a network can be broadly defined as the ability of

any pair of nodes that are part of the network to be able to communicate

with each other, either in single- or multi-hop mechanism. A network

is fully connected—also simply called connected—if any pair of nodes is

able to communicate between them. A network is partially connected if

there are isolated nodes or components of nodes [22].

Having a connected network allows the transmission of data between

nodes, or from a node to a single or multiple base stations (BSs), also

called sinks. Among other things, data communication among net-

work elements allows for data extraction, cooperative schemes, self-

configuration protocols, as well as routing protocols establishment.

A connected network is easy to characterize: is the one where all

the nodes can communicate to each other. However, besides this full

connectivity concept, there can be a partially connected network. The

partial network connectivity can be measured as the fraction of nodes

that form a connected component. In the particular case when there is

infrastructure, the partial connectivity could also be measured as the

fraction of nodes that is able to reach a base station or sink.

In random wireless sensor networks only a probabilistic measure can

be given regarding the connectivity degree of such networks. That is,

the design goal of a random WSN is to provide certain guarantees for

the connectivity of the resulting network. Among the different types of

metrics for connectivity of random WSNs there are the following

6



• asymptotic connectivity

• infinite connected component

• connected subnetworks

• partial connectivity

Another factor to consider when analyzing the connectivity of a WSN is

that the network can have infrastructure—like base stations or sinks—

or the lack of it. Given the above mentioned characteristics for a par-

ticular deployment, there are techniques that improve the level of con-

nectivity in wireless networks [13] by using multiple antennas in each

node. This topic will not be considered in this dissertation.

In summary, the problem of connectivity in randomly deployed wire-

less sensor networks is to have a certain probabilistic measure that

indicates the most likely connectivity degree of the resulting network re-

alization. This guarantee will be a function of certain parameter of the

network, like the node density or quantity of nodes in the deployment,

and the area of the environment.

1.1.3 Energy Consumption Problem in WSNs

Improving the energy consumption in general wireless networks is im-

portant given that, most of the time, their nodes only have a finite energy

source—like a battery. In particular, as mentioned above, having effi-

cient energy consumption in WSNs is critical, due to the impossibility

of replenishing the energy source in the node platforms. As a result,

7



one of the most important goals of any design in WSNs is to have the

most power efficient network possible. This limitation comprises all the

aspects of the design work, including network protocols and architec-

tures. In this dissertation we present a simple scheme that, after having

a connected wireless sensor network, can be used to extend the net-

work functional lifetime. This functional lifetime extension results from

a reduction on energy consumption of the node platforms forming the

wireless network.

Mostly, network lifetime in a WSN can be defined in several ways. The

three most used definitions are when

• the first node failure occurs

• a given percentage of the number of nodes have failed

• the network cannot function as designed

The techniques of network lifetime extension are the bases for having

long-lived networks. The methods apply specially when considering the

monitoring of structures, as in SHM, where node platforms are usually

embedded into the structure—thus with no possibility of having their

energy sources replaced or recharged. A node lifetime extension can be

directly measured in proportion of the duty cycle of the node platforms.

Node duty cycle is the fraction of time that a node is in the active state,

as opposed to the sleeping or idle state. Thus the lifetime extension met-

ric for a node can be defined as the ratio between the expected lifetime

of a node with a particular duty cycle and a node that is always active.

Broadly, there are different approaches to improve the network life-
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time, each with its own characteristics, advantages, and disadvantages.

Examples of approaches include (1) maximal, (2) maximization, and (3)

extension of network lifetime. In this dissertation we focus on the last

approach, that of extending the WSN lifetime through a simple scheme.

In summary, the problem of energy consumption in a WSN is related

to that of extending its functional lifetime. In randomly deployed WSNs

is it beneficial to have a mechanism that, once the network is connected,

will allow an increase to the total time the network will be functional,

compared to a deployment without such a scheme.

1.1.4 Stochastic Analysis of WSNs

Throughout this dissertation we use the theory of applied probabil-

ity [29,30], stochastic processes [44,64,66], and random graphs [15,61]

to address the problems mentioned above. These techniques are useful

to analyze random wireless sensor networks [73, 74]. In particular, by

mapping a network deployment to the abstract mathematical concept of

a graph it is possible to rigorously analyze a random WSN. This abstract

mapping is based on the following equivalences:

• node platforms are represented by vertices,

• communication links become edges, and

• conditions on the communication channel provide the restrictions

for the existence of edges
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As a result of this network-graph mapping, the field of interest (FoI) of

the network deployment becomes one of the Euclidean spaces. Both the

one-dimensional (1-D) and the two-dimensional (2-D) Euclidean spaces

are the ones of interest in this work. We note that an alternate ap-

proach to analyze the problems considered in this dissertation is via

stochastic simulations [2]. One of the most relevant disadvantages of

this approach, as compared to the analytical method, is the scalability

issues on the computational simulations [81].

Using stochastic simulations to obtain the probability of connectiv-

ity is a resource-intensive computational method, given that the algo-

rithms to obtain such probability require extensive search for verifying

the connectivity of each network realization. In addition, when using the

Monte Carlo method for simulations it is necessary to provide enough

replications of the same simulation in order to obtain the appropriate

level of confidence intervals for each set of parameters. In this work we

use stochastic simulations for small-sized—in the number of nodes in a

WSN—problems to verify our theoretical results.

1.2 Dissertation Outline and Summary of Results

This dissertation addresses some of the problems of connectivity in one

and two dimensional random wireless sensor networks. In addition,

this work presents a simple scheme that increases the network func-

tional lifetime and it is based on the connectivity results from the two-

dimensional WSNs. Our main contributions are the formulas for the

10



probability of network connectivity and network functional lifetime ex-

tension. In particular, this dissertation:

• provides an unifying framework on the probability of connectivity

for finite random WSNs, considering 1-D and 2-D deployments;

• develops new methodology to analyze the probability of connectivity

of finite random wireless sensor networks;

• develops new methodology to analyze the probability of connectivity

of WSN with infrastructure;

• explores the concept of partial connectivity in WSNs with infras-

tructure;

• shows a simple mechanism that controls the network topology with

the purpose of extending its functional lifetime.

The outline of this dissertation is as follows.

In Chapter 2 we address the network connectivity in one-dimensional

WSNs deployments. We analyze networks with a finite number of node

platforms under different conditions. These settings include deploy-

ments of nodes with non-homogeneous (random) transmission capabil-

ities and networks with infrastructure.

In Chapter 3 we analyze network connectivity in two-dimensional

WSNs deployments. We focus on networks with finite number of nodes

and consider deployments with and without infrastructure. The ana-

lysis of the latter one includes concepts of partial connectivity.
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In Chapter 4 we present a simple topology control scheme that ex-

tends the network functional lifetime on two-dimensional WSNs deploy-

ments. That Chapter illustrates the use of the techniques and formulas

developed in the previous Chapters.

Chapter 5 concludes the dissertation with a brief summary of our

contributions, an enumeration of open questions, and possible ideas of

extensions for this work.

1.2.1 Related Publications

Some portions of this dissertation have been previously published in

the research in [5–9]. In [5, 8] the probability of network connectivity

under different settings is analyzed for a 1-D WSN model. In [6, 7] the

probability of connectivity for a 2-D WSN model is studied, along with a

simple topology control mechanism. Finally, [9] presents the analysis of

full and partial network connectivity for a 2-D wireless sensor network

model with infrastructure.
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CHAPTER 2

CONNECTIVITY ANALYSES IN 1-D WIRELESS SENSOR NETWORKS

2.1 Introduction

In this Chapter we consider the connectivity problem for networks of

wireless monitoring devices on highly linear structures such as bridges,

tunnels, and walkways. Connectivity is a fundamental characteristic

of general wireless networks since it is required in order to be able to

extract useful information out of such network. In particular, if we con-

sider wireless sensor networks (WSNs) and their multiple applications,

then connectivity is essential for the proper function of such networks.

Given that WSNs can monitor several kinds of environments it is im-

portant to be able to estimate the level of connectivity of a random net-

work realization at the time of its design. For example, WSNs can be

used for monitoring physical structures such as bridges, tunnels, and

walkways. This is comprised by structural health monitoring (SHM). It is

envisioned that nodes will be embedded into the structures at the time

of their construction. We note that WSNs have multiple design chal-

lenges, comprising various spheres, like network topology, node energy

consumption, computing processing capabilities, and communication

reliability and robustness.

In this Chapter we focus on WSNs formed by a random deployment of

node platforms and analyze the probability that such network realiza-

tions will be connected. By analyzing a simple environment we are able

13



to obtain exact formulas. In particular, in this Chapter we center in one-

dimensional (1-D) wireless networks with and without infrastructure,

where finite number of nodes are randomly and uniformly deployed.

First, when considering 1-D WSNs with infrastructure, we suppose

that node platforms have deterministic communication links and pro-

vide exact formulas for their probability of connectivity. Then, when

considering 1-D wireless networks without infrastructure, we assume a

model where node platforms have random communication range with

distribution function F and provide a formula for the probability of net-

work connectivity for a general function F. In addition, we provide a

comparison of such wireless network model and the result of a theoretic

setting that assumes slow fading in the communication channel—by

modeling it as a log-normal shadowing.

We note that in the research literature the problem of estimating the

probability of network connectivity has been addressed for 1-D finite

wireless networks. Although with the assumptions of infrastructure-

less networks and node platforms with deterministic communication

links [21,35]. In this Chapter we consider WSNs with infrastructure as

well as the situation of a wireless network composed of nodes having

random communication radii.

The techniques we use to solve the connectivity problem presented

in this Chapter are stochastic geometry and combinatorial theory. Our

main contributions are the general formulas for the probability of net-

work connectivity. In particular, we provide exact formulas for both

cases of node communication radii: (1) homogeneous and (2) random.
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Moreover, we also show how a network model that assumes node plat-

forms with random communication radii following the uniform distri-

bution function can be used to approximate the setting of a WSN be-

ing analyzed under a communication channel modeled with log-normal

shadowing.

In addition, in this Chapter we also analyze a 1-D wireless network

with infrastructure, that is with base stations. By using combinato-

rial theory we provide formulas to calculate the probability that such a

network will be connected for n uniformly deployed nodes and m base

stations with given locations.

This Chapter is organized as follows. Next Section 2.2 presents the

related work in the research literature to this Chapter. Then in §2.3 we

present the results of probability of network connectivity in 1-D WSNs,

first by addressing the setting of networks with nodes having Boolean,

homogeneous communication links. Subsequently, we address the sit-

uation of WSNs with nodes having random communication radii. This

model is useful given that is can approximate a WSN under a communi-

cation channel affected by fading, in particular by log-normal shadowing

model. In §2.4 we study the situation when the network deployment has

several sinks or base station—that is a WSN with infrastructure—while

assuming nodes having Boolean communication links.
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2.2 Related Work

The following research work is related to the topics in this Chapter. We

group the literature review according to the subject referred to in each

paper. Let us first consider research that uses a wireless network model

with nodes having homogeneous and Boolean communication radii or

links. The following papers consider infinite size network models; where

infinite size is in either the area of the field of interest or the number of

nodes in the deployment. The percolation of a message—the distribution

of the distance traveled by a broadcast sent by a source—is analyzed

in [17]. The authors model random wireless network and find that no

percolation is possible.

In [38] there is a study on the connectivity of wireless networks with n

uniformly distributed nodes over a finite area. That work considers the

homogeneous communication radius required for asymptotic connectiv-

ity when n increases. The authors use percolation theory to prove re-

sults in dense networks—networks with finite area, but infinite number

of nodes. The work in [11] analyzes the connectivity of ad hoc networks.

The author uses random geometric graphs theory and by estimating

the probability that there is no node isolated in an infinite network

with uniform density, he provides a formula that approximates—a lower

bound—the probability of network connectivity. The authors in [25] ad-

dress the connectivity in ad hoc networks by using percolation theory.

That paper assumes an infinite size network and provides the require-

ments in the density of nodes to have an infinite connected component

with high probability.
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The following related work considers the connectivity of 1-D wireless

networks with a finite number of randomly deployed nodes within a

finite field of interest. Note that none of them takes into account neither

infrastructure nor the randomness of the communication channel. The

work in [35] treats random interval graphs considering in particular the

unit interval and analyzing the random variables (rv) related to graph

connectivity. The authors use combinatorial theory and provide several

results including the network connectivity probability.

The authors in [21] analyze a network deployed over a line segment

with n nodes distributed uniformly. Using the ratio of the volume of

a convex polytope and an n-dimensional simplex, the paper provides a

formula for the probability of having a connected network. By means

of order statistics principles [33] provides a formula for the probability

that a wireless network is composed of at most D clusters of connected

nodes—note that a cluster can be just an isolated node.

The subsequent research work considers randomness in the com-

munication channel, therefore these models have more complex node

communication radii representation, those where there are a determin-

istic and a random part—or, equivalently, there are a distance based

part and a channel-dependent part. The authors in [16] use percolation

theory to analyze infinite wireless networks and their results hold when

nodes have random communication radii.

In [57] there is an analysis of a 1-D wireless network over a semi-

infinite line. Nodes are deployed following either a Poisson process or a

distribution with general inter-node distances. Using queueing theory
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the authors provide formulas for the probability that a node at given

distance will be connected to a base station at the origin. The work

considers both a deterministic channel model and one assuming fading

and log-normal shadowing, both in infinite networks.

In [12] there is an analysis of the network connectivity under log-

normal shadowing model where nodes are deployed over an infinite

plane according to a Poisson process. The work provides bounds on

the probability of connectivity utilizing approximations based on geo-

metric random graphs. The authors find out an increase in the network

connectivity due to shadowing. It is also worth to note that under [12]

analysis it is assumed statistical decoupling between the path-loss expo-

nent and the variance in the log-normal shadowing model—something

that may not happen in real world settings.

2.3 WSNs with Random Communication Range Nodes

As mentioned before, one of the most important topological characteris-

tics of a wireless network is its connectivity. It is a basic quality of a WSN

since it is required to obtain useful information out of such network.

When designing a WSN, one of the factors that needs to be addressed

is how many nodes to deploy. This Section analyzes the connectivity of

WSNs considering finite number of randomly deployed nodes with ran-

dom communication ranges—in contrast to a homogeneous communi-

cation range model as in most of the literature. In particular, it focuses

on the probability of being able to convey a message from the source to
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Source Sinks1 s2 s3 snnode

link

Figure 2.1: Example showing a realization of a network. Note that
due to the effects of random communication radii node
s2 and s3 are connected, but s1 and s2 are not in spite of
their relative distance between each other.

the sink given certain number of nodes; a so called relay network. The

setup is as follows. There is one source and one sink at the extremes

of the field of interest and there are a given number of nodes, deployed

randomly, between them. Then we need to estimate the probability that

a message sent from the source is able to get to the sink.

To analyze the connectivity with random communication ranges we

consider a one-dimensional (1-D) wireless network. The method to ad-

dress the connectivity problem is by mapping it to the question of cov-

ering a circle with arcs of random sizes. This Section provides an an-

alytical solution when the communication ranges of the nodes are dis-

tributed uniformly over the field of interest (FoI). See Fig. 2.1 for an

illustration. We present formulas to calculate the probability of having

connected network given a finite number of node platforms.

In addition, and of practical relevance, this Section shows how the

random communication radii model can represent certain kind of ran-

domness in the communication channel. Specifically there is a compari-

son between our model and the log-normal shadowing statistical model.

Stochastic simulations validate the derived formula as well as its ap-
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proximation to the standard log-normal shadowing model. In agreement

with previous results for wireless networks, we verify that the require-

ments on the number of nodes to have a connected network may be re-

laxed when the nodes have random communication radii as compared

to homogeneous transmission radius nodes.

There are several results in the research literature on wireless net-

works that analyze connectivity [5, 12, 21, 35, 38, 57]. In the case of

analysis under asymptotic behavior, some of those works consider ran-

domness in the communication channel by assuming the effects of log-

normal shadowing—also called slow fading. On the other hand, the

results on connectivity with finite number of nodes do not consider the

randomness in the communication channel. In this latter case, the re-

search models focus only on a Boolean—or binary—communication link

model and nodes having homogeneous communication radii.

The random range model is relevant for network design because it

can account for obstructions or variability in the communication links

or channels, for example to be able to accurately estimate the proba-

bility of connectivity after network setup. Moreover, sometimes it is not

reasonable to assume a homogeneous communication radius for all the

nodes in the network, even worse, the network could use heterogeneous

nodes. For instance, in the framework of monitoring physical infras-

tructure with wireless sensor networks (WSNs), a model that takes into

consideration channel randomness is important to have a more realistic

representation. This follows because nodes will be embedded into the

structures—homes, buildings, tunnels, bridges—thus having links with
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arbitrary obstructions. The random range model is also applicable on

networks deployed after an emergency in a urban or combat search and

rescue operation, where a source needs to convey an urgent message to

a destination or control center and there are unplanned obstructions.

By assuming that the communication radii of the nodes will be an

independent and identically distributed uniform random variable with

finite support, the model in this Section can represent a kind of ran-

domness in the communication channel. Under certain restrictions, the

model could be used as an approximation to a shadowing model. Log-

normal shadowing model is a widely accepted statistical model used to

analyze the randomness in communication channels. This model repre-

sents the slow fading of the radio frequency (RF) communication signals

and, with appropriate parameters, it is valid for either indoor or outdoor

environments.

Therefore, with some limitations, our model represents a simple ap-

proach to deal analytically with the complexity of log-normal shadowing

(referred simply as shadowing below). As noted in the research work

that study network connectivity, shadowing, or randomness in the com-

munication channel, increases the probability of having a connected

network. The 1-D setup of this Section also exhibits this phenomenon,

that is there are slightly more relaxed requirements on the number of

nodes needed to have a connected network, compared to those needed

for a connected network using a Boolean model with homogeneous ra-

dius of communication.
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2.3.1 Model and Problem Formulation

Let the segment I = (0, 1) represent the field of interest. Consider a

deployment of n nodes over I following a uniform distribution. Label the

nodes s1, s2, . . . , sn in increasing order according to their location, starting

from the leftmost one, and denote by xi the position of node si. Assume

there is a source s0 at x0 = 0 and a sink sn+1 at xn+1 = 1. The source wants

to send a message to the sink. A similar model, with a semi-infinite line,

has been used in the literature for the percolation of a message [17,57].

Consider that node i has a random transmission power such that

its communication radius ri is a uniform random variable, ri ∼ U(0, 1),

i ∈ {0, 1, 2, . . . , n}. That is when node si, i ∈ {0, 1, 2, . . . , n} is deployed it is

assigned an independent random variable ri. Having the source and the

sink, we want to find the probability that if we deploy n nodes over the

segment I the resulting network is connected.

The procedure to solve this problem is by first mapping it as a circle

covering problem, then solving the covering problem, and finally inter-

preting the result. Fig. 2.1 illustrates a realization of a network where

squares are the base stations, circles are the nodes, and arcs denote

communication links. Note that due to the effect of random commu-

nication radii node s2 and s3 are connected, but not s1 and s2 in spite

of their relative distance between each other. Fig. 2.2 is an equivalent

representation of the network, where the vertical side of a triangle rep-

resents the communication range, or radius, of a node. Since we are in-

terested in relaying a message from source to sink it suffices to analyze

the one-sided connectivity of this network. Then a relay link between a
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45◦
range

Source Sinks1 s2 s3 sn

Figure 2.2: Equivalent network representation of Fig. 2.1. A com-
munication link, in source to sink direction, between
a pair of nodes exists if the triangle originated in the
leftmost node covers the rightmost node.

pair of nodes exists if the triangle originated in the leftmost node covers

the rightmost one.

The problem statement is the following:

Let the source be at x0 = 0, the sink at xn+1 = 1, and n nodes

uniformly distributed over I. Let node i have a random com-

munication radius ri ∼ U(0, 1). Denote by Cn the event that a

message sent from the source will reach the sink. Then what is

the probability of the event Cn?

2.3.2 Analysis

Homogeneous Communication Radii

First let us consider the connectivity of a WSN with nodes having homo-

geneous communication radii rc = r. This result is used to establish a

comparison against the event Cn and to obtain an insight for the proof

of the main result of this Section. In this setup, node si at location xi

23



transmits and node s j at location x j can receive the transmission if and

only if their distance is less or equal than r, that is ‖xi − x j‖ ≤ r. Where ‖·‖

is the Euclidean norm.

Let Cn,r be the event that a network with a source at x0 = 0, a sink

at xn+1 = 1, and n nodes uniformly deployed over I, each with rc = r, is

connected. Then as shown below in §2.4

Pr
{
Cn,r

}
=

n∑
j=0

(
n
j

)
(−1) j (1 − jr)n−11{1≥ jr} (2.1)

where 1{·} represents the indicator function

1{w≥r} =


1, if w ≥ r;

0, otherwise.

Now we mention an insight that will be useful for a proof below. Note

that the notion of network connectivity using n nodes with homogeneous

communication radii and two base stations—that is n + 2 total number

of points—over I is equivalent to covering a circle having unit circum-

ference with n + 1 uniformly positioned arcs of equal length. The circle

circumference can be scaled by ‖I‖ if necessary. This circle covering

problem was solved in [72]. The equivalence follows by representing a

node as the counterclockwise border of an arc and the length of the arc

is the size of rc. Considering homogeneous rc implies that links are sym-

metric, then two nodes are connected if and only if their corresponding

arcs in the circle intersect.
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Random Communication Radii

Now consider that nodes have a random transmission power such that

their communication radii rc is a uniform random variable over I. See

Fig. 2.2 for a representation. As we mentioned, this means that when

node si, i ∈ {0, 1, 2, . . . , n} is deployed it is assigned an independent random

variable ri. When the communication radius is homogeneous the result

is provided by (2.1). We want to obtain conditions on the number of

nodes that allow a message sent from the source to reach the sink in a

multi-hop fashion.

Theorem 2.1 (Uniform rc). Assume that node si has communication ra-

dius ri, i ∈ {0, 1, . . . , n}, where ri’s are independent and identically dis-

tributed (i.i.d.) random variables with uniform distribution U(0, 1) and r0

has the largest radius of the realization, then the probability of the event

that this network is connected, Cn, is given by

Pr {Cn } = 1 +
n!

(2n − 1)!

n∑
k=1

 (−1)k

(n − k)! k 2n−k

∑
S

( n − k
m1, . . . ,mk

) k∏
i=1

(2mi + 1)!


 (2.2)

the inner sum is over all sets in S, where S is the collection of all k-element

sets with nonnegative integers mi that satisfy

k∑
i=1

mi = n − k

Proof. Let us construct a mapping between network connectivity and the

covering of a unit circumference using randomly located arcs of random
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sizes. This technique facilitates the connectivity analysis by eliminating

the boundary conditions on the network deployment.

First, consider a network over I with node si having communication

radius ri, located at position xi, i ∈ {0, 1, . . . , n} and r0 being the largest

radius. Then, on a unit circumference, take ri to be the length of the

arc i and mark as si the counterclockwise extreme of this arc. As a

reference, mark the place in the circumference where s0 is located as

o. Place s1 on the circumference at the corresponding distance x1 along

the circumference, measured from o. Continue deploying the rest of the

nodes si together with their corresponding arcs i with length ri. Set sn+1

also at o. This completes the mapping of the network onto the circle.

Now, assume a realization of the covering of a circumference with

arcs of random sizes. Select the longest arc and mark its counterclock-

wise extreme as o, this point represents the source s0 on the network.

Going clockwise, assign the length of arc i to the communications ra-

dius ri of node si and the length along the circumference from o to the

counterclockwise extreme of arc i to xi in the network, i ∈ {0, 1, . . . , n}. Set

xn+1 = 1. This completes the mapping of the circle onto the network.

Fig. 2.3 is an equivalent representation of Fig. 2.2, thus of Fig. 2.1.

As a result of the previous mapping, the unit circumference is cov-

ered if and only if the network over I is connected. Hence our problem

reduces to that of covering a circle with arcs of random sizes. We note

a caveat, the procedure to solve for Cn by mapping network connectivity

to circle covering is valid only when the largest ri is r0. This could be

justified if we consider the source s0 to be the node with more resources
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Figure 2.3: Representation of the connectivity of the network real-
ization in Fig. 2.2 by the covering of a circle with uni-
tary circumference.

on the network deployment. The fact that r0 is the largest ri assures

that, on the circle, the arc n will not cover s1—this would imply a link

between sn and s1 in the network.

To analyze the covering of a circle we use the results by Siegel and

Holst [71]. Consider n arcs placed uniformly and independently on a

circle, each of a random size. The authors provide a formula for the

distribution of the number of uncovered gaps Nn on the circle, that is

Pr {Nn = m }, when arc sizes are i.i.d. random variables with distribution

function F over I = (0, 1). In our problem, to completely cover the circle

set m = 0, then the event {Nn = 0} equals {Cn}. Now when m = 0 the general

formula for Pr {Nn = m } in [71] simplifies to

Pr {Cn } =

n∑
k=0

(−1)k

(
n
k

)
(k − 1)!

∫
T

[ k∏
i=1

F(ui)
][ k∑

j=1

∫ u j

0
F(v) dv

]n−k

du

 (2.3)
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where T denotes the collection of k-element sets of spacings ui between k

independent uniform points on the circle. Since those k points represent

the location of the nodes, then by construction we have

k∑
i=1

ui = 1

Specializing (2.3) for the distribution function or cumulative distri-

bution function (CDF) F(x) = xα, 0 < x < 1, α > 0, the formula simplifies

Pr {Cn } =

n∑
k=0

{
(−1)k

(
n
k

)
(k − 1)!

(α + 1)n−k Γ((α + 1)n)

·
∑
S

[ ( n − k
m1, . . . ,mk

) k∏
i=1

Γ((α + 1)(mi + 1))
] } (2.4)

the inner sum is over all sets in S, where S is the collection of all k-

element sets with nonnegative integers mi that satisfy

k∑
i=1

mi = n − k

Γ(x) is the Gamma function, defined as

Γ(x) =

∫ ∞

0
(t)x−1e−t dt

where if x is a positive integer, then Γ(x) = (x − 1)!. If α = 1, then F(x) = x,

the distribution function of a uniform random variable on (0, 1).

Hence let α = 1 in (2.4); for k = 0, Pr {C0 } reduces to Pr {N0 = 0 } = 1; for

k > 0 the terms with the Gamma function become Γ(2n) = (2n − 1)! and

Γ(2(mi + 1)) = (2mi + 1)!. Thus the result follows. �
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Corollary 2.1 (Random rc). If ri’s are i.i.d. random variables with gen-

eral distribution function F with support on (0, 1), then the probability of

network connectivity is given by (2.3).

Note that by using (2.3) it is possible to define any suitable distri-

bution F that describes best the application under consideration and

obtain analytical results on the probability of connectivity.

Log-Normal Shadowing Approximation

A wireless network with nodes having random communication radii

could serve as a model of a comparable network under log-normal shad-

owing. In a wireless channel there is RF signal attenuation that can be

modeled by a large-scale path-loss with parameter η, the path-loss ex-

ponent. In addition, and due to obstructions in the communication

links, there is a random attenuation of the RF signal. A well accepted

statistical model that accounts for these random variations—in both in-

doors and outdoors environments—is the log-normal shadowing model.

The shadowing model has as parameter σ, the standard deviation of the

underlying random variable. The formula for the total path-loss, L, in

decibels (dB), for a given distance, d, in meters (m), between transmitter

and receiver, and for a channel model with parameters η and σ is

L(d, σ) = L̄(d0) + 10η log
(

d
d0

)
+ Xσ [dB] (2.5)

where d0 � d [m] is the reference distance where the reference power

L̄(d0) [dB] is measured. X is a zero mean normally distributed random
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variable with variance σ [dB], N(0, σ2). Therefore L is also a random

variable. In practical environments the values of σ fall within (1, 10),

while those of η range within (2, 6) [63].

When considering the shadowing model, a node located at a certain

distance from the transmitter would be able to correctly receive data if

the received power of the RF signal is above certain threshold, call it

βth. The random rc model from the previous Subsection can approximate

a shadowing model in the following situation. When rc ∼ U(0, 1), its

average over I is �{rc} = r̄ = 0.5. Where �{·} denotes the expected value of

a random variable. Then for a given η let us assume that βth is such that

when σ = 0, that is no shadowing, the average communication distance

between a pair of nodes is then 0.5.

Note that X has infinite support. Since the field of interest is I =

(0, 1), then for practical considerations the random variations induced

in (2.5) by X should be confined in such a way that all the resulting

communication links due to the path-loss L fall within I. Denote by Y the

random variable resulting from truncating X to the finite support (−a, a)

that achieves rc ∈ [0, 1]. By the properties of the normal distribution,

when σ increases the Section of Y under consideration—its support—

becomes flatter. Then the probability density function (pdf) of Y tends

toward the density function of a uniform random variable. As a result,

when σ increases, rc behaves like a uniform random variable.
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Table 2.1: Parameters used in the simulation setup.

Parameter Value

reps 104

n {1, 2, . . . , 12}

I [0, 1]

r̄ 0.5

rc U(0, 1)

η 4

σ 0

2.3.3 Simulation Results

This Section presents simulation results that validate the developed an-

alytic formulas for the network model in the previous Section 2.3.2. In

addition it exhibits the comparison of this network scheme versus one

considering shadowing in the communication channel. The simulations

use the Monte Carlo method with 104 random replications for each set

of parameters. Table 2.1 provides the simulation parameters.

The simulation technique is as follows. Take a deployment with n

nodes and verify if the resulting network is connected. Repeat the pro-

cedure for the required number of replications for each n of interest. To

calculate the probability of connectivity for a given n, take the ratio of

the resulting total number of connected networks and all the network

realizations for the corresponding n. For clarity purposes the confidence

intervals are not depicted in the resulting graphs, though we remark

that they were small—the maximum deviation width was less than 0.9%

of the estimated average value for the probability of connectivity.
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Figure 2.4: Comparison of the probability of having a connected
network with respect to the number of nodes deployed
between randomly uniform and homogeneous commu-
nication radii.

Results for Random Communication Radii

Using (2.2) we calculate the probability of connectivity for different n

when rc ∼ U(0, 1). For comparison, using (2.1) we also calculate the prob-

ability of connectivity for a network with nodes having rc = r̄. Fig. 2.4

shows the simulation results. Solid lines represent the probability of

having a connected network with respect to the number of nodes de-

ployed. The line with crosses represents a network with nodes having

uniform communication radii while the line with circles represents a

network with nodes having fix rc. For small n, note the slight increase in

the probability of connectivity when considering nodes having uniform

communication radii.
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Figure 2.5: Comparison of the probability of having a connected
network with respect to the number of nodes deployed
between randomly uniform communication radius and
a network under log-normal shadowing model, under
different σ.

Results for Log-Normal Shadowing Approximation

Now consider a setting of practical relevance, a network under shad-

owing model. For the parameters of the shadowing model described

in §2.3.2 take the average homogeneous rc to be 0.5. Let the values of

the standard deviation σ range between 1 and 8 and the path-loss η = 4.

Without loss of generality, define βth to be such that rc = 0.5 when there

is no shadowing, i.e. σ = 0. Fig. 2.5 shows the simulation results. Lines

represent the probability of having a connected network with respect to

the number of nodes deployed. The solid line represents the network

with uniform communication radii, while the lines with markers repre-
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sent the network under shadowing model for the different values of σ.

Note that when σ increases the approximation is better. Large values of

σ decreases connectivity, in agreement to previous results [12].

Results Discussion

First note that the analytic formula and the simulation agree. The slight

increase in the probability of connectivity when considering nodes with

uniform rc in §2.3.2 holds only when n is small. This is due to the

variations of rc. When such radius is sampled from U(0, 1) it is possible

for it to cover more length than r̄, therefore resulting in a connected

network and this effect is more prominent for small n. As a result of

those variations in length, the probability to reach a second-hop node

increases, thus the total probability of connectivity increases.

On the contrary, when n increases, those variations on rc do not play

a significant role because in this situation the node degree for most

nodes is larger than 1. This effect is in agreement with that for 2-D

networks [12], and for 1-D infinite networks [57]. As it can be seen

in the results, when using a model that considers nodes with random

communication radii, or assumes log-normal shadowing in the channel,

simulations will show that it is possible to have a connected network

with fewer nodes than those predicted by a model that does not take into

account the randomness. Although, note that in real RF channels the

parameters η and σ of the log-normal shadowing random variable are

not independent, as it was assumed through this Section. In general, a

higher standard deviation σ will imply a larger path-loss η.
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2.4 Infrastructure Based WSNs under a Deterministic

Communication Channel

In this Section we consider wireless sensor networks with infrastruc-

ture. Those networks consist of a finite number of randomly deployed

node platforms and a backbone of access points at given locations. We

provide an exact expression for the probability of having a fully con-

nected network—every randomly deployed platform can reach at least

one of the access points through either a single- or multi-hop path.

As mentioned above in §2.2, the research literature has focused on

the connectivity of wireless networks having a single connected com-

ponent, typically taking the form of a set of sensor platforms in which

there is a connected path between any pair of sensors. In this Section we

consider a variation of this problem in which a series of access points—

also called sinks or base stations—are deployed along a linear structure

such as a bridge or a tunnel. We derive a combinatorial expression for

the likelihood of complete connectivity for a set of wireless sensors ran-

domly distributed along this line—each sensor is to have connectivity

with at least one sink. This physical setting may arise, for example, if

wireless sensors are placed in the building materials prior to construc-

tion of homes, office buildings, or roads. We note that the presence of

infrastructure—the base stations—significantly increases the likelihood

of connectivity with respect to (wrt) a purely ad-hoc network, that is with

no infrastructure. This is of strong relevance when designing a WSN.
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0 Sy1 y2 ym

w1 w2 wm+1
· · ·

Figure 2.6: Network model over [0, S ]; yi represents a sink, wi inter-
sink points set, and dots over the line are wireless
nodes.

2.4.1 Model and Problem Formulation

Consider a random deployment of n nodes over a line segment I = [0, S ]

following a uniform distribution. Label the nodes in ascending order

starting from the leftmost one and denote by xi the position of node i.

Assume there are m sinks or base stations (BS) located at points yi ∈ I,

i ∈ [m]; where [m] represents the set of integers {1, 2, . . . ,m}. Further

assume the set of base stations forms a backbone, this may be either

wired or wireless. Let w j denote the line segment [y j−1, y j], with j ∈ [m + 1],

and define y0 = 0, ym+1 = S . Let k j be the number of nodes in segment w j.

Fig. 2.6 illustrates the network abstraction of this model.

Definition 2.1. Connected Subnetwork is defined to be the connected

components of the network realization that are able to communicate with

at least one sink.

A wireless network is said to be connected if all its constituent nodes

are part of a connected subnetwork. Consider a fixed communication

radius r for every node. We assume that a pair of nodes share a commu-

nication link if and only if (iff ) they are separated by a distance less or

equal to r, equivalently ‖xi−x j‖ ≤ r. Where ‖·‖ is the Euclidean norm. Note

that, as a result of this model formulation, all the links are symmetric.
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The problem statement is as follows:

Given n nodes with communication radii r, and m sinks and

their locations, what is the probability that the resulting net-

work is connected?

2.4.2 Analysis

We solve the problem by decomposing it into independent subproblems.

If we consider the interval I and a segment w j ⊆ I, j ∈ [m + 1], then

conditioned on the number of nodes k j being in w j the distribution of

nodes within that segment follows again a uniform distribution. And

each segment is probabilistically independent (⊥⊥) of each other. There

are only two particular cases to consider, according to the subsegment

w j where the nodes are deployed. These are:

1. Border-connectivity: there is only one sink at any one border of the

segment wi, i ∈ {1,m + 1}.

2. Inner-connectivity: two sinks, one at each extreme of the segment

wi, i ∈ {2, 3, . . . ,m}.

Fig. 2.7 illustrates the decomposition principle.

Let C be the event when all nodes in the network reach at least one

sink. Let Ci be the event that all nodes inside segment wi are able to

reach at least one sink. Set Pr {Ci } = 1 if ki = 0, then by the properties of

the uniform deployment of nodes, for a given realization of the network
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Figure 2.7: Decomposition of a network over [0, S ] into independent
segments.

Pr {C } = Pr {C1 }Pr {C2 } · · · Pr {Cm+1 } (2.6)

Conditioned on the number of nodes ki in wi, their distribution is

uniform over wi. This means that the position x j of a given node in wi

has a distribution U(‖wi‖). Where ‖wi‖ is the length of wi. By the law of

total probability, then (2.6) is given by

Pr {C } =

n∑
k1=0

n−k1∑
k2=0

· · ·

n−k1−···−km−1∑
km=0

(
n
k1

) (
n − k1

k2

)
· · ·

(
n − k1 − · · · − km−1

km

)

·

m+1∏
i=1

Pr {Ci | ki in wi }Pr { ki in wi }

(2.7)

with

km+1 = n −
m∑

i=0

ki

and (
n
k

)
representing the binomial coefficient, n choose k. Since the term

Pr { ki in wi } =

(
‖wi‖

‖I‖

)ki

then to solve (2.7) we only require to calculate the terms Pr {Ci | ki in wi }.
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Denote by CBk,n,z and by CEk,n,z the events of having border- and inner-

connectivity respectively, using k out of n nodes in a segment z.

Let Cn,z be the event that the network over segment length z with n

nodes is connected. It was shown in [21,35] that

Pr
{
Cn,z

}
=

n−1∑
j=0

(
n − 1

j

)
(−1) j (z − jr)n

zn 1{z≥ jr} (2.8)

where 1{·} represents the indicator function

1{w≥r} =


1, if w ≥ r;

0, otherwise.

More generally, it was also shown in [35] that given a subsegment

[t, t + v] ⊆ [0, z] with n nodes in it, two of them fixed at the borders of the

segment, the probability that the remaining n − 2 nodes connect these

border nodes is

Pr
{
CEn,v

}
=

n−1∑
j=0

(
n − 1

j

)
(−1) j (v − jr)n−2

zn 1{v≥ jr} (2.9)

If we consider the event CBk,n,z, then (2.8) can be extended to this more

restrictive situation.

Theorem 2.2. The probability of the event CBk,n,z for given z = ‖wi‖, i ∈

{1,m + 1} is

Pr
{
CBk,n,z

}
=

1(
n
k

) n∑
j=0

(
k
j

)
(−1) j (z − jr)n

zn 1{z≥ jr} (2.10)
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Proof. Let B = CBk,n,z; this event is equivalent to having k + 1 nodes con-

nected. Without loss of generality take w = [0, z] and y = 0. Let u be the

position of the rightmost node and note there are k possible options for

the leftmost one. Using (2.9) we have

Pr { B } =
k

zn−k

∫ z

0
Pr

{
CEk+1,u

}
(z − u)n−k du

=
k
zn

∫ z

0

n∑
j=0

(
k
j

)
(−1) j (u − jr)k−1 1{u≥ jr}(z − u)n−k du

(2.11)

Changing the order of the sum and integral and then by change of

variables

t =
u − jr
z − jr

it follows that

Pr { B } =
k
zn

n∑
j=0

(
k
j

)
(−1) j (z − jr)n 1{z≥ jr}

∫ 1

0
tk−1(1 − t)n−k dt

The integral can be evaluated using the beta function B defined, for

x, y ∈ �+, by

B(x, y) =

∫ 1

0
(s)x−1(1 − s)y−1 ds

that simplifies, for a, b ∈ �+, to

B(a, b) =
(a − 1)! (b − 1)!

(a + b − 1)!
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Then the integral equals

∫ 1

0
tk−1(1 − t)n−k dt =

(k − 1)! (n − k)!
n!

and the result follows. �

The event CBk,n,z occurs at segments wi, i ∈ {1,m + 1}, then it remains to

provide a formula for CEk,n,z, for wi with i ∈ {2, 3, . . . ,m}. It suffices to have

a formula for CEn,n,z.

Theorem 2.3. The probability of the event CEn,n,z for given z = ‖wi‖, i ∈

{2, 3, . . . ,m} is

Pr
{
CEn,n,z

}
=

1
zn

n∑
k=0

k∑
j=0

n−k∑
i=0

(
k
j

) (
n − k

i

)
(−1) j+i [z − (1 + j + i)r]n 1{z≥(1+ j+i)r}

+ Pr
{
CEn+2,z

} (2.12)

Proof. Fix z, n. Let E = CEn,n,z. Take A to be the event all nodes connect

both sinks and B the event that each node reaches exactly one sink.

Since the events are disjoint we have Pr { E } = Pr { A } + Pr { B }. Where

Pr { A } is given by (2.9) with Pr { A } = Pr
{
CEn+2,z

}
. For B to occur there

must be a segment of length greater than r without nodes. Thus we can

consider the border connectivity of two segments, one with a sink at its

left, the other with a sink at its right. Let B1 be the event that k nodes

are connected to the left sink and u is the location of the rightmost of

these nodes—there are k possible combinations for this event. By (2.9)

we have that Pr { B1 } = Pr
{
CEk+1,u

}
, u ∈ [0, z − r]. Let event B2 be that when
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there are n − k nodes connected to the right sink within the subsegment

(u + r, z]. Then we can use Theorem 2.2 to get Pr { B2 } = Pr
{
CBn−k,n−k,z−u−r

}
.

Therefore, conditioned on u, it follows

Pr { B | u } = k
n∑

k=0

(
n
k

)
Pr { B1 }Pr { k + 1 in [0, u] }Pr { B2 }Pr { n − k in (u + r, z] }

Now since u ∈ [0, z − r] we have

Pr { B } = k
∫ z−r

0
Pr { B | u } du (2.13)

Using (2.9) and (2.10) and the fact that k ∼ U[0, z] we have

Pr { B } =
k
zn

∫ z−r

0

n∑
k=0

k∑
j=0

n−k∑
i=0

(
n
k

) (
k
j

) (
n − k

i

)
(−1) j+i (u − jr)k−1

· (z − u − r − ir)n−k 1{ jr≤u≤z−r−ir} du

Changing the order of sums and integral, by Fubini’s Theorem [14],

and since jr ≤ u ≤ z − r − ir

Pr { B } =
k
zn

n∑
k=0

k∑
j=0

n−k∑
i=0

(
n
k

) (
k
j

) (
n − k

i

)
(−1) j+i

∫ z−r−ir

jr
(u − jr)k−1 (z − u − r − ir)n−k du

By the change of variable

s =
u − jr

z − (1 + j + i)r
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y1 y2

Figure 2.8: Representation of a network with two sinks.

we obtain

Pr { B } =
k
zn

n∑
k=0

k∑
j=0

n−k∑
i=0

(
n
k

) (
k
j

) (
n − k

i

)
(−1) j+i [z − (1 + j + i)r]n

∫ 1

0
(s)k−1 (1 − s)n−k ds

where the integral is the beta function B(k, n − k + 1) and evaluates to

B(k, n − k + 1) =
Γ(k) Γ(n − k + 1)

Γ(n + 1)

=
(k − 1)! (n − k)!

n!

=
1

k
(

n
k

)
The results of the theorem follows by combining the above formulas.

�

As an example of the use of (2.7), consider a network with two sinks

at y1, y2 ∈ [0, S ], S ∈ �+, as illustrated in Fig. 2.8. Let C2S be the event that

the resulting network is connected, then we have

Pr {C2S } =
1

S n

n∑
k=0

n−k∑
m=0

(
n
k

) (
n − k

m

)
Pr

{
CBk,k,y1

}
Pr

{
CEm,m,y2−y1

}
· Pr

{
CBn−k−m,n−k−m,S−y2

}
yk

1 (y2 − y1)m (S − y2)n−k−m

(2.14)
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Table 2.2: Parameters used in the simulation setup.

Parameter Value

y 0.5

n {9, 10}

I [0, 1]

(y1, y2) {(0.25,0.85), (0.0,1.0)}

y0 {0.50}

reps 105

r (0,1)

2.4.3 Simulation Results

This Section presents simulation results that validate (2.7). To make

the simulation concrete we consider the particular case given by (2.14)

over I = [0, 1]. The procedure for the simulations is by using the Monte

Carlo method with 104 random replications for each set of parameters.

Table 2.2 provides the simulation parameters.

The stochastic simulation method is as follows. For a given number

of nodes n and a communication radius r, take a deployment over I and

verify if the resulting network is connected. Repeat the procedure for

the required number of replications for each r of interest. Then calculate

Pr {C2S } as the ratio of the number of connected network realizations and

the number of replications for each corresponding radius r.

By using (2.14) we calculate the probability of connectivity for dif-

ferent r. Fig. 2.9 shows the probability of connectivity as a function of

r with n = 10 for one sink location. Fig. 2.10 shows the probability of

connectivity as a function of r with n = 9 for two sets of pairs of sink
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Figure 2.9: Probability of having a connected network with a given
number of nodes and exactly one sink at location y.

locations. The first set of sinks are located at y1 = 0.25 and y2 = 0.85,

while the second are at y1 = 0 and y2 = 1.

For comparison, and using (2.7), Fig. 2.10 also shows the probability

of connectivity when there is one sink located at y = 0.5—the optimal

location of a single-sink network—and n = 10—to compensate for the

missing sink. Note the large increase in the probability—up to 53%—

of having a connected network when comparing a deployment with two

sinks versus one with just one sink.
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Figure 2.10: Probability of having a connected network with a given
number of nodes and two sinks at locations y1 and y2.

2.5 Summary

This Chapter presented the connectivity analysis in one-dimensional

wireless sensor networks in two settings: infrastructure-less and with

infrastructure.

First, this Chapter analyzed the connectivity of WSNs with nodes hav-

ing random communication radii. We focused on 1-D networks with fi-

nite number of nodes deployed uniformly over a line segment, each node

having an independent and identically distributed random communica-

tion radius. Although it is a simple model, it can be used to account
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for more complex characteristics of the wireless channel. For example

by modeling the randomness in the channel—as it was shown for the

log-normal shadowing model when nodes have uniform communication

radii. For this model, we presented a formula to calculate the probabil-

ity of a source being able to send a message to a sink. Through simu-

lations it was shown the validity of the analysis and the close proximity

of our model to a WSN under log-normal shadowing, thus presenting

an approximate but mathematically tractable scheme. We also noted a

small increase in the probability of having a connected network when

considering node platforms with random communication radii versus

homogeneous radii.

The second main part of this Chapter presented an exact formula

for the probability of having a connected 1-D WSN with infrastructure.

Assuming the infrastructure to be a backbone of sinks, the network is

connected if every node reaches at least one sink. This setting can be

seen as a model of connectivity for WSNs having more than one con-

nected component. We focused on 1-D networks with finite number of

randomly deployed nodes having sinks at given arbitrary locations. We

presented a formula for the probability of connectivity of such model. As

a particular example of application of our contribution, a large increase

in the probability of network connectivity was noted when comparing a

deployment with two sinks versus a deployment with just one sink.

After considering the connectivity of WSNs in highly linear structures,

modeled by 1-D networks, a natural extension of this problem is to

analyze 2-D WSNs. That is the focus of the following Chapter.
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CHAPTER 3

CONNECTIVITY ANALYSES IN 2-D WIRELESS SENSOR NETWORKS

3.1 Introduction

In the previous Chapter we considered connectivity in 1-D wireless sen-

sor networks. In this Chapter we focus on a more general environment

of a higher dimensionality, in particular in two-dimensional (2-D) wire-

less sensor networks. These 2-D WSNs have widely spread applications

in sensing and monitoring fields. Two prominent examples of applica-

tions are outdoor fields—such as wild animal habitats—and physical

structures—such as buildings and production floors.

We focus on the problem of network connectivity when having ran-

dom deployment of nodes over the field of interest. Specifically, con-

sider a certain number—random or deterministic—of nodes randomly

deployed in a 2-D finite area. For the analysis of such network we will

consider both a deterministic and a random communication channel—

log-normal shadowing effect—as well as a network with infrastructure.

Note that a 2-D setup is a complex environment and its exact analysis

is an open problem, here we make some simplifying assumption to ob-

tain approximate formulas for the probability of network connectivity.

However, as we show below through stochastic simulations, our ap-

proximations are useful, in the sense that their predicted outcomes are

very close to the results provided by the network simulations.

To address the problem of network connectivity, in this Chapter we
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use the theory of stochastic geometry along with principles of random

geometric graphs. Our key results are the following. First we provide

formulas for the probability of connectivity in 2-D WSNs under a sim-

ple communication link model—Boolean—and when the nodes are dis-

tributed randomly over the field of interest. Then we provide formulas

for the required density of nodes to be deployed in order to keep a WSN

connected with a given probability when such network is analyzed un-

der the log-normal shadowing model for the communication channel.

Lastly, we use and analyze the concept of partial connectivity in a ran-

dom WSN with infrastructure. Partial connectivity allows the existence of

few isolated node platforms and thus can improve other network met-

rics. This concept of partial connectivity, as discussed below, can be

coupled with the use of infrastructure in a given field of interest.

This Chapter is organized as follows. We divide the analysis of the

network connectivity by the characteristics of the communication chan-

nel and by the level of connectivity. The Section 3.2 presents the related

work in the literature. In §3.3 we cover the Boolean model, while the

subsequent Section 3.4 considers the communication channel under

slow fading, specifically using the log-normal shadowing model. The

last Section 3.5 introduces and analyzes the concept of partial connec-

tivity in a random network with infrastructure.
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3.2 Related Work

There are multiple results and various approaches that address the

topic of connectivity of wireless networks. The following works, rep-

resentative research related to this Chapter, have addressed full and

partial connectivity of random wireless networks in 2-D deployments.

The work in [38] presents a study on 2-D dense networks with n

uniformly distributed nodes. Using percolation theory, the authors con-

sider the communication radius required for asymptotic connectivity.

In [12] there is an analysis of connectivity under log-normal shadow-

ing model where nodes are deployed over an infinite plane according to a

Poisson process. The authors provide bounds on the probability of con-

nectivity using random geometric graphs theory. The work in [23] con-

siders connectivity issues under interference from neighboring nodes,

but does not take into account fading in the communication channel.

Regarding hybrid network deployments and partial connectivity, the

more relevant research to this dissertation is the following. As the oppo-

site to 2-D WSNs, the asymptotic results in 1-D wireless networks show

there is no Percolation: it is not possible to have an infinite size con-

nected component, not even with base stations on a lattice [25]. That

work analyzes wireless networks with constant density through a Pois-

son Boolean model and it estimates the probability that an arbitrary

node belongs to an infinite size connected component.

In [11] there is an analysis of connectivity where nodes are deployed
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over an infinite plane according to a Poisson point process. The work

provides bounds on the probability of connectivity considering a finite

sub-area and using approximations based on geometric random graphs.

It is also possible to use Percolation theory to analyze infinite 2-D net-

works and obtain the critical node density that supports an infinite con-

nected component almost surely [25].

There are few connectivity results in the literature for hybrid 2-D

networks. An example is also [25] that uses Percolation theory, as men-

tioned above. The work in [32] analyzes the connectivity within a finite

area of an infinite plane. Both nodes and sinks are deployed following

independent Poisson point processes and data communication links are

restricted to single-hop. The model also takes into consideration the

interference among nodes of the wireless network. By only consider-

ing single-hop communication links, [27] uses a statistical approach to

approximate the probability of connectivity through the probability of a

node not being isolated. The authors consider a network deployment

with multiple sinks over a finite region.

The research in [24] provides insights about the partial connectivity

in 2-D wireless networks where, asymptotically, all disconnected nodes

are isolated nodes, this means that the most isolated node determines

the critical range for full connectivity.
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3.3 WSNs with Deterministic Communication Channel

In this Section the connectivity analysis is performed under the Boolean

model while in the following Section it will be under the log-normal

shadowing communication channel model. We provide formulas for the

probability of network connectivity as a function of the density of the

node platforms deployment.

Let us consider a 2-D WSN consisting of randomly deployed nodes

over a field of interest with finite area. See Fig. 3.1 for an illustration of

a network realization. The method to address the connectivity problem

is based on the theory of point processes as well as some results from

random geometric graphs.

An example of application of the formulas for the probability of con-

nectivity in 2-D WSNs is the framework of monitoring physical structures

with WSNs. This is due to the idea that node platforms will be em-

bedded into structures—like homes, office buildings, and power grids—

following a random deployment [26].

3.3.1 Model and Problem Formulation

Denote the field of interest by an open rectangle S = (−w, w ) × (−d, d )

in �2. Consider a static WSN with a random deployment of nodes over

S following a Poisson process [45] with intensity 0 < λ < ∞ with units

[area]−1, denote it by Πλ. Note that this is a particular case of a Point

Process [19]. To avoid border effects, consider S to form a torus and

52



o

rc

tc

Figure 3.1: Example of a realization of a network. Node o has com-
munication radius rc, when σ = 0. The radius where
there is perfect correlation is tc.

measure the distance between a pair of nodes accordingly. Let N(B) be

a random variable that represents the number of nodes in the set B ⊆ S .

Then N(B) has a Poisson distribution with parameter λ, that is

Pr {N(B) = n } =
λn

n!
e−λ (3.1)

Denote by xi ∈ S the position of node i. Without loss of general-

ity (wlog), assume there is a node o at the origin (0, 0). Indeed, when

considering the field of interest as a torus, we can use the Slivnyak’s

theorem, and o can be taken either arbitrarily in S or at an arbitrary

point in Πλ [74]. This means that the Poisson process seen from the

position of a randomly chosen point has the same distribution as the

original process plus that point.

Let C be the event that the network is connected, then the problem

statement is the following
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Given the above conditions, what is the density λ of nodes re-

quired for Pr {C } = p, 0 < p < 1?

First we solve for a general setting, then specialize the results for the

two models of interest for the communication channel—Boolean links

and log-normal shadowing.

3.3.2 Analysis

Consider the deployment of node platforms according to the process Πλ.

Let NI be the event that no node in S is isolated. By random geometric

graph theory [61, Chapter 13], given N(S ) = n, it follows that

Pr {NI } → Pr {C } as n→ ∞

Then when λ is large, N(S ) will be large and Pr {C } ≈ Pr {NI }. Thus

we can analyze Pr {NI }. Take N(S ) = n, n ∈ �. Label each node by

i ∈ { 1, 2, . . . , n }. Let Ii be the event that node i is isolated and NIi that it is

not, then

Pr {NI | N(S ) = n } (a)
= Pr {NIi,∀i | N(S ) = n }

(b)
≈ ( Pr {NI1 } )n

= ( 1 − Pr { I1 } )n

(3.2)

where (a) follows by definition, while (b) follows since when λ is large

the minimum largest communication link between two nodes required
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for having a connected network will be relatively small [61, Chapter 2].

Therefore the probability that two nodes are isolated is almost an inde-

pendent event. Using (3.2) and by the law of total probability

Pr {NI } =

∞∑
n=0

Pr {NI | N(S ) = n }Pr {N(S ) = n }

≈

∞∑
n=0

( 1 − Pr { I1 } )n (λS )n

n!
e−λS

= e−λS eλS ( 1−Pr{ I1 } )

= e−λS Pr{ I1 }

(3.3)

Thus since Pr {C } ≈ Pr {NI }, using (3.3) we have

Pr {C } ≈ e−λS Pr{ I1 } (3.4)

Hence to obtain the approximation of Pr {C } we need Pr { I1 } or, by the

properties of Poisson point processes, equivalently Pr { Io }. This probabil-

ity is a function of the existence of a communication link between nodes.

Denote by �( ‖G‖ ) < ∞ the expected content of an arbitrary random shape

G ∈ S . As shown in [40, Chapter 3] it follows

Pr { Io } = e−λ�( ‖G‖ ) (3.5)

Note that Io depends only on the expected content of the shape of

interest, thus by symmetry and homogeneity of the Poisson process the

same holds for any point i in S . We specialize (3.5) to a communication
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channel with deterministic power path-loss in this Section and with log-

normal shadowing in the following Section.

Boolean Communication Links

Assume there is a deterministic path-loss in the communication chan-

nel and each node has a homogeneous transmission power such that

its communication radius rc is r. Let b(x, r) be a disc with center x ∈ S

and radius r. Node o transmits and node i at xi receives if and only if

their distance is less than r, that is ‖xi‖ ≤ r. Then for o to be isolated,

there should be no other node within b(xo, r), that is

Pr { Io } = Pr {N( b(xo, r) ) = 0 }

= e−λπr2
(3.6)

By using (3.6) in (3.4) the probability of connectivity for the Boolean

communication links model is approximated by

Pr {CB } ≈ exp
{
−λS e−λπr2}

(3.7)

3.3.3 Simulation Results

This Section presents simulation results that validate the developed an-

alytic formula for the network and channel model in the previous Sec-

tion. The procedure for the simulations is by using the Monte Carlo
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Table 3.1: Parameters used in the simulation setup.

Parameter Value

reps 104

λ (0,1600)

S [0, 1] × [0, 1]

rc {0.6, 0.7, 0.8}

method with 104 random replications for each set of parameters. Ta-

ble 3.1 provides the simulation parameters.

The simulation technique is as follows. Take a deployment over S ,

with a density of nodes λ and verify if the resulting network is connected.

Repeat the procedure for the required number of replications for each λ

of interest. Then to calculate the Pr {C } take the ratio of the total number

of connected network realizations and the total number of replications

for each corresponding λ. For clarity purposes the confidence intervals

are not depicted in the resulting graphs. However we remark that they

were small—the maximum deviation width was less than 0.7% of the

estimated average value of Pr {C }.

Using results from §3.3.2 we calculate Pr {C } for different λ. Fig. 3.2

shows the simulation results. Solid lines represent the probability of

no node being isolated, as provided by (3.7). Markers represent the

probability of having a connected network via simulation. Notice that for

large Pr {C }—the values of practical interest, the approximation between

no isolated node and having a connected network is very accurate.
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Figure 3.2: Probability of having a connected network and having
no isolated nodes as a function of the density of the
deployed nodes for different rc.

3.4 WSNs with Random Communication Channel

In this Section we consider a more complex environment than that of

the Boolean communication links. In particular, we analyze a model

that takes into consideration the communication channel randomness.

We provide formulas for the probability of network connectivity as a

function of the density of the node platforms deployment.

This type of analysis under communication channel with random-

ness is essential for real world environments. A general model of the

noise present in electronic equipment is the Additive White Gaussian

noise (AWGN). For this reason we consider the log-normal shadowing
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model, since it is a widely accepted statistical model used to analyze

such randomness in the system’s channel [20,75]. The shadowing rep-

resents the slow fading of the radio signals and, with the appropriate

parameters, it is valid for either indoor or outdoor environments [63].

As in the previous Section, let us consider a 2-D WSN consisting of

randomly deployed nodes over a field of interest with finite area. Refer

back to Fig. 3.1 for an illustration of such network realization.

3.4.1 Model and Problem Formulation

Consider the same assumptions as in §3.3.1. We mention them briefly.

S denotes the field of interest, an open rectangle. Nodes are deployed

over S following a Poisson process Πλ with intensity 0 < λ < ∞. Let us

use a torus distance for the communication links. N(B) is the number

of nodes in set B ⊆ S .

Let C be the event that the network is connected, then the problem

statement is:

Given the above conditions and assuming shadowing in the

communication channel, what is the density λ of nodes required

for Pr {C } = p, 0 < p < 1?
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3.4.2 Analysis

Recall, from (3.4), that in order to obtain the approximation of Pr {C }

we need to calculate Pr { Io }. And this probability is a function of the

existence of a communication link between nodes. Next, we use (3.5) in

a communication channel modeled by log-normal shadowing.

Shadowing in the Communication Channel

In this model of a wireless channel besides the deterministic signal at-

tenuation, denoted by η, the path-loss exponent, there is a random at-

tenuation due to obstructions in the communication links. That ran-

domness is modeled by a random variable. The formula for the total

path-loss L in decibels [dB] for a given distance l in meters [m] between

transmitter and receiver is

L(d, σ) = L̄(d0) + 10η log
(

d
d0

)
+ Xσ [dB] (3.8)

where l0 � l [m] is the reference distance where the reference power L̄(l0)

[dB] is measured. Xσ is a normally distributed random variable N (0, σ2)

[dB]. Hence L is also a random variable. In practical environments the

values of σ fall within (1, 10), while those of η range within (2, 6) [63].

When considering the shadowing model, a node located at distance

l from the transmitter will be able to correctly receive the information if

the received power of the signal is above certain threshold or, equiva-

lently, if the total path-loss is less than a particular threshold Lth, that
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is there is a communication link if and only if L(l, σ) ≤ Lth. Denote by

e(l, σ) the event that there is a link between two nodes at a distance l

when using the parameter σ for the shadowing model. Without loss of

generality let L̄(l0) = 0 [dB] and l0 = 1 [m], then

Pr { e(l, σ) } = Pr { L(l, σ) ≤ Lth }

= Pr
{
10η log l + Xσ ≤ Lth

}
= Pr

{
Xσ ≤ Lth − 10η log l

}
= Φ

(
Lth − 10η log l

σ

)

Where Φ(·) is the cumulative function of the standard normal distri-

bution. Denote by e(σ) the content of the random shape formed by the

possible communication links around o. We need to obtain e(σ) in order

to use (3.5). Note that

�{ e(σ) } = λ

∫ 2π

0

∫ ∞

0
Pr { e(l, σ) } l dl dφ

= 2πλ
∫ ∞

0
Φ

(
Lth − 10η log l

σ

)
l dl

(3.9)

By using (3.9) in (3.4), the probability of connectivity for the log-

normal shadowing communication channel model is approximated by

Pr {CS } ≈ exp
{
−λS e−2πλ

∫ ∞
0 Φ

(
Lth−10η log l

σ

)
l dl

}
(3.10)
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Table 3.2: Parameters used in the simulation setup.

Parameter Value

reps 104

λ (0,1600)

σ {4, 8}

η 3

S [0, 1] × [0, 1]

rc {0.7, 0.8}

3.4.3 Simulation Results

This Section presents simulation results that validate the developed an-

alytic formula for the network and channel model in the previous Sec-

tion. For the parameters of shadowing take σ = 4 and 8 and η = 3—

typical values in real settings [63]. To make a fair comparison with the

simulation results for the Boolean model in §3.3.3 define Lth to be such

that rc = 0.7 and 0.8 when σ = 0. Take L̄ = 0 and d0 = 1. The procedure for

the simulations is by using the Monte Carlo method—see Section 3.3.3

for a description of the mechanism—with 104 random replications for

each set of parameters. Table 3.2 provides the simulation parameters.

Using results from §3.4.2 we calculate Pr {C } for different λ. Fig. 3.3

shows the simulation results. Solid lines represent the probability of

no node being isolated, as provided by (3.10). Markers represent the

probability of having a connected network via simulation for different

values of σ and rc. For comparison purposes, the broken lines with

no markers represent the probability of no node being isolated when

σ = 0, that is when the communication link is Boolean. Notice that for
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Figure 3.3: Probability of having a connected network and having
no isolated nodes with respect to the density of de-
ployed nodes under different rc and σ.

large Pr {C }, the approximation between no isolated node and having a

connected network is very accurate. Also note that when σ increases,

the approximation is better. Large values of σ increase connectivity, in

agreement to previous results in two-dimensional networks [12].

3.5 Partial Connectivity of Hybrid WSNs

As we mentioned, connectivity is a fundamental prerequisite for wire-

less sensor networks functionality—sensors must be able to report their

measurements or observations if they are to serve their intended pur-

pose. There are several results in the literature on wireless networks
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that treat connectivity [7,8,12,35,38,57]. Though hybrid networks can

be very useful [70] in particular applications, only a few of these works

consider sinks as a part of the network. See the work on hybrid net-

works [5,25,27,31].

This Section considers a finite two-dimensional (2-D) wireless net-

work consisting of finite number of randomly deployed nodes and base

stations at fixed locations around the border of the network. It analyzes

its probability of connectivity, that is the ability of each node to convey a

message to at least one of the few sinks. See Fig. 3.4 for an illustration.

In addition, this Section considers partial connectivity, where a network

can have isolated nodes. Isolated nodes would be acceptable in a large

network of redundant sensors. The networks are analyzed under the

Boolean communication link model and nodes and sinks are assumed

to have homogeneous communication radii.

An example of application of the results from this Section is in the

framework of monitoring physical structures with randomly deployed

WSNs. In this setting an architecture that has several sinks and al-

lows for partial connectivity may prove advantageous. Note that a WSN

with more than one sink can be more practical for monitoring large

areas [31]; also, by having various points of fusion, the network can be

more reliable, and complex, than with one sink. Allowing for partial con-

nectivity improves WSNs scalability and throughput [24] and nodes re-

quire less transmission power—thus having smaller size and/or longer

network lifetime.

The results presented in this Section show the benefits of using in-
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Figure 3.4: Example showing a realization of a network and its par-
tition in four equal-area sub-regions, each one includ-
ing a sink.

frastructure and provide an approximate formula for the connectivity

of such network when there are few sinks. Also we show how par-

tial connectivity improves some network metrics at the cost of having a

small number of isolated nodes. The contributions of this section in-

clude an insight on the fraction of nodes that reach a sink as well as

a simple approximation of the probability of connectivity in WSNs with

infrastructure.

As mentioned in §3.2 all the previous results from the literature con-

sider full connectivity—any node is able to communicate to any other

node, a base station, or belongs to an infinite component. Here we

will consider partial connectivity. The partial connectivity is application
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dependent, for example in large networks of redundant sensors, but

there are benefits in allowing it: improvements in network scalability,

throughput, and resource use. When defining connectivity in the in-

formation theoretical sense if a network scales, then it is necessary to

reduce the communication throughput to achieve full connectivity [24].

3.5.1 Model and Problem Formulation

The general model for this Section is as follows. Consider a multi-hop

2-D finite hybrid WSN. Let us focus on few sinks located at the border of

the field of interest. This location has practical relevance; for example

it applies when a network monitors physical structures—like a bridge—

where sinks are placed at the perimeter of the structure while the nodes

are randomly deployed inside it.

Let the rectangle F ∈ �2 represents the field of interest, with area

‖F‖ = F = w · h. Consider a uniform deployment of n nodes over F and

assume there are m sinks symmetrically located at the border of F, such

that its equipartition is possible. Fig. 3.4 illustrates w = h and m =

4. Further let links be Boolean and both sinks and nodes have same

communication radius rc.

The problem statement is the following

Let F be the field of interest, n the number of nodes, and m the

number of sinks, with characteristics defined above. Denote by

FCm
n the event that this network is fully connected—each node
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can reach at least one sink. Then what is the probability of the

event FCm
n ?

3.5.2 Full Connectivity Analysis with no Sinks

Let us start with the analysis of the full connectivity of a WSN with no

sinks and then get extensions of the results. We want the probability of

connectivity of n nodes and m sinks in F. There is no an exact connec-

tivity formula in 2-D networks, but it can be approximated fairly close,

as described below.

The probability of connectivity is close, and smaller, to the probability

that there are no isolated nodes in F. In turn, this probability of no

isolated nodes can be approximated by knowing the probability that a

single node is isolated. Below we develop and justify these ideas.

Denote by FCn the event that a network with n nodes and no sinks is

fully connected. Let NI be the event that no node in F is isolated. Label

each node by i ∈ { 1, 2, . . . , n }. Let Ii be the event that node i is isolated

and NIi that it is not, then

Pr {NI } = Pr {NIi, ∀i }

(a)
≈ ( Pr {NIk } )n

= ( 1 − Pr { Ik } )n

(3.11)

where (a) follows since for large n the minimum largest link between

two nodes required for having a connected network will be relatively
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small [61, Chapter 2]. Then the probability that two nodes are isolated

is almost an independent event. Node k in (3.11) represents a typical—

random—node, as defined in [74]. Now, since Pr { Ik } decreases mono-

tonically when n increases [61], if Pr { Ik } is small and n large, then we

can approximate (3.11) using the definition of the exponential function

ex = lim
n→∞

(
1 +

x
n

)n

and a change of variables. Thus

Pr {NI } ≈ e−n Pr{ Ik } (3.12)

To get Pr { Ik } considering border effects in F we use a similar proce-

dure as [11]. Given k’s location z = (x, y) ∈ F

Pr { Ik } =

∫
F

Pr { Ik | z } fZ(z) dz (3.13)

where fZ is the generalized probability density function of the uniform

distribution

fZ(z) =


1
F , if z ∈ F;

0, otherwise.

and F = ‖F‖ is the area of F.

Since Pr { Ik } is small and n large, we can approximate a single node

being isolated by the Poisson distribution [74] as
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Pr { Ik | z } = e−λ(z) (3.14)

here λ(z) is the expected number of nodes in F within rc of z

λ(z) =

∫
S

n fZ(z) dz (3.15)

where S = { b(z , rc) ∩ F } and b(z , rc) is a disc with center z ∈ F and radius

rc. Thus by knowing λ(z) we can obtain Pr {NI }. From (3.13) and (3.14)

Pr { Ik } =

∫
F

e−λ(z) fZ(z) dz (3.16)

From (3.12) and (3.16), and since Pr { FCn } ≈ Pr {NI } for large n [61],

the result follows

Pr { FCn } ≈ Pr {NI } ≈ exp
(
−n

∫
F

e−λ(z) fZ(z) dz
)

(3.17)

As an example of obtaining λ(z), take n nodes, w = h = 2l, then F = 4l 2—

other rectangular regions are treated similarly. Call border nodes the

ones located within rc of any border in F, and center nodes the rest. Let

Ac, As(x), and Aw(z) represent the area of a circle, a circular segment (the

shadowed part of the circle in Fig. 3.5), and the intersection of two such

segments, respectively. By symmetry, to get λ(z) it suffices to consider

the four regions indicated in Fig. 3.5. Region I contains the center nodes

λI(z) =
nAc

F
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Figure 3.5: One quadrant of a square field of interest. The different
regions used for the estimation of a node being isolated
are shown.

For border nodes—regions II, III, IV—we have

λII(z) =
n ( Ac − As(x) )

F

λIII(z) =
n ( Ac − As(x) − As(y) )

F

λIV(z) =
n ( Ac − As(x) − As(y) + Aw(z) )

F

where Ac = πr2
c and, by setting d(x) =

√
(r2

c − (l − x)2 and s(x, y) = ( d(x) − (l −

y) ), for position z = (x, y),

As(x) = r2
c cos−1

(
l − x

rc

)
− (l − x) d(x)

Aw(z) =
s(x, y) s(y, x)

2
+ As

(
l −

1
2

√
4r2

c − s(x, y)2 − s(y, x)2

)
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3.5.3 Full Network Connectivity with Sinks

Let us relate FCm
n and FCn. Clearly Pr

{
FCm

n
}
≥ Pr { FCn }. Since nodes are

deployed uniformly over F, the expected number of nodes in a given

region R ∈ F is directly proportional of the area of the region ‖R‖. By

using this property of the uniform distribution, we define subregions of

connectivity, each of equal area and with a sink, and from them we ob-

tain Pr
{

FCm
n
}
. This is an approximation because connected components

within a region may extend away of the region boundaries, as in Fig. 3.4.

Moreover, the regions are not completely independent of each other, so

the approximation is a lower bound that is mathematically tractable.

Next we justify our approximation. Label each sink by j ∈ { 1, 2, . . . ,m }.

Partition F in m disjoint regions of equal area A j, such that
∑

j A j = F (the

area of F) and each region contains a sink j. Note that Pr { FCn } in (3.17)

is a function of the area F through the weighted integral. Thus we can

express (3.17) as

Pr { FCn } = exp
(
−

n
F
g(F)

)
, g(F) =

∫
F

e−λ(z) dz (3.18)

Denote by FC( j) the event that the nodes in A j are connected to sink j.

Then by the definition of the general uniform distribution (proportional

to area) and linearity of integrals

Pr { FC( j) } ≡ exp
(
−

n
F
g
(F
m

))
≡ exp

(
−

n
mF

g (F)
)

(3.19)
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Hence, by the approximation of independence of regions, the proba-

bility that all regions are connected is

Pr { FC( j), ∀ j } = ( Pr { FC(1) } )m

= Pr { FCn } (3.20)

Hence by (3.20) it is possible to consider m regions, each with a sink,

and use (3.17) to obtain an approximation of Pr
{

FCm
n
}
.

3.5.4 Partial Network Connectivity with Sinks

This Section describes the principles of partial connectivity of a hybrid

wireless network under the model of §3.5.1. A simulation study ap-

proach below, in §3.5.5, presents the likelihood of partial connectivity.

Close inspection of the literature on the requirements of the pair

(n, rc)—number of nodes and their communication radius respectively—

in a typical setting of random wireless sensor networks is insightful.

It is observed that at least one of the quantities in such pair is quite

large compared to the size of the field of interest and a structured node

deployment. The reason for these large numbers is the randomness in

the deployment of nodes and the strict requirement of having a fully

connected network with high probability.

One problem of having large n and/or rc in a relatively small field is

the resulting large average node degree [24]. And, as a consequence,
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the interference between nodes is substantial and their communication

rates are small—since there are more collisions, retransmissions, or

delays. A major problem when having large rc is the correspondent large

power used by a node platform when communicating.

As noted, partial connectivity may be feasible in certain applications,

such as large networks of redundant sensors. It is in these type of

settings where a wireless sensor network becomes fully connected when

the last isolated node becomes connected [61]. This suggests that the

last isolated node has a very strong influence in the estimations on the

total number of nodes to be randomly deployed to achieve connectivity

in the first place.

In the partial connectivity scenario it is acceptable to have some iso-

lated nodes in order to improve other metrics of a network, like inter-

ference due to node degree and energy savings by reducing the required

minimum communication radius to have a functional network. Note

that by adjusting n and/or rc, the ratio of isolated nodes to the total

number of nodes in a deployment can be as small as desired, up to

the point where there is a full network connectivity with high probabil-

ity. We consider network metrics like fraction of nodes reaching a sink

and average node degree. As we show below, in some situations the

improvement of the network metrics can be large.

Let us define a network as well or partially connected if only a very

small fraction of the total number of nodes is isolated [24]. For the

setting when there are multiple base stations, the likelihood of connec-

tivity is the fraction of nodes that reach a sink, that is the probability
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Table 3.3: Parameters used in the simulation setup.

Parameter Value

reps 104

F [0, 1] × [0, 1]

m 4

small n

n {20, 60, 100}

rc (0.0, 0.6)

large n

n {500, 1000}

rc (0.0, 0.2)

that there exists a path from most of the connected components to at

least one of the multiple sinks. Fig. 3.4 shows a partially connected

network. Practical deployments could require, for example, that at least

95% of the node platforms are connected or able to communicate to at

least one base station.

3.5.5 Simulation Results

This Section presents simulation results that validate the formulas de-

veloped in the previous Sections. It also exhibits a comparison of the

probability of connectivity between a WSN with sinks versus one without

them, as well as a contrast between partial and full connectivity in a

network with sinks. In particular, the number of sinks is m = 4, one at

each corner of a square F = (0, 1)2. We note that similar results hold with

different symmetric location of the sinks along the border of F. The sim-
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ulations use the Monte Carlo method with 104 random replications for

each set of parameters. Table 3.3 provides the simulation parameters.

The simulation mechanism is as follows. Take a uniform deployment

of n nodes and verify if the resulting network is fully (or partially) con-

nected. Repeat the procedure for the required number of replications

for each n and rc of interest. To calculate the probability of connectivity

for a given pair (n, rc), take the ratio of the resulting total number of fully

(partially) connected networks and all the network realizations for the

corresponding pair. We use the same procedure to estimate the aver-

age node degree. For clarity purposes the confidence intervals are not

depicted in the resulting graphs since they were small—the maximum

deviation width was less than 0.6% of the estimated average value for

the probability of connectivity or node degree.

Probability of Full Connectivity

Solving (3.17) numerically we calculate the probability of connectivity

for different n. Through simulations we obtain the probability of con-

nectivity for the network realizations with respect to the communication

radius for different number of nodes deployed and 4 base stations. For

comparison purposes, we also simulate the probability of connectivity

for a network without sinks—and with four extra nodes to compensate

for the lack of base stations.

Fig. 3.6 and 3.7 show the simulation results for small and large n,

respectively. Solid lines represent the analytical results of the probabil-
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Figure 3.6: Comparison of the probability of having a connected
network with and without base stations for small n.
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Figure 3.7: Comparison of the probability of having a connected
network with and without base stations for large n.
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Figure 3.8: Average node degree for small n.

Communication radius, rc

A
v
er

a
g
e

N
o
d

e
D

eg
re

e

 

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

2

4

6

8

10

12

14

16

18
n = 500
n = 1000

Figure 3.9: Average node degree, large n.
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ity of having a connected network. Broken lines indicate the simulation

results for networks without sinks. The lines with markers stand for the

simulation results of network realizations with sinks. Fig. 3.8 and 3.9

present the results for the average node degrees of the networks.

Probability of Partial Connectivity

Under a setting that allows partial connectivity, Fig. 3.10 and 3.11

show the simulation results for small and large n and 4 sinks. The

broken lines are the simulation result of a network that requires full

connectivity—the same results as above. The solid lines represent the

likelihood of having a partially connected network with respect to the

radius of communication, that is the fraction of the nodes that reach a

sink. The rest of the nodes belong to isolated components.

Results Discussion

First note that the analytic formula and the simulation results agree in

Fig. 3.6 and 3.7. As expected, the probability of connectivity obtained by

the analytic results is higher than the actual simulation but the approx-

imation becomes better when n is large or the probability of connectivity

is high—since this implies the probability of a node being isolated is

small. The discrepancy is larger for small n. Observe how the node

degree grows exponentially with respect to the communication radius,

hence the potential increase in interference between nodes. When n is

large, the number of base stations does not make a difference when con-
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Figure 3.10: Probability of partially and fully connected network,
small n.
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large n.
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sidering full connectivity—note how the broken lines match solid ones

in Fig. 3.7—but it does for the partial connectivity case.

Now, in Fig. 3.10 and 3.11 note the large increase in the likelihood of

connectivity under the partial connectivity scenario—fraction of nodes

reaching a sink. This increase comes associated with a lower average

node degree, as expected. Having low node degree can improve the

network metrics of interference and communication rate. When consid-

ering partial connectivity, note that with a relatively small rc we are able

to obtain an almost connected network—one that will have very few iso-

lated nodes, thus saving power in each connected node and extending

the network lifetime. As an example, a network with n = 100 requires

rc = 0.30 to have partial connectivity and rc = 0.45 for full connectivity,

thus the average node degree is 4 versus more than 8 in partial and full

connectivity, respectively. All these values obtained within the confi-

dence intervals of the stochastic simulations. Summing up, the most

isolated node defines the full connectivity of a network [61], and this

requires large amounts of resources from the whole network [24].

3.6 Summary

This Chapter presented the connectivity analysis in two-dimensional

wireless sensor networks in two settings: full and partial connectivity.

By considering node platforms deployed randomly according to a

Poisson process, the connectivity properties of 2-D WSNs were studied.

Formulas were obtained for Boolean links as well as deployments un-
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der log-normal shadowing communication channels. Stochastic simu-

lations corroborated our analyses and approximations. As expected, the

probability of having a connected network is smaller than the probability

of not having an isolated node but their difference decreases consider-

ably as the probability threshold increases. Given that in real-world

deployments the interest is to have a connected network with very high

probability—where the simulations show a very good agreement with the

formulae for no isolated nodes—the simple equations (3.7) and (3.10)

are relevant to network designers, since they allow them to estimate the

minimum node density required when deploying a network randomly.

The second main part of this Chapter considered the full and partial

connectivity of 2-D WSNs consisting of a finite number of node platforms,

uniformly deployed over a bounded area, along with sinks at fixed loca-

tions. An approximate formula was presented which helps to calculate

the probability of full connectivity when the number of nodes is large

and there are few sinks. The validity of the analysis and its close prox-

imity to network realizations was verified using stochastic simulations.

When considering small number of nodes, a slight increase in the prob-

ability of having a connected network when using base stations was

noted. But more importantly, large improvements of network metrics,

like average node degree and power savings by reducing communication

radius, were shown when allowing for partial network connectivity.

We have considered the connectivity of WSNs in 1-D and 2-D. In the

following Chapter we present an application of such results. This helps

to illustrate their use and relevance when designing WSNs.
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CHAPTER 4

TOPOLOGY CONTROL OF CONNECTED WIRELESS SENSOR

NETWORKS

4.1 Introduction

Wireless sensor networks (WSNs) are composed of nodes having pro-

cessing, sensing, and radio capabilities along with a constrained power

supply. Due to the energy scarcity of the nodes, using specialized mech-

anisms to extend the lifetime of a WSN is an important topic and a key

design challenge [46]. A possible method to achieve this lifetime exten-

sion is by controlling the network topology through a sleeping scheme.

In the previous Chapters we considered connectivity in 1-D and 2-D

WSNs. This Chapter addresses the problem of improving lifetime of a

WSN by controlling its topology through the use of information about

data correlation—data obtained by sensing the physical environment.

With this information the nodes are able to create a two-tier network

and thus extend the functional lifetime of the WSN. The objective of this

scheme is to increase the lifetime of a WSN while keeping its connectivity.

An example of an application where it is crucial to use the available

energy in the most efficient way is the use of WSN for monitoring physi-

cal structures. Practical implementation of this monitoring systems in-

clude SCADA systems, water supply pipes, and Structural Health Mon-

itoring (SHM) in general [53]. Note that, among other type of measure-

ments, WSNs are used for modal vibration in SHM, a type of monitoring
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where a strong spatial correlation in the sensed data exists [53]. Rel-

ative to other general applications—like military operation or commer-

cial sensing—monitoring physical structures requires wireless networks

with extremely long lifetime. In addition, since node platforms are gen-

erally embedded into the structures it may be impractical or impossible

to install more platforms or to recharge their power supplies.

This Chapter presents a topology control mechanism for highly re-

dundant WSNs as a way to improve the network functional lifetime. In

addition, we analyze the relation between the increase in lifetime and

the connectivity properties of such topology control mechanism. It is

possible to extend the functional lifetime of a network by controlling

its topology through a scheme that sets nodes to sleep, though at the

expense of performance loss in other metrics. But even when control-

ling its topology, for a WSN to carry out its functions it should remain

connected at all times.

In particular, we consider a two-dimensional (2-D) network where

nodes are deployed randomly following a Poisson point process. The

method to address the lifetime extension problem is by using the theory

of point processes along with results from random geometric graphs.

When designing a random WSN for a given connectivity level, there is

a trade-off between network reliability and energy efficiency [88]. Given

the base network lifetime and its desired extension factor, this Chapter

provides formulas for the required density of nodes to be deployed in

order to keep the network connected with a given probability. Using the

proposed topology control mechanism, and by adjusting the density of
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the node deployment, the lifetime of a network can be extended in a sim-

ple, autonomous, and scalable way. The main idea behind our topology

control scheme is to utilize the information obtained by the nodes from

the environment where they are deployed. That is, the strategy is to

take advantage of data correlation to control the topology of a WSN.

This Chapter is organized as follows. Next Section 4.2 presents the

related work in the literature of the topology control and network lifetime

extension. Then Section 4.3 states the general problem to be addressed

along its assumptions. Section 4.4 describes the topology control mech-

anism, including its advantages and shortcomings compared to other

similar schemes. Finally, Section 4.5 contains the mathematical model

and analysis for the lifetime extension, including the simulation results

for network deployments under models assuming Boolean communica-

tion links and log-normal shadowing in the communication channel.

4.2 Related Work

While there are several schemes in the literature that address sleep

based topology control in WSNs, there is no mechanism that exploits

the information provided by the correlation among sensed data [78].

The following research is related to this Chapter. With respect to the

analysis of network lifetime extension through clustering, the authors

in [41] propose a protocol for WSNs called LEACH that uses clusters to

form a two-tier network to reduce energy consumption. The clusters

are formed in a random way, that is without using information from the
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physical phenomena under sensing. Instead the purpose of the proto-

col is to have certain average quantities of cluster heads at any given

time while using efficiently energy and bandwidth in wireless commu-

nications. The impact of spatial correlation on routing for structured

network deployments is analyzed in [60]. There, the authors find the

optimal size of a cluster using the information of joint entropy for a set

of sources. They consider the entropy as a function of the distance be-

tween nodes and the research shows that there is a near-optimal cluster

size, in terms of energy efficiency, that performs well over a wide range

of spatial correlations.

Data-aggregation algorithms are also useful to extend the functional

lifetime of a WSN. By performing in-network processing through data

aggregation, node platforms are able to reduce the amount of infor-

mation transmitted, thus saving energy. These algorithms can operate

as a complement to sleep-based topology control techniques in order

to increase network lifetime. In essence, data aggregation is a routing

scheme with compression of correlated data. The authors in [69] show

the strong relation between routing and source coding.

The current approaches of sleep-based topology control for WSNs de-

pend on design assumptions and goals. A way to maximize the func-

tional lifetime of sensor networks is presented in [34]. The authors focus

on maximizing, through a communications scheme, the number of data

that is transmitted from each node to one sink.

The work in [83] presents the algorithm GAF whose purpose is to

reduce energy consumption by setting redundant nodes, from a routing
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perspective, to sleep. GAF requires the nodes to generate a grid, thus

nodes require location information.

To extend the network lifetime, techniques like the asynchronous,

energy efficient scheduling are relevant. In the randomized indepen-

dent sleeping RIS scheme node platforms are either sleeping or active at

every time slot with certain probability [47]. Thus the probability of be-

ing active is a parameter that controls the factor of increase of network

lifetime. The (RIS) scheme calculates the number of sensors required

to have a k-coverage network on a unit square area. The work in [87]

presents a scheme using combinatorial designs. This technique assures

conditions where a particular structure exists in the active nodes, allow-

ing each node to keep independent sleeping cycles.

4.3 Model and Problem Formulation

Our goal is to extend the functional lifetime of a WSN.

Definition 4.1. Base Network Lifetime: Consider as the base network

lifetime the maximum life period of a continuously active node platform.

Then given this base lifetime and its desired extension factor, we will

provide formulas for the required density of nodes to keep the network

connected with a given probability under the topology control scheme.

The concept of lifetime is in the sense of functional lifetime for WSNs [34]:

Definition 4.2. Network Functional Lifetime: The maximum time a cer-

tain network metric can be kept as designed.
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In particular, we consider the metric of network connectivity. Then

network functional lifetime will be the time when the network becomes

disconnected.

Considering the connectivity and topology control of a WSN, the rele-

vant design questions are:

1. how to form clusters of nodes in an autonomous way using only

local information while keeping network connectivity?

2. how to provide an energy-efficient scheduling mechanisms in order

to increase network lifetime?

The heuristics behind a possible scheme is to allow nodes to evaluate

data correlation within their neighborhood and then form clusters. After

that, some nodes inside the cluster decide to go to backup mode (or

sleep), while others remain in active mode.

To investigate our scheme we make the following assumptions. Con-

sider a random deployment of sensor platforms in a unit area square

according to a homogeneous spatial Poisson process Π with given in-

tensity. The solution approach would be the same for a square with

different area, just with proper scaling factors. Let the node platforms

be static, each with fix transmission power. Suppose that the commu-

nication links model is Boolean such that each node has a fixed com-

munication radius rc. For an illustration see Fig. 4.1.

Assume the network has a high density of nodes such that, at de-

ployment time, it is connected with high probability—more details about
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Figure 4.1: Example of a realization of a network. Node o has com-
munication radius rc, when σ = 0. The radius where
there is perfect correlation is tc.

this in Section 4.5. Further, assume that nodes are able to measure the

distance between them, for example using received signal strength in-

dicator (RSSI) [46], a widely available capability in off-the-shelf node

platforms. Finally assume that nodes are able to determine data corre-

lation information—this is a standard assumption in research literature

although it is still a challenging problem in practical setups.

Justifications of our assumptions are in order. To ponder a more

tangible setting consider a WSN that will be used for monitoring physi-

cal structures. In this situation, the node platforms will be attached to

a structure, hence the resulting WSN will be static. The Boolean com-

munication links model and the fixed communication radius allows us

to isolate the parameter of interest, that is network functional lifetime.

Moreover there are ways to account for the irregularity in the quality

of wireless communication links, for example by estimating their qual-

ity and compensating for routing decisions [84]. The high node plat-

form density allows for node redundancy, something specially desired
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in WSNs since extra nodes boost network lifetime.

The rationale behind the distribution of nodes as a spatial Poisson

process is that this point process is the most random way to describe

a deployment. That is, if we consider disjoint spatial areas containing

nodes, then those areas are statistically independent and the Poisson

model follows. Regarding the model for spatially varying phenomena

that the WSN is monitoring, we assume a Boolean one. Thus if two

nodes are within a distance tc, then they are perfectly correlated, see

Fig. 4.1. The value of the parameter tc depends on the particular ap-

plication of the WSN. Another possible model for the spatially varying

phenomena could be a Gaussian random fields, but since our scheme

requires either perfect correlation—above some threshold—or not, then

the Boolean model is more appropriate.

4.4 Topology Control Mechanism

As we mentioned, a way to accomplish lifetime extension in a WSN is

to have redundant deployment of node platforms along with a sleeping

scheme. Other methods comprise energy efficient algorithms, including,

for example, medium access control, low power listening, data aggrega-

tion or in-network processing, and energy efficient scheduling.

Due to their relative simplicity, sleep-based topology control is a pop-

ular and important technique used in WSNs to reduce the energy con-

sumption of the individual node platforms and, as a consequence, sleep-

based topology control is useful to increase the functional lifetime of the
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networks. In general, topology control mechanisms are distributed and

decentralized, thus scalable and they can either (1) adjust the trans-

mission power of each node; or (2) use sleep cycles of the nodes. A

comprehensive survey for the former method is provided in [68].

The topology control scheme that we present is useful for applica-

tions where precise positioning of a node platform is not essential and

nodes are deployed with high redundancy. Platform redundancy may

occur due to unfeasibility to deploy more nodes—as a result of remote-

ness of location, extreme weather or simply because nodes are embed-

ded into infrastructure.

While in the literature there are several schemes that address sleep-

based topology control in WSNs, there is no mechanism that operates

exploiting the information provided by the correlation among sensed

data. This Section describes a method to control the topology of a WSN

using information about data correlation. With the correlation informa-

tion, the node platforms are able to create a two-tier network—one tier of

active while the other of backup nodes—and thus extend the functional

lifetime of the WSN.

Basically, as described below, the mechanism consists of two steps:

1. autonomous creation of clusters (§4.4.1)

2. use of a scheduling algorithm within these clusters (§4.4.2)

This idea is illustrated in Fig. 4.2. Our scheme has practical relevance

since it is simple, localized, decentralized, and scalable. Moreover, using
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Figure 4.2: Basic idea of the scheme where nodes are randomly
deployed. Solid circles represent active nodes and tri-
angles represent backup nodes.

correlation information allows relaxing common assumptions imposed

in other topology control schemes.

4.4.1 Cluster Formation

A brief explanation. In this step there is a combination of the informa-

tion obtained by the correlation of the sensed data that helps creating

clusters of node platforms.

The topology control scheme forms clusters by using the degree of

correlation of the sensed data. This can be used in applications where

the measurement data of physically close node platforms exhibit high
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degree of correlation. For example, the spatial correlation concept is

also used implicitly in data fusion algorithms, where it allows them to

eliminate redundancy of the information being relayed [46]. We can

consider these systems to be physically-integrated in the sense that the

formation of clusters depends on the underlying physical phenomena.

Below we will assume a model of a physical environment with properties

of well-defined zones of spatial correlation.

Next, we provide more details on the clustering step. As mentioned

above, we use the principle of spatial correlation—similar to [60] where

the entropy-based measurement is a function of distance. Per our as-

sumption of a Boolean model for correlated data, the platforms that are

close to each other will have their readings correlated and each node

will possess the correlation measurement of its immediate neighbor.

When the network is deployed all the nodes are active and their ini-

tial task is to discover their immediate neighbors. To have a localized

and autonomous scheme, at time of deployment each node becomes ei-

ther an active node or a backup one according to a tuning parameter,

based on the desired network structure. The active nodes act as cluster

heads, meaning that they form virtual clusters using the backup nodes

with whom they have the highest data correlation that is above certain

threshold—spatially located within distance tc.

Thus clusters are created autonomously and at random positions,

depending on the location of the active nodes. Note that this method

allows for backup nodes to belong to multiple clusters at the same time.

Although it would be possible to force the backup nodes to belong to
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only one cluster—for example using a conflict resolution mechanism.

Once clusters are formed the challenging question is how to guar-

antee a connected network. As discussed in the previous Chapters, a

network is connected with high probability if for a given area the node

platforms density is greater than a critical density. Then, with the the-

ory developed in the previous Chapters, we can estimate the node den-

sity required to achieve an almost sure connectivity using probabilistic

values—for example having a connected network with 99% of chance.

4.4.2 Sleeping Scheduling

A brief explanation. Once clusters are formed, a scheduling step is im-

plemented to save energy of the node platforms. That is, within the clus-

ters of nodes an energy efficient random scheduling mechanism controls

the underlying topology of the WSN.

Next we provide more details on the scheduling step. After the clus-

ters are formed some nodes within them can go to sleep, thus increas-

ing the network functional lifetime. The nodes under the sleeping state

wake-up with a very low duty-cycle and verify that there is still an ac-

tive node within its cluster. An asynchronous wake-up mechanisms, for

example, can be used to implement this scheduling.

The way in which active and backup nodes are selected indirectly de-

termines, in an automatic way, which nodes will be sleeping. Reflecting

on the principles used in the RIS scheme [47], backup nodes belonging
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to a cluster go to sleep randomly and independently from each other.

Therefore, a random energy efficient scheduling mechanism [78] will

help on the energy savings of the node platforms.

Given that the communication radius of the node platforms is much

larger than the distance where two nodes are strongly correlated, and

that the network is connected, it is possible to select a representative

node from a cluster of nodes. In this case we propose just to select

the active node, but it is possible to implement an algorithm that takes

other factors into consideration, like node degree. To provide for net-

work robustness, the backup nodes wake up periodically, although with

extremely low-duty cycle. Let us call this brief activity period probing.

This energy saving mechanism is not optimal, but since it is random

it does not require complete information about the state of the network.

The backup node duty cycle is dictated by the underlying application

of the WSN and its objective is to verify if an active node malfunctions.

In this manner, using a random timer, a backup node wakes up and

checks for cluster head activity—for example through a HELLO message.

If the cluster head is still alive, the backup node goes back to sleep,

otherwise it will stay in active mode.

4.4.3 Advantages and Drawbacks

The main advantage of the topology control mechanism proposed in this

Section is the extension of WSNs lifetime. Additionally, the scheme is lo-

calized and information about node platform location is not required.
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Moreover the creation of clusters requires information only of the im-

mediate neighbors and, as a result, is done in a distributed manner,

hence the scheme is scalable.

The principal shortcoming of the mechanism is that it is applicable

under environments where the underlying physical phenomenon has

high spatial correlation. Also, note that each node has to obtain the

level of data correlation with its neighbors—though this is a common

assumption in the literature [60].

Something that can be considered as a drawback of our scheme is

that it does not provide for a uniform depletion of energy. Although de-

pending on the application, like in Structural Health Monitoring (SHM),

the uniform energy depletion is a secondary concern, while the primary

matter is extending the lifetime of the network and having nodes con-

tinuously sensing for unpredictable events.

4.4.4 Specialization

In order to make the analysis in the following Section concrete let us

define specific characteristics of an environment under sensing and the

corresponding topology control scheme implementation.

We assume that the physical phenomenon under monitoring has a

high degree spatial correlation, such that a perfect correlation exists

between two nodes if they are close enough, similar as the model used

in [60]. Also, we consider a homogeneous energy consumption rate per

95



active node, such that it is negligible when a node is sleeping.

To form clusters a random scheme is used, where, at time of deploy-

ment, nodes become either active or backup with probability pa and pb

respectively, pa + pb = 1. This random assignment of backup (sleeping)

nodes is the basis of the RIS mechanism [47]. The value of pa represents

a tuning parameter that controls the factor of the lifetime extension.

By using this simple scheme specialization we are able to provide

explicit formulas in the next Section. The network topology is controlled

by the backup nodes that go into sleeping state and wake-up with a low

duty-cycle, becoming active nodes if needed.

4.5 Network Lifetime Extension Analysis

In this Section we analyze the network functional lifetime extension.

We use the topology control scheme developed in the previous Section,

assuming the specialization described in §4.4.4.

According to the particulars of the model assumptions, there are sev-

eral definitions of lifetime of a WSN in the literature. It can indicate the

time when either:

• the first node depletes its energy, or

• there is a certain percentage of nodes alive, or

• the network can still carry out useful operations.
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Given that the last definition encompasses a state where a WSN can

still function—although working at a lower quality of service, the third

definition seems the more adequate for most of the practical deploy-

ments. Then in this work we consider the functional lifetime definition

with the level of network connectivity as a performance metric.

Let the desired network lifetime extension factor (EF) be EF = k, k ∈

�+. Denote by S the field of interest and, without loss of generality, let

S = (0, 1) × (0, 1), a unit area square. Consider N to be a random variable

representing the number of node platforms deployed in S . Assume N is

distributed according to a homogeneous Poisson process with intensity

%, denote it by Π%. Then N(A), for A ⊆ S , has the Poisson distribution with

parameter %, designated by P(%), and % represents the node density of

the network deployment. Moreover, assume that % is at least as large

as the density required for having the probability of connectivity to be

Pr {C } = p for a network in S .

Let pa and pb = 1 − pa be the probabilities that a node becomes active

or backup, respectively, at deployment time. Hence, we have generated

a marked Poisson process [45, Chapter 5], where there are two indepen-

dent random variables with distribution Na ∼ Π(%pa), Nb ∼ Π(%pb), repre-

senting the number of active and backup nodes respectively. Since N(A)

is the total number of nodes in set A ⊆ S , let Na(A) and Nb(A) be the num-

ber of active and backup nodes respectively in A. By properties of homo-

geneous marked Poisson spatial processes, we have N(A) = Na(A) + Nb(A).

Denote by α = pa% and β = pb%. Since pa + pb = 1, then α + β = %. Given

that α and β are assigned randomly, Π% represents a marked Poisson

97



process, composed of two independent Poisson processes, denote them

by Πα and Πβ. Let us analyze the properties of a point at o. Recall that by

the Slivnyak’s theorem we have Πβ has the same distribution as Πβ ∪ {o}.

Then it suffices to analyze the point at o to obtain formulas for the rest

of the points in the network realization.

By using the topology control described in §4.4.4, the desired lifetime

extension factor EF represents the average number of neighbors of o

within b(xo, tc). Where b(x, r) is a disc with center x ∈ S and radius r.

Considering the Poisson process Πβ and the perfect spatial correlation

radius tc, we have

�{N(b(xo, tc)) } = β|b(xo, tc)| (4.1)

where |B| represents the area of B.

Then for EF = k we have

β =
k

|b(xo, tc)|
(4.2)

To provide an insight about the behavior of the number of neighbors

of o as a function of tc, consider the distribution of its nearest neighbors.

Take the network realization Πβ, label the jth nearest neighbor of o by

j and let D j(r) be the distribution function of the jth nearest neighbor,

that is Pr {N(b(xo, r)) ≤ j }. Denote by l j the distance from o to j. Note that

l1 > r if and only if b(xo, r) has no node, then

Pr { l1 > r } = exp(−βπr2)

So it follows that
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Figure 4.3: Probability density function of d j(r) for different j.

D1(r) = 1 − e−βπr2
(4.3)

From it, the corresponding density function is

d1(r) = 2βπre−βπr2
(4.4)

Note that D1(r) implies that the area A1 = b(xo, l1) is exponentially dis-

tributed with parameter β. Let A j = b(xo, l j), it follows that A1, A2 − A1, . . .

are independent and exponentially distributed random variables with

parameter β. Hence D j(r) has a Gamma distribution with density
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d j(r) =
2( βπr2 ) j

r( j − 1)!
e−βπr2

(4.5)

Fig. 4.3 shows d j(r) for different j. It can be shown that the maximum

of (4.5) occurs when

r =

√
j − 1/2
πλ

, ∀ j

This implies that when λ increases, l j decreases, as expected.

Now, given β from (4.2), we need to obtain the rest of the parame-

ters for the topology control scheme. With S , rc, and the desired p for

Pr {C }, to obtain α we just need to use the equations from the previous

Chapter—either (3.7) or (3.10) according to the channel model under

analysis—in order to obtain the required node density for the given con-

nectivity probability. Finally, since % = α+ β, we get pa = α/% and pb = β/%.

Hence we get all the parameters for the topology control scheme design.

4.6 Simulation Results

This Section presents simulation results. Take S as a unit area square

where nodes are randomly deployed according to Π(%), with % varying

from 20 to 60. Let the communication radius be rc = 0.45 and the corre-

lation radius be tc = 0.15. The procedure for the simulations is by using

the Monte Carlo method with 104 random replications for each set of pa-

rameters. Table 4.1 shows the simulation parameters. For clarity pur-
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Table 4.1: Parameters used in the simulation setup.

Parameter Value

reps 104

S (0, 1) × (0, 1)

% {20, 30, 60}

rc 0.45

tc 0.15

Prob. of a node being active, rc = 0.45, tc = 0.15
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Figure 4.4: Network Lifetime Extension Factor for a given node
density and network parameters.

poses the confidence intervals are not depicted in the resulting graphs,

though we remark that they were small—the maximum deviation width

was less than 0.4% of the estimated average value.
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Fig. 4.4 shows the network lifetime extension factor with respect to

the probability of a node becoming active at deployment time for a sam-

ple deployment density. As expected the network lifetime doubles when

the probability of a node being active at deployment time is one half.

4.7 Summary

This Chapter presented a topology control scheme for WSNs with the aim

of increasing the network functional lifetime. In addition, we analyzed

the lifetime extension and connectivity properties of such mechanism

for two-dimensional WSNs.

We considered node platforms deployed randomly and obtained for-

mulas of the network lifetime extension for nodes having Boolean com-

munication links. It was shown that, when choosing the right density of

node platforms to be deployed, the topology control mechanism will be

able to extend the network lifetime for the required factor while keeping

the WSN connected.

The fundamental idea of the topology control scheme is to use the in-

formation about the correlation of the data obtained by sensing a phys-

ical phenomenon to control the individual node platforms composing

the WSN. This scheme was shown to increase the functional lifetime

of the WSN; task achieved by reducing the energy consumption of the

node platforms through an energy-efficient scheduling mechanism. The

scheme offers a practical way to define clusters of nodes while keeping

the network connected. In particular, the topology control mechanism
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consists of two steps: (1) autonomous creation of clusters and (2) use

of a scheduling algorithm within these clusters. We presented the ana-

lysis of a tractable model of this scheme, showing its performance along

with simulations that support the analytical results. The scheme for

lifetime extension has practical relevance since it is simple, localized,

decentralized, and scalable.

In this dissertation we covered the connectivity of WSNs in 1-D and

2-D. In addition and through an application, in this Chapter we illus-

trated how to use our results and their relevance when designing WSNs.

The next Chapter presents the conclusions of our work.
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CHAPTER 5

CONCLUSIONS

This dissertation presented an analysis of a topological characteristic

of finite random wireless sensor networks (WSNs). In particular, it fo-

cused on the connectivity of one dimensional (1-D) and two dimensional

(2-D) random network deployments. In addition, a simple mechanism

was developed for controlling the topology of a 2-D WSN. This work pro-

vided formulas for the probability of having a connected wireless sensor

network under different settings, including variations in the commu-

nication links, channel randomness, and network infrastructure. We

also presented formulas that estimate the increase in network func-

tional lifetime when using a mechanism for autonomously controlling

the topology of a random WSN.

A brief introduction of WSNs was presented in Chapter 1, including

their characteristics and design challenges. That Chapter outlines the

problems that were analyzed in this dissertation along with the tech-

niques used to address those problems. In addition, Chapter 1 lists our

research that is related to this dissertation.

The problem of network connectivity in 1-D random deployments

with finite number of node platforms was considered in Chapter 2.

To mathematically analyze the networks, we abstracted the WSNs as

random graphs and proposed a communication model for determinis-

tic and random channels. By using combinatorics and stochastic ge-

ometry theories, we derived equations on the probability of connectiv-

ity of such random WSNs, while assuming networks with and without
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infrastructure—in the form of base stations. We noted how the require-

ments for having a connected WSN may be relaxed since there can be

more than one connected component of a network. In addition, we also

provided a general formula for the probability of connectivity when the

node platforms communication radii are random—including a closed

form formula for the particular case when the communication radii fol-

low a uniform distribution. In this setting, we noted a slight increase

in the probability of network connectivity for given parameters, that is

the requirements on the number of nodes to have a connected WSN may

be relaxed when such nodes have random communication radii. Fur-

thermore, the random communication radii model can represent certain

randomness in the communication channel.

The network connectivity in 2-D finite random deployments was an-

alyzed in Chapter 3. We considered the problem of connectivity in

random deployments of nodes with and without infrastructure. Again,

we abstracted the WSNs as random graphs with a particular model for

the communication links. We analyzed the situations for deterministic

and random communication channels and, by using random geomet-

ric graphs and stochastic geometry theories, derived equations on the

probability of connectivity. After that, we extended the analysis for the

case when there are multiple base stations in the random deployment.

Additionally, we considered the effects on WSNs metrics by allowing for

partial network connectivity. We showed the benefits of using more than

one sink as well as how partial connectivity with sinks improves network

lifetime, average node degree, and communication througthput.
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A simple topology control scheme that extends the network func-

tional lifetime of a 2-D random WSN was presented in Chapter 4. That

Chapter considered the problem of network lifetime extension in 2-D

network deployments after the network has been setup. We abstracted

the WSN as a random graph with a particular model for the communica-

tion channel—assuming deterministic communication links or Boolean,

as well as for the field of interest underlying physical phenomena. By

using stochastic geometry theory, we derived the formulas on the func-

tional lifetime extension gained by using the topology control scheme.

This mechanism operates by exploiting the information provided by the

correlation among sensed data, thus allowing the autonomous creation

of clusters in a simple, localized, decentralized, and scalable way.

Comparing with asymptotic approximations, the main advantage of

using the exact connectivity formulas presented in this work for the ana-

lysis and design of random wireless sensor networks with finite number

of node platforms is the accuracy enhancement of the probability of

connectivity estimate. In addition, the exact formulas present a rea-

sonable performance improvement without excessive overhead in the

calculations of the probability of connectivity, when compared to the

asymptotic approximations. The principal reason to obtain exact for-

mulas instead of using only stochastic simulations for the design of a

random WSNs is the computational scalability issue: stochastic simu-

lations of such networks do not scale linearly with the number of node

platforms being simulated [10,81].
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A practical application of this theoretical work is to monitor physical

structures. These structures are pervasive—from museums, data cen-

ters, water supply systems, and bridges to farms, mines, and islands.

When designing a random WSN for such settings it is critical to have the

network connected in order to be able to extract the data. Our work pro-

vides a theoretical framework for some of those practical deployments.

5.1 Possible Extensions of This Work

In this work we showed exact analyses assuming well-defined probabil-

ity distributions for the deployment of the node platforms. Experimental

data would be useful to obtain more accurate probability distribution of

the platforms on real world deployments. Moreover, all the connectivity

analyses presented in this dissertation have been done in a theoreti-

cal setting. It is of interest to obtain practical results. The same holds

true for an implementation of the topology control scheme in large-scale,

high-density, WSNs deployments.

Additional future extensions to this dissertation include the follow-

ing. Addressing connectivity in 2-D networks with finite number of

node platforms and with communication interference in addition to log-

normal shadowing, while obtaining mathematically rigorous results. Also,

it may be fruitful to model the interdependence of the log-normal shad-

owing parameters—path-loss and variance of the underlying normal

random variable—and possibly include their temporal variation. What is

more, it would be interesting to obtain formulas for the optimal location
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of the base stations for a given network infrastructure setup for both 1-D

and 2-D deployments. In addition, it would be of practical relevance to

address the trade-off costs between having a WSN with and without in-

frastructure. Further research is necessary to find an optimum balance

between cost and performance of a wireless network deployment.

Finally, notice that we did not address any temporal analysis, so

dealing with connectivity of WSNs while considering its behavior as a

function of time, instantaneously, may appear that the connectivity in-

creases under high variance in the log-normal shadowing model. But,

on average, the probability of network connectivity might be the same as

without considering the log-normal shadowing effect. It may be worth-

while to carry out such analysis, since this would improve the under-

standing, modeling, and design of future wireless sensor networks.
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