Settling the Round-Complexity of Non-Malleable Commitments

Huijia Lin∗ Rafael Pass†

September 2, 2010

Abstract

We show unconditionally that the existence of commitment schemes implies the existence of constant-round non-malleable commitments; earlier protocols required additional assumptions such as collision resistant hash functions or subexponential one-way functions.

Our protocol also satisfies the stronger notions of concurrent non-malleability and robustness. As a corollary, we establish that constant-round secure multi-party computation can be based on only enhanced trapdoor permutations; also here, earlier protocols additionally required either collision-resistant hash functions or subexponential one-way functions.
1 Introduction

Commitment schemes are one of the most fundamental cryptographic building blocks. Often described as the “digital” analogue of sealed envelopes, commitment schemes enable a sender to commit itself to a value while keeping it secret from the receiver. This property is called hiding. Furthermore, the commitment is binding, and thus in a later stage when the commitment is opened, it is guaranteed that the “opening” can yield only a single value determined in the committing stage. Their applications range from coin flipping [Blu83] to the secure computation of any efficiently computable function [GMW91, GMW87]. In light of their importance, commitment schemes have received a considerable amount of attention. This has resulted in a fairly comprehensive understanding of the hardness assumptions under which they can be realized; in particular, by the results of Naor [Nao91] and Hästad et al [HILL99, Nao91], the existence of one-way functions implies the existence of two-round commitments.

For many applications, however, the most basic security guarantees of commitments are not sufficient. For instance, the basic definition of commitments does not rule out an attack where an adversary, upon seeing a commitment to a specific value v, is able to commit to a related value (say, $v - 1$), even though it does not know the actual value of v. This kind of attack might have devastating consequences if the underlying application relies on the independence of committed values (e.g., consider a case in which the commitment scheme is used for securely implementing a contract bidding mechanism). Indeed, for the general task of secure multi-party computation [GMW87], such independence is crucial. The state of affairs is even worsened by the fact that many of the known commitment schemes are actually susceptible to this kind of attack. In order to address the above concerns, Dolev, Dwork and Naor (DDN) introduced the concept of non-malleable commitments [DDN00]. Loosely speaking, a commitment scheme is said to be non-malleable if it is infeasible for an adversary to “maul” a commitment to a value v into a commitment to a related value \tilde{v}.

More precisely, we consider a man-in-the-middle (MIM) attacker that participates in two concurrent execution of a commitment scheme (C, R); in the “left” execution it interacts with an honest committer (running C); in the “right” execution it interacts with an honest receiver (running R). Additionally, we assume that the players have n-bit identities (where n is polynomially related to the security parameter), and that the commitment protocol depends only on the identity of the committer; we sometimes refer to this as the identity of the interaction. Intuitively, (C, R) being non-malleable means that if the identity of the right interaction is different than the identity of the left interaction (i.e., A does not use the same identity as the left committer), the value A commits to on the right does not depend on the value it receives a commitment to on the left; this is formalized by requiring that for any two values v_1, v_2, the values A commits to after receiving left commitments to v_1 or v_2 are indistinguishable.

The first non-malleable commitment protocol was constructed by Dolev, Dwork and Naor [DDN00] in 1991. The security of their protocol relies on the minimal assumption of one-way functions and requires $O(\log n)$ rounds of interaction, where $n \in \mathbb{N}$ is the length of party identities. Non-malleable commitments have since been extensively studied in the literature; the main question has been to determine the number of communication rounds needed for non-malleable commitments. Let us briefly survey some of this literature.

1.1 The State of the Art of Non-malleable Commitments

As mentioned, the original work by DDN assumes only one-way functions, and considers the “plain” model of execution; that is, there is no trusted infrastructure. DiCrenenzo, Ishai and Ostrovsky [CKOS01] and follow-up work in e.g., [CKOS01, CIO01, CF01, FF09, DG03] showed how to im-
prove the round-complexity of the DDN construction when assuming the existence of some trusted infrastructure; in particular, in such models non-interactive (i.e., single message) non-malleable commitments based on only one-way function are known [DG03]. The first improvement to the round-complexity of the DDN construction without any trusted infrastructure came more than a decade later. Following the ground-breaking work by Barak on non-black-box simulation [Bar01], in 2002, Barak [Bar02] presented a constant-round protocol for non-malleable commitments; the security of this protocol however relies on the existence of trapdoor permutations and hash functions that are collision-resistant against circuits of sub-exponential size. A few years later, Pass and Rosen [PR05b] (relying on a technique from Pass [Pas04]), showed that collision resistant hash functions secure against polynomially-sized circuits are sufficient to obtain a constant-round protocol. Pandey, Pass and Vaikuntanathan [PPV08] next provided a construction of a non-interactive non-malleable commitment based on a new hardness assumption with a strong non-malleability flavour; in contrast to the earlier constant-round constructions, their protocol has a black-box proof of security.

Last year, Lin and Pass (LP) [LP09] showed a $O(1 \log^{*} n)$-round protocol that is based on the existence of one-way functions and uses a black-box proof of security. Subsequent work by Pass and Wee [PW10] obtained a constant-round protocol based on sub-exponentially hard one-way functions (again using a black-box proof of security). Finally, a very recent work by Wee improved the round-complexity of the LP protocol to $O(\log^{*} n)$-rounds, again based on one-way functions.\footnote{In the journal version of [LP09], we point out that a slight tweak of the original LP protocol in fact also yields a $O(\log^{*} n)$-round protocol. However, as we discuss further in Section 1.6, Wee’s protocol has other desirable features—namely, it can be used to obtain a black-box construction of secure multi-party computation based on various different primitives.}

So, summarizing the state of the art, we have:

- Based on the minimal assumption of (polynomially-hard) one-way functions, the best protocols require $O(\log^{*})$-rounds and have black-box proofs of security.
- Constant-round protocols are known based on either collision-resistant hash functions (and using a non-black-box proofs of security), or subexponentially hard one-way functions (using a black-box proof of security).

1.2 Settling the Round-complexity of Non-malleable Commitments

In this work, we settle the round-complexity of non-malleable commitments: we present a constant-round protocol that is based on the assumption of (polynomially-hard) one-way functions and does not use any trusted infrastructure. Since the existence of commitment schemes already implies the existence of one-way functions [IL89] we thus have:

Theorem 1. Assume the existence of a commitment scheme. Then there exists a constant-round non-malleable commitment scheme with a black-box proof of security.

Concurrent non-malleability As mentioned, the original notion of non-malleability considers an MIM attacker participating in a single execution on the left and a single execution on the right. Already the original DDN paper suggested that a stronger notion of non-malleability—*concurrent non-malleability*—where the MIM may participate in an unbounded number of executions on both the left and the right, is desirable. Pass and Rosen [PR05a] provided the first construction of a concurrently non-malleable commitment scheme; their scheme only has a constant number of rounds but relies on the existence of claw-free permutations (and non-black-box techniques). Subsequently,
Lin, Pass and Venkitasubramaniam [LPV08] provided an $O(n)$-round construction based on one-way functions. Finally, the LP protocol and its derivates [PW10, Wee10] yield a $O(\log^* n)$-round protocol based on one-way functions, or a constant-round protocol based on subexponential one-way functions. As we show, our protocol is also concurrently non-malleable.

Robust Non-malleability Lin and Pass [LP09] recently introduced the notion of robust non-malleable commitments. Roughly speaking, whereas non-malleability considers a scenario where a MIM participates in the same commitment protocol on the left and the right, r-robustness considers a notion of non-malleability for commitments where the MIM attacker participates in any arbitrary r-round protocol on the left, and the commitment protocol on the right. Robustness is useful when using non-malleable commitments as subprotocols within larger protocols. As we show, for any constant r, our protocol can be made r-robust while still remaining constant-round.

Thus summarizing the above discussion, we have:

Theorem 2. Assume the existence of a commitment scheme. Then for any constant r, there exists a constant-round commitment scheme that is r-robust concurrently non-malleable with a black-box proof of security.

1.3 Applications to Secure Multi-party Computation

As mentioned, “independence” of inputs is crucial for secure multi-party computation protocols. Indeed, there has been a tight interplay between work on the round-complexity of multi-party computation and work on non-malleable commitments.

Goldreich, Micali and Wigderson’s [GMW91] original work on secure multi-party computation showed a $O(m)$-round multi-party computation protocol based on the existence of enhanced trapdoor permutations (TDPs), where m is the number of players in the execution; implicit in their work is a $O(n)$-round non-malleable commitment for the special case of so-called “synchronizing” adversaries that have identities of length $\log n$. Subsequent works improved the round-complexity by making stronger assumptions. Katz, Ostrovsky, and Smith [KOS03] obtained a $O(\log m)$-round protocol assuming TDPs and dense-crypto systems by relying on the non-malleable commitments from [DDN00]. By additionally assuming the existence of hash-function collision-resistant against circuits of sub-exponential size (and non-black-box techniques), they also obtained a $O(1)$-round protocol by instead relying on the non-malleable commitment from [Bar02]. More recently, Pass [Pas04], showed the existence of a $O(1)$-rounds protocol assuming only TDPs and (standard) collision resistant hash functions (but still using non-black box techniques); this technique in turned was used in the non-malleable commitment of [PR05a].

The implicit connection between the round-complexity of non-malleable commitments and secure multi-party was formalized by Lin, Pass and Venkitasubramaniam in [LPV09]: they show that the existence of k-round 4-robust non-malleable commitments and the existence of TDPs implies the existence of $O(k)$-round secure multi-party computation. All the more recent constructions of non-malleable commitments [LP09, PW10, Wee10] are robust, and thus as a consequence, the state of the art of secure multi-party computation was the same as for non-malleable commitments.

Combining the result of [LPV09] with Theorem 2, we get that secure multi-party computations can be performed in a constant number of round based on only TDPs.

Theorem 3. Assume the existence of enhanced trapdoor permutations. Then there exists a constant-round protocol for secure multi-party computation.

Remark 1. Although we haven’t verified all the details, it would seem that the TDP assumption can be weakened to only assume the existence of a constant-round honest-but-curious OT protocol.
1.4 Applications to Non-malleable Zero-knowledge

Non-malleable zero-knowledge [DDN00] consider the execution of zero-knowledge protocols in the presence of a MIM attacker. Roughly speaking, a zero-knowledge protocol is non-malleable if the MIM attacker can only provide convincing right-interaction proofs of statements that it could have proved without participating in the left interaction. The recent result of [LPTV10] shows that the existence of \(k \)-round 4-robust non-malleable commitments implies the existence of \(O(k) \)-round non-malleable zero-knowledge arguments for \(\text{NP} \). By combining their results with Theorem 2 we directly have that the existence of one-way functions implies the existence a constant-round zero-knowledge argument for \(\text{NP} \).

Theorem 4. Assume the existence of one-way functions. Then there exists a constant-round non-malleable black-box zero-knowledge argument for \(\text{NP} \) with a black-box proof of security.

1.5 A New Technique: “Message-scheduling in the head”

The main idea underlying all non-malleable commitment schemes is to “encode” the identity of the committer into the protocol. At the very least, this ensure that unless the attacker copies the identity of the left committer, the attacker cannot simply forward messages between the left and the right executions. But we also need to ensure that the attacker cannot in a clever way maul the messages it receives on the left so they become useful on the right. For instance, in the original DDN construction, the identity is encoded into the scheduling of messages in the protocol; on a very high-level (and oversimplifying), the idea is to ensure that at some point in the execution, the MIM must “speak” while only receiving “useless” messages. The problem with this approach is that it requires a high round-complexity.

We will revisit the DDN approach. The main idea behind our scheme is to perform the message scheduling “in the head”. A bit more precisely, our protocol follows the “simulation-soundness” paradigm of Sahai [Sah99], first used in the context of CCA-secure encryption, and next used by Pass and Rosen [PR05a] and Lin and Pass [LP09] in the context of non-malleable commitments; that is, the main component of our construction is a method for enabling us to “simulate” the left interaction, while ensure that the right interaction remains “sounds”. Towards this, we embedd a “trapdoor” into the protocol which depends on the identity of the interaction; proving simulation-soundness then essentially amounts to showing that there exists a way to recover the trapdoor for the left interaction, while ensuring that the adversary does not recover the trapdoor for the right interaction (as long as the right interaction has a different identity than the left interaction).

The idea is to have a protocol where the trapdoor can be recovered by “rewinding” some specific messages in the protocol—called “slots”—in a specific order which depends on the identity of the interaction. Furthermore, the protocol should have the property that if this specific rewinding order is not the rewinding order actually used, then a trapdoor cannot be recovered. So, if we rewind the left interaction according to the rewinding order corresponding to the identity of the left interaction, this will still not enable the adversary to recover the trapdoor corresponding to the right interaction (unless the identity of the right interaction is the same as the identity of the left interaction). In our particular instantiation of this idea, the trapdoor will be a “signature-chain” (i.e., a signature on a signature on a signature, etc.) of length \(n \) (i.e., the identity length) using different keys; the choice of the keys in the signature chain are determined by the identity of the interaction. Next, the protocol will have a “slot” for each of the keys where the receiver is willing to sign a single message for the committer using the key corresponding to the slot. The key point is that the simulator is able to rewind the slots in an appropriate order to recover a signature-chain corresponing to the identity of the left interaction; but the rew windings will still not enable the adversary to recover a signature-chain corresponding to any other identity.
1.6 Open questions

- To use our proof technique we require the non-malleable commitment protocol to have at least 2 slots, and thus at least 4 messages. It is an intriguing open question whether we can base the security of non-interactive, or even 2 message, protocols on a more standard assumption than the one given in [PPV08]. In fact, even the problem of getting non-interactive commitment scheme from one-way function is still open.

- The question of obtaining a truly practical construction of a non-malleable commitment based on a standard assumption is open as well. A step in this direction would be to get a constant-round black-box construction of non-malleable commitments based on one-way functions: Whereas our protocols have black-box proofs of security, the constructions itself use the underlying one-way function in a non-black-box way; that is, in the construction we rely on a Cook reduction. In contrast, Wee [Wee10] (building partially on ideas from [CDSMW09, PW09]) shows a $O(\log^* n)$-round black-box construction of commitment scheme based on one-way functions, that satisfies a somewhat weaker notion of non-malleability. This notion of non-malleability, however, suffices for the application to secure multi-party computation, and as a result, Wee [Wee10] obtains a $O(\log^* n)$-round black-box construction of secure multi-party computation based on a number of underlying primitives. We have not yet investigated whether techniques from [CDSMW09, PW09, Wee10] can be applied also to our protocol; we leave this for future work.

- Very recently, Canetti, Lin and Pass [CLP10] introduced an even stronger notion of security for commitment schemes: CCA, or Chosen-Commitment-Attack, security. Roughly speaking, a commitment scheme is CCA-secure if the hiding property of the commitments using identity id remain hiding even if the receiver has oracle access to a decommitment oracle for any commitment using a different identity. It is easy to see that CCA-security implies concurrent non-malleability. [CLP10] provide a construction of an $O(n^\epsilon)$-round CCA-secure commitment. Our construction does not seem to be CCA-secure, but we believe that our techniques might be useful for improving the round-complexity also for CCA-secure commitments; we leave this for future work.

1.7 Outline

In Section 2, we provide some preliminaries. In Section 3, we provide an overview of our protocol construction and its security proof. In Section 4 we provide some formalizations and results about “signature-chains”. Our protocol (which relies on the notion of a signature chain) is presented in Section 5. We provide the proof of (stand-alone) non-malleability in Section 6; in Section 7 and 8, we demonstrate that our protocol is also concurrent non-malleable, and can be made r-robust for any constant r.

2 Preliminaries

Let N denote the set of all positive integers. For any integer $n \in N$, let $[n]$ denote the set \{1, 2, \ldots, n\}. We denote by $\{0, 1\}^n$ the set of binary strings of length n, and $\{0, 1, 2\}^n$ the set of trinary strings of length n. Given a binary (or trinary) string ψ of length n, we denote by $[\psi]^i_1$ the prefix of ψ of length i. We denote by \mathbb{PPT} probabilistic polynomial time Turing machines. We assume familiarity with interactive Turing machines, denoted ITM, interactive protocols, and computational indistinguishability; the formal definitions of interactive protocols and computational indistinguishability are provided in Appendix A. Given a pair of ITMs, A and B, we denote by
the random variable representing the (local) output of B, on common input z and private input y, when interacting with A with private input x, when the random tape of each machine is uniformly and independently chosen.

2.1 Signature Schemes

We focus on fixed-length signature schemes $\Pi = (\text{Gen}, \text{Sign}, \text{Ver})$, that is, the signing algorithm Sign on input 1^n, a public key pk and a message $m \in \{0,1\}^*$, always outputs a signature of length n. We refer the reader to [Gol04] for a formal definition. Such signature schemes can be constructed relying on universal one-way hash functions [NY89], which in turn can be based on any one-way function [Rom90]. Below, a signature scheme always refers to a fixed-length signature scheme.

2.2 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender, to commit itself to a value while keeping it secret from the receiver (this property is called hiding). Furthermore, the commitment is binding, and thus in a later stage when the commitment is opened, it is guaranteed that the “opening” can yield only a single value determined in the committing phase. In this work, we consider commitment schemes that are statistically-binding, namely while the hiding property only holds against computationally bounded (non-uniform) adversaries, the binding property is required to hold against unbounded adversaries. We refer the reader to [Gol01] for a formal definition.

Two-round (i.e., a single message from the receiver followed by a single message from the committer) commitment schemes are known to exist based on the minimal assumption of one-way functions [Nao91, HILL99]. In the sequel of the paper, a commitment scheme always refers to a statistically-binding commitment.

Tag-based Commitment Scheme. Following [PR05a, DDN00], we consider tag-based commitment schemes where, in addition to the security parameter, the committer and the receiver also receive a “tag”—a.k.a. the identity—id as common input.

2.3 Concurrent Non-Malleable Commitments

We recall the definition of concurrent non-malleability from [LPV08]. For convenience, we use a slightly different presentation (based on indistinguishability rather than simulation); equivalence follows using a standard argument (c.f. [GM84, PR05a]). Let $\langle C, R \rangle$ be a tag-based commitment scheme, and let $n \in \mathbb{N}$ be a security parameter. Consider a man-in-the-middle adversary A (as shown in figure 1) that, on inputs n and z (where z is received as an auxiliary input), participates in m left and right interactions simultaneously. In the left interactions the man-in-the-middle adversary A interacts with C, receiving commitments to values v_1, \ldots, v_m, using identities of length n, $id_1, \ldots id_m \in \{0,1\}^n$, of its choice. In the right interactions A interacts with R attempting to commit to a sequence of related values $\tilde{v}_1, \ldots, \tilde{v}_m$, again using identities of length n, $\tilde{id}_1, \ldots, \tilde{id}_m$ of its choice. If any of the right commitments are invalid, or undefined, its value is set to \perp. For any i such that $\tilde{id}_i = id_j$ for some j, set $\tilde{v}_i = \perp$—i.e., any commitment where the adversary uses the same identity as one of the left interactions is considered invalid. Let $\text{mim}_{\langle C,R \rangle}^A(v_1, \ldots, v_m, z)$ denote a random variable that describes the values $\tilde{v}_1, \ldots, \tilde{v}_m$ and the view of A, in the above experiment.

Definition 1. A commitment scheme $\langle C, R \rangle$ is said to be concurrent non-malleable (with respect to itself) if for every polynomial $p(\cdot)$, and every PPT man-in-the-middle adversary A that participates in at most $m = p(n)$ concurrent executions, the following ensembles are computationally

\[\langle A(x), B(y) \rangle(z) \]
We also consider relaxed notions of concurrent non-malleability: one-one, one-many, and many-one secure non-malleable commitments (See Figure 2 below.) In a one-one (a.k.a., a stand-alone secure) non-malleable commitment, we consider only adversaries A that participate in one left and one right interaction; in one-many, A participates in one left and many right, and in many-one, A participates in many left and one right.

As shown in [LPV08], any protocol that is one-many non-malleable is also concurrent non-malleable.

Proposition 1 ([LPV08]). Let (C,R) be a one-many concurrent non-malleable commitment. Then, (C,R) is also a concurrent non-malleable commitment.

2.4 Robustness: Non-Malleability w.r.t. k-round Protocols

The concept of non-malleability is traditionally only considered in a setting where a man-in-the-middle adversary is participating in two (or more) executions of the same protocol. We here consider a notion of non-malleability with respect to arbitrary k-round protocols. Below, we recall the definition of k-robustness from [LP09].

Consider a one-many man-in-the-middle adversary A (as shown in figure 3) that participates in one left interaction—communicating with a machine B—and many right interactions—acting as a committer using the commitment scheme (C,R). As in the standard definition of non-malleability, A can adaptively choose the identities in the right interactions. We denote by $\min_{(C,R)}^{B,A}(y,z)$ the random variable consisting of the view of $A(z)$ in a man-in-the-middle execution when communicating with $B(y)$ on the left and honest receivers on the right, combined with the values $A(z)$ commits.
Figure 3: A concurrent man-in-the-middle adversary with respect to protocol B on input y.

to on the right. Intuitively, we say that $\langle C, R \rangle$ is one-many non-malleable w.r.t B if $\text{mim}_{\langle C, R \rangle}^B(y_1, z)$ and $\text{mim}_{\langle C, R \rangle}^B(y_2, z)$ are indistinguishable, whenever interactions with $B(y_1)$ and $B(y_2)$ cannot be distinguished.

Definition 2. Let $\langle C, R \rangle$ be a commitment scheme, and B a PPT ITM. We say the commitment scheme $\langle C, R \rangle$ is one-many non-malleable w.r.t B, if for every two sequences $\{y_1^n\}_{n \in \mathbb{N}}$ and $\{y_2^n\}_{n \in \mathbb{N}}$, $y_1^n, y_2^n \in \{0, 1\}^n$, such that, for all PPT ITM A, it holds that

$$\{\langle B(y_1^n), \tilde{A}(z) \rangle^{(1^n)}\}_{n \in \mathbb{N}, z \in \{0, 1\}^*} \approx \{\langle B(y_2^n), \tilde{A}(z) \rangle^{(1^n)}\}_{n \in \mathbb{N}, z \in \{0, 1\}^*}$$

then it also holds that, for every PPT one-many man-in-the-middle adversary A,

$$\{\text{mim}_{\langle C, R \rangle}^B(y_1^n, z)\}_{n \in \mathbb{N}, z \in \{0, 1\}^*} \approx \{\text{mim}_{\langle C, R \rangle}^B(y_2^n, z)\}_{n \in \mathbb{N}, z \in \{0, 1\}^*}$$

We say that $\langle C, R \rangle$ is one-many k-robust if $\langle C, R \rangle$ is one-many non-malleable w.r.t. any machine B that interacts with the man-in-the-middle adversary in k rounds.

3 Proof Overview

To explain the main ideas behind our construction, we here focus on outlining the construction of a constant-round non-malleable commitment scheme that is secure for synchronizing and non-aborting adversaries; we next comment on how to deal with general adversaries. An adversary is said to be synchronizing if it “aligns” the left and the right executions; that is, whenever it receives message i on the left, it directly sends message i on the right, and vice versa. An adversary is said to be non-aborting if it never sends any invalid messages in the left interaction (where it is acting as a receiver); it might still send invalid messages on the right.

As mentioned in the introduction, the idea is to have a protocol with an “identity-based trapdoor” embedded into it. The trapdoor will be a “signature-chain” using a sequence of keys that are determined by the identity of the protocol. More precisely, we say that $(\sigma_0, \sigma_1, \ldots, \sigma_n)$ is a plain signature chain\(^2\) with respect to the signature scheme Π, the verification keys vk_0, vk_1 and the pattern $\psi \in \{0, 1\}^n$ if $\sigma_0 = 0$ and for all $0 \leq i < n$, σ_{i+1} is a signature on the message (i, σ_i) with respect to the key $vk_{\psi_{i+1}}$. For convenience of notation, for the remainder of this section we fix a particular signature scheme Π; all signatures we use are with respect to this this particular scheme.

The following simple claim regarding signature chains will be useful. Consider a “signature game” where an adversary A gets access to two randomly chosen verification keys vk_0, vk_1 and additionally has access to signature oracles with respect to vk_0 and vk_1; let φ denote the “access

\(^2\)We use the name “plain signature chain” (instead of just “signature chain”), since the actual signature chains we will use in the final construction will be a bit more complicated.
pattern” of the adversary to the signature oracle (that is, if the i'th oracle call is to the signature oracle w.r.t. vk_b, then $\varphi_i = b$). The claim now is that, with overwhelming probability, if in the signature game, A manages to output a plain signature chain with respect to vk_0, vk_1 and pattern ψ, then ψ is a substring of φ.

The protocol for committing to a string v with identity id proceeds as follows:

- **Slot 1**: The receiver R generates a key-pair (sk_0, vk_0) for the signature scheme Π, and sends vk_0 to the committer C. C next send a random message r_0 to R who signs r_0 and then returns the signature to C.

- **Slot 2**: R generates another key-pair (sk_1, vk_1) and sends vk_0 to the committer C. As in Slot 1, C next send a random message r_1 to R who signs r_1 and then returns the signature to C.

- **Commit phase**: C commits to v using a standard statistically binding commitment.

- **Proof phase**: C gives R a “special-purpose” witness indistinguishable proof of knowledge of the fact that it either knows the value committed to in the commit phase, or that it knows a plain signature chain with respect to vk_0, vk_1 and id.

We now turn to argue that this protocol is non malleable with respect to non-aborting and synchronizing adversaries. For simplicity, we here focus only on one-one (i.e., stand-alone) non-malleability (but the same proof actually also works for concurrent non-malleability). Consider a man-in-the-middle adversary A that uses identity id on the left and identity $\tilde{id} \neq id$ on the right, and receives a commitment to the value v on the left. We will argue that no matter what the value of v is, the values it commits to on the right will be indistinguishable. Towards this goal, consider a hybrid experiment where the left interaction is simulated by acting honestly in Slot 1 and 2, next committing to 0, and finally using a “fake-witness”—namely a signature chain—in the proof phase; the simulator obtains this fake witness by simply rewinding Slot 1 and 2 (that is, to rewinding slot b, we restore the state of A after vk_b has been sent, and send a new message to be signed) in the appropriate order to obtain a signature chain with respect to id (note that since A is non-aborting, each time the simulator asks it to sign a message, it does). To show the above claim, we now argue that no matter what the value of v is, the value A commits to on the right in the real execution (when receiving a commitment to v), is indistinguishable from the value it commits to on the right when the left interaction instead is simulated.

The key-point of the proof is the claim that even in the simulation, A cannot use a fake-witness in the right interaction. This follows from the fact that since A is synchronizing, when we rewind Slot 1 and 2 on the left, the same slots are rewound on the right in exactly the same order. Thus, by the signature-game claim, if A manages to get a signature chain it must be a subset of the pattern $01id$ (the reason we need to append 01 is that A gets 2 signatures in the honest emulation of Slot 1 and 2, already before we start the rew windings). So, if we appropriately restrict the identity set (for instance, by requiring that all identities start with 10) then the only valid identity that is a substring of $01id$ is id, and thus $\tilde{id} = id$, which is a contradiction.

To argue that the value committed to on the right does not change when we move from the real interaction to the simulation, consider an intermediary hybrid where we only change the witness used in the proof phase (but keep the value committed to in the commit phase to v). Note that the witness indistinguishable property of the proof phase, we have that the view of the adversary is indistinguishable when we make this switch, but since the value committed to on the right cannot be efficiently recovered, this does not directly imply that the committed value also is

3We will shortly explain what makes this proof special.
indistinguishable. One way of resolving this problem would be to (in analogy with [PR05a]) have the proof phase be statistically witness indistinguishable; but this requires additional assumptions (to keep it constant-round). Instead, we here rely on an idea from [LP09]: we let the proof phase consist of multiple sequentially ordered witness indistinguishable special-sound proofs. This allows us to change the witness in each of the proofs, one by one, while ensuring that the witness on the right can be extracted from some other proof, without rewinding the left proof where the witness currently is being changed. Since the witness used in the right interaction cannot be a fake witness (by the key-claim above), the witness used in all of the sequential right proofs must the commitment information for the commit phase, and thus if the committed value on the right changes, we contradict the witness indistinguishability of one of the sequentially ordered proofs.

Finally, we simply have to argue that the value on the right does not change once we change the value committed to in the commit phase on the left. This again easily follows since the witness on the right can be extracted from the proof phase, and again by the key-claim above, this witness contains the value committed to in the commit phase, so indistinguishability of the committed value follows from the hiding property of the the left commitment.

Dealing with aborting adversaries: When considering aborting adversaries, we run into two obstacles:

- The adversary might notice that the simulator is feeding it signature chains to sign (instead of random messages) and thus decide to abort the left execution. We handle this by adapting the definition of a signature chain: instead of requiring the chain to be “a signature on a signature... etc”, we require a signature-chain to be a signature on “a commitment of a signature on a commitment of a signature... etc”. And next, in the protocol, we let C send commitments to 0 instead of random strings. To be able to establish an analog of the above signature-game claim, we additionally require C to give a zero-knowledge proof of knowledge of the value it committed to before R agrees to sign it.

- Another problem is that A might abort the left execution with some probability p. This means that we might have to rewind the left execution many times (roughly $1/p$ times) before getting the signature we are looking for. As a consequence, the ”access pattern” on the right will be a substring of $01d_1d_2\ldots d_n$. To get around this problem, we add an additional slot (and a corresponding signature key). Next, we require that the signature-chain corresponding to the identity id to be with respect to the pattern $2id_12id_22id_3\ldots2id_n$.

Dealing with non-synchronizing adversaries: As is usually the case, synchronizing adversaries are the ”hardest” to deal with it. If A is not synchronizing there exists some slot that is never rewound and so if the identity of the right interaction contains at least two 0’s and two 1’s, we can still establish the above key-claim, and the same proof still goes through.

4 Signature Chains and Games

Let $\Pi = (Gen, Sign, Ver)$ be a fixed-length signature scheme, and com a statistically-binding commitment scheme. For simplicity of notation, we keep these schemes fixed, and provide our definitions and protocols with respect to those particular schemes. Furthermore, for simplicity of exposition, we assume that com that is non-interactive; however, all of our definitions and protocols can be easily modified to work with any two-round statistically-binding commitment schemes; see Remark 2 for further details.

We now turn to formally defining the notion of a signature-chain and then proceed to defining signature-games.
Definition 3 (Signature-Chain). Let $\ell \in \mathbb{N}$, $\psi \in \{0,1,2\}^{\ell}$ and $vk_0, vk_1, vk_2 \in \{0,1\}^*$ be three verification keys for the signature scheme Π. We say that a triplet $\delta = (\vec{\sigma}, \vec{c}, \vec{r})$ is a signature-chain w.r.t. keys vk_0, vk_1, vk_2 and pattern ψ, if $\vec{\sigma}$, \vec{c}, and \vec{r} are vectors of length ℓ satisfying the following properties.

- For all $i \in [\ell]$, $\vec{\sigma}_i$ is valid signature of the message \vec{c}_i under key vk_{ψ_i}, i.e., $\text{Ver}(vk_{\psi_i}, \vec{\sigma}_i, \vec{c}_i) = 1$.

- For all $1 < i \leq \ell$, \vec{c}_i is a commitment to the tuple $(i - 1, \vec{\sigma}_{i-1})$ using com and randomness \vec{r}_i; and \vec{c}_1 is a commitment to 0^n using com and randomness \vec{r}_1, where $m = \log \ell + n$.

We say that a signature-chain $\delta = (\vec{\sigma}, \vec{c}, \vec{r})$ has length ℓ if $|\vec{\sigma}| = \ell$.

We proceed to define a signature-game $SG^{A,\ell}(n, z)$, where A on input 1^n, z interacts with a Challenger in the following three stages:

Stage 1: the Challenger samples three pairs of signing and verification keys at random, $(sk_b, vk_b) \leftarrow \text{Gen}(1^n)$, where $b \in \{0, 1, 2\}$, and sends A the verification keys, $vk_0, vk_1,$ and vk_2.

Stage 2: A interacts with the Challenger in a sequence of iterations for as long as it wishes. Iteration i proceeds as follows:

- A sends the Challenger a tuple (φ_i, c), where $\varphi_i \in \{0, 1, 2\}$, followed by a 5-round ZKAOK proof of the statement that c is a valid commitment of com.
- If the proof is convincing, the Challenger signs the commitment c using the signing key s_{φ_i} and returns the signature to A; otherwise, it aborts the iteration (without giving back a signature).

Stage 3: Finally, A outputs the tuple (δ, ψ).

We call the sequence $\varphi = \varphi_1, \varphi_2, \ldots$ of signing request, the “access pattern” of A. We say that the output of A is well-formed if δ is a length $l(n)$ signature-chain with respect to vk_0, vk_1, vk_2 and ψ. Finally, we say that A wins if its output is well-formed at ψ and does not contain a substring of its access pattern φ (and loses otherwise).

Lemma 1. For every PPT adversary A and every polynomial ℓ, there exists a negligible function μ, such that for every $n \in \mathbb{N}, z \in \{0, 1\}^*$, the probability that A wins in $SG^{A,\ell}(n, z)$ is at most $\mu(n)$.

Proof. Consider any adversary A, polynomial $\ell, n \in \mathbb{N},$ and $z \in \{0, 1\}^*$. Without loss of generality, we can assume that A always outputs tuples $(\delta = (\vec{\sigma}, \vec{c}, \vec{r}), \psi)$ such that $|\vec{\sigma}| = |\vec{c}| = |\vec{r}| = |\psi| = l(n)$ (since whenever it doesn’t it loses). For each $i \in [l(n)]$, define the random variable \mathcal{I}_i to be the index of the first iteration (in Stage 2 of the game $SG^{A,\ell}(n, z)$) in which A queries the Challenger for a signature of the commitment \vec{c}_i under key vk_{ψ_i}; if A never queries the Challenger for a signature of \vec{c}_i, \mathcal{I}_i is set to \perp.

Note that if the output of A is well-formed, it contains a signature-chain $\delta = (\vec{\sigma}, \vec{c}, \vec{r})$ w.r.t. pattern ψ, such that for every i, $\vec{\sigma}_i$ is a valid signature of \vec{c}_i under key vk_{ψ_i}. It thus follows from the unforgibility of the signature scheme that, except with negligible probability, for each i, A must have queried \vec{c}_i for a signature of ψ_i in some iteration. We thus have the following claim.

Claim 1. For every PPT adversary A and polynomial ℓ, there exists a negligible function μ_1, such that for all $n \in \mathbb{N}, z \in \{0, 1\}^*$, the probability that the output of A in $SG^{A,\ell}(n, z)$ is of A is well-formed and there exists an $i \in [\ell(n)]$ such that $\mathcal{I}_i = \perp$, is smaller than $\mu_1(n)$.

We also have the following claim.
Claim 2. For every \textit{PPT} adversary \(A\) and polynomial \(\ell\), there exists a negligible function \(\mu_2\), such that, for all \(n \in \mathbb{N}, z \in \{0,1\}^*\), the probability that the output of \(A\) in \(\text{SG}^{A,\ell}(n,z)\) is well-formed and there exists an \(i \in [\ell(n) - 1]\) such that \(\mathcal{I}_i \neq \perp, \mathcal{I}_{i+1} \neq \perp\) and \(\mathcal{I}_i \geq \mathcal{I}_{i+1}\), is smaller than \(\mu_2(n)\).

Before proceeding to the proof of Claim 2, we let us first prove Lemma 1 using Claim 1 and 2. It follows from the two claims that, except with negligible probability, either the output of \(A\) is not well-formed, or the output is well-formed and for all \(i\), \(\mathcal{I}_i \neq \perp\) and \(\mathcal{I}_i < \mathcal{I}_{i+1}\). In the former case, the adversary loses the game. In the latter case, as \(\mathcal{I}_i \neq \perp\) for all \(i\), \(A\) must have ask for a signature using key \(v_{\psi_i}\) in the \(i\)th iteration, which means \(\varphi_{\mathcal{I}_i} = \psi_i\). Furthermore, as \(\mathcal{I}_i < \mathcal{I}_{i+1}\) for all \(i\), it follows that \(\psi\) is a substring of \(\varphi\). Therefore, \(A\) loses in this case as well. Thus, except with negligible probability, \(A\) loses.

Proof of Claim 2. First notice that it follows from the (statistical) binding property of \texttt{com}, that except with negligible probability\(^4\), if the output \((\delta = (\sigma, \bar{c}, \bar{r}), \psi)\) of \(A\) is well-formed, then for all \(i, \bar{c}_i \neq \bar{c}_{i+1}\), since \(\bar{c}_i, \bar{c}_{i+1}\) are respectively commitments to tuples of the form \((i, \cdot)\) and \((i+1, \cdot)\). It follows that, except with negligible probability, if the output of \(A\) is well-formed, there doesn’t exist some \(i\) such that \(\mathcal{I}_i, \mathcal{I}_{i+1} \neq \perp\) but \(\mathcal{I}_i = \mathcal{I}_{i+1}\). Thus, it suffices to bound the probability that the output of \(A\) is well formed and there exists some \(i\) such that \(\mathcal{I}_i, \mathcal{I}_{i+1} \neq \perp\) and \(\mathcal{I}_i > \mathcal{I}_{i+1}\).

Towards this, assume for contradiction that there exists an adversary \(A\) and a polynomial \(\ell\), such that there exists a function \(i : \mathbb{N} \rightarrow \mathbb{N}\) and a polynomial \(p\), such that for infinitely many \(n \in \mathbb{N}, z \in \{0,1\}^*\), the probability that the output of \(A\) in the game \(\text{SG}^{A,\ell}(n,z)\) is well-formed, \(\mathcal{I}_i, \mathcal{I}_{i+1} \neq \perp,\) and \(\mathcal{I}_i > \mathcal{I}_{i+1}\) for \(i = i(n)\), is at least \(1/p(n)\). We can construct a machine \(B\) that violates the unforgibility of the signature scheme \(\Pi\).

\(B\), on input \(1^n, z\) and a randomly generated verification key \(vk\), has access to the signing oracle corresponding to \(vk\), and tries to forge a signature (of \(vk\)) as follows: it internally emulates an execution of the signature game \(\text{SG}^{A,\ell}(n,z)\) with \(A\) honestly, with the following exceptions:

- In Stage 1, it picks an index \(t \in \{0, 1, 2\}\) at random and forwards the verification key \(vk\) to the adversary as the \(t\)th verification key.

- In Stage 2, whenever \(A\) requests a signature of a message \(m\) under key \(vk\), it obtains such a signature from the signing oracle and forwards it to \(A\).

Furthermore, it guesses that \(\mathcal{I}_i = u\) and \(\mathcal{I}_{i+1} = k\), for random \(u > k\). Then, in the \(k\)th iteration (in Stage 2 of \(\text{SG}^{A,\ell}(n,z)\)), after receiving a request from \(A\) to sign the commitment \(c\), it extracts out the value \((j, \sigma^*)\) committed to in \(c\) from the ZKAOK that \(A\) provides following the signing request. Later, in the \(u\)th iteration, when \(A\) submits a query \(c^*\) to the Challenger, it checks whether \(\sigma^*\) is a valid signature of \(c^*\) under key \(vk\). If so, it halts and outputs the message-signature pair \((c^*, \sigma^*)\); otherwise, it halts and outputs fail.

By construction, \(B\) emulates the view of \(A\) in the signature game \(\text{SG}^{A,\ell}(n,z)\) perfectly before it halts. Therefore, by our hypothesis, with probability at least \(1/p(n)\), in emulation by \(B\), \(A\) would query for the first time the commitments \(\bar{c}_i\) and \(\bar{c}_{i+1}\) in iterations \(\mathcal{I}_i\) and \(\mathcal{I}_{i+1}\) respectively, such that \(\mathcal{I}_{i+1} < \mathcal{I}_i\) and \(\bar{c}_{i+1}\) is a commitment to a tuple \((i+1, \bar{\sigma}_{i+1})\), where \(\bar{\sigma}_{i+1}\) is a signature of \(\bar{c}_i\) under the verification key \(v_{\psi_i}\). Let \(M(n)\) be the maximum number of iterations in the game; \(M\) is polynomially bounded since the running-time of \(A\) is. With probability at least \(1/q(n) = 1/\Sigma M(n)^2 p(n)\), it holds that (1) the above event occurs in the emulation by \(B\) and (2) \(B\) correctly guesses the values of \(\mathcal{I}_i, \mathcal{I}_{i+1}\) and \(v_{\psi_i}\). In this case, except with negligible probability, the committed value \(\sigma^*\) that \(B\) extracts out from the ZKAOK following \(c = \bar{c}_{i+1}\) contains a valid signature of \(\bar{c}_i\), which is

\(^4\text{Since we assume that } \texttt{com} \text{ is non-interactive, we actually have perfect binding, but given that we want an analysis that works also for two-round commitments, we here directly consider the more general case of statistical binding.}\)
queried for the first time in the uth iteration for a signature using key vk. Hence B will output a valid message-signature pair (\tilde{c}_i, σ^*) for vk, without querying the signing oracle \tilde{c}_i (since once the query \tilde{c}_i is submitted for the first time in iteration u, B halts immediately and outputs the pair); this violates the unforgibility of the signature scheme Π. \hfill \square

5 The Protocol

Let $\Pi = (Gen, Sign, Ver)$ be a fixed-length signature scheme, and com a non-interactive statistically-binding commitment scheme, as defined in the last section. Our constant-round concurrent non-malleable commitment $\langle C, R \rangle$ is a tag-based commitment scheme, where the identities are from a domain D^ℓ that consists of all ℓ-bit binary strings that contains at least two 0-bits and two 1-bits. (We rely on this restriction on the domain of the identities to simplify the proof of concurrent non-malleability; see Case 2 in Section 6 for details.) To commit to a value v, the Committer and the Receiver of $\langle C, R \rangle$, on common input a security parameter 1^n (in unary) and an identity $id \in D^\ell$, proceed in the following three stages:

Stage 1: The receiver interacts with the Committer in three iterations, where iteration $i \in \{0, 1, 2\}$ proceeds in the following steps:

1. the Receiver generates a pair of signing and verification keys, $(s_i, v_i) \leftarrow Gen(1^n)$, of the signature scheme Π, and sends the verification key v_i.
2. the Committer commits to 0^m, where $m = \log \ell + n$, using com. Let c_i be the commitment sent.
3. the Committer proves that c_i is a valid commitment of com, using a 5-round ZKAOK protocol.
4. the Receiver signs the commitment c_i using the signing key s_i, and sends the signature θ_i generated.

Stage 2: the Committer commits to the value v using com. Let c' be the commitment generated.

Stage 3: the Committer proves the statement that

- either c' is a valid commitment of com, or there exists a signature-chain δ w.r.t. v_0, v_1, v_2 and pattern $\text{pattern}(id)$, where the function $\text{pattern} : \{0, 1\}^* \to \{0, 1, 2\}^*$ maps a (binary) identity id of length ℓ to a trinary string of length 2ℓ as follows:

$$\text{pattern}(id) = 2, id_1, 2, \ldots, id_i, 2, \ldots, id_\ell$$

This statement is proved using $k + 5$ sequential invocations of a 4-round WI special sound proof system, where k is the number of messages in Stage 1 of the protocol.

In the rest of the paper, we sometimes refer to the last three steps of an iteration in Stage 1 as a slot, which opens when the Committer send the com commitment to 0^m, and closes when the Receiver returns a signature of the commitment. We call the slot in iteration i, the slot i.

It is easy to see that the protocol $\langle C, R \rangle$ consists of a constant number of messages. Furthermore, it follows using standard techniques that,

Proposition 2. $\langle C, R \rangle$ is a commitment scheme.
Proof. We show that the \(\langle C, R \rangle \) scheme satisfies the binding and hiding properties.

Binding: The binding property follows directly from the statistically binding property of \(\text{com} \) used in Stage 2.

Hiding: The hiding property essentially follows from the hiding property of \(\text{com} \) and the fact that Stage 3 of the protocol is \(\text{WI} \) (since \(\text{WI} \) proofs are closed under concurrent composition [FS90]). For completeness, we provide the proof. We show that any adversary \(R^* \) that violates the hiding property of \(\langle C, R \rangle \) can be used to violate the hiding property of \(\text{com} \). More precisely, given any adversary \(R^* \), such that, for infinitely many \(n \in \mathbb{N} \), and \(v_1, v_2 \in \{0, 1\}^n \), \(R^* \) distinguishes commitments to \(v_1 \) and \(v_2 \) made using \(\langle C, R \rangle \), we construct a machine \(R' \) that distinguishes commitments to \(v_1 \) and \(v_2 \) made using \(\text{com} \). Note that the execution of a commitment of \(\langle C, R \rangle \) to \(v_1 \) proceeds identically as that of a commitment to \(v_2 \) before the Stage 2 commitment of \(\text{com} \) is sent. Then by our hypothesis, there must exist a partial joint view \(\rho \) of the committer and \(R^* \) that determines the execution of the commitment before Stage 2, such that, conditioned on \(\rho \) occurring, \(R^* \) distinguishes commitments to \(v_1 \) and \(v_2 \). Let \(\delta \) be a valid signature-chain corresponding to the transcript of Stage 1 in \(\rho \). \(R' \) on auxiliary input \(\rho \) and \(\delta \) proceeds as follows: it internally incorporates \(R^* \), and feed \(R^* \) its part of view in \(\rho \); it then forwards the external commitment made using \(\text{com} \) to \(R^* \) in Stage 2; in Stage 3, it gives \(\text{WI} \) proofs using \(\delta \) as a “fake witness”. Finally, it outputs whatever \(R^* \) outputs. From the \(\text{WI} \) property of Stage 3, it follows that \(R' \) distinguishes the commitment made using \(\text{com} \), if \(R^* \) distinguishes the commitment made using \(\langle C, R \rangle \) conditioned on \(\rho \) occurring.

Remark 2. The definition of the signature-games presented in Section 4 and the protocol \(\langle C, R \rangle \) described in Section 5 uses a non-interactive statistically-binding commitment scheme. We show that they can be modified to work with any two-round statistically binding commitment schemes \(\text{com} \). This is achieved by asking the receiver of the \(\text{com} \) commitments—that is, the Challenger in the signature-game and the receiver \(R \) in the protocol \(\langle C, R \rangle \)—to send, at the beginning of the execution, the first message \(r \) of a commitment of \(\text{com} \); then in the rest of the execution, the other player—that is, the adversary in the signature-game and the committer \(C \) in the protocol \(\langle C, R \rangle \)—can simply use the second message of the \(\text{com} \) commitment, with the first message fixed to \(r \), as a non-interactive commitment scheme. (Additionally, in the last stage of the protocol \(\langle C, R \rangle \), the sender proves that either the Stage 2 message is the second message of a valid \(\text{com} \) commitment with first message \(r \), or it knows a signature-chain \(\delta = (\bar{\sigma}, \bar{c}, \bar{r}) \), such that, \(\delta \) is well-formed as described in the definition of the signature-chains, except that, for all \(i \), \(\bar{c}_i \) is the second message of a \(\text{com} \) commitment to \(\bar{\sigma}_{i-1} \), generated in responding to the first message \(r \) using randomness \(\bar{r}_i \).) Then it follows using the same proof as in Section 4 and Section 6 below (and the fact that commitments of \(\text{com} \) are still hiding even if the first message is reused) that no efficient adversary can win the modified signature-game with non-negligible probability, and that the modified protocol is a concurrent non-malleable commitment scheme.

6 Proof of Non-malleability

In this section, we show that \(\langle C, R \rangle \) is stand-alone non-malleable. In Sections 8 and 7, we extend the proof to show that \(\langle C, R \rangle \) is also robust and concurrent non-malleable.

Theorem 5. \(\langle C, R \rangle \) is non-malleable.
Proof. The goal is to show that for every one-one man-in-the-middle adversary \(A \) that participates in one left and one right executions, the following ensembles are indistinguishable:

\[
\left\{ \text{mim}^A_{(C,R)}(v_1, z) \right\}_{n \in N, v_1, v_2 \in \{0,1\}^n, z \in \{0,1\}^*} \\
\left\{ \text{hyb}^A_{(C,R)}(v_2, z) \right\}_{n \in N, v_1, v_2 \in \{0,1\}^n, z \in \{0,1\}^*}
\]

Towards this, we define a series of hybrid experiments \(H_0, \ldots, H_{k+6} \). In each of these experiments, we show that the view of \(A \), combined with the value that \(A \) commits to on the right, are indistinguishable. Below, we let \(\text{hyb}_i(v, z) \) denote the random variable describing the view of \(A(z) \), combined with the value it commits to in the right interaction in hybrid \(H_i \) (as usual, the committed value is replaced with \(\perp \) if the right interaction fails or if \(A \) has copied the identity of the left interaction).

Hybrid \(H_0 \): The hybrid \(H_0 \) emulates a real execution, \(\text{mim}^A_{(C,R)}(v, z) \), with \(A \) internally—we call the emulated execution the Main Execution—and tries to extract a “trapdoor” of the left interaction from \(A \) (if it completes Stage 1 of the left interaction successfully in the Main Execution): by “trapdoor”, we mean a signature-chain \(\delta \) w.r.t. \(v_0, v_1, v_2 \) and pattern \(\psi = \text{pattern}(\text{id}) \), where \(\text{id} \) and \(v_0, v_1, v_2 \) are, respectively, the identity and the verification keys that \(A \) chooses in the left interaction. More specifically, the Extraction Procedure proceeds in \(\lceil \psi \rceil = 2\ell \) iterations, which are described inductively below.

Base Case—Iteration 1: If \(A \) successfully completes Stage 1 of the left interaction in the Main Execution, it must have provided three valid signatures \(\theta_0, \theta_1, \theta_2 \) of commitments to \(0^m \), where \(m = \log \ell + n \), under keys \(v_0, v_1, v_2 \) respectively. Then since a signature-chain with pattern \(\psi \) “starts” with a signature \(\sigma_1 \) of a commitment to \(0^m \) under key \(v_{\psi_1} = v_2 \), the procedure simply sets \(\sigma_1 \) to \(\theta_2, c_1 \) to the transcript of the commitment to \(0^m \) generated in iteration 2 (in Stage 1) of the left interaction, and \(\bar{r}_1 \) the randomness used (by the left committer) in the commitment.

Induction Step—Iteration \(i + 1 \): Assume that at the end of the \(i \)th iteration, for \(i \in [2\ell] \), the procedure has obtained a signature-chain \(\delta_i \) of length \(i \) w.r.t. (keys \(v_0, v_1, v_2 \) and) pattern \([\psi]_i \), containing signatures \(\sigma_1, \ldots, \sigma_i \). Then in iteration \(i + 1 \), it tries to obtain a signature-chain \(\delta_{i+1} \) of length \(i + 1 \), w.r.t. pattern \([\psi]_{i+1} \), by rewinding the appropriate slot in Stage 1 of the left interaction. More precisely, the procedure repeatedly rewinds \(A \) from where the left-slot \(\psi_{i+1} \) opens in the Main Execution, and commits to \(A \) the tuple \((i, \sigma_i)\) (instead of \(0^m \)) in the rew windings, until this left-slot is closed successfully, i.e., \(A \) returns a valid signature of a commitment to \(\sigma_i \) under key \(v_{\psi_{i+1}} \) in the slot. Then the extraction procedure simply sets \(\sigma_{i+1} \) to this signature, (and sets \(c_{i+1} \) and \(\bar{r}_{i+1} \) appropriately).

At the end of the \(2\ell \) iterations, the procedure obtains a valid signature-chain \(\delta = \delta_2\ell = (\sigma, c, \bar{r}) \) w.r.t \(v_0, v_1, v_2 \) and pattern \(\psi \), which is a valid “trapdoor” of the left interaction. (Actually, the extraction procedure is cut-off if it runs for “too long” (more than \(2^\ell \) steps), in which case a “trapdoor” is computed using brute force search.)

Since the view of \(A \) in the Main Execution in \(H_0 \) is emulated perfectly as in \(\text{mim}^A_{(C,R)}(v, z) \).

We have that the view and the value \(A \) commits to in \(H_0 \) is identically distributed to that in the real execution, that is:

Claim 3. For every \(\mathcal{PPT} \) adversary \(A \), it holds that:

\[
\left\{ \text{mim}^A_{(C,R)}(v, z) \right\}_{n \in N, v \in \{0,1\}^n, z \in \{0,1\}^*} = \left\{ \text{hyb}_0(v, z) \right\}_{n \in N, v \in \{0,1\}^n, z \in \{0,1\}^*}
\]
Hybrid H_1 to H_{k+5}: In hybrids H_1 to H_{k+5}, we change the witness used in the $k + 5$ WISSP proofs in Stage 3 of the left interaction. More specifically, the experiment H_i proceeds identically to H_{i-1}, except that in the first i proofs in Stage 3 of the left interaction, we prove that there exists a signature-chain w.r.t. v_0, v_1, v_2 and pattern $\text{pattern}(\text{id}_i)$, by using the extracted “trapdoor” δ as a “fake” witness. We show that the view and the committed value of the right interaction in H_{i-1} and H_i are indistinguishable.

Proposition 3. For every PPT adversary A, and every function $i : N \rightarrow N$, it holds that:

$$\left\{ \text{hyb}_{i(n)-1}(v, z) \right\}_{n \in N, v \in \{0,1\}^n, z \in \{0,1\}^*} \approx \left\{ \text{hyb}_{i(n)}(v, z) \right\}_{n \in N, v \in \{0,1\}^n, z \in \{0,1\}^*}$$

Towards this, we reduce the indistinguishability of $\{\text{hyb}_{i(n)-1}(v, z)\}$ and $\{\text{hyb}_{i(n)}(v, z)\}$ to the witness indistinguishability of the Stage 3—More specifically, given an adversary A, a function i, and a polynomial p, such that, (for infinitely many $n \in N$, inputs $v \in \{0,1\}^n$ and $z \in \{0,1\}^*$) $\text{hyb}_{i-1}^i(v, z)$ and $\text{hyb}(v, z)$ for $i = i(n)$ are distinguishable with probability $1/p(n)$. Then we show that there exists a PPT machine B that can violate the WZ property of the WISSP protocol (P, V) used in Stage 3 of the protocol.

On a high-level, the machine B, on common input 1^n and auxiliary input v, z, interacts externally with an honest prover P and receives a left-interaction Stage 3 proof, generated using either the real witness w_0—the decommitment of the Stage 2 commitment in the left interaction—or the fake witness w_1—the “trapdoor” of the left interaction. Internally, B emulates an execution of either hyb_{i-1}^i or hyb_i with A (depending on the witness used in the external proof), except that, messages in the i^{th} proof in Stage 3 of the left interactions are forwarded externally. Furthermore, if right interaction is successful and has a different identity from the left, B attempts to extract the committed value, via rewinding the WISSP proofs in Stage 3 of the right interaction. However, since the i^{th} left-proof is forwarded externally, the rewinding has to be done in a manner that does not “affect” the i^{th} left-proof. Roughly speaking, this is possible since there are more WISSP proofs in Stage 3 of the right interaction, than the number of messages in the i^{th} left-proof. Therefore, in the right interaction, there exist some WISSP proofs that does not interfere with any messages in the i^{th} left-proof, and B can use rewinding to extract a witness without rewinding the left-proof. (The actual rewinding strategy also avoids rewinding Stage 1 of the left interaction, so that, the “trapdoor” δ of the left interaction extracted from the Main Execution remains to be a valid “trapdoor” in the rewinding, and can be reused to simulate the left interaction in the rewinding. This is possible again because there are more (concretely, $k + 5$) right-proofs than the number of messages in Stage 1 and the i^{th} proof in the left interaction (that is, $k + 4$).) Finally, B outputs the emulated view of A, together with the value committed to in the right interactions, if the witness extracted is the valid decommitments to the right interactions. Otherwise, if B fails to extract a witness for some right interaction, or if the witness extracted from the right interaction is not a valid decommitment, it outputs fail$_1$ and fail$_2$ respectively. See Figure 4 for a formal description of B. Below in Lemma 2, we show that the running-time of machine B is “bounded”, in the sense that the probability that B runs for super-polynomial time is negligible.

Lemma 2. There exists a polynomial function T, such that, for every polynomial function q, every $b \in \{0,1\}$, every sufficiently large $n \in N$, and inputs $v \in \{0,1\}^n$ and $z \in \{0,1\}^*$, the probability that machine B runs for more than $q(n)T(n)$ steps in an execution of the experiment $\text{STAn}_b((P, V), B, v, z)$ is smaller than $1/q(n)$.

16
Description of B

Input: B receives a security parameter 1^n and auxiliary inputs v and z.

Procedure: B interacts externally with a prover P of the WISSP protocol (P,V), and receives a proof of a statement x using witness w_0 or w_1, where x, w_0 and w_1 are all chosen adaptively by B. Internally, it proceeds in the following three phases:

Simulation Phase: Emulates an execution of the experiment $hyb_{i-1}(v,z)$ or $hyb_i(v,z)$ with A internally, except that, messages in the i^{th} left-proof of the Main Execution are forwarded externally to P. More precisely, at the beginning of the i^{th} left-proof, B sends the external prover the statement x of the i^{th} proof, together with the real witness $w_0 = (v,r)$ (the decommitment of the Stage 2 commitment of the left interaction) and the “fake” witness $w_1 = \delta$ (the “trapdoor” of the left interaction extracted from A) to P, and then forwards the proof of x generated by P using either w_0 or w_1 to A as the i^{th} left-proof. Let Δ be the simulated view of A in the Main Execution.

Rewinding Phase: If the right interaction is successful and has a different identity from the left interaction in Δ, extract the value committed to in this interaction as follow:

- Find the first WISSP proof $(\alpha_1, \alpha_2, \beta, \gamma)$ in Δ, such that, during its the execution, no messages belonging to Stage 1 or the i^{th} proof of the left interaction are exchanged. (Such a WISSP proof must exist since there are $k+5$ WISSP proofs, whereas only $k+4$ messages in Stage 1 and the i^{th} proof of the left interaction.)
- Rewinds the proof by sending new random challenges β' until a second transcript $(\alpha_1, \alpha_2, \beta', \gamma')$ is obtained. In the rewinds, emulate the left and right interaction for A the same as in the Main Execution, except that, whenever A expects a new message in Stage 1 or the i^{th} proof of the left interaction, cancel the execution and start a new rewinding again.
- If $\beta_p \neq \beta'_p$, extract witness w from $(\alpha_1, \alpha_2, \beta, \gamma)$ and $(\alpha_1, \alpha_2, \beta', \gamma')$. Otherwise halt and output fail$_1$.
- If $w = (v,r)$ is valid decommitment for the right interaction, then set $\hat{v} = v$. Otherwise halt and output fail$_2$.

Output Phase: If the right interaction that is not convincing or the identity of the right interaction is the same as the left interaction, set $\hat{v} = \bot$. Output \hat{v} and Δ.

Figure 4: The construction of B
By the statistically binding property of the protocol \langle C, R \rangle, the decommitment extracted contains the unique committed values of the right interactions, except with negligible probability.

\footnote{By the statistically binding property of the protocol \langle C, R \rangle, the decommitment extracted contains the unique committed values of the right interactions, except with negligible probability.}
Next we proceed to prove Claim 5. Assume for contradiction that there exists a polynomial $g(n)$, such that, with probability $1/g(n)$, B extracts an invalid decommitment from the right interaction. Towards reaching a contradiction, we consider another machine B', which proceeds identically to B except that it cuts the execution off after $T'(n) = 2g(n)T(n)$ steps (and outputs ⊥ in this case). It follows from Lemma 2 that the probability that B runs for more than $T'(n)$ steps is at most $1/2g(n)$. Therefore, the probability that B' extracts out an invalid decommitment from the right interaction k is at least $1/2g(n)$. Furthermore, by the WHISSP property of the right-proofs, if the witness is not a valid decommitment, it must be a signature-chain $δ$ w.r.t. the right-interaction keys v_0', v_1', v_2' and pattern $\text{pattern}(\text{id}_r)$. Then, consider the following two possible adversarial schedulings w.r.t. the left and the kth right interactions in the Main Execution:

Scheduling 1: A “aligns” the slots in the left and right interactions one by one, where a right-slot is aligned with a left-slot if (1) its corresponding verification key is sent before the left-slot opens, and (2) its opening message (i.e., the commitment from A) is sent after the left-slot opens. See Figure 5 (i).

Scheduling 2: A does not align the slots in the left and right interactions. See Figure 5 (ii).

![Figure 5: The two schedulings of the messages in Stage 1 of the left and right interactions.](image)

Since Scheduling 1 and 2 are the only two possible schedulings, by our hypothesis, at least one of the following two conditions holds.

Condition 1: The probability that Scheduling 1 occurs in the Main Execution and that B' extracts an invalid decommitment from the right interaction is non-negligible.

Condition 2: The probability that Scheduling 2 occurs in the Main Execution and that B' extracts an invalid decommitment from the right interaction is non-negligible.

However, below we reach a contradiction when either of the conditions holds.
If Condition 1 holds, the left and right slots in the Main Execution are aligned one by one. Therefore, whenever the t^{th} left-slot is rewound, the adversary A may request for a new signature of key v'_t on the right, and furthermore may only request for a signature of v'_t. Then since the left-slots are executed (in the Main Execution) and then rewound (during extracting the left "trapdoor") in the following sequence

$$\varphi = 012 \| (\text{id}_t)_1^*, 2^*, \ldots, (\text{id}_t)_k^*, 2^*, \ldots, (\text{id}_t)_l^*$$

in the right interaction, A may only request signatures of keys v'_0, v'_1, v'_2 in the pattern φ. However, the witness that B' extracts out from the right interaction is a signature-chain δ w.r.t. (keys v'_0, v'_1, v'_2 and) pattern $\text{pattern}(\text{id}_r)$, which is not a substring of φ (as $\text{id}_r \neq \text{id}_t$), which contradicts the soundness of the signature game (Lemma 1). More precisely, given B', we construct another machine C that externally participates in a signature game, while internally simulates an execution of $\text{STA}_0(\langle P, V \rangle, B', v, z)$ honestly, except that, messages in Stage 1 of the right interaction k are simulated by forwarding the appropriate messages from the signature games to A. In particular, C forwards the three verification keys $v k_0, v k_1, v k_2$ in the signature game to A as the verification keys in Stage 1 of the right interaction; and whenever A requests a signature of one of the three keys, C obtains such a signature from the signature game and forwards it to A. (Furthermore, C aborts if Scheduling 1 does not occur in the Main Execution.) Then by construction of C and the argument above, we have that C uses access pattern φ in the signature game, but is able to extract out a signature-chain w.r.t. $\text{pattern}(\text{id}_r)$, which is not a substring of φ. This violates Lemma 1.

If Condition 2 holds, (since Scheduling 2 occurs in the Main Execution,) there exists a right-slot t that is not aligned with any left-slots. Therefore during the rewinding of the left-slots, A never sends a new request for a signature of key v'_t, and obtains only one signature of key v'_t in the whole execution. On the other hand, the witness extracted from the right interaction is a signature-chain δ w.r.t. pattern $\psi = 2, (\text{id}_r)_1, \ldots, 2, (\text{id}_r)_k$. Since $\text{id}_r \in D^l$ contains at least two 0 and two 1 bits, no matter what value t is, there are at least two (trinary) bits in ψ, say the j_1^{th} and the j_2^{th}, that are equal to t. Therefore the signature-chain δ contains two different signatures of key v'_t: one is a signature of a commitment to a tuple of form (j_1, \ast), and the other of form (j_2, \ast), which violates the unforgibility of the signature scheme.

Combining Lemma 3 and 2, we show that B violates the $W L$ property of the Stage 3 proofs. It first follows from our hypothesis and Lemma 3 that the outputs of B after receiving a Stage 3 proof using a “real” or a “fake” witness are distinguishable with probability at least $2/3 p(n)$. Furthermore, it follows from Lemma 2 that, there exists fixed polynomial $T''(n) = 3 p(n) T(n)$, such that, the probability that B runs for more than $T''(n)$ steps is at most $1/3 p(n)$. Therefore, the outputs of B are still distinguishable with probability at least $1/3 p(n)$, even if we cut its execution off after $T(n)$ steps (and output \bot if B fails to complete in $T(n)$ steps). This violates the $W L$ property of $\langle P, V \rangle$, and we conclude the proposition.

Hybrid H_{k+6}: Hybrid H_{k+6} proceeds identically to H_{k+5} except that the Stage 2 commitment of the left execution is emulated by committing to 0^k. It follows using the same argument as in hybrids H_i, for $i \in [k + 5]$, that the committed value of the right interaction can be extracted without rewinding Stage 2 of the left interaction. It then follows from the hiding property of the Stage 2 commitment that the combined view and values committed to by A in H_{k+5} are indistinguishable from those in H_{k+6}.

It follows by a hybrid argument that,

$$\left\{ \text{mim}_{(C, R)}^4(v, z) \right\}_{n \in \mathbb{N}, v \in \{0, 1\}^n, z \in \{0, 1\}^*} \approx \left\{ \text{hyb}_{k+6}^3(v, z) \right\}_{n \in \mathbb{N}, v \in \{0, 1\}^n, z \in \{0, 1\}^*}$$

20
Finally, since by the definition of hyb, it holds that for every \(v_1, v_2\) and \(z\), \(\text{hyb}_{k+6}(v_1, z) = \text{hyb}_{k+6}(v_2, z)\), we conclude that,

\[
\left\{ \text{mim}^A_{(C,R)}(v_1, z) \right\}_{n \in \mathbb{N}, v_1, v_2 \in \{0,1\}^n, z \in \{0,1\}^*} \approx \left\{ \text{hyb}_{k+6}(v_1, z) \right\}_{n \in \mathbb{N}, v_1, v_2 \in \{0,1\}^n, z \in \{0,1\}^*},
\]

and

\[
\left\{ \text{mim}^A_{(C,R)}(v_2, z) \right\}_{n \in \mathbb{N}, v_1, v_2 \in \{0,1\}^n, z \in \{0,1\}^*} \approx \left\{ \text{hyb}_{k+6}(v_2, z) \right\}_{n \in \mathbb{N}, v_1, v_2 \in \{0,1\}^n, z \in \{0,1\}^*}.
\]

6.1 Proof of Lemma 2

Proof of Lemma 2. The running-time of \(B\) consists of three parts:

Part 1—Time spent in simulating the Main Execution: Since \(A\) runs in strict polynomial time, the time \(B\) spends in the Main Execution is \(\text{poly}(n)\).

Part 2—Time spent in extracting the left “trapdoor”: We show below in “Analysis of Part 2” that there exists a polynomial \(T_2(n)\) such that for every polynomial \(q_2\), (every \(b \in \{0,1\}\), every sufficiently large \(n \in \mathbb{N}\), and inputs \(v \in \{0,1\}^n, z \in \{0,1\}^\ast\)), the probability that \(B\) spends more than \(T_2(n)/q_2(n)\) steps on extracting the left “trapdoor” in \(\text{STA}_b((P,V), B, v, z)\) is smaller than \(1/q_2(n)\).

Part 3—Time spent in extracting the right committed values: We show below in “Analysis of Part 3” that there exists a polynomial \(T_3(n)\) such that for every polynomial \(q_3\), the probability that \(B\) spends more than \(T_3(n)/q_3(n)\) steps on extracting the left “trapdoor” in \(\text{STA}_b((P,V), B, v, z)\) is smaller than \(1/q_3(n)\).

Then given an arbitrary polynomial \(q\), by setting \(q_2(n) = q_3(n) = 2q(n)\), we obtain that, for every sufficiently large \(n \in \mathbb{N}\), the probability that \(B\) spends more than \(2q(n)T_2(n)\) steps in part 2 or more than \(2q(n)T_3(n)\) steps in part 3 is smaller than \(1/q(n)\). Therefore, overall, for sufficiently large \(n \in \mathbb{N}\), the probability that \(B\) runs for more than \(T(n) = \text{poly}(n) + 2q(n)T_2(n) + 2q(n)T_3(n)\) steps is smaller than \(1/q(n)\).

Analysis of Part 2: Recall that in an execution of \(\text{STA}_b((P,V), B, v, z)\), the extraction of the left “trapdoor” proceeds in \(2\ell\) iterations, in which the first iteration simply sets \(\delta_1 = (\bar{\sigma}_1, \bar{c}_1, \bar{r}_1)\) to the appropriate signature, committed value, and random string used in the left interaction of the Main Execution. Therefore, it suffices to analyze only the time spent in the rest of the iterations. In an iteration \(i > 1\), \(B\) takes the signature-chain \(\delta_{i-1} = ([\bar{\sigma}]_{i-1}^1, [\bar{c}]_{i-1}^1, [\bar{r}]_{i-1}^1)\) of length \(i - 1\), w.r.t. (keys \(v_0, v_1, v_2\) and) pattern \([\psi]_{i-1}^1\), (where \(\psi = \text{pattern}(\text{id}_i)\), obtained in the previous iteration, and extends it to a signature-chain \(\bar{\sigma}_i\) of length \(i\) w.r.t. pattern \([\psi]_i^1\). This is done by repeatedly rewinding \(A\) from the start of the left-slot \(\psi_i\) and committing to \((i - 1, \bar{\sigma}_{i-1})\) in the rewinding, until \(A\) closes this left-slot successfully, in which case, the extraction procedure obtains a valid signature of a commitment to \((i - 1, \bar{\sigma}_{i-1})\) under key \(v_{\psi_i}\). (Below we assume for simplicity that the extraction procedure is never cut-off and may run for more than \(2^n\) steps, since this only increases the running time). Towards bounding the running-time of this extraction procedure, we first consider a hypothetical procedure, which proceeds almost the same as the actual extraction procedure, except that, in the rewinding in iteration \(i > 1\), instead of committing to \((i - 1, \bar{\sigma}_{i-1})\),
it commits to 0^n. In other words, the hypothetical procedure simulates the view of A in the rewinding \textit{identically} to that in the Main Execution. We show that the expected running-time of this hypothetical procedure is $\text{poly}(n)$, based on which we then bound the running-time of the actual extraction procedure.

\textit{Running-time Analysis of the hypothetical procedure:} Let $\psi = \text{pattern}(\text{id}_i)$ be the pattern of the “trapdoor” of the left interaction. In iteration $i > 1$, the hypothetical extraction procedure repeatedly rewinds the left-slot ψ_i; let T^i be the random variable that describes the time spent in rewinding the left-slot ψ_i in iteration $i > 1$. We show that $E[T^i] \leq \text{poly}(n)$ and then by linearity of expectation, we conclude that the expected running-time of the hypothetical procedure is

$$\sum_{i=2}^{2^t} E[T^i] \leq \sum_{i=2}^{2^t} \text{poly}(n) \leq \text{poly}(n),$$

since both the number of iterations is $\text{poly}(n)$.

Now we bound $E[T^i]$. Let Γ_{ψ_i} denote the set of prefixes ρ—i.e., partial transcripts of the Main Execution—from where the left-slot ψ_i opens. Given a prefix $\rho \in \Gamma_{\psi_i}$, we introduce the following notations:

- let $\Pr[\rho]$ denote the probability that ρ occurs as a prefix in the Main Execution.
- let p_ρ denote the probability that, conditioned on the prefix ρ occurring (in the Main Execution), the left-slot ψ_i closes successfully in the Main Execution.

Take any ρ from Γ_{ψ_i}. We claim that conditioned on ρ occurring, the expected value of T^i—denoted as $E[T^i|\rho]$—is $\text{poly}(n)$. This follows since, first, the hypothetical procedure starts rewinding the left-slot ψ_i in iteration i, only if this slot closes successfully in the Main Execution—hence, (conditioned on ρ occurring,) the probability the left-slot ψ_i is rewound is at most p_ρ—and second, once it starts rewinding the left-slot ψ_i, it continues until the slot closes successfully again—since the hypothetical procedure proceeds identically in the rewinding as in the Main Execution, the probability that the left-slot ψ_i closes successfully in any rewinding is also p_ρ, and thus, (conditioned on ρ occurring,) the expected number of rewinding performed before this happens is $1/p_\rho$. Therefore, the overall expected number of rewinding from ρ is $p_\rho \times \frac{1}{p_\rho} = 1$. As each rewinding takes at most $\text{poly}(n)$ steps, we conclude that $E[T^i|\rho] \leq \text{poly}(n)$. Thus,

$$E[T^i] = \sum_{\rho \in \Gamma_{\psi_i}} E[T^i|\rho] \Pr[\rho] \leq \text{poly}(n) \times \sum_{\rho \in \Gamma_{\psi_i}} \Pr[\rho] \leq \text{poly}(n)$$

\textit{Running-time Analysis of the actual extraction procedure:} Given that the expected running time of the hypothetical procedure is bounded by a polynomial $\tilde{T}(n)$, it follows using the Markov inequality that, for every polynomial q_2, (every b, every $n \in N$, and inputs v, z_i) the probability that the hypothetical procedure takes more than $q_2(n)\tilde{T}(n)/2$ steps is smaller than $2/q_2(n)$. Then we claim that the probability that actural extraction procedure takes more than $q_2(n)\tilde{T}(n)/2$ steps is smaller than $1/q_2(n)$. This follows since the only difference between the hypothetical and the actual extraction procedures is that, in the former the rewinding are simulated by committing to 0^n using com, whereas in the latter rewinding and are simulated by committing to a tuple that contains a signature. Since the ZKAOK proof following the commitment is never rewound, it follows directly from the hiding property of com and the zero knowledge property of the ZKAOK proof that, the probability that the actual extraction procedure runs for more than $q_2(n)\tilde{T}(n)/2$ steps differs from that of the hypothetical procedure by at most a negligible amount. Thus, for sufficiently large n, we have that the probability B spends more than $T_2(n) = q_2(n)\tilde{T}(n)/2$ steps is smaller than $1/q_2(n)$.

22
Analysis of Part 3: We show that the time that B spends in the Rewinding Phase is bounded by a polynomial $T_3(n)$ in expectation. Then, by the Markov inequality (as above) that, for every polynomial q_3, the probability that B takes more than $q_3(n)T_3(n)$ steps is smaller than $1/q_3(n)$.

It follows from the same argument as in the “running-time analysis of the hypothetical procedure” that to bound the expected time spent in extracting the right committed value, it suffices to bound the expected time spent in rewinding each right WISSP proof, since the total number of right-proofs is $\text{poly}(n)$. Then recall that a right-proof is rewound only if the proof completes successfully in the Main Execution, without interleaving with any message in Stage 1 or the i^{th} proof of the left interaction. On the other hand, once the rewinding starts, it continues until this right-proof completes successfully again, while cancelling every rewinding in which the proof interleaves with any message in Stage 1 or the i^{th} proof of the left interaction. Furthermore, as every rewinding is simulated exactly the same as the Main Execution is, it follows using the same “p times 1/p argument” as in the analysis of part 2 that the expected number of rewindings over a right-proof is 1, and hence the expected time spent in extracting the right committed values is bounded by a polynomial $T_3(n)$.

\[\square \]

7 Proof of Concurrent Non-Malleability

One way to obtain a constant-round concurrent non-malleable commitment scheme is by relying on the previous work [LP09], which presents a general compilation technique that can transform any commitment scheme that is stand-alone non-malleable and one-many 4-robust, into another one that is concurrently non-malleable and one-many 4-robust, while incurring only an (additive) constant overhead to the round complexity of the protocol. Then since the protocol $\langle C, R \rangle$ is stand-alone non-malleable and, as shown in the next section, also 4-robust, by relying on the previous work [LP09], we directly obtain a constant-round concurrent non-malleable commitment scheme (which is also 4-robust).

Next we show that, by extending the proof of stand-alone non-malleability in section 6, the protocol $\langle C, R \rangle$ is already concurrently non-malleable. By Proposition 1, to show concurrent non-malleability, it suffices to prove that $\langle C, R \rangle$ is one-many non-malleable, that is, for every one-many man-in-the-middle adversary A, that participates in one left and many right interactions, the view of A and the values it commits to on the right are indistinguishable, no matter what value it is receiving a commitment to on the left. Towards this, we consider the same hybrid experiments H_0 to H_{k+6} as in the proof of stand-alone non-malleability. It follows from almost the same proof as before that the view of A and the values it commits to on the right are indistinguishable in sequential hybrids, except that, in hybrids H_1 to H_{k+6}, we (or more precisely, the simulator B) now need to extract out the values that A commits to in all the right interactions (recall that the proof before relies on the fact that value that A commits to in the right interaction can be extracted “efficiently”, to show the indistinguishability of hybrid H_i and H_{i+1} for $1 \leq i \leq k + 6$). This is easy to achieve, since we can simply extract the values that A commits to in each right interaction one by one, (using the same method as before,) after the Main Execution completes. More precisely, in the Rewinding Phase, for every successful right interaction that has a different identity from the left interaction in the Main Execution, B finds a WISSP proof in Stage 3 of this right interaction that does not interleave with any message in Stage 1 and the i^{th} proof (or Stage 2 for hybrid H_{k+6}) of that left interaction, and repeatedly rewinds the proof until a second transcript is obtained; it then computes a witness, if the two transcripts are different. Since there are only polynomial number of right interactions, it follows using almost the same proof of Lemma 2 that the running time of B is “bounded”, and further using exactly the same proof of Lemma 3.
that, except with negligible probability, the witnesses that B extracts out are indeed the values committed to in the right interactions. Thus by the WI property of the Stage 3 proofs (or the hiding property of Stage 2 resp.), the view and the values committed to by A are indistinguishable in hybrids H_i and H_{i+1} for $1 \leq i \leq k + 4$ (or in H_{k+5} and H_{k+6} resp.). Therefore, we conclude that,

Theorem 6. $\langle C, R \rangle$ is concurrent non-malleable.

8 Proof of Robust Non-Malleability

In this section, we show that, for any $r \in \mathbb{N}$, our constant-round (concurrent) non-malleable commitment scheme $\langle C, R \rangle$ can be easily modified into a $O(r)$-round (concurrent) non-malleable commitment scheme $\langle \tilde{C}, \tilde{R} \rangle$ that is additionally one-many r-robust.

It is shown in [LP09] that one-many r-robust commitment schemes are easy to construct: any commitment scheme that is “extractable” and has more than r “rewinding slots” is directly one-many non-malleable w.r.t. r-round protocols. Therefore, to make our constant-round non-malleable commitment scheme $\langle C, R \rangle$ one-many r-robust, we simply add more WISSP proofs in Stage 3 of the protocol. More precisely, the commitment scheme $\langle C_r, R_r \rangle$ proceeds identically to $\langle C, R \rangle$, except that in Stage 3 of the protocol, the Committer \tilde{C} needs to provide $\max(r + 1, l)$ WISSP proofs (of the statement that either the Stage 2 message is a valid commitment or that it knows a "trapdoor"), where l is the number of WISSP proofs in Stage 3 of the original protocol $\langle C, R \rangle$. It follows using the same proof as in [LP09] that $\langle C_r, R_r \rangle$ is one-many r-robust. Roughly speaking, the main idea of the proof is to reduce the one-many r-robustness to the indistinguishability of the interaction with machine $B(y_n^1)$ or $B(y_n^2)$, by extracting the value committed to in the right interactions from the WISSP proofs in Stage 3 of the protocol, without rewinding the left interactions. This is achievable, (similar to the proof of the indistinguishability of Hybrid H_i and H_{i+1} in Section 6,) as there are more WISSP proofs in Stage 3 than the number of messages in the left interaction, and one can always find a WISSP proof that does not interleave with the left interaction and extract a witness from this proof, without rewinding the left interactions. The witness extracted must be a valid decommitment, as otherwise, by the special-soundness of the proof, it must be a valid signature-chain, which violates the soundness of the signature-game (since the adversary here is never rewound and obtains only three signatures during the straight-line execution of the right interaction). Therefore, we conclude that $\langle C_r, R_r \rangle$ is one-many r-robust. It follows using the same proof in Section 6 that $\langle C_r, R_r \rangle$ is stand-alone non-malleable; and it further follows using the same proof in Section 7 that it is, in fact, concurrent non-malleable. Therefore,

Lemma 4. For every $r \in \mathbb{N}$, the protocol $\langle C_r, R_r \rangle$ has $O(r)$-round, and is concurrently non-malleable and one-many r-robust.

Theorem 2 follows directly from **Lemma 4**. Furthermore, for $r < l$, the protocol $\langle C_r, R_r \rangle$ is the same as $\langle C, R \rangle$, thus,

Corollary 1. For any $r < l$, $\langle C, R \rangle$ is concurrently non-malleable and one-many r-robust.

9 Acknowledgements

We are very grateful to Boaz Barak, Ran Canetti, Danny Dolev, Cynthia Dwork, Johan Håstad, Oded Goldreich, Shafi Goldwasser, Silvio Micali, Moni Naor, Alon Rosen, Amit Sahai, Muthuramakrishnan Venkitasubramaniam and Hoeteck Wee for many enlightening discussions about non
malleability over the years. We are particularly grateful to Oded Goldreich for encouraging us to include a self-contained description of a non-malleable commitment for constant length identities into the journal version of [LP09]; the ideas in this paper came out of thinking about how to simplify the presentation of this (weak) primitive. The second author is also indebted to Alon Rosen for introducing him to the area of non malleability.

References

A General Definitions

A.1 Witness Relations

We recall the definition of a witness relation for a NP language [Gol01].

Definition 4 (Witness relation). A *witness relation* for a language $L \in NP$ is a binary relation R_L that is polynomially bounded, polynomial time recognizable and characterizes L by $L = \{ x : \exists y \text{ s.t. } (x,y) \in R_L \}$

We say that y is a witness for the membership $x \in L$ if $(x,y) \in R_L$. We will also let $R_L(x)$ denote the set of witnesses for the membership $x \in L$, i.e., $R_L(x) = \{ y : (x,y) \in L \}$. In the following, we assume a fixed witness relation R_L for each language $L \in NP$.

A.2 Indistinguishability

Definition 5 (Computational Indistinguishability). Let Y be a countable set. Two ensembles $\{ A_{n,y} \}_{n \in \mathbb{N}, y \in Y}$ and $\{ B_{n,y} \}_{n \in \mathbb{N}, y \in Y}$ are said to be *computationally indistinguishable* (denoted by $\{ A_{n,y} \}_{n \in \mathbb{N}, y \in Y} \approx \{ B_{n,y} \}_{n \in \mathbb{N}, y \in Y}$), if for every PPT “distinguishing” machine D, there exists a negligible function $\nu(\cdot)$ so that for every $n \in \mathbb{N}, y \in Y$:

$$| \Pr[a \leftarrow A_{n,y} : D(1^n, y, a) = 1] - \Pr[b \leftarrow B_{n,y} : D(1^n, y, b) = 1] | < \nu(n)$$

A.3 Interactive Proofs

We use the standard definitions of interactive proofs (and interactive Turing machines) [GMR89] and arguments (a.k.a. computationally-sound proofs) [BCC88]. Given a pair of interactive Turing machines, P and V, we denote by $\langle P(w), V \rangle(x)$ the random variable representing the (local) output of V, on common input x, when interacting with machine P with private input w, when the random input to each machine is uniformly and independently chosen.
Definition 6 (Interactive Proof System). A pair of interactive machines \((P, V)\) is called an interactive proof system for a language \(L\) if there is a negligible function \(\nu(\cdot)\) such that the following two conditions hold:

- Completeness: For every \(x \in L\), and every \(w \in R_L(x)\), \(\Pr[(P(w), V)(x) = 1] = 1\)
- Soundness: For every \(x \in \{0, 1\}^n - L\), and every interactive machine \(B\), \(\Pr[(B, V)(x) = 1] \leq \nu(n)\)

In case that the soundness condition is required to hold only with respect to a computationally bounded prover, the pair \((P, V)\) is called an interactive argument system.

A.4 Zero-Knowledge

We recall the standard definition of ZK proofs. Loosely speaking, an interactive proof is said to be zero-knowledge (ZK) if a verifier \(V\) learns nothing beyond the validity of the assertion being proved, it could not have generated on its own. As “feasible” computation in general is defined though the notion of probabilistic polynomial-time, this notion is formalized by requiring that the output of every (possibly malicious) verifier interacting with the honest prover \(P\) can be “simulated” by a probabilistic expected polynomial-time machine \(S\) (a.k.a. the simulator). The idea behind this definition is that whatever \(V^*\) might have learned from interacting with \(P\), he could have learned by himself by running the simulator \(S\).

The notion of ZK was introduced and formalized by Goldwasser, Micali and Rackoff in [GMR89]. We present their definition below.

Definition 7 (ZK). Let \(L\) be a language in \(NP\), \(R_L\) a witness relation for \(L\), \((P, V)\) an interactive proof (argument) system for \(L\). We say that \((P, V)\) is statistical/computational ZK, if for every probabilistic polynomial-time interactive machine \(V\) there exists a probabilistic algorithm \(S\) whose expected running-time is polynomial in the length of its first input, such that the following ensembles are statistically close/computationally indistinguishable over \(L\).

\[
\begin{align*}
\{ (P(y), V(z))(x) \}_{n \in \mathbb{N}, x \in \{0, 1\}^n \cap L, y \in R_L(x), z \in \{0, 1\}^*} \\
\{ S(x, z) \}_{n \in \mathbb{N}, x \in \{0, 1\}^n \cap L, y \in R_L(x), z \in \{0, 1\}^*}
\end{align*}
\]

where \(P(y), V(z))(x)\) denotes the view of \(V\) in interaction with \(P\) on common input \(x\) and private inputs \(y\) and \(z\) respectively.

A.5 Witness Indistinguishability

An interactive proof (or argument) is said to be witness indistinguishable (WI) if the verifier’s output is “computationally independent” of the witness used by the prover for proving the statement. In this context, we focus on languages \(L \in \mathcal{NP}\) with a corresponding witness relation \(R_L\). Namely, we consider interactions in which, on common input \(x\), the prover is given a witness in \(R_L(x)\). By saying that the output is computationally independent of the witness, we mean that for any two possible \(NP\)-witnesses that could be used by the prover to prove the statement \(x \in L\), the corresponding outputs are computationally indistinguishable.

Definition 8 (Witness-indistinguishability). Let \((P, V)\) be an interactive proof (or argument) system for a language \(L \in \mathcal{NP}\). We say that \((P, V)\) is witness-indistinguishable for \(R_L\), if for every probabilistic polynomial-time interactive machine \(V^*\) and for every two sequences \(\{w_{n,x}^1\}_{n \in \mathbb{N}, x \in L}\)
and \(\{w_{n,x}^1 \}_{n \in \mathbb{N}, x \in L} \), \(\{w_{n,x}^2 \}_{n \in \mathbb{N}, x \in L} \), such that \(w_{n,x}^1, w_{n,x}^2 \in R_L(x) \) for every \(x \in L \cap \{0,1\}^n \), the following probability ensembles are computationally indistinguishable over \(n \in \mathbb{N} \).

- \(\{(P(w_{n,x}^1), V^*(z))(x)\}_{n \in \mathbb{N}, x \in L \cap \{0,1\}^n, z \in \{0,1\}^*} \)
- \(\{(P(w_{n,x}^2), V^*(z))(x)\}_{n \in \mathbb{N}, x \in L \cap \{0,1\}^n, z \in \{0,1\}^*} \)

A.6 Proofs (Arguments) of Knowledge

Loosely speaking, an interactive proof is a proof of knowledge if the prover convinces the verifier that it possess, or can feasibly compute, a witness for the statement proved. The notion of a proof of knowledge is essentially formalized as follows: an interactive proof of \(x \in L \) is a proof of knowledge if there exists a probabilistic expected polynomial-time extractor machine \(E \), such that for any prover \(P \), \(E \) on input the description of \(P \) and any statement \(x \in L \) readily outputs a valid witness for \(x \in L \) if \(P \) succeeds in convincing the Verifier that \(x \in L \).Formally,

Definition (Proof of knowledge [Gol01]). Let \((P, V) \) be an interactive proof system for the language \(L \). We say that \((P, V) \) is a proof of knowledge for the witness relation \(R_L \) for the language \(L \) if there exists an expected polynomial-time extractor machine \(E \), called the extractor, and a negligible function \(\nu(n) \) such that for every machine \(P^* \), every statement \(x \in \{0,1\}^n \), every random tape \(r \in \{0,1\}^* \) and every auxiliary input \(z \in \{0,1\}^* \),

\[
\Pr\left[(P^*_r(z), V)(x) = 1 \right] \leq \Pr[E^{P^*_r(x,z)}(x) \in R_L(x)] + \nu(n)
\]

consider \(\mathcal{PPT} \) provers. An interactive argument system \((P, V) \) is an argument of knowledge if the above condition holds w.r.t. probabilistic polynomial-time provers.

Special-sound WI proofs A 4-round public-coin interactive proof for the language \(L \in \mathcal{NP} \) with witness relation \(R_L \) is special-sound with respect to \(R_L \), if for any two transcripts \((\delta, \alpha, \beta, \gamma)\) and \((\delta', \alpha', \beta', \gamma')\) such that the initial two messages, \(\delta, \delta' \) and \(\alpha, \alpha' \), are the same but the challenges \(\beta, \beta' \) are different, there is a deterministic procedure to extract the witness from the two transcripts and runs in polynomial time. Special-sound WI proofs for languages in \(\mathcal{NP} \) can be based on the existence of 2-round commitment schemes, which in turn can be based on one-way functions [GMW91, FS90, HILL99, Nao91].