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Gene regulatory networks, like any evolving biological system, are subject to

potentially damaging mutations.  Much work has been done to study what types of

networks are more robust to node deletions (knockouts of entire genes).  Less well

understood, however, is the question of which networks best maintain consistent

behavior in the face of smaller mutations that affect binding affinity, protein half-life,

and other regulatory parameters.  Such mutations have subtler effects than whole-gene

knockouts do, but because they are far more common than knockout mutations, their

impact on network evolution may be substantial.  The first chapter investigates the

expression patterns of simulated gene regulatory networks as these types of parameters

are varied, and explores which topologies allow the networks to "ignore" parameter-

changing mutations and maintain their expression patterns relatively unchanged.  In

the simulations, networks containing mutual repression feedback consistently

displayed a more robust response to simulated mutation.  The presence of this variety

of feedback in well-studied developmental regulatory networks suggests that it may be

a widespread mechanism for reducing the phenotypic consequences of both noise and

mutational perturbations.

The second chapter also uses feedback loop module networks as a means to

investigate and compare modeling approaches.  It describes an algorithm to infer the

best Boolean representation of the differential equation network models, as well as

metrics for measuring how closely the Boolean model approached the dynamics of the

continuous one.  Using these tools allowed testing of the "Booleanizability" of



networks containing mutual-activator and mutual-repressor feedback loops.  The

investigation revealed that Boolean models are better approximations of networks with

repressor loops than of those without them, and this is explained in terms of the

characteristics explored in the investigation of network robustness.

Chapter 3 contains a model of the gap genes in Drosophila melanogaster,

based on published experimental findings on the interactions among these genes and

their products.  The mechanistic mathematical model of gap gene expression was

fitted to experimental data and placed in the context of other gap gene models.  The

chapter discusses the advantages and limitations of the various modeling techniques

that have been employed for this system.
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PREFACE

This dissertation contains three investigations into the nature of transcriptional

genetic networks.  Taken together, they form a study of the dynamical behavior of

small groups of genes that regulate one another's transcription, with feedback between

the genes.  All are idealizations of how real eukaryotic genes interact, even the gap

gene model, which is the most data-driven of the three.  The goal has been to simplify

the concrete (gap genes project) and abstract (robustness and “Booleanization”

projects) questions of how feedback shapes gene regulation.  By simplifying the

problem, we can hope to make some progress in studying it.

Feedback makes network behavior much more complex and thus more difficult

to for us to understand, and yet it also seems to be the key to how organisms respond

appropriately to their environments (Krishna et al. 2006; Krishna et al. 2007) and lock

in cell differentiation decisions during development (Davidson 2006).  This

dissertation is therefore an attempt to balance tractability with biological relevance, in

order to shed light on the questions that gene regulatory feedback raises.

All three projects use some form of the mathematical representation of

combinatorial transcriptional regulation worked out by George von Dassow and the

other members of Garrett Odell's research group at Friday Harbor Laboratories, the

Center for Cell Dynamics (von Dassow et al. 2000; Meir et al. 2002).  The author is

indebted to these faculty, who spent an intensive semester teaching her and several

others how to model gene networks in a way that would be as credible as possible to

both applied mathematicians (like Dr. Odell) and experimental biologists (like Dr. von

Dassow and Dr. Ed Munro).

Chapter 1 (“Predicting the Mutational Robustness of Gene Regulatory

Networks”) presents and mathematically describes a simple set of feedback motifs,



xii

which are then combined into larger networks in order to study what properties of

small networks makes large networks more robust to parameter variation (i.e., to

simulated mutation).  We develop two metrics of robustness to simulated mutation:

global robustness, which characterizes overall behavior by sampling parameter space;

and local robustness, which measures the system’s response to doubling and halving

individual parameters.  We introduce the idea of isolated modules with constant

external regulation acting upon them ("static-signal modules") to simplify the analysis

of feedback loops under regulation.

By simulating thousands of parameter sets of individual and static-signal

modules to measure their local and global robustness, we determine that modules with

mutual repression feedback are more robust to simulated mutations than those

composed of mutually activating feedback, but only when subject to external

regulation.  We establish that the greater robustness of networks containing mutual

repression feedback is due to their greater tendency to become monostable for one

steady state when receiving an external regulatory signal.  Finally, we extrapolate this

finding to evolutionary expectations for gene regulatory networks, especially in

development.

In Chapter 2 (“Boolean models of modular networks”), we investigate

modeling approaches for the networks presented in Chapter 1.  We discuss the reasons

why Boolean representations of gene regulatory networks can be useful, and why they

can also give misleading results for networks containing feedback.  We develop an

algorithm to use the flow of trajectories in state space to find the best possible

threshold to divide expression levels into "low" and "high" for each kind of molecule.

This gives the best possible Boolean representation of each differential equation

network, and also offers three quantitative metrics for measuring how good an

approximation the Boolean version is.
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We score the feedback motifs from the robustness project, and the two-module

networks composed of them, for "Booleanizability," via the algorithm above.  We

establish that networks with repressor-loop modules submit more gracefully to a

Boolean approximation, generating fewer modeling artifacts, than those with activator

loops, for the same reasons of monostability that led to mutational robustness in the

preceding chapter's investigation.

Finally, Chapter 3 (“Modeling the Drosophila gap gene network”) discusses

the uses of models of gene regulatory networks, and the abstractions they employ to

investigate different questions about such systems.  After a brief review of the

segmentation patterning system in the Drosophila melanogaster embryo, we

synthesize modeling work that has been done on the gap gene system, reviewing how

each kind of abstraction choice affects the kinds of questions addressable by each

model.  We also offer a new model of the gap gene network, using a previously

successful approach that has been neglected for this system.  We report the insights

gained from of the new model, in the context of work that has been done before.

This dissertation is primarily the work of Sarah R. Stockwell, and she

conceived the problems and hypotheses, developed the simulations, and wrote the

manuscript.  She is also responsible for any errors herein.  However, several people

collaborated on these projects who deserve mention here, and who will be co-authors

on the papers that emerge from this work.  Dr. Ryan Gutenkunst, a fellow participant

in Cornell's IGERT Nonlinear Systems Program, co-wrote the SloppyCell program

(Gutenkunst et al. 2007) that was used as the ODE solver for the robustness and

“Booleanization” projects.  He, Dr. Chris R. Myers, and Dr. Andrew G. Clark also met

with Ms. Stockwell on many occasions to discuss ideas and brainstorm solutions to

obstacles that arose in the analysis of those two projects.  Dr. Lisa Nagy of the
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University of Arizona was one of the other students in the Center for Cell Dynamics

course, and her experimental experience and knowledge of the developmental

literature was invaluable for researching and deciding on how to codify the various

transcriptional co-regulatory relationships in the gap gene project.  She and Dr. Clark

will be co-authors on the gap gene paper when it is submitted for publication.
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CHAPTER 1

PREDICTING THE MUTATIONAL ROBUSTNESS OF GENE REGULATORY

NETWORKS

Abstract

Gene regulatory networks, like any evolving biological system, are subject to

potentially damaging mutations.  Much work has been done to identify classes of

networks that are more robust to node deletions -- knockouts of entire genes.  Less

well understood, however, is the question of which networks best maintain consistent

behavior in the face of smaller mutations that affect binding affinity, protein half-life,

and other regulatory parameters.  Such mutations have subtler effects than whole-gene

knockouts do, but because they are far more common than complete loss-of-function

mutations, their impact on network evolution may be substantial.  We modeled

regulatory mutations in simulated gene networks and determined which topologies

displayed consistent expression patterns in the face of mutation. We found that

networks containing mutual repression feedback loops consistently displayed a more

robust response to simulated mutation than we observed in networks where positive

feedback motifs predominated, preserving gene expression patterns despite changes in

the strength and timing of their interactions.  In addition, these mutual-repression

topologies were more consistent and complete in their responses to external signals,

and more robust to noise.  The presence of mutual-repression feedback in

experimentally well-characterized developmental regulatory networks suggests that it

may be a widespread mechanism for reducing the phenotypic consequences of both

environmental and genetic perturbations that would interfere with the process of

development.
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Introduction

The development of an organism from a single cell to a fully functional adult is

one of the most intricately choreographed dances in nature: hundreds of genes turning

on and off at the right times, passing signals to one another within and between cells.

This complicated ballet can suffer from small missteps along the way, when minor

changes in cis-regulatory regions or protein binding affinities change the timing or

strength of the signals.  Yet the overall pattern of the dance is usually unbroken, and

the adult emerges with tissues correctly arranged, and appendages in all the right

places (Gerhart and Kirschner 1997; Wagner 2005).  In recent years, new methods of

experimental manipulation and computational simulation have made it possible to

subtly perturb the gene regulatory networks responsible for early embryonic

development and study the effects on the expression patterns produced.  One

observation of these studies has been the surprising level of mutational robustness –

that is, genetic canalization -- exhibited by many networks, especially those involved

in early embryonic development (von Dassow et al. 2000; Wagner 2005).  Such

networks can often withstand mutations that affect the quantitative interactions of their

component genes and still maintain the correct stable expression patterns that direct

the phenotype of the organism.

The degree to which robustness is an evolved property of gene regulatory

systems (as opposed to being a side effect of the network topology itself) remains an

open question.  While tolerance of mutations is clearly a useful property in a process

as essential as development, it is difficult for populations to evolve robustness to

mutations that have not yet occurred; secondary selection is a weak force (Wright

1934).  However, some researchers have argued (Wagner et al. 1997; Rao et al. 2002;

de Visser et al. 2003) that selection for robustness to noise and environmental
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perturbation -- a helpful feature during the lifetime of each organism, and thus a trait

exposed to direct selection -- may have the side benefit of conferring mutational

robustness as well.  A genotype that confers robustness to mutations has a fitness

advantage only when it co-occurs with a deleterious mutation (Wright 1934), making

it rare for a mechanism that confers only mutational robustness to rise to high

frequency in the population.  However, developing organisms are subject to a variety

of environmental insults, and recent research has documented the substantial

stochasticity in cellular processes (McAdams and Arkin 1999; Elowitz et al. 2002;

Kaern et al. 2005; Raser and O'Shea 2005; Chang et al. 2008) that causes the

concentrations of gene products to fluctuate even in cells inhabiting the comfortably

controlled environment of a laboratory.  Selection for tolerance of constant, random

perturbations like these is therefore ubiquitous and constant.  When we look for

mechanisms of genetic robustness, then, we might begin our search among the modes

of environmental and noise tolerance that organisms have evolved over time.

Here we present results showing that particular regulatory network topologies

fulfill this expectation by conferring both dynamical robustness to noise and genetic

robustness to quantitative mutations.  Selection for such motifs on their noise-

buffering merits may have helped give developmental networks the remarkable

mutational robustness they exhibit today.

Materials and Methods

Gene regulatory networks can be composed of dozens or hundreds of genes,

regulating one another in complex webs of feedback.  This feedback, while important

to the function of the network, makes it more difficult to understand how the effects of

quantitative mutations percolate through the network.  Recent evidence that
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modularity is an important property of genetic networks (Hartwell et al. 1999; von

Dassow and Munro 1999; Raff 2000; Winther 2001; Csete and Doyle 2002; Ihmels et

al. 2002; Lipson et al. 2002; Wagner 2002; Alon 2003; Segal et al. 2003; Wolf and

Arkin 2003; Schlosser and Wagner 2004; Kashtan and Alon 2005; Qi and Ge 2006;

Slonim et al. 2006; Hinman and Davidson 2007; Singh et al. 2008) suggests a way to

break the problem down into more manageable components while preserving the

properties of the feedback and crosstalk in the larger network.  We modeled small

gene network modules, each consisting of a single feedback loop (Figure 1.1), and

then assembled these modules into pairs, with one module regulating the other and, in

some cases, being regulated by it in return (Figure 1.2).  The resulting two-module

networks were small enough to permit a comprehensive survey of their behavior,

while the inter-module regulation let us study the emergent properties of large gene

regulatory networks that might arise from crosstalk between modules.

Figure 1.1.  The feedback loops used as modules to construct the networks.  a,b
“Activator Loops,” with positive feedback.  c,d, “Repressor Loops,” with mutually
repressing feedback. The modules are named for whether their internal regulation is
activating (AL) or repressing (RL), and whether they have one or two genes (AL1,
AL2, RL1, RL2).  “mA” represents mRNA for gene A; pA represents the protein
product of that gene.

mA pA

pB mB

AL1

AL2

mA pA mA pA RL1

RL2

mA pA

pB mB

a c

b d
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Figure 1.2.  Assembling loop modules into two-module networks by adding cross-
regulation.  a, A repressor loop (RL1) activating an activator loop (AL2).  b, A
repressor loop repressing a repressor loop (RL2).  c, Two activator loops (AL1)
repressing each other.

Network topology

We chose feedback loops as the building blocks of our networks because of

their biological importance, and because feedback can play a critical role in

amplifying or damping changes to networks. Bistable feedback loops, in particular,

have received widespread attention as a simple and biologically important variety of

gene regulatory module that arises in contexts ranging from development to

metabolism (Bhalla and Iyengar 1999; Ferrell and Xiong 2001; Ferrell 2002;

Pomerening et al. 2003; Xiong and Ferrell 2003; Ozbudak et al. 2004; Legewie et al.

2006).  In gene regulatory loops, two or more nodes (two genes, or an mRNA and its

protein) interact with each other so as to give the network two widely separated steady

states.  Such a loop can act as a kind of switch, changing states in response to external

regulation and locking in a response to a transitory signal.  We modeled the simplest

biologically plausible examples of two classes of transcriptional bistable switch

mA pA mB pB

pC mC

mC pC

pD mD

mA pA

pB mB

mA pA

mB pB

a

b

c
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feedback loops: “activator” and “repressor” loops (AL and RL).  Each loop consists of

2-4 nodes, representing mRNAs and proteins that regulate each other’s transcription or

translation.

“Activator” loops (AL1, Figure 1.1a; AL2, Figure 1.1b) are positive feedback

loops, in which each mRNA or protein node encourages the production of the next

node’s mRNA/protein via translation or transcriptional regulation.  Stable steady states

for these switches are those in which all nodes are at low concentration (low/low) or

all nodes are at maximum concentration (high/high).  The inclusion of first-order

decay terms for all molecules in our models ensured that, for intermediate-value

parameters, AL modules were as likely to settle on the low/low state as on the

high/high state.  Specimens of these loops have been well studied in nature (Alon

2007).  For example, autoactivating transcription factors can help strengthen and

amplify signals, as Krox and GCM do in the development of sea urchin

endomesoderm (Davidson et al. 2002).

“Repressor” loops (RL1, Figure 1.1c; RL2, Figure 1.1d) contain mutually

inhibitory interactions, resulting in switches for which the stable states are high/low or

low/high.  The nodes/genes in each half of the switch repress those in the other half, so

that the nodes cannot simultaneously coexist in a highly expressed state.  In contrast to

the activator loop’s feedback, which aligns the expression states of the nodes, the

positive feedback within the repressor loop works to separate the nodes’ expression

levels.  When one gene is weakly expressed, it has little power to inhibit the

transcription of its partner, and its partner can rise from an intermediate concentration

to a higher one, which represses the first gene still further until both genes have

reached equilibrium at the low/high steady state.  RL modules, also, have a substantial

literature (Alon 2007).  Some of the best-characterized examples are found in the early

segmentation patterning network of Drosophila melanogaster, where mutual
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repression between gap genes (Niessing et al. 1997; Schroeder et al. 2004) helps limit

the boundaries of their expression domains (Manu et al.; Pankratz and Jackle 1993).

Specific examples of RL modules in the gap gene network include the mutual

repression between hunchback and knirps (Clyde et al. 2003; Schroeder et al. 2004),

and between giant and Krüppel (Eldon and Pirrotta 1991; Kraut and Levine 1991).

These switches are well studied in isolation (Gardner et al. 2000; Becskei et al.

2001; Atkinson et al. 2003; Isaacs et al. 2003; Ingolia and Murray 2007), but their

behavior when embedded in a larger regulatory context is more difficult to

characterize.  Choosing these modules as the "building blocks" of our networks

allowed us to study their emergent properties along with the general question of

robustness to parameter-altering mutations.  We combined the loop modules into two-

module networks with transcriptional regulation between the modules in one or both

directions (Figure 1.2). We assembled 62 unique pairs of the modules: all possible

combinations of AL1/RL2 modules regulating one other, as well as the mirror

RL1/AL2 network for each pair to allow a symmetrical, unbiased comparison with the

opposite topology (A1.1).  This exhaustive approach allowed us to study the full

behavioral repertoire of the resulting simulated networks.

The RL1 modules have perhaps the most tenuous biological plausibility of the

four motifs; but they provide a symmetrical comparison to the AL1 modules, which

are quite common (autoregulatory transcription factors).  To compare AL and RL

networks without bias, we required topologies and equations that were symmetrical

and balanced.  The trends found in the more realistic AL2 and RL2 modules were

mirrored in the AL1 and RL1 modules, and the two variants of each style of feedback

loop ensured that our findings were not an artifact of the particular topology or

equations we chose.
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Real gene regulatory networks are, of course, much larger than the 2-, 3-, and

4-gene networks studied here.  However, this set of networks encompasses all

combinations of incoming and outgoing transcriptional regulation of the two

categories of loop modules.  Restricting ourselves to simple networks allowed us to be

exhaustive.  The computational approach also allowed completeness; by simulating

the networks, we were able to explore thousands of variations that would have been

impossible in vivo, giving us a comprehensive picture of each network’s dynamical

repertoire.  Rather than focusing on the peculiarities of a particular biological network,

we surveyed the whole landscape of these networks’ behavior in a complete and

unbiased way.

We represented each network as a set of ordinary differential equations,

following the formalism of von Dassow and colleagues (von Dassow et al. 2000; Meir

et al. 2002).  The mathematical representation of individual modules is illustrated in

Figure 1.3; see A1.1 and A1. 2 for more detail and for the method of combining

multiple regulators affecting a single gene.  We used tools from the SloppyCell

package (Gutenkunst et al. 2007; Myers et al. 2007) to solve the equations.  The

parameters in the equations are the half-lives of the mRNA and protein molecules (H);

the binding affinity of proteins for the genes they transcriptionally regulate (k, the

half-maximal concentration of the regulator, where a large k denotes a weak

regulator); and the cooperativity with which regulators bind DNA (n, the Hill

coefficient). We varied these parameters to simulate cis- and trans-regulatory

mutations (k, n) and mutations in the decay rates of the gene products themselves (H).

For example, k captures a gene’s sensitivity to a particular transcriptional regulator, so

we model mutations that alter the affinity of a transcription factor for its cis-regulatory

binding site by varying k.  The simulated mutations changed the strength and timing of
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interactions between the molecules.  We then measured the robustness of each

network’s mRNA and protein concentrations to the mutations.

Figure 1.3. Mathematical representation of loop modules.  a, Transcriptional
activation as modelled in AL modules.  The transcription rate of the target gene is a
saturating function of the concentration of its transcriptional activator.  b,
Transcriptional repression as modelled in RL modules.  c, The mathematical
representation of module AL1 (Figure 1.1a).  mA (messenger RNA) change in
concentration is a function of its transcription (first term) and first-order decay (second
term).  The translation rate of pA is a linear function of its messenger RNA, mA.  d,
Module RL2 (Figure 1.1d).  e, The effect of varying parameter k, a gene's sensitivity
to its transcriptional regulator.  Changing this parameter simulates mutations in
transcription factor binding site affinity.  f, The effect of varying parameter n, the
binding cooperativity of a transcriptional regulator.  All equations are normalized by
the half-life (H) of the molecule (see A1.2).

Measuring robustness

We developed two quantitative metrics for measuring the robustness of a gene

regulatory network to simulated mutation. A traditional way of measuring robustness

to parameter variation in a system with steady states is to begin from some initial
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condition, let the system evolve until it reaches equilibrium, and note the steady-state

condition; then change the parameters, repeat the experiment or simulation, and

calculate how much the steady state has shifted as a result of the parameter change

(Wall et al. 2004).  Our methods are a generalization of that approach, expanded to

consider 1000 initial concentrations for each parameter set instead of only one.

For each network, we first set the parameters to biologically plausible values,

chose the initial concentrations of the mRNAs and proteins in the network, and then

solved the equations numerically to find how the concentrations changed over time

(Figure 1.4).  Each initial concentration eventually settled into a steady state (with

Figure 1.4.  Phase portraits. Colors indicate basins of attraction.  These portraits are
of single modules, for visual clarity.  Actual simulations were performed on single
modules, static-signal networks, and two-module networks (with up to 8 dimensions).
a, Dots represent the current concentrations of mRNA and protein, and lines show the
trajectories of the concentrations over time.  Each initial concentration eventually
settles into a steady state. b, AL1.  Activator loops can settle upon a state where both
concentrations are low (bottom left), or a state where both are high (upper right).  c,
RL2.  Repressor loop steady states with one gene highly expressed and the other
unexpressed.  (Only protein node concentrations shown; trajectories appear to cross
because of the projection of 4-dimensional space.) d, Each network was solved
starting from 1000 initial concentrations (dots) to define the basins of attraction.
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extremely rare exceptions; see A1.3).  We can characterize the overall behavior of a

particular network by observing the set of initial concentrations that reaches each

stable expression state (i.e., the basin of attraction of the steady states).

If the parameters change – a simulated mutation – some initial concentrations

will change their trajectories and reach the steady state in a different corner of phase

space.  As a result, the basins of attraction change, and a basin may disappear

altogether (Figure 1.5). We measured how much the basins shifted as parameters

Figure 1.5.  Simulated mutations (parameter tweaks) alter the destinations of
some trajectories, and thus the basins of attraction.  a, An isolated repressor loop
module (RL2).  b, Its phase portrait at a given parameter set.  c-f, The same network’s
phase portrait as k (half-maximal represson) parameters are varied.  c, k for the pD –|
mC repression edge is doubled.  d, The same k is halved.  e, k for the pC –| mD
repression edge is doubled.  f, The same k is halved.  Taken together, 1000 initial
concentrations and their shifting trajectories (of which 50 are shown here) illustrate
how the basins of attraction are altered by mutation.  The consistency of the basins of
attraction constitutes the local robustness of this network module.  Similar simulations
were carried out for two-module networks to measure their robustness.

varied, and we used these changes to create a quantitative metric for measuring

robustness to mutation.  We define robustness as the extent to which the basins of
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attraction stay constant as the network is buffeted by mutations.  (Mutations that alter

transient molecular concentrations, but not the steady state at which the concentrations

eventually settle or the set of initial concentrations that lead to each steady state, do

not lower the robustness score.)  Biologically, this robustness value measures how

consistent steady-state expression patterns remain as mutations change binding

affinities, half-lives, and so on.

We investigated the effects of mutation in two ways.  First, to simulate

individual mutations, we started at particular parameter sets and individually doubled

and halved each parameter.  This probed the local parameter space around the chosen

parameter set, and the variation altered the original phase portrait of the network,

sending some trajectories off to a different steady state.  For each steady state, we

calculated the proportion of the initial concentrations that were in its basin of

attraction in the original parameter set which remained in its basin of attraction for

each tweaked parameter set.  This yielded the local robustness metric for each

network.  More precisely, for a particular steady state s, the local robustness L is:

Ls =
1
2M

δ ( Iip )δ ( Ii 0 )
i=1

N

∑

δ ( Iip )
i=1

N

∑
+

δ ( Iip )δ ( Ii 0 )
i=1

N

∑

δ ( Ii 0 )
i=1

N

∑













p=1

M

∑ (1)

where I is a vector of initial concentrations of the network components (and thus a

point in state space), N is the number of initial concentrations for which we simulated

the network to characterize state space (1000), and M is the number of tweaked

parameter sets.  δ(I) = 1 if initial concentration I lies in the basin of steady state s, and

δ(I) = 0 if it does not (that is, if integrating the network equations from the initial state

I leads to an alternate steady state).  In the equation above, parameter set 0 is the

original, untweaked parameter set, so Ls represents the average proportion of the basin
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of steady state s that was shared between mutated parameter sets and the original

parameter set.  To calculate the overall local robustness of a network for a particular

parameter set, we sum over the list of all steady states (S) that were found by

integrating trajectories for the original and mutated versions of that parameter set:

L = wsLs
s=1

S

∑ (2)

where ws is a scaling factor reflecting the mean basin size for steady state s across all

variants of this parameter set:

ws =
1

N(M +1)
δ (Iip ) + δ (Ii0 )

i=1

N

∑
i=1

N

∑
p=1

M

∑








 (3)

We calculated the local robustness of each of sixteen representative parameter sets for

each two-module network (see A1.3), and for 250 representative parameter sets for

each isolated module.  See A1.3 for more details.

Secondly, to explore the overall repertoire of the networks, we sampled 250

points throughout parameter space for each two-module network, and calculated the

global robustness of the network.  This metric was analogous to the local robustness

measurement, except that we calculated the mean basin consistency across all pairwise

comparisons of the 250 parameter sets, rather than comparing a given parameter set to

its tweaked variants:

Gs =
1

M (M −1)

δ ( Iip )δ ( Iiq )
i=1

N

∑

δ ( Iip )
i=1

N

∑
+

δ ( Iip )δ ( Iiq )
i=1

N

∑

δ ( Iiq )
i=1

N

∑













q= p+1

M

∑
p=1

M

∑ (4)

G = wsGs
s=1

S

∑ , ws =
1
NM

δ (Iip )
i=1

N

∑
p=1

M

∑








 (5,6)

This approach gave us a global picture of the extent to which different binding

affinities and other regulatory characteristics changed the network’s behavior.  The

networks with relatively consistent expression patterns under varying regulatory

parameters were considered to have higher global robustness.  (More details in A1.3.)
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We used these specific, quantitative metrics for robustness to uncover trends in

the behavior of different classes of networks.

Global and local robustness have been investigated using alternate metrics in a

recent study (Hafner et al. 2009) that measured the robustness of a model of a

circadian oscillator.  The metrics employed in that study are amenable to stable

oscillators, while ours work best for systems dominated by steady-state behavior

(stable nodes and damped oscillators).  A more substantial difference in our approach

is that we considered a more general problem; rather than studying a particular

example of a molecular network and fitting parameters to its specific behavior, we

sought to characterize the general robustness properties of transcriptional networks.

Individual real gene networks may each explore only a portion of the possible

parameter space, rendering part of our analysis irrelevant for a given instance of a

regulatory network.  However, our goal is to delineate the overall behavior that each

kind of feedback motif is capable of, and the exhaustive analysis afforded by

simulations lets us do this.  The general trends we find when we explore all of

parameter and initial-concentration space will lend insight into what kinds of

behaviors we can expect from real biological networks with the same topological

patterns.

Performing these experiments “in silico” allowed us to explore hundreds of

thousands of network realizations, mutation types and sizes, and initial concentrations

to characterize the networks’ behavior with a comprehensiveness and precision that

would not have been possible experimentally.

Static-signal modules

We also simulated isolated RL and AL modules with a single input from

outside, mimicking the kind of external regulation they receive when embedded in the
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larger networks (Figure 1.6).  Such circuits have been studied in metabolic control

networks, though in pursuit of different questions than those addressed here (Savageau

1976; Wall et al. 2003; Wall et al. 2004).  In these “static-signal” modules, we kept the

external regulatory signal constant with time; by contrast, the signal from a true

second module changes in strength as the concentration of the signaling protein alters.

The static-signal external regulation could help enhance ("actAL," "actRL") or inhibit

("repAL", "repRL") the transcription of a gene in the module it affected.  Static-signal

modules reproduced the robustness trends we observed with modules embedded in

larger networks, but were simpler to study.  We varied the strength of the input signal

to study how static-signal modules made the transition from bistability (a pluripotent

cell) to monostability (a cell with only one possible fate) across 250 parameter sets for

each static-signal module.  Details are in A1.4.

Figure 1.6.  Static-signal networks: A constant external “push” activating (a, c)
or repressing (b, d) an isolated module.  Activator loop (AL) modules are in green;
repressor loop (RL) modules are in blue.  a, actAL1, actAL2.  b, actRL1, actRL2.  c,
repAL1, repAL2.  d, repRL1, repRL2.
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Results and Discussion

Two-module networks

We found that networks containing repressor loop modules (mutually

repressing genes) were consistently more robust to simulated mutation than those with

activator loops, by both local robustness (Figure 1.7) and global robustness measures

(Figure 1.8).  Networks with two AL modules were the least robust, followed by those

Figure 1.7.  Two-module networks with RL (mutual inhibition) modules have
higher local robustness to simulated mutations than those with AL (mutual
activation) modules.  a, Local robustness to simulated mutations rises with the
number of repressor loops in the network.   Local robustness is the proportion of
simulated mutations (parameter halving/doubling) for which a given initial
concentration gave rise to the same steady state as before the change, averaged over
1000 initial concentrations.  The value for each network is the mean local robustness
across a sampling of parameter sets.  Crosses are 4-node networks, triangles are 6-
node networks, and squares are 8-node networks.  b, Paired comparison: Each RL/RL
network (blue) has higher local robustness than the equivalent network with AL
modules (green).  Networks are in the order listed in A1.1.  For global robustness data,
see Figure 1.8.

with one AL and one RL module (permutation test: local robustness, p-value = 4.00e-
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still (AL/RL vs. RL/RL, permutation test: local robustness, p = 8.00e-4; global

robustness, p = 1.60e-3.  AL/AL vs. RL/RL, paired bootstrap comparison: local

robustness, p < 2.00e-4; global robustness, p < 2.00e-4.  Details in A1.5).

Figure 1.8.  Two-module networks with RL (mutual inhibition) modules have
higher global robustness to simulated mutations than those with AL (mutual
activation) modules.  a, Global robustness to simulated mutations rises with the
number of repressor loops in the network.   Global robustness is the average
proportion of a steady state’s basin of attraction that was constant across pairs of
parameter sets (see A1.3).  Symbols are as in Figure 1.7.  b, Paired comparison of
RL/RL networks (blue) with the equivalent network with AL modules (green).
Networks are in the order listed in section A1.1.

Interestingly, isolated modules did not show this pattern (permutation test on

local robustness at 250 parameter sets: AL1 vs. RL1, p = 0.62; AL2 vs. RL2, p = 0.45.

See A1.5 for details).  The trend appeared only when modules are embedded in larger

networks.  The robustness phenomenon, then, is not something we could have

discovered by studying the feedback loops in isolation.  It appears to be an emergent

property of larger networks.
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Static-signal modules

The RL modules contribute higher mutational robustness to the two-module

networks of which they are a part, but are no more robust than AL modules when

isolated.  The robustness seems to arise as a byproduct of the RL modules’ being

subject to regulation from outside (i.e., from another module), or perhaps from the

regulation they themselves impose on neighboring modules.  When embedded in a

larger network, a loop module experiences regulatory signals from other module(s)

that vary over time, as the concentration of the regulator changes.  To simplify the

question of how external regulation affects the modules, we replaced the time-varying

regulatory signal with a constant regulatory “push” to the module, creating a "static-

signal" module (Figure 1.6).  The static input signal exerted the same kind of

transcriptional control over the loop that a neighboring module would have, but

without the complicating factor of the strength of the regulation changing over time as

the network settled to equilibrium.

We then conducted two kinds of tests.  First, we asked whether this simplified

external regulation was sufficient to recapture the robust-RL phenomenon we had

noted in larger networks.  We varied the internal parameters of the loop module while

maintaining a constant external “push” at a concentration of 1.0, and measured the

local robustness of the module.  We did this for all 8 of the static-signal modules

illustrated in Figure 1.6, for 250 parameter sets each.  We found that RL modules did

indeed show higher robustness to simulated mutation in this scenario (permutation test

on local robustness: p-value < 2.00e-4 for each of actAL1 vs. actRL1, repAL1 vs.

repRL1, actAL2 vs. actRL2, and repAL2 vs. repRL2), demonstrating that the

emergent robustness of RL-containing networks is due, at least in part, to the input

that RL modules receive.
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Secondly, we found that the static external regulation was substantially more

likely to push RL modules into a monostable condition -- that is, into a mode where all

initial concentrations led to the same steady-state expression levels.  When isolated,

RL and AL networks had approximately equal numbers of pluripotent (bistable) cases

(Figures 1.9d-e, 1.10d-e, 1.11d-e, 1.12d-e; X=0).  However, RL modules responded

Figure 1.9.  External regulation often pushes bistable repressor loop (RL)
modules into monostability.  Pictured here: RL2.  In c, d: Orange points represent
the number of parameter sets that are bistable at the steady state 1100; blue points are
those bistable at 0011.  In c, 1100 is encouraged (E) by the external regulator, and
0011 is discouraged (D); in d, the external regulator is a repressor so the pressures are
reversed.  B indicates the number of bistable parameter sets.

much more vigorously to external regulation than AL modules did, and nearly all of
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external regulator (Figures 1.9, 1.10).  AL modules often stayed bistable when under

external regulation, or shifted from monostable for the stable state discouraged by the

regulator to a bistable condition (Figures 1.11, 1.12).

Figure 1.10.  External regulation often pushes bistable repressor loop (RL)
modules into monostability.  Pictured here: RL1. In c, d: Orange points represent
the number of parameter sets that are bistable at the steady state 10; blue points are
those bistable at 01.

In biological terms, a monostable cell is one that is committed to a particular

cell fate.  Changes in the concentrations of the gene network components cannot bring

a monostable cell to the basin of attraction of another steady state expression level,

because no such alternate steady state exists.  As a result, following a perturbation, the
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network settles back into its original steady state.  Such a cell is dynamically robust to

transient events.

Figure 1.11.  Activator loops (here, AL2) often retain their bistability even under
the influence of external regulation. In c, d: Red points represent the number of
parameter sets that are bistable at the steady state 1111; blue points are those bistable
at 0000.  In c, 1111 is encouraged (E) by the external regulator, and 0000 is
discouraged (D); in d, the external regulator is a repressor so the pressures are
reversed.  B represents the number of bistable parameter sets.

Bistable cells, by contrast, are vulnerable to internal noise and environmental

changes that affect gene expression.  The discrete, often small numbers of molecules

involved in intracellular reactions can cause substantial shifts in the concentrations of

RNA and proteins in a cell (Thattai and van Oudenaarden 2001; Elowitz et al. 2002;

Ozbudak et al. 2002).  Such shifts can knock the system out of one basin of attraction

and into the other, triggering switching between steady-state expression levels (Hasty
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et al. 2000), as has been demonstrated in yeast for an activator loop (Becskei et al.

2001).

Figure 1.12.  Activator loops often remain bistable despite external signals.
Pictured here: AL1. In c, d: Red points represent the number of parameter sets that
are bistable at the steady state 11; blue points are those bistable at 00.

A pluripotent repressor loop network can readily be pushed into either

monostable (committed) state by an external regulator.  In that state, even substantial

noise or environmental perturbation to the network will not persuade the cell to switch

to the alternate expression pattern.  Pluripotent activator loop networks, by contrast,

often retain their pluripotency (bistability) when subject to external regulation.  The

result is cells that, even when pushed toward a particular fate by outside signals, retain

their vulnerability to stochastic events that can knock the network out of the basin of
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attraction of one steady-state and into the other, changing the cell fate.  A gene

regulatory network constructed of repressor loops, then, is one that will adopt the

expression state its regulators impose upon it, and keep that state despite noise or

variation in the system.

In addition to being dynamically robust to transient events and noise,

monostable cases are also more robust to parameter variation - that is, to perturbations

in the genetic regulatory effects within the network itself, such as mutations (Figures

1.13, 1.14).  This trend holds for isolated modules without external regulation as well

Figure 1.13. Monostability helps confer robustness to parameter variation.
Vertical axis of each panel: Local robustness to simulated mutation at each of 250
parameter sets for a static-signal module.  Horizontal axis: Basin size for the steady
state “encouraged” by constant external regulator X (at X=0.5) for a given parameter
set, measured as the proportion of initial concentrations that settled on that steady
state.  Basin sizes of 0 (far left of each panel) or 1.0 (far right) are monostable.  In
each panel, parameter sets that are monostable for either steady state tend to be more
robust to the simulated mutations, resulting in a U-shaped distribution.
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(Figure 1.13b,e; Figure 1.14b,e).  For monostable cases, small changes affect the

shapes of the trajectories, but generally not their destined steady state.  Therefore,

mutations change the transient concentrations, but leave the final, stable expression

pattern unchanged.

Figure 1.14. Monostability helps confer robustness to parameter variation (2-
node modules).  Analogous to Figure 1.13, but with the 2-node modules AL1 and
RL1.

The effect of external input is often to move bistable isolated modules to a

monostable state, which is more robust to parameter variation.  RL modules are more

susceptible to this pressure toward monostability.  This explains their greater

robustness to simulated mutation, which we observe only when they are embedded in

a larger regulatory context.

Repressor loops can adopt either monostable state when stimulated to do so by

external regulation (Figures 1.9, 1.10).  The symmetry of the feedback within the
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repressor loop is what causes this "ambidextrous" response.  Repressor loops have

internal reinforcement of both up-regulation and down-regulation.  An external

repressor, of course, is reinforced directly by pA’s influence on mA.  Less obviously,

an external activator also encounters internal reinforcement of its signal, albeit

indirectly.  It up-regulates mA, which down-regulates pA, which in turn allows mA’s

concentration to rise.  The result is that even the activating “pushes” on RL modules

induces many transitions to monostability.

The balance between steady states in activator loops is of a different kind.

Instead of two nodes jockeying to knock down each other’s expression, activator loops

achieve the unexpressed state (00/0000) when the decay rates of both nodes are

balanced with the strength of mutual activation.  External regulation can nudge this

balance upward or downward, but tends not to have the precipitous effect of boosting

one node into complete dominance over the other, as in the repressor loop.

This difference is visible in the transitions made by individual modules as

external regulation gradually grows more intense (Figures 1.15-1.18).  Repressor loops

tend to reach a "tipping point" and flip from one monostable state to the other.  For

example, in parameter set 19 of Figure 1.15, the RL2 module is monostable when the

activating external signal is at value 0.0, shown at the left side of the box (green

circles).  None of the trajectories end at steady state 1100.  The size of the 1100 basin

of attraction remains essentially unchanged as the external activation increases from 0

to 0.5, but abruptly increases to 1 − monostable at the other steady state − when the

signal strength reaches 0.6.  By contrast, in the corresponding parameter set for the

activator loop AL2 (Figure 1.17), the basin of attraction of steady state 1111 gradually

increases in size (green circles), and the system remains bistable even at X=1.0.

Interestingly, RL modules' extra sensitivity to external signals near the tipping point –

a kind of instability – confers extra robustness to parameter variation, because it
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promotes the switch into monostability.  Activator loops, by contrast, are more likely

to experience a gradual movement of the boundary between the basins of attraction,

while retaining bistability.

Figure 1.15.  As the strength of the external signal increases (horizontal axis), the
size of the basin of attraction (vertical axis) changes more abruptly for RL
modules (above and Figure 1.16) than for AL modules (Figure 1.17, 1.18).  Each
panel in this series of four figures represents a single parameter set of an RL or AL
module.  Figure 1.15: Size of 1100 basin for module RL2 as it receives constant
external activation (green circles) or repression (red crosses) of increasing intensity.
Initially bistable parameter sets of the repressor loop module abruptly flip to the
monostable state (top or bottom of panel) that is encouraged by the external signal.
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Figure 1.16: Size of 10 basin for module RL1 as it receives constant external
activation (green circles) or repression (red crosses) of increasing intensity.
Initially bistable parameter sets of the repressor loop module abruptly flip to the
monostable state (top or bottom of panel) that is encouraged by the external signal.
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Figure 1.17: Size of 1111 basin for module AL2 as it receives external activation
(green circles) or repression (red crosses) signals of increasing intensity. Activator
loop basins change much more gradually than repressor loop basins, and sometimes
remain bistable even at maximum signal strength.
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Figure 1.18. Size of 11 basin for module AL1 as it receives external activation
(green circles) or repression (red crosses) signals of increasing intensity.
Activator loop basins change much more gradually than repressor loop basins, and
sometimes remain bistable even at maximum signal strength.
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Because repressor loops can easily be pushed into either monostable condition,

they are well suited to gene networks controlling cell fate decisions.  The ideal

decision-making mechanism for a cell undergoing differentiation would be one that

integrates external signals, and then responds to them in a complete and unambiguous

way that is not compromised by stochastic variations in molecular concentrations, or

by quantitative genetic variation in the details of its interior interactions.  In the

language of dynamics, it would be monostable at the “encouraged” steady-state when

pushed that way by an external regulator, monostable at the other steady-state when

stimulated in that direction instead, and robust to mutation in both cases.  Regulatory

networks that meet all four criteria fall into the special category of optimal decision-

making mechanisms.  We scored each module type for these four characteristics (see

A1.6), and found that RL modules are dramatically closer to the cell-differentiating

ideal (permutation test, details in A1.6: AL1 (mean = 1.60) vs. RL1 (mean = 1.88), p-

value < 2.00e-4; AL2 (mean = 1.64) vs. RL2 (mean = 1.76), p < 2.00e-4) as illustrated

in Figures 1.19 and 1.20.  Repressor loops, then, not only can achieve robust

commitment to one cell fate when signaled to do so; they can also achieve the other

cell fate when pushed in the other direction.  If we could design a network for making

developmental decisions, we would choose to assemble it out of mutually repressing

genes.

Of course, the developmental networks in nature are not designed, but are the

product of evolution.  While selection for mutational robustness may be a weak force,

selection for succeeding at the precise and delicate task of building a body -- despite

intrinsic and extrinsic noise due to variation in diffusion rates, molecule numbers,

temperature, and so on -- is surely a strong selective pressure.  We speculate that
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selection for tolerating variation within an organism's lifetime has led, in part, to the

abundance of repressor loops we see in well-studied developmental networks

Figure 1.19.  Repressor loops readily become robust in response to both activating
and repressing external signals.  At each of the 250 parameter sets of AL and RL
modules, we measured the local robustness to parameter variation as the module was
activated or inhibited by a static external signal.  Green: AL1, AL2.  Blue: RL1, RL2.

Figure 1.20.  Repressor loops readily become monostable in response to both
activating and repressing external signals.  At each of the 250 parameter sets of AL
and RL modules, we measured the basin size (proportion of initial concentrations
reaching a given steady state) as the module was activated or inhibited by a static
external signal.  Green: AL1, AL2.  Blue: RL1, RL2.
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(Brandman et al. 2005) and, as a fortunate side-effect, to the toleration of genetic

perturbation.  The gap gene network in early Drosophila segmentation patterning, for

example, is composed almost entirely of interlocking repressor loops (Niessing et al.

1997; Clyde et al. 2003; Schroeder et al. 2004), and the downstream segment polarity

network contains them as well (Von Dassow and Odell 2002).

The especially thorough elucidation of the regulatory network of sea urchin

development (Davidson et al. 2002) has uncovered many feedback loops employed to

“lock in” an expression pattern transiently specified by a signal from outside the loop

module.  Repressor loops, tending toward monostability when either activated or

repressed by an external signal, are especially well suited to performing this task.  A

feedback loop that is bistable when isolated (as both RL and AL modules often are)

can occupy either of the two steady-state expression levels.  When an external signal

pushes the feedback module from a bistable phase into monostability, however, it

moves the cell to the only steady state expression allowed now, regardless of which

steady state it had occupied before.  When the external signal fades away, the module

relaxes back into the bistable state – but now the cell stays at the steady state to which

it was pushed, because of the hysteresis in the system.  If the feedback loop had

retained both steady states during the outside regulation, any cells occupying the other

steady-state could remain there during the signal, and retain that state when the signal

disappeared, leaving no record of what the signal had been. Thus, only a module that

becomes monostable when signaled can reliably record the transient information.  Our

simulations indicate that repressor loops are far more apt to do so, and in fact they

appear in the urchin regulatory networks as delimiters of developmental regions.  For

example, upstream specification signals set the switch position of the

goosecoid/deadringer repressor loop (Davidson et al. 2003), which serves to

demarcate the oral ectoderm region.  We predict that as more developmental networks
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are mapped in detail, repressor loops will turn up frequently in the role of memory

circuits, recording transient signals in order to direct downstream differentiation.  In

the meantime, synthetic repressor loops in microbes have experimentally

demonstrated that RL modules can be readily pushed into either stable state by means

of transient external signals, and that such modules will remember their new state after

the signal has ceased (Gardner et al. 2000).

In summary: We developed quantitative metrics of the robustness of gene expression

in the face of regulatory variation.  Using these measurements, we found that two-

module networks which contained more mutual repression (RL) loops were more

robust to simulated regulatory mutations (parameter variation) than those with

activator loop (AL) modules.  Isolated loop modules showed no such tendency.

Analysis of static-signal modules revealed that the robustness trend arises, at least in

part, from the fact that RL modules are more likely to become monostable in response

to external regulation, such as that received by another gene or module in the network.

That is, the repressor loops settle exclusively on whichever steady state is encouraged

by the outside signal, regardless of the initial concentrations of the network

components.  AL modules, by contrast, often retain their bistable (pluripotent) status

despite external signals to the contrary.  This incomplete response to regulation

renders them more vulnerable to noise (which can stochastically flip the state of the

feedback loop from one steady state to another) and regulatory mutations (which can

change the persistant boundary between basins of attraction).  Repressor loops are thus

better suited for the precise and consistent cell fate decisions required by much of

development, while activator loops may play a role in regulatory networks where

variable responses to identical conditions are desirable.
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Further exploration

Critical tasks that must proceed in a stereotypical fashion every time, like

many of those in development, should be selected to employ robust motifs like

repressor loops.  At the same time, our findings suggest that where repressor loops

appear, they may buffer more regulatory variation than other motifs can.  An

experimental prediction thus arises from our findings: Because they can mask

deleterious variation in regulatory parameters, we predict that repressor loops in nature

should tend to have more standing regulatory variation in the population than activator

loops in gene regulatory networks of similar functional importance.  Additionally, the

converse should be true of activator loops: when they appear in networks that lead to

highly canalized phenotypes, we expect to find very little regulatory variation in their

internal feedback interactions.

We have considered feedback loops in the context of developmental networks

that require precision and repeatability, but some genetic networks have the task of

amplifying stochastic effects instead of damping them.  For example, bacterial

persistence is a phenomenon whose mechanistic details are not yet clear, wherein the

members of a genetically identical population of bacteria adopt either a slow-growing,

antibiotic-resistant "persister" state or a virulent, fast-growing, antibiotic-vulnerable

phenotype (Balaban et al. 2004; Kussell and Leibler 2005; Kussell et al. 2005).  Cells

can switch back and forth between these states, apparently stochastically.  This

behavior has been observed in a number of bacterial species, including some important

pathogens (Balaban et al. 2004).  A phenomenon like this, where it is actually

desirable for stochastic signals to flip the expression pattern from one state to another,

would be an excellent fit for activator loops and their tendency to retain bistability.

There is tantalizing evidence of just such an activator loop between TNF-α and
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antigen 85B, a protein involved in the active-growth phase of Mycobacterium

tuberculosis (Wilkinson et al. 2001; Zahrt 2003).  Other systems in which diversity is

beneficial, such as gene networks involved in the immune response, would also be

expected to employ the noise-magnifying abilities of activator loops.

The topology of repressor loop modules lends them the ability to respond with

alacrity to external regulation in either direction.  This property of RL modules – the

ability to cleanly and robustly adopt either steady state when pushed toward it by an

external signal – is invaluable in a context like development, when switch-like

decisions are common and each cell must reliably adopt the correct expression state.

Organisms require gene regulatory networks that maintain their functions in many

genetic backgrounds and despite small intrinsic noise and mutational insults.  Our data

suggest that the robust class of repressor loop modules will be common in large-scale

gene regulatory networks, especially those where the correct expression state is

important to the fitness of the organism.  Where amplification of stochastic events is

useful, we predict that activator loops will predominate instead.

Some developmental processes may even benefit from a combination of the

two motifs' special abilities: a bistable activator loop adopting an expression state

nearly at random, which is then relayed as a regulatory signal to a repressor loop

entrusted with robustly committing the cell to that fate.  When a mosaic of different

cell types in a single tissue is desirable, interlocked activator and repressor loops could

help generate that pattern. As Csete and Doyle (2002) point out, "An important use of

positive feedback is to deliberately destabilize equilibria and amplify small differences

to create switches and to break symmetries and homogeneities.”  Becksei et al. (2001)

experimentally demonstrated that an activator loop in a eukaryote could switch cells

from one stable state to another in response to noise.  Differentiation, initiated by

activator loops and stabilized by robust repressor loops, could thus help determine
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developmental cell lineages.  For example, a recent paper (Chang et al. 2008) showed

that stochastic switching between stable states in mouse hematopoietic progenitor cells

played an important role in differentiating the population into erythroid or myeloid

cell fates.

We limited our study to four mathematical representations of the AL and RL

topology, in order to explore those models exhaustively.  The dose-response curves of

the Hill functions we employed have been widely used to represent many different

kinds of regulation, with quite different biological mechanisms underlying the

regulation.  Because of the general nature of our mathematical representation, we

anticipate that our findings about repressor vs. activator loops will generalize outside

transcriptional regulatory networks.  However, there are many levels of interaction

that we omitted in our simple models, such as translational and post-translational

regulation.  Additional regulatory mechanisms such as RNAi are emerging as

important influences of gene expression, and feedback loops in biological gene

networks are invariably more complex than those studied here.  In addition, there are

of course other ways to mathematize transcriptional regulation: stochastic models,

kinetic models, Boolean models, and other styles of the continuous differential

equations we chose, for example.  We hope others will continue to explore the

question of which topological motifs confer environmental and genetic robustness to

the networks in which they are embedded.  In this way, we can begin to break down

the dauntingly complex dynamics of genome-scale regulatory networks into

understandable components, and improve our ability to predict the expression patterns

of large feedback-containing networks based on their topology.

Existing databases of transcriptional interactions, such as TRANSFAC

(Wingender 2008) or RegulonDB (Gama-Castro et al. 2008), consist mostly of

unidirectional motifs -- chains, feed-forward loops, and cascades.  However, many of
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the well-studied gene regulatory networks such as Drosophila segmentation patterning

(Niessing et al. 1997; Von Dassow and Odell 2002) abound with feedback loops.  Part

of the answer to this paradox is in the bias that partial sampling brings to the

databases.  A feedback loop, if we omit one of its edges because of incomplete

knowledge, unravels into a linear pathway.  As a result, the sampling bias in any set of

transcriptional interactions with missing data should artificially elevate the number of

cascade and chain motifs, and lower that of loops.  Indeed, the most famous gene

regulatory module of all, the lac operon, is a repressor loop: lacI's protein suppresses

transcription of the mRNA for lactose permease, which increases allolactose

concentrations in the cell, and allolactose allosterically inhibits lacI.  However, the lac

operon would appear to be a chain instead of a feedback loop if we omitted allolactose

-- a molecule not present in transcriptional databases.  Hybrid datasets including both

transcription factors and small molecules like nutrients do, in fact, find an abundance

of feedback loop motifs (Babu and Teichmann 2003), though these surveys have so far

only been done in microbes, so far as we are aware, which limits their applicability to

developmental questions.  We therefore eagerly await the arrival of integrated

developmental databases that encompass genes, proteins, ligands, and metabolites, and

look forward to exploring the regulatory motifs that will be revealed therein.
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APPENDIX

A1.1. Details of the two-module networks

To enable a clean comparison of the effects of activator vs. repressor loops (AL vs.

RL) while controlling for the effects of network size, we constructed all

topologically unique regulatory pairs of AL1 and RL2 modules, and then made

the mirror image of each two-module network using RL1 and AL2 modules.  All

regulation between modules was transcriptional, i.e., from a protein node in one

module to an mRNA node in the other.  The complete list of two-module

networks follows.  “p” nodes represent the concentration of proteins, and “m”

nodes represent the concentration of mRNAs.  For convenience, genes in 2-node

modules (AL1, RL1) are labeled A (in the first module in the pair; thus, mA and

pA for the mRNA and protein nodes of that gene) or B (in the second module of

the pair).  Genes in 4-node modules (AL2, RL2) are labeled C and D (first

module) or E and F (second module).

Mathematical representation of the networks may be found in A1.2.

1a. AL1actAL1 (Node pA in the first module transcriptionally activates node mB
in the second module.)
1b. RL1actRL1 (Same between-module regulation as in 1a, but the individual
modules are now repressor loops rather than activator loops.)

2a. AL1repAL1 (Node pA in the first module transcriptionally represses node mB
in the second module.)
2b. RL1repRL1

3a. AL1actAL1act (Feedback between the modules.  Node pA in the first AL1
module transcriptionally activates node mB in the second AL1 module; node pB in
the second AL1 activates node mA in the first AL1.)
3b. RL1actRL1act
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4a. AL1actAL1rep (pA in the first AL1 activates mB in the second AL1; pB in the
second AL1 represses mA in the first AL1.)
4b. RL1actRL1rep

5a. AL1repAL1rep
5b. RL1repRL1rep

6a. AL1actRL2 (pA in AL1 transcriptionally activates mC in RL2.)
6b. RL1actAL2

7a. AL1repRL2
7b. RL1repAL2

8a. RL2actAL1 (pC in RL2 transcriptionally activates mA in AL1.)
8b. AL2actRL1

9a. RL2repAL1
9b. AL2repRL1

10a. AL1actRL2act1 (pA in AL1 activates mC in RL2; pC in RL2 activates mA in
AL1.)
10b. RL1actAL2act1 (The same nodes are involved in the same between-module
interactions, though within-module regulation is of course the opposite of 10a.)

11a. AL1actRL2act2 (pA in AL1 activates mC in RL2; pD in RL2 activates mA in
AL1.)
11b. RL1actAL2act2

12a. AL1actRL2rep1 (pA in AL1 activates mC in RL2; pC in RL2 represses mA
in AL1.)
12b. RL1actAL2rep1

13a. AL1actRL2rep2 (pA in AL1 activates mC in RL2; pD in RL2 represses mA
in AL1.)
13b. RL1actAL2rep2

14a. AL1repRL2rep1 (pA in AL1 represses mC in RL2; pC in RL2 represses mA
in AL1.)
14b. RL1repAL2rep1

15a. AL1repRL2rep2 (pA in AL1 represses mC in RL2; pD in RL2 represses mA
in AL1.)
15b. RL1repAL2rep2
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16a. AL1repRL2act1 (pA in AL1 represses mC in RL2; pC in RL2 activates mA
in AL1.)
16b. RL1repAL2act1

17a. AL1repRL2act2 (pA in AL1 represses mC in RL2; pD in RL2 activates mA
in AL1.)
17b. RL1repAL2act2

18a. RL2actRL2 (pC in the first RL2 module activates mE in the second RL2
module.)
18b. AL2actAL2

19a. RL2repRL2 (pC in the first RL2 represses mE in the second RL2.)
19b. AL2repAL2

20a. RL2actRL2act1 (pC in the first RL2 activates mE in the second RL2; pE in
the second RL2 activates mC in the first RL2.)
20b. AL2actAL2act1

21a. RL2actRL2act2 (pC in the first RL2 activates mE in the second RL2; pE in
the second RL2 activates mD in the first RL2.)
21b. AL2actAL2act2

22a. RL2actRL2act3 (pC in the first RL2 activates mE in the second RL2; pF in
the second RL2 activates mD in the first RL2.)
22b. AL2actAL2act3

23a. RL2actRL2act4 (pC in the first RL2 activates mE in the second RL2; pF in
the second RL2 activates mC in the first RL2.)
23b. AL2actAL2act4

24a. RL2actRL2rep1 (pC in the first RL2 activates mE in the second RL2; pE in
the second RL2 represses mC in the first RL2.)
24b. AL2actAL2rep1

25a. RL2actRL2rep2 (pC in the first RL2 activates mE in the second RL2; pE in
the second RL2 represses mD in the first RL2.)
25b. AL2actAL2rep2

26a. RL2actRL2rep3 (pC in the first RL2 activates mE in the second RL2; pF in
the second RL2 represses mD in the first RL2.)
26b. AL2actAL2rep3

27a. RL2actRL2rep4 (pC in the first RL2 activates mE in the second RL2; pF in
the second RL2 represses mC in the first RL2.)
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27b. AL2actAL2rep4

28a. RL2repRL2rep1 (pC in the first RL2 represses mE in the second RL2; pE in
the second RL2 represses mC in the first RL2.)
28b. AL2repAL2rep1

29a. RL2repRL2rep2 (pC in the first RL2 represses mE in the second RL2; pE in
the second RL2 represses mD in the first RL2.)
29b. AL2repAL2rep2

30a. RL2repRL2rep3 (pC in the first RL2 represses mE in the second RL2; pF in
the second RL2 represses mD in the first RL2.)
30b. AL2repAL2rep3

31a. RL2repRL2rep4 (pC in the first RL2 represses mE in the second RL2; pF in
the second RL2 represses mC in the first RL2.)
31b. AL2repAL2rep4

A1.2. Mathematical representation of the networks

We adapted the Hill-function centered equations of the Center for Cell Dynamics,

which are described in (von Dassow et al. 2000; Meir et al. 2002).  These are the most

biologically well-grounded mathematical representations of transcription and

translation of which we are aware, and they have the additional advantage of being

easy to mix and match as different combinations of regulators conspire to modify the

transcription of a single gene.  We followed their method for non-dimensionalizing

and normalizing the equations, so that all variables are confined to values between 0

and 1.

Biologically plausible parameter ranges were adapted from von Dassow et al.

(2000).  All ranges were sampled from linearly:

k (half-maximal activation/represson coefficient): 0 – 1

n (Hill/cooperation coefficient): 1 – 10

H (half life, in minutes): 5 – 100
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Each transcriptional regulatory edge between a protein and an mRNA node had its

own n and k parameter, with a value independent of other n and k parameters.

For example, for an RL2 module with gene A regulating gene B and vice versa,

the parameters would be:

For d(mA)/dt: npB_mA, kpB_mA, HmA

For d(pA)/dt: HpA

For d(mB)/dt: npA_mB, kpA_mB, HmB

For d(pB)/dt: HpB

Transcriptional regulatory edges between modules inherited parameters from

within modules.  For example, if protein pB also regulated a gene in a

neighboring module, its parameters for that regulatory relationship would be the

same as those for its target gene within its own module.  However, these

inherited parameters were halved and doubled independently of the within-

module parameters for local robustness tests.

We chose initial concentration points to cover phase space evenly, via the Sobol

quasirandom number generator algorithm (Press 1992), as implemented in the

qrng module for pygsl (Gädke et al. 2007).  We also used this algorithm to

sample the 250 points in parameter space.
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Mathematical representation:
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A1.3. Robustness metrics

Global robustness

We explored bifurcations in parameter space by sampling trajectories to

delineate the basins of attraction.  We decided on this approach rather than a formal

bifurcation analysis for two primary reasons.  First, our goal was to survey all of

parameter space, rather than the neighborhood of a particular parameter set (as we

might have if we had been investigating a particular biological network and had fitted

our equations to experimental data).  A traditional method of bifurcation analysis is to

hold all parameters constant except one, and calculate the bifurcations that occur as

that parameter is varied.  Given our global approach, there was no natural point at

which to hold all n-1 parameters while we changed one; we would have needed to

make these “slices” throughout all of parameter space.  With some of the two-module
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networks reaching 20 parameters, this was not practical.  Instead, we selected 250

points in parameter space for each network and determined the attractors there.

Second, many gene networks formally had more stable states than would be

practically accessible to a cell possessing such a network.  For example, all AL1

modules have a stable node at mA=0, pA=0 because of the decay terms in the

equations.  However, for many parameter sets, the basin of attraction of this node is so

tiny (e.g., a separatrix less than 1e-3 away from the node at 0,0) that that part of phase

space would never be explored by a biological system.  We elected to ignore attractors

like this as biologically meaningless, if mathematically valid.  We considered a

module “monostable” if all 1000 trajectories settled on the same steady state, even if

another attractor formally existed in the system, because such a gene regulatory

network would act monostable in a real cell.  “Bistable” modules were those where at

least one (usually more) of the 1000 trajectories settled on a second attractor.

The steady states reached by the different parameter sets all tend to concentrate

in the corners one would expect for the network in question, and we labeled them as

such.  For example, the steady states for a two-module network containing an AL1

module and an RL2 module tend to be near one of these four corners of phase space,

where mA/pA are the nodes in AL1 and mC/pC/mD/pD are the nodes in RL2:

1) mA=0, pA=0; mC=0, pC=0, mD=1, pD=1 (00; 0011)

2) mA=0, pA=0; mC=1, pC=1, mD=0, pD=0 (00; 1100)

3) mA=1, pA=1; mC=0, pC=0, mD=1, pD=1 (11; 0011)

4) mA=1, pA=1; mC=1, pC=1, mD=0, pD=0 (11; 1100)

We sorted the steady states found for each parameter set into the corners of phase

space, and labeled them by the corner they were closest to.
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To measure global robustness for each network, we used the Sobol algorithm

mentioned above to generate 250 points evenly distributed across parameter space.

For each parameter set, we did the following:

For each of 1000 initial concentrations (IC) of the network components, we

integrated the equations to find the steady state each initial concentration settled at.

We labeled each IC by the steady state it reached.

Thus, for each parameter set, we had a list of 1000 steady-state corner labels.

The set of ICs with the label for a particular steady state is the basin of attraction for

that steady state.

We compared the basins across parameter sets, and measured how much they

varied.  For each steady state with label L, we examined each unique pair of parameter

sets and calculated the proportion of parameter set i’s basin for L that was also L’s

basin for parameter set j; and the proportion of parameter set j’s basin for L that was

also L’s basin for parameter set i (see eq. 4, main text).  We took the mean of these

values over all unique pairs of parameter sets to find the proportion of L’s basin that

matched across the average pair of parameter sets (eq. 5, main text).  This produced a

global robustness score for steady state L: the average proportion of L’s basins that

were shared across parameter sets.

We summed the scores for all steady states, weighting each one by its average

basin size (eq. 6, main text).   This produced an overall global robustness metric for

the network in question.  Global robustness scores varied between 0 (no consistency of

basins among parameter sets) and 1 (every parameter set has the same basins for each

steady state).
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Local robustness

Global robustness is a measure of how consistent basins of attraction are across

all of parameter space.  We also developed a metric to mimic more closely the

mutational process.  To calculate this local robustness, we began with a single

parameter set, and then doubled and halved each parameter value in turn.  The

calculation is similar to that for global robustness, but instead of comparing basins

across all pairs of parameter sets, we compared the basins resulting from each

parameter tweak to those of the original, un-tweaked parameter set.

Each network has one measurement of global robustness, across all 250

parameter sets.  By contrast, each network has multiple measurements of local

robustness; there is one local robustness measurement for each parameter set and its

tweaks.  We measured local robustness for 250 parameter sets for each isolated

module and static-signal network (2-4 nodes each).  Because of computational

limitations, we measured local robustness for 16 of the larger two-module networks

(4-8 nodes each), in the following way.  For each isolated module (AL1, RL1, AL2,

RL2) we selected four parameter sets to illustrate the range of behavior it could

exhibit.  Each representative parameter set was bistable, to more easily allow the two-

module network containing the modules to range in any direction.  Each two-module

network was assembled with all combinations of the representative parameter sets for

its two component modules, yielding 16 parameter sets for each two-module network.

These were used as the original parameter values that could be tweaked to generate a

measurement of local robustness.  To avoid pseudoreplication from the four

representative parameter sets for each module, each of which appears in four of the 16

parameter sets for the two-module networks, the local robustness reported for each

two-module network is the mean measurement across its 16 representative parameter

sets.
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IC-centered robustness

An alternative way of measuring robustness, which avoids the possible

artifacts involved in grouping steady states by their closest corner, would have been to

calculate it for each IC rather than for each steady state.  This “IC-centered

robustness” would measure, for each IC, how much the position of its steady-state

point varied as parameters varied.  We could then take the mean variation over all ICs

as a measure of overall robustness.  This method is in some ways more intuitive, and

we did calculate IC-centered robustness, and found a strong correlation between it and

the “steady-state-centered robustness” described above (data not shown).  However,

IC-centered robustness has a subtle drawback for the two-module networks.   The

interactions between the two modules of the two-module networks tend to discourage

some of the steady states that would be represented in the modules if they were

isolated.  For example, in the AL1/RL2 pair above, we had four possible steady states.

If the two modules were connected in the two-module network AL1actRL2act, we

would have the between-module regulatory edges:

pA --> mC

pD --> mA

The first edge will tend to discourage the steady state where pA=1 and mC=0, because

when pA is at high concentration it will raise the expression of mC.  Thus, we lose

steady state 3 in the list above.  The second edge will discourage pD=1, mA=0 steady

state (number 1 in the list).  In practice, most trajectories in AL1actRL2act will

occupy steady states 2 or 4.

Now consider AL1actRL2rep, with the edges:

pA --> mC

pD --| mA
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Steady state 3 remains discouraged by the first edge, which is unchanged.  The second

edge discourages the steady state where pD=1, mA=1, because high pD will

effectively suppress transcription of mA.  Looking at the list of possible steady states,

we find that the steady state “prohibited” by the second edge is also steady state 3.

Both edges suppress the same steady state.  Trajectories in this system will generally

distribute themselves across the three remaining steady states.

As a result of this kind of effect, some two-module networks have two

“encouraged” steady states and some have three.  Those with three are biased toward

lower IC-centered robustness, because each IC has three choices of destination instead

of two.  This almost invariably increases the average distance between the steady

states that an IC selects as parameters vary, and consequently lowers its robustness.

The “steady-state centered” robustness metric we used instead, for both local and

global robustness, avoids this bias by measuring the robustness of each steady state,

and thereby controlling for the number of steady states present in the network.

Oscillatory exceptions

The modules were chosen in part because their fixed points were stable nodes,

and for most of the two-module networks (and all of the isolated and static-input

modules), we did not observe periodic behavior for any parameter values.  For a few

of the two-module networks, we found damped oscillations indicating a bifurcation

from a stable node to a stable spiral (damped oscillator, settling to a steady state).  We

did encounter stable oscillations for 2 out of 640 simulated mutation trials for

RL2actRL2rep1, 1 out of 384 for RL1actRL1rep, and 2 out of 512 for

AL1actRL2rep1.  Since this represented such a tiny part of our data (less than 0.4% of

the trials for each), we chose to restrict the extent of the simulated mutations that

triggered the stable oscillations in those isolated cases.  Instead of doubling or halving
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the troublesome parameters in local robustness trials, we increased or decreased them

to a point just short of that required to produce oscillations.

A1.4. Static-signal networks

These networks consisted of a single isolated module (AL1, AL2, RL1, or

RL2) with one external regulator (“X”) that modified transcription of mA (AL1, RL1)

or mC (AL2, RL2).  X acted like a protein node from another module, using the same

four terms as in the two-module network: TxnAct_Act, TxnRep_Rep, TxnAct_Rep,

and TxnRep_Act.  The difference was that X’s value, or “concentration,” was held

constant, allowing us to observe the steady-state behavior of a single module while it

was being regulated externally, without the confound of the regulator’s concentration

changing with time.  We varied X from 0 to 1, the same range as exhibited by the

other variables in our model.

The external regulator “encourages” one steady state and “discourages”

another.  For actAL1, X helps activate the transcription of mA, so it pushes trajectories

toward the steady state mA=1, pA=1 (11) and away from 00.  Hence, the proportion of

ICs leading to the encouraged steady-state of 11 tends to grow, and the basin of

attraction for 00 tends to shrink.  The opposite is true if X suppresses mA’s

transcription (actAL1).  The effects of the X regulator are:

actAL1 (actAL2): 11 (1111) encouraged, 00 (0000) discouraged

repAL1 (repAL2): 00 (0000) encouraged, 11 (1111) discouraged

actRL1 (actRL2): 10 (1100) encouraged, 01 (0011) discouraged

repRL1 (repRL2): 01 (0011) encouraged, 10 (1100) discouraged
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A1.5. Statistical comparison of module types

Our set of two-module networks represented the entire population of networks

that could be assembled out of the modules we used as building blocks (conforming to

the rules we used for combining them: maximum of 1 edge from each module to each

other module; transcriptional inter-module regulation only; AL1 modules paired with

AL1 or RL2, and AL2 paired with AL2 or RL1 for balance).  Because our

measurements consisted of the entire population rather than a subsample thereof, we

applied bootstrap techniques to the data.  For metrics where we had a single value for

each network (for example, the global robustness of a network over 250 parameter

sets, or the mean local robustness measurement of a two-module network across its

representative parameter sets), we proceeded as follows.

Each AL/AL network had a corresponding RL/RL network with the same

edges between modules but the modules themselves replaced by RL interactions (the

pairs of networks listed in section A1.1).  These complementary topologies allowed

paired comparisons.  For each AL/AL and RL/RL pair, we calculated the difference in

the metric under study between the two networks.  A difference of 0 would have

meant that the two networks scored the same with respect to the metric (e.g., global

robustness).  We sampled with replacement from the list of differences 10,000 times,

calculating the mean of the sample each time.  To measure the likelihood of the value

0 being drawn from the resulting distribution of means, we calculated the two-tailed p-

value as follows:

right-tailed p-value =  (1 + S ( t >=  t* )) / (N + 1)

left-tailed p-value =  (1 + S ( t  <= t* )) / (N + 1)

2-tailed p-value = 2 (min (right-tailed p-value, left-tailed p-value)
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where N is the number of samplings with replacement (10,000), t is the list of

differences, and t* is the value whose position with respect to the distribution we are

measuring (0).  With 10,000 sampling iterations, the minimum p-value is 2.00e-4.

The mixed-module networks, AL1/RL2 and AL2/RL1, did not allow for

natural pairwise comparisons with the other network types.  To compare AL/AL or

RL/RL networks to mixed-module networks, we used an unpaired permutation test

instead.  Here, we simply make a list of the metric values for each network, labeling

each with its network class (AL/AL vs. AL/RL, for example).  We permute the labels,

take the mean of each class with the permuted labels, and find the difference between

the means.  The resulting set of values gives us the distribution we would expect if

there were no significant difference between the two classes of networks.  As with the

paired test, we compare the critical value – here, the difference between the means of

the correctly labeled network classes – to the distribution to calculate a two-tailed p-

value.

The approach above was employed for two-module networks, where we had a

single value for each network.  Global robustness tests produce a single value across

all parameter sets.  Local robustness tests produce one value per parameter set (the

robustness as those parameters are halved and doubled), but since the parameter sets

used for local robustness testing for two-module networks consisted of all possible

combinations of 4 representative parameter sets for each module (see A1.3, “Local

robustness”), we used the mean local robustness score across all combinations of

representative parameter sets to avoid psuedoreplication.  Thus, each metric for two-

module networks yielded a single value for each network.

When it is appropriate to use multiple measurements for each network, we

have a slightly different problem with the same solution.  Because of the smaller size

of single modules and static-signal molecules, it was tractable to expand our local
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robustness testing to 250 parameter sets distributed across parameter space, instead of

the combinations of representative parameter sets used for two-module networks.  The

measurements at various parameter sets were much more likely to be independent in

this context than with the two-module networks, but incomplete independence was

still a concern.  Also, the sample size of 250 points was somewhat arbitrary, making it

inappropriate to use traditional statistical methods of estimating the power of our tests

– we could simply have sampled twice as many points in parameter space, and

lowered our p-values as a result.  The standard way around this difficulty, which arises

often in research involving simulations, is permutation testing, as above.  To compare

the measurements for two types of networks (e.g., the isolated AL1 module vs. the

RL1 module), we used unpaired bootstrap tests to permute the network labels of the

measurements, and compared the true difference between the two sets of

measurements with the permuted distribution.

There are 4 types of isolated modules (AL1, RL1, AL2, RL2) and 8 types of

static-signal molecules (actAL1, repAL1, actRL1, repRL1, etc.).  Since global

robustness would yield only a single measurement for each module, trends (or lack

thereof) would not be apparent when we used this metric, because of the small number

of data points.  Since global and local robustness had similar patterns for two-module

networks, we confined our comparisons between AL and RL single and static-signal

modules to local robustness measurements only.  We have 250 local robustness

measurements for each isolated and static-signal module, enabling a robust

comparison of module types. We compared the distribution of local robustness

measurements for each sample type, using the permutation testing method described

above.  The results, as reported in the main text, were: AL1 (mean local robustness =

0.886) vs. RL1 (mean = 0.882): p = 0.62.  AL2 (mean = 0.913) vs. RL2 (mean =

0.907): p = 0.45.  Results for static signal networks are in table A1.1, below.



55

Table A1.1. Local robustness of static-signal networks to internal parameter
perturbation.  The concentration of the external signal (“X”) was kept constant at 1.0.

A1.6. Scoring ideal pluripotency

The ideal cell-fate decision mechanism would assume a monostable (and thus

noise-intolerant) condition for one steady state when stimulated in that direction by an

outside signal, and a monostable condition for the other steady state when pushed in

that direction as well.  It would also be perfectly robust to simulated mutations in both

states.  To test whether RL modules did a better job of approximating this “special

category” of regulatory motifs, we tested each static-signal network’s score on four

metrics simultaneously, for each of 250 parameter sets.  Each metric varies between 0

and 1, and X has the concentration of 1.0 for these tests.

• Proportion of ICs that lead to the steady state encouraged by the external

regulator X when X is an activator.  This value is 0 if all trajectories lead to

other steady states, and 1 if the network is monostable for the X-encouraged

steady state.  It has an intermediate value if the network is bistable

Network name Mean local
robustness (250
parameter sets)

Local robustness:
2-tailed p-value of
bootstrap
comparison

actAL1 0.829
actRL1 0.997

2.00e-4

repAL1 0.921
repRL1 1.00

2.00e-4

actAL2 0.900
actRL2 0.995

2.00e-4

repAL2 0.935
repRL2 0.999

2.00e-4
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• Proportion of ICs that lead to the steady state encouraged when X is a

repressor.

• Local robustness to simulated mutation when X is an activator.  Robustness

measurements also vary between 0 and 1.

• Local robustness to simulated mutation when X is a repressor.

To collapse the four metrics into one value that we could use to score each network for

each parameter set, we calculated the Euclidean distance between each parameter set’s

values for the four measurements and 0,0,0,0 (a score of 0 in each category).  A

module that was perfectly monostable and perfectly locally robust under activation

and repression would have the maximum score of 2.00 (sqrt(1+1+1+1)), and be the

closest approximation of the ideal cell differentiation network.

Having condensed the metrics into a single score measuring how good an

approximation of the ideal each network was, we were able to test whether RL

modules’ scores were drawn from a different distribution than that of AL modules’

scores.  We used the unpaired permutation test described above.  Results are below.

RL modules were dramatically closer to the ideal score, for both medium (X = 0.5)

and strong (X = 1.0) external signals.

Our results for static-signal modules suggest that larger networks with mutual

repression modules in them will be better suited for developmental differentiation

tasks than similar networks containing mutual activation modules.
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Table A1.2. Ideal pluripotency scores for static-signal modules with X held
constant at 0.5.

Module type
AL1 RL1 AL2 RL2

Mean local robustness with
external activation .833 .937 .899 .922

Mean local robustness with
external repression .892 .979 .918 .928

Mean size of “encouraged”
basin with external activation .598 .758 .605 .733

Mean size of “encouraged”
basin with external repression .600 .981 .543 .707

Mean overall score (max=2.0)
1.6 1.88 1.64 1.76

2-tailed p-value of bootstrap
comparison        < 2.00e-4        < 2.00e-4

Table A1.3. Ideal pluripotency scores for static-signal modules with X held
constant at 1.0.

Module type
AL1 RL1 AL2 RL2

Mean local robustness with
external activation .829 .997 .901 .995

Mean local robustness with
external repression .921 1.00 .935 .999

Mean size of “encouraged”
basin with external activation .658 .986 .631 .989

Mean size of “encouraged”
basin with external repression .785 1.00 .731 .992

Mean overall score (max=2.0)
1.71 1.99 1.73 1.99

2-tailed p-value of bootstrap
comparison        < 2.00e-4        < 2.00e-4
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CHAPTER 2

BOOLEAN MODELS OF MODULAR NETWORKS

Abstract

How simple can a gene network model be without sacrificing the essential

dynamics of the system?  Real genetic networks can often withstand noise and

parameter variation with their dynamics qualitatively intact, effectively “ignoring”

minor tweaks to the system.  How much detail, then, can we ignore in our models and

still accurately capture their behavior?  These are pressing questions if we hope to

construct genomic models of interacting genes and proteins, because tractability at

such large scales demands that we use simple rules to describe how the components

interact.  To help guide modeling choices for gene regulatory networks, we created

detailed differential equation (DE) models of common gene network motifs – small

feedback loops – whose switch-like behavior might be expected to accommodate a

Boolean representation.  We developed an algorithm for finding the best Boolean

approximation of each DE network module, and of larger networks assembled from

combinations of these modules.  We created three quantitative metrics for determining

how closely the Boolean model approximated the more detailed DE dynamics.  We

used these methods to determine which topologies worked best under a Boolean

model, and which were more susceptible to the artifacts introduced by Boolean

simplifications.  These results can help guide the simplifications necessary for

constructing models of extended genetic networks.
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Introduction

The genome of every organism defines a network of interacting genes.  The

genes and their protein products negotiate among themselves to determine which will

be expressed and which silenced, in each tissue and at each moment in time.  The sum

of these negotiations is the phenotype of the organism.

Interpreting those conversations among the genes, and thereby the map

between genotype and phenotype, is a central challenge of modern biology.  It is not

sufficient to know the identity of all the participants, nor even the regulatory

interactions among them; we must also try to determine what behavior a particular

gene network will produce. Which set of genes will be expressed, at what levels, in

response to which conditions?  How will those expression patterns change with time?

What steady-state expression levels are within the dynamical repertoire of each

regulatory network?  This question becomes formidable when the network includes

feedback loops between the genes, and with the increasing complexity it soon

surpasses our ability to understand intuitively.  To study its behavior, we must codify

the interactions within the network and model their behavior.

What kind of model should we use for this task?  A perfectly detailed

description of the gene network, such as a set of differential equations (DEs) with

experimentally ascertained parameter values, would in some ways be ideal.  It would

tell us all the behavior to expect, for any of hundreds of different initial concentrations

of the molecules involved, and could even help us predict how that behavior would

change if mutation or environmental effects changed some of the parameters – a drop

in temperature, for example, or an increase in binding affinity between a transcription

factor and its DNA target.  Certainly such a model would tell us how a deletion of one

of the genes involved would affect the expression patterns.
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However, we almost never possess that level of detail about the network.

Parameters such as the binding affinity and binding cooperativity of transcriptional

regulators are difficult to measure.  Noise intrinsic in the system, due to small numbers

of molecules (McAdams and Arkin 1999; Elowitz et al. 2002) and bursty transcription

and translation (Ozbudak et al. 2002; Swain et al. 2002) complicates the interactions,

and measurements of parameters have noise in them as well.  Finally, for most

organisms, the experiments to start the network from hundreds of initial

concentrations and track its behavior to characterize the system would be prohibitive.

Instead, we tend to know only the genes involved and portions of the network

topology (e.g., which proteins activate and repress the synthesis of which others).

Even if we had perfect knowledge of all the parameters in the genomic

regulatory network, it would be intractable to simulate the dynamics of a large

network at the level of detail encapsulated in fitted DEs.  Such a model would, in any

case, be unverifiable outside the restricted range of parameters that have been

measured experimentally.  To study the behavior of genome-scale (or even simply

large) gene regulatory networks, we need to employ more tractable, less detailed

models.

Both the level of resolution of the data and the limitations of our computers

prompt us toward a simpler model.  But how simple is too simple?  What level of

abstraction can capture the essential dynamics while remaining tractable and relying

on approximate data?

There have been some indications that a very simple kind of model, a Boolean

representation, might suffice in some cases (Szallasi and Liang 1998; Smolen et al.

2000; Covert and Palsson 2002; Albert and Othmer 2003; Setty et al. 2003; Li et al.

2004; Istrail and Davidson 2005; Mayo et al. 2006; Sudarsan et al. 2006; Istrail et al.

2007; Covert et al. 2008).  The idea of using Boolean models for large-scale networks
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is appealing, because computer scientists have developed many tools for working with

Boolean systems, and computational analysis of such networks is very fast.

However, Boolean models are too simple for many kinds of gene networks.  The

simultaneous updating of all nodes tends to introduce timing artifacts and artificial

oscillations (Glass and Kauffman 1973; Smolen et al. 2000).  Two states, “on” or

“off,” can be insufficient to capture important details of gene expression – for

example, it would be hopelessly inadequate for modeling a morphogen gradient.

More subtly, the 0/1 limitation means that a transcriptional regulator cannot be

perceived as “on” by one of its targets and as “off” by a different target that has a

higher threshold of activation.  Boolean models are therefore only appropriate for

switch-like networks with widely separated, discrete steady states.

Aware of these limitations, researchers have developed a variety of

modifications to Boolean models that mitigate the artifacts they can introduce.  René

Thomas and colleagues (Thomas and D'Ari 1990; Sanchez et al. 1997; Thieffry and

Thomas 1998; Sanchez and Thieffry 2001; Thieffry and Sanchez 2002; Sanchez and

Thieffry 2003) have developed a “logical” modeling framework for genetic networks

in which gene products may have one of a few integer concentration values, rather

than merely 0 or 1.  Necessarily, each gene also has multiple thresholds at which it can

be affected by its regulators.  The update rules in these models are Boolean in style.

For example, in the group’s model of Drosophila melanogaster pair-rule genes

(Sanchez and Thieffry 2003), the protein even-skipped represses odd-skipped if its

value is greater than 1, sloppy-paired if it exceeds 2, and paired if even-skipped is

higher than 3.  These discrete thresholds are parameters used to fit the models to data.

While variables are discrete, the time intervals between Boolean-style updates are

real-valued, and this makes the cumulative model output continuous and avoids some

of the oscillatory effects that can plague Boolean models.
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Researchers have also introduced random asynchronous updating into more

traditional, 0/1-variable Boolean approaches to model gene networks (Chaves et al.

2006; Thakar et al. 2007), and in fact asynchronous updating can fundamentally

change the dynamics of such networks (Husbands and Harvey 1997).  Probabilistic

Boolean networks (Shmulevich et al. 2002) are another way of making Boolean

models less rigid: In these, each node is subject to a number of update rules, one of

which is randomly selected at each timestep.  Finally, some developmental biologists

have used hybrid models in which some cis-regulatory modules act as all-or-nothing

switches and are represented via Boolean rules, while others produce a graded

response in their gene targets (Yuh et al. 1998; Yuh et al. 2001).  A variant of this

approach is employed in McAdams and Shapiro (1995) for a prokaryotic network.

However, most of the tools from computer science for running and evaluating

Boolean networks are designed for their original, simplest form.  If we are to leverage

the progress made in this field, or to simulate gene interaction networks on a genome-

wide scale, it would be useful to discover heuristics that would help guide us in the

application of Boolean models to genetic networks.  There are a number of approaches

that may be promising:

1) We can coarse-grain the network by dividing it into its component dynamic

modules.  This reductionist approach has the advantage of reducing the dimensionality

of the system, and has shown promise as a way to begin understanding large-network

behavior (Alon 2007).

2) We can restrict ourselves to applying Boolean methods only to topologies

for which it is likely to introduce the fewest artifacts.  Developmental networks in

eukaryotes, and nutrient-sensing networks in prokaryotes, are replete with switch-like

motifs that lock in an expression state in response to an external signal (Brandman et

al. 2005; Davidson 2006; Aguda and Goryachev 2007).  Positive feedback loops,
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whether composed entirely of positive regulation or of an even number of repressors

(Thomas and D'Ari 1990; Soulé 2003), have widely separated, non-oscillatory steady

states at high or low values that can be well approximated by the 0s and 1s of a

Boolean model.

3) When translating a real-valued system into one with values restricted to 0 or

1, we can look for ways to draw the threshold between values we call “0” and values

we call “1” at the most natural possible value for each particular network.

To evaluate whether any of these approaches can be useful in distilling a gene

regulatory network into a Boolean representation, we must also develop a metric to

measure how good an approximation the Boolean model is of the original, real-valued

network.  Using this metric, we may also develop other heuristics to determine which

kinds of gene regulatory networks lend themselves to a Boolean representation.

We developed three quantitative metrics of this kind, and measured them in

simulated networks composed of Boolean-friendly positive feedback loop modules,

which exhibit switch-like behavior.  We created detailed, realistic DE models of the

networks, with biologically plausible parameter values.  We then created an algorithm

to produce the best possible Boolean representation of the continuous-value model.

The algorithm defines the best position for the threshold dividing "expressed" from

"unexpressed,” and it selects the best Boolean rule set to approximate the more

complicated behavior of the DE model.  Finally, and perhaps most importantly, it

offers a measurement of how faithfully the optimal Boolean representation reproduces

the more detailed continuous dynamics.

We applied the algorithm to a variety of simple networks made up of feedback

switches (the kind of network we expect, a priori, to be most suitable for a Boolean

model) and studied what characteristics of the networks make them amenable to a

Boolean representation.  We found that certain kinds of feedback loops were more
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amenable to the Boolean approximation, and others tended to produce modeling

artifacts in the transition.  The results reported here may serve as heuristics to guide

Boolean models of gene regulatory networks.

Methods

We examined simulated gene regulatory networks made up of simple kinds of

feedback loop switches to find the best Boolean representation of each, and to

discover whether the properties of component motifs affected the "Booleanizabilty" of

the overall network in which they were embedded.  The two simplest kinds of

biologically plausible positive feedback loop are an “activator loop” consisting of a

single transcription factor that activates its own transcription (AL1) and a “repressor

loop” of two genes that repress each others’ transcription (RL2).  Each of these can

have two steady states, widely separated: 00/11 for the activator loop and 01/10 for the

repressor loop.  We assembled these into two-module networks, keeping the system

small enough that we could analyze its behavior exhaustively.  There are 31

topologically unique combinations of the two loop modules.  We also created the

mirror image of each of these, with transcriptional activation replaced with repression

and vice versa (AL2, RL1), to produce two topologies for each kind of positive

feedback loop.  We used these to generate the counterpart of each of the original two-

module networks, for a total of 62 two-module networks.  This allowed us to control

for network size in our comparisons, and directly evaluate the effect of activating vs.

repressing feedback.  See Chapter 1 for more details on the modules and the two-

module networks assembled from them, and for the DEs and biologically-grounded

parameters used to model these networks.
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Our goal was to map the behavior of the continuous, DE network models onto

a Boolean representation of the networks.  The first step was to characterize the

behavior of the DE version of each network.  We begin by considering the isolated

modules.

For each isolated module, we solved the DE model for 1000 initial

concentrations using the SloppyCell toolkit (Gutenkunst et al. 2007) to generate

information about how the trajectories flow (Figure 2.1a, b).  Each initial

concentration proceeded toward one of the two steady states possible for that module

type.

The next task was to find the best way to divide the continuous variables

(mRNA and protein concentrations) into bins designated 0 or 1.

Figure 2.1.  The algorithm for finding the optimal Boolean representation of a
DE network model.  a, the one-gene activator loop (AL1), in which a protein
activates its own transcription.  b, a phase portrait of the DE model of the loop.
Trajectories, colored by basin of attraction, progress over time toward the stable fixed
points in the corners.  The optimal thresholds chosen by the algorithm are drawn in
black.  c, the transitions made by the majority of the trajectories in each threshold-
delimited box.  d, the Boolean state table derived from the transitions.
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Finding the best threshold positions

Taking advantage of the feedback loops’ switch-like property of cleanly

separated "high" and "low" steady states, we followed the kind of on/off logical

reasoning ("protein A represses gene B, so when A is highly expressed, B will likely

be turned off") that geneticists use to think through and predict pathway behavior.

This kind of reasoning divides the phase space into one region where protein A's

concentration is considered low while B's is high, another where both are low, and so

on (Figure 2.1b).  The resulting "boxes" divide each continuous concentration variable

into two discrete domains.

Of course, our model, like the mRNAs and proteins in a real genetic network,

exhibits a much more continuous range of expression values.  The steady states are

high or low, but the process of separating high values into "expressed" (or 1) and low

values into "unexpressed" (or 0) requires defining a threshold between the two

categories for each node -- that is, deciding where the border of each "box" should be.

If inappropriately chosen, the thresholds can introduce substantial modeling artifacts.

To minimize such problems, we developed an algorithm to choose the most natural

position of the threshold for each node by analyzing the properties of each network's

phase portrait.  The algorithm finds the natural boundaries between extrema by

analyzing the flow of the trajectories themselves, and by using the nullclines of the

system.

The algorithm weighted two factors equally in determining the optimal

position of the thresholds:

1) We found, numerically, a point on the separatrix dividing the basins of

attraction (the unstable fixed point occurring at the intersection of the nullclines), and

penalized the thresholds if they were positioned too far from this.  This helped align

them with the natural divisions of the trajectories (see Figure 2.1b).
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2) The discrete on/off representation of the system requires that the dynamics

be discrete as well.  In describing how the variables in the network in Figure 2.1

change over time, we say, "When we start with node mA "on" and node pA "off"

(upper left box), we find that the system evolves to the state where both mA and pA

are "on" (upper right box)."  Such a description necessitates that all the trajectories in

the first box move unanimously to the same new box.  Of course, in a continuous

system this is a simplification; in Figure 2.1b, a minority of the trajectories in the

upper left box migrate to the bottom left box instead.  Our boxes should be positioned

such that a minimum of trajectories is neglected by the discretization in this way.

Therefore, the second factor considered by the threshold-positioning algorithm

minimized the number of "dissenting" trajectories that went to a box that was not the

destination of the majority.  This gave us the threshold position that produced the

closest approximation of the unanimous-trajectories simplification.

The combination of these two factors provided a cost function for each

potential threshold position.  The algorithm explored phase space for the optimal

threshold position (lowest value of the cost function) and placed the intersection of all

the dimensions' thresholds at that position (Figure 2.2).  By classifying the phase space

into "on" and "off" regions as cleanly as possible, this discretization allowed us to

apply traditional "if gene A is on, B will be off" pathway reasoning to the switch

modules to predict how they would behave when combined.

Generating the Boolean rule set

Once the thresholds dividing "low" from "high" in each dimension have been

established, they divide state space into "boxes" as described above.  For a given box

(e.g., "high mA/low pA" (1,0) box), the code simply calculates where the majority of

the trajectories in that box go next.  If most of them move next to the "low mA/low
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Figure 2.2.  Choosing the optimal (lowest cost) threshold position.  Dark red
positions are excluded because each  box is required to contain at least 1% of the
initial conditions.

pA" box (1,1), we represent that in the state table (Figure 2.1c, d): 10 → 00.  If,

instead, most of them settle at a stable equilibrium point within the first box, which

can be represented in the state table too: 10 → 10.

Performing this calculation for each box, the code generates a state table that

represents the consensus of the 1000 trajectories characterizing phase space.

We can follow the state table rules to find, for each initial Boolean state, which

box (state) it will eventually settle into.  This gives us a way to measure how faithfully

the simple Boolean representation replicates the dynamics of the more complex

system.
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A variety of state tables for each module

One way in which DE models can incorporate more detail about dynamics than

Boolean models is that they have parameters describing nuances of the genetic

interactions.  When these parameters vary, they can change the paths by which

trajectories reach their steady states (and sometimes even change the steady states

themselves). Our equations contained biologically based parameters representing

mRNA and protein half-lives, and the binding affinity and cooperativity of

transcriptional regulators. Changing these parameters yielded different phase portraits.

To approximate the DE models, we used our threshold-finding algorithm to infer the

best Boolean state table for each kind of phase portrait (Figure 2.3).

For each module type (AL1, AL2, RL1, RL2), we identified the four Boolean

state tables that summarized how its trajectories could flow in the DE model.  We

chose four representative parameter sets for the DE model of each kind of feedback

loop, selecting those that best evoked the four characteristic state tables of that module

(details in A2.1).  We used these representative parameter sets when we assembled the

single feedback loop modules into two-module networks.

The four representative parameter sets for each module were all bistable; that

is, both steady states were represented.  A feedback loop with particular parameters, or

especially when subject to outside regulation, can move from a bistable condition like

those shown in Figure 2.3 to a monostable phase portrait, in which all trajectories flow

to a single steady state.  For example, the module AL1 can settle on 00 or 11 as a

steady state, depending on the initial concentrations of its mRNA and protein nodes.

However, if it is embedded in a larger network where another module represses the

transcription of the mRNA, it may shift to a monostable condition where all initial

concentrations lead to the 00 steady state.  Because we wanted our feedback loops to

be free to vary in either direction when other modules sent them up-regulatory or
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Figure 2.3.  The four representative parameter sets for the single-gene activator
loop (AL1) module, and their Boolean state tables and rulesets.

down-regulatory signals, we chose them to be bistable and thus maximally responsive

to either kind of regulation from other elements in the network.

Two-module networks

We combined the feedback loop modules into two-module networks, in which

a protein from one module could enhance or suppress the transcription of mRNA in

another module (and vice versa, for many of the networks).   To ensure that each two-
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module network explored its full dynamical repertoire, we used four representative

parameter sets for each of its modules.  These encoded all the state table possibilities

for a bistable module of a particular type.  We assembled all unique pairwise

combinations of the representative parameter sets of the modules in a two-module

network, yielding 9 or 16 full parameter sets that encompassed all the behavior of a

particular two-module network (see A2.1 for details).  We simulated each of these full

parameter sets, determined the best threshold positions, and generated an inferred

Boolean state table to represent the behavior of the network under that particular

parameter set.  We measured the performance of the two-module network for each

parameter set, and reported the mean measurement for that network across all its

parameter sets.

Measuring the performance of the Boolean model for two-module networks

Because our ODE models, while mimicking real networks, have perfectly

knowable behavior, we can precisely measure their departure from predicted behavior.

We have three metrics for quantifying the “Booleanizability” of each two-module

network.

Metric 1: Unanimity of trajectories

First, we have simply the measurement of how many “dissenting” trajectories

there were in each threshold-defined box in phase space.  For each isolated feedback

loop and each two-module network, our algorithm chose thresholds that divided phase

space into “boxes,” measured how trajectories flowed from one box to another, and

gave us a Boolean representation of the DE network based on which box the majority

of trajectories migrated to next.  The algorithm positions the thresholds between boxes

so as to minimize the number of dissenting trajectories.  However, the trajectories are
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never entirely unanimous in their destination, and the size of the dissenting minority is

one measure of how much information we lose in the Boolean approximation.  For

example, in Figure 2.1b, some of the red trajectories in the mA=1/pA=0 (bottom right)

box go to the top right box instead of joining the majority in the bottom left box.

Dissenting trajectories like these lower the unanimity score for the network.

Metric 2: Agreement between predicted and simulated box transitions (state tables)

We can also measure how well a Boolean representation of a network’s

component modules (i.e., the feedback loops) predicts the behavior of the larger

network.  While the “trajectory unanimity” metric described above is a measurement

of how well we can represent a detailed DE system with a simpler Boolean rule set,

we also want to quantify the artifacts that arise as the rule set is executed (iterated).

We developed two metrics for doing so.

We made “predicted state tables” for each two-module network based on the

Boolean rule sets for its component modules.  For example, the two-module network

AL1actAL1 is composed of two of the feedback loops illustrated in Figure 2.3.

Consider the case in which the first AL1 module has the representative parameter set

shown in Figure 2.3c:

mA’ = mA AND pA

pA’ = mA AND pA

and the second AL1 is at the representative parameter set from Figure 2.3a (using gene

B to denote the second module in the network):

mB’ = mB

pB’ = mB

Adding the regulation between the modules, so that protein pA increases the

transcription rate of mB, we have the overall rule set:
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mA’ = mA AND pA

pA’ = mA AND pA

mB’ = mB OR pA    (pA activates mB)

pB’ = mB

This gives us a new state table for the overall two-module network, which predicts

what the transitions between boxes will be if the system behaves according to simple

Boolean rules.  We created these predicted state tables for each parameter set of each

two-module network (Figure 2.4a).  If pA’s effect on mA had been that of a repressor

instead (AL1repAL1), we would have applied the rule “mB = mB AND NOT pA.”

As mentioned above, our algorithm generated an “inferred state table” from the

consensus of trajectory movements from one threshold-defined box to another (Figure

2.4b).  We compared this inferred state table to the predicted state table that we had

generated by combining the rule sets of the individual modules.  We measured the

Hamming distance between the two state tables (right-hand sides only) to determine

how different the DE-derived state table was from the one predicted by Boolean logic.

We weighted the comparisons by how many trajectories had “chosen” each box in the

inferred state table (see A2.2 for details).  The resulting score represented the

proportion of digits that were consistent between the predicted and DE-inferred state

tables (maximum score = 1.0).  This gave us a second metric for measuring how

cleanly a two-module network fitted a Boolean representation: the similarity of its

state tables.

Metric 3: Agreement of predicted and simulated steady states

To find out where a Boolean trajectory beginning at a particular initial

concentration will end, we can iterate through the state table to find its steady state.

For example, in Figure 2.4a, the path from 1100 to its steady state is: 1100,
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Figure 2.4.  Comparing predicted and inferred state tables for network
AL1actAL1.  The AL1 modules have the representative parameter sets shown in fig.
3c and 3a.  a, The state table predicted by applying Boolean logic to the rule sets of
the loop module components (see text).  b, The state table inferred from the DE model
by noting the transition made by the majority of the trajectories in each box.
Unpredicted values are shown in red.  Steady states (LHS=RHS) are boxed.  c, A
phase portrait of the network.  Dots are initial concentrations, colored according to
their eventual steady state.  Each dot is the starting point of a single trajectory.

1110, 1111.  If a predicted state table is incorrect in a few of its details, the errors can

accumulate as it is applied iteratively to determine a steady state.  We designed a third

measurement in order to capture the cumulative difference between the predicted state

table and the DE model, as trajectories passed from their initial state to their final

concentrations.

We compared the steady states dictated by the predicted Boolean state table to

the steady states actually achieved by each trajectory in the DE model.  For each

parameter variant of each two-module network, we recorded the initial concentrations

that fell within each box, then integrated their trajectories to determine in which box

they reached a steady state.  For example, in network AL1actAL1 (Figure 2.4c), 46%

of the trajectories beginning in the "mA/pA high, mB/pB low” (1100, bottom right)

      mA pA mB pB  mA pA mB pB

 0   0   0   0     0   0   0   0
 0   0   0   1     0   0   0   0
 0   0   1   0     0   0   1   1
 0   0   1   1     0   0   1   1
 0   1   0   0     0   0   1   0
 0   1   0   1     0   0   1   0
 0   1   1   0     0   0   1   1
 0   1   1   1     0   0   1   1
 1   0   0   0     0   0   0   0
 1   0   0   1     0   0   0   0
 1   0   1   0     0   0   1   1
 1   0   1   1     0   0   1   1
 1   1   0   0     1   1   1   0
 1   1   0   1     1   1   1   0
 1   1   1   0     1   1   1   1
 1   1   1   1     1   1   1   1

Predicted state table
      mA pA mB pB  mA pA mB pB

 0   0   0   0     0   0   0   0
 0   0   0   1     0   0   0   0
 0   0   1   0     0   0   1   1
 0   0   1   1     0   0   1   1
 0   1   0   0     0   0   0   0
 0   1   0   1     0   1   0   0
 0   1   1   0     0   1   1   1
 0   1   1   1     0   0   1   1
 1   0   0   0     0   0   0   0
 1   0   0   1     1   0   0   0
 1   0   1   0     1   0   1   1
 1   0   1   1     0   0   1   1
 1   1   0   0     1   1   0   0
 1   1   0   1     1   1   0   0
 1   1   1   0     1   1   1   1
 1   1   1   1     1   1   1   1

Inferred state table

a b c

pB

pA
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box ended in the same box, while 54% ended in the "mA/pA high, mB/pB high”

(1111, top right) box.  (Dots in bottom right box of Figure 2.4c whose trajectories go

elsewhere have values of pA=1, pA=0 but also have mA ≠ 1 and/or mB ≠ 0 and thus

are not in the 1100 box.  The visual overlap arises from the two-dimensional

projection of 4-dimensional space.)

We compared the initial/final box of the DE trajectories to the initial/final state

in the predicted state table, and scored each two-module network for how close the

two were, averaged across the representative parameter set combinations (see A2.3 for

details).  Binning the initial concentrations and final steady states of the DE model into

boxes distilled the behavior of the continuous, detailed model into the same level of

resolution supplied by our Boolean state tables, enabling us to compare the predictions

of the simple model to the "reality" of the DE system.

Results and Discussion

We simulated DE representations of small feedback loops containing

transcriptional activators (AL) or repressors (RL).  We found the best Boolean

representation of each, and then repeated the process for larger networks assembled

from pairs of the original loop modules.  We used the Boolean representations of

individual modules to predict the Boolean state tables for the two-module networks,

and compared these to the actual state tables derived by simulating the two-module

DE.  We also measured the ease with which each DE system was approximated by the

Boolean model inferred directly from it, and compared the basins of attraction for the

predicted state tables and the actual trajectories in the DE simulation.

Specifically, we measured three estimates of the “Booleanizability” of each

two-module network: 1) the unanimity of its trajectory movements from box to box; 2)
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the congruence between the state table predicted by Boolean assembly of its

component modules and the state table inferred directly from the DE model; and 3) the

agreement between the initial/steady state pairings calculated from the predicted

steady state table and those recorded in the DE simulation.

Our goal was to find heuristics that would help clarify, for the benefit of

modelers, which qualities of a network make it amenable to a Boolean representation.

To that end, we compared the networks containing entirely repressor loop (RL)

modules to those containing entirely activator loop (AL) modules.  The exhaustive set

of two-module networks meant that each AL/AL network had a corresponding RL/RL

network with the same topology but reversed within-module regulatory signs (see

pairs of networks in Chapter 1, A1.1).  This correspondence allowed us to test the

effect of activation vs. repression feedback directly, by comparing pairs of networks

that differed with respect to that property but which were the same with respect to

other characteristics, such as network size.  We used paired bootstrap comparisons

(see A2.4 for details).  Our results are in Table 2.1.

For all three measures of “Booleanizability,” we found that the RL/RL

networks had highly significantly greater values than those for AL/AL networks.  The

difference was most pronounced for the measures of how cleanly trajectories sorted

themselves into boxes (metric 1, unanimity) and of the cumulative errors that arise as

we iterated Boolean state tables (metric 3, steady-state comparisons).

We also compared two-gene, three-gene, and four-gene network metrics to

study the effects of network size.  We used unpaired permutation testing to determine

how network size influenced each of the three “Booleanization” metrics (see A2.4).

We found that across all size comparisons and metrics, smaller networks were highly

significantly more amenable to a Boolean representation (Table 2.1).
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Table 2.1.  Mean values of “Booleanizability” estimators, and comparisons across
classes of two-module networks.  The value for each network is the mean metric
across all combinations of representative parameter sets for the network.  Means
across network classes are presented here, e.g., the RL/RL mean encompassing all
RL1/RL1 and RL2/RL2 networks.  Activating vs. repressing feedback comparisons
(RL/RL vs. AL/AL) are paired permutation tests; network size comparisons are
unpaired bootstrap tests (see A2.4).  **Highly significant.

The three metrics we examined measure subtly different qualities of the

Boolean network representation.  The “unanimity” metric tests how clean the process

of dividing variables into 1/0 bins was.  The state table comparison metric measures

this as well, because we weight it by the proportions of trajectories that went to each

box (see A2.2), but, more importantly, it measures to what extent the abstraction to 1/0

was accurate (not merely how precise it was).  Finally, the third metric captures the

total error that accumulates as we iterate the Boolean state table, and apply the

successive layers of approximation.  For example, in some networks, threshold boxes

had dissenting trajectories (lowering the unanimity score), but the majority of

c) Third metric:
Agreement beteween
predicted and simulated
estimates of intial/steady
states.

a) First metric:
Unanimity of the trajectory
box-transitions in the DE-
simulated state table.

b) Second metric:
Agreement between
predicted and simulated
state tables.

Effect of repressing vs. activating feedback

0.781
(N=28)

0.850
(N=24)

0.850
(N=24)

p = 2.00e-4**3-gene >  4-gene

0.903
(N=10)

p = 2.00e-4**2-gene  >  3-gene

Effect of network size

0.782
(N=19)

0.845
(N=19)

p = 2.00e-4**RL/RL >  AL/AL

Effect of repressing vs. activating feedback

0.743
(N=28)

0.770
(N=24)

0.770
(N=24)

p = 2.00e-4**3-gene >  4-gene

0.810
(N=10)

p = 2.00e-4**2-gene  >  3-gene

Effect of network size

0.755
(N=19)

0.766
(N=19)

p = 2.60e-3**RL/RL >  AL/AL

Effect of repressing vs. activating feedback

0.744
(N=28)

0.792
(N=24)

0.792
(N=24)

p = 2.00e-4**3-gene >  4-gene

0.847
(N=10)

p = 4.00e-4**2-gene  >  3-gene

Effect of network size

0.760
(N=19)

0.782
(N=19)

p = 2.00e-4**RL/RL >  AL/AL
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trajectories still transitioned to the predicted next box (resulting in a good state table

comparison score, or metric 2).  In some cases, small prediction errors that were

revealed as minor reductions in the state table comparison metric accumulated as the

state tables were iterated to find predicted Boolean steady states, and produced

substantially lowered steady state comparison scores (metric 3).  Overall, the three

metrics encapsulate the various ways in which a network may (or may not) lend itself

to a Boolean approximation.  For all three metrics, we found that smaller networks and

networks with repressor loops survived the approximation with their properties

relatively intact.

The steady state comparison metric, in particular, gives us insight into why

activator loops (AL) make networks less amenable to a Boolean representation.  It

measures steady states that we predicted would be lost due to the regulation coming

from the other module in the network, but which were actually retained for many

activator loop (AL) modules, albeit usually with smaller basins of attraction (see

Figures 1.11, 1.12).  These lingering steady states meant that modules that we had

predicted to become monostable instead retained their bistability.  The unexpectedly

bistable cases caused divergence between actual and predicted steady states, as

illustrated the steady state comparison scores and by the boxed state table elements in

Figure 2.4.

We found that two-module networks containing RL loops are significantly

more amenable to a Boolean representation than those containing AL loops.  This

result arises from the fact that repressor loops are substantially more likely to lose one

of their two steady states when they receive regulation from outside (see Chapter 1).

When isolated, the representative parameter sets we selected for repressor loops are all

bistable: They can assume either the 01 or 10 steady state (0011/1100, for two-gene

modules), depending on the initial concentrations in the network.  We have found that
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when repressor loops are subject to external regulatory “pushes,” such as those from

the other module in the two-module network, they tend to comply completely with the

external influence and lose the steady state that it discourages.  For example, two RL1

modules have four steady states between them: mA=0/pA=1/mB=0/pB=1 (0101),

0110, 1001, and 1010.  However, when pA in the first RL1 module activates

transcription of mB in the second one (the RL1actRL1 two-module network), the

steady state with pA=1, mB=0 disappears (Figure 2.5a).

Figure 2.5.  RL networks are more likely to lose one of their steady states, and are
easier to Booleanize as a result.  a, RL1actRL1 has lost the steady state at pA=1,
mB=0 because pA activates the transcription of mB, preventing it from being
unexpressed when pA is at 1. b, AL1actAL1 has not entirely lost the steady state at
pA=1, mB=0, despite the fact that pA activates mB transcription.  Solid lines indicate
threshold positions chosen by the algorithm.  Dotted lines in b indicate better
threshold positions that would violate the Boolean assumption of a single threshold
per variable.

Activator loops, by contrast, do not respond as thoroughly to external

regulation, and often retain the “discouraged” steady state with its basin reduced in

size (Figure 2.5b).  We discuss the reasons for this in Chapter 1.  These small, remnant

basins are particularly problematic for a Boolean representation because of the conflict

they provoke in the issue of where to draw the thresholds.  They accentuate an

m
B

pA

RL1actRL1 AL1actAL1

m
B

pA

ba
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important artifact inherent in Boolean modeling: that a single threshold must have the

same meaning in all contexts.  If pA is in the state we classify as 0, then it must be

classified as 0 regardless of the values of other variables, and regardless of which of

its targets we are considering its effects upon.  Only one threshold between 0 and 1 is

allowed per variable.  This is the problem Thomas and colleagues attempted to address

with their discrete logical models (Thomas and D'Ari 1990).

Unequal basin sizes complicate the decision of where to draw the threshold in

any network, but the situation arises frequently in AL networks because of the small,

leftover basins caused by incomplete response to external regulation.  This is an

emergent effect, which arises because the AL modules are embedded in a larger

regulatory context in which they receive signals from outside.  Individual AL and RL

loops are approximately equally amenable to a Boolean representation, as measured

by the unanimity of their trajectories (see section A2.4).  It is the combination of a

feedback loop and the regulation coming from outside it that produce the greater

“Booleanizability” of RL-containing networks.

To see why, consider a pair of isolated bistable feedback loops with no

regulation between them.  This system has four possible steady states – two per loop

module.  When the loops are joined to form a two-module network, the regulation

between the modules can induce monostability in one both of the loops.  A two-

module network that loses one of its four steady states (or two of them, as often

happens in the networks that have feedback between the modules) becomes easier to

“Booleanize” in a number of ways.  First, the trajectory paths can become simpler,

because there are fewer destinations.  This bring the network closer to the Boolean

ideal of all trajectories crossing thresholds in the same direction.

More importantly, fewer basins mean fewer difficulties arising from conflicts

in where to draw the thresholds.  In Figure 2.5b, dotted lines indicate ideal threshold
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positions for the variable mB on either side of the pA threshold.  The dotted lines do

not align because the two mB=0 basins of attraction are of different sizes, As a result,

some of the trajectories are placed in the wrong “box” for their basin of attraction, and

the Boolean approximation of the network diverges from the DE simulated behavior.

When one side of phase space lacks a steady state, the conflict over mB’s threshold

position evaporates, and the Boolean representation is cleaner and more predictive of

the DE model’s behavior.

We also found that smaller networks have some of the same advantages as

those with fewer steady states (Table 2.1).  When phase space has a smaller number of

dimensions, trajectories are constrained in their flow and easier to partition.  Each new

variable added to the network means a new dimension in phase space and a new

threshold that divides all pre-existing boxes in half, multiplying the possibilities of

divergent trajectories and conflicts over threshold positions.  We see this phenomenon

at all levels of size increases in our model: 2-gene networks have better Boolean

approximations than 3-gene networks, and 3-gene networks “Booleanize” better than

4-gene networks (Table 2.1).  This is an ominous finding for those hoping to take

advantage of the tractability of Boolean networks by applying them to large-scale

regulatory networks.

However, more modestly sized networks may benefit from a Boolean model.

Our finding that RL-rich networks lend themselves better to a Boolean representation

has implications for the kinds of networks it may be most profitable for Boolean

modelers to investigate.  There is evidence, for example, that repressor loops play an

important role in eukaryotic developmental networks (see Chapter 1).  Especially

when the detailed kinetic parameters of a system are unknown (as is often the case),

Boolean models can be useful ways to make an "influence model” more rigorous, and
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test intuitive hypotheses about how the individual interactions of the system produce

tissue-scale patterns (Tomlin and Axelrod 2007).

Another fruitful area for Boolean modeling could be networks of prokaryotic

regulatory switches, especially catabolic gene circuits such as the well-known lac

operon (Ferrell 2002).  These consist of mutually repressing genes that control

whether a cell metabolizes certain nutrients, depending on their availability in the

environment.
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APPENDIX

A2.1: Choosing representative parameter sets for each module type

For the time-consuming “Booleanization” simulations of two-module

networks, we needed to choose a limited number of parameter sets that summarized

the behavior each network could produce.  To this end, we selected four representative

parameter sets for each module type (i.e., four each for AL1, AL2, RL1, and RL2).

Then, for each two-module network, we simulated all 16 combinations of the

representative parameter sets for each of its two component modules.  For example,

module AL1 has representative parameter sets labeled A, B, C, and D, while module

RL2 has representative parameter sets E, F, G, and H.  All two-module networks

containing AL1 and RL2 (AL1repRL2rep1, for example) were simulated for the

following overall parameter sets:

AL1 parameter set A, RL2 parameter set E
AL1 parameter set A, RL2 parameter set F
AL1 parameter set A, RL2 parameter set G
AL1 parameter set A, RL2 parameter set H
AL1 parameter set B, RL2 parameter set E
AL1 parameter set B, RL2 parameter set F
AL1 parameter set B, RL2 parameter set G
AL1 parameter set B, RL2 parameter set H
AL1 parameter set C, RL2 parameter set E
AL1 parameter set C, RL2 parameter set F
AL1 parameter set C, RL2 parameter set G
AL1 parameter set C, RL2 parameter set H
AL1 parameter set D, RL2 parameter set E
AL1 parameter set D, RL2 parameter set F
AL1 parameter set D, RL2 parameter set G
AL1 parameter set D, RL2 parameter set H
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We found the best threshold positions and scored the “Booleanizability” of the two-

module network at each of these 16 parameter sets.

Some two-module networks have inherent symmetry that meant some of the

pairwise combinations of module parameter sets were redundant.  For example,

AL1actAL1act with module parameter sets A, B is the same as that network with

parameter sets B, A.  For these symmetric two-module networks, we simulated only

the nine unique parameter set combinations.

To select the representative parameter sets for each module type, we first

sampled parameter space using the Sobol algorithm (Press 1992; Gädke et al. 2007)

and simulated each module type with 100 parameter sets.  We calculated the

consensus inferred state table and “Booleanization” score for each of these (see main

text).  Each module type has four possible consensus state tables (Figure 2.3, main

text).  From among the 100, we chose one parameter set to represent each state table

based on high “Booleanization” scores and numerical tractability.  We repeated this

process for each module type, producing the four representative parameter sets for

each of AL1, AL2, RL1, and RL2.  The four representative rule sets for AL1 are

pictured in Figure 2.3.

A2.2.  Comparing predicted and inferred state tables.

We measured how well a Boolean network assembled from the rule sets of

individual modules could predict the behavior of a two-module DE network.  To do

so, we first applied Boolean logic to the rule sets for each module to generate a

“predicted state table” (see main text).  We also inferred a state table from the DE

simulation of the same network by calculating, for the trajectories in each threshold-

defined “box,” which box the majority of them went to next.  To measure the
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difference between the predicted and inferred state tables, we calculated the Hamming

distance (number of differing digits) between the right-hand side entries of the

predicted state table and those of the inferred state table (see Figure 2.3a, b).

We then weighted each line of the tables by the proportion of trajectories that

had gone to each box.  The overall comparison score is the Hamming distance

between the predicted and inferred state table right-hand side (RHS) entries, weighted

by their frequency in the inferred state table.  For example, for the network

AL1actAL1 (representative parameter sets shown in Figures 2.3C and 2.3A,

respectively), the DE-inferred state table is as follows.  (Variables are mA, pA, mB,

and pB.)

Current     Next          Proportion of trajectories in current box
box           box            that make that transition
---------------------------------------------------------------------------
0000  →  0000 0.748
0000  →  0010 0.238
0000  →  0100 0.014

0001  →  0000 0.923
0001  →  0011 0.077

0010  →  0000 0.007
0010  →  0011 0.982
0010  →  0110 0.011

0011  →  0010 0.067
0011  →  0011 0.933

0100  →  0000 0.777
0100  →  0110 0.085
0100  →  1100 0.138

0101  →  0100 0.941
0101  →  0111 0.058

0110  →  0010 0.714
0110  →  0100 0.006
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0110  →  0111 0.106
0110  →  1110 0.174

0111  →  0011 0.521
0111  →  0110 0.292
0111  →  1111 0.188

1000  →  0000 0.084
1000  →  1010 0.048
1000  →  1100 0.867

1001  →  1000 0.933
1001  →  1101 0.067

1010  →  0010 0.086
1010  →  1000 0.008
1010  →  1011 0.039
1010  →  1110 0.867

1011  →  0011 0.030
1011  →  1010 0.242
1011  →  1111 0.727

1100  →  1110 1

1101  →  1100 1

1110  →  1111 1

1111  →  1110 0.054
1111  →  1111 0.946

Some boxes are unanimous; box 1100, for example, sends all its trajectories to box

1110.  However, for most boxes the trajectories are not unanimous.  For example, the

predicted state table indicates that trajectories in box 1011 will go to box 0011.  In the

inferred state table above, the score for box 1011 is:
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Predicted       Inferred    Hamming      Freq. of trajs.             Contrib. to total
RHS              RHS          distance         at this entry               weighted Hamming dist.
----------------------------------------------------------------------------------------------
0011              0011          0                   0.030                         0
0011              1010     2                   0.242                         0.484
0011            1111         2                   0.727                         1.454
                                                                                              ---------
                                                                                                1.938

Each line in the tables has a maximum contribution of 4.  The final comparison score

is the weighted proportion of digits that were consistent between the predicted and

inferred table: 1 – sum (weighted Hamming distances)/(4*number of lines).  The

maximum score is 1.0.  We calculated this score for each combination of

representative parameter sets (16 for most two-module networks; 10 for some with

symmetry that rendered some parameter set combinations redundant) and reported the

mean score across all of the parameter sets for a given network.

A2.3. Comparing predicted and DE initial/final states.

We iterated each initial state in the predicted state table to find its final steady

state.  We compared these predictions to the boxes containing the actual initial and

final states of each trajectory in the DE model.  Analagously to the state tables, we

weighted the scores by the proportion of each box of initial concentrations that ended

at each particular steady state.

Occasionally, the synchronous updating of the Boolean state tables produced a

cycle where none existed in the DE system.  For example, in the predicted state table

of RBRactRBRrep1 (representative parameter sets B, B), the initial state 0110 goes to

0100, then 1100, 1110, and back to 0110 again.  These loops tended to be oscillations
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among unstable states.  We scored them as having the maximum Hamming distance

between predicted and DE-measured states.

A2.4. Statistical comparisons.

Comparing two-module networks

Our set of two-module networks represented all combinations of the four types

of feedback loops, within the rules we chose for combining the pairs of modules with

regulatory relationships (see main text).  Because our data are the entire population

rather than a sample thereof, we must use resampling approaches to find estimates of

confidence in the differences between classes of networks.

For the AL vs. RL comparisons, we were able to used paired bootstrap

comparisons.  Each AL/AL network had a corresponding RL/RL network which was

identical in its inter-module regulation but had reversed regulatory signs within the

modules.  For example, AL1actAL1rep corresponded to RL1actRL1rep.  The paired

nature of our data allowed us to directly compare the effects of AL vs. RL modules,

controlling for factors such as size.  We resampled from the paired list 10,000 times

and calculated the p-value as detailed in Chapter 1.  The minimum p-value for 10,000

samples is 2.00e-4.

The network size comparisons did not allow pairwise comparisons, so here we

used permutation testing, again with 10.000 samples.

Comparing individual modules

To see whether the trend of RL modules conferring greater “Booleanizability”

persisted when the modules were isolated, we compares the unanimity score (metric 1)

for each of the four isolated module types: AL1, RL1, AL2, and RL2.  (Metrics 2 and

3 measure how well isolated Boolean representations of isolated modules predict the
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Table A2.1.  Mean values of “Booleanizability” estimators for classes of two-
module networks.  The value for each network is the mean metric across all
combinations of representative parameter sets for the network.  Means across network
classes are presented here, e.g., the RL1/RL1 mean encompassing all RL1/RL1 two-
module networks.

behavior of larger networks, and were therefore inappropriate for testing the isolated

modules themselves.)  For each isolated module, we measured the unanimity score for

each of its four representative parameter sets, and took the mean value as the

measurement for that module.  The results are:

AL1 0.951
RL1 0.954
AL2 0.809
RL2 0.836

Statistical comparisons are inappropriate here: We cannot assume that the values for

the various parameter sets are independent, so we cannot apply conventional statistics

to comparing the four parameter set measurements of (say) AL1 to those of AL2.  The

0.82410014RL2/RL2

0.73855014AL2/AL2

0.9030435RL1/RL1

0.9029565AL1/AL1

Network         Number of     Mean metric
category         networks        value

0.74874014RL2/RL2

0.73746814AL2/AL2

0.8160095RL1/RL1

0.8045305AL1/AL1

0.75812714RL2/RL2

0.73064414AL2/AL2

0.8487335RL1/RL1

0.8446605AL1/AL1c) Third metric:
Agreement beteween
predicted and simulated
estimates of intial/steady
states.

a) First metric:
Unanimity of the trajectory
box-transitions in the DE-
simulated state table.

b) Second metric:
Agreement between
predicted and simulated
state tables.

Network         Number of     Mean metric
category         networks        value

Network         Number of     Mean metric
category         networks        value

0.76634912AL2/RL1

0.77451512AL1/RL2

Network         Number of     Mean metric
category         networks        value

0.83809512AL2/RL1

0.86251312AL1/RL2

Network         Number of     Mean metric
category         networks        value

0.78350312AL2/RL1

0.80016812AL1/RL2

Network         Number of     Mean metric
category         networks        value
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four parameter sets of each module capture its repertoire of bistable behaviors (Figure

2.3) and serve as a basis for making representative parameter set combinations for

two-module networks, but are insufficient to allow resampling methods.  (Practically

speaking, the sample size must be at least 6 so that the 10,000 random draws will not

repeat themselves too often.  There are NN unique samples with replacement of size N,

and 44 is only 256, much less than 10,000).  We must confine ourselves, therefore, to

examining the means above.  We observe that while the two-gene modules have lower

scores than the 1-gene modules (continuing the trend noted with 2-, 3-, and 4-gene

networks reported in the main text), there is no clear trend between AL and RL

modules, as AL1 and RL1 are nearly identical.
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CHAPTER 3

MODELING THE DROSOPHILA GAP GENE NETWORK

Abstract

The past several years have seen a flowering of modeling techniques applied to

gene regulatory networks.  The network of gap genes that pattern the early Drosophila

embryo has received special attention from modelers because of the especially

abundant experimental data available.  A well-studied system like the gap gene

network is an ideal context in which to compare recent modeling techniques, examine

the benefits and drawbacks of each, and explore where our understanding could

benefit from alternative methods.  We discuss what has been learned about fly

development, and about developmental modeling, from the models, and we synthesize

and categorize the approaches that have been applied.  Finally, we apply a model that

has proved successful with other Drosophila segmentation genes to the gap genes, and

place our findings in the context of other gap gene models.

Introduction

The gap genes make up a small network of transcription factors that define the

broad domains of the anterior-posterior axis of the Drosophila melanogaster embryo.

They respond to regulation by maternal factors and, crucially, to regulatory

interactions within the gap gene network itself.  Relying only on the initial patterning

information of two opposing diffusion-mediated gradients of maternal gene products,

the gap genes must "decide" among themselves where to establish non-overlapping

domains of expression.  The borders between these domains serve as positional

markers for the next set of patterning genes, the pair-rule genes, which divide the
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embryo into smaller partitions to guide the segment polarity genes and later

development.  This early organization of the embryo must be robust to substantial

variation in embryo length, which can vary by 10-20% (Lott et al. 2007) and,

presumably, to genetic variation in regulatory elements and the genes themselves.

Understanding of the gap gene network has benefited from a number of

reviews of the experimental literature (Akam 1987; St Johnston and Nusslein-Volhard

1992; Pankratz and Jackle 1993; Rivera-Pomar and Jackle 1996; Niessing et al. 1997;

Sanchez and Thieffry 2001).  In brief: Bicoid and Nanos maternal gradients establish

hunchback and caudal mRNA gradients, which in turn establish the expression

domains of the other trunk gap genes (Krüppel, knirps, giant, zygotic hunchback) and

indirectly modify those of the terminal gap genes including tailless and huckebein.

The gap genes are transcription factors, and those in the trunk adjust the position and

sharpness of their domains largely by mutual repression.  Each gap gene has multiple

transcriptional regulators that affect the position of its band(s) of expression along the

anterior-posterior axis of the embryo.  Their expression pattern serves as the template

for subsequent stages of segmentation patterning.

Thousands of person-hours of experimental work have gone into establishing

what we know about regulation of and by gap genes (beginning with the Nobel-Prize

winning initial mutant screen (Nusslein-Volhard and Wieschaus 1980)), and this is

one of the best-studied gene regulatory networks known in eukaryotes.  However,

dynamical patterns of any complexity are not easy to intuit from the individual

interactions among the genes.  The gap gene expression bands arise, adjust their

positions, and then subside, over the course of just a few hours.  The quest to

understand how the genes cross-regulate to produce this dynamic result has given rise

to many spatial models that abstract the gap genes in a variety of ways.  The rich

literature of gap gene models gives us an opportunity to explore what modeling
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approaches can teach us about the dynamics of these genes in particular, and about

gene regulatory networks in general.

Modeling the gap gene network

"The best material model for a cat is another [cat], or preferably the same cat,"

(Rosenblueth and Wiener 1945).  This comment sums up many biologists' views of

modeling genetic interactions.  In order to make a model credible, we should include

in it all the experimental detail we know.  This "kitchen sink" approach is intuitively

appealing, since it ties the model as firmly as possible to data, but it introduces

practical problems.  On a pragmatic level, we often have data for multiple temporal

and spatial scales (for example, binding interactions occupy milliseconds, diffusion

takes seconds, transcription and translation last minutes), and integrating these can be

numerically difficult.  On a heuristic level, a model that is almost as complex as the

cat is nearly as hard to understand as the cat itself.  On the other hand, an

oversimplified model that leaves out the messy biological details risks ignoring critical

elements.  A useful model captures the essential features of a system, simplifying it

enough to render it interpretable without sacrificing important interactions.  The

choice of simplifications is crucial to the success of the model.

Modelers have been attempting to achieve this balance of detail and abstraction

with the Drosophila segmentation gene network (Thieffry and Sanchez 2003; Perkins

2007).  In the process, they have found a number of important insights into the gap

gene system.  Because there is so much data on the interactions among these genes,

and because the data are so varied (living and fixed-embryo expression patterns, time-

series data, knockouts and other genetic perturbation experiments, computational and

experimental discovery of binding sites, etc.), there have been many different
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modeling approaches used for this network.  Each approach employs a different choice

of abstractions of the biology, and the choices are driven in part by the particular

questions the researchers wished to ask about the system.  We compare the techniques

employed in gap gene models and the insights gained thereby.  To complete the array

of techniques, we also present a new model that uses some previously-successful

modeling approaches that have not yet been employed for the gap gene network.  We

discuss which abstractions are most useful for which questions.

The models we consider here are those of the Reinitz group ((Jaeger et al.

2004a; Jaeger et al. 2004b; Perkins et al. 2006) and its 2009 gap gene papers in

particular (Manu et al. 2009a; Manu et al. 2009b)), Alves & Dilão (Alves and Dilao

2006), and Sanchez & Thieffry (Sanchez and Thieffry 2001; Thieffry and Sanchez

2002), as well as our own model (Stockwell), described below.

Representations of mRNA and protein concentrations

The first choice a modeler must make is how realistically to treat the numbers

of each kind of molecule in the system.  Real cells contain finite (and often small)

numbers of each species of mRNA and transcription factor, so one approach is a

stochastic model of individual molecules and their interactions, perhaps using the

Gillespie algorithm (1977).  This is computationally expensive and probably provides

more detail than the gap gene system requires.  As a result, most modelers have

chosen either a continuous approximation, where concentrations are represented on a

real-number scale (Reinitz, Alves & Dilão, Stockwell) or a much simpler discrete one,

where concentrations may assume one of a small number of integer values (Sanchez &

Thieffry).  Discrete models allow faster simulations, which means modelers can

explore more parameter combinations and more mutant phenotypes.  This tradeoff

between realism and speed is generally resolved in favor of speed when modelers are
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interested in the coarse-scale expression patterns and are using low-resolution data

(Thieffry), and in favor of more realistic continuous models when they are fitting

nucleus-scale expression data (Reinitz), attempting to estimate measurable parameters

(Alves & Dilão, Stockwell), or measuring the effect of weak regulation (Reinitz,

Stockwell).

The Sanchez & Thieffry model follows the formalism developed by René

Thomas (Thomas and D'Ari 1990), which adapts a Boolean approach to accommodate

more biological detail than the traditional single-threshold, on/off Boolean method.

Gene products may have as many integer values as are required to fit the empirical

data; in Sanchez & Thieffry, for example, Caudal activates the transription of knirps if

its concentration is greater than 1, and that of giant as well if its concentration is

greater than 2.  A task that arises with discrete-value models is deciding where to set

the thresholds that determine what concentration of regulator A provokes a step up (or

down) to the next concentration level for target gene B.  These thresholds are

considered parameters in the models, and are fitted to data.  A given target gene may

have multiple different thresholds with respect to different regulators. The gradual

gradients of the morphogens Bicoid and Nanos are among the most important guides

for where the gap gene bands arise according to their differing sensitivities, so this

regulatory network offers particular challenges for discrete-value modelers.  Perhaps

for this reason, most gap gene modelers have elected to use real-valued molecular

concentrations.  The Reinitz group uses a neural-network approach, adding weighted

real-valued concentrations of regulatory inputs and then applying a sigmoid function

to determine whether the target will be transcribed (1) or not (0).

Boolean models, where molecules can be only present or absent (1/0), present

a special set of problems.  While being by far the fastest to solve with a computer, they

contain no way to express the idea of different thresholds of activation for different
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targets of a given regulator.  That is, there is no way to capture, "A is present with

respect to target B (sensitive target), but absent with respect to target C (less sensitive

target)."  The morphogen gradients of the gap gene system reveal a fundamental

limitation of the Boolean approach that worked reasonably well for segment polarity

genes (Albert and Othmer 2003; Irons and Monk 2007). Even the multi-level discrete

models (Sanchez & Thieffry) require special finessing of which regions are considered

to have Bicoid (for example) at "high," "medium," and "low" concentrations, but in

the gap genes we encounter a system where the Boolean abstraction fails entirely.

Nonlinear interactions

The simplest way to represent how regulators combine to guide the expression

of one gene is to add up their effects.  One can weight the influence of particular

regulators more strongly than that of others, and in fact these weights are the dominant

parameters in models that use this summing-up, or linear, approach (Reinitz).  Linear

equations are dramatically faster for a computer to solve and much more tractable to

analyze, even if the weighted sums of regulatory inputs is subsequently put through a

sigmoid function akin to those used for modeling neurons (Reinitz).  Decomposing the

regulators that cause a particular behavior in the model is far more straightforward if

the regulators are combined linearly (Manu et al. 2009b).  It is not surprising, then,

that models of gene regulatory networks often use linear equations (Reinitz, Alves &

Dilão).

However, the speed and tractability come with some tradeoffs.  There is no

way to express how regulators interact with each other in the regulation of their target.

The weighted-sum approach means that repressors have negative coefficients and

activators have positive ones, and the sum of their effects is the regulation experience

by the target.  As a result, there is no convenient way to express, "A activates C, but
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any amount of repressor B above a certain threshold will negate this effect, no matter

how high the concentration of activator A," because the regulation of C is just the A

minus B, perhaps with weight on each concentration.  Similarly, "A up-regulates C,

but only to the extent that cofactor B is also present" requires a nonlinear term for the

interaction of A and B.  Finally, a linear system cannot capture "A activates C's

expression, and B interferes with this activation without affecting the concentration of

A (e.g., allosterically)."  There are linear approximations of these situations, but they

are incomplete (Figure 3.1).

Figure 3.1.  Regulators combining to regulate a target in ways that cannot be
adequately represented by a linear summation of their effects.  a, B acting as A’s
required cofactor.  In the linear approximations of this scenario (b), A and B have
independent effects on C, and a larger amount of A can compensate for absent B.  c, a
repressor (B) which negates the effect of activator A regardless of the concentration of
A.  d, introducing an intermediate node (D) distorts the timescale of the system;
alternately, having B directly repress A changes the concentration of A, which was not
the case in c.
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One solution is the compromise adopted by Alves & Dilão, in which

transcription (at a constant rate) takes place only when at least one activator is bound

to the gene’s promoter or enhancer, and no repressors are. This is a variant of the

logical equations used by Sanchez & Thieffry.  The Alves & Dilão model combines

this logical rule with more traditional mass-action kinetics.  The cis-regulatory

regulatory region for each gene moves into and out of the active-transcription state at

rates determined by binding coefficients for the regulatory proteins.  The result is that

while transcription is an all-or-nothing proposition, the time its regulators spend bound

is real-valued, and the model produced is thus a set of coupled, linear differential

equations (DEs).  While the binding model is simple – one binding site for each

regulator, independent of the others, with no cooperativity or interaction between co-

regulators other than the Boolean rule stated above – the continuous dynamics yield

smooth expression bands domains that are easier to compare to experimental data than

the discrete sections of embryo employed by Sanchez & Thieffry.

If modelers are interested in the details of how regulators act upon their targets,

rather than whether and how much they do, then more complicated rules are necessary

for combining regulators that co-regulate a single target.  Our model below follows the

example of a mechanistic segment polarity network model (von Dassow et al. 2000) in

using nonlinear DEs to encapsulate what is known about molecular interactions.  For

example, Bicoid and Krüppel often compete for binding to overlapping sites in the

giant cis-regulatory region (Makeev et al. 2003), so we encoded Krüppel’s influence

as reducing Bicoid’s effective concentration at the cis-regulatory sites of giant.  We

also included such details as the known differential regulation of the two Giant

expression domains, and since hunchback is known to have two promoters with

different transcriptional activators for each, we modeled the regulation of each

promoter separately.
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However, these kinds of nonlinear DEs are much slower to simulate than the

neural-network style weighted sums of the Reinitz models or the even simpler first-

order kinetics of Alves & Dilão.  This fact limited the number of parameter sets we

were able to explore, as well as the spatial and temporal detail of the data we were

able to fit the model to.  The Reinitz model is fitted to concentration measurements for

each nucleus at nine 6.5-minute time intervals, and ours was fitted to continuous,

averaged concentrations at a single timepoint (early cycle 14, when the gap genes

reach their final pattern).

Steady state assumption

Some models require that the expression patterns come to a stable equilibrium,

and throw out parameter sets where the equilibrium pattern fails to match this stable

pattern (Sanchez & Thieffry, Alves & Dilão). This is potentially problematic because

gap gene expression domains do not ever stop changing in the fly embryo.  Unlike the

expression stripes of later segment polarity genes, these subside and fade away as soon

as their downstream targets have achieved the proper pattern.  Of course, looking only

at steady states offers a substantial increase in efficiency in the parameter-fitting

process; modelers can automatically discard unstable parameter sets, and examine

only those that reach equilibrium for a match to the correct expression pattern (Alves

& Dilão, (Siegal and Bergman 2002)).  However, it introduces a substantial artifact

into the model when the network being represented is as dynamic as that of the gap

genes.  An alternate solution is to compare the model to a snapshot of the expression

patterns at the most important stage of gap gene development, when their domains set

the positions for the pair rule genes that follow (Stockwell) or at a series of such

snapshots (Reinitz).
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Biologically meaningful parameters

All of the models contain parameters that allow the equations to be fit to

experimental data.  Some mathematical representations include parameters that have

measurable, biological analogs, such as binding affinity, binding cooperativity, or

half-lives of molecules.  This is useful because such a model, once fitted, offers

measurable predictions.  It has the additional benefit that parameter space sampling

can be limited to known biological ranges of the parameters (von Dassow et al. 2000).

Other models' parameters are more abstract, but allow more convenient or faster

fitting (Reinitz).  The choice of variable representation constrains the choice of

parameters; for example, since the Reinitz models conflate the mRNA and protein

products of a gene into a single variable, the parameter representing the half-life of the

hybrid molecular concentration is more difficult to disentangle once fitted.  The

discrete thresholds in the Sanchez & Thieffry model are even more difficult to relate

to measurable characteristics of real molecules.  The Alves & Dilão model, like

Reinitz and Sanchez & Thieffry, reduces mRNA and protein molecules into single

variables except where required by the maternal mRNA contributions.  This reduces

the interpretability of the binding strength parameters they use in their kinetic

equations, but such parameters do have biological meaning and can be compared to

empirical measurements.  For our model, we chose to separate mRNA and proteins

into separate variables, and selected a formalism that yielded parameters grounded in

the mechanics of molecular interactions.

An alternate model

The gap gene expression domains provide positional information for the pair-

rule genes, which in turn demarcate the expression boundaries for the segment polarity
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gene network.  Von Dassow et al. (von Dassow et al. 2000; Meir et al. 2002; Von

Dassow and Odell 2002) created a very successful model of the segment polarity

network, in which they discovered that a surprisingly large proportion of parameter

space produced a wild-type expression pattern in the model.  They chose a continuous-

variable, continuous-time mathematical representation with measurable, biologically

meaningful parameters.

We applied this technique to the gap gene network, adapting the original

ordinary DEs to the partial DEs required for a spatial model.  The segment polarity

genes settle into a steady expression pattern; their task is to record the earlier, transient

signals in order to guide downstream developmental differentiation.  The gap genes,

however, do not achieve a steady state, so we eliminated the requirement for the

model to arrive at an equilibrium expression level.  We incorporated experimental

findings about gap gene interactions to create a model that would complement the

existing catalog of techniques (Table 3.1) and investigate whether alternate methods

could shed light on the gap gene dynamic patterns.

We used nonlinear continuous partial differential equations to represent the

regulation of and by the gap genes.  These formalisms, as detailed in the segment

polarity network model (von Dassow et al. 2000; Meir et al. 2002), offer a convenient

way of encapsulating the kinds of complex cross-regulatory relationships detailed in

Figure 3.1, while using parameters that correspond to measurable quantities: half-lives

of mRNA and protein molecules (H), binding strengths (k), and binding cooperativity

(n).  We represented mRNA and protein concentrations as separate, continuous

variables.  Transcriptional regulation was modeled as sigmoid dose-response curves

(composed Hill functions); translation rates were linear functions of mRNA

concentrations.  All molecular species had first-order decay, and diffusion through the

syncytial blastoderm was held constant throughout the embryo.  We fitted the model
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to data published by the Reinitz group (Poustelnikova et al. 2004). More detail on the

model is provided in the supporting information.

Table 3.1.  A summary of gap gene models.

We found a number of insights as we fitted the model to expression data from

the FlyEx database (Kosman et al. 1998a; Kosman et al. 1998b; Surkova et al. 2008)

(Figure 3.2).  First, we discovered that realistically steep curves at the boundaries of

expression domains required short half-lives for both the mRNA and protein

molecules.  With longer half-lives, diffusion spreads the protein out in a shallower

gradient.  Gap genes whose half-lives have been measured experimentally have turned

out to agree with our model in this regard.  Hunchback protein is estimated to have a

brief half-life of 30-40 minutes (Hülskamp et al. 1994), and its mRNA is short-lived as

Representation of                  Combining regulatory           Steady state assumption?   Experimentally
gap gene concentrations       effects                                                                                     measurable parameters?

Continuous (mRNA and
protein conflated)

Weighted sum of
regulator concentrations
(linear)

No; compared model to
data at multiple time
points

No (weight matrix)

Yes (binding constants)Yes

Repressors trump
activators completely;
in absence of bound
repressors, any bound
activator suffices for
maximal transcription

Continuous (mRNA and
protein conflated)

Boolean logic
functions, modified for
discrete real-valued
concentrations and
thresholds

No (thresholds are
fitted, but integer
concentrations prevent
relating the thresholds
to measurable
quantities)

Yes (decay rates,
binding affinities, rates
of reaction)

No; compared model at
specified time point

Composed Hill
functions
approximating logical
functions (AND, OR,
NOT) and competition
for binding sites

Continuous (mRNA and
protein separate
variables)

Yes

Model
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Figure 3.2.  Comparing protein concentrations in our model (above) with
smoothed protein concentrations measured in fixed embryos (below).  Trunk gap
gene proteins (fitted variables) are in color.  Maternal morphogens and terminal gap
genes (inputs to the model) are in gray, labeled at right and left.  Anterior end is at left.
Fixed embryo data is adapted from plots in the FlyEx database (Kosman et al. 1998a;
Kosman et al. 1998b; Surkova et al. 2008).

well  (Hülskamp et al. 1994; Grosskortenhaus et al. 2005), with a half-life as short as

6-9 minutes (Weir et al. 1988).  The protein Krüppel also decays quickly and, like

Hunchback, seems to be actively degraded (Jacob et al. 1991; Grosskortenhaus et al.

2005) – perhaps in order to achieve the much-discussed steep posterior border of its

anterior expression domain.  Krüppel mRNA has a half-life of less than 10 minutes

(Weir et al. 1988).  Downstream segmentation gene products also tend to have short

half-lives, perhaps for similar reasons.  For example, the pair-rule gene fushi tarazu is

well-known for having the impressively small half-life of about 10 minutes for both its

mRNA and protein molecules (Edgar et al. 1986; Kellerman et al. 1990)) and
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engrailed, even-skipped, hairy, and runt mRNAs are similar (Weir et al. 1988).  The

decay rates of the other gap gene products remain to be measured.

It is, perhaps, unsurprising that the half-lives of the RNAs and proteins were

one of the primary parameters we needed to tune in our model to achieve a fit with

experimental data.  It appears that evolution has been doing something similar: Gregor

et al. (Gregor et al. 2005) finds that the half-life of Bicoid has changed to achieve the

proper morphogen gradient in eggs of different lengths in different Dipteran species.

A slower diffusion rate would also have helped sharpen the boundaries of the

expression domains in our model.  However, the global diffusion constant is

constrained to a certain value because it is the dominant determinant of Bicoid and

Nanos gradients; if we fit those to experimental measurements, we thereby fix the

diffusion constant.  However, since the gap genes are transcription factors, they may

spend substantial time sequestered in the nucleus and not diffusing substantially.

Also, recent findings have suggested that bicoid mRNA plays a role in forming the

exponential Bicoid protein gradient.  The exact nature of Bicoid gradient formation is

an area of active research (Gregor et al. 2005; Coppey et al. 2007; Gregor et al. 2007a;

Gregor et al. 2007b; Lipshitz 2009).

We also found that the only way to allow the gap genes to effectively

"negotiate" the boundaries between their expression bands, without damping each

other's expression entirely, was to keep the mutual repression fairly weak.  This is

especially true for genes like Krüppel, which express bands in the middle of the

embryo where Bicoid, its main activator, is at a relatively low concentration.  Even

nearer the anterior end of the embryo, however, repression between gap genes had to

be mild (large "k" parameters) to generate the correct stripe pattern.  In general, the

mutual repression worked best when its primary role was to sharpen the edges of the
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bands, whose position was mainly determined by how strongly they responded to

levels of transcriptional activators.

We were surprised by this conclusion.  Since adjacent gap gene expression

domains have limited overlap (Kraut and Levine 1991), we had hypothesized that they

repressed each other strongly.  However, diffusion in the syncytial blastoderm means

that small amounts of each protein constantly seep out from its expression domain into

that of its neighbors.  If mutual repression is made strong enough that "jostling"

among domains is the main way they establish their position, then the seepage from

each domain damps transcription in the neighboring domains to the point that all the

gap genes quickly subside into non-expression.  Such non-intuitive insights illustrate

the value of constructing a dynamic model.

We fitted our model to the data by iterative testing and simulation, as did

Sanchez & Thieffry and Alves & Dilão.  The Reinitz model was fitted via nonlinear

optimization methods (Jaeger et al. 2004a) but even that automated process produced a

large number of good fits, which the researchers had to hand-check for biological

plausibility (Manu et al. 2009b).  Exploring parameter space by hand is a useful

process for the modeler, however, because it provides an intuition for the parameter

landscape and how it affects the model. In our case, we found that identifying a

parameter set that provided a good fit with the data was not difficult, and that nearby

parameter choices produced nearly-as-good fits.  This suggests that, as with the earlier

version of this modeling approach (von Dassow et al. 2000), a relatively large

proportion of parameter sets produced the correct pattern.  The gap gene network, like

the segment polarity network, appears to be relatively robust to parameter variation.

Experimental evidence supports this finding; indeed, the positional patterning system

is robust to even extreme insults like maintaining the two halves of the embryo at

significantly different temperatures (Lucchetta et al. 2005).
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We undoubtedly left details of the transcriptional regulation out of our model;

some that we were unaware of, and some that are not yet known.  Despite this,

however, the model achieved a respectable approximation of the data.  This suggests

that the biological network itself may be able to accommodate a fair amount of

regulatory “sloppiness” in its interactions.  Indeed, some tolerance is required for the

variation that allows evolvability; and in fact one of the cornerstones of the patterning

system, Bicoid, is a recent invention, confined to higher Dipterans (Sommer and Tautz

1991; Schröder and Sander 1993; Stauber et al. 1999; Wimmer et al. 2000).  If the gap

gene network is flexible and robust enough accommodate the replacement of one of its

most fundamental steps, perhaps that helps explain why so many different modeling

incarnations of the network can all achieve an approximation of its behavior.

Questions and insights

Any model is useful only insofar as it allows us to ask questions and generate

testable hypotheses about the system it represents.  Different choices of abstractions

enable the investigation of different questions.  For our model, we began with the

regulatory relationships that we could infer from the experimental literature, and then

chose a formalism that encoded these mechanistic details in terms of parameters that

can be tested empirically.  The Reinitz model took the reverse approach, fitting a less

mechanistic but more computationally tractable model to infer the regulatory rules.

By fitting the model to much more detailed data (generated in their own lab), they

were able to ask questions that depended on very fine-scale qualities of gap gene

regulation: how far the precision of the Bicoid gradient could specify the position of

the gap gene domains, and what other mechanisms were involved in reducing the

embryo-to-embryo variation of the expression band positions.  By doing so, they were
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able to help resolve longstanding questions about the causes of developmental

canalization.  The Sanchez & Thieffry model was one of the first models of gap gene

dynamics, and it showed that the published interactions were largely sufficient to

generate the patterns observed in wild-type and mutant embryos.  Their approach has

the advantage of requiring the least detailed knowledge of the system, and could offer

an approach for researchers interested in modeling gene networks where our

understanding is less complete than for the Drosophila segmentation genes.  For such

networks, the Alves & Dilão method is also a viable alternative.  Like the discrete

logical method, it requires only the network topology (A represses B, C activates D)

and can test the sufficiency of known interactions to create the expression patterns

observed.  Unlike that approach, it offers fitted parameters that can be tested via

experiments.

All models, except the most automated, prompt questions of those who

construct them: What did we notice about this system as we wrote down explicit

equations that force us to specify how we think it works, and when we chose and fit its

parameters?  What assumptions did we find we had to make?  What simplifications

were necessary, and what gaps in our knowledge did we identify?  The process of

making the model and comparing it to experimental data is generally as informative as

the answers to any hypotheses the modeler specifically set out to address.  For less

well-known gene networks, simpler models firmly based on experimental

observations, with a set of parameters small enough to be fit by trial and error, can

lend more easily interpretable insights into what we think we know (and what we find

we don’t know) about the network being modeled.

Much of the research on the gap gene system in the past few years has focused,

like the most recent Reinitz models (Manu et al. 2009a; Manu et al. 2009b), on the

details of variability and precision in the patterning mechanism (Houchmandzadeh et
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al. 2002; Houchmandzadeh et al. 2005; Gregor et al. 2007a; Gregor et al. 2007b).

This kind of work is only possible with a gene network where nearly all the genes are

known and their behavior characterized, and (equally importantly) where experimental

techniques and mutant lines have been well-developed.  Most gene networks are much

less completely known, and for these, simpler modeling approaches with more general

questions are appropriate.  With the array of techniques that have been developed to

deepen our understanding of the gap gene system, future modelers will have a well-

equipped tool-chest with which to examine the inner workings of the networks we do

not yet understand.
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APPENDIX

A3.1. A new model

Introduction

Much work has been done to reveal individual interactions within the gap gene

network.  While some of the regulatory mechanisms are still unclear, the gap genes

represent one of the best-characterized eukaryotic transcription factor networks.

However, dynamical patterns of any complexity are not easy to intuit from known

rules.  A well-known network is not guaranteed to include all the interactions required

to reliably produce a dynamic phenotype.  When von Dassow et al. (2000) modeled

the segment polarity network, they found that robustly recreating the correct pattern

required two missing interactions.  To investigate the completeness of our

understanding of the gap genes in a similar way, we created a mathematical model that

captured what is known about gap gene regulation, and asked whether it was sufficient

to generate the patterns we see in real embryos.

We formalized the known interactions in modular partial differential equations

(PDEs) representing the regulatory pressures on each gap gene, and fitted parameters

in the model to recreate the evolution of the gap gene bands as they arise over the

course of several mitotic cycles.  We fitted the model to experimental data from the

FlyEx database (Kosman et al. 1998a; Kosman et al. 1998b; Surkova et al. 2008) at

late cycle 13/early cycle 14, when the pair rule genes solidify their pattern based on

the gap gene domains (Foe et al. 1993).  We did not fit the transient expression levels

before this time, but we found that the time period between the beginning of gap gene

transcription and the end of their influence is short enough that the transients cannot

vary too much if the early cycle-14 expression pattern is pinned to experimental data.



123

The gap gene bands must arise, reposition, and sharpen in time for the pair-rule genes

to "read out" their position, and not much time is left for other changes in expression.

Methods

Drosophila melanogaster embryos develop with an unusually simple geometry

in the early stages, providing an especially suitable system for spatial modeling.  Until

gastrulation begins in the 14th cell cycle, the embryo is a roughly radially symmetric

ovoid, with bands of gene expression dividing it up along the anterior-posterior axis.

Because of the symmetry, we can capture the banding patterns by modeling different

protein concentrations along a single line running the length of the embryo, from

future head to future abdomen.  (All models reviewed here make this simplification.)

No cell membranes form between the dividing nuclei while the gap gene bands are

forming, so fluids and proteins may be presumed to diffuse relatively freely within the

embryo.  We allowed proteins to diffuse, but not mRNAs, because they were

presumed to be confined to the nuclei.

We used the mathematical formalism presented in a segment polarity model

(von Dassow et al. 2000; Meir et al. 2002), adapted via PDEs for a spatially

distributed system.  When we lacked specific experimental information about how

different proteins interacted to regulate a single gap gene, we used these default rules:

• Two or more activators are "OR'd" together.  That is: Either is sufficient to

bring about the maximal transcription its efficiency parameter permits (see

below).  We included a parameter for weighting the activators relative to each

other, but did not need to use it to fit the model to the data.  See function

“phiphiTwoGlobalActivators” in the Mathematica code in A3.2, adapted from

the equation in Figures A4-C in (Meir et al. 2002).
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• Two or more repressors are "OR'd" together in a similar way; either is

sufficient to bring about complete transcriptional repression.  This is achieved

by multiplying psi (repressor) terms together; see Mathematica code in A3.2.

• An activator and repressor are assumed to interact by the repressor competing

the activator off its binding site.  See function “phipsiCompet” in the

Mathematica code in A3.2; adapted from eq. A17 in (Meir et al. 2002).

Gap genes included in the model:

hunchback (hb) (zygotic)

Krüppel (Kr)

knirps (kni)

giant (gt)

tailless (tll) (as an input to the other zygotic gap genes)

huckebein (hkb) (as an input to the other zygotic gap genes)

Maternal effect genes included in the model, as inputs:

bicoid (bcd)

hunchback (hb) (maternal)

caudal (cad)

nanos (nos)

torso (tor)

Some model details:

State variables represented the concentrations of the various molecular species

in the model.  We modeled mRNA and protein as separate variables because of

previous work showing that conflating the two products of a single gene reduces the
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robustness of the network (Odell and von Dassow 2003).  Proteins were synthesized at

a rate proportional to the concentration of the relevant mRNA.  mRNA synthesis

depended on the concentrations of known transcriptional regulators of the gene

(details below), as well as on protein products that specifically target the mRNA for

degradation where there was experimental evidence of this.  All molecular species also

had first-order decay terms.

We chose Hill functions as the building block of regulatory terms in our model

because they saturate in a biologically realistic way, and because (unlike some

mathematical representations of similar sigmoid curves) the parameters have readily

understandable and measurable biological analogs.

Parameters

The Hill coefficient, n, is the cooperativity of the regulatory molecule.  An

example of cooperativity is if, when an activator binds, the binding increases the

chances of a second molecule of that activator binding; that is, it helps recruit others of

its kind.  The extent of this kind of self-reinforcing effect corresponds to the steepness

of the curve of the Hill function.  Cooperativity can also be increased by indirect

molecular interactions that cause regulators to bind at a rate that is more than a linear

function of their concentration.

The half-maximal value, k, represents the binding affinity of a regulator to an

enhancer.  A Hill function is at half its maximal value (1, in these normalized and

nondimensionalized equations) when the regulator variable has the value k.

The half-life of a molecule, whether mRNA or protein, was denoted by the

parameter H.

All three of these parameters provide different ways of changing the sensitivity

of transcription to the concentration of the regulator.
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Regulatory interactions

The background conditions (Akam 1987; Gaul and Jackle 1990; Pankratz and

Jackle 1993; Rivera-Pomar and Jackle 1996; Thieffry and Sanchez 2003): The egg's

initial polarity derives from maternally deposited bicoid mRNA anchored at the

anterior tip of the embryo, and nanos mRNA deposited at the posterior.  There are also

maternally provided uniform distributions of caudal and hunchback mRNA

throughout the embryo.  The egg begins translation of the maternal-effect mRNAs at

fertilization.  The stationary source of Bicoid protein diffuses through the embryo

toward the posterior end, producing an exponential gradient of Bicoid with its

maximum at the anterior end.  (Modifications to this pure-diffusion model have

appeared recently (Gregor et al. 2007a; Gregor et al. 2007b) but the final answer is not

clear (Reinitz 2007; Lipshitz 2009) so we have used the simple diffusion approach.)

Similarly, Nanos protein diffuses to form an opposing gradient.  Since these two

gradients hold their positions while the gap gene bands arise, we modeled them as

establishing quickly and then remaining stationary during the gap gene band

development.

Bicoid protein, once present, inhibits caudal mRNA translation.  The Bicoid

gradient thus produces a Caudal protein gradient with its maximum at the posterior

end, somewhat mimicking the Nanos gradient.  Newly translated Nanos protein (with

help from Pumilio, implicit in our model) prevents translation of hunchback mRNA,

creating an anterior region of Hunchback protein that ends, fairly abruptly, at the

middle of the embryo.  Bicoid contributes to the shape of this Hunchback expression

pattern later in development by up-regulating zygotic hunchback transcription in the

anterior.
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Together, these four maternal effect genes establish the initial anterior-

posterior polarity of the egg.   The gap genes, including zygotic hunchback, first have

detectable transcripts at mitotic cycle 10 (Foe et al. 1993) and "read out" the positional

information contained in these gradients.  The regulation from the maternal effect

genes, and the inter-regulation between the gap genes, gives rise to the dynamic

patterns that determine the patterning of the embryo.

We modeled only the main section of the embryo where the gap gene bands

form, neglecting the anterior and posterior tips where a number of other "terminal"

genes are expressed to begin the patterning of the head (orthodenticle, buttonhead, and

empty spiracles) and extreme posterior.  (All models reviewed here also restricted

their analysis to the trunk gap genes.)  We included the terminal genes tailless and

huckebein as independent variables, helping regulate the other gap genes but not being

regulated themselves, to provide a simplified but reasonably realistic environment for

the gap genes near the tips.  Since Torso’s signaling cascade results in the activation of

both these genes (Lu et al. 1993), we set up Tailless and Huckebein gradients by

placing artificial Torso gradients at the anterior and posterior ends of the embryo, and

having this protein alone control tailless and huckebein transcription (and nothing

else).

We assume that all regulation is direct unless there is experimental evidence

otherwise.  We assumed that the following quantities were constant throughout the

time covered by the model (through cycle 14A): temperature, diffusion constants,

volume and length of the embryo, physical configuration (i.e., no gastrulation or other

rearranging of cells), absence of cell walls, distance between nuclei, and the

availability of general transcription factors.

Most of the regulation in the model was transcriptional, because the gap genes

and most maternal effect genes are transcription factors.  For each mRNA's PDE, we
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included terms to represent its known transcriptional regulators in as mechanistically

faithful a way as possible.  We gathered the facts we could find in the literature to

compile a list of each gap gene's regulators.  For example, for Krüppel, we began with

activation by Bicoid, the main activator of anterior and central gap genes.  Then for

each of Krüppel’s other regulators, we decided which was the most biologically

realistic of the parameters for the regulator to affect.  For instance, Knirps competes

with Bicoid to reduce the number of Bicoid binding sites, so we modeled Knirps as

reducing n, the Hill coefficient of Bicoid's activation of Krüppel transcription.  In this

function, greater Knirps concentration lowers n.

We combined the transcriptional regulators for each gap gene, added the

diffusion process and (unless otherwise regulated) linear functions for translation and

decay, and tested the resulting equations for each individual gene to make sure the

behavior was biologically reasonable.  Then we assembled all the genes into one

network (a system of 19 PDEs) and tuned the parameters to get lifelike behavior.

Since mitotic cycle 13/early cycle 14 is when the pair-rule genes form stripes

based on gap gene expression patterns (and cycle 14 is when cellularization begins,

and the embryo departs from the free diffusion we assumed for the syncytial

blastoderm) (Foe et al. 1993), we fitted our model to the gap gene expression

measurements from that stage of development.

Details of the transcriptional regulation of each gene

The regulatory details of these interactions, while well studied, are not all

completely understood.  We applied the general rule that all gap genes repress one

another generically, except where we had more detailed information. We gathered the

facts we could find about how each gene is regulated, from genetic experiments

(mutant phenotypes), molecular data about regulatory binding sequences (enhancers
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and promoters) and computational models extrapolating binding predictions from

regulatory binding sequences.

Giant

Giant has different regulatory influences for its anterior and posterior expression

domains.  To represent this, we modeled giant as being capable of maximal

transcription when activated by either Caudal (the posterior activator, (Rivera-Pomar

et al. 1995)) or Bicoid, the anterior activator (Eldon and Pirrotta 1991). Bicoid’s

effective concentration was mediated by competition from Krüppel (Makeev et al.

2003) and Hunchback, both repressors of giant (Eldon and Pirrotta 1991; Kraut and

Levine 1991b).  Knirps, Krüppel (Kraut and Levine 1991a), Huckebein (Eldon and

Pirrotta 1991), and Tailless (Kraut and Levine 1991a) are general repressors.

Knirps

The activators modeled for knirps were Bicoid (Bate and Martinez 1993) and Caudal

(Rivera-Pomar et al. 1995).   We modeled the repressors Krüppel and Hunchback

(Hülskamp et al. 1990; Kraut and Levine 1991a) as competing for Bicoid with binding

sites (Makeev et al. 2003).  General repressors in the model were Giant (Eldon and

Pirrotta 1991), Huckebein, and Tailless.

Krüppel

The gene Krüppel has especially complicated transcriptional regulation.  Maternal

Bicoid activates its transcription (Bate and Martinez 1993), but Knirps acts to slightly

reduce Bicoid’s ability to recruit other Bicoid proteins to the binding site (Hoch et al.

1992).  We therefore modeled Knirps as acting to lower the Hill coefficient of

Bicoid’s activation of Krüppel transcription.  Additionally, Hunchback and Giant are
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repressors that can interact to regulate Krüppel.  Intermediate levels of Hunchback can

amplify Krüppel transcription, perhaps indirectly, while high levels of Hunchback

repress Krüppel.  We modeled this in the following way: Hunchback is a repressor of

Krüppel, but a less effective one when bound than Giant is.  Hunchback competes

with Giant for binding sites, and thereby reduces the effective concentration of Giant

at the enhancer.  This approach allows Hunchback to retain its identity as a repressor,

but still have the mild activator effect on Krüppel that has been documented.  Tailless

is an additional repressor for Krüppel; like Knirps, it acts by competing with the

activator Bicoid for binding sites (Hoch et al. 1992).

Hunchback

Hunchback protein in the embryo comes from translation of both maternal hunchback

RNA, deposited in the egg, and of newly transcribed zygotic hunchback RNA.  We

treat these two protein sources separately in the model.  Maternal hunchback RNA

begins uniformly distributed throughout the embryo, and begins to be degraded by

Nanos (Pumilio (Murata and Wharton 1995) is implicit) as the model run begins.

Zygotic hunchback RNA begins the model run with a concentration of 0, like other

zygotic gap gene products.

Zygotic hunchback has two well-studied promoters, governed by different

combinatorial regulatory logic.  We treat these separately.

Promoter 1 transcription:

This promoter does not respond to Bicoid protein, but does respond to Hunchback

protein itself (Hülskamp et al. 1994; Wimmer et al. 2000).  The parasegment 4 stripe,

the posterior cap, and to some extent the anterior part of the posterior cap are the
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product of this promoter (Margolis et al. 1995).  We modeled Hunchback (Wimmer et

al. 2000) and Tailless (Margolis et al. 1995) as independent activators of P1 zygotic

hunchback.  Repressors were the global inhibitors Krüppel (Clyde et al. 2003), Knirps

(Clyde et al. 2003), Giant, and Huckebein (Margolis et al. 1995).

Promoter 2 transcription:

This promoter, and its associated enhancer, respond to Bicoid protein as an activator

(Margolis et al. 1995), (Driever and Nusslein-Volhard 1989), and correspondingly the

expression domains of P2 hunchback (the anterior cap) form earlier than those of P1.

We modeled the activator Tailless (Margolis et al. 1995) and Bicoid as activators

competing for the same binding sites.  Since Bicoid can activate hunchback P2 in the

absence of Hunchback and Tailless, we chose a mathematical function encapsulating

the idea that Hunchback helps Bicoid’s transcriptional activation of the P2 promoter

(by lowering the k parameter), but that Bicoid can also function as a lower-efficiency

independent activator when Hunchback is absent.  Repressors are Krüppel (Clyde et

al. 2003), Knirps (Clyde et al. 2003), Giant, and Huckebein (Margolis et al. 1995).

The repressor Krüppel and Bicoid share binding sites (Makeev et al. 2003), so we

modeled Krüppel’s repression mechanism as competing the activator Bicoid off its

binding sites.

Results

We were able to achieve a good fit with published experimental data (Figure

3.2, main text).  We report the fitted half-life parameter values (H) in Table A3.1.  See

Mathematica code for k parameter values (“thresh” variables).
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Table A3.1.  Fitted half-life parameters from the model.

Molecule Fitted half-life parameter

giant mRNA 20

Giant protein 20

hunchback mRNA (promoter 1) 10

hunchback mRNA (promoter 2) 10

Hunchback protein 2

knirps mRNA 20

Knirps protein 20

Krüppel mRNA 20

Krüppel protein 20

Conclusions

A careful mathematization of what is known about genetic and molecular data

can produce a model that produces lifelike behavior.  Unlike the segment polarity

network (von Dassow et al. 2000; Von Dassow and Odell 2002), the published

interactions between maternal morphogens and gap genes appear sufficient to produce

observed embryonic patterns, at least at the stage (early cycle 14) that we examined.

See the main text for observations from the parameter fitting.
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A3.2. Mathematica code
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