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Soil microorganisms and their activities are critical for soil function, thus, 

understanding how biochar soil amendment may affect soil microbial life is critical for 

assuring that soil quality and the integrity of the soil subsystem are maintained. In this 

study, I characterized microbial life colonizing biochar and biochar-amended soils 

sampled from the Cornell Musgrave Farm, Aurora, NY, to study the effects of biochar 

soil amendment on microbial abundance; basal respiration; metabolic quotient (qCO2); 

carbon, nitrogen and phosphorus exoenzyme activities and locations; microbial 

community composition; and, the identity of the dominant fungi colonizing biochar. 

Microbial biomass carbon (MBC), measured by simultaneous chloroform fumigation 

extraction, was impaired by the adsorption of 47.5% more dissolved organic carbon 

(DOC) liberated from cells to 30 t ha
-1

 biochar-amended soils than to unamended 

control soils. Adjusted by use of the Freundlich model to correct for DOC adsorption,  

MBC increased by 18.5-37.5% with an increase in the biochar application rate from 12 

to 30 t biochar ha
-1

. Meanwhile, high biochar-amended soils had lower basal 

respiration, which resulted in lower values for qCO2. These results indicate a possible 

increase in microbial carbon use efficiency and a decrease in C turnover in response to 

biochar addition. I found the 30 t ha
-1

 biochar-amended soils had 615.3% and 15.0% 

higher activities of alkaline phosphatase and aminopeptidase, but 81.3% and 82.2% 

lower activities of β-D-glucosidase and β-D-cellobiase, respectively, than those in the 

unamended control soils. This indicates a low demand for C substrate relative to cell 

needs for N or P in response to biochar addition. These results suggest that the 



 

changes observed qCO2 in biochar-amended soils may indeed be linked to increased 

microbial C use efficiency. We also localized the presence of active alkaline 

phosphatase and β-D-glucuronidase particularly on biochar particles using Enzyme-

Labeled Fluorescence (ELF) and visualized bacterial cocci and bacilli and thread-like 

fungal hyphae either on or in the biochar porous structure using scanning electron 

microscopy. PCR-T-RFLP fingerprinting analyses revealed that both the bacterial and 

fungal community compositions were affected strongly by biochar addition and did 

respond differently to different biochar application rates and time since biochar was 

applied. Furthermore, sequenced fungal internal transcribed spacer (ITS) regions 

revealed a shift, from families of the Basidiomycota and Ascomycota, to families of 

the Zygomycota and Glomeromycota (arbuscular mycorrhizal fungi, AMF) in response 

to biochar addition, thus, I suggest that the adsorption of essential nutrients on biochar 

allows these fungi to colonize, produce exoenzymes and meet their mineral nutrient 

needs. The recalcitrance of biochar suggests that the septate fungi (mainly from 

families of the Basidiomycota and Ascomycota) may not be able to meet their carbon 

needs from biochar and thus are not encouraged to colonize. To conclude, our data 

suggest that profound changes in soil microbial communities are occurring in biochar 

amended soils that apparently lead to tighter cycling and reduced system loss of both 

nutrients and carbon. Biochar clearly influences the diversity of microbes colonizing 

its surfaces, their activities and their abundance, with a net result of the conservation 

of resources within the soil system. 
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CHAPTER 1                                           

CHARACTERIZATION OF MICROBIAL LIFE COLONIZING BIOCHAR AND 

BIOCHAR-AMENDED SOILS 

INTRODUCTION 

The use of biochar as a soil amendment for improving soil quality and on-farm 

benefits has drawn researchers‟ attention and interest greatly (Thies and Suzuki, 2003; 

Young et al., 2005; Lehmann, 2007; Lehmann et al., 2007; Rondon et al., 2007; Laird, 

2008; Thies and Rillig, 2009). When farmers and gardeners apply biochar to soils, 

they are attempting to follow in the footsteps of the “Terra Preta Legacy” in Western 

Amazonia (Glaser et al., 2001). The high sustained fertility of these soils is proposed 

to be the presence of black carbon. Biochar use today is meant to mimic this process; 

yet, we do not know how it can best be adapted for use in soils outside its region of 

origin. Much is left to discover on the effects of biochar on soil microbial communities. 

Particularly, the unique microbial ecology that is essential to soil fertility and nutrient 

dynamics in biochar-amended soils and the degree to which biochar is a benefit is 

heavily dependent on the microbial community in these soils, which have received 

very little attention.  

LITERATURE REVIEW 

Biochar as a Soil Amendment 

Biochar amendment practices have a long history. It was an old practice in China 

to mix firewood ashes with soils and livestock dung followed by heating and aging for 

several months, before the mixture was added directly into the field as a fertilizer. 

Direct burning of plant residues in the field after harvest for land clearing is common 

all over the world. Recently, due to its possible contribution to C sequestration, crop 
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productivity, ability to remove organic contaminants and it is affinity for nutrients and 

water, biochar soil amendment has drawn soil scientists‟ attention leading to an 

increasing number of studies, expanding this field of research rapidly.  

First, amending soils with biochar provides a direct input of black C into 

agricultural soil (Young et al., 2005; Skjemstad et al., 1996; Liping and Erda, 2001), 

which contributes to reducing the release of atmospheric greenhouse gases from soil. 

Conversion of biomass C to biochar C, followed by burying the biochar in soil may 

sequester about 50% of the initial C in soils compared to direct land application of 

unburned biomass (Lehmann et al., 2006). Carbon in the form of biochar is relatively 

recalcitrant, therefore, the long persistence of biochar in soil will help to mitigate 

climate change as the potential of soils to be a sink for atmospheric CO2 increases. 

Second, biochar can promote crop growth by supplying and retaining nutrients 

and by improving soil physical and biological properties (Lehmann et al. 2003; 

Lehmann and Rondon, 2006). Hoshi (2001) studied the feasibility of adding bamboo 

charcoal to soil to produce high-quality green tea with reduced fertilizer inputs. After 

three years of monitoring, the bamboo charcoal tended to retain the supplied fertilizers 

in the rhizosphere and kept the soil pH in a range that was suitable for the growth of 

tea trees. The height and volume of the tea trees in the plots in which the charcoal was 

used were, on average, 20% and 40% higher, respectively, than they were in the 

unamended control plots. The best tea tree growth was found in the plots treated with 

100 g m
-2 

y
-1

 crushed bamboo charcoal. However, improved crop growth is not true for 

all crops or for all soils. Rondon et al. (2007) found that biomass growth of beans rose 

with biochar applied at 60 Mg C ha
-1

; but fell to the same value as for control 

treatments when the biochar applied was increased to 90 Mg C ha
-1

. Chan et al. (2007) 

conducted a pot trial to investigate the effect of biochar applications on radish yield. 
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Results suggested a significant biochar×nitrogen fertilizer interaction, which 

suggested a role for biochar in improving crop N fertilizer use efficiency. But in the 

absence of N fertilizer, application of biochar to the soil did not increase radish yield, 

even at the highest application rate used of 100 t ha
-1

; also, a significant reduction in 

dry matter production of radish was observed when biochar was applied at the lowest 

rate of 10 t ha
-1

. The effect of biochar on plant productivity depends strongly on the 

amount added. Lehmann et al. (2003) suggested that the initial beneficial effects of 

biochar additions on nutrient availability are due to high base cation (Ca, Cu, K, Zn) 

and P availability. However, nitrogen limitation resulting from the high C:N ratio of 

the biochar added may occur in some cases and result in decreased yields at high 

application rates (Lehmann et al., 2003).  

Third, it has been well recognized that the presence of charcoal in soil could 

enhance the adsorption of contaminants, such as pesticides, heavy metals and toxic 

secondary metabolites. Wardle et al. (1998) investigated short-term ecological effects 

of charcoal on the Boreal forest plant-soil system. Their results showed that the 

charcoal present in the soil adsorbed secondary metabolites and phenolics, which are 

produced by decomposition of ericaceous vegetation. The presence of these 

metabolites commonly slows nutrient cycling and retards tree seedling growth. Thus, 

the growth of B. pendula was stimulated by adding charcoal. In addition, adding 

charcoal enhanced seedling shoot to root ratios of P. sylvestris and B. pendula tree 

species. This response was thought to indicate greater N uptake and greater efficiency 

of nutrient uptake in these trees. Wardle et al. (1998) thereafter identified that B. 

pendula trees took up 6.22 times more N when charcoal was added to the root zone. 

Mizuta et al. (2004) investigated the effectiveness of powdered bamboo charcoal as an 

adsorbent for removing NO3
-
 from polluted soil. Their results showed that the 

powdered bamboo charcoal had high adsorption effectiveness and weak temperature 
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dependency, which qualified it as an attractive option for the in situ treatment by 

adsorption of nitrate-N-contaminated ground and surface waters. They also considered 

that the removal of chemicals, which depends on physical adsorption, is effective in 

bamboo charcoal carbonized at a temperature of 1000ºC. Charcoal produced at this 

temperature had the largest specific surface area and pore volumes in the micro-pore 

range. Ohe et al. (2003) investigated the adsorption behavior of nitrate anions from an 

aqueous solution using activated C prepared from coconut shells and charcoal 

prepared from bamboo. Their results showed that the adsorption of nitrate anions on 

these adsorbents increased with an increase in the specific surface area of the 

adsorbent. Yang and Sheng (2003) showed that the residues produced from burning 

wheat and rice were 400-2500 times more effective than unamended soil in adsorbing 

diuron over the concentration range of 0-6 mg L
-1

 in water. They also reported that the 

diuron adsorption by charcoal-amended soils increased with increasing charcoal 

content. Yu et al. (2006) examined the role of charcoal in the sorption and desorption 

behaviors of diuron pesticide in soil. The results showed that the sorption-desorption 

hysteresis had a positive correlation with the micro-pore volume of the charcoal-

amended soils. Their results also indicated that the presence in soil of small amounts 

of charcoal produced at high temperature can have a marked effect on the release 

behavior of organic compounds. Chun et al. (2004) and Sheng et al. (2005) reported 

that the charcoal derived from wheat was well-carbonized and had a relatively high 

surface area and low oxygen content, and had a high affinity for organic compounds. 

A study by Zhang (2005) showed that wheat-derived char incorporated in soil (1% g  

g
-1

) resulted in a 10-fold increase in sorption and a significant decrease in solution-

phase benzonitrile concentration in the char-amended soil slurry. 

Fourth, possible changes in soil pH triggered by biochar amendment could affect 

many aspects of microbial activity. Under extremely acidic or alkaline conditions, 
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microbial activity is decreased. Neutral to alkaline pH levels are generally favorable 

for the microbial degradation of various compounds (Leahy and Colwell, 1990). 

Houot et al. (2000) examined the effect of soil chemical, physical and biological 

properties on accelerated microbial degradation of atrazine after repeated applications 

in 47 agricultural soils with pH values ranging from 5.5 to 8.3. Their results indicated 

that among the factors of soil pH, sorption coefficients, total microbial activity, 

organic C and clay content, soil pH was related most significantly to the rate of 

atrazine mineralization (r=0.83). Kastner et al. (1998) reported that a bacteria strain 

introduced into the soil did not exhibit activity due to unfavorable pH (5.2) of the soil. 

Neutralizing the soil pH to 7.0 resulted in a ten-fold increase in the soil respiration rate. 

Fifth, biochar has been suggested to have the potential to reduce leaching of 

organic and inorganic contaminants from agricultural soils (Lehmann et al., 2006) 

because of the strong adsorption affinity of biochar for soluble nutrients such as 

ammonium and phosphate. However, it remains uncertain how effective biochar will 

be in mitigating offsite movement of nutrients in different soils under different climate 

regimes. 

Little is known about charcoal preservation over time and the causes of its 

degradation once it is buried in soil. Charcoal is usually regarded as a relatively inert 

substance that is altered little by chemical or biochemical processes (Nichols et al., 

2000). However, few studies have shown that this may not be the case. Frink (1992) 

and Bird et al. (2002) showed that charcoal found in an archeological site had either 

undergone diagenetic changes or had a decreased C content. 

Interactions of Biochar with Soil Microorganisms and Microbial Exoenzymes 

Microbial communities in soil can be very sensitive to ecosystem perturbations 

(Schloter et al., 2003), and biochar soil amendment is no exception. Biochar specific 
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properties make interactions between biochar and microorganisms quite complicated. 

On one hand, soil microbial activity, abundance and community composition may be 

affected by the quality and quantity of the biochar used to amend the soil. On the other 

hand, microorganisms may have a biodegrading effect on the quantity and properties 

of the biochar. Furthermore, the interactions between biochar and microorganisms will 

affect nutrient cycling and nutrient availability remarkably both to microorganisms 

and to plants grown in biochar-amended soils. 

Microbial community activity, biomass and composition change in soils rich in 

biochar (Thies and Suzuki, 2003). Zackrisson et al. (1996) investigated the effects of 

artificially produced charcoal on soil microbial properties at six sites. Microbial 

biomass was consistently enhanced in humus when it was placed adjacent to charcoal 

particles. Decomposition of plant litter was sometimes also affected by being in the 

proximity of charcoal but the direction of these effects was unpredictable. Uvarov 

(2000) studied the respiration of the soil microbial community, the decomposition rate 

of soil organic matter and cotton strips, and herb seed germination in an area 

containing charcoal kilns, compared with control soil systems. The results indicated a 

significantly higher level of soil biological activity in the soil with charcoal versus the 

control sites. Rivera-Utrilla et al. (2001) showed that activated C adsorbs 

microorganisms strongly, and that this adsorption increases with higher 

hydrophobicity. Steiner et al. (2008) observed that basal respiration, microbial 

biomass, population growth and the microbe's assimilation efficiency (expressed by 

the metabolic quotient) increased linearly and significantly with increasing charcoal 

concentrations (50, 100 and 150 g kg
-1

 soil). Quite a few studies conducted in Japan 

provided strong evidence that the application of charcoal to soil can have positive 

effects on the abundance of arbuscular mycorrhizal fungi (AMF). Matsubara et al. 

(2002) found that the application of coconut shell derived black carbon to soil at a rate 
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of 30% by volume stimulated a 69% increase in plant pathogen resistance due to the 

increased colonization by AMF on Asparagus officinalis. Yamato et al. (2006) 

identified a 42% increase in root colonization by AMF that was attributed to Acacia 

mangium bark-derived charcoal application. Rondon et al. (2007) suggested that AMF 

colonization of N-fixing Phaseolus vulgaris roots increased by 16% when Eucalyptus 

deglupta-derived biochar was applied at a rate of 90 g kg
-1

 soil. A study on the effect 

of activated carbon on mycorrhizal colonization of Quirks robur seedlings showed a 

624% acceleration in mycorrhiza formation; meanwhile, the rapid mycorrhiza 

colonization increased drought resistance in Quirks robur (Herrmann et al., 2004). 

Warnock et al. (2007) suggest five possible mechanisms by which biochar might 

influence AMF abundance: (1) alteration of soil physico-chemical properties; (2) 

indirect effects on mycorrhizae through effects on other soil microbes; (3) plant-

fungus signaling; (4) interference and detoxification of allelochemicals on biochar; 

and (5) provision of refugia that protect fungi and bacteria from their grazers. Nishio 

and Okano (1991) reported that root infection by AMF fungi significantly increased 

alfalfa yield by 40 - 80% when 1 kg m
-2

 of biochar was added to an alfalfa field in a 

volcanic ash soil. Saito and Marumoto (2002) believed that charcoal particles acted as 

a micro-habitat for AMF and enabled them to survive, and meanwhile provided 

protection from saprophytes. Another insightful study done by O'Neill et al. (2009) 

adopted both culturing and molecular methods to characterize the microbial 

community in Terra Preta (TP) soil, the fertile Amazonian Dark Earths, which are 

valued as a historical inspiration for biochar use as a soil amendment benefiting crop 

growth and carbon storage in the modern age (Lehmann et al., 2006). By comparing 

the microbial communities in the TP sites and the background soils adjacent to them in 

the Brazilian Amazon, they found that culturable bacteria were more abundant in TP 

soils than in adjacent soils. A cluster analysis of restriction fragment length 
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polymorphisms of isolates cultured and the cloning and sequencing of bacterial DNA 

recovered from PCR-DGGE gels both indicated the presence of microbes that are 

uniquely associated with soils high in black carbon as compared to adjacent soils and 

that these organisms have greater phylogenetic similarity to each other across TP sites 

than in comparison to their corresponding adjacent soils.  

As both biochar and microorganisms are hydrophobic and have a large surface 

area, it is quite possible that microorganisms are retained in biochar pores allowing 

them to create a suitable habitat for themselves. One study showed that biochar is able 

to serve as a habitat for extraradical fungal hyphae that sporulate in the microspores 

due to lower competition from saprophytes (Saito and Marumoto, 2002). However, the 

mechanism for this is not yet clear. Also, the porous structure of biochar and its strong 

affinity for nutrients could provide microorganisms with substrates and protect them 

from their natural predators. However, little is known about which particular microbial 

communities could be involved preferably. Another important possibility is that 

nutrient-containing substrates might be preferentially adsorbed by biochar, which 

could result in increased nutrient availability for microbial colonization (Smith et al., 

1992).  

Although exoenzymes secreted by microorganisms may slowly hydrolyze 

adsorbed substrates (Estermann and McLaren, 2006), low-molecular-weight substrates 

are generally believed to be degraded by intracellular enzymes. The latter require the 

compound to enter the cells of microorganisms in order to be metabolized. An 

adsorbed compound binding to solid biochar is not free to be transported into cells. 

Reactions catalyzed by such extracellular enzymes may be markedly affected by 

adsorption because the enzymes may lose their catalytic activity. This is further 

complicated by findings that some microorganisms have the ability to directly access 
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soil-adsorbed substrates and degrade them in the sorbed state (Feng et al., 2000; Park 

et al., 2002). Similarly, this suggests that bioavailability of adsorbed chemicals is 

affected by not only by the adsorptive mechanism but also the characteristics of the 

microorganisms in question. Guerin and Boyd (1997) observed that soil-sorbed 

naphthalene was wholly unavailable to one bacterial strain, but used directly by 

another, due to differences in the physiological characteristics of the organisms. 

Adsorption of both substrate and microorganisms to biochar surfaces may result in a 

higher concentration of substrate near the attached bacterial cells and, therefore, may 

increase substrate utilization (Ortega-Calvo and Seiz-Jimenez, 1998). Purines, amino 

acids, and peptides that enter the interlayer region of expanding clays, such as 

montmorillonite, may become physically protected from microbial degradation 

because the cells cannot access the substrate. Thus, whether a nutrient substrate in its 

adsorbed state can be directly degraded depends on the capacity of the microorganism 

to access and use the adsorbed substrate. This capacity relates to both physiological 

characteristics of binding the microorganisms and adsorptive mechanisms of the 

chemical to biochar. However, it is still not clear if charcoal‟s adsorption of 

compounds inhibits microbes, increases nutrient immobilization (Schimel et al., 1998), 

or provides microbes a protected site with adequate resources and away from 

predation (Pietikäinen et al., 2000).  

Considering the complexity of interactions between biochar, nutrient cycling and 

microorganisms in soils, many questions still remain to be answered regarding 

microbial ecology in biochar-amended soils. The possible interactions between the soil 

microbial community and biochar are hypothesized to include: (1) Biochar is a porous 

substance with high water holding capacity and affinity for chemicals and nutrients, 

which cause the selection of microbial communties; (2) Biochar contains relatively 

recalcitrant carbon, this change in substrate availability will lead to changes in 
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microbial community composition; (3) Biochar provides the structural habitat needed 

for a rich microbial community to take hold; and (4) Microorganisms have degrading 

effects on biochar. Within this context, my objectives were (1) to assess the effect of 

corn stover biochar on important soil microbiological parameters, basal respiration, 

microbial biomass C and the metabolic quotient, (2) to investigate the significance of 

exoenzyme activity and resultant nutrient mineralization in response to biochar soil 

amendment, (3) to verify microbial colonization and exoenzymes adsorption on 

biochar particles, (4) to characterize the microbial community composition and 

particularly, the metabolic degradation potential of the fungal community in response 

to biochar soil amendment. 
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CHAPTER 2                                                                                        

MICROBIAL BIOMASS CARBON AS AN INDICATOR OF MICROBIAL 

ABUNDANCE RESPONDS TO BIOCHAR SOIL AMENDMENT 

ABSTRACT 

Biochar is recommended as a soil conditioner, even though little information is 

available about its effects on soil ecology. In this study, we investigated the effects of 

biochar added to a temperate soil cropped to corn on microbial biomass. Microbial 

biomass carbon (MBC) as an indicator of microbial abundance was investigated in 

biochar-amended soils collected from a field experiment at the Cornell Musgrave 

Farm, Aurora, NY in 2007. In biochar-amended soils, the microbial biomass was 

determined by use of simultaneous chloroform fumigation extraction, which was 

impaired by the strong adsorption to biochar and soil constituents of up to 50.6% of 

the dissolved organic carbon (DOC) added. In contrast, only 34.3% of DOC added 

was adsorbed in unamended soil. All established methods for extracting DOC from 

soil proved to be inadequate for extracting DOC from biochar-amended soil; hence, 

we introduced a correction method that is based on DOC equilibrium adsorption 

isotherms. The Freundlich model was tested and yielded a better fit (r
2
=0.795-0.881, 

SSE=0.12-0.20) for DOC adsorption in all biochar-amended soils than the Langmuir 

model (r
2
=0.495-0.790, SSE=0.21-0.51). The data obtained was adjusted by DOC 

adsorption equilibrium isotherms and indicated that MBC increased by 18.5-37.5% 

with increasing biochar application rate from 12 to 30 t biochar ha
-1

. The statistical 

significance of this increase in MBC depended highly on biochar quantity. There was 

no significant interaction between biochar and fertilizer applied (P=0.76) on MBC 

during the short, six month duration of the field experiment. Basal respiration and the 

metabolic quotient (qCO2) decreased in soils amended with high rates of biochar (12 



 

16 

and 30 t biochar ha
-1

). These results suggest that adding high amounts of biochar to 

soil increases microbial C use efficiency. This shift may have implications for soil C 

sequestration in that biochar application may positively influence soil organic C 

retention. 

INTRODUCTION 

The soil microbial community plays a critical role in regulating processes such 

as decomposition of organic matter, nutrient cycling and greenhouse gas emissions 

(Anderson and Domsch, 1986; Zeller et al., 2001; Garcia et al., 2002); hence, it is 

important to understand how agricultural management practices regulate microbial 

abundance and activity. The importance of soil microbial activity is emphasized by the 

fact that 80-90% of the processes in soil are reactions mediated by microorganisms 

(Nannipieri and Badalucco, 2003). Assessing the dynamics of soil microorganisms 

gives us insight into the response of soil ecosystems to environmental changes and 

other human impacts (Mader et al., 2002). Microbial biomass, respiration and the 

metabolic quotient (qCO2) are used as indicators of changes in soil quality (Anderson 

and Domsch, 1990). Soil respiration and the metabolic quotient are used as indicators 

of microbial activity and of changes occurring in the soil due to the addition of plant 

and animal residues, changes in management or soil pollution (Anderson and Domsch, 

1990; Wardle and Ghani, 1995) and, in this case, to evaluate the effects of biochar soil 

amendment on soil microbial community dynamics (Thies and Rillig, 2009). 

Biochar (biomass-derived charcoal) is produced by pyrolyzing a variety of crop 

and forest residues, and carbon-based wastes from agriculture and construction (Walsh 

et al., 1999). The use of biochar as a soil amendment strategy for improving soil health 

and better using natural resources has drawn considerable attention and interest. 

Biochar soil amendments have been studied broadly due to their possible contribution 
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to increasing C sequestration (Young et al., 2005; Lehmann et al., 2006), adsorption 

capacity for organic contaminants and nutrients, and water (Wardle et al., 1998; Ohe 

et al., 2003; Yu et al., 2006), and its effect on crop productivity (Lehmann et al., 2003; 

Fu et al., 2004; Lehmann and Rondon, 2006; Rondon et al., 2007; Chan et al., 2007). 

An understanding of soil processes is the key to monitoring the influence of biochar 

soil amendment practices on the fertility and quality of soil, and thus, on 

environmental quality. Despite the obvious importance of the soil biological response 

to a biochar amendment, very little is known about the effects on soil microbial 

biomass and activity. Biochar soil amendments have been reported to increase the size 

of microbial biomass carbon (MBC) and rates of microbial activities (Zackrisson et 

al., 1996; Wardle et al., 2008). The application of biochar can also have positive 

effects on the abundance of mycorrhizal fungi (Matsubara et al., 2002; Yamato et al., 

2006; Rondon et al., 2007; Warnock et al., 2007). 

For the MBC analysis in this study, simultaneous chloroform fumigation 

extraction (sCFE) was used to measure microbial biomass (Witt et al., 2000). 

However, using the extractable organic C to calculate microbial biomass C from the 

additional C made extractable by the fumigation is still controversial; especially in soil 

samples that have received biochar. The main difficulty is that the extraction of DOC 

from lysed from microbial cells is incomplete due to the strong adsorption of DOC on 

biochar and soil constituents (Qualls, 2000; Guggenberger and Kaiser, 

2003).Therefore, a correction factor is needed to account for the adsorbed microbial 

DOC released. Liang et al. (2010) used an isotope method to develop an extraction 

coefficient. However, this method is time-consuming and expensive to conduct. Here, 

we investigated the use of a much simpler approach, adsorption equilibrium isotherms 

of DOC, to correct for the microbial released DOC adsorbed to biochar and soil. The 

general method used to obtain sorption characteristics of a given chemical involves the 



 

18 

equilibration of different solute concentrations with the adsorbent under investigation 

and measuring the amount of the solute that has not been adsorbed and is still in 

solution. A variety of adsorption isotherm models have been studied (Kaiser and Zech, 

1997; Michalzik et al., 2003; Ussiri and Johnson, 2004; Walton et al., 2005), however, 

model performance was not consistent between different studies due to the different 

characteristics of adsorbates and adsorbents studied. Here, we adopted a rapid 

experiment to generate two simple and widely used adsorption equilibrium isotherms, 

the Freundlich and Langmuir isotherms, to characterize our biochar-amended soils.  

This comparative study was performed to determine changes in soil microbial 

biomass carbon and basal respiration in response to biochar soil amendment. The 

specific objectives of this study were to determine (1) the DOC adsorption kinetics of 

biochar-amended soils to correct for adsorption of lysed microbial DOC to biochar; 

(2) the most suitable model to describe DOC adsorption to biochar-amended soil; (3) 

the microbial biomass carbon estimates before and after the adjustment by the DOC 

adsorption isotherm model; (4) the effects of biochar soil amendment on microbial 

biomass both in bulk and rhizosphere soils; (5) the interactive effects of inorganic 

fertilization and biochar application on microbial biomass in both bulk and 

rhizosphere soils; and (6) the effects of biochar soil amendment on soil basal 

respiration and the metabolic quotient, qCO2. 

MATERIALS AND METHODS 

Field Experimental Design 

The field experiment was established at Cornell Musgrave Farm in Aurora, NY, 

in May, 2007. The biochar applied was obtained from BEST Energies, Inc. (56 

Gindurra Road, Somersby, NSW 2250, Australia) and was produced by pyrolyzing 

corn stover. Corn stover biochar was incorporated into the soil at four rates (0, 1, 12, 
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30 t biochar ha
-1

) before planting corn at a density of 32,000 seeds acre
-1

. Nitrogen 

fertilizer (17% nitrate N and 17% ammoniacal N) was added at four different rates 

(67, 94, 121, 135 kg N ha
-1

) for two rates (0 and 12 t biochar ha
-1

) of biochar. There 

was an incomplete factorial arrangement of two treatment factors (N fertilizer, 

biochar) in 10 combinations. Treatments were replicated 3 times in a completely 

randomized design (Table 2.1). 

Table 2.1 Experimental design showing treatments (T1-T2) assigned in an incomplete 
factorial design 

Treatment No.   

Biochar (t ha-1) 

0 1 12 30 

Fertilizer     
(kg ha-1) 

67 T1   T5   

94 T2   T6   

121 T3 T9 T7 T10 

135 T4   T8   

Sampling and Sample Preparation 

In November, 2007, seven bulk soil samples were taken from each plot from 0-

15 cm depth along a random S shape across each plot using a soil auger (12 mm diam) 

and composited. Each composite soil sample was mixed well and obvious root 

material removed with forceps. The samples were zipped into sterile plastic bags and 

put in an ice chest immediately. Before moving to the next plot, the sampling probe 

was sterilized with bleach and rinsed three times with purified water in order to avoid 

cross-contamination. The samples were sieved (2 mm mesh), homogenized and stored 

at 4°C. These soil samples were used within 24 h after sampling for (1) method 

development and (2) soil microbial biomass carbon and basal respiration assays. 
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Development of a Method to Determine Microbial Biomass C in Biochar-amended 

Soils 

I observed a strong adsorption of free DOC on biochar and soil constituents; 

hence, I initially determined the time required to reach adsorption equilibrium for 

DOC. A DOC stock was prepared by stirring 400 g soil samples (taken from soils 

adjacent to experimental plots) with 1000 ml deionized water, centrifuging, recovering 

the supernatants, air-evaporating the supernatants until the DOC concentration was 

over 500 μg ml
-1

. The exact concentration of DOC stock was determined by a TOC 

analyzer (Shimadzu TOC-5000A Autoanalyzer, Columbia, MD, USA). A series of 

slurries was prepared for each treatment. In detail, 40 ml of 0.05 M K2SO4 was added 

to each 10 g (ODW) soil sample. After thorough shaking and centrifuging at 10,000 × 

g, the supernatant was removed. Then, another 40 ml of 0.05 M K2SO4 and DOC stock 

was added to each slurry after autoclaving the slurries at 121°C. Thirty-three replicates 

for each treatment were set and DOC was added to achieve a final concentration of 1 

mg g
-1

 soil. At regular intervals between 5 and 360 min (at 5, 10, 15, 20, 30, 60, 90, 

120, 150, 240, 360 min) after the DOC was added, a subset of three samples was 

centrifuged (5 min at 10,000×g), and the supernatants were transferred to fresh 

Eppendorf tubes. The concentration of free DOC in the supernatants was determined 

on a TOC analyzer (Shimadzu TOC-5000A Autoanalyzer). The amount of adsorbed 

DOC was calculated as the difference between the total amount added and that 

remaining in the supernatant. 

The time required to reach adsorption equilibrium of DOC was determined by 

the time that DOC adsorption became relatively constant. To develop the DOC 

adsorption equilibrium isotherms for each biochar application rate, a series of sample 

slurries were prepared the same way as those used to determine contact time. Then, 

http://em-1.stanford.edu/Schedule/TOC/Index.htm
http://em-1.stanford.edu/Schedule/TOC/Index.htm
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DOC was added at nine concentrations (5, 10, 15, 20, 30, 40, 60, 80, and 100 μg ml
-1

). 

After thorough shaking and centrifuging at 10,000 × g, I destructively sampled the 

supernatant from each DOC concentration series. DOC in the supernatant was 

detected on a TOC analyzer (Shimadzu TOC-5000A Autoanalyzer). The amount of 

adsorbed DOC was calculated as the difference between the total amount added and 

that detected in the supernatant. 

At equilibrium, the amount of a substance adsorbed {S}(moles g
-1

 dry weight) 

depends on the concentration of the substance remaining in solution {Ce}(moles ml
-1

). 

Two models were chosen to examine DOC equilibrium adsorption isotherms, the 

Freundlich equation (Kano et al., 2000) and the Langmuir equation (Langmuir, 1918). 

(1) Freundlich isotherm: According to the Freundlich equation,  

Equation 2.1 
n

eCKS      

where: S, is the amount adsorbed at equilibrium (μg g
-1

 soil); Ce, the equilibrium 

concentration of the adsorbate (DOC); and K and n are Freundlich constants, n giving 

an indication of how favorable the adsorption process is and K is the adsorption 

capacity of the adsorbent. K can be defined as the adsorption or affinity coefficient and 

represents the quantity of adsorbate adsorbed onto a carbon adsorbent for a unit 

equilibrium concentration. The slope, n, ranging between 0 and 1, is a measure of 

adsorption intensity or surface heterogeneity, becoming more heterogeneous as its 

value gets closer to zero (Haghseresht and Lu, 1998). A value of n below one indicates 

a normal isotherm while n above one is indicative of cooperative adsorption (Fytianos 

et al., 2000).  

(2) Langmuir isotherm: According to the Langmuir equation,  

Equation 2.2  
e

eT

CC

CS
S




    

http://em-1.stanford.edu/Schedule/TOC/Index.htm
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Where: ST and C are the equilibrium constants, which are related to rate of 

adsorption and adsorption capacity, respectively; S is calculated from the total 

concentration of DOC added; CT and the dry weight content of the sample slurry, 

Dslurry (g dry weight ml
-1

). 

Equation 2.3  

s l u r r y

eT

D

CC
S


    

The Freundlich equation was transformed into a linear model by taking the log 

of both sides. i.e., log{S} = logK + nlog{Ce}, then fitted to the data points using the 

modified linear regression model in JMP 6.0, which yielded the two parameters K and 

n. The Langmuir equation was transformed into a linear model by taking reciprocals. 

i.e., 1/S = C/ST × 1/Ce + 1/ST, then it was fitted to the data points using the 

transformed linear regression model in JMP 6.0, which yielded the two parameters C 

and ST that are related to rate of adsorption and adsorption capacity, respectively. 

The total concentration of DOC, CT, during the DOC assays was calculated from 

the equilibrium concentration of DOC in the supernatants, Ce, and Dslurry and from the 

values of model parameters:  

For the Freundlich equation: Equation 2.4  
n

eslurryeT CKDCC     

For the Langmuir equation: Equation 2.5  

e

eT
s l u r r yeT

CC

CS
DCC




       

Examining equilibrium adsorption isotherms of DOC allowed us to obtain the 

adjusted EC1′and EC0′, and thus the adjusted microbial biomass carbon. A comparison 

was made between the unadjusted and adjusted methods. In sCFE,  

Equation 2.6  '0'1 CC
EECB i o m a s s    

where EC1′= adjusted organic C extracted from fumigated soil; EC0′=adjusted 

organic C extracted from non-fumigated soil.  
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Briefly, moist soils were incubated with distilled CHCl3 overnight. The soil was 

then extracted with 0.5 M K2SO4; a non-fumigated control was extracted under the 

same conditions at the time fumigation commenced. The flush of extractable DOC due 

to fumigation was calculated as the difference between fumigated and non-fumigated 

samples (Vance et al., 1987; Witt et al., 2000). DOC in the extracts was determined on 

a TOC analyzer (Shimadzu TOC-5000A Autoanalyzer) using persulfate oxidation. 

Soil water content was determined by weighing soil samples before and after 

drying for 24 or more hours at a temperature of 105°C until the soils had reached a 

constant weight. 

Soil Basal Respiration and Metabolic Quotient 

Soil basal respiration is the biological oxidation of organic matter to CO2 by 

either aerobic or anaerobic organisms, and is positively correlated with microbial 

activity (Alef, 1995). In this study, soil basal respiration was determined by measuring 

the change in the electrical conductivity of an alkali trap once a week and comparing it 

to a standard curve (Zibilske, 1994). Specifically, 20 g (ODW equivalent) of soil from 

each biochar treatment was weighed into a 100 ml beaker and put into a 1 L airtight 

jar. The jar, together with another 50 ml vial containing 40 ml, 0.5 M KOH (the 

appropriate volume was determined from a preliminary test) was placed into the 1 L 

airtight jar and incubated at 25°C for 8 weeks (WK). Five ml of DI water was added to 

the bottom of each jar to maintain high humidity. During the incubation, the electrical 

conductivity (EC) of the KOH trap was measured once a week. The CO2 respired was 

calculated using the equation below,  

Equation 2.7 

322/1
2 22)(

COKinitialKOH

initialKOH
initialtrap

ECEC

xEC
CVabsorbedCO




    

where ECinitialKOH is the EC reading of the initial KOH trap (0.5 M);          
322/1 COKEC

http://em-1.stanford.edu/Schedule/TOC/Index.htm
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is the EC reading of the fully CO2-saturated state of the KOH trap, K2CO3 solution 

(0.25 M); Vtrap is the volume of the KOH trap; Cinitial is the initial concentration of the 

KOH trap. The metabolic quotient was calculated as the ratio of basal respiration to 

microbial biomass C (Anderson and Domsch, 1990). 

RESULTS AND DISCUSSION 

Adsorption Kinetics 

Initially, I determined the time course for the adsorption of DOC in the 

unamended control and soil amended with biochar at 30 t biochar ha
-1

. The 

experimental results of the adsorption of DOC to the soil and biochar matrix at a final 

concentration of 100 μg DOC ml
-1

 soil with varying contact times are shown in Fig. 

2.1. Percent adsorption dramatically increased with increasing contact time in the first 

30 min. Then, the adsorption of DOC gradually reached equilibrium after approximate 

1.5 h of incubation (Fig. 2.1). During adsorption of DOC, DOC molecules reach the 

boundary layer initially; then, they diffuse onto the adsorbent surface; and finally, they 

diffuse into the porous structure of the adsorbent. This phenomenon takes a relatively 

long contact time. Data shown in Fig. 2.1 reveal that the curves are single, smooth, 

and continuous, leading to saturation. This suggests a monolayer coverage of DOC on 

the biochar and/or soil surface. At the adsorption equilibrium, 50.6% of the initial 

DOC added to slurries of soil that received 30 t biochar ha
-1

 had disappeared from the 

dissolved phase, compared with only 34.3% of the initial DOC adsorbed to 

unamended soil slurries (Fig. 2.1). Thus, there was about 50% more of the initial DOC 

adsorbed to soil that received 30 t biochar ha
-1

 than to the unamended soil. This 

indicates that biochar is a strong sorbent for DOC. This raised concern about possible 

differential DOC extraction efficiency in biochar-amended compared to unamended 

soil when the sCFE method is adopted to determine soil microbial biomass C.  
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Figure 2.1 Time course of DOC adsorption in slurries of soil samples amended with 
biochar at a rate of 30 t ha

-1
 and unamended soil. For both treatments, the adsorption 

kinetics of DOC (final concentration, 100 μg DOC ml
-1

) is shown. The error bars 
indicate standard deviations (n=3). 

Effect of Biochar Application Rates 

The adsorption of DOC to unamended soil and those amended with 1 t biochar 

ha
-1

 was significantly lower than the absorption to soils amended with 12 and 30 t 

biochar ha
-1

. Soil receiving high rates of biochar added adsorbed more DOC than the 

soil matrix alone. The detectable DOC (Ce) increased with increasing concentration of 

DOC added (CT) while it decreased as the rate of biochar amendment decreased (Fig. 

2.2). Compared to unamended control soils, the average adsorption of DOC in soils 

with 30 t ha
-1

 biochar added increased by 27, 14, 19, 21, 12, 12, 11, 8, to 5% for the 

initial DOC concentrations given above, respectively. This can be attributed to 

increased biochar surface area and availability of more adsorption sites in the high 

biochar-amended soils. Also, it was observed that the adsorption percentage of initial 

DOC for all treatments had a decreasing trend with increasing initial concentration of 

DOC added, indicating that the adsorption capacity of biochar and soil constituents on 
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DOC does not increase infinitely with increasing concentrations of initial DOC under 

the condition that the adsorption sites remain constant. On the contrary, biochar and 

soil constituents tend to reach their maximum DOC adsorption capacity with the 

increasing concentration of initial DOC. Similar observations were reported by Cheng 

et al. (2005) where adsorption of dissolved natural organic matter onto modified 

granular activated carbon was observed. 

Equilibrium Adsorption Isotherms of DOC 

Conformation of the experimental data into both the Freundlich and the 

Langmuir isotherm models was done separately for individual biochar treatments. The 

experimental data analyzed according to the linear form of the Freundlich isotherm is 

shown in Fig. 2.3. The Freundlich equation gives a better fit to the experimental data 

for all treatments with varing biochar application rates than the Langmuir equation. 

The adsorption of DOC to unamended control soil was significantly lower than the 

adsorption to soils amended with 12 and 30 t ha
-1 

biochar (Figs. 2.2 and 2.3).  

The biochar-amended soils adsorb more DOC under field conditions than the 

unamended control soils, thus the model application should overcome the 

underestimation of DOC adsorption, especially in soils receiving high rates of biochar. 

The Freundlich model used in this study showed significantly higher DOC 

concentration values in extracts ranging from 50-78% after model adjustment. 
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Figure 2.2 Concentrations of DOC in soil slurries with 0, 1, 12, and 30 t biochar ha
-1

 
applied. The error bars indicate standard deviations. The concentrations of free DOC 
expected in the absence of adsorption are indicated by the dotted line. 

 

 

 

 

 

 

 

 

 

Figure 2.3 Equilibrium adsorption isotherms of DOC for 0, 1, 12, 30 t biochar ha
-1

 
applied fitted to the Freundlich equation (lines). The error bars indicate standard 
deviations (n=3). 
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Test of Kinetics Models  

The values of the parameters of the two isotherm models and the related 

correlation coefficients are given in Table 2.2. The Freundlich model yielded a 

somewhat better fit (r
2
 ranging from 0.80 to 0.88) than the Langmuir model (r

2
 

ranging from 0.50 to 0.79). Similar observations were made by Vandenbruwane et al. 

(2007), where both the Freundlich and Langmuir models had similar goodness-of-fit 

and parameter estimates for the adsorption of DOC onto mineral soils. The value of n 

in the Freundlich model is closer to zero for 12 and 30 t ha
-1

 biochar-amended soils 

than for the adsorbents soil only or soil with 1 t biochar ha
-1

. This indicated that more 

DOC adsorption surface heterogeneity was caused by the high biochar amendment. 

The value of n decreased with increasing rate of biochar applied. This indicated 

favorable adsorption for DOC on added biochar particles (Kano et al., 2000; Ng et al., 

2002). When data were fitted to the Freundlich adsorption model, the adsorptive 

affinity, K, of DOC to soils amended with 30 t biochar ha
-1

 ranged from 6.52 to 8.94, 

about three times that of soils amended with 12 t biochar ha
-1

, and about three times 

higher than that of soils amended with 1 t biochar ha
-1

 and unamended soils. However, 

no distinct difference in the adsorptive affinity of DOC was found between the 

unamended soils and those soils amended with 1 t biochar ha
-1

 (Table 2.2). 
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Table 2.2 Parameters of the Freundlich and Langmuir equilibrium adsorption isotherms for DOC and adsorbent soils 
amended with varying amount of biochar 

 
Treatment 

(t biochar ha-1) 

Freundlich   Langmuir   

n K r2 
SSE 
(%) 

ST C r2 
SSE 
(%) 

0 0.91-1.09 1.74-2.88 0.841 0.16   –35.05 - –388.0 –40.56 - –54.82 0.641 0.36 

1 0.91-1.11 1.50-2.79 0.795 0.20   –27.90 - –273.5 –37.02 - –51.22 0.607 0.39 

12 0.78-0.94 3.44-5.37 0.837 0.16 –116.2 - 86.64 188.5 - 284.0 0.495 0.51 

30 0.70-0.82 6.52-8.94 0.881 0.12 –890.7 - 163.9 71.70 - 88.19 0.790 0.21 
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The applicability of both kinetic models was verified through the value of r
2
 and the 

sum of squared error (SSE, %). SSE is generally used to determine the validity of 

each model. The higher the value of r
2
 and the lower the value of SSE, the better the 

goodness of fit is considered to be. The adsorption of DOC to biochar-amended soils 

was better described by the Freundlich isotherm model than by the Langmuir 

isotherm model when the value of both r
2
 and SSE are compared. Our results 

conflict with those of Hameed et al. (2007), where the adsorption of methylene blue 

onto bamboo-based activated carbon was found to fit he Langmuir isotherm model 

better than Freundlich model, under soil-free conditions. 

Despite a number of assumptions and simplifications of isotherm models, the fits 

of the isotherm models based on our results of adsorption equilibrium isotherm 

experiments describe well the DOC concentrations in the soil extracts. The adsorption 

isotherms in our study were obtained using an initial DOC solution which was 

extracted from the same field soils we work on and concentrated, therefore, the same 

sources of DOC for building the adsorption model and for follow-on microbial 

biomass assays guaranteed the consistency and accuracy of the detection of DOC 

liberated from microbial cells given the fact that the chemical composition of DOC 

species remains consistent as a result of the use of the same source soils (Kaiser and 

Zech, 2000), as do the adsorption characteristics.  

Effect of Biochar Amendment on Soil Microbial Biomass C 

The highest MBC was measured in bulk soils amended with 30 t biochar ha
-1

, 

the lowest MBC was measured in bulk unamended soils (Fig. 2.4). This increased 

trend with increasing biochar addition indicated a positive response of the microbial 

biomass to biochar application. The MBC in rhizosphere soils showed a similar trend. 

The 1 t biochar ha
-1

 treatment did not significant affect MBC. Meanwhile, bulk soil 



 

31 

MBC showed a close correlation with rhizosphere soil MBC. Microbial biomass 

carbon for 30 t ha
-1

 biochar-amended bulk soils before adjustment ranged from 69.7-

74.5 μg C g
-1

 soil (mean value of 73.9 μg C g
-1

 soil) of DOC, and higher than these for 

12 t ha
-1

 biochar-amended soils, although the difference was not statistically 

significant. After the adjustment by DOC adsorption equilibrium isotherms, the 

difference in MBC for these two treatments became statistically significant (Fig. 2.4). 

Examining DOC adsorption equilibrium isotherms made it possible to better estimate 

the amount of total microbial liberated C in biochar-amended soils. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 MBC in both bulk and rhizosphere soil affected by biochar amendment. A 
comparison of MBC before and after adjustment by use of the Freundlich isotherm 
model is also shown. Variations of MBC for each treatment are presented as error 
bars. 
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Our finding of increased MBC in biochar-amended soils was consistent with the 

study reported by Zackrisson et al. (1996), who investigated the effects of artificially 

produced charcoal on soil microbial properties at six sites and found that microbial 

biomass was enhanced when it was placed adjacent to charcoal particles; and by 

Pietikainen et al. (2000), who observed higher specific growth rates of microbial 

communities in charcoal enriched soil layers than in the unburned humus enriched soil 

layer. The microbial biomass was affected not only by the quantity, but also by the 

quality of the carbon input as observed by others (Srivastava and Singh, 1991; 

Guggenberger and Zech, 1999). MBC, by definition, reflects the degree of 

immobilization of C in microbial biomass. Decreased soil microbial biomass lowers 

the capacity of the soil to hold in nutrients; while increased microbial biomass may 

lead to temporary immobilization of nutrients in biomass (McGill et al., 1986). 

Interaction of Biochar Amendment and Fertilization on Soil Microbial Biomass C 

Addition of higher rates of N fertilizer (121, 135 kg ha
-1

) resulted in higher MBC 

in both bulk and rhizosphere soil when no biochar was added (Fig. 2.5). Increases in 

soil MBC with rising fertility levels are consistent with the observed increase in 

microbial activity in a study by Steiner et al. (2004). For each N fertilizer amendment 

rate, the addition of biochar to plots resulted in increased MBC. Particularly, this 

positive effect was statistically significant in bulk soil at the lowest rate of N additions, 

although data variation was rather high. ANOVA showed there was a significant effect 

of sampling position (P<0.01), biochar application (P<0.01) and N application 

(P<0.01) on MBC, indicating that the microbial biomass is a sensitive indicator for 

soil biological changes as a response to these management practices. However, no 

statistically significant interaction effect of biochar and fertilizer on MBC was found 

(P=0.76).  
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Figure 2.5 MBC in both bulk and rhizosphere soil affected by both biochar 
amendment (0 and 12 t ha

-1
) and N fertilization (67, 94, 121 and 135 kg ha

-1
). The 

adjusted MBC for different adsorbents were also compared to the unadjusted MBC. 
Variations of MBC for each treatment are presented as error bars. 

Compared with bulk soil MBC in control soils (receiving 67 kg ha
-1

 N fertilizer only), 

the bulk soil MBC increased by 57.5% on plots receiving 135 kg ha
-1

 N, by 58.6% on 

plots receiving biochar, and by 80.1% on plots where both amendments were added. 

Compared with rhizosphere soil MBC in the control plots, the rhizosphere soil MBC 

increased by 24.5% on plots receiving 135 kg ha
-1 

N, by 33.2% on plots receiving 

biochar, and by 58.3% on plots where both amendments were added.  

We can clearly see the synergistic effects in both bulk and rhizosphere soil, 

although these were not statistically significant. A similar observation was reported by 

Steiner et al. (2004, 2007) who studied the synergistic effects of mineral fertilizer and 

charcoal application on crop yield on a highly weathered Central Amazonian upland 

soil. We assumed that once biochar particles were incorporated into soils, they could 

serve as a porous medium binding N from fertilizer and other plant nutrients, creating 

a nutrient rich micro-environment that is an ideal habitat for microbial growth. This 
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could help explain the increased soil microbial abundance with biochar and N 

amendments. Adding biochar may in some cases increase the C:N ratio of soils, thus 

enhanced competition between crops and microbes could occur (Lehmann et al., 

2003). Microbes have a high N demand and a greater potential for N immobilization 

than plants (Friedel et al., 2001). This potential crop N stress could be overcome by N 

applications. This further suggested that not only microbial abundance, but also 

microbial immobilization and mineralization have a close relationship with C and N 

inputs to soil. 

Effect of Biochar Amendment on Soil Basal Respiration and Metabolic Quotient 

(qCO2) 

 

 

 

Figure 2.6 Cumulative respired CO2 for biochar-amended and unamended bulk and 
rhizosphere soils over an 8 week incubation. Data were fitted by linear regression 
(lines and equations). 



 

35 

We monitored the kinetics of soil basal respiration to gain insight into changes in 

microbial activity associated with biochar soil amendment. For purposes of 

comparison, the cumulative curves of CO2 evolved were developed as shown in Fig. 

2.6.  Bulk soil basal respiration decreased dramatically with increasing biochar 

application rate, while no significant difference of rhizosphere soil basal respiration 

was found between different biochar treatments (Fig. 2.6). Regardless of the biochar 

application rate, respired CO2 was much higher in rhizosphere soils than in the bulk 

soils, this fact could be attributed to the higher microbial activity and abundance in 

rhizosphere soils where there is more labile C and nutrients and biological activities 

are more intense than in bulk soils (Paul, 2007). In rhizosphere soils, the release of 

organic substances from corn roots is a key process influencing soil basal respiration 

(Grayston et al., 1996) relative to the addition of biochar. The significance of changes 

in CO2 evolution from bulk soils in response to biochar soil amendment was analyzed 

using repeated measures (n=6). Regression analysis indicated that bulk soil respiration 

varied significantly (P < 0.05) as a function of biochar application rate. The mean 

respiration rate of the 30 t ha
-1

 biochar-amended bulk soils was the lowest of all the 

treatments (3.09 μg h
-1

 g
-1

), while that of the unamended bulk soils was the highest 

(4.73 μg h
-1

 g
-1

). In contrast, there was no significant difference in rhizosphere soil 

respiration as a function of biochar application rate seen from the close slope values of 

the regression lines (Fig. 2.6). The mean respiration rate of biochar-amended and 

unamended rhizosphere soils was 7.98-8.91 μg h
-1

 g
-1

. This indicated that the effect of 

biochar addition on the basal respiration was more pronounced in bulk soil than in 

rhizosphere soil, where the rhizosphere soil had more intense respiration activity 

overall. The finding of decreased basal respiration in biochar-amended soil agrees 

with those of Wardle et al. (2008), who observed that soil respiration was lower in the 

soil, where pure charcoal was applied, as compared to the control without charcoal. 
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Figure 2.7 Metabolic quotient (qCO2) at bulk and rhizosphere soils receiving 0, 1, 12 
or 30 t biochar ha

-1
. 

The respiration rate per unit of microbial biomass, or metabolic quotient (qCO2) 

is easier to interpret. The qCO2 is a reflection of “microbial efficiency”, since it is a 

measure of the energy necessary to maintain metabolic activity in relation to the 

energy necessary for synthesizing biomass (Bardgett and Saggar, 1994). In this study, 

qCO2 decreased as the biochar added to the soil increased (Fig. 2.7), this was 

consistent with the study done in high black carbon-containing Anthrosols from the 

central Amazon, Brazil, where the Anthrosols were observed to have 61-80% lower (P 

< 0.05) CO2 evolution per unit C over 532 days compared to their respective adjacent 

soils with low black carbon contents (Liang et al., 2008). The lowest qCO2 values 

were measured in soils that received the highest biochar applied (30 t ha
-1

), differing 

statistically from all the other treatments. The difference was more distinguishable in 

bulk soils than in rhizosphere soils. Disturbances, i.e., rapidly changing environmental 

conditions, are known to cause increased values of qCO2, also qCO2 has been shown 
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to decline during ecosystem development during succession (Wardle and Ghani, 

1995). Anderson and Domsch (1990) viewed the basal respiration as reflecting the 

activity of the whole microbial community, including dormant as well as active stages. 

Most likely, dormant stages make up the larger part of the biomass, but the small 

active part contributes dramatically to the respiration.  

Biochar Addition Increases Microbial C Use Efficiency 

The increased microbial biomass C, but decreased microbial respiration found in 

biochar-amended soil suggsts that the microbes in the high biochar-amended soils 

likely produced more cell mass per unit of C degraded than those in unamended soil. 

In other words, soil microbes degraded less C and tended to immobilize C as 

illustrated by the increase in microbial biomass in response to biochar addition, i.e., 

biochar addition increased microbial C use efficiency. 

Substrate quality is one of the most important factors influencing the degradation 

activity of soil microbes (Cheshire and Chapman, 1996; Paul and Clark, 1996). In this 

study, the addition of biochar brings recalcitrant and relatively stable carbon into soil, 

the high C:N ratio of the biochar might decrease the turnover of carbonaceous 

compounds mediated by the relevant microbial processes. Under optimal laboratory 

conditions, a microbial growth efficiency of 60% is usually considered realistic for the 

decomposition of labile C compounds, such as glucose, while more recalcitrant 

constituents decompose slowly resulting in a lower efficiency factor. Lignin has the 

lowest efficiency factor and thus the highest residence time (Paul and Clark, 1996). 

Another possibility is that C use efficiency increased as a result of an increase in 

the ratio of fungal to bacterial activity because of the greater growth efficiency of 

fungi and the accumulation of carbon in the less decomposable fungal biomass. Fungi, 

with their extensive hyphal networks, may be able to form hyphal bridges on biochar 
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between microbes and host plants, allowing use of C resources from plants instead of 

C degradation. Once biochar is incorporated into the soil, soil nutrients, exoenzymes 

and microbes are in intimate contact with it. This co-location effect provides a more 

favorable environment for fungal growth relative to bacterial growth. Also, fungi are 

more tolerant of the alkaline soil environment of the biochar than bacteria (Griffin, 

1972), the corn stover biochar applied in our study had a pH of 8-10, thus, the alkaline 

conditions resulting from biochar addition may favor fungal growth over bacterial 

growth. Additionally, increased fungal decomposition may aid in organic matter 

retention by two mechanisms. First, reported fungal carbon assimilation efficiencies 

tend to be significantly higher than those for bacteria (Adu and Oades, 1978), i.e., a 

higher proportion of the carbon metabolized by fungi is retained in biomass instead of 

respired as CO2. Where fungal carbon assimilation efficiencies range from 30 to 70%, 

bacterial carbon assimilation efficiencies range from 20 to 40% in the stationary 

growth phase (Elliott et al., 1983). Second, fungal decomposition may aid in the 

retention of soil organic matter by producing more recalcitrant metabolites than those 

produced by bacteria. Fungal biomass has a higher proportion of cell-wall material 

than bacterial biomass. Cell-wall components decompose more slowly and the 

decomposed material is stabilized as biomass end products more quickly than 

cytoplasmic material (Kassim et al., 1981).  

CONCLUSIONS 

The contrasting patterns of CO2 release and microbial biomass production in 

response to biochar addition suggest that the total microbial community in biochar-

amended soil became more efficient at utilizing carbon for cell growth than in 

unamended soil. Part of the biochar effect may be explained by an altered microbial 

composition in response to biochar addition; possibly, the increased ratio of fungal to 
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bacterial biomass. Meanwhile, biochar soil amendment may conserve organic matter 

because the decomposer community present in biochar-amended soil may have a 

higher proportion of fungi, and hence a higher microbial C use efficiency, than that 

present in unamended soil. The active microbial populations in biochar-amended soil 

may also turn over more slowly, resulting in higher steady state levels of organic 

matter, given similar input rates. Knowledge of how changes in microbial community 

structure can alter nutrient dynamics is important for understanding how microbial 

ecology responds to biochar soil amendment. 
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CHAPTER 3                                                                                            

COMPARISON OF MICROBIAL COMMUNITY COMPOSITION IN SOIL 

AMENDED WITH BIOCHAR USING TERMINAL RESTRICTION FRAGMENT 

LENGTH POLYMORPHISM ANALYSIS 

ABSTRACT 

PCR-T-RFLP fingerprinting was used to investigate changes in microbial 

community composition in rhizosphere and bulk soils resulting from biochar soil 

amendment. Soil samples were taken from a biochar amendment experiment installed 

at the Cornell Musgrave Farm, Aurora, NY. Due to the difficulties I found in 

recovering DNA from biochar-rich soil samples, three widely adopted DNA extraction 

protocols were compared and found to have varied influences on the yield and purity 

of DNA extracted from biochar-amended soils. However, applying different extraction 

methods did not affect the soil microbial community analysis as tested by T-RFLP 

profiling on both the bacterial and fungal communities. Results demonstrated that the 

Powersoil
TM

 kit (MoBio) protocol was capable of reliably extracting PCR-amplifiable 

genomic DNA from biochar-amended soils and was chosen for further T-RFLP 

studies. Interactive Principal Component Analysis (IPCA) of T-RFLP data obtained by 

digesting the ITS and 16S rRNA gene amplicons with the restriction enzymes HhaI 

and Sau96I suggested a strong divergence in the structural composition of both soil 

bacterial and fungal communities in response to both biochar incorporation and 

sampling location (bulk and rhizosphere). I concluded that the microbial community 

composition was mainly affected by biochar addition and responded differently to 

different biochar application rates and time since biochar application. Knowledge of 

the microbial community composition represents a first step toward understanding 

how soil function might change in response to biochar soil amendment.  
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INTRODUCTION  

The use of biochar as a soil amendment strategy for improving soil health and 

better using natural resources has greatly drawn our attention and interest (Lehmann 

and Joseph, 2009). Studies on biochar as a soil amendment practice have become 

interdisciplinary because of the many and varied influences it may have on soil 

microbial processes through changes in the soil structure, the availability of water and 

nutrients, the global C cycle, atmospheric chemistry, and the environmental fate of 

organic contaminants (Lehmann and Rondon, 2006; Lehmann, 2007; Laird, 2008; 

Steiner et al., 2008; O‟Neill et al., 2009). Biochar-specific properties make 

interactions between biochar and microorganisms quite complicated. On one hand, 

soil microbial activity, abundance and community composition may be affected by the 

quality and quantity of the biochar used to amend the soil. On the other hand, 

microorganisms may have a biodegrading effect on the quantity (Shneour, 1966) and 

properties of the biochar (Cheng et al., 2006). Reports regarding the effects of biochar 

soil amendment on soil microbial communities have received increasing attention. For 

example, Uvarov (2000) studied the respiration of the soil microbial community, the 

decomposition rate of soil organic matter and cotton strips, and herb seed germination 

in an area containing charcoal kilns, compared with control soil systems. The results 

indicated a significantly higher level of soil biological activity in the soil with charcoal 

versus the control sites. Rivera-Utrilla et al. (2001) showed that activated C adsorbs 

microorganisms strongly, and that this adsorption increases with higher 

hydrophobicity. Quite a few studies conducted in Japan provided strong evidence that 

the application of charcoal to soil can have positive effects on the abundance of 

mycorrhizal fungi. Yamato et al. (2006) reported a 42% increase in root colonization 

by AMF in response to Acacia mangium bark-derived charcoal application. Rondon et 

al. (2007) suggested that AMF colonization of N-fixing Phaseolus vulgaris roots 
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increased by 16% where Eucalyptus deglupta-derived biochar was applied at a rate of 

90 g kg
-1

 soil. However, the factors governing the composition and functions of the 

soil microbial community in biochar-amended soils are by no means fully understood 

(Thies and Rillig, 2009).  

Recently, the approaches for studying soil microbes have moved from 

biochemical and microbiological determinations, such as enzyme activities, microbial 

biomass and respiration coefficients, towards the investigation of community 

composition using molecular methods. Although methods such as the Biolog assay 

and phospholipid fatty acid (PLFA) analysis are useful, their low level of resolution 

does not provide a very detailed or fine-scale resolution of microbial community 

structure. These limitations have been overcome to some extent by use of rRNA gene 

analysis in studies of microbial community composition. The amplification by PCR of 

rRNA genes from soil DNA samples, combined with fingerprinting techniques such as 

denaturing gradient gel electrophoresis (DGGE) (Smalla et al., 2001), terminal 

restriction fragment length polymorphism (T-RFLP) (Thies, 2007), amplified rDNA 

restriction analysis (ARDRA) (Dang and Lovell, 2000), and cloning and sequencing, 

provide detailed information about the species composition of whole communities 

(Torsvik and Ovreas, 2002). These techniques, especially T-RFLP, are the most 

extensively used molecular methods for monitoring changes in microbial community 

composition and diversity (Dunbar et al., 2000; Lukow et al., 2000; Edel-Hermann et 

al., 2004; Edwards et al., 2004; Thies, 2007).  

Terminal restriction fragment length polymorphism (T-RFLP) pattern analysis, a 

DNA-based profiling technique has become a widely used and informative tool for 

studying microbial communities (Anderson and Cairney, 2004; Thies, 2007). This 

technique involves the use of a fluorescently labeled oligonucleotide primer for PCR 
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amplification of rRNA gene fragments and the digestion of the PCR products with one 

or more restriction enzymes, generating labeled terminal restriction fragments (T-RFs) 

of different lengths according to the DNA sequence of the organisms present in the 

soil community. The T-RFs are separated by high-resolution electrophoresis on an 

automated DNA sequencer, allowing the simultaneous characterization of microbial 

communities in numerous environmental samples. Organisms in a community are thus 

differentiated based on sequence variation that results in T-RFs of different lengths, 

which in turn create a pattern unique to that community. The resulting patterns can be 

used to make inferences about environmental effects on community composition or 

evaluate community-level dynamics.  

In most biochar soil amendment studies, the focus has been on monitoring 

agronomic parameters, such as soil physical and chemical properties, plant yield and 

greenhouse gas emissions. However, without an understanding of the links between 

the observed phenomena and the basic composition of the soil microbial community, 

the influence of the biotic component on biochemical processes in biochar-amended 

soils will remain in a “black box”. The objective of this study was to compare the 

microbial community composition in soil amended with biochar using T-RFLP 

analysis of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) 

region. 

MATERIALS AND METHODS 

Field Experimental Design and Treatments 

A field experiment was established at the Cornell Musgrave Farm, Aurora, NY, 

in May, 2007. Each plot was 7.5 m long×4.5 m wide with 1-2 m wide alley in between 

the plots. Corn stover biochar was incorporated into the soil at rates of 0, 1, 12, 30 t 

biochar ha
-1

, to each plot before planting corn seeds at a density of 32,000 seeds per 
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acre in the field. Treatments were replicated 3 times in a completely randomized 

design. 

Sample Collection 

Soil samples were collected from each biochar field treatment in October, 2007, 

and October, 2008. In detail, seven bulk soil cores were taken randomly from 0-15 cm 

depth from each plot and composited. Three rhizosphere soil cores were taken from 

three randomly selected corn plants by gently shaking soil off the roots and 

compositing samples within plots, respectively. Before moving to the next plot, the 

sampling probe was sterilized with bleach and rinsed three times with purified water in 

order to avoid contamination between plots. Each composite soil sample was mixed 

well and obvious root material removed with forceps. The samples were zipped into 

plastic bags and shipped on ice within 48 h to the laboratory at Cornell University, 

NY. The samples were sieved (2 mm mesh), homogenized and stored at 4°C and a 

sub-sample of each sieved soil was stored at -80°C for downstream molecular 

analyses. 

Soil DNA Extraction  

Molecular profiling analysis of the microbial communities in biochar-amended 

soil requires efficient and unbiased DNA extraction and purification methods (Ogram 

2000; LaMontagne et al., 2002; Thies and Suzuki, 2003). Because of the variety of 

microbial species and strong adsorption properties of biochar to the phosphate-

backbone of the DNA molecule, extracting and purifying high-quality microbial DNA 

from biochar-amended soil is much more difficult than that from other environmental 

samples (Wilson 1997; Thies and Suzuki, 2003). To evaluate whether different DNA 

extraction protocols affect estimates of bacterial and fungal community composition 

from biochar-amended soils based on the T-RFLP profiles, we compared three 
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protocols to extract soil DNA based on DNA yield, purity, PCR amplifiability and T-

RFLP patterns.  

To find an efficient protocol for DNA extraction from biochar-rich 

environmental samples, we compared three widely adopted DNA extraction protocols 

for their ability to extract genomic DNA from 0, 1, 12, 30 t ha
-1

 biochar-amended 

soils. All three methods were based on the direct lysis of cells in the sample, with 

subsequent recovery and purification of nucleic acids. 

Method I: This protocol was modified from LaMontagne et al. (2002). Before 

extraction, all solutions were rendered DNase-free by treatment with 0.1% diethyl 

pyrocarbonate (DEPC). 

---Pre-wash 

Soil of 500 mg and 4 ml phosphate buffer (0.12 M, pH 8) (LaMontagne et al., 

2002) were added to micro-centrifuge tubes (Eppendorf , Germany) and shaken at 

room temperature on an orbital shaker for 5 min at 150 rpm. After centrifugation at 

4°C for 10 min at 6,000×g, the pellets were washed once again. 

---Dispersion  

The pellets were suspended in 1 ml of cetyl trimethylammonium bromide 

(CTAB) extraction buffer (Griffiths et al., 2000) and 0.5 ml of phenol–chloroform–

isoamyl alcohol (25:24:1; pH 8.0) in micro-centrifuge tubes (Eppendorf, Germany) 

containing 250 mg of zirconia/silica beads (0.1 mm; Biospec Products, Bartlesville, 

OK, USA). The extraction mixture was beaten at 1000 rpm for 2 min.  

--- Lysis 

After the addition of 500 μl of lysis buffer (50 μM Tris–HCl [pH 8]; 40 μM 

ethylene diamine tetraacetic acid [EDTA; pH 8]), 20 μl of lysozyme (10 mg ml
-1

; 
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Sigma-Aldrich, Germany) and 5 μg poly-dIdC (Barton et al., 2006), mixtures were 

vortexed briefly (30 s) and incubated at 37°C for 30 min. Sodium dodecyl sulphate 

(SDS) was added to a final concentration of 2%; the samples were again vortexed and 

then incubated at 70°C for 1 h. After this, 6 μl of proteinase K (Sigma-Aldrich, 

Germany) were added. Samples were then vortexed and incubated at 50°C for a 

further 30 min followed by centrifugation for 15 min at 10,000×g. 

---Precipitation 

The supernatants were transferred to fresh micro-centrifuge tubes, and the 

aqueous phase, containing the nucleic acids, was extracted by mixing an equal volume 

of chloroform–isoamyl alcohol (24:1) and shaking gently by hand, followed by 

homogenization at 2,800 rpm for 10 min and centrifugation (10,000×g) for 10 min. 

The upper layers were transferred to fresh tubes and 0.5 ml sterile deionized water was 

added into the former tubes to wash the pellets. The upper layers were mixed and 

centrifuged at 12,000×g for 5 min, then were treated with 0.5 vol of 50% (w v
-1

) 

PEG8000 and 0.1 vol of 5 M NaCl (Yang et al., 2007). The samples were mixed by 

inverting gently, incubated for more than 1 h or overnight at 4°C and centrifugated 

(10,000×g) for 15 min to precipitate the nucleic acids. 

---Wash 

The pelletted nucleic acids were washed twice in 70% (v v
-1

) ice-cold ethanol 

and air dried before re-suspending in 50 μl DEPC-treated water (Griffiths et al., 2000). 

Method II: The MoBio Powersoil
TM

 DNA extraction kit (MoBio Laboratories, 

Carlsbad, CA, USA). DNA was extracted from 500 mg of soil according to the 

manufacturer‟s instructions. In Method II, a bead matrix and lysis buffer were used to 

pulverize cells by horizontal shaking on a vortex mixer, followed by precipitation of 

the organic contaminantes, and adsorption of DNA to a spin filter, a wash step, and the 
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elution of DNA in buffer. The protocol was followed per the manufacturer‟s 

instructions.  

Method III: The MoBio UltraClean
TM

 soil DNA extraction kit (MoBio 

Laboratories, Carlsbad, CA, USA). DNA was extracted from 500 mg of soil according 

to the manufacturer‟s instructions. 

DNA Quantification 

To check DNA yield, crude DNA extracts (5 μl) were agarose (1.5%) gel 

electrophoresed in TBE buffer. The gel was stained with 0.5 μg ml
-1

 ethidium bromide 

in advance. Then, the gel loaded with DNA extracts was photographed by a 

transilluminator using the filter specified for ethidium bromide staining to check if 

sample DNA extracts had a positive DNA band with the right size. To accurately 

quantify DNA concentrations, the quantity of extracted DNA was estimated against a 

calf thymus DNA standard curve in an ethidium bromide (EtBr) solution using a 

EC3™ Fluorescence BioImager (UVP, LLC, Upland, CA, USA ) and the 

accompanying Quantity One
TM

 software (Bio-Rad, Hercules, CA, USA). Standards 

were prepared with a series of dilutions of calf thymus DNA (Bio-Rad). Each standard 

dilution and each sample DNA extract was mixed thoroughly with 100 µl, 0.2 μl ml
-1

 

EtBr/TBE quantification buffer in each well of a UV-transparent quantification plate. 

The loaded plate was visualized and photographed by a UV spectrophotometer. The 

acquired image was analyzed and quantified using the Quantity One software which 

calculates the sample DNA concentrations by using the standard curve of 10-100 ng of 

calf thymus DNA versus intensity. 

DNA Purity Evaluation 

Co-extracted humic acids and proteins are two major contaminants when DNA is 

extracted from environmental samples. Humic acids and proteins absorb at 230 nm 
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and 280 nm, respectively; whereas, DNA absorbs at 260 nm. In this study, the purity 

of DNA was assessed spectrophotometrically by calculating A260/A230 and 

A260/A280 ratios for humic acid contamination and protein impurities, respectively. 

A260/A230 ratios greater than 2 and A260/A280 ratios greater than 1.7 indicate high 

purity DNA, while low ratios indicate humic acid or protein contamination, 

respectively (Ning et al., 2009). 

PCR Conditions 

For PCR of the bacterial community, the quantified DNA was used as the 

template for amplifying 16S rRNA genes. This was performed by using the 

fluorescence-labeled forward primer 27f (5'-[6FAM] AGA GTT TGA TCC TGG CTC 

AG-3') and the unlabeled reverse primer 1492r (5'-GGT TAC CTT GTT ACG ACT T-

3') (Fig. 3.1). Reactions were carried out with the following reagents in 50 μl 

reactions: 5 μl, 1-3 ng μl
-1

 template DNA; 5.0 μl, 10×PCR Buffer; 1.0 μl, 10 mM 

dNTPs; 0.5 μl, 10 mg ml
-1

 bovine serum albumin (BSA); MgCl2, 2 mM; 0.5 μl, 10 μM 

forward primer 27f; 0.5 μl, 10 μM reverse primer 1492r; 0.5 μl, 5U μl
-1

 Taq DNA 

polymerase (Applied Biosystems, Foster City, CA, USA); 33.0 μl nuclease-free sterile 

water. Positive controls used DNA from pure laboratory cultures of E. coli for 

bacteria. Negative controls used sterilized distilled water in place of template DNA.  

 

 

Figure 3.1 A 16S rRNA gene map indicating the location of primers used in this 
study. Primers 27f and1492r were used to target the 16S rRNA gene region. The 
arrows indicate the direction of primer extension. 

For PCR of the fungal community, the quantified DNA was used as template 

targeting the internal transcribed spacer (ITS) region of the rRNA gene cluster, which 

has taxonomic significance (White et al., 1990; Lord et al., 2002; Borneman and 

16S 5S 

27f 1492r 

23S 
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Hartin, 2000). Primers ITS1f (5'-[6FAM] CTT GGT CAT TTA GAG GAA GTA A-

3') and the unlabeled reverse primer ITS4r (5'-TCC TCC GCT TAT TGA TAT GC-3') 

were used to target the entire ITS region (Fig. 3.2). Reactions were carried out with 

the following reagents in 50 μl reactions: 10 μl 1-3 ng μl
-1

 template DNA; 5.0 μl, 

10×PCR Buffer; 3.0 μl, 10 mM dNTPs; 0.5 μl, 10 mg ml
-1

 BSA; 6.0 μl, 25 mM 

MgCl2; 1.0 μl, 10 μM forward primer ITS1Ff; 1.0 μl, 10 μM reverse primer ITS4r; 1.0 

μl, 5 U μl
-1

 Taq DNA polymerase (Applied Biosystems); 22.5 μl nuclease-free sterile 

water. Positive controls used DNA from pure laboratory cultures of Glomeromycetes 

for fungi. Negative controls used sterile distilled water in place of template DNA. In 

the PCR-T-RFLP procedure, BSA was added to all PCR reaction mixtures in order to 

reduce any PCR inhibitory effects from any contaminants that may have been carried 

over after extraction. 

 

 

 

Figure 3.2 ITS primer map indicating the target of primers used in this study. Primers 
ITS1f and ITS4r were used to amplify the entire ITS region. The arrows indicate the 
direction of primer extension. SSU: Small Subunit; LSU: Large Subunit. 

In PCR temperature cycling, the PTC-100 programmable thermal cycler (M.J. 

Research, Watertown, MA) was programmed for an initial denaturing step at 94°C for 

5 min followed by 27 cycles of 94°C for 45 s, 56°C for 45 s and 72°C for 1 min with a 

final extension step at 72°C for 10 min. Cycling parameters were tested starting with 

18 through 36 cycles at nine-cycle increments to address the bias often associated with 

amplification of mixed templates. Twenty-seven cycles were found to be optimal for 

reproducible and consistent amplification of the representative communities without 

kinetic or template biases becoming large factors.  

5.8S SSU LSU 

ITS1f ITS4r 
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We used three independent replicates derived from separate DNA extractions, 

PCR amplifications and restriction digestions. This ensured sufficient concentration of 

PCR products and avoided template sampling variation in pipetting community DNA 

when constructing the PCR reaction mixture.  

T-RFLP Analysis 

After amplification, DNA was checked on 1.5% agarose gels, then replicate 

reactions were combined and the DNA concentration determined by UV 

spectrophotometry. The quantified DNA was dried and resuspended in nuclease-free 

water to a concentration of approximately 20 ng μl
-1

. The restriction enzymes HhaI 

(Promega, Madison, WI) recognizing the site of 5'-GCG
▼

C-3' and Sau96I (New 

England Biolabs, Ipswich, MA) recognizing the site of 5'-G
▼

GNCC-3' were used to 

digest amplified sample DNA, respectively. Two, separate, 30 μl restriction enzyme 

digest reactions were prepared per sample which contained 0.5 μl enzyme (either HhaI 

or Sau96I, New England Biolabs, Beverly, MA, USA); 3.0 μl of the manufacturer‟s 

recommended 10×buffer; 0.3 μl, 10 mg ml
-1

 BSA; 11.2 μl nuclease-free water and 15 

μl approximate 20 ng μl
-1

 amplified sample DNA. Restriction digests were carried out 

in an MJ Research PTC 100 thermal cycler held at 37°C for 4.5 h with a final step of 

70°C for 15 min to stop the reaction. Complete digestion of the DNA was verified by 

inspecting digested products run on a 1.5% agarose gel and visualized using a UV 

spectrophotometer. T-RFLP digests were purified using a PERFORMA DTR Edge 

Plates (Edge BioSystems, Gaithersburg, MD), dried in an evaporation vacuum and 

then resuspended in a 10 μl mix containing 9.85 μl of formamide and 0.15 μl of Liz 

500 size standard (Applied Biosystems). All samples were denatured at 94°C for 4 

min and chilled on ice until loaded. Subsequently, terminal restriction digests were run 

on a 3730XL ABI electrophoretic capillary sequencer (Applied Biosystems). T-RF 
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sizing was performed on electropherogram output using Genemapper (Applied 

Biosystems) fragment analysis software. 

T-RFLP data were analyzed by the Additive Main Effects with Multiplicative 

Interaction (AMMI) model using MATMODEL
TM

 software (Microcomputer Power, 

Ithaca, NY, USA) (Gauch, 1992). AMMI constructs interaction principal components 

(IPC) from the interaction between the main effects (treatments vs. terminal restriction 

fragments, T-RFs) so that the differential responses of T-RFs to treatments can be 

assessed. 

RESULTS 

Effect of Biochar on Extraction of Genomic DNA from Soil 

To examine microbial genomic DNA recovery from biochar-rich samples, I 

developed test samples that contained 0.5 g of pure biochar particles, to which I added 

10 μg of purified bacterial genomic DNA. I then compared the recovery of this DNA 

by using the Powersoil
TM

 soil DNA extraction protocol and meanwhile tested the 

adsorption strength of DNA to biochar-rich samples. 

As shown in Fig. 3.3, DNA recovery decreased dramatically when biochar was 

added. Approximately 30.6% of added DNA was recovered in the absence of biochar, 

while the amount of DNA recovered was 2.7% in the presence of biochar. This 

indicated that biochar was effectively adsorbing DNA. Given the high initial load of 

genomic DNA (10 μg), this experiment clearly demonstrated the difficulty in 

recovering DNA from samples that contain biochar. I suggest that biochar has a high 

affinity for the phosphate backbone of DNA. These results are consistent with studies 

done by Rapaport et al. (1981) and Gani et al. (1999), where genomic DNA was found 

to have a high binding activity on charcoal.  

http://www.pnas.org/search?author1=E+Rapaport&sortspec=date&submit=Submit
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Figure 3.3 Microbial genomic DNA extracted using the Powersoil
TM

 soil DNA kit 
with and without biochar added. Lane 1 = fragment size ladder (1kb). Lane 2 = 10 μg 
of purified bacterial DNA subjected to the Powersoil

TM
 soil DNA extraction protocol. 

Lane 3 = the same amount of purified bacterial DNA with the addition of 0.5 g of 
biochar subjected to the Powersoil

TM
 soil DNA extraction protocol.  

Comparison of DNA Yield and Purity, PCR Amplifiability and T-RFLP Profile among 

Extraction Methods 

(1) DNA yield 

 

 

 

 

 

 

 

Figure 3.4  DNA recovery in the presence and absence of biochar using three 
extraction protocols.  
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DNA concentrations obtained using the three extraction procedures are shown in 

Fig. 3.4. The DNA recovery rate in the presence of biochar obtained with the modified 

protocol (LaMontagne et al., 2002) ranged from 5.4% to 6.1%. The Powersoil
TM 

protocol recovered 1.6% to 3.3% of the DNA in the presence of biochar. DNA 

recovered using the Ultraclean
TM

 protocol was the least and was significantly less than 

(P<0.01) those obtained using the modified protocol and the Powersoil
TM

 protocol 

either in the presence or absence of biochar. Because the crude DNA yields relate to 

cell lysis and extraction efficiencies, DNA recovery efficiency was found to vary 

depending on the extraction method used. The modified protocol and the Powersoil
TM

 

protocol recovered significantly higher amounts of DNA than the Ultraclean
TM

 

protocol (Fig. 3.4). Regardless of the extraction method, biochar addition significantly 

decreased DNA recovery efficiency. Results also showed clearly that, in the presence 

of biochar, the modified protocol and the Powersoil
TM

 protocol were more efficient in 

extracting DNA than the Ultraclean
 TM

 protocol. The strong affinity of DNA for 

biochar found in this study is consistent with a previous study that reported strong 

adsorption of DNA on the solid surfaces of charcoal powder (Gani et al., 1999).   

My results provide a comparison between the three extraction methods in their 

DNA extraction efficiency in the presence of biochar; however, they do not test how 

uniformly the three extraction protocols extract diverse community members from 

biochar-amended soils. Therefore, I assessed the ability of the three extraction 

methods to extract high quantity and quality DNA from 0, 1, 12, 30 t ha
-1

 biochar-

amended soils. 

Regardless of the extraction method, the amount of DNA extracted decreased 

with increasing biochar application rate from 0 t ha
-1

, 1 t ha
-1

, 12 t ha
-1

 to 30 t biochar 

ha
-1 

(Fig. 3.4). The amount of DNA obtained using the Ultraclean
TM

 protocol was 
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significantly affected by the rate of biochar additions. However, DNA yield obtained 

by the Powersoil
TM

 protocol was significantly lowered by high biochar application 

rate, and DNA yield obtained by the modified protocol did not show a significant 

difference among different biochar application rates. In the high biochar applied soils, 

DNA yielded by the modified protocol and the Powersoil
TM

 protocol was 53.4% and 

18.4% higher than that yielded by the Ultraclean
TM

 protocol. These results confirm 

that all three methods successfully extract DNA from the three biochar-amended soils 

tested (Table 3.1). However, differences were apparent with respect to the quantity 

and quality of DNA extracted using the three methods. That is, the Powersoil
TM

 

protocol and the modified protocol were more efficient in extracting DNA from 

biochar-amended soils than the Ultraclean
TM

 protocol. This finding is consistent with 

the study done by Hilyard et al. (2008), where the Powersoil
 TM

 protocol was found to 

be efficient in extracting microbial DNA from sediment samples, whereas the 

Ultraclean
TM

 protocol was found to be efficient in extracting microbial DNA from 

cultured isolates. 

When a two-factor ANOVA was carried out, the biochar application rate was 

found to have a significant effect on the DNA yield, with DNA extraction most 

reduced by the 30 t ha
-1

 biochar application (P<0.05). Choice of extraction method 

also had a significant effect, where the modified protocol and the Powersoil
TM

 

protocol were most efficient in extracting DNA, while the Ultraclean
TM

 kit was least 

successful. The modified protocol and the Powersoil
TM

 protocol were very similar 

with regard to their efficiency in extracting DNA from 0, 1 and 12 t ha
-1

 biochar-

amended soil, and consequently, a further one-factor ANOVA was carried out. No 

significant difference was noted, however, between the modified protocol and the 

Powersoil
TM

 protocol with respect to DNA yield from 0, 1 and 12 t ha
-1

 biochar-

amended soil (P>0.05). 
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Table 3.1 DNA yield, purity and ability to amplify using three DNA extraction protocols 

Protocols 
Treatments 

DNA yield 
Purity PCR results 

t ha-1 A260 / A230 A260 / A280 Bacteria Fungi 

 
 
 

Modified 

0    31.01±1.85 1.14±0.01 1.10±0.28 (+) (++) 

1    29.78±8.68 1.26±0.09 1.06±0.13 (+) (++) 

12  25.15±1.88 0.66±0.05 1.01±0.07 (+) (++) 

30  20.09±3.21 0.30±0.02 0.49±0.08 (+) (++) 

       

Powersoil 

0    31.19±4.89 2.05±0.05 2.04±0.07 (++) (++) 

1    30.07±3.81 2.18±0.12 1.92±0.10 (++) (++) 

12  25.42±3.20 2.15±0.26 1.87±0.21 (++) (++) 

30  17.31±0.15 2.14±0.13 1.98±0.28 (++) (++) 

       

Ultraclean 

0    22.03±2.76 2.07±0.03 1.87±0.04 (++) (++) 

1    22.03±0.83 2.07±0.11 1.77±0.05 (++) (++) 

12  13.75±2.91 2.16±0.13 1.48±0.08 (++) (++) 

30  7.93±1.09 1.80±0.06 1.84±0.13 (++) (++) 

 

 

5
9
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(2) DNA purity 

Humic acid contamination denoted by the A260/A230 ratio of the DNA extracts 

varied among the three extraction protocols. Regardless of the biochar application rate, 

the modified protocol gave significantly lower A260/A230 ratio for DNA extracts than 

the other two extraction protocols. This indicated that the modified protocol was least 

effective in obtaining high quality DNA among the three methods we compared. 

Increasing biochar amendment decreased the purity of DNA extracts obtained by the 

modified protocol with respect to humic acid contamination, as shown in Table 3.1, 

where a significant decrease in A260/A230 ratio was found in the 12 and 30 t ha
-1

 

biochar-amended soils. However, biochar amendment didn‟t have a significant effect 

on humic acid contamination of DNA extracts obtained by the modified protocol or 

the Powersoil
TM

 protocol. Given the rule of thumb, A260/A230 > 2 indicates pure 

DNA with low humic acid contamination (Ning et al., 2009), the Powersoil
TM

 protocol 

and the Ultraclean
TM

 protocol performed better than the modified protocol in reducing 

humic acid contamination of the DNA extracts. 

Extraction method had a significant effect on the ratio of A260/A280, but no 

significant effect of biochar application rate was found. Given the rule of thumb, 

A260/A280>1.7 indicates pure DNA with low protein contamination (Ning et al., 

2009), the data shown in Table 3.1 showed the Powersoil
TM

 and the Ultraclean
TM

 

protocol had lower yields of co-extracted protein than the modified method regardless 

biochar application rate. Our results suggested that the Powersoil
TM

 and the 

Ultraclean
TM

 protocol were highly efficient in removing humic acids and proteins. 

Thus, the three extraction methods we tested did demonstrate significant 

differences in the yield and purity of crude DNA extracts obtained from biochar-

amended soils. The yield of crude DNA extracts decreased with increasing biochar 
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application rate, which is likely due to the high adsoption of DNA molecules on 

biochar. The Powersoil
TM

 protocol was found to be effective in obtaining not only 

high yield DNA, but also high quality DNA.  

(3) Ability to amplify DNA extracts by PCR 

The purity of the crude DNA was also checked by the ability to amplify a region 

of bacterial 16S rRNA gene of bacteria by PCR with primers of 27f and 1492r and 

fungal ITS region with primers of ITS1F and ITS4R. Five μl aliquots of PCR product 

were run on Tris-borate-EDTA (TBE) agarose gels (1.5%) containing ethidium 

bromide (1 ng ml
-1

; Maniatis et al., 1982) for PCR product staining and visualization. 

Gel images were captured using a UV transilluminator.  

The gel image indicated that the PCR amplified bacterial 16S rRNA and fungal 

ITS region for use in downstream analyses to be between 1,430-1,500 bp and 620-650 

bp in size, respectively (Table 3.1), consistent with the expected length of PCR 

products. Additionally, nonspecific PCR amplification was not detected in any lanes. 

Although DNA extracts obtained from the three methods were all amplifiable, PCR 

products amplified from bacterial DNA extracts obtained by the other two extraction 

methods were purer and of better quality than those obtained by the modified protocol 

(Table 3.1).  

(4) T-RFLP fingerprinting of bacterial and fungal community composition 

I evaluated whether the different DNA extraction procedures resulted in a 

different microbial community composition. To do this, T-RFLP data were analyzed 

by the AMMI model which combines the additive elements of ANOVA with the 

multiplicative elements of PCA based on a binary matrix according to the presence or 

absence of aligned fragments instead of peak heights within each electropherogram. 

Thus, it allows us to test the similarity among restriction fragment composition 
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obtained using different extraction procedures. Duplicates were run as a means of 

confirming the reproducibility of each method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 AMMI plots of T-RFLP fingerprints of the bacterial (A) and fungi (B) 
community composition in biochar-amended and unamended soils. Each point 
represents one separately analyzed replicate sample. Points are gradiently-colored 
according to biochar application rates and in shape according to extraction methods. 

Analysis of T-RFLP profiles, generated by restriction digestion of PCR products, 

demonstrated that the choice of the DNA extraction method did not significantly 
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influence either the bacterial (Fig. 3.5A) or fungal community profiles generated (Fig. 

3.5B). This was reflected in the clustering of points detected from each sample in the 

AMMI plot (Fig. 3.5). However, microbial community composition in the unamended 

and 1 t ha
-1

 biochar-amended soils was found to be significantly different from those 

in the 12 and 30 t ha
-1

 biochar-amended soils. In addition, these results demonstrated 

that the Powersoil
TM

 protocol was capable of reliably extracting PCR-amplifiable 

genomic DNA from biochar-amended and unamended soils. Surprisingly, humic 

acid/protein co-extraction was not problematic for biochar-amended soils, regardless 

of extraction method employed, likely due to non-selective DNA adsorption on the 

biochar.  

Although the three DNA extraction methods we tested were found to have varied 

influences on DNA yield and purity, applying different extraction methods did not 

affect the soil microbial community profile analysis. This observation disagreed with 

previous studies reporting affects on microbial community profiles when analyzed by 

denaturing gradient gel elecrophoresis (DGGE), where different DNA extraction 

protocols did affect the final analysis (De Lipthay et al. 2004; Carrigg et al., 2007). 

However, the finding in this study agreed with the study done by Ning et al. (2009), 

where the microbial community DGGE profiles showed consistency between the 

Ultraclean
TM

 kit DNA extraction protocol and the Powersoil
TM

 kit DNA extraction 

protocol. This indicates that the effect of DNA extraction on microbial community 

profiling analysis varies with different environmental samples DNA is extracted from 

and different molecular profiling methods. Thus, in this study, I have confidence in 

using the Powersoil
TM

 soil DNA kit as the DNA extraction method of choice for 

further T-RFLP studies, since it yielded a high quantity and good purity of DNA.  
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Bacterial and Fungal Community Composition Affected by Biochar Soil Amendment 

PCR-T-RFLP analysis was done on both bulk and rhizosphere field soils 

sampled from experimental fields at the Cornell Musgrave Farm in Aurora, NY, after 

one year (Sampled in Oct., 2008). T-RFLP profiles showed that the restriction enzyme 

HhaI was able to differentiate the bacterial (Fig. 3.6A) and fungal (Fig. 3.6B) 

community in the 0 and 1 t ha
-1

 biochar-amended soils from those in 12 and 30 t ha
-1

 

biochar-amended soils. Also, distinct shifts in the bacterial community composition 

were detected between bulk soils and rhizosphere soils (See separation by circles and 

triangles in Fig. 3.6A). But this separation was only significant for the 12 and 30 t ha
-1

 

biochar-amended soils for fungal community composition (Fig. 3.6B). Our finding 

was consistent with the study done by Otsuka et al. (2008), where the bacterial 

community composition was found to be significantly different in tropical rainforest 

soils contain high-charcoal caused by heavy forest fires from soils without fire damage 

when analyzed using PCR-DGGE profiling analysis. 

The restriction enzyme Sau96I was also used to access the AMMI analysis of T-

RFs, the operational taxonomic units, within the bacterial (Fig. 3.6C) and fungal (Fig. 

3.6D) community of biochar-amended soils. Use of Sau96I as the restriction enzyme 

showed a significant discrimination between 0, 1 t ha
-1

 biochar-amended soils and 12, 

30 t ha
-1

 biochar-amended soils, regardless of the bacterial or fungal community. As 

can be seen in Fig. 3.6, discrimination between the microbial community in bulk soils 

and that in rhizosphere soils was only significant for the 12 and 30 t ha
-1

 biochar-

amended soils. 

The comparative analysis revealed a shift in both the bacterial and fungal 

community structures between 0 or 1 t ha
-1

 biochar treatment and 12 or 30 t ha
-1

 

biochar treatment, which indicated that the shift in the community compositions were 
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related to the rate of biochar applied. Finally, the shifts between biochar application 

rates were mainly explained by the first dimension of the IPCA plot, indicating that 

biochar had a stronger affect on the microbial community composition than sampling 

location (bulk vs. rhizosphere).  

T-RFLP fingerprinting is not used to identify each member in a community; 

rather, it is used to produce a profile from which comparisons can be made. T-RFLP 

fingerprinting analysis is used to produce an overall pattern of the community, not to 

identify each individual species or genus in that community. The individual peaks 

displayed become the units, or phylotypes, used in the monitoring process.  

The electropherogram for bacterial T-RFs showed clearly that both Hha1 and 

Sau96I were able to differentiate bacterial community composition between 0 and 30 t 

ha
-1

 biochar-amended soils, which was consistent with the finding obtained by the 

AMMI analysis shown in Fig. 3.6. As shown in the electropherogram, HhaI generated 

several major T-RFs present only in unamended soils. For instance, T-RF 108, 313 

and 465 bp as indicated by arrows, were found mainly in unamended soils, and were 

hardly detected in 30 t ha
-1

 biochar-amended soils (Fig. 3.7A). Sau96I generated 

several major T-RFs present only in unamended soils. For instance, T-RF 143, 262bp 

as indicated by arrows, were mainly found in unamended soils, and were hardly 

detected in 30 t ha
-1

 biochar-amended soils (Fig. 3.7C). The application of biochar to 

soil also induced considerable changes in fungal community composition, as 

illustrated in Fig. 3.7B and C. These changes corresponded to not only an increased or 

decreased abundance of existing peaks in the unamended soils, but also the total 

number of peaks per T-RF pattern between unamended and 30 t ha
-1

 biochar-amended 

soil samples. The T-RF pattern shown in Fig. 3.7A-D illustrated slightly if not 

significantly more T-RFs peaks present in unamended soils than those in biochar- 



 

66 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 AMMI analysis of bacterial and fungal community composition generated 
by HhaI (A, B) and Sau96I (C, D) restriction enzymes (Sampled in Oct. 2008). 

 

 

 

 

 



 

67 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

68 

 

Figure 3.6 (Continued)
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Figure 3.7 T-RFLP profiles of bacterial and fungal communities generated from PCRs 
from 0 and 30 t biochar ha

-1
 treatment (only bulk soils), and digested by Hha1 and 

Sau96I. Fragment size in bp. The major T-RF bands with a different location are 
indicated by arrows. 
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amended soils. These results are consistent with the idea that biochar addition 

decreases microbial diversity by altering substrate composition, i.e., the addition of 

biochar selected for populations whose metabolism would be benefited. However, the 

evidence here was not very clear. Adopting multiple approaches to analyze soil 

microbial diversity is needed to validate these observations. 

It is unclear at present which specific bacterial or fungal groups contribute to the 

polymorphisms seen in T-RFLP fingerprints from biochar-amended soils; therefore, 

further cloning and sequencing analysis of microbial genomic DNA was performed in 

order to reveal specific bacterial and fungal groups that preferentially appear in 

biochar-amended soils.  

Comparison of Different Biochar-amended Soil Microbial Community Composition 

Changes One Year after Biochar Addition 

The application of biochar induced considerable changes in both bacterial and 

fungal community composition, as shown in Fig. 3.8A-D. The AMMI analysis 

revealed an evident shift in the community composition between 0, 1 t ha
-1

 biochar-

amended soils and 12, 30 t ha
-1

 biochar-amended soils. In addition, the microbial 

community compositions from 2007 and 2008 were differentiated from each other 

regardless of the restriction enzymes used, indicating that the shifts in the community 

structures were likely related to duration of biochar in soil. Finally, the shifts of 

biochar-amended soil microbial communities were mainly explained by the first and 

the second IPCA dimensions, respectively, indicating that time since biochar addition 

produced a stronger alteration of bacterial and fungal community structure than the 

biochar addition alone. This finding is consistent with the study done by Campbell et 

al. (2008), where a distinctly different microbial community composition was 

measured in soils burned for 2 and 4 years by using phospholipid fatty acids (PLFAs).   
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Figure 3.8 AMMI analysis of bacterial and fungal communities generated by HhaI (A, 
B) and Sau96I (C, D) restriction enzymes (Oct., 2007 vs Oct., 2008).   
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Figure 3.8 (Continued) 
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DISCUSSION 

Both the bacterial and fungal community compositions evaluated in this study 

shift significantly after biochar application at a rate higher than 12 t ha
-1

, and over one 

year after biochar application. Microbial community composition varied depending on 

the biochar application rate. The height of the peaks revealed by the T-RF profiles 

indicated the relative abundance of microbial groups harboring identical terminal 

restriction fragments. Biochar itself is not a source of nutrients usable by 

microorganisms except for those that contain neglectable ash minerals (Lehmann and 

Joseph, 2009). Therefore, the microbial community compositions detected are less 

likely due to the biochar material itself, but more likely due to the effect of biochar on 

soil physical and chemical properties, such as retention of water and adsorption of 

nutrients, altered pH, CEC, porosity, aeration, etc.  

Several studies reported a higher microbial biomass in biochar-enriched soils 

(Zackrisson et al., 1996; Steiner et al., 2008), these are consistent with the increased 

microbial biomass C we found in biochar-amended soils (Chapter 2). Results 

presented here clearly demonstrated that not only the abundance, but also microbial 

community compositions, were significantly affected by different biochar application 

rates. The higher biomass/abundance in biochar-amended soils could be attributed to a 

change in diversity rather than a change in colonization by particular species.  

It has been suggested that biochar particles provide a protective habitat for 

microorganisms through pore size exclusion of predators (protozoa) (Thies and Rillig, 

2009). Recently, it was demonstrated that the predation regimen could act as a major 

structuring force for the bacterial community composition in an aquatic system 

(Jürgens et al., 1999). Furthermore, partial protection of Rhizobium leguminosarum 

from protozoan grazing in soil due to the addition of bentonite clay was observed 
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(Heynen et al., 1988). In my study, the possible protective effect of biochar particles 

for microorganisms may have represented a selective pressure on the community 

composition in high biochar-amended soils. Alternatively, altered nutrient availability 

by the adsorptive effect of biochar may have caused changed bacterial and fungal 

diversities.   

According to Van Gestel et al. (1996), the vicinity between microbes, organic 

matter, and clay is required for the survival of microbes, in which organic matter and 

clay particles provide substrates and nutrients. The non-organic matter of biochar itself 

(Lehmann and Joseph, 2009) and the strong adsorptive effect of biochar on substrates 

and nutrients (Chapter 2) in high biochar-amended soils seem to favor the formation of 

biochar-nutrient aggregates and thus change the vicinity between microbes and 

substrates and nutrients. Therefore, T-RFs found in the high biochar-amended soils 

may represent microbial species better adapted to either limited or more accessible 

nutrients and substrates. The development of biofilms in soils consisting of a dense of 

clay aggregates was previously found to contain one or more bacteria and grains of 

iron oxides (Lünsdorf et al., 2000). The biochar particles are also capable of forming 

aggregates that serve as housing for microbes which may at least partly explain the 

altered microbial diversity in soils contain high biochar particles. 

Corn stover biochar used in this study has a pH of 8.2-10.0, which was probably 

responsible for some community changes, especially for fungi, which have a high 

tolerance to extreme pH conditions. The presence or absence of some T-RFs detected 

in high biochar-amended soils may indicate that either some bacteria may not have 

been able to withstand the alkaline environment or some fungi may become dominant 

due to their preference in relatively alkaline conditions. 
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PCR-T-RFLP profiling analysis has to be treated with caution due to biases 

inherent to low DNA recovery rates and varied PCR amplification in high biochar-

amended soils, although the three DNA extraction protocols tested in our study did not 

affect the T-RFLP profiling analysis. PCR-T-RFLP profiling microbial community 

represents the community composition difference of the whole soil microbial 

community but not the specific presence, abundance and activity of its functional 

groups. As a consequence, these results did not necessary imply a microbial metabolic 

function change in response to high biochar application. Therefore, a cloning and 

sequencing strategy for the identification of microorganisms living in association with 

biochar is needed. 

CONCLUSIONS 

In this study, the microbial composition was mainly affected by biochar addition 

and did respond differently to different biochar application rates and time since 

biochar application. These results demonstrate specific microbe-biochar associations 

in biochar-amended soils. Knowledge of the microbial community structure represents 

a first step toward understanding soil function in response to biochar soil amendment. 

In addition to community composition, the analysis of microbial metabolic function 

within a given population will greatly increase our comprehension of the role of 

bacteria and fungi in soil processes important for geochemical dynamics of elements, 

specifically carbon, nitrogen, and phosphorus. An integrated multi-technique approach 

where physiological, biochemical and cloning and sequencing methods are combined 

is recommended. This will allow us to identify microorganisms stimulated in biochar-

amended soils better than the use of a single T-RFLP fingerprinting method. I also 

suggest studies on water and nutrient availability, pH and porosity in biochar-amended 

soils in conjunction with the study of microbial community compositions, because this 
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knowledge will help to identify the specific physical or chemical properties affected 

by biochar addition that are the dominant factors altering microbial community 

compositions. 
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CHAPTER 4                                                 

AMINOPEPTIDASE AND PHOSPHATASE EXOENZYME ACTIVITIES ARE 

INCREASED RELATIVE TO β-D-GLUCOSIDASE, β-D-CELLOBIASE IN 

AGRICULTURAL SOILS AMENDED WITH CORN STOVER BIOCHAR 

ABSTRACT  

The increasing use of biochar as an agricultural soil amendment has raised 

concerns about its possible effects on soil microbial communities. Soil hydrolytic 

exoenzyme activity, as an indicator of soil microbial activities and its metabolic 

requirements and available nutrients, was investigated by sampling soils from a corn 

field amended with varying rates of corn stover biochar in Aurora, NY. Activity of 

fluorescently labeled substrate analogues for β-D-glucosidase, β-D-cellobiase, 

aminopeptidase and phosphatase in all treatments were monitored for varying 

incubation times and statistically analyzed by fitting results to the Michaelis-Menten 

model. The determination of exoenzyme activity with fluorescently labeled substrate 

analogues was impaired by the strong adsorption of 66.7% more of the enzymatically 

liberated fluorophores 4-methylumbelliferone (MUF) and 34.6% more of the 

fluorophores 7-amino-4-methylcoumarin (MCA) adsorbed to the high biochar-

amended soils than those adsorbed to the unamended control soils. I overcame this 

limitation by measuring the equilibrium adsorption isotherms for both MUF and MCA 

compounds and using correction models. Using this new approach, it was found that 

the biochar-amended soils had 615.3% and 15.0% higher activities of alkaline 

phosphatase and aminopeptidase, but 81.3% and 82.2% lower activities of β-D-

glucosidase, β-D-cellobiase respectively. These changes in enzyme activities suggest 

that phosphorus (P) and nitrogen (N) use is increased relative to carbon (C) 

mineralized. 
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 Biochar is recalcitrant and therefore unlikely a labile C source to meet 

microbial C needs, rather, an alternative mechanism of assimilating C could occur in 

biochar-amended soils (e.g., symbionts obtaining C from their host or trapping 

respired CO2 to form carbonate as an alternative C source). Overall, I suggest that 

profound changes in microbial nutrient needs are occurring in biochar amended soils 

that apparently lead to tighter C cycling, and contribute to C conservation within soil 

systems high in black carbon (e.g., Terra Preta soils of Brazil).  

INTRODUCTION 

Enzymes mediate the activities performed by microorganisms in soil, therefore, 

are indicators of important soil biological processes (Tabatabai and Dick, 2002; 

Caldwell, 2005; Paul, 2007; Thies and Grossman, 2006). Some enzymes are active 

only in living cells (Frankenberger and Dick, 1983), whereas enzymes involved in the 

splitting of macromolecules must be transported out of the cells in order to achieve 

close contact with their substrates (Sinsabaugh et al., 2008). From an ecological point 

of view, microbial hydrolytic exoenzymes are of particular interest because they 

catalyse the rate-limiting steps of important metabolic processes such as organic 

matter degradation, mineralization and nutrient cycling. Hydrolytic exoenzymes 

involved in carbon (C), nitrogen (N) and phosphorus (P) cycling have received 

particular attention due to their capacity to catalyze processes such as the cleavage of 

C containing polymers such as cellulose, starch or hemicellulose into smaller 

molecules, the breakdown of complex protein polymers into amino acids and the 

release of organically bound phosphate into forms available for soil microbial 

community and plant uptake (Tomme et al., 1995; Klose et al., 1999; Hayes et al., 

2000).  

The activities of microbial exoenzymes are largely regulated by soil moisture, 
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temperature, pH and substrate (nutrient) availability (Nannipieri et al., 1983; Thies and 

Grossman, 2006), but can also be used as indicators of microbial response to different 

treatments. Several studies have shown that the enzymes respond rapidly to changes in 

the environment. Among these studies, changes in plant species composition (Grierson 

and Adams, 2000), seasonal variation (Wallenstein et al., 2009) and organic 

amendments (García-Gil et al., 1999) all influence in the activity of soil exoenzymes. 

Even single enzyme or enzyme groups have been shown to have value as indicators of 

the state of the soil microbial community (Bastida et al., 2008). Mele and Crowley 

(2008) suggest that the study of enzyme diversity and their associated activities 

provides an effective approach to examining functional diversity in soils. Furthermore, 

exoenzyme responsiveness to environmental changes makes them a potential indicator 

of soil biological quality.  

With the increasing interest in using biochar for promoting soil fertility and 

improving soil health, a number of recent studies have emphasized the benefit of using 

biochar as a soil amendment to improve physical and chemical properties of soils and 

of its stimulating effect on soil microorganisms (Lehmann, 2007a; Lehmann, 2007b; 

Ogawa et al., 2006; Laird, 2008; Novak et al., 2009). The beneficial effects of biochar 

are higher potassium (K), P, and zinc (Zn) availability, and to a lesser extent, calcium 

(Ca) and copper (Cu) have been observed in soils enriched with biochar (Lehmann et 

al., 2003a; Lehmann, 2007b; Steiner et al., 2007; Warnock et al., 2007). An increase in 

biological nitrogen fixation by common beans was found in biochar-amended soils 

(Rondon et al., 2007). Biochar was found to be responsible for maintaining high levels 

of soil organic matter (SOM) and available nutrients in anthropogenic soils of Terra 

Preta soils of the Brazilian Amazon (Fearnside et al., 2007). In addition, biochar-

amended soils can create unique habitats exhibiting higher adsorptive internal surface 

area and a higher CEC (Liang et al., 2006). Lower greenhouse gas emissions were 
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found in biochar-amended soils (Rondon et al., 2007; Gaunt and Lehmann, 2008; 

Rogovska et al., 2008; Kuzyakov et al., 2009; Spokas et al., 2009; Liang et al., 2010). 

Studies on the response of the soil microbial community to biochar soil amendment 

have focused mainly on monitoring changes in microbial abundance, activity and 

community composition (Zackrisson et al., 1996; Uvarov, 2000; Jin et al., 2008; 

Rogovska et al., 2008; Steiner et al., 2008; O‟Neill et al., 2009; Liang et al., 2010). 

Steiner et al. (2008) reported increased microbial activity in soils enriched in biochar. 

Thies and Jin (2009) found higher microbial biomass, but lower microbial respiration 

in biochar-amended soils than in unamended soils, which suggested an increase in 

microbial C use efficiency, possibly associated with a change of metabolic function in 

the microbial community. It has been suggested that the porous structure of biochar 

particles can be a good habitat for microorganisms (Thies and Rillig, 2009). Studies 

have suggested that bacterial cells and fungal hyphae colonizing corn stover biochar 

particles and indicated the microorganisms could be protected from predation and 

nourished by C substrates and other mineral nutrients adsorbed on biochar particle 

surfaces (Saito and Muramoto, 2002; Warnock et al., 2007). There have been several 

studies that reported stimulation of indigenous arbuscular mycorrhizal fungi by 

biochar (Nishio, 1996; Ishii and Kadoya, 1994), which was reflected in increased plant 

growth. 

Besides these studies, the way in which biochar affects soil microorganisms and 

microbial exoenzymes may be distinct from other soil amendment strategies because 

the porous structure and adsorptive properties of biochar make its interaction with 

microorganisms and microbial exoenzymes complex. Soil exoenzymes can form 

complexes with organic and inorganic materials (Tabatabai and Fu, 1992) that 

stabilizes or reduces of their catabolic activity (Gianfreda and Bollag, 1994; Ra and 

Gianfreda, 2000; Rao et al., 2000; Rosas et al., 2008). The binding characteristics of 
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exoenzymes to organic and inorganic materials can alter soil exoenzyme activities 

(Bonmati et al., 1998; Gianfreda and Ruggiero, 2006). I assumed that the activity of 

exoenzymes could be substantially affected by the potential interactions of these 

proteins and the biochar surfaces. If adsorption of enzymes on biochar alters the 

structure of the enzyme functional group or active site, it may inhibit its metabolic 

function, and result in a decreased enzyme activity. Conversely, if the adsorption does 

not affect the enzyme functional group or active site, or increases the contact of 

enzyme and adsorbed substrates on biochar, enhanced enzyme activity may occur. 

With this, I also assumed that the effect of adsorption on enzyme activity would differ 

among the different enzyme classes based on the similarities or differences of their 

molecular composition and structure, and their adsorption characteristics on biochar. 

In the context of soil productivity, the impact of biochar amendments on 

microbial exoenzyme activities is critical. Nonetheless, there is still poor knowledge 

about how biochar affects the activity of microbial exoenzymes in C mineralization, 

nutrient availability, greenhouse gas emissions and other associated soil biochemical 

processes. In this paper, I describe a comprehensive analysis of four key hydrolytic 

exoenzyme activities in corn stover biochar-amended soils sampled from a field 

experiment conducted at Cornell Musgrave Research Farm in Aurora, NY. The 

objectives were to: (1) study the kinetics of fluorophore formation in biochar-amended 

and unamended soils as a prerequisite for estimating soil exoenzyme activity using a 

fluorogenic model substrate-based method; (2) evaluate the Michaelis-Menten kinetics 

of soil alkaline phosphatase, β-D-glucosidase, β-D-cellobiosidase and aminopeptidase 

in response to biochar soil amendment; (3) test the sensitivity of the fluorogenic model 

substrate method using fluorophores, 4-methylumbelliferone (MUF) and 7-amino-4-

methylcoumarin (MCA), to determine exoenzyme kinetics in soils with different 

amounts of biochar added; (4) evaluate the potential application of this technique for 
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evaluating the physiological activity of the soil microbial community. 

MATERIALS AND METHODS 

A field experiment was initiated at Cornell Musgrave Research Farm, Aurora, 

NY, in May, 2007. Each plot was 7.5 m long×4.5 m wide with 1-2 m wide alley in 

between the plots. Corn stover charcoal was incorporated into the soil at rates of 0, 1, 

12, 30 t ha
-1

, to each plot before planting corn seeds at a density of 32,000 seeds per 

acre in the field. Soil samples were obtained from each plot in May, 2008. In detail, 

seven soil cores were taken randomly from 0-15 cm depth from each plot and 

composited. In order to collect samples aseptically, before moving to the next plot, the 

sampling probe was sterilized with bleach and rinsed three times with purified water in 

order to avoid contamination between plots. Each composite soil sample was mixed 

well and obvious root material removed with forceps. The samples were zipped into 

plastic bags, shipped on ice and analyzed within 48 h at Cornell University, Ithaca, 

NY.  

Choice of Method 

A number of protocols have been developed to measure soil exoenzyme activity; 

they differ in the nature of the substrate, assay conditions, incubation time and 

detection methods such as colorimetric, fluorimetric or radiolabelled (Marx et al., 

2001; Grosjean et al., 2007; Butterfield et al., 2008). Enzyme activity is normally 

described by the kinetic parameters Vmax and Km, which relate reaction rates to 

substrate concentration following the Michaelis-Menten model (Michaelis and 

Menten, 1913). We adopted the fluorimetric method using fluorogenic model 

substrates. The artificial fluorophores involved are MUF and MCA, which are highly 

fluorescent and therefore small quantities of hydrolyzed substrate can be easily 

detected, allowing assays to be carried out at low substrate concentrations. Besides, 



 

90 

the measurement of enzyme activity using MUF and MCA substrates has a close 

relationship with naturally occurring processes such as the turnover of 

macromolecular substrate containing glucosides, glucosaminides, organic 

phosphorous and sulphurous compounds (Freeman et al., 1995; Hoppe, 1983). 

However, this method involves a procedure for extracting and purifying the 

fluorophore product from the biochar treated soils prior to analysis. Therefore, the 

recovery of the enzymatically released fluorophores can be dramatically reduced by 

adsorption to not only soils, but the biochar in soils as it has a strong adsorptive 

affinity to organic and inorganic molecules (Thies and Rillig, 2009); consequently, 

enzyme activities are likely to be underestimated. To correct the recovery of the 

enzymatically released fluorophore, a novel approach based on fluorophore adsorption 

kinetics and adsorption equilibrium isotherms was used that allowed accurate 

estimation of the follow-on enzyme activities. 

Correction Method for Determining Exoenzyme Activities 

The distribution of fluorophores between the liquid phase and the solid adsorbent 

phase is a measure of the equilibrium in the adsorption process and can be expressed 

by the more popular isotherm models (Limousin et al., 2007). The adsorption isotherm 

indicates how the adsorption molecules are distributed between the liquid and the solid 

phases when the adsorption process reaches an equilibrium state (Limousin et al., 

2007). The analysis of the isotherm data by fitting them to Langmuir and Freundlich 

isotherm models is an important step toward finding a suitable model that can be used 

for correction purposes. Adsorption isotherms are important to describe how the MUF 

and MCA fluorophores interact with soil and biochar particles, and is critical in 

correcting the total fluorophore concentration in soil slurries.  

Because I observed a strong adsorption of free fluorophores, I initially 
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determined the time required to reach adsorption equilibrium for the two fluorophores, 

MUF and MCA. A series of soil slurries was prepared for each biochar treatment (0, 1, 

12, 30 t biochar ha
-1

) by adding 5 g (ODW) soil to 40 ml of 50 mM, pH 5.0, acetate 

buffer, the headspace of each slurry was immediately flushed with N2 for 3 min in 

order to create an anoxic atmosphere. The samples were stored at 4°C until 

exoenzyme activities were measured. MUF or MCA was added to a final 

concentration of 40 or 10 μM, respectively. At regular intervals between 5 and 600 

min after substrate addition, a subset of three samples was centrifuged (5 min at 

10,000×g), and the supernatants were transferred to fresh Eppendorf tubes. The pH of 

samples containing MUF was increased to 11.0 by the addition of NaOH (final 

concentration, 40 mM). Precipitation of carbonates was prevented by the addition of 

Na4EDTA (1.7 M; final concentration, 0.1 M). The concentrations of free fluorophores 

in the supernatant were determined by a SLM 8000 spectrofluorometer (Olis, Bogart, 

GA, USA) at an excitation wavelength of 370 nm and an emission wavelength of 450 

nm. For calibration, MUF and MCA standards were prepared in methanol at 

concentrations of 0.1 to 0.7 μM. The amount of adsorbed fluorophores was calculated 

as the difference between the total amount added and the amount remaining in the 

supernatant. The time required to reach adsorption equilibrium for the two 

fluorophores, MUF and MCA, were determined by examining the relationship 

between the incubation time and the adsorbed fluorophores.  

Equilibrium adsorption isotherms were determined by adding seven 

concentrations of the fluorophores, 5, 10, 20, 40, 70, 110, 160 μM for MUF and 5,10, 

15, 20, 30, 40, 50 μM for MCA, to a set of soil slurries from the different field soil 

treatments. At equilibrium, the amount of a substrate adsorbed (S nmole g [dry 

weight]
-1

) depends on the concentration of the fluorophore remaining in solution (Ce 

nmole ml
-1

) according to the Freundlich equation: 
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Equation 4.1  
n

eCKS       

Here, Equation 4.2  
s l u r r y

eT

D

CC
S


              

where K is the affinity coefficient (ml g[dry weight]
-1

); n is the adsorption 

capacity of the adsorbent, an indication of the favorability of the adsorption process; 

CT (nmole ml
-1

) is fluorophore added; DSlurry (g [dry weight] ml
-1

) is the dry weight of 

soil in the slurry. The Langmuir isotherm model assumes monolayer adsorption onto a 

surface containing a finite number of adsorption sites of uniform strategies of 

adsorption with no transmigration of adsorbate in adsorption surface (Weber and 

Chakkravorti, 1974).  

And the Langmuir equation: 

Equation 4.3  
e

eT

CC

CS
S




              

Here,             (Eq. 4.2), where ST and C are the Langmuir constants 

related to adsorption capacity and rate of adsorption, respectively.  

After the adsorption equilibrium is reached (incubation time was determined at 

the first step), the concentrations of free fluorophores were measured in the 

supernatants, and the amount of fluorophores adsorbed per gram (dry weight) of soil 

was calculated. Equations 1 and 2 were then fitted to the data points respectively, 

using the nonlinear-regression tool of JMP 6.0, which yielded the two parameters, K 

and n for the Freundlich model and ST and C for the Langmuir model.  

The total concentration of fluorophore, CT, liberated during the exoenzyme 

assays could be calculated from the equilibrium concentrations (Ce) of MUF or MCA 

in the supernatants of the soil slurries and from the values of the parameters 

determined for each biochar amendment treatment: 

slurry

eT

D

CC
S



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For the Freundlich model:  Equation 4.4  n
es l u r r yeT CKDCC                                

For the Langmuir model:  Equation 4.5  
e

eT
s l u r r yeT

CC

CS
DCC




                               

Michaelis-Menten Kinetics of Exoenzymes in Biochar-amended Soils 

The correction method of fitting data in adsorption models was used to 

determine the Michaelis-Menten kinetics of the hydrolytic exoenzymes alkaline 

phosphatase (EC 3.1.3.1), β-D-glucosidase (EC 3.2.1.21), β-D-cellobiase (EC 

3.2.1.91) and leucine aminopeptidase (EC 3.4.11.1) (Saiya-Cork et al., 2002; Margon 

and Fornasier, 2008; Li et al., 2009). Alkaline phosphatase, β-D-glucosidase and β-D-

cellobiase were assayed with MUF-phosphate (Sigma, Saint Louis, MO, USA), MUF- 

β-D-glucoside (ANASpec, Fremont, CA, USA) and MUF- β-D- cellobioside (Gold 

Biotechnology, Saint Louis, MO, USA). Aminopeptidase activity was measured with 

MCA-labeled leucine (Gold Biotechnology, Saint Louis, MO, USA).  Duplicate 4 ml 

aliquots of the soil slurry were transferred to autoclaved 10 ml serum vials containing 

stirring bars. The enzymatic reaction was started by the addition of 1 ml of substrate 

analogue solution to yield final concentrations of 5, 10, 25, 60, and 120 μM. Each vial 

was sealed with a sterile butyl rubber stopper and flushed with N2 for 1 min. During 

incubation, all slurries were stirred at 200 rpm and incubated at a temperature of 17°C 

(the in situ temperature). Considering the different significance of varying enzyme 

activities, slurries were incubated in parallel for three time intervals, 30 min, 2 h and 8 

h for each enzyme assay to determine an optimal incubation time. In addition, for each 

concentration, three different blanks (B1, B2, and B3) were incubated in parallel. One 

blank (B1), used to assess nonenzymatic hydrolytic cleavage of the substrate 

analogues, was boiled for 30 min prior to incubation in order to inhibit the enzyme. 

This method of inactivation was chosen because of the adsorptive capacities of the 

biochar-amended soils. In order to correct for the fluorescent compounds released 
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from the soil matrix during boiling, a second blank (B2) was incubated without 

substrate analogues. The fluorescence caused by the compounds extracted from the 

soils without boiling was determined in a third blank (B3) which was also incubated 

without substrate analogues. After incubation, the slurries were transferred to 

microcentrifuge tubes and centrifuged for 5 min at 10,000×g, and the concentrations 

of free dissolved fluorophores were determined fluorometrically as given above. The 

detection limit for the concentration of free fluorophores was estimated using this new 

approach.  

Each enzyme measurement generated a large amount of raw data and to make 

the most effective use of this for comparisons between samples, a standardized way of 

processing data was established. A calibration curve was concentrated to convert the 

resulting rates (in relative units of fluorescence cm
-3 

h
-1

) into nM of fluorescence cm
-3

 

h
-1

 according to the specific standard. Vmax and Km were empirically estimated values 

obtained by fitting the experimental data to the Michaelis-Menten equation. Then, the 

maximum enzyme activity, Vmax (nM cm
-3

 soil h
-1

), and Km + Sn (the sum of the half 

saturation constant plus the concentration of natural substrate [μM]) were estimated: 

Equation 4.6  A
VV

SK

A

tA nm

h y d r o l

i n c 





m a xm a x

1
     

Here, tinc is the incubation time (in hours) and Ahydrol is the concentration of 

substrate analogue enzymatically hydrolyzed during the incubation; A denotes the 

total concentration of substrate analogue added. 

RESULTS AND DISCUSSION 

Adsorption Kinetics 

The adsorption of both fluorophores MUF and MCA began to reach saturation 
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after 2 h of incubation (Fig. 4.1A and B). Thus the incubation time necessary for the 

fluorophores, MUF and MCA with initial concentrations of 40 and 10 μM 

respectively, to reach equilibrium was 2 h. The amount of fluorophore adsorbed in 

biochar-amended soils increased with time and, at some point in time, reached a 

constant value beyond which no additional fluorophores were removed from solution. 

At this point, the amount of fluorophore desorbing from the adsorbent, soil and 

biochar matrix, is in a state of dynamic equilibrium with the amount of fluorophore 

being adsorbed onto the soil and biochar matrix. The time required to attain this state 

of equilibrium was termed the equilibrium time, and the amount of fluorophore 

adsorbed at the equilibrium time reflects the maximum adsorption capacity of the 

adsorbent under those operating conditions. Three consecutive fluorophore transport 

steps should be associated with the adsorption of the fluorophore from solution by the 

adsorbent (Faust and Aly, 1987), soil and biochar particles in our case. First, the 

fluorophore migrates through the solution, i.e., film diffusion, followed by fluorophore 

movement from the particle surface into interior sites by diffusion and finally the 

fluorophore is adsorbed onto the active sites on the surface of soil and biochar 

particles. This phenomenon takes a relatively long contact time. After 2 h of 

incubation, about 54.0% of the MUF and 61.8% of the MCA which had been added to 

the 30 t ha
-1

 biochar-amended soils had disappeared from the solution phase. In 

contrast, only 32.4% of the MUF and 45.9% of the MCA adsorbed to unamended 

control soils (Fig. 4.1). That is, there was 66.7% more of the MUF and 34.6% more of 

the MCA adsorbed to the high biochar-amended soils than those adsorbed to the 

unamended control soils. Thus, the measurement of exoenzyme activities in biochar-

amended soils requires an incubation time of at least 2 h when the major fraction of 

the liberated fluorophores were adsorbed to the soil and biochar matrix concomitant 

with their enzymatic liberation from the substrate analogues.  
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Figure 4.1 Time course of fluorophore adsorption in biochar-amended soil slurries. 
For all four biochar amendment treatments, the adsorption kinetics of MUF (A, 40 
μM) and of MCA (B, 10 μM) are shown. The error bars indicate standard deviations 
(n=3). 

Effect of Concentration of Fluorophores on Adsorption Kinetics 

The proportion of adsorbed fluorophores increased dramatically with increasing 

equilibrium concentrations then decreased gradually as the initial concentration of 

MUF was increased (Fig. 4.2A and B). This can be explained by the fact that all  
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Figure 4.2 Equilibrium adsorption isotherms of MUF (A) and MCA (B) for each 
biochar amending treatment fitted to the Freundlich equation (lines). The error bars 
indicate standard deviations (n=3). 
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Figure 4.3 Concentrations of dissolved fluorophores MUF (A) and MCA (B) in 
biochar-amended soil slurries after 6 h of incubation. The concentrations of free 
fluorophores expected in the absence of adsorption are indicated by the dotted line. 
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biochar-amended soil samples had a limited number of active sites, which would have 

become saturated above a certain concentration. The adsorption capacity for MUF at 

equilibrium increased from 1.42 to 242.26 nmol g
-1

 in unamended soils, from 5.47 to 

782.54 nmol g
-1

 in 30 t ha
-1

 biochar-amended soils with an increase in the initial MUF 

concentration from 5 to 160 μM. Similarly, the adsorption capacity for MCA at 

equilibrium increased from 11.29 to 90.16 nmol g
-1

 in unamended soils, from 18.83 to 

121.63 nmol g
-1

 in 30 t ha
-1

 biochar-amended soils with an increase in the initial MCA 

concentration from 5 to 50 μM (Fig. 4.2A, B).  

It is evident that both the unamended control soils and the biochar-amended soils 

have high capacity to adsorb the fluorophore molecules, MUF and MCA, from 

solution, the process attaining equilibrium gradually. The significantly higher 

adsorption found in high biochar amended soils is likely due to the porous structure of 

the corn stover biochar, which has a high internal surface area that contributes to the 

high hydrophobic attraction (Cheng et al., 2005). In addition, I observed that the 

adsorption of the fluorophores MUF and MCA on biochar-amended soils depended on 

their concentrations in a nonlinear relationship (Fig. 4.2 and 4.3). Therefore, 

equilibrium adsorption isotherms had to be adopted prior to measuring exoenzyme 

activities instead of using a linear correction for adsorption. 

Adsorption Isotherms 

From the adsorption measurements, the corn stover biochar was found to have a 

remarkably high adsorbing capacity for the fluorophores, with an addition rate of 12 or 

30 t biochar ha
-1

 (Fig. 4.2 and 4.3). This characteristic could be attributed to the high 

surface area of the corn stover biochar, similar to the strong adsorption capability of 

other activated carbons for butane, methane and other molecules (Walton et al., 2004). 

Fig. 2 typically shows the adsorption isotherms of fluorophores at room temperature 



 

100 

for different biochar amended soils. Adsorption isotherms were analyzed using two 

well-known isotherm models, Langmuir and Freundlich. The constants were 

calculated for these two models and were given in Table 4.1. Besides the value of r
2
, 

the applicability of both kinetic models were verified through the sum of squares for 

error (SSE, %). The higher the value of r
2
 and the lower the value of SSE, the better 

the goodness of fit will be. By comparing the correlation coefficients (r
2
) and the sum 

of squares for error (SSE, %) (Table 4.1), the Freundlich isotherm equation yielded a 

somewhat better fit than the Langmuir isotherm equation. The adsorptive affinity, K, 

of MUF to the 30 t ha
-1

 biochar treatment was 0.87 ml g
-1

, higher than that to the 0 and 

1 t ha
-1

 biochar treatments. The affinity of the high biochar treatment for MCA was 

18.85, higher than that for MUF. It is important to note that model parameters (Table 

4.1) allow the prediction of adsorption data and can be further used to predict the total 

fluorophore concentration (CT) in soil slurry by using the detectable concentration in 

the equilibrium solution (Ce) (Walton et al., 2004). This is very convenient for use in 

the follow-on enzyme activity assays where the enzymatically released fluorophores 

need to be corrected using the isotherm model. 

Michaelis-Menten Kinetics of the Four Exoenzymes  

For the four exoenzymes, the maximum rates and half saturation constants were 

estimated after correction for adsorption and for background fluorescence of the soils 

(Table 4.2). The activity of alkaline phosphatase could only be determined after 0.5 h 

incubation regardless of the initial concentration of substrate analogue added. Given 

that we added the same series of concentrations of substrate analogue, this could 

indicate that the activity of alkaline phosphatase was significantly higher in all soil 

slurries than that of β-D-glucosidase, β-D-cellobiase and leucine aminopeptidase 

which, in contrast, could be determined after 2 h and 2 h and 8 h respectively.  
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Table 4.1 Constants of the Freundlich and Langmuir equilibrium adsorption isotherms for adsorption of fluorophores 
on different biochar treatments 

Fluorophores 
Biochar added Freundlich Model   Langmuir Model 

(t ha-1) n K r2 SSE   ST C r2 SSE 

 
 
 

MUF 

0 1.398 0.510 0.850 1.745   -10.597 -33.481 0.730 0.362 

1 1.592 0.365 0.912 1.107 
 

-11.901 -32.767 0.553 0.613 

12 1.891 0.367 0.970 0.359 
 

-25.510 -27.940 0.870 0.018 

30 1.739 0.868 0.936 0.678 
 

-33.377 -24.672 0.735 0.023 

           

MCA 

0 0.728 8.677 0.701 0.605 
 

-276.855 -73.262 0.603 0.008 

1 0.723 8.514 0.703 0.585 
 

-237.925 -65.550 0.684 0.005 

12 0.620 16.029 0.821 0.260 
 

643.128 76.609 0.900 0.000 

30 0.588 18.847 0.749 0.380   517.464 53.986 0.717 0.001 

 

 

1
0
1
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Likewise, the fact that the activity of leucine aminopeptidase was obtained even after 

8 h incubation indicated the relatively lower activity of leucine aminopeptidase in all 

soil slurries than that of the other three exoenzymes. 

Alkaline phosphatase in high biochar-amended soils exhibited a Km + Sn of 

244.63 μM, which is about double that in 12 t ha
-1

 biochar treatment, and threefold 

higher than that in the unamended control and 1 t ha
-1

 biochar treatments (Table 4.2). 

Highest alkaline phosphatase activities were detected in the high biochar-amended 

soils, exhibiting a Vmax of 296.13 nmol cm
-3

 h
-1

, which were about threefold higher 

than that in the unamended control and 1 t ha
-1

 biochar treatments.  

Nevertheless, the activities of β-D-glucosidase, β-D-cellobiase were significantly 

higher within the soils amended with no or low biochar than in the soils amended with 

medium or high biochar. In the 12 or 30 t ha
-1

 biochar treatment, β-D-glucosidase 

activity was 3-4 times lower than that in the 0 or 1 t ha
-1

 biochar treatment. The 

activity of β-D-cellobiase followed a similar trend with high activity in unamended 

control and 1 t ha
-1

 biochar-amended soils, and low activity in the 12 and 30 t ha
-1

 

biochar-amended soils. 

Leucine aminopeptidase had the lowest activity of any of the enzymes tested in 

our study, with a mean activity of less than 47, 12 and 3 nmol cm
-3

 h
-1

 detected after 

0.5, 2 and 8 h incubations respectively (Table 4.2). Particularly, in none or low biochar 

amended soils and leucine aminopeptidase activity did not exceed 2.2 nmol cm
-3

 h
-1

 

when the activity was measured after 8 h incubation (Table 4.2). The leucine 

aminopeptidase activity in the 12 and 30 t ha
-1

 biochar-amended soils was about 

double those in 0 and 1 t ha
-1

 biochar-amended soils. Leucine aminopeptidase was not 

significantly affected by the low rate of biochar addition (Table 4.2). However, its 

activity was significantly higher in soils amended with more than12 t ha
-1

. The 
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relatively high aminopeptidase activity was measured after 30 min incubation, and it 

declined rapidly when it was measured after 2 h and 8 h incubation. The incubation 

time significantly influenced the activity assay. Interestingly, even though the 

exoenzyme activity assay did not remain constant using different incubation times, a 

consistent trend of exoenzyme activity change with rate biochar added was observed 

(Table 4.2). 

With a detection limit for free fluorophores of 0.01 μM MUF/MCA, the 

minimum detectable alkaline phosphatase activity after correction for adsorption and 

for background fluorescence was below the limit after 2 h incubation. For β-D-

glucosidase and β-D-cellobiase activity, the activity became undetectable after 8 h of 

incubation, while for leucine aminopeptidase, the activity was still detectable after 8 h 

incubation. With this detection limit, no significant activity was determined for 

alkaline phosphatase after 2 h incubation, for β-D-glucosidase and β-D-cellobiase after 

8 h incubation. In the fluorogenic substrate-based method we adopted to determine 

exoenzyme activities in biochar-amended soil slurries, the introduction of substrate 

analogues into the soil slurry has been proposed to yield more realistic values of 

enzyme activities (Meyer-Reil, 1986).  
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Table 4.2 Estimate of the half saturation constant, Km + Sn, and of the maximum velocity, Vmax, of the four hydrolytic enzymes 
determined for the different biochar treatments. 

Incubation 
time 

Biochar 
added 
(t ha-1) 

Alkaline phosphatase β-D-Glucosidase β-D-Cellobiosidase 
L-Leucine 

aminopeptidase 

Km+Sn  Vmax  Km+Sn  Vmax  Km+Sn  Vmax  Km+Sn  Vmax  

(μM) (nmol cm-3 h-1) (μM) (nmol cm-3 h-1) (μM) (nmol cm-3 h-1) (μM) (nmol cm-3 h-1) 

 
 
 

30 min 

0 50.36 41.40 270.77 152.18 276.49 166.89 70.16 27.19 

1 60.05 45.13 176.96 102.83 316.17 179.71 130.18 38.15 

12 102.20 111.88 52.40 21.44 125.12 38.58 88.68 53.74 

30 244.63 296.13 69.43 28.47 78.08 29.64 97.78 68.81 

          

2 h 

0 ND ND 482.02 102.84 727.79 191.41 45.27 7.94 

1 ND ND 392.05 74.46 458.33 113.84 44.26 7.98 

12 ND ND 115.64 37.45 289.11 62.56 47.52 14.76 

30 ND ND 140.84 38.58 148.22 33.05 43.70 16.18 

          

8 h 

0 ND ND ND ND ND ND 26.42 1.95 

1 ND ND ND ND ND ND 28.23 2.13 

12 ND ND ND ND ND ND 33.60 3.58 

30 ND ND ND ND ND ND 30.25 4.05 

 

1
0
4
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Exoenzymes as Indicators of the Metabolic Potential of Soils 

First, the significantly increased alkaline phosphatase activities found in high 

biochar-amended soils indicated an increase in P use with increasing biochar 

additions. Phosphatases (alkaline or acid) hydrolyze phosphomonoesters and, in some 

cases, phosphodiesters releasing plant available phosphate (Turner et al., 2002; Toor et 

al., 2003). Studies on the relationship between soil available P and phosphatase 

activity have had controversial results. Harrison (1983) concluded that there was a 

positive relationship between soil available P and phosphatase activity. Similarly, 

Garg and Bahl (2008) concluded that phosphatase activity was higher in soil with 

higher Olsen extractable P. With increased inorganic P, the release of phosphatase also 

increased. There is, however, a contradictory evidence from Kiss et al. (1974) who 

described a linear inverse relationship between phosphate concentration in soil 

solution and phosphatase activity. Mccallister et al. (2002) and Leinweber (2008) 

reported that phosphatase activity, although related to P availability, is not a straight 

forward measurement of P status. The stimulation of phosphatase activity is largely 

due to increased microbial numbers in the soils, which, with time, causes a build up of 

enzyme levels (Feder et al., 1973). My finding of an increased phosphatase activity in 

high biochar-amended soils is more likely due to an increased microbial abundance 

(Chapter 2), and therefore, increased enzyme levels in response to biochar addition; or, 

to a shift to autotrophic or mutualistic organisms that obtain needed C by other 

mechanisms. Phosphatase transform P in organic form to an inorganic form, as these 

enzymes are responsible for soil organic phosphorus mineralization and the release of 

inorganic phosphorus needed by microorganisms and plants (Sarapatka, 2003). Thus, 

my results indicated a higher P availability for microbe and plant use due to increased 

phosphatase activity in response to biochar addition. This is consistent with the 

increased available phosphorous in soils enriched with biochar found by Lehmann et 



 

106 
 

al. (2003; 2007b) and Steiner et al. (2007). I suggest that increased phosphatase 

activity could be attributed to the beneficial colonization of bacterial cells and fungal 

hyphae on, in and between biochar particles (Jin and Thies, 2009), whose exoenzyme 

activities release plant available phosphate in the biochar-amended soils. It is also 

likely that the co-location of phosphatase and phosphorous substrates to the biochar 

allows for increased contact of phosphatase with the substrates. Biochar particles are 

porous, they have a high surface area; they provide unique micro-habitats for closely 

associated microorganisms and their substrates in soils. I hypothesize that the enzymes 

produced by soil microorganisms in these protected sites, i.e., biochar particles, did 

not have to diffuse towards sites with high availability of substrates. Therefore, not 

only enzyme producers, but also soil protozoa and other animals that do not produce 

any extracellular enzymes, could profit from hydrolysis of organic P containing 

compounds (Allison, 2006). 

Second, the 12 and 30 t ha
-1

 biochar-amended soils exhibited lower rates of β-D-

glucosidase and β-D-cellobiase activity than the low or no biochar-amended soils. 

Since glucose and cellulose are liberated by β-glucosidase and β-cellobiase, 

respectively, this finding showed that the introduction of biochar into soils 

significantly reduced β-D-glucosidase and β-D-cellobiase activity, possibly explaining 

the reduced C mineralization in soils amended with high rates of biochar found by my 

earlier study (Chapter 2) and others (Spokas et al., 2009; Liang et al., 2010). The 

reduction of β-D-glucosidase and β-D-cellobiase activity in soils amended with high 

rates of biochar could reflect a lower need for their corresponding products, glucose 

and cellulose. This could be due to the increased access of available C to microbes by 

co-locating microbes and complex C substrates on biochar particles. Another possible 

reasoning might be that the recalcitrance of biochar is unlikely a C source to meet 

microbial C needs, rather, an alternative mechanism of assimilating C could occur in 
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biochar-amended soils (e.g., symbionts obtaining C from their host or trapping 

respired CO2 to form carbonate as an alternative C source). I suggest that the 

decreased C mineralization in biochar-enriched soils contributes to the observed long-

term preservation of labile C and high levels of SOM retained in other soils with high 

black carbon contents (e.g., terra preta soils of Brazil) (Solomon et al., 2007; Liang et 

al., 2010).  

Third, aminopeptidases catalyze the cleavage of amino acids from polypeptide 

substrates. There are other classes of aminopeptidases in addition to leucine 

aminopeptidase, but assays of environmental samples generally show the greatest 

activities towards leucine- and alanine-linked substrates, so leucine aminopeptidase 

activity is used broadly as an indicator of peptidase potential and organic N acquisition 

activity from amino acids (Stursova et al., 2006). In this study, N acquisition activity 

from peptide degradation evidenced by an increase in aminopeptidase activity, 

increased with increases in the rate of biochar applied originally to the soil. I suggest 

here that the increased N use is likely due to an increase in microbial abundance 

(Chapter 2), thus, an increase in aminopeptidase production. This would result in an 

increase in the breakdown of N-rich substrates, but not necessarily due to increased 

degradation of crop residues or litters, which contain a high proportion of low-N 

constituents, such as glucose and cellulose. The increased degradation of N-containing 

compounds could increase the available N supply to microbes and plants in response 

to biochar addition. 

CONCLUSIONS 

Taken together, these results indicate that phosphate and peptide decomposition 

were induced by high rates of biochar amendment, while glucose and cellulose 

breakdown were not. These results suggest that biochar amendment increases the need 
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for microbial P and N acquisition relative to C acquisition. The high adsorption 

capacity of biochar for structurally different substrates, enzymes or other compounds, 

and the decreased activity of C mineralizing enzymes likely contribute to the observed 

long-term preservation of labile C in biochar-amended soils. However, whether our 

finding of increased microbial P and N needs relative to C need in response to biochar 

soil amendment is due to (1) the increased presence of mutualists who receive C from 

their hosts but have metabolic needs for nutrients other than C; or, (2) fewer 

exoenzymes associated with C cycling produced; or, (3) the adsorption of these 

exoenzymes on biochar and their resultant inactivation remains unknown. Thus, 

further investigation on the functional state of microorganisms and the interaction of 

exoenzymes and biochar in soils amended with high rates of biochar is needed to 

verify our findings. 
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CHAPTER 5                                                                             

ALKALINE PHOSPHATASE AND β-D-GLUCURONIDASE ARE ACTIVE ON 

BIOCHAR PARTICLES FROM AMENDED SOILS 

ABSTRACT 

We localized the presence of active alkaline phosphatase and β-D-glucuronidase 

on biochar particles from biochar-amended soil slurries using ELF (Enzyme-Labeled 

Fluorescence), a high-resolution, fluorescence-based enzyme imaging method. 

Unamended field soils were collected from experimental fields in Aurora, NY. Corn 

stover biochar was added to the field soils at 0.2% (g g
-1

) or left unamended. Soils 

were incubated for four weeks on benches in a glasshouse prior to subsampling and 

analysis. Use of this protocol allowed us to observe the presence of exoenzymes and 

quantify their activity in sampled soils. We determined the kinetics of ELFA 

precipitation in biochar-amended and unamended soils over time and in relation to 

varying concentrations of initial substrate added. In addition, the suitability of ELF 97 

phosphate (ELF-P) and ELF 97 β-D-glucuronide (ELF-G) for measuring exoenzyme 

activities in biochar-amended soils was tested by comparing the ELF results to 

classical measurements of bulk alkaline phosphatase activity using the fluorogenic 

substrates, 4-methylumbelliferyl phosphate (MUF-P) and 4-methylumbelliferyl-β-D-

glucuronide (MUF-G). We observed activities of alkaline phosphatase and β-D-

glucuronidase in both control and biochar-amended soil slurries, with the highest 

activity observed on the surfaces of the biochar particles. Biochar is a strong 

adsorbent, thus it is likely that either the substrates or the enzymes or both are being 

adsorbed on the biochar. The time-course of ELFA formation exhibited a lag period 

followed by a finite period of linear increase and then reached a plateau. We 

highlighted very subtle but important differences between the ELF and MUF methods 
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in determining the alkaline phosphatase and β-D-glucuronidase activities in biochar-

amended soils. Both ELF-P and MUF-P hydrolysis rates increased with increasing 

concentrations of added substrates (ELF-P and MUF-P, respectively) with the 

exception of MUF-P hydrolysis rates in biochar-amended soil slurries at high initial 

MUF-P concentrations. The use of the ELF method allowed us to detect increased 

activity of alkaline phosphatase, but decreased activity of β-D-glucuronidase when the 

soil slurries contained biochar. The MUF method tended to underestimate the activity 

of alkaline phosphatase and β-D-glucuronidase in biochar-amended soil slurries when 

the initial MUF-P concentration was high. A correction strategy is needed when using 

a spectrofluorometric approach, such as MUF, to calculate exoenzyme activities, 

especially in strongly sorbing samples, such as those containing biochar. 

INTRODUCTION 

Intensive studies have been done on the use of biochar as a soil amendment 

strategy for improving soil health and better using natural resources (Thies and 

Suzuki, 2003; Young et al., 2005; Lehmann, 2007; Lehmann et al., 2007; Rondon et 

al., 2007; Laird, 2008; Thies and Rillig, 2009). Despite the potential for biochar to 

enhance soil fertilizer use efficiency, increase agricultural productivity and ecosystem 

stability (Asai et al., 2009; Bruun et al., 2009; Lehmann et al., 2009; Novak et al., 

2009), surprisingly little is known about its effects on soil ecology, particularly on soil 

exoenzyme activities, which contribute substantially to the decomposition and nutrient 

cycling of complex substrates and associated nutrient elements (Gil-Sotres et al., 2005; 

Rejmánková and Sirova, 2007; Kuzyakov et al., 2009). Identifying the mechanisms 

involved in any changes in soil exoenzyme activity caused by amending soils with 

biochar may lead to a better understanding of any functional changes in the soil 

microbial community and associated nutrient transformation processes in response to 
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biochar soil amendment (Schimel and Weintraub, 2003; Allison and Vitousek, 2005; 

Enowashu et al., 2009). However, the heterogeneity of soil coupled with the strong 

adsorptive capacity of biochar for water, nutrients (Jackson and Barak, 2005; 

Amonette and Joseph, 2009), and even the microorganisms themselves (Jin and Thies, 

2009), ensures that this will not be an easy task.   

Reactions catalyzed by exoenzymes may be affected markedly by the adsorptive 

capacity of biochar. Enzymes sorbed to biochar surfaces may lose their catalytic 

activity or increase their efficiency if substrates are also sorbed and accessible. This is 

further complicated by findings that some microorganisms have the ability to access 

soil-adsorbed substrates directly and degrade them in the sorbed state (Feng et al., 

2000; Park et al., 2002). Similarly, this suggests that bioavailability of adsorbed 

substrates is affected not only by their sorption but also by the characteristics of the 

exoenzymes or microbial cells in question. 

Adapting techniques for use in localizing alkaline phosphatase and β-D-

glucuronidase in biochar-amended soil slurries was a challenge. The presence of the 

exoenzymes phosphatase and β-glucuronidase in biochar-amended soils was 

determined using ELF technology, where weakly blue-fluorescent substrates form a 

bright yellow fluorescent precipitate upon enzymatic cleavage right at the site of 

activity (Nielsen et al., 2002; Kragelund et al., 2005; Kragelund et al., 2008). One of 

the greatest strengths of the ELF technology is that it allows us to directly mark the 

sites of enzyme action. The other remarkable strength of the ELF technology is that 

the high intensity and photo-stability of ELF alcohol precipitates overcome most of 

the difficulties associated with background autofluorescence from cells (Cox and 

Singer, 1999; Štrojsivá and Vrba, 2006; Štrojsová and Vrba, 2007). Other molecular 

methods, such as fluorescent in situ hybridization or immuno-fluorescence, require 
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many reaction steps. A biochemical indicator, such as the enzyme assay approach, is 

very straightforward and convenient, and comprises only one reaction step and a short 

staining time compared to immuno-labeling. In the ELF method, the novel soluble 

substrates, ELF 97 phosphate (ELF-P) and ELF 97 β-D-glucuronide (ELF-G) are 

available commercially. Upon hydrolysis by the corresponding enzyme, phosphatase 

and β-D-glucuronidase, respectively, the non-fluorescent substrate converts to 

fluorescent ELF 97 alcohol (ELFA), which is water-insoluble and forms a yellow-

green precipitate at the site of enzymatic activity (González-Gil et al., 1998; Xia et al., 

2008), thus allowing for cellular or subcellular localization of the exoenzyme activity. 

The products of enzymatic cleavage can be counted for the intensity of ELFA positive 

dots or screened for the presence of ELFA fluorescence using epifluorescence 

(González-Gil et al., 1998) or confocal (Dyhrman and Palenik, 1999) microscopy. 

Most frequently, the ELF method has been used to determine nutrient status in aquatic 

ecosystems, but has rarely been used in soils (Dyhrman and Palenik, 1999; Rengefors 

et al., 2001; Cao et al., 2005; Van Wambeke et al., 2008). On the other hand, ELFA 

precipitation is a complex process which may not necessarily be linear with time 

(Huang et al., 1992; Van Wambeke et al., 2008). Time-course information on ELFA 

fluorescence development is therefore crucial. Studies on the kinetics of ELFA-

labeling are needed to obtain a linear time-course in product formation, which is 

generally required for reliable interpretation of data in terms of enzyme activities and 

to make sample comparisons more relevant. 

The ability to localize active exoenzymes and microbial cells is important for 

understanding whether the enzymes phosphatase and β-D-glucuronidase are adsorbed 

to the biochar and soil matrix, and whether the adsorbed exoenzymes or cells are still 

active in cleaving substrates. However, no studies have yet been made to visualize the 

exoenzyme activity in situ in soil slurries. I aimed to:  
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(1) Localize the position of active alkaline phosphatase and β-D-glucuronidase 

enzymes in biochar-amended and unamended soil slurries; and 

(2) Estimate changes in the activity of alkaline phosphatase and β-D-glucuronidase in 

response to amending soils with biochar.   

MATERIALS AND METHODS 

Sample Preparation  

Soil was sampled from a corn field located at the Cornell Musgrave Farm, 

Aurora, NY, in April, 2009. This field was on Honeoye Silt Loam and had been in a 

corn-alfalfa rotation for past last three years. Soils are high-pH glacial tills (pH=8.0), 

and are representative of the highly productive soils of New York (with 3.0% organic 

matter). The sampled soil was air-dried and sieved through a 3 mm mesh screen. Then, 

part of the soil was mixed with corn stover biochar particles (BEST Energies, Inc., 

Somersby, NSW, Australia) at a rate of 0.2% (g g
-1

), the remaining soil was left 

unamended. Pots (18 cm deep and 12 cm diam) were filled with unamended soil or the 

soil/biochar mixture to a weight of about 600 g. The bottoms of the pots were covered 

by nylon nets to allow drainage. Three replicates were set for each treatment. Two to 

three corn (Hybrid M1821, Cornell University) seedlings were transferred into each 

pot. Each pot was moistened and incubated in a glasshouse at Cornell University 

(Ithaca, NY, USA) where a 14 h photoperiod per 24 h was maintained. Temperatures 

were 20°C during the light phase and 18°C when dark, plants were grown for four 

weeks. Deionized water was added to each pot as needed during the course of the 

incubation. Three samples were collected from each pot with a sterile spatula in early 

May, 2009, and composited. The samples were transported to the laboratory 

immediately after sampling. Slurries were prepared from the soil samples by adding 

60 ml distilled water to 3 g soil. 
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ELF Enzyme Assays 

The ELF protocol was used to detect and localize ELFA-labeling of alkaline 

phosphatase and β-D-glucuronidase activity as described previously by Štrousiva and 

Vrba (2007). Each substrate (ELF-G: 2 mM; ELF-P: 5 mM, Invitrogen, Carlsbad, CA) 

was diluted with detection buffer to obtain concentrations of 50, 125, 312.5, 625, and 

1000 μM and filtered through a 0.2 μm membrane filter. Four microliters of the 

filtered solutions were added, individually, to 50 μl of soil slurry in Eppendorf tubes, 

which yielded initial concentrations of 4, 10, 25, 50, and 80 μM of substrate, 

respectively. The experiment was run in triplicate for each initial substrate 

concentration and soil/enzyme combination. Incubation times were 0.3, 0.5, 1.0, 1.5, 

2.0, 2.5, 3.0, 4.0, 6.0 and 8.0 h for the initial substrate concentration of 10 μM for each 

substrate to determine an optimal incubation time that avoided insufficient ELFA 

labeling or over-ELFA labeling of background particles. The samples were incubated 

at 17°C (the in situ temperature) for the incubation times given above. The incubation 

was terminated by adding 10 μl, 0.45 M phosphate-buffered saline (pH 6), containing 

formaldehyde solution (4% final concentration), to the reaction slurry. Five μl of the 

sample mix was spread out on a glass microscope slide and the characteristic patterns 

of ELFA labeling were visualized to localize the enzyme activity using a fluorescence 

microscope (Olympus BX61, Lombard, IL, USA) in the Life Sciences Core 

Laboratories Center, Cornell University, Ithaca, NY. The MetaMorph software 

package (Universal Imaging Corporation, Downingtown, PA, USA) was used to 

control image acquisition, processing and analysis. Enzyme hydrolysis of the ELF 

substrates results in the formation of a brightly fluorescent precipitate of ELFA where 

enzyme activity has occurred. I documented the locations and characteristic patterns of 

ELFA labeling by use of a digital camera (Olympus, Center Valley, PA) mounted onto 

the microscope and connected to a PC-based image analysis system (MetaMorph) [for 

http://www.brc.cornell.edu/brcinfo/?p=metamorph
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a detailed description see Nedoma et al. (2003)]; and counted the ELFA precipitate 

dots (total number of ELFA precipitate dots= number of ELFA precipitate dots per 

slide×average of 200 views) for each soil/substrate combination at each incubation 

time. 

MUF Enzyme Assays 

Alkaline phosphatase and β-D-glucuronidase in sample soils were assayed 

fluorometrically using the substrates, 4-methylumbelliferyl phosphate (MUF-P, 

Sigma, St. Louis, MO) and 4-methylumbelliferyl- β-D-glucuronide (MUF-G, Gold 

Biotechnology, St. Louis, MO), according to the method described by Max et al. 

(2005). Sample suspensions were prepared by adding 5 g (ODW) soil in 40 ml of 50 

mM, pH 5.0, acetate buffer and homogenizing for 1 min. Duplicate 4 ml aliquots of 

the soil slurry were transferred to autoclaved 10 ml serum vials containing stirring 

bars. The enzymatic reaction was started by adding 1 ml of substrate analogue solution 

to each slurry to yield final concentrations of 4, 10, 25, 50, and 80 μM for each 

substrate. Ten incubation time intervals were set, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 

6.0 and 8.0 h. During incubation, all slurries were stirred at 200 rpm and incubated at a 

temperature of 17°C (the in situ temperature) for the incubation times given above. To 

measure the fluorescence caused by compounds coextracted from the soils, control 

and biochar-amended soils were incubated with no substrate added. Following 

incubation, samples were transferred to microcentrifuge tubes and centrifuged for 5 

min at 10,000×g to remove soil and biochar particles, and 0.1 ml of 1.0 M NaOH was 

added to the soil-free supernatant to halt enzymatic activity and facilitate fluorescence 

detection. The concentrations of free dissolved fluorophores were determined by a 

SLM 8000 spectrofluorometer (Olis, Bogart, GA, USA) at an excitation wavelength of 

370 nm and an emission wavelength of 450 nm. MUF standards in methanol at 
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concentrations of 0.1 to 0.7 μM were used for calibration and final calculations. 

RESULTS 

Localization of Enzyme Activities 

We observed the activities of alkaline phosphatase and β-D-glucuronidase in 

biochar-amended soil slurries, particularly on the surfaces of biochar particles (Fig. 

5.1A, B, D, E, I). Moreover, both enzymes investigated were also observed in the 

unamended soil slurries (Fig. 5.1C, F), where the soil particles were not always as 

recognizable as the biochar particles. Alkaline phosphatase activity was detected in 

both biochar-amended and unamended soil slurries. In addition, ELFA labeling was 

reproducible in both biochar-amended and unamended soil samples. Alkaline 

phosphatase activity was localized predominatly in association with biochar particle 

surfaces. This indicates that the alkaline phosphatase enzymatic reaction was most 

likely occurring in biofilms covering the biochar particle surfaces, or, directly on the 

biochar surface. Either the substrates or the enzymes or both are likely being adsorbed 

onto the biochar particles or are being held in the biofilm. In the control unamended 

samples, both alkaline phosphatase and β-D-glucuronidase activity were rarely 

detected (Fig. 5.1C, F). 
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Figure 5.1 Enzyme activity on biochar particles in biochar-amended soils visualized 
by fluorescence microscopy. The images were taken by use of MetaMorph software. 
Scale bars for the respective fluorescence images are located at the bottom of the 
image. The bright dots in panels A, B, C, D, E, F, I indicate fluorescence of ELF 
alcohol precipitates (enzyme activity sites). The green color in panel H indicates 
fluorescence of ELF alcohol precipitates, which were obtained by overlaying the 
image using transmission shutter G and the image using the fluorescence shutter. 
Figures 1A-C show alkaline phosphatase activity sites: (A) bright-field image of 
alkaline phosphatase activity sites in biochar-amended soil slurries after incubating for 
3 h; (B) bright-field image of alkaline phosphatase activity sites in biochar-amended 
soil slurries after incubating 4 h; (C) bright-field image of phosphatase activity sites in 
control soil slurries after incubating 2 h. Figure 1D, E, F localization of β-D-
glucuronidase activity sites: (D) β-D-glucuronidase activity sites in biochar-amended 
soil slurries after incubating 3 h; (E) β-D-glucuronidase activity sites in biochar-
amended soil slurries after incubating 4 h; (F) β-D-glucuronidase activity sites in 
control soil slurries after 4 h incubation. Panel G contains a fungal hypha colonizing 
biochar. Panel 1H shows the phosphatase sites demonstrated in green color using 
overlaying panel G with the fluorescence shutter. Panel 1I shows a fungal hypha 
colonizing biochar with bright field of phosphatase activity sites in the 
mycorhizosphere (surrounding biofilm). 

http://www.brc.cornell.edu/brcinfo/?p=metamorph


 

124 
 

Time Course of ELFA Labeling 

Time-courses of ELFA formation exhibited a lag period followed by a finite 

period of linear increase and plateaued or decreased thereafter (Fig. 5.2A, B). The 

intensity of ELFA labeling in the soil slurries varied with incubation time. Incubations 

of <1.5 h were insufficient in most cases for detecting ELFA labeling. Incubations >6 

h led to an increase in ELFA-labeled background particles that impeded proper 

localization of the enzymes in the biochar-amended soil slurries. Phosphatase and β-

D-glucuronidase activities in the biochar-amended soils were detected primarily on the 

biochar particle surfaces (Fig. 5.1). No significant ELFA labeling was measured in the 

substrate minus controls. For both substrates, ELF-P and ELF-G, ELFA formation 

reached a maximum after about 6 h incubation. 

For phosphatase activity, the intensity of positive ELFA-labeling in control soil 

slurries was low after 1.5 h incubation but increased with longer incubation times. In 

contrast, the intensity of positive ELFA-labeling in the biochar-amended soil slurries 

was higher than in control soil slurries after 1.5 h incubation but did not increase 

significantly in the following 2 h incubation (Fig. 5.2A). 



 

125 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 (A) Increased phosphatase activity and (B) β-D-glucuronidase activity in biochar-amended compared to 
unamended soil. Error bars represent ± standard deviation (n=3). 
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Time development of ELFA labeling varied similarly for β-D-glucuronidase 

activity, which was detected in all treatments (Fig. 5.2B). Control treatments had a 

lower intensity of enzyme-positive ELFA dots after the 1.5 h incubation, whereas 

higher intensity was observed after the 2 and 3 h incubations. Biochar-amended soil 

slurries had a different time course of ELFA labeling compared to that of the 

unamended treatments (Fig. 5.2B) in that biochar-amended soils had a faster increase 

during the linear phase of ELFA labeling than in control soil slurries. After 6 h 

incubation, β-D-glucuronidase positive ELFA labeling declined in biochar-amended 

soil slurries; a higher intensity of ELFA labeling was observed on biochar and/or soil 

particles than was free in the solution.  

Comparison of Time Courses for ELF and MUF Formation 

Similar kinetics of MUF formation over incubation time were observed in both 

biochar-amended and control soil slurries (Fig. 5.3A, B). Time-courses of MUF 

formation also exhibited lag periods when the change in MUF fluorescence was small 

or none, followed by periods of linear increases. Incubations of <1 h were, in most 

cases, insufficient to detect released MUF. We did not find a significantly different 

trend in MUF formation between the control and biochar-amended soil slurries within 

the first 3 h of incubation. After 4 h incubation, we found significantly higher MUF 

formation in the control soil slurry than in the biochar-amended soil slurry (Fig. 5.3A, 

B) and for longer incubation times (>4 h), the formation of MUF tended to be steady. 

This indicates that the substrate hydrolysis rates can be determined between 1.5-4 h 

incubations, e.g., the period of linear increase.
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Figure 5.3 Increases in enzymatically released MUF over time for (A) phosphatase activity and (B) β-D-glucuronidase activity. 
Error bars represent ±standard deviation (n=3).
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Phosphatase activity could not be reliably detected in biochar-amended soils 

using MUF-P as a substrate as no detectable increase in fluorescence occurred in the 3 

h after MUF-P was added (Fig. 5.3A). In contrast, time courses of MUF formation 

were easily measured in control soils across incubation times (Fig. 5.3A). Time-

courses of MUF formation resembled those measured for ELFA formation using the 

ELF method. Lag periods varied from 0 to 60 min (Fig. 5.2A and 5.3A). Periods of 

linear increase lasted 60-120 min (Fig. 5.2A and 5.3A). 

ELF-based Alkaline Phosphatase and β-D-glucuronidase Activity Assays 

The results of time course development of ELF labeling confirmed that 1.5-4 h 

incubation was generally sufficient to optimize ELFA labeling. Several incubation 

times, between 0.5 and 6 h, were used. Usually, no ELFA labeling developed in 

incubations <1.5 h; whereas, incubations >4 h led to an increase in ELFA-labeled 

background particles, which prevented proper localization of the enzyme activities in 

the soil slurries. Thus, we set the incubation time from 2 to 4 h in the linear increase 

phase and varied the concentration of initial substrates added. At each initial 

concentration of added substrate, the slope of the increase during the linear phase was 

used to calculate the ELF-P and ELF-G hydrolysis rates. 

We found the exoenzyme hydrolysis rates varied with different initial 

concentrations of added substrates. Both ELF-P and ELF-G hydrolysis rates showed 

slightly increasing trends with the increasing concentration of added ELF-P and ELF-

G, respectively. Variation around each curve was rather large, suggesting high 

variability from one sample to another. The range of concentrations tested was not 

always sufficient to obtain maximum hydrolysis rates (Nedoma and Vrba, 2006).  

When initial concentrations of added ELF-P were larger than 25 μM, the ELF-P 

hydrolysis rates in both treatments were similiar (See solid lines in Fig. 5.4); whereas, 
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ELF-G hydrolysis rates were significantly higher in biochar-amended soils than in 

control soils regardless the initial concentration of ELF-G added. ELF-based 

exoenzyme β-D-glucuronidase activity was relatively stable in biochar-amended soil 

slurries when the initial concentration of added ELF-G ranged between 10-80 μM (See 

solid lines in Fig. 5.5). 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 5.4 Enzyme activity curves showing the effect of the initial concentration of 
substrate added on ELF-P and MUF-P hydrolysis rates. ELF-P (counts of positive 
ELFA labeling over time) and MUF-P hydrolysis rate (detected by 
spectrofluorometry) were measurable in both biochar-amended and unamended soils. 
Error bars are ±standard deviation (n=3). 
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Figure 5.5 Enzyme activity curves showing the effect of the initial concentration of 
substrate added on ELF-G and MUF-G hydrolysis rates. ELF-G (counts of positive 
ELFA labeling over time) and MUF-G hydrolysis rates (detected by 
spectrofluorometry) were measurable in both biochar and unamended soils. Error bars 
are ±standard deviation (n=3). 

Comparison of ELF-based and MUF-based Assays for Estimating Phosphatase and β-

D-glucuronidase Activity 

We compared phosphatase and β-D-glucuronidase activity measured by use of 

the ELF assay with the commonly used spectrofluorometric method employing 4-

methyllumbelliferyl phosphate (4-MUP; Sigma) and 4-methyllumbelliferyl β-D-

glucuronide, respectively, as the substrates and 4-methyllumbelliferon as the standard.  

Phosphatase activity, calculated from the linear phase, was shown to vary from 

0.1 to 1.7 μM h
-1

 (See dotted lines in Fig. 5.4). The phosphatase activity in biochar-

amended soils obtained using MUF-P as substrate was not consistent with the data 

obtained using ELF-P as substrate. The spectrofluorometric method did not detect any 

increasing trend with the increasing initial substrate concentrations. This was probably 
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due to the underestimation of the MUF being released in biochar-amended soils 

wherein the MUF molecule was likely sorbed strongly on biochar particles (Chapter 

4). A correction strategy will be needed for more accurate spectrofluorometric 

determinations of phosphatase activity, especially in samples that have strong 

adsorption properties, such as biochar. 

The β-D-glucuronidase activity in biochar-amended soils was higher than that in 

the control soils detected using the ELF counting method but when MUF-G was used 

as a substrate in parallel incubations, control soils exhibited higher counts (Fig. 5.5). 

Therefore, the activity of β-D-glucuronidase in biochar-amended soils was 

significantly underestimated using the MUF method. However, for the β-D-

glucuronidase activity in control soils, the effect of substrate concentration on MUF-G 

hydrolysis rate followed a trend similar to that obtained using ELF-G as a substrate. 

Using β-D-glucuronidase ELF-labeling, a much higher hydrolysis rate was 

observed in biochar-amended soil slurries compared to the control soils; however, the 

MUF-based assay yielded much lower MUF-labeling intensity in the biochar-amended 

soils than in the control soils. This suggests that the MUF method underestimated 

MUF-G hydrolysis in the biochar-amended soils.  

DISCUSSION 

Localization of Alkaline Phosphatase and β-D-glucuronidase Activities  

A representative view of the localization of ELFA precipitates on biochar 

particles and across a fungal hypha colonizing biochar particles are shown in Fig. 5.1. 

The microscope image indicated that alkaline phosphatase and β-D-glucuronidase 

activities were localized on biochar particles. This suggests that either the enzymes are 

adsorbed to biochar surfaces while maintaining their catalytic activity; or, substrates 
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are co-located on biochar particles, which increased enzyme access to the substrates. I 

found that both the the alkaline phosphatase and β-D-glucuronidase activities occurred 

mainly on biochar particles, which are also shown to have significant fungal 

colonization. This indicates that biochar surfaces may be the main site of P and C 

transformation via fungal colonization, as has been suggested previously (Warnock et 

al., 2007), in that biochar has a stimulating effect on fungal colonization. Production 

and activity of exoenzymes in the soils is likely community specific, as suggested by 

previous studies on natural populations of plankton, where exoenzyme activities in 

slurries were detected for only a few species (Rengefors et al., 2003; Cao et al., 2005; 

Van Aarle et al., 2007). ELFA labeling in the soil slurries likely results from enzyme 

activity associated with live microbial cells because: (1) microbial cells are colonizing 

biofilms on biochar porous structures; and, (2) the bound cells could be still be 

actively hydrolyzing substrates. The assumption that biochar is a good habitat for 

microbes was confirmed by the high intensity of ELFA labeling found particularly on 

biochar particles in the majority of experiments. Most frequently, the ELF method has 

been used to localize exoenzyme activity in aquatic ecosystems or plant tissues or 

fungi in pure culture, but has rarely been used in soils (Dyhrman and Palenik, 1999; 

Rengefors et al., 2001; Van Aarle et al., 2002; Cao et al., 2005; Van Wambeke et al., 

2008). My study showed that it is also possible to use the ELF method to visualize the 

exoenzyme activity in situ in soil slurries and on biochar particles.  

Effect of Biochar on Alkaline Phosphatase and β-D-glucuronidase Activities 

We detected alkaline phosphatase and β-D-glucuronidase activity in unamended 

control and biochar-amended soils, particularly on biochar particles, but less observed 

activity in the unamended soils. Changes in ELFA spot abundances over time in the 

incubations for both ELF-P and ELF-G hydrolysis confirmed the presence of lag, 
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linear and plateau phases that were apparent in both biochar-amended and unamended 

soils (Fig. 5.2A, B). This lag time was also reported for freshwater phytoplankton 

samples (Nedoma et al., 2003; Dignum et al., 2004; Duhamel et al., 2009). 

The role of enzyme activity, particularly phosphatase activity in soil slurries has 

been well studied (Sardans et al., 2008; Ge et al., 2009) and the enzymes are produced 

under particular stimulating conditions, such as when P supply is limited. Pioneering 

studies showed microorganisms can change their enzyme-secreting behavior under 

different conditions (Nannipieri et al., 2002; Schimel and Weintraub, 2003). In the 

present case, for the assay on phosphatase activity, I showed that ELFA labeling was 

higher in biochar-amended soil slurries than that in unamended soil slurries. This 

suggests that, in response to adding fresh biochar to soil, (1) microbial demand for P 

increased or, (2) soil P availability became more limiting during the four week 

incubation, or a combination thereof. A fungal hypha colonizing biochar was observed 

to have a cloud of active phosphatase activity sites in the biofilm surrounding it, 

suggesting that demand for P may be increased in the biochar surface environment and 

that biochar had a stimulating effect on fungal colonization as suggested by Warnock 

et al. (2007). Furthermore, the ELF-based β-D-glucuronidase activity was significantly 

increased in biochar-amended soils. This suggests that biochar amendment increased 

microbial demand for simple carbon and nitrogen containing substrates. Soil enzyme 

analyses to detect alkaline phosphatase and β-D-glucuronidase activity provided 

information about the nutrient status of the environment and the increased microbial 

nutrient demand with respect to inorganic phosphate and labile carbon and nitrogen in 

response to amending soil with biochar. 

Considering the different initial substrate concentrations, it is important to say 

that there were no fundamental differences in the two exoenzyme activities in 
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response to biochar addition. With respect to initial substrate concentrations, there 

were changes in the enzyme activities. This observation supports the supposition that 

microbes adapt to different levels of substrates during their growth by changing the 

number of exoenzymes they produce. In other words, microbial populations 

selectively express substrate-sensitive enzymes in response to the metabolic demand 

for nutrients relative to their availability in the soil solution. 

The range of initial substrate concentrations (5-80 μM) tested was not always 

sufficient to reach maximum hydrolysis rates, or multiphasic kinetics were present 

(Hoppe, 2003; Nedoma and Vrba, 2006; Kim et al., 2007; Senjarini et al., 2009). In 

the MUF-based assay, longer incubation times did not result in higher intensities of 

MUF released in the biochar–amended soil slurries. On the other hand, the intensity of 

MUF released in the control soil slurries increased with longer incubation times. The 

decrease in MUF detectable over time in the biochar-amended soil slurry was most 

likely due to a lower equlibrium concentration of MUF in the solution phase due to the 

strong adsorptive properties of biochar.  

ELF-based vs. MUF-based Enzyme Activity Assays  

In this study, alkaline phosphatase and β-D-glucuronidase activities were 

determined by both conventional (MUF-based) and a new in situ technique (ELF-

based). However, the results from the two methods were not consistent with each 

other, particulary for the β-D-glucuronidase assay (Fig. 5.3). This is likely due to the 

different limitations of the two methods. I found that the MUF method tended to 

underestimate enzyme activities likely due to adsorption of the fluorophores to 

biochar, thus lowering their extraction efficiency. In the ELF-based method, enzyme 

activity sites may become covered by either biochar particles or soil constituents and 

thus remain uncounted in the two-dimentional view. But, because the ELF-based 



 

135 
 

method showed enzyme activities to mainly be distributed on the surface of biochar, 

the frequency of the accessible activity sites on biochar particles represents an 

approximation of the overall changes in enzyme activity in the presence of biochar. 

Van Aarle and Plassard (2010) quantified phosphatase activity of an ectomycorrhizal 

fungus in association with its host plant. Their results showed the vast majority of 

phosphatase activity was detected on the surface-bound to plant roots. This is 

consistent with my finding that enzyme activities are mainly distributed on the surface 

of biochar. 

In contrast to previous studies (Dignum et al., 2004; Van Wambeke et al., 2008), 

the sample slurries were not concentrated prior to the enzyme assay, which was an 

improvement in the present work. The concentration step was necessary in the 

previous studies to obtain a sufficiently high concentration of the enzyme targeted for 

ELFA labeling in the slurry sample; however, this could affect enzyme-secreting 

behavior because both some classes of phosphatase and β-D-glucuronidase are 

inducible and their activity can be discouraged in the presence of high substrate 

concentrations. Surprisingly, in our study, the enzyme activity in soil slurry samples 

was sufficiently high for ELFA-labeling to occur without a pre-concentration step. 

Many tools for assessing soil exoenzyme activities have been used (Gerlach et al., 

2006; Vahl et al., 2008; Creamer et al., 2009), but most of these standard methods are 

likely to be limited by the strong adsorption of extractants to biochar and soil. The 

ELF technique does not have these limitations. My results showed that the ELF 

method is suitable for the direct localization and detection of soil exoenzymes and 

offers new possibilities for further research on the fate of biochar added to soils. 
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CONCLUSIONS 

Alkaline phosphatase and β-D-glucuronidase were active in biochar-amended 

soils, particularly, on the biochar particles. There is a need for more research on the 

available P, labile C and physiological conditions in biochar-amended and unamended 

soils. This will allow us to link enzyme activities more closely with substrate 

availability in response to biochar amendment. I found an increase in microbial P and 

C demand in biochar-amended soil using the ELF-based approach. Apparent P 

demand was high, relative to C demand, when cell requirements for C relative to P are 

considered. Yet, the higher β-D-glucuronidase activity observed in this study was not 

consistent with the findings on enzyme activities reported in Chapter 4. This is most 

likely related to the fact that the current experiment was carried out using fresh instead 

of aged biochar and incubated for only four weeks in a glasshouse. Fresh biochar will 

likely stimulate the activity of C mineralizing exoenzymes in the first few weeks after 

being added to soil as any bio-oils deposited on the biochar surface during pyrolysis 

are metabolized. Changes in enzyme activities as biochar ages in soil deserve further 

investigation. We also found that the classical measurements of exoenzyme activity 

based on MUF analysis and ELF-based analysis have their strengths and limitations. 

Thus, we suggest that it may be possible to use the MUF-based protocol, if it is 

corrected for the effect of biochar adsorption of the fluorophores on activities 

measured. Use of the ELF-based protocol is best to localize in situ enzyme activity, 

especially in samples containing adsorbents. 
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CHAPTER 6                                                              

MOLECULAR CHARACTERIZATION AND IDENTIFICATION OF FUNGAL 

COMMUNITIES COLONIZING BIOCHAR-AMENDED SOILS 

ABSTRACT  

We examined fungal communities living in close association with biochar 

particles in biochar-amended soils. Soils sampled from a corn field at the Cornell 

Musgrave Farm, Aurora, NY, were mixed with corn stover biochar particles at a rate 

of 0.2% (g g
-1

), and incubated in a glasshouse for four weeks. Under a scanning 

electron microscope (SEM), microorganisms were observed to form biofilms with 

diverse, visible structures. Bacterial cocci and bacilli and thread-like fungal hyphae 

were visible either on or in the biochar porous structure. Cloning and sequencing of 

the fungal ITS region amplified from soil community DNA extracted from biochar-

amended soil samples revealed the presence of a complex fungal community. Clones 

were assigned to 19 classes and 8 phyla with high sequence similarity (average > 

95%) to known sequences in the NCBI database; in addition, there was a substantial 

number of unidentified fungal clones. Over 70% of the sequences obtained were 

classified as Ascomycota, Basidiomycota or Zygomycota. However, the relative gene 

frequency of the main phylotypes detected differed between biochar-amended and 

unamended soils; with a less genetically diverse community found in the biochar-

amended soils. Biochar-amended soils had 98.8% more fungi classified as 

Zygomycota and nine-fold more unidentified fungal clones, while also having 31.2% 

lower abundance of Basidiomycota and 37.2% lower abundance of Ascomycota than 

unamended control soils. Lack of available carbon in and around biochar particles may 

be discouraging colonization by higher order saprophytic fungi. These findings 

suggest that fungal communities living in association with biochar are likely 
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functionally as well as taxonomically different from those dominating in unamended 

soil. Changes we observed in the structure of fungal populations in biochar-amended 

soils may help to explain the observed long-term preservation of C in other soils high 

in black carbon (e.g., Terra Preta soils of Brazil). How observed changes in fungal 

communities may alter soil function needs further study.  

INTRODUCTION 

Soil microbial community response to biochar amendment is an area of active 

study (Steiner et al., 2004; Warnock et al., 2007; O'Neill et al., 2009; Thies and Rillig, 

2009). Fungal communities, in particular, appear to be influenced strongly by the 

presence of biochar in soil (Chapter 3). Soil is a complex environment in which 

biological activity is governed primarily by microorganisms. The microbial 

community in soil is normally very complex. It consists of hydrolytic, fermenting, 

respiring and syntrophic microorganisms that have diverse functions in organic matter 

turnover and nutrient transformations (Nannipieri et al., 2003). The beneficial effects 

of soil microorganisms, particularly fungi, include decomposition of organic matter 

and agrochemicals, and enhancing the bioavailability of nitrates, sulfates, phosphates 

and essential metals; thus, the activities of soil fungi are fundamental to proper 

functioning of the soil ecosystem (Rillig and Mummey, 2006; Paul, 2007). Knowledge 

of the structural interactions of fungi with biochar and changes induced in fungal 

communities by the presence of biochar are needed to better understand the how 

fungal roles might change in biochar-amended soils and how this might influence 

important soil functions. 

Biochar-induced changes in organic matter turnover, nutrient transformations, 

carbon (C) sequestration and greenhouse gas (GHG) emissions are accompanied by 

clear changes in the microbial community composition and activity (Chapter 2-5). 
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Amending soils with biochar results in changes in soil nutrient availability (Glaser et 

al., 2002; Lehmann et al., 2003), cation exchange capacity (CEC, Liang et al., 2006) 

and C retention. It also enhances nitrogen fixation (Rondon et al., 2007) and 

mycorrhizal associations (Warnock et al., 2007) and engenders gross changes in 

bacterial and fungal communities (Chapter 3). Several factors could influence fungal 

species diversity in biochar-amended soils, as species differ in sensitivity to 

environmental factors such as pH, mineral solubility, soil moisture and organic matter 

content, or predation (Toberman et al., 2008; Rousk et al., 2009; Pena et al., 2010; 

Theuerl and Buscot, 2010).  

Biochar particles have an extremely high surface area, a highly aromatic, 

recalcitrant structure, and their surfaces undergo decomposition and oxidation slowly 

over time (Lehmann et al., 2009). Some fungi are physiologically adapted to degrade 

carbon-rich, recalcitrant materials (Rinnan and Baath, 2009) and their branching 

morphology may allow them to ramify through the porous structure of biochar thus 

increasing surface nutrient exchange. With its increased surface area and microporous 

structure, biochar itself may serve as an ideal habitat for microbes (Thies and Rillig, 

2009). For filamentous fungi, both mycelial growth and sporulation could be 

stimulated by adding biochar to soil. Plant roots also proliferate in the presence of 

biochar, possibly enhancing the interaction between roots and important fungal 

symbionts, such as arbuscular mycorrhizal fungi (AMF; Warnock et al., 2007).  

Together with differences in soil texture and the resulting effects on soil moisture, the 

distinct spatial heterogeneity in the biochar-amended soil may alter microbial 

community composition. The relative abundance of nutrients and the high C:N ratio 

indicate that N dynamics in biochar-amended soil will likely differ significantly from 

those in unamended control soils. Indeed, biochar introduced into soil has been shown 

to increase nitrification and biological nitrogen fixation (Rondon et al., 2007; DeLuca 
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et al., 2009). The presence of biochar and resultant edaphic effects likely change the 

factors driving competition in biochar-amended soil microbial communities. Recently, 

biochar-enriched Anthrosols (terra preta) were characterized by comparative sequence 

analysis of 16S rRNA genes of bacteria cultured from these soils (O'Neill et al., 2009). 

This analysis demonstrated that the Anthrosols contained a higher number of 

culturable bacteria and a greater diversity of isolates compared to adjacent, 

unmodified soils. However, microbial community structure and diversity changes 

caused by amending soils with biochar still remain poorly understood. This is 

particularly true for fungal communities, whose population structure and diversity is 

crucially important to nutrient cycling and C stability, particularly in agricultural soils. 

I used scanning electron microscopy (SEM) in this study to visualize the 

association of microbial cells with biochar surfaces. Use of fluorescence staining and 

microscopy to examine microbes colonizing biochar is difficult due to the strong 

affinity of biochar for biological strains (Li et al., 2004). SEM allowed us to examine 

microbes associated with biochar surfaces after incubating biochar particles in soil. 

The main advantage of the SEM technique is that the material is observed in an 

immediately frozen state and does not involve chemical fixation and thus gives us a 

view of colonizing microorganisms with as little distortion as possible (Wang et al., 

2009). Use of SEM has provided new understanding about the growth and activities of 

microorganisms in soil and has been employed successfully in studying associations 

between clay and microbial polymers in soil (Horath et al., 2006; Priester et al., 2007; 

Chenu and Tessier, 1995). However, care must be taken when preparing the samples, 

especially during sublimation. If this step is carried out for too long, freeze-drying of 

the sample occurs that results in shrinkage.    

Cultivation methods have contributed substantially to our present knowledge of 
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the biochemistry and functional significance of soil microorganisms. However, it is 

well established that a majority of soil organisms are difficult or impossible to grow 

on laboratory media (Paul, 2007); i.e., only a small fraction of microorganisms have 

been cultivated by standard methods. Thus, cultivation methods provide a biased view 

of soil microbial abundance, diversity and community composition. The limitations of 

culturing methods can be overcome by the use of molecular approaches, which have 

greatly facilitated the identification of an increasing number of soil organisms 

(Mahmood et al., 2005; Singh et al., 2006; Thies, 2007). The analysis of 16S or 18S 

rRNA genes amplified from environmental DNA has expanded our view of microbial 

diversity in soil in recent years and has proven to be a powerful tool for investigating 

the microbial diversity in a wide range of environmental samples (Dedysh et al., 2006; 

Morales et al., 2009; Peay et al., 2009). Active soil fungi have clear functional 

significance in soil (Paul, 2007). The soil fungal community often better reflects 

substrate quality and availability than analyses of the bacterial community. Fungal 

community diversity in biochar-amended soils should provide significant information 

on the potential ecological roles of different fungal species or functional groups in 

biochar-amended soils. 

In this work, the fungal community living in close association with biochar in 

biochar-amended soils was characterized. I visualized the microorganisms colonizing 

biochar particles and assessed the community structure and diversity of fungi present 

in biochar-amended compared to unamended soils.  

MATERIALS AND METHODS 

Collection and Preparation of Samples 

Soils were sampled from a corn field on the Cornell Musgrave Farm, Aurora, 

NY, in April, 2009. Part of each soil sample was mixed with corn stover biochar at a 
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rate of 0.2% (g g
-1

). The biochar was produced by carbonizing corn stover at 600°C 

under slow pyrolysis (BEST Energies, Inc., Sommersby, NSW, Australia). The 

remaining soil was left unamended. Three replicates were set for each treatment. Soil 

was placed in pots and the moisture content adjusted to field capacity. Two or three 

corn seeds were sown in each pot. Pots were incubated in a glasshouse at Cornell 

University, Ithaca, NY, for four weeks. Water was added to the pots during the course 

of incubation as needed. Mixed samples from the incubated pots were collected with a 

sterile spatula in early May, 2009. The samples were transported to the laboratory 

immediately after sampling. Multiple biochar particles were hand-picked from the 

biochar-amended soil using forceps.   

Scanning Electron Microscopy  

In order to preserve the original structure of the sample, I used a scanning 

electron microscope equipped with a low temperature system (Chenu et al., 2001). A 

segment of the picked biochar aggregate (about 0.5×0.5×0.5 cm volume) was gently 

mounted on the metal stubs of a sample holder using forceps. The sample was then 

freeze-dried by immersion in a liquid nitrogen slush to bring the temperature down to  

-210°C. The sample was then transferred under vacuum to the preservation chamber. 

After freeze-drying, a small amount of colloidal silver adhesive paste (Electron 

Microscopy Sciences, PA, USA) was introduced from near the bottom of the sample 

to bind the sample to the sample holder, but was not allowed to reach the sample 

surface. Samples were then sputter-coated with a thin layer of gold and the biochar 

surface examined using LEO 1550 FESEM (Keck SEM) Scanning Electron 

Microscope (LEO Electronic Microscopy Inc., Thornwood, NY) at the Cornell Center 

for Materials Research, Cornell University, Ithaca, NY, USA. 

http://www.ccmr.cornell.edu/facilities/index2.php?id=5
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DNA Extraction and PCR Amplification  

The MoBio Powersoil
TM

 soil DNA extraction kit (Cambio, Cambridge, UK) was 

used to extract genomic DNA from biochar-amended and unamended soil samples. 

DNA was extracted from 500 mg of soil according to the manufacturer‟s instructions. 

Extracted DNA was either secondarily purified using a PowerClean
TM

 DNA Clean-Up 

Kit (Qiagen, Valencia, CA) or purified on a 1.0% (w v
-1

) agarose gel followed by 

DNA recovery and elution (Qiagen Gel Purification kit). Purified DNA was used as a 

template for the PCR amplification of the fungal ITS region with the primers ITS1 and 

ITS2 (Kumar and Shukla, 2005). The ITS region lies between the 18S and 25S rRNA 

genes (250 bp of DNA comprising ITS1, the 5.8S rRNA gene, and ITS2) (Fig. 6.1). 

The oligonucleotide primer set was synthesized by Integrated DNA Technologies 

(IDT, IA, USA). The primer sequences and target are given in Table 6.1. 

 

Figure 6.1 Fungal primers ITS 1 and ITS 2 cover the ITS region.  

 

Table 6.1 Primer sets used in PCR amplification of the fungal ITS region (Kumar and 
Shukla, 2005) 

Primer Pairs Sequence 5'->3' Target Gene Amplicon size (bp) 

ITS1 TCCGTAGGTGAACCTGCGG ITS1, 5.8S rRNA, 
ITS2 

~ 250  
ITS2 GCTGCGTTCTTCATCGATGC 

Sample DNA (30 to 50 ng) was amplified in a 50 μl reaction cocktail containing 

(final concentrations), 1×Pfx buffer (Invitrogen, San Diego, CA, USA), 1.5 mM 

MgSO4, 300 μM each dNTP (deoxynucleotide triphosphate), 0.3 μM each of the 

forward and reverse primers, and 1.0 U of Pfx polymerase (Invitrogen). Amplification 

SSU rRNA LSU rRNA 5.8 S rRNA 

ITS-1 ITS-2 
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was performed in a thermal cycler (PTC-100, MJ Research, Watertown, MA, USA, 

programmed for an initial denaturing step at 94°C for 5 min followed by 40 cycles of 

94°C for 30 s, 50°C for 1min and 68°C for 1 min with a final extension step at 68°C 

for 3 min. Gradient PCR was adopted to empirically determine the optimum annealing 

temperature for the fungal ITS primer sets. Cycling parameters were tested starting 

with 30 through 45 cycles at 5-cycle increments to address the bias often associated 

with amplification of mixed templates. Forty cycles were found to be optimal in order 

to reproducibly and consistently amplify the representative communities. Since the 

proofreading activity of Pfx DNA polymerase degrades the A overhangs, PCR 

products were reacted with 3'A to create the blunt ends needed for TA cloning.  

Clone Library Construction and Sequencing 

Amplified PCR products with blunt ends were purified with a QIAquick PCR 

purification kit (Qiagen) according to the manufacturer‟s instructions. The purified 

PCR products were then cloned using a TOPO TA cloning kit (Invitrogen) in 

accordance with the manufacturer‟s instructions. The presence of inserts of the 

expected size was analyzed by direct PCR screening of 300 to 400 transformants. A 

small part of each transformed colony was amplified by PCR using the plasmid-

specific primers M13F and M13R. The size of the inserts was checked by 

electrophoresis on a 1% (w v
-1

) agarose gel. About 200 randomly selected colonies 

with the right sized insert were chosen for sequencing. ExoSAP-IT (USB, Cleveland, 

OH, USA) was used to clean the DNA amplicons from the chosen colonies. The 

sequences were determined on an ABI 3730X1 Automated Sequencer (Applied 

Biosystems, Foster City, CA, USA) at the Cornell Life Sciences Support Center, 

Ithaca, NY, USA.   
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Nucleotide Sequence Accession Numbers 

The ITS region gene sequences of fungal clones were deposited in the GenBank 

nucleotide sequence database under accession numbers GU461322 to GU461586.  

Phylogenetic Analyses 

Retrieved sequences were submitted to the CHECK_CHIMERA program at the 

Ribosomal Database Project II (RDPII) (Cole et al., 2003) to detect the presence of 

chimeric artifacts. Sequence alignment, as well as phylogenetic and molecular 

evolutionary analyses, were carried out using MEGA version 3.1 (Kumar et al., 2004) 

with the NCBI database, using the Jukes–Cantor neighbor-joining algorithm. High 

similarity (average > 95%) of the cloned ITS region DNA sequences with those from 

environmental and/or cultivated members of the fungi deposited in NCBI database 

were used to infer the phylogenetic position of the sequences retrieved from biochar-

amended and unamended soils. Distance matrices were constructed by the DNADIST 

program in PHYLIP (Felsenstein, 1989). Relatedness of clone libraries between paired 

soils were compared using ∫-LIBSHUFF (Schloss and Handelsman, 2005) and 

rarefaction curves, diversity indices, and lineage through time were evaluated using 

DOTUR (Schloss and Handelsman, 2005). 

RESULTS  

SEM Imaging of Bacterial Cells and Fungal Hyphae on Biochar Particles Picked from 

Biochar-amended Soils 

Scanning electron microscopy was performed on biochar particles picked out of 

the biochar-amended soils. The biochar particle surfaces, viewed by SEM under 

varying magnification, are shown in Fig. 6.2.    

 



 

151 
 

 

Figure 6.2 Scanning electron micrograph A-D. Microbial cells present on the biochar 
surface and in biochar pores, with overview in panel C, and detailed views in panels 
A, B, and D. Scale bars are shown underneath each image. 

Most of the bacteria observed were cocci or bacilli that varied in size. Many cell 

aggregates, single-celled bacteria or archaea and possibly fungal hyphae were 

observed on biochar particles (Fig. 6.2). Cells were located either on the biochar 

surface or scattered in the biochar pores. Biofilms were not observed likely because of 

their dispersion during sample preparation.  

DNA Extraction and Amplification  

Total community genomic DNA was extracted successfully from control and 

biochar-amended soil samples. Due to the complexity of the soil samples, however, 

DNA extracts could not be amplified using the high fidelity Pfx polymerase; and, 

therefore, double purification of extracted DNA was needed to successfully PCR 

amplify the fungal ITS region.  
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    Table 6.2 Results of sequence analysis and presumptive phylogenetic affiliations of fungal clones 

Taxon 

No. of clones in soil sample   

Control Biochar 

Class sum Phylum sum Phylum % Class sum Phylum sum Phylum % 

Ascomycota › Mitosporic Ascomycota 19 

86 48.9 

2 

27 30.7 

Ascomycota › Pezizomycotina  11 3 

Ascomycota › Sordariomycetes 5 4 

Ascomycota › Dothideomycetes  27 8 

Ascomycota › Eurotiomycetes  17 10 

Ascomycota › Leotiomycetes  4 0 

Ascomycota › Dokmaia 1 0 

Ascomycota › Unidentified ascomycetes 2 0 
 

      
Basidiomycota › Agaricomycotina 34 

35 19.9 
11 

11 12.5 
Basidiomycota › Pucciniomycotina 1 0 

       
Zygomycota › unclassified zygomycetes 4 

14 8.0 

1 

14 15.9 Zygomycota › Entomophthoromycotina 2 0 

Zygomycota › Mucoromycotina  8 13 

       
Glomeromycota › Glomeromycetes  1 1 0.6 3 3 3.4 

       
Blastocladiomycota › Blastocladiomycetes 1 1 0.6 0 0 0.0 

       
Chytridiomycota › Chytridiomycetes 0 0 0.0 5 5 5.7 

       
Neocallimastigomycota › Neocallimastigomycetes 0 0 0.0 2 2 2.3 

       
Unidentified soil fungus clone 4 4 2.3 21 21 23.9 

Viridiplantae › Streptophyta  8 
35 19.9 

4 
5 5.7 

Viridiplantae › Chlorophyta 27 1 

1
5
2
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Cloning and Phylogenetic Grouping of Cloned Sequences 

Fungal ITS region sequences were obtained after the construction of clone 

libraries. All colonies were checked for the presence of inserts by PCR amplification 

of the ITS region followed by agarose gel electrophoresis. Sequencing of roughly 200 

clones from each soil sample resulted in 176 successful sequencing results which 

contained inserts of the correct size from the unamended control soils and 88 from the 

biochar-amended soils. Phylogenetic analysis of fungal ITS sequences revealed the 

presence of a complex fungal population structure (Table 6.2). Based on these short 

sequences (approximately 250 bp), clones were assigned to fungal phylotypes with 

high similarity (average > 95%) by BLAST searching in the NCBI database. The high 

similarity of the cloned sequences to those in the NCBI database enabled identification 

to the class level in many cases. After BLAST searching, clones were assigned to 19 

classes and 8 phyla with high sequence similarity (average >95%) to known sequences 

in the database (Table 6.2). In addition, there was a high proportion of unidentified 

fungal clones (23.9% and 2.3% in biochar-amended and unamended control soils, 

respectively; Table 6.2). Of the 19 fungal classes identified, 17 were represented in the 

cloned sequences from the control soil compared to only 13 classes represented in the 

cloned sequences from the biochar-amended soils, with 11 classes occurring in both 

soils. Over 70% of the sequences obtained were classified as Ascomycota, 

Basidiomycota or Zygomycota (Fig. 6.3A). There were 4 cloned sequences from the 

unamended soils and 21 cloned sequences from biochar-amended soils that did not 

group with any known phyla in the NCBI database. 

Pattern of Distribution of Cloned Sequences  

The gene frequency of the major phylotypes (Ascomycota, Basidiomycota and 

Zygomycota) and the minor phylotypes detected differed between unamended control 
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and biochar-amended soils. The proportional representation of the Ascomycota and 

Basidiomycota was 1.6 times higher in control soils; whereas, the proportional 

representation of the Zygomycota in biochar-amended soils, was twice that recovered 

from the unamended soils (Fig. 6.3). Ascomycota dominated the fungal populations 

identified in both control and biochar-amended soils. Chytridiomycetes and 

Neocallimastigomycetes were detected only in biochar-amended soils; whereas, 

Leotiomycetes, Dokmaia, Pucciniomycotina and Blastocladiomycetes were detected 

only in unamended control soils (Fig. 6.3). 

The unidentified fungal ITS sequences did not show extensive similarity to any 

identified ITS gene sequences deposited in the NCBI database. There were 10.5 times 

more unidentified fungi clones from the biochar-amended soils as compared to 

unamended soils (Fig. 6.3). However, BLAST searching confirmed that these 

sequences did have high similarity to sequences from uncultured fungi deposited in 

the database by other researchers. 

Statistical Comparison of Clone Libraries 

Rarefaction is used to estimate the number of species expected in a random 

sample of individuals taken from a collection (Foote, 1992). I applied rarefaction 

analysis to the two clone libraries. The analysis of 30 clones drawn from each library 

appeared to be sufficient to detect the divergence of the number of the operational 

taxonomic units (OTUs) between the two soil samples (Fig. 6.3B) (p<0.05). 

Comparison of the two clone libraries was carried out using ∫-LIBSHUFF to measure 

genetic distances in library coverage. In this analysis, a library, CX, is analyzed for 

singleton sequences across the evolutionary distance contained within the ITS region 

and the change in coverage, CXY, is compared to a paired library. The reciprocal 

comparison is then made using the other library, CY, and the change in coverage, CYX. 
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P values derived by comparing the libraries from biochar-amended and unamended 

soils were significantly different across the same genetic distance, showing distinct 

compositions of clones from each soil (Fig. 6.3C). Finally, in lineage through time 

plots (Fig. 6.3D), phylogenies as a function of time were analyzed to compare 

divergent lineages between the libraries (Bohannan and Hughes, 2003). The greater 

concavity observed in the lineage from biochar-amended soil clones indicated a higher 

abundance of closely related species, compared to the control soil clones.   

Based on ITS region sequences, clone libraries from the different soils differed 

significantly both for species rarity and coverage (Fig. 6.3B, C), with a clear 

phylogenetic divergence between clone libraries from each soil type (Fig. 6.3D). 
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Figure 6.3 (A) Distribution of clone sequences among the major soil fungal phyla, (B) 
rarefaction curves with 95% confidence interval error bars, (C) ∫-LIBSHUFF analysis, 
and (D) lineage through time plot for ITS region gene libraries. 
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Figure 6.3 (Continued) 
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DISCUSSION 

SEM Imaging of Bacterial Cells and Fungal Hyphae on Biochar Particles Picked from 

Biochar-amended Soils 

We observed bacterial cells and fungal hyphae located either on the surface or 

scattered in the pores in biochar particles (Fig. 6.2). These observations confirm the 

results of other researchers who have demonstrated that biochar has the capacity to 

support adsorbed bacteria (Pietikäinen et al., 2000), actinomycetes (Thies and Rillig, 

2009), and saprophytic and mycorrhizal fungi (Zackrisson et al, 1996; Matsubara et al, 

2002;Yamato et al, 2006; DeLuca et al., 2009). We observed that bacterial cells 

colonized the interior of the biochar pores primarily. The small neck size of these 

pores would protect cells from predation (Thies and Rillig, 2007); but, would also 

limit gas exchange, favoring colonization by microaerophiles, facultative aerobes or 

anaerobes.  

Many organic substances, clay minerals, microbial cells and their constituents, 

and exoenzymes adsorb strongly to porous materials (Miura et al., 2007; Steiner et al., 

2008; Matysik et al., 2009; Miura et al., 2009; Chapters 2-5). These are all likely to 

also be found in close association with biochar particles. However, soil constituents 

vary based on soil type and location; thus, the ecological significance of the adsorptive 

effects of biochar on microorganisms and their activities remains unclear. Bacteria and 

some fungi secrete polymeric substances, such as extracellular polysaccharide (EPS), 

and establish biofilms on the surfaces they colonize; and, quite likely, on biochar as 

well. Biofilms were observed when measuring enzyme activities associated with 

biochar particles (Chapters 4 and 5), but were not observed under SEM. This is likely 

due to their loss during sample preparation. Biofilms allow cells to remain attached to 

particles, remain hydrated longer and secrete hydrolytic enzymes without their 
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immediate loss by gravitational water movement. Biofilms form on all manner of hard 

surfaces and are typically hot-spots for microbial activity, making the biochar surface 

a likely hot-spot as well. Biochar, as a surface, is similar to mineral, metal and plastic 

surfaces in that it does not contain significant amounts of readily metabolizable C (Das 

et al., 2008); at least not after initial surface bio-oils have been metabolized. Thus, 

microbes forming biofilms associated with these surfaces must rely on dissolved 

organic C or inorganic C to meet their energy and cell C requirements. Low complex 

C availability would favor microbes with high C use efficiency or various autotrophs. 

The biochar biofilm habitat may exhibit similar patterns of CO2 recycling via the 

carbonate cycle as has been observed in other biofilms communities (Stoodley et al., 

1997; Davey and O‟Toole, 2000; Branda et al., 2005). This may help to explain the 

lower rates of microbial respiration and increased stabilization of labile C observed 

commonly in biochar-amended soils.  

Fungal ITS Region Sequencing  

The high quality of PCR products and high rates of successful insertion in clones 

guaranteed the successful sequencing of the fungal ITS region. The primers used were 

designed to amplify the ITS region of all major fungal phyla, i.e., Basidiomycota, 

Ascomycota, Zygomycota, and Glomeromycota; our cloning and sequencing results 

support this specificity. Similar findings were reported in other studies by sequencing 

the ITS region of various eukaryotes from soils (Viaud et al., 2000; Ranjard et al., 

2001; Meyer, 2004). 

Unidentified Soil Fungal Groups and the Viridiplantae Sequences Obtained 

We obtained a high number of unidentified fungi clones (23.9%) from the 

biochar-amended soils that were difficult to affiliate to a specific fungal class in the 

phylogenetic analysis. Similar problems have been reported in other soil community 
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diversity studies targeting the fungal community. Smit et al. (1999) analyzed 18S 

rDNA sequences and recovered 86-92% unidentified fungi from the wheat 

rhizosphere. Viaud et al. (2000) used ITS region sequence analysis, as was used here, 

and found that 86% of the sequences recovered were unidentified fungi. Compared to 

these studies, our recovery of 23.9% unidentified fungi clones was not remarkable. As 

molecular inquires of soil communities continue and the databases become more 

robust, more light will be shed on the seemingly high number of fungi not yet known. 

We chose to amplify fungal ITS region sequences with fungal universal primers 

(Kumar and Shukla, 2005) in order to detect fungi belonging to all the main phyla. As 

a consequence, in addition to true fungi, the ITS sequences of the phylum 

Viridiplantae (assigned to classes, Streptophyta and Chlorophyta), also known as the 

green algae and green land plants, were also amplified (Table 6.2). To examine 

diversity in more specific groups of fungi such as in each main phylum, more specific 

primers could be used (Gardes and Bruns, 1993; Bruns et al., 1998; Carter and 

Gordon, 2007; Krüger et al., 2009). 

Fungal Communities Change When Soils are Amended with Biochar 

The comparison of presumptive phylogenetic affiliations of fungal clones 

showed that biochar-amended soils had a lower overall diversity, higher relative 

abundance of Zygomycota, Glomeromycota and Neocallimastigomycota, and a lower 

relative abundance of Basidiomycota and Ascomycota compared to unamended soils 

(Table 6.2 and Fig. 6.3). My findings showed that fungal taxa having a wide range of 

functional capabilities responded positively to the addition of the recalcitrant substrate, 

biochar.  

Fungi in the Zygomycota are recognized as sucrose and cellulose degraders, the 

so-called “sugar fungi”; whereas, many Basidiomycota and Ascomycota are lignin-

http://en.wikipedia.org/wiki/Green_alga
http://en.wikipedia.org/wiki/Land_plant
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degraders or “wood rot fungi” (Garrett, 1951). The higher relative abundance of 

Zygomycota and the lower relative abundance of Basidiomycota and Ascomycota 

detected in biochar-amended soils likely reflect a change in substrate availability and 

lability. Labile organic matter associated with biochar particles may stimulate 

exploration by the coenocytic hyphae of the Zygomycota. The absence of lignin or 

other complex organic matter associated with biochar likely discouraged colonization 

by the septate fungi. Along the same lines, exoenzymes appear adsorbed to biochar, 

suspended within biofilms (Chapter 5). Hydrolysis products will also likely remain 

associated with these biofilms. Thus, fungal hyphae in physical contact with biochar 

will likely absorb simple substrates while the availability of recalcitrant substrates is 

reduced as fungal exoenzymes become adsorbed to biochar, thus lowering their 

physical contact with the substrates.  

Another possible explanation for this change in relative abundance of different 

fungal taxa could be the differential stimulation of various fungi by biochar additions 

to soil. When biochar is first added, r-strategists responds quickly, soluble or labile 

molecules, including inorganic nutrients, small amino acids, and simple carbohydrates, 

are targeted first (Robinson et al., 2005), which causes the relative abundance of labile 

substrate degraders to increase, most of these degraders comprise one of the most 

functionally diverse groups of saprotrophic microfungi. Once labile substrates 

disappear, fungal communities will undergo progressive changes, i.e., labile substrate 

decomposition is followed by a slow, progressive breakdown of more complex, 

recalcitrant substrates after a certain period of time by a complex assemblage of 

Basidiomycota and Ascomycota (Kjoller and Struwe, 2002). Our findings on the 

changes in fungal community structure associated with the change in dominant 

substrate (biochar organo-mineral complexes vs SOM) supports findings from other 

studies on the varying resource utilization capabilities exhibited by different fungal 
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decomposer species (Schmidt et al., 2007; Visser and Parkinson, 2009; McGuire et al., 

2010). A third possible explanation is that biochar provides more colonizing sites for 

fungal hyphae, among which Zygomycota are benefited the most because many 

Zygomycota are considered primary colonizers in the decomposition of organic matter 

(Kjoller and Struwe, 2002) and some members of Zygomycota phyla may also be 

mycorrhiza-forming (Hanson et al., 2008). 

Most Basidiomycota and some Ascomycota, including members of 

Agaricomycotina, are widely recognized polymer decomposers and producers of the 

enzymes responsible for lignin degradation (Lynch and Hobbie 1988; Read and Perez-

Moreno, 2003; Deacon et al., 2006). Ascomycota were also found to be surprisingly 

efficient at mineralizing spruce wood and were particularly effective at producing 

enzymes, β-glucosidase and N-acetyl-glucosaminidase (Kanerva et al., 2006; Allison 

et al., 2009). The lower relative abundance of Basidiomycota in biochar-amended soils 

suggested a potentially decreased degrading capability of recalcitrant C in biochar-rich 

soils. Lack of available C in and around biochar particles may discourage colonization 

by higher order saprophytic fungi. We did observe a higher relative abundance of 

Zygomycota; however, because Basidiomycota have been shown to produce more C 

degrading enzymes and catalyze greater substrate mineralization than the Zygomycota 

or Ascomycota fungi (Hanson et al., 2008), the overall degrading capability in biochar-

amended soils would be predicted to decrease. Changes we observed in the structure 

of fungal populations in biochar-amended soils may help to explain the frequently 

observed long-term preservation of C in other soils high in black carbon (e.g., Terra 

Preta soils of Brazil). 

With the reclassification of the Oomycetes into the Chrysophyta, the 

Chytridiomycota is now the only phylum of fungi that has flagellated cells during part 
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of their life-cycle (James et al., 2006). The higher relative abundance of 

Chytridiomycota observed in biochar-amended soils suggested that the presence of 

biochar creates a more conducive environment for colonization by fungi that have 

flagellated cells during part of their life history. Biochar is known to increase the water 

holding capacity of soil and retain water in small pores to very low moisture tensions. 

Because the flagellated zoospores of the Chytridiomycota require water for dispersal 

(Powell, 1993), the ability of biochar to retain water, may provide the aquatic habitat 

necessary for the Chytridiomycota to thrive.  

All populations in the Neocallimastigomycota phylum studied are obligate 

anaerobes (Gleason et al., 2007). The more anaerobic micro-environment around or in 

biochar pores could account for the higher relative abundance of 

Neocallimastigomycota in biochar-amended soils. 

CONCLUSIONS 

We observed microorganisms living in close association with biochar in biochar-

amended soils under SEM. A less diverse fungal community, lower relative abundance 

of Ascomycota and Basidiomycota, and higher relative abundance of Zygomycota and 

Glomeromycota were identified in biochar-amended soils. Because soil fungal 

community members did not respond equally to the biochar amendment in our 

sequencing study, we further suggest that the unique properties of biochar, such as its 

strong adsorptive capacity and its high recalcitrant C content, may be important 

mechanisms for structuring the soil fungal community in natural environments. The 

loss or gain of certain fungal taxa may result in changes in carbon and nutrient cycling 

in response to biochar soil amendment. A focus of future work will be to elucidate the 

ecological significance of changes in fungal community structure in response to 

amending soils with biochar. Due to the difficulty in characterizing the ecological 
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functions of specific fungal taxa (Zak and Visser 1996; Torsvik and Ovreas, 2002), an 

attempt to link both a molecular approach and a cultivation-dependent approach to  

investigate the range of substrates consumed by various fungi (Hanson et al., 2008) 

could help to classify fungal taxa in relation to specific metabolic functions, thus help 

to explore the putative link between shifts in microbial molecular diversity and soil 

ecological functions in biochar-amended soils.  
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CHAPTER 7                                                        

KEY FINDINGS AND FUTURE RESEARCH 

KEY FINDINGS 

In this study, I have addressed five key research questions in order to 

characterize the microbial life colonizing biochar and biochar-amended soils and set 

the groundwork for further work on how soil microbial ecology is affected by biochar 

soil amendment. 

First, I investigated the effects of biochar amendment on microbial biomass 

carbon (MBC), basal respiration and the microbial quotient (qCO2). The results 

indicated MBC was increased by 18.5-37.5% with an increase in the biochar 

application rate from 12 to 30 t biochar ha
-1

. This positive response in MBC depended 

highly on the rate of biochar addition. A synergistic effect of biochar and inorganic N 

fertilizer on soil MBC was found. Meanwhile, the basal respiration and the qCO2 were 

found to be significantly decreased with increasing rate of biochar addition. The 

increased microbial biomass and decreased basal respiration suggest biochar may 

increase microbial C use efficiency. Part of this effect could be explained by changes 

in microbial community composition, and likely, an increased ratio of fungal to 

bacterial biomass in soils amended with high rates of biochar.  

Second, I investigated changes in microbial community composition in response 

to biochar addition by adopting PCR-T-RFLP fingerprinting. In order to obtain a high 

quality and quantity microbial genomic DNA from the environmental samples, three 

DNA extraction protocols were tested among which the Powersoil
TM

 Soil DNA 

extraction kit protocol was demonstrated to reliably extract PCR-amplifiable genomic 

DNA from biochar-amended soils and was chosen for further T-RFLP studies. 
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Interactive Principal Component Analysis (IPCA) of the T-RFLP data obtained by 

digesting the PCR amplicons from microbial genomic DNA using restriction enzymes 

HhaI and Sau96I suggested a distinctly discriminative effect of both biochar addition 

and sampling location (bulk and rhizosphere) on the structural composition of both the 

bacterial and fungal communities. In addition, I also identified a further shift in both 

bacterial and fungal community composition one year after biochar was incorporated 

into the field soil. These observations support the findings reported in Chapter 2 and 

provide a explanation for the observed long-term fertility of other soils high in black 

carbon (biochar); that is, a fundamental change in the dominant microbial 

communities and their activities in biochar-amended soils. 

Third, with an aim to explore the microbial metabolic potentials in C, N, P 

cycling in biochar-amended soils, I investigated the activity of soil exoenzymes, β-D-

glucosidase, β-D-cellobiase, aminopeptidase and phosphatase, which are involved in 

C, N, and P biochemical cycling, respectively, in biochar-amended soils. Results 

showed that the biochar-amended soils had 615.3% and 15.0% higher activities of 

alkaline phosphatase and aminopeptidase, but 81.3% and 82.2% lower activities of β-

D-glucosidase, β-D-cellobiase respectively. These changes in enzyme activities 

suggested that P and N use is increased relative to C mineralized in response to 

biochar addition. The decreased activity of C mineralizing enzymes likely contributes 

to the stability of labile C in biochar-amended soils. The increased need for microbial 

P and N acquisition relative to C in response to biochar application suggested a shift in 

microbial community composition in biochar-amended soils, one such possibility is an 

increase in the presence of AMF that form mutualistic symbioses with plant roots and 

metabolize C from their hosts in exchange for other nutrient elements, such as N and P 

from soil.  
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Fourth, after confirming the strong adsorptive effect of biochar in the exoenzyme 

activity assays reported in Chapter 4, I localized the presence of active alkaline 

phosphatase and β-D-glucuronidase specifically on biochar particles from biochar-

amended soil (0.2% g g
-1

, incubated for four weeks) using ELF (Enzyme-Labeled 

Fluorescence). I observed activities of alkaline phosphatase and β-D-glucuronidase in 

biochar-amended soil slurries, particularly on surfaces of the biochar particles. This 

suggested that either the substrates or the enzymes or both are being adsorbed on the 

biochar. I highlighted very subtle, but important, differences between the ELF-based 

and MUF-based methods in determining alkaline phosphatase and β-D-glucuronidase 

activities. The ELF-based method was prized for its ability to count the fluorescent 

signal directly and avoid the bias introduced by the adsorption properties of biochar 

that occurs when the MUF-based method is used. However, it could not be used to 

estimate rates as the signal intensity could not be measured directly. Thus, a solid 

correction method needs to be applied in the MUF-based method to analyze the 

activity of exoenzymes in biochar-amended soils.  

Finally, considering the significant role of the fungal community colonizing 

biochar, I examined the fungal community living in close association with biochar 

particles in biochar-amended soils (0.2% g g
-1

, incubated for four weeks). Under a 

scanning electron microscope (SEM), microorganisms were observed to form biofilms 

with diverse, visible structures. Bacterial cocci and bacilli and thread-like fungal 

hyphae were visible either on or in the biochar porous structure. Cloning and 

sequencing of the fungal ITS region from community DNA extracted from biochar-

amended soil samples revealed the presence of a complex fungal community. Over 

70% of the sequences obtained were classified as Ascomycota, Basidiomycota or 

Zygomycota. Compared to unamended soils, biochar-amended soils showed a much 

lower genetic diversity, a higher relative abundance of Zygomycota, Glomeromycota 
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and Neocallimastigomycota and a lower relative abundance of Basidiomycota and 

Ascomycota. Given that members of Glomeromycota form AMF, which obtain C from 

their host instead of from soil, the lowered metabolic quotient in high biochar-

amended soils reported in Chapter 2 and the lowered C mineralization relative to 

increased P and N needs in high biochar-amended soils reported in Chapter 4 could be 

explained by a shift in microbial community composition, such as a relative increase 

in the abundance of Glomeromycota, whose C needs are met by the host but mobilize 

other nutrient elements needed. Another possibility might be that the lack of available 

carbon in and around biochar particles are discouraging colonization by higher order 

saprotrophic fungi.   

In addition to these key findings, I also found that assays such as microbial 

biomass C using the simultaneous chloroform fumigation extraction method, 

exoenzyme activity using the MUF-based method and microbial genomic DNA 

extraction were impaired by the strong adsorption of extractants to biochar in amended 

soils. I overcame this limitation by measuring the equilibrium adsorption isotherms for 

extractants and building adsorption models for correction purposes. My approach 

could provide a useful tool to obtain accurate measurements for assays that involve 

extraction from or purification of samples that contain strong adsorbents.   

FUTURE RESEARCH 

The loss or gain of certain microbial taxa may result in shifts in carbon and 

nutrient cycling in response to biochar soil amendment. However, my findings only 

suggest that fungal communities living in association with biochar are likely 

functionally as well as taxonomically different. How observed changes in fungal 

communities may alter soil function needs further study. Due to the difficulty in 

characterizing the ecological functions of specific microbial taxa, I suggest an 
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integrated multi-technique approach where physiological, biochemical, stable isotope 

probing and molecular methods are combined that can yield results that will allow us 

to identify specific microbial groups involved in the shift of microbial community 

composition in biochar-amended soils. This could help to identify changes in 

microbial taxa and specific metabolic functions, thus allow us to explore the putative 

link between microbial diversity and community composition shifts in response to 

amending soils with biochar.  

 

 




