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Magnetic resonance spectroscopy and imaging are powerful tools for charac-

terizing soft materials at length scales down to a few microns. While mechan-

ical detection has enabled observation of magnetic resonance from single elec-

tron spins and nanoscale volumes of nuclear spins, all such experiments to date

have required manually affixing a magnetic particle or a sample to the leading

edge of a fragile microcantilever. In this dissertation, work to batch-fabricate at-

tonewton sensitivity cantilevers with integrated, overhanging nickel magnets is

described. That the magnet overhangs the leading edge of the cantilever is nec-

essary to mitigate surface-induced force noise, the dominant source of noise in

all high-sensitivity magnetic resonance force microscopy measurements to date.

The smallest magnets produced had diameters of 70 nm.

Three methods were developed to produce such overhanging magnets on

single-crystal silicon cantilevers. Proof-of-concept work was demonstrated on

methods involving under-etching the magnetic nanorods using potassium hy-

droxide, and fabricating the nanorods over co-planar silicon oxide pillars. Com-

plete devices were produced via a method in which the magnetic nanorods were

under-etched by an isotropic sulfur hexafluoride reactive ion plasma etch.

In addition to developing processes to produce overhanging nanorods, sig-

nificant challenges in lithographic alignment and silicide formation were over-



come. Cantilever magnetometry demonstrated a net tip magnetization between

57 and 77 % of that expected for bulk nickel. Good leading-edge magnetization

of the nanorods was confirmed by using the cantilevers to detect, via force-

gradients, electron spin resonance from nitroxide spin labels in a thin film. This

is the first time that magnetic resonance force microscopy has been implemented

with magnet-tipped cantilevers produced by batch fabrication. Over the same

thin film used for the electron spin resonance experiment, the cantilevers were

shown to have extremely low surface-induced force noise. The work cov-

ered in this dissertation significantly advances the feasibility of scanned-probe

nanoscale magnetic resonance imaging of as-fabricated thin-film samples and

devices.
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The real trouble with this world of ours is not that it is an

unreasonable world, or even that it is a reasonable one.

The commonest kind of trouble is that it is nearly reasonable,

but not quite ... It looks just a little more mathematical

and regular than it is: its exactitude is obvious, but its

inexactness is hidden; its wildness lies in wait.

-G. K. Chesterton
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CHAPTER 1

INTRODUCTION

Scanning tunneling microscopy, developed in 1982, is generally considered the

first scanned probe microscopy technique [1]. Since that time, a plethora of

related scanned probe techniques have been developed, spawning numerous

articles, books, conferences, and a Nobel Prize. In all these techniques the probe

itself is key. Nowhere is that more true than in the technique known as Magnetic

Resonance Force Microscopy (MRFM). The thrust of this work was to develop

a new protocol for fabricating ultra-sensitive, magnet-tipped silicon oscillators

for MRFM.

The MRFM technique was first proposed by John Sidles in 1991 [2]. Al-

though current implementations of MRFM are quite different than the method

proposed in that article, the fundamentals of the experiment have little changed.

The core of the experiment is the detection of electron or nuclear spins in a

sample through an interaction between the spin and a nearby magnetic parti-

cle. This interaction is mechanically detected by using the interaction energy

to drive a sensitive oscillator, in the form of a cantilevered beam. Using the

magnetic field gradient produced by the magnetic particle, and the techniques

of magnetic resonance, the orientation of the spins can be manipulated, allow-

ing spins to be addressed based on differences in spatial location and isotopic

characteristic. This allows for three-dimensional, isotopically specific imaging.

The most exciting promise of MRFM, and also the most cited, is the

isotopically specific, atomic-resolution structural determination of a single

biomolecule. Biomolecule structure determination is currently done by X-ray

crystallography, conventional NMR, and cryo-electron microscopy. However,
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all of these techniques have limitations that prevent their use on a large range

of biomolecules. X-ray crystallography requires that the sample form an or-

dered solid, which has been difficult to achieve for many molecules. Conven-

tional NMR is limited to structural determination of proteins of less than ∼

150 kilodaltons, because of the increasing difficulty in interpreting the chemi-

cal coupling data with increasing molecule size. And cryo-electron microscopy

requires that there be some degree of symmetry to the molecule structure, as the

three-dimensional image is reconstructed from many two-dimensional projec-

tions. All three are bulk techniques, which can present the problem of acquiring

the isolated target compound in sufficient volume for analysis. Cryo-electron to-

mography can give structure determination of a single molecule, but since many

two-dimensional images of the same molecule must be taken to generate the full

three-dimensional structure, resolution is limited by radiation damage [3].

MRFM can be done on a single molecule (and thus does not require a crys-

talline form), and is only limited in molecule size and complexity by the rate of

image acquisition. The interaction of the magnetic particle with the molecule

causes no damage to the molecule. To date, the highest resolution MRFM image

was produced by Degen and coworkers [4], of a tobacco mosaic virus with 4 nm

resolution. Although not high enough to determine structural information, this

is nonetheless equivalent to the best resolution available in the only comparable

single biomolecule imaging technique, cryo-electron tomography [5, 6].

Another often cited application for MRFM is as the read/write device in a

solid state quantum computer [7]. A final use is ferromagnetic resonance force

microscopy for structure determination of magnetic thin films, of extreme inter-

est to the magnetic media storage industry [8].
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This work seeks to address two limitations in prior MRFM work. First,

all prior MRFM experiments have either attached the magnetic particle to the

force detection cantilever manually, or placed the sample on the cantilever and

located the magnetic particle nearby. Affixing the sample to the cantilever

severely restricts the types of samples that can be imaged. For example, it

would be nearly impossible to integrate a working transistor onto the end of

the extremely pliant cantilevers needed for highest force sensitivity, or a single

protein in a cryo-protectant that must remain at cyrogenic temperatures during

loading. Hand-gluing of the magnetic particle limits the minimum particle size

that can be attached due to the difficulty in manipulating small particles. While

the magnet size can be reduced somewhat further by focused ion beam milling,

this too is limited to a minimum size of ∼ 100 nm from ion beam damage [9].

In this work, a batch fabrication method for producing nanoscale magnets

on attonewton sensitivity cantilevers is presented and validated by cantilever

magnetometry and force-detection of electron spin resonance. This represents a

significant improvement over past cantilevers used in MRFM experiments, both

in the magnet size and the method of production. Further, careful design of

the cantilever tip geometry has resulted in a surface-induced force noise much

lower than the cantilever used in the highest sensitivity MRFM experiment to

date [4].

As a final note on the potential importance of MRFM, biomolecule struc-

ture determination by x-ray crystallography and conventional NMR are both

subjects of Nobel Prizes, to Roderick Mackinnon in 2003, Max Perutz and Sir

John Cowdery Kendrew in 1962, Dorothy Crowfoot Hodgkin in 1964, and Kurt

Wüthrich in 2002.
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Figure 1.1: Illustration of the prototypical MRFM experiment.

1.1 Signal Calculation

In a prototypical MRFM experiment, a magnetic particle on the end of a can-

tilever is brought close to a spin (Figure 1.1). The force between the spin and the

particle is a function of the spin’s magnetic dipole moment µ and the gradient

of the particle’s magnetic field B (the following equations are in SI units):

F = (µ · 5)B (1.1)

A large, homogeneous external magnetic field Bz is applied parallel to the z-axis.

This causes the magnetic moment of both the spin and the magnetic particle to

lie along the z-axis. For a spherical magnetic particle the magnetic field at a

point directly below the particle is

BStatic =
2µ0Ma3

3(a + d)3 (1.2)
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Figure 1.2: Definition of dimensions in an MRFM experiment. A magnet
of radius a attached to a cantilever is directly above a spin in a
sample. The closest edge of the magnet is a distance d from the
spin, and a distance h above the sample surface.

Thus equation 1.1 becomes

F = µ ·
∂Bz

∂z
= −2µµ0M

a3

(a + d)4 (1.3)

where µ is the magnitude of the spin magnetic moment µ along the z axis, µ0

is the permeability of free space, M is the magnetization of the magnetic parti-

cle, here lying along the z axis, a is the magnet diameter, and d is the distance

between the spin and the closest edge of the magnet (Figure 1.2). For a 30 nm

diameter iron sphere a mere 5 nm away from a single proton spin with a sat-

uration magnetization µ0Msat = 2.2 T, the interaction force is 1.3 attonewtons.

For comparison, this is approximately 200 times smaller than the force between

two electrons one µm apart. From this rough calculation, it can be seen that the

magnetic particle will need to be very small and brought extremely close to the

spin, and the cantilever used for detection of resonance to be extremely sensi-

tive. Equation 1.3 also shows that for a given spin-sample distance, there is an
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optimal magnet diameter, comparable to this separation distance [10, 11].

The above example treats a spin in isolation, but in a real sample there will be

many spins interacting with the magnetic particle. Equation 1.1 still holds true

for each spin, but the total force is the sum of interactions of the j individual

spins in the sample

Ftot =
∑

j

(µ j · 5)B j (1.4)

1.2 Spin Manipulation

In order to isolate the force contribution of spins in a given region of the sam-

ple, spin manipulation techniques must be employed. The following is a brief

summary of spin manipulation. The goal of this section is to explain the tech-

nique for spatial resolution of spins in MRFM experiments, and thus further the

design criteria for MRFM mechanical oscillators. For a much more complete

description the reader is referred to reference [12].

As noted above, a spin placed in a static magnetic field Bstatic, with magni-

tude Bstatic, will tend to align with that field and precess around the field direc-

tion with frequency ω0 = γBstatic, called the spin’s resonance frequency. γ is the

gyromagnetic ratio of the spin. As in Figure 1.1 Bstatic lies along the z-axis. A

second magnetic field is applied to the system, along the x axis, and which is

linearly polarized and oscillates in magnitude according to Bx(t) = 2B1 cos(ωrft),

where ωrf is the frequency of oscillation.

The field Bx can be decomposed into two circularly polarized fields, each of

magnitude B1, rotating in opposite directions around the z axis. For simplicity

6



Bstatic - ωrf / γ

B1

Beff

Xrot

Yrot

Z

Figure 1.3: The static, oscillating, and effective magnetic fields seen in the
rotating reference frame.

the spin system is often considered in a reference frame that rotates around the z

axis at frequency ωrf. In the rotating frame, one component of Bx is static, while

the second is seen rotating at 2 ωrf and can be disregarded. Hereafter the kept

component of Bx will be called B1.

As stated above, in the rotating frame both Bstatic and B1 are static, and the

magnitude of Bstatic has been decreased by the amount ωrf/γ. The two fields

produce an effective field Beff which is their vector sum (Figure 1.3).

If B1 is turned on with ωrf � ω0, and then the frequency slowly lowered,

the spins will follow Beff. If ωr f is swept to the condition that ωr f � ω0, then the

spins will have been inverted from their initial direction. This technique is called
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“adiabatic fast (or rapid) passage”(ARP). In an MRFM experiment, such a spin

inversion or “flip” will result in a change in the direction of the force between

the spins and the tip magnet, thus changing the deflection of the cantilever. If

the magnetic field Bstatic is homogeneous across a sample, then an ARP inversion

or “sweep” will flip all of the spins. However, if Bstatic is inhomogeneous, only

the spins in regions where the resonance condition γBstatic = ωrf is met will be

flipped by an ARP inversion.

In MRFM, the magnetic particle at the end of the cantilever is the source of

this field inhomogeneity. The region in the sample in which the resonance con-

dition is met is called the sensitive slice. The size of the slice, and distance from

the tip magnet, depends on the magnitude of the gradient of the tip magnet, and

the frequency of ωrf. In an MRFM experiment in which ARP is used to invert

the spins, the thickness of the slice depends on the width ∆ω of the frequency

sweep, as well as the field gradient. It is this slice that allows spins in a specific

region of a sample to be manipulated independently from the rest of the spins in

the sample. Applying an ARP with this inhomogeneous Bstatic will invert only

the spins within the sensitive slice, which will modulate the total force between

the spins in the sample and the tip magnet.

In an MRFM experiment, there are two general methods by which an ARP

sweep can be enacted [13]. In the “stationary cantilever, swept field” method

the ARP is enacted as described previously, with the cantilever held station-

ary while the frequency of B1 is swept through resonance. In the “moving

cantilever, steady field” method the oscillating field B1 is applied at a single

frequency while the cantilever (and thus the tip magnet) is moved. The ARP

sweep is created by changing the magnetic field experienced by the spin. Thus,
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not only is a large tip magnet field gradient necessary to generate a sufficient

interaction force, but it is also required for sharp spatial resolution.

1.3 Thermally-limited Detection Limit

For a simple harmonic oscillator, motion induced by thermal energy sets the

lower bound on force detection. This relationship will be considered in more

detail in chapter 2. Here it shall be simply stated that the noise-limited mini-

mum detectable force, is given by:

Fmin =

√
4kkBT B
ω0Q

(1.5)

k, ω0, and T are the spring constant, resonance frequency and temperature of the

cantilever, kB is Boltzmann’s constant, and B is the measurement bandwidth. Q

is the “quality factor” of the oscillator, a unitless value that represents the ratio

of the energy lost in each cycle of oscillation to the total energy of oscillation.

From this equation, it can be seen that an ideal oscillator would have a very

small spring constant and a high frequency and quality factor. Fmin can also be

written as

Fmin =
√

4kBT B Γ (1.6)

where

Γ =
k

ω0Q
(1.7)

is the friction coefficient. The friction coefficient is related to the frictional force

by Ffrict = Γẋ where ẋ is the cantilever velocity.

For the first mode of a cantilevered beam, the spring constant and frequency

can be written in terms of the beam’s dimensions, and the density ρ and Young’s
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Figure 1.4: Cantilevered beam with dimensions labeled.

modulus E of the beam’s material (See section 2.1). Fmin then becomes:

Fmin = 1.007

√(
wt2

l

)
(Eρ)

1
2

(
kBT B

Q

)
(1.8)

where width w, thickness t and length l are defined as shown in Figure 1.4.

The cantilever bends in the direction of the thickness. The optimal beam for

sensitive force detection, ignoring for the moment the factors which influence

Q, would be long, narrow, and very thin, made of low density, pliant material.

The cantilevers produced in this work were all 340 nm thick, 5 µm wide, and

200 or 395 µm long, fabricated from single crystal silicon.

1.4 Pendulum Geometry

The requirements of a close approach to the spin, and an extremely pliant can-

tilever, requires careful consideration of the geometry of the MFRM experiment.

As diagrammed in Figure 1.1, the force of magnet/spin interaction is normal to

the plane of the sample, and thus to detect this force the cantilever will need

to be pliant in this direction. However, operating in this “AFM” geometry and
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Figure 1.5: Schematic of an ultra-sensitive magnet-tipped cantilever oper-
ating in the “pendulum” geometry.

at extremely small separation, van der Waals forces between the sample and

both the magnetic particle and the cantilever body will cause the cantilever to

be drawn into the sample surface. To prevent this “snap-in” the cantilever must

operate with its long axis parallel to the sample surface normal, such that the

cantilever tip oscillates parallel to the plane of the sample (Figure 1.5). This

change in geometry solves the “snap-in” problem, but now the net force along

the sensitive direction of the cantilever is zero, for a static homogeneous spin

distribution. To enable detection of the spin in this “pendulum” geometry, new

protocols have to be implemented.
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1.5 Sample Versus Magnet on Cantilever

Before describing the detection protocols developed to work in the pendulum

geometry, a further issue of experiment geometry must be covered. As shown

in Figures 1.1 and 1.5 the magnetic particle is attached to the cantilever. How-

ever, the formulas governing spin/magnetic particle interaction do not specify

which is on the cantilever. Indeed, the first successful MRFM experiments, and

the most sensitive to date, were implemented in a “sample on cantilever” geom-

etry [4, 13] in which the sample was affixed to the tip of the cantilever, and then

brought close to a stationary magnetic particle. It was not until six years after the

first force-detection of electron spins that an experiment with the “magnet on

cantilever” geometry was reported [14], and a further 6 years until NMR-MRFM

was detected in this geometry [15]. In this work, the magnet-on-cantilever ge-

ometry was selected. The selection of geometry is not a trivial choice, and there

are significant advantages and challenges to each approach. However, for ap-

plicability to the widest range of samples, the magnet-on-cantilever geometry

is superior. This is because of the extreme difficulty of attaching the sample to

the extremely fragile and pliant cantilevers required of MRFM, especially if it is

necessary to employ cryoprotection techniques to study biological samples [16],

or if objects such as functioning transistors are desired to be studied.

1.6 Signal Detection in Pendulum Geometry

For a cantilever in the pendulum geometry, as illustrated in Figure 1.5, the net

force of a uniform distribution of spins on the cantilever is zero. This is because

the relevant field gradient, ∂Bz
∂x , is such that the force of spins to the left of the can-
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tilever are equal and opposite to the force of spins to the right of the cantilever.

For a spherical magnetic particle polarized along the z direction,

Bz = µ0Ma3 −x2 − y2 + 2z2

(x2 + y2 + z2)
5
2

(1.9)

and
∂Bz

∂x
= 3µ0Ma3 x(x2 + y2 − 4z2)

(x2 + y2 + z2)
7
2

(1.10)

For spins directly below the cantilever x = 0, and consequently the field

gradient, and thus the force, is zero. There are two methods to detecting spins

in the pendulum geometry: use of force detection, but of a non-uniform spin

polarization; or use of force gradient detection, in which the interaction of the

spins is with the second derivative of the tip magnetic field. The first method

was demonstrated by Mamin et al. [9], who observed the naturally occuring

stochastic fluctuations of rotating frame spin polarization using the force-based

OScillating Cantilever-driven Adiabatic Reversals (OSCAR) detection protocol.

Thus far in this text, the spin polarization described has been the thermal polar-

ization, the tendency for spins to align along a magnetic field which is driven

by the slight energy difference between the aligned and anti-aligned states.

The Cantilever-Enabeled Readout of Magnetic-Inversion Transients (CER-

MIT) method, developed by the Marohn group at Cornell, is able to record both

statistical and thermal net spin polarizations, by detecting the interaction be-

tween the spins and the second derivative of the tip magnet field [15]. This

interaction results in a shift in the force gradient experienced by the cantilever,

changing its effective spring constant and manifesting as a shift in the cantilever

resonance frequency (although it could also be detected as a change in the can-

tilever amplitude, if the cantilever driving energy was held constant). In the

review article by Kuehn et al [11], a comparison was made between the ther-
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mally limited signal to noise ratio for these two detection methods, for a system

with a spherical tip magnet of radius a, with a distance d between the closest

portion of the magnet and a single spin. In each formula, the conditions of de-

tection have been optimized as to spin lateral position (directly under the tip

for CERMIT, slightly to the side for OSCAR) as well as cantilever displacement

amplitude.

SNRCERMIT =
1

Fmin

µµ0M
a

( a
a + d

)4
(1.11)

SNROSCAR =
1

Fmin

1.16 µµ0M
a

( a
a + d

)4
(1.12)

From these equations, it can be seen that both detection methods give ap-

proximately the same signal to noise ratio. It can also be seen that to achieve a

reasonable SNR for a single spin, as in the AFM geometry the tip magnet must

be very small, very close to the sample, and the combined measurement noise

no larger than the thermal limit. To achieve a SNR of 1, with one second of signal

averaging, using the same iron sphere and magnet-sample separation as in the

AFM geometry example of section 1.1, the cantilever sensitivity would need to

be approximately 0.7 attonewtons for a single proton spin, and approximately

450 attonewtons for a electron spin, using either detection scheme.

1.7 Surface Noise

At extremely small cantilever-sample separations and cryogenic temperatures,

thermal noise is usually not the dominant noise source in MRFM experiments

[4, 9, 15, 17, 18]. Rather, surface-induced phenomena raises the noise floor above

the thermal limit, in both amplitude and frequency shift detection schemes. In

14



frequency-shift detection protocols such as OSCAR [19] and CERMIT [15], fre-

quency noise or “jitter” is the relevant noise term, while for amplitude-shift

detection protocols, dissipation is the relevant noise term. After careful study of

this phenomena over polymer surfaces, Kuehn et al. showed that over polymer

films, surface-induced dissipation was the result of fluctuating electric fields

near the sample interacting with charges on the cantilever tip. The fluctuating

electric fields were caused by thermal fluctuations in the position and orienta-

tion of dipoles in the polymer film [20]. Yazdanian et al. extended this to explain

surface-induced jitter as arising from fluctuating electric field gradients from the

polymer film interacting with charges on the tip [21, 22].

However, over metal surfaces, an experimentally-derived explanation for

either of these types of noise is lacking. Experimental observations made by

Kuehn (unpublished), taken over a gold surface at 298K found that dissipation

decreases with decreasing cantilever cross-section (Figure1.6(a)), and that dissi-

pation is less for metal than for silicon tips of the same size (Figure 1.6(b)). He

also discovered that both of these effects decreased to below the thermal noise

level when the cantilever tip was moved > 100nm from the surface. In this

work the cantilevers were of the same type as described in reference [20]. The

as-fabricated cantilevers had silicon tips with a radius of curvature of ∼ 50 nm.

One of these was used as the silicon tip cantilever in Figure 1.6(b). For the small

metal tip in Figure 1.6(a) and the metal coated tip in Figure 1.6(b), a thin layer

of platinum was evaporated onto the tips of some of these cantilevers, again as

described in [20]. For the large tip in Figure 1.6(a), a ∼ 5 µm metal sphere was

manually attached to a bare silicon cantilever tip with epoxy. This led to the

hypothesis that fabricating the magnetic particles so that they extended past the

leading edge of the silicon cantilevers, and then making the magnetic particles
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Figure 1.6: Effects of tip cross-section area and surface material on surface-
induced dissipation.

as small as possible, would significantly decrease the surface-induced dissipa-

tion. Although Kuehn did not take similar jitter measurements, it was hoped

that the same design would also lead to a decrease in jitter.

1.8 Other Cantilever Applications

Cantilever frequency fluctuations give information about electric field gradi-

ent fluctuations in the sample [22, 23]. This connection has been used to deter-

mine the dielectric fluctuation spectrum for a variety of thin polymer films [24].

Quantifying local electric field gradients in these experiments, as well as mea-

surements of local polarizability [25], requires an accurate model of tip charge,

e.g. tip-sample capacitance. While reasonable agreement between theory [26]

and experiment [20, 22] has been obtained in studies of dielectric fluctuations,

work to date has relied on approximating the cantilever tip as a sphere. The can-

tilever tips described in this work have a much better defined geometry than

the tips used in the experiments of references [20, 22, 25]. The tips presented
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here should therefore allow a far more accurate estimations of tip-sample ca-

pacitance and therefore a far more reliable determination of local electric field

gradient fluctuations than has been possible to date.

The extremely low surface-induced dissipation of these cantilevers, com-

bined with the nanoscale tip magnets, makes them useful in magnetic dissi-

pation force microcopy [27, 28]. In this technique, local magnetic energy dissi-

pation is recorded as the change in the cantilever quality factor. This technique

can be used to image magnetic domain structures, distinguish micromagnetic

walls that cannot be differentiated by conventional magnetic force microscopy,

and determine domain walls in samples with weak stray fields. Decreasing the

surface-induced dissipation would improve the signal quality in magnetic dis-

sipation force microscopy experiments.

These cantilevers could be used to directly study surface-induced dissipa-

tion to study charge density [29] or dopant density [30] in semiconductors.

One could also imagine using the metal tips of these cantilevers for tip-

enhanced Raman spectroscopy [31], either as an isolated experiment, or in com-

bination with one of the other methods suggested above.

In this chapter MRFM has been introduced as a promising technique for

creating three dimensional images of electron and nuclear spins with nanome-

ter resolution. The key technology to enable this imaging is the magnetic tip,

which must be placed on the cantilever for use with the widest range of sam-

ples. Surface-induced force noise has also been introduced, the dominant noise

source in the highest sensitivity MRFM experiments to date. Several other uses

for such magnet or metal tipped attonewton-sensitivity cantilevers have also
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been presented, which would significantly advance the state-of-the-art in mate-

rials characterization.

Chapter 2 summarizes the key mechanical properties of cantilevered beams,

including frequency and intrinsic dissipation, and the magnetic properties of

selected magnetic materials used in this work or in other MRFM experiments.

Chapter 3 describes the fabrication protocol developed for batch-fabrication of

nanometer magnets on cantilevers, highlighting the particular challenges of

alignment, creating a magnet that extends past the leading edge of the can-

tilever, and preventing wafer contamination and cantilever breakage in the final

“release” steps of the fabrication process. Metal silicides and silicide prevention,

the largest challenge overcome in implementing the fabrication process, is cov-

ered in Chapter 4. Methods and results of analysis of cantilever and magnet

properties for the devices produced in this work are presented in Chapter 5.

These results include electron spin resonance signal from the smallest magnet

used in a magnet-on-cantilever MRFM experiment to date, and surface-induced

dissipation data showing that the same cantilever can approach 8 times closer to

the sample surface, with the same amount of dissipation, as the cantilever used

in the most sensitive MRFM data yet published [4]. Finally, in Chapter 6 pre-

liminary work for several possible improvements to the cantilevers produced in

this thesis are presented.
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CHAPTER 2

BACKGROUND

2.1 Cantilever Dynamics

The cantilevers fabricated in this work can be modeled as a singly-clamped

beam of rectangular cross-section. In this section formulas to derive the mode

shapes and associated frequencies of such a beam are given [32].

The derivation of cantilever properties follows the Euler-Bournoulli beam

theory, which requires that the length l of the beam be much larger than than

either the thickness t or width w. This is because the theory assumes that the

shear deformation of a cross-sectional segment of the beam, caused by the de-

flection of the beam, is much less than the displacement of that segment from

its un-bent location. The calculations here are for the dynamic bending of the

beam, and assume that there is no force applied to the beam.

For a singly-clamped beam, the mode shape is given by

D[x] = cosh(βnx) − cos(βnx) − (sinh(βnx) − sin(βnx))
sinh(βnl) − sin(βnl)
cosh(βnl) + cos(βnl)

(2.1)

where D[x] is the displacement of the cantilever at position x when it is at its

maximum deflection, x is the distance from the clamped end of the cantilever

beam, and βnl is value of the nth solution of

cosh(βnl) cos(βnl) = −1 (2.2)

Note that the value of each βn is not a constant but will change with cantilever

length l. The values of βnl for the first three modes are given in Table 2.1. Fig-

ure 2.1 plots the shapes of the first three modes. The horizontal axis is the frac-
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tional position from the clamped end of the cantilever at x=0, and the vertical

axis is the arbitrary mode amplitude. The modeshapes have been normalized

so that their maximum displacement is the same. For an actual cantilever, the

amplitude of the higher modes is much smaller than that of the first mode.

For cantilevers used in force detection, the magnitude of an applied force is

determined from the size of cantilever deflection caused by the force and the

cantilever spring constant. If, as with the cantilevers fabricated in this work, the

location at which the force is applied is not the same as the location at which

cantilever displacement is measured, a conversion is needed to determine the

actual size of the displacement. This is done by using equation 2.1 to calculate

the ratio of the mode amplitude at the location the force is applied to the mode

amplitude at the location where the displacement is measured.

For cantilevers of the type studied in this work, which, because of their high

quality factor, exhibit resonance over a very narrow band of frequencies, the

effect of higher order vibrations can be eliminated by proper frequency filtering.

Nonetheless, to minimize any noise coming from the second order mode (which

should have the second largest amplitude), the motion of the cantilever should

be monitored at a point x = 0.783l, where the second mode has a node. The

resonance frequency ωn of the nth mode is given by

ωn =
(βnl)2t

l2

√
E

12ρ
(2.3)

where E is the Young’s modulus and ρ is the density of the cantilever material.

The thickness t is the cantilever dimension parallel to the direction of motion.

The calculation of the spring constant for higher order modes is more com-

plicated, as the effective mass of the cantilever decreases with increasing mode
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Figure 2.1: Shapes of first three transverse bending modes of a singly
clamped cantilever of rectangular cross-section.

Table 2.1: Values of βnl which solve equation 2.2; n = 1, 2, and 3, for Mode
1, 2, and 3, respectively.

Mode 1 Mode 2 Mode 3

βnl 1.8751 4.6941 7.8548

number. The formula for the spring constant of the first order mode is given in

equation 2.4, taking the effective cantilever mass as l w t ρ
4 [10]. The formulas for

the effective mass of the second through fourth modes can be found in Ref. [33].

For the first order mode, the spring constant relates the magnitude of a point

force to the displacement of the cantilever, by that force, at the location the force

is applied.

k = 1.03
w t3 E

4 l3 (2.4)
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2.2 Prior Cantilever Fabrication Work

The realm of fabrication dedicated to making microscale mechanical structures

from silicon and other materials has existed for over 30 years. A review pub-

lished by Petersen [34] in 1982, considered a seminal work in microelectrome-

chanical system (MEMS) fabrication, is a solid launching point for the reader

looking for a broad overview. The basic cantilever fabrication process imple-

mented in this work was developed by Stowe et al. [35] at Stanford. He de-

veloped a process for batch-fabricating very thin, long, and flexible cantilevers

from single crystal silicon-on-insulator wafers. Addition of magnets to the tips

of these cantilevers was not integrated in the batch fabrication process, but was

done serially, using a knife-edge shadow evaporation.

The work by Jenkins [36] integrated definition of nanometer-scale nickel

magnets onto these cantilever, as well as translated the Stowe process to work

on the tools available at the Cornell Nanoscale Science and Technology facility.

But, for application to MRFM, the Jenkins fabrication procedure must be com-

pletely revised to produce magnets which overhang the cantilever leading edge,

to mitigate surface-induced force noise.

2.3 Other Methods for Producing Overhanging Magnets

A variety of methods, primarily from the magnetic force microscopy commu-

nity, have been developed for placing magnetic materials on cantilevers. As

it is necessary, for force noise mitigation, for the magnet to extend beyond the

leading edge of the cantilever, MFM tip magnet protocols fabrication protocols
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involving evaporation onto the cantilever sidewall [37], evaporation of metal

followed by focused ion-beam milling (FIB) [38–41], and evaporation through

a nanopore [42] are poorly suited for making high-sensitivity MRFM tips. Fur-

ther, as explained in section 1.1, imaging subsurface spins requires a tip diam-

eter comparable to the sample depth. Thus the ideal fabrication protocol must

be able to produce a range of magnet diameters, in the tens to hundreds of

nanometers range.

Hand-gluing of magnet particles to cantilevers [14,15,19,43], and subsequent

modification by FIB [19,43], have been successfully used in MRFM experiments.

Hand-gluing has so far been limited to ∼ 1µm particle size, which can be in-

proved to ∼ 150 nm magnet diameter by FIB. The limit on hand-gluing comes

from the difficultly of manipulating small particles, while the limit on FIB mod-

ified magnets is a result of damage from the ion beam1 .

Other techniques to produce magnet tips which extend from the cantilever

body are: electron beam deposition of metals from organic precursors [45–48];

electron beam deposition of carbon [49, 50] followed by blanket evaporation

of metal [51–54]; evaporation onto a carbon nanocone [55] or carbon nanotube

[56, 57]; using the magnetic catalyst particle at the end of a multiwalled carbon

nanotube [58, 59] or silicon nanowire [60]; and dielectrophoretic assembly of

magnetic nanorods [61]

Unfortunately, all of the approaches given are serial, require significant hu-

man control, and yield tips with large device-to-device variation. Magnet uni-

formity between devices will play an extremely important role as MRFM is ex-

tended towards routine imaging of 3-D structures, as the shape of the tip mag-

1Modern FIB’s may allow for milling with as few as 5 nm of damage by using lower beam
energies [44].
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net field gradient is needed for accurate image reconstruction [4, 62–64]. Al-

though arrays of singly-clamped metallic nanowires have recently been batch-

fabricated in high yield using electric-field and capillary-force assisted self as-

sembly [65, 66], it is hard to see how to integrate the required sacrificial elec-

trodes into the rest of the protocol for ultrasensitivie cantilever fabrication.

2.4 Intrinsic Dissipation and Quality Factor

The intrinsic dissipation of a mechanical oscillator determines the magnitude

of the thermal driving of the oscillator and thus the minimum force detectable

in a thermal noise limited system. Physically, the intrinsic dissipation term ΓI

is a coefficient of friction. It is a function of the spring constant k, resonance

frequency ω0, and Q, the mechanical quality factor2.

ΓI =
k

ω0Q
(2.5)

The quality factor Q is a measure of the energy lost per cycle of movement, as a

proportion of the total energy of the oscillator.

Q = 2π
∆U
U

(2.6)

The factor of 2π is necessary for continuity with the other measure of Q, the

width of the resonance peak at half maximum, divided by the resonance fre-

quency.

Q =
∆ f
f0

=
∆ω

ω0
(2.7)

2Each mode of oscillation will have a different dissipation value. All data presented in this
work is for the lowest order mode of oscillation.
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Equation 2.6 can be used to derive the form of the dissipation term ΓI , using

equations for the energy of the system, and for the energy lost per cycle.

U =
1
2

kx2
0 (2.8)

Where x0 is the maximum oscillator displacement. The energy lost per cycle ∆U

is given by

∆U = Dissipation term ∗ velocity ∗ distance traveled in one cycle (2.9)

∆U = Dissipation term ∗ (ω0x0)(ω0x0
2π
ω0

) (2.10)

Combining equations 2.6, 2.8, and 2.10 we see that

Dissipation term =
k

ω0Q
≡ ΓI (2.11)

Significant research effort has been conducted into the physical phenomena that

determine the quality factor of mechanical oscillators. Some of the mechanisms

proposed are: thermoelastic loss [67–69], anharmonic couplings with other can-

tilever modes, viscous damping [68, 70], crystalline lattice defects [71], dopants

and other interstitial atoms [71, 72], and effects related to the crystallographic

orientation of the material [73].

A general trend of decreasing Q with decreasing oscillator volume has been

observed both for series of nearly identical devices [74], and for devices of dif-

ferent construction [71]. Surface-related phenomena are believed to be respon-

sible for this trend, for as device size shrinks into the micro and nanometer

scale, the proportion of material in a surface versus bulk state changes dramat-

ically. In addition to general surface phenomena [73, 75], some of the surface-

related mechanisms proposed for changes in quality factor are surface defects

and roughness [72, 76–79], layers of SiO2 [68, 80–82], or layers or particles of

other adsorbates [72, 78, 79, 83–85].

25



A few methods of enhancing the quality factor of devices, beyond changing

device material or design, have been developed. They include annealing, either

in UHV [79, 82] or in various gas environments [77], flash heating [73], and de-

position of specific organic monolayers [78,84]. The thermal processes are ques-

tionable for integration into the fabrication protocol for magnet-on-cantilever

single-crystal silicon oscillators, due to the likelihood of silicide formation. The

addition of organic monolayers is more tractable with the fabrication protocol,

and should be considered.

A fairly recent development has been the use of materials under very high

tensile stress. Extremely high quality factors have been reported in such devices

[86]. However it is the intrinsic dissipation, rather than the more commonly

cited frequency Q product, that is the figure of merit for force detection, and

it remains to be seen whether these tensile stress oscillators will have a lower

dissipation.

In the fabrication process developed, efforts to obtain high quality factor os-

cillators have concentrated on preventing damage to the silicon. This includes

using high-quality silicon oscillators produced via the SmartcutTM process, pre-

venting exposure of the silicon to any etchant species and to any form of plasma,

and thorough cleanliness when removing material such as organic resists and

protective silicon oxides.

Finally, though many advances have been made in the fabrication of ex-

tremely sensitive mechanical oscillators, in MRFM and indeed all force and fre-

quency detection experiments operating at extremely small sample-oscillator

separations, surface related effects, dissipation and jitter, will likely be the dom-

inant noise source. Previously it was shown that to minimize such surface noise,
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it is crucially important that the magnetic tip overhang the leading edge of the

cantilever. A protocol for producing such cantilevers is presented in the next

chapter.

2.5 Magnetic Materials

The ideal material for the tip magnet would have a high saturation magneti-

zation, be easy to integrate into a silicon fabrication process, and be resistant

to chemical modification. Depending on the details of the MRFM experiment,

high coercivity may be desired. The types of magnetic material can be broadly

divided by composition into elemental and alloy magnets, the latter category

further divided into low and high coercivity materials.

High-coercivity can be important considerations for MRFM experiments

conducted with a small (generally speaking, on the order of less than a Tesla)

static magnetic field. In experiments with a small static magnetic field, high co-

ercivity materials are measured to have lower magnetic field fluctuations than

low coercivity materials [37], which can increase the relaxation rate T1 of nearby

spins [19]. Additionally, magnetic field fluctuations at the cantilever resonance

frequency, for a magnet-tipped cantilever, can increase the cantilever energy

dissipation Γ when oscillated in a magnetic field. This can be mitigated by

operating the cantilever with the magnetic field applied along the width of

the cantilever [15, 87]. Members of the high coercivity category include the

rare-earth magnetic alloys, such as praseodymium-iron-boron and neodymium-

iron-boron based compounds. Although rare-earth magnets have been used in

numerous MRFM experiments, including the first detection of a single electron
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spin [18], they will not be considered in this section because of expected extreme

difficulty in their use in a batch fabrication process. Use of high-coercivity rare-

earth elements would require extensive effort to develop a process that could

integrate the necessary tight control over material composition, sintering to cre-

ate the crystalline lattice, and if they are to be used with the static magnetic field

near or below their saturation field, magnetization of the material.

There are four elements that exhibit ferromagnetism above 273 K: cobalt,

nickel, iron, and gadolinium. Several other rare-earth elements, including ter-

bium, dysprosium, and holmium, are ferromagnetic at cryogenic temperatures.

These materials can be alloyed, in cases resulting in compounds that have a

higher saturation magnetization than either of the component elements. As ex-

plained in Chapter 1 a high saturation magnetization Msat is important in cre-

ating a large field gradient. In most MRFM experiments the applied homoge-

neous magnetic field is sufficient to reach the saturation magnetization of the

tip magnet.

In table 2.2 the Msat, coercivity Hc, and Curie temperature TCurie are presented

for several magnetic materials. Note that these are properties for the bulk mate-

rials - at the nanometer scale of the magnets produced in this work, these prop-

erties may be somewhat different. Most significantly, the bulk coercivity may

be less important than other factors such as crystalline and shape anisotropy in

determining the low-field behavior of the magnet [88], and thus is omitted for

the elemental magnets.

All the room temperature elemental magnets are susceptible to reactions

with oxygen [94] and silicon(See Chapter 4). Iron in particular suffers from

rapid oxidation, as its oxide is easily removed and thus does not act as a suf-
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Table 2.2: Magnetic properties of the elemental magnets and select alloys.
The temperature for the Msat values of SmCo5 and N2Fe14B were
not given in the reference cited. Table data are from Refs. [89–
93].

Msat (T, 0K) Msat (T, 290K) Hc (T) TCurie (K)

Nickel 0.66 0.61 631
Cobalt 1.80 1.76 1400

Iron 2.19 2.15 1043

Dysprosium 2.989 N / A 180
Gadolinium 2.116 1.09 293

SmCo5 1.07* 0.877 1020
N2Fe14B 1.61* 1.41 585

CoFe(35:65) 2.45 20-60 × 10−4

ficient barrier to further oxidation. To obtain the best performance, the magnet

material should be protected from contact with oxygen, whether by storage in

an inert atmosphere on encapsulation in a protective medium.

In this chapter properties of cantilevered beams, including oscillation dy-

namics and intrinsic dissipation, have been discussed. Properties of several

ferromagnetic materials, and methods for fabricating overhanging magnets on

cantilevers have also been covered. In the next chapter, the batch fabrication

process developed in this dissertation to produce overhanging magnets on sin-

gle crystal silicon cantilevers is covered, with several of the more challenging

aspects of that process given in detail.
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CHAPTER 3

FABRICATION

3.1 Process Outline

A detailed recipe for the fabrication processes developed in this work are given

in the appendices. The following process outline gives a descriptive documen-

tation of the fabrication steps. Following this outline, several of the steps and

fabrication considerations are covered in more detail.

1) Wafers

The process began with a single crystal silicon-on-insulator (SOI) wafer (Fig-

ure 3.1(a)). The wafers used had a device silicon thickness of 340 nm, a buried

silicon oxide thickness of 400 nm, and a handle silicon thickness of 550 µm. The

wafer radius was 100 mm. With a few exceptions early in the process develop-

ment, all wafers used in this work had 〈100〉 oriented device and handle silicon.

Though the design of the cantilevers, especially for the magnet and can-

tilever tip, changed through the course of this work, the basic wafer layout re-

mained the same. On each wafer 21 identical chips were produced, arranged in

a 3-5-5-5-3 pattern (Figure 3.2). Each chip had 10 dies, and each die had a sin-

gle cantilever1. The wafers were supplied by SOITEC, and produced using the

SmartcutTM process [95]. This method of SOI production has very high (speci-

fied better than 40 nm) device silicon thickness uniformity, and does not exhibit

any strain in the device silicon that could cause undesired cantilever curling. It

1It is possible, and perhaps advantageous to place more than one cantilever on each die, thus
increasing the total possible cantilever yield of the wafer.

30



Figure 3.1: Side-view illustration of the key steps of the fabrication pro-
cess.
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Figure 3.2: Photo of a completed wafer, showing the chip and die arrange-
ment. The individual dies within each chip are visible, how-
ever, the cantilevers are too small to see.

is felt that this wafer production process is less likely to result in lattice damage

from ion implantation during wafer production, as compared to the alternative

SIMOX production process. This is because the Smartcut process involves hy-

drogen ion implantation, while the SIMOX process uses larger, heavier oxygen

ion implantation.

The device layer resistivity was 14-22 Ω/ cm2, giving a boron dopant density

of 6 - 9 × 1014 cm−3. This is currently the only available dopant density from

SOITEC in 100 mm wafers. Wafers with a lower doping level could increase the

quality factor of produced cantilevers [71, 72], and should be used if available.
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2) Alignment Marks

100 nm thick platinum alignment marks, used for all but the last lithographic

step, were created using a lift-off process involving electron beam lithography

and electron-gun evaporation. The alignment mark pattern was first defined

in e-beam resist. Poly(methyl methacrylate) (PMMA) resists were used, of ei-

ther 495,000 or 950,000 molecular weight. Typically a resist bilayer was used

to prevent deposition of metal on the resist sidewall during the e-gun evapora-

tion [96]. A 5 nm layer of chrome was deposited to promote metal adhesion,

followed by 100 nm of platinum. Finally, the resist was removed in a methylene

chloride and acetone solvent bath, lifting off all the excess metal on top of the

resist. Section 3.3 will cover the importance and design of the alignment marks.

3) Magnet Deposition

Magnets were defined and deposited in same manner as the alignment

marks, using either cobalt or nickel as the magnet material (Figure 3.1(b)).

4) Magnet Underetch

Three methods were developed to overhang the magnet from the silicon can-

tilever leading edge (Figure 3.1(c)). These are covered in detail in section 3.2.

The method used most successfully, sulfur hexafluoride (SF6) isotropic plasma

etching, is detailed below. A U-shaped “etch pit” was defined by electron-

beam lithography (Figure 3.5). The pit was placed such that the magnet lay

in-between the arms of the U, and was 50 nm from the base of the U. A SF6 re-

active ion plasma etch was then used to remove the silicon in the etch pit, at the

same time undercutting the silicon beneath the magnet.
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5) Cantilever Body Definition

The cantilever body was defined by optical projection lithography, and

etched through the device silicon layer using the same etch process as the mag-

net underetch (Figure 3.1(d)). The alignment marks for the backside lithography

step were also created in this step.

6) Protective Front Silicon Oxide

A ∼ 1.6 µm thick silicon oxide layer was deposited over the front of the wafer

via plasma-enhanced chemical vapor deposition (PECVD), using SiH4 and N2O

precursor gases (Figure 3.1(e)). This layer provided mechanical protection for

the magnets and cantilevers during the rest of the fabrication process.

7) Backside Silicon Oxide

A 2 µm silicon oxide layer was deposited on the back of the wafer, in the

same manner as the front silicon oxide. The back silicon oxide layer was used,

after patterning, as a hard etch mask for a portion of the through-wafer silicon

etch, described below.

8) Backside Resist

A thick, ∼ 10 µm photoresist layer was pattered on the back of the wafer by

contact optical lithography. This pattern was aligned to the features on the front

of the wafer via twinned-optics in the contact lithography tool observing both

sides of the wafer. This resist defined the “flop hole” underneath the cantilevers.

9) Backside Silicon Oxide Etch

The backside silicon oxide was etched, with the backside resist as the etch
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mask, using a CHF3 reactive ion plasma etch.

10) Through-wafer Silicon Etch

The flop holes were etched through the handle silicon using a Bosch pro-

cess anisotropic silicon etch. The Bosch deep reactive ion etch uses a three-step

process to achieve nearly vertical etching. In the first step, a thin layer of fluo-

ropolymer is conformally deposited over the entire face of the wafer. Directional

sputtering by argon ions removes the fluoropolymer from horizontal surfaces.

A high power SF6 etch in the third step etches only the horizontal surfaces, the

vertical surfaces being protected by the fluoropolymer. The Unaxis 770 tool

used in this work achieved silicon etch rates of 1-3 µm/minute with about 200:1

selectivity to the photoresist and silicon oxide etch masks. For the first 425 µm

of the etch, a higher-speed (∼ 3 µm/minute) etch recipe was used. Etch depth

was monitored by periodic measurement using a mechanical stylus profilome-

ter. For the final 100 µm of silicon etching, the photoresist mask was removed,

leaving the silicon oxide mask, and a “handle” wafer was attached to the front

of the SOI wafer using a removable paste2. During this second etch phase, a

less aggressive (∼ 1 µm/minute) etch recipe was used, to decrease wafer heat-

ing. The etch process was terminated when either all of the silicon had been

removed from the flop holes, verified by optical microscopy, or when cracking

in the silicon oxide membranes over the flop holes became excessive.

11) Buffered Hydrofluoric Acid Silicon Oxide Etch

The “handler” wafer was removed by hand before the buried and front sil-

icon oxide layers were removed in a hydrofluoric acid etch, buffered with am-

monium fluoride(buffered oxide etch or BOE) (Figure 3.1(e)). The buffer keeps

2AI Technology Cool Grease 7016.
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the concentration of etch species, and thus the silicon oxide etch rate, constant

during the etch process. Removal of the silicon oxide layers supporting the can-

tilevers over the flop holes “releases” the cantilevers, and so is often referred to

as the release etch.

12) Critical Point Wafer Drying

The released cantilevers are extremely fragile, and meniscus forces during

air drying from solution would cause the cantilevers to curl and break. A carbon

dioxide critical point dryer (CPD) was used to remove the wafers from solution

without passing through a defined liquid/vapor transition. The wafers must

be transferred from the water-based BOE solution to isopropanol (IPA) before

being placed into the CPD. For safety reasons the wafers must be transferred

into a water bath between the acid and IPA solutions. To prevent the wafers

from prematurely drying, a custom-made Teflon transfer carrier was used. This

carrier kept the wafer under a small amount of liquid while moving between

baths. Because of this solution transfer, numerous water and IPA baths were

needed to ensure that none of the acid or etch products end up in the first IPA

bath (see section 3.5.4 for contamination caused by insufficient water baths), and

that a minimal amount of water remained in the IPA solution when the wafer

was transferred into the CPD.

3.2 Methods to Produce Overhanging Magnets

Three methods were developed to create the desired magnet overhang on the

cantilever leading edge. Two of the methods removed the silicon under the

magnet after the magnet was deposited, while the third method fabricated the
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magnet partially over a sacrificial silicon oxide pillar.

3.2.1 Magnet Undercut Via Anisotropic Silicon Etching

The use of the anisotropic silicon etchant potassium hydroxide (KOH) to pro-

duce overhanging magnets was first proposed by Sean Garner. KOH etches

〈100〉 and 〈110〉 silicon crystallographic planes significantly faster than the 〈111〉

plane. This selectivity can be used to rapidly etch silicon into well-defined

shapes with extremely smooth finished surfaces, but requires careful considera-

tion of the crystallographic structure of the material with respect to the desired

feature orientation [97]. The process developed in this work used SOI wafers

with a 〈111〉 orientation. After magnet deposition, a thin silicon oxide was de-

posited over the wafer by PECVD to protect the silicon that will become the

cantilever body from the etch. A specially shaped feature, the ‘etch pit’, (Figure

3.3) was patterned by electron beam lithography around the magnet. The place-

ment of the etch pit was such that the sides were either parallel or perpendicular

to 〈111〉 plane. As shown in fig. 3.3(a) the 〈111〉 planes run horizontally. This

alignment was accomplished by careful loading of the wafer into the e-beam

tool, so that the major flat of the wafer is parallel to the loading pins in the e-

beam tool wafer chuck. The major flat in a 4 inch, 〈111〉 silicon wafer is along the

〈110〉 plane, and so in this way proper crystallographic orientation of the ‘etch

pit’ was accomplished. This feature was etched through the thin silicon oxide

layer and the device silicon via a timed reaction ion plasma etchs, stopping at

the buried silicon oxide layer. The e-beam resist was removed before the KOH

etch. This proved critical, as the etch did not proceed when the resist was left in

place. The wafer was then placed in a 70 ◦C KOH solution for 70 seconds. This
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Figure 3.3: Illustration of the KOH magnet underetch. (a) The magnet and
etch pit after CF4 etching, but prior to the KOH etch. The thin
protective silicon oxide has been omitted for clarity. (b) The
same feature after the completion of the KOH etch.

etched the 〈100〉 and 〈110〉 faces exposed during the CF4 etch. For the peninsula

of silicon surrounding the magnet, the two sides etched in and met in the cen-

ter, under the magnet, before a continuous 〈111〉 face formed, thus removing the

silicon under the magnet. At the leading edge of the silicon, under the magnet,

the 〈111〉 face is re-entrant, leaving an advantageous knife-edge profile.

An SEM of a magnet overhanging a test structure, after the KOH etch, is

shown in Figure 3.4. Although this method produced excellent results on test

wafers, the unavailability of 〈111〉 SOI wafers required a different process to be

developed.
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Figure 3.4: SEM image of a 50 nm magnet overhanging a etch pit test struc-
ture after a KOH etch. The thin protective silicon oxide was
removed in a BOE etch prior to imaging.

3.2.2 Magnet Undercut Via Isotropic Plasma Etching

A process using an isotropic SF6 reactive ion plasma etch to underetch the mag-

nets was developed in response to the unavailability of 〈111〉 SOI wafers. Ini-

tially, the lithographic mask used for this process was the same shape as that

used for the KOH etch. Later, the peninsula of silicon was lengthened to ∼ 6

µm, giving the resist pattern a “U” shape. This in turn allowed the silicon tip

of the cantilever to be defined by e-beam lithography, rather than optical lithog-

raphy as used for the rest of the cantilever body. This allowed for very narrow

silicon tips to be defined with high registration to the magnets, and also reduced
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the required alignment tolerance for the cantilever body lithographic step from

250 to 2500 nm. The reduced required alignment tolerance greatly decreased

the alignment demands on the optical stepper.

The use of SF6 eliminated the need for deposition of a thin protective silicon

oxide before the magnet underetch, and also eliminated the hassle of integrating

a wet chemical process. In most ways, the SF6 process is superior to the KOH

etch. Its only deficiencies is that it leaves a vertical or slightly non-vertical can-

tilever leading edge, and the etched silicon faces are much rougher than those

which resulted from the KOH etch.

The U-shaped etch pit was defined in e-beam resist so that the end of the

magnet is 50 nm from the base of the U (Figure 3.5(a)). As the etch proceeds,

the silicon (shown in red) is etched down towards the buried silicon oxide layer

(grey), as well as laterally under the resist (Figures 3.5(b) and (c)). The vertical

portion of the etch stops when the buried silicon oxide is reached, but lateral

etching continues until the process is terminated (Figure 3.5(d)). By varying the

total etch time, the degree of undercut or overhang can be controlled (Figure

3.6). As the amount of undercut is increased, the width of the U must increase

as well. If not, the silicon tip of the cantilever can become too narrow to support

the magnet (Figure 3.7).

The etch is very rapid – typical etch times were between 30 and 40 seconds

– and so steps must be taken to ensure uniform etch conditions for each run.

This was done by using the same etch tool for every wafer, and running etch

chamber cleaning and seasoning3 processes prior to each etch. Also, after any

3In the seasoning process, the same recipe that will be used to etch the wafer is run for
several minutes on an empty etch chamber. This ensures that any reaction between the walls
of the etch chamber and the etch gasses will be completed before starting the actual wafer etch,
thus increasing etch uniformity.
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Figure 3.5: Conceptual illustrations showing the progression of the SF6 sil-
icon underetch. The magnet (dark blue) is visible under the
semi-transparent e-beam resist (light blue). In (a), before the
start of the etch, the end of the magnet is 50 nm from the edge
of the resist. As the etch proceeds the silicon etch reaches the
front of the magnet (b) and starts to undercut it (c). Once the sil-
icon oxide layer (grey) is reached (d) the vertical etching stops,
but the lateral etching continues until the process is terminated.

major change to the etch tool, such as replacement of the RF generator or etch

chamber liner, a test wafer was run to check the underetch rate.

There was early concern that the fluorine ions would damage the magnet

metal. However, the magnet is only exposed to the ions on the bottom, with the

top and sides protected by the resist layer. The bottom of the magnet is protected

by the chrome adhesion layer. So minimal direct exposure to or damage from

the fluorine ions is expected.

Some work was also done on using a plasma-free xenon difluoride isotropic
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Figure 3.6: SEM images illustrating the SF6 magnet underetch process. Im-
ages a-c show the increase in length of overhang with increas-
ing etch time. (a), (b), and (c) were taken on a test wafer after
10, 20, and 30 seconds of etching. The magnets are all nickel,
600 nm wide by 200 nm thick. Scale bar is 400 nm. (d) A larger
view of the etch pit - the long tongue of silicon on which the
magnet rests will become the tip of the cantilever body. Scale
bar is 1 µm.

silicon etch. This etch was very hard to control because of the extremely high

etch rate, and was not pursued after initial test runs.

3.2.3 Silicon Oxide Pillars

A third method was developed in which the magnets would not be exposed to

any etch, plasma or wet, until the final BOE release. In this process, the magnets
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Figure 3.7: SEM image of a SF6 test etch pit on a standard (non-SOI) wafer
after a 40 second etch. The etch pit lithographic pattern was
not properly sized for the degree of silicon underetch, leading
to the magnet falling onto the side of the “silicon tip”. Because
there is no buried silicon oxide layer to terminate the vertical
silicon etching, this etch pit is significantly deeper than those
generated on SOI wafers.

were fabricated partially over silicon oxide pillars that extended through the

device silicon layer to the buried silicon oxide layer, and whose tops were pol-

ished to be coplanar with the top of the device silicon. The pillars were created

by localized thermal oxidation of the device silicon, as follows. After creating

etched alignment marks (described in section 3.3), a thin layer of silicon nitride

was deposited and patterned using e-beam lithography and CHF3 reaction ion

plasma etching (Figure 3.8(a)). The exposed silicon was oxidized in a high tem-

perature furnace, with the silicon nitride film protecting the rest of the wafer
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Figure 3.8: Cut-away illustration of the fabrication of silicon oxide pillars
conformal with the device layer silicon. (a) After alignment
marks have been created (not shown), a thin silicon nitride
layer is deposited on the wafer, patterned, and used to define
the width and length of the oxide pillars. (b) The exposed sil-
icon is thermally oxidized. The increase in volume from the
growing silicon oxide causes it to extend above the top of the
silicon nitride. (c) The wafer is planarized by chemical mechan-
ical polishing, removing the excess silicon oxide. (d) The silicon
nitride is removed, and the magnet deposited partially over the
pillar.

44



(Figure 3.8(b)). After silicon oxide growth, the wafer was planarized by chem-

ical mechanical polishing (CMP), using a polishing slurry that was selective to

silicon oxide. In the polish step, the silicon nitride layer acted as both a protec-

tive layer for the device silicon and a stop layer for the polishing process. The

polish step was calibrated so that the silicon oxide would be polished below the

top of the silicon nitride, so that when the the silicon nitride was removed in a

phosphoric acid etch, the top of the silicon oxide pillar would be conformal with

the top of the device silicon (Figure 3.8(d)). The rest of the fabrication process,

starting from the magnet deposition, was the same as described in section 3.1,

skipping the underetch step.

The outcome of this process is similar to that of the damascene process,

which is widely used in semiconductor manufacturing. In the damascene pro-

cess, holes are first etched into a layer of material A. These are filled by a blan-

ket deposition of material B. The excess material B is removed by CMP, leaving

pillars of material B conformal with material A. Silicon oxide pillars grown by

thermal oxidation have been used to make sacrificial supports for pressure sen-

sor fabrication [98] but does not appear to have been implemented with single

crystal SOI wafers.

In addition to limiting the etchant exposure of the magnets, because of the

large size of the silicon oxide pillars this process could allow for µm-sized two-

dimensional structures of arbitrary complexity to be produced overhanging the

end of an attonewton-sensitivity cantilever.

To date, this process has been demonstrated on polycrystalline SOI wafers,

producing cantilevers with overhanging gold nanorods (Figure 3.9). The use of

polycrystalline SOI wafers during development was due to the cost and avail-
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Figure 3.9: A 200 by 100 nm gold nanorod fabricated on a polysilicon can-
tilever. The nanorod overhang was created using via a sacrifi-
cial silicon oxide pillar. The length of unsupported nanorod is
∼1300 nm.

ability of single crystal SOI wafers. Transferring the developed process to single

crystal SOI wafers will be straightforward.

3.3 Alignment Challenges

In the process described in section 3.1, every lithographic step must be in good

registry with all preceding lithographic steps. The alignment tolerances vary

from 50 nm for the separation between the magnet and the etch pit, to several

µm for the placement of the flop holes on the back of the wafer. With the excep-

tion of the backside pattern, all processes align to marks defined in a single write
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by e-beam lithography. This alignment strategy takes advantage of the spatial

accuracy of the e-beam tool, and eliminates additive alignment error. The shape

and size of the marks are set by the requirements of each tool, and separate

marks are used for each tool. Marks can be constructed either from material

deposited on the wafer, or trenches etched into the wafer. The requirements

of mark construction are excellent visibility to all the tools used, resistance to

modification in processing, and minimal defects and line edge roughness.

Except for the silicon oxide pillars process, all of the wafers and test struc-

tures created in this work used deposited marks. This is because generating

etched marks proved extremely difficult with the SOI wafers. For sufficient

visibility in the e-beam, the marks needed to be ≥ 1 µm deep. This required

etching completely through the device silicon and buried silicon oxide layers,

and into the handle silicon. There were two ways this could be accomplished:

a 3 step process, using SF6 etches for the silicon layers, and a CHF3 reactive ion

plasma etch for the silicon oxide layer; or a 1 step process using a CF4 reactive

ion plasma etch etch for all layers.

The 3 step process was unsuitable because the isotropic SF6 etch caused the

marks to be sloped - this in turn unacceptably decreased the alignment accuracy

of the e-beam, which requires a vertical mark edge.

The 1 step process had a sufficiently vertical etch profile, however, the CF4

etch had very poor selectivity to the PMMA e-beam resist used, and sufficiently

deep trenches could not be etched with reasonable (< 2 µm thick) resist layers.

Initially, the alignment marks were written and deposited at the same time,

and thus were of the same thickness and material as the magnets. For 200
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nm thick magnets, the alignment marks were sufficiently resolved by the e-

beam. However, as the magnet thickness decreased the signal from the marks

decreased as well, to below the e-beam detection threshold.

Platinum and tungsten marks, written and deposited in a separate process

before the magnets, were then tried. These metals were selected because they

are very dense, resistant to chemical modification, and (unlike gold) broadly

compatible with the tools in the CNF. Both marks gave suitable performance

in both optical and e-beam alignment tests. Tungsten was more difficult to use

than platinum, as it had to be sputtered as a blanket film over the wafer, then

etched to define the alignment marks. Platinum could be used in a lift-off pro-

cess, and so was selected.

100 nm thick platinum marks, with a 5 nm chrome adhesion layer, are cur-

rently used for the e-beam and optical stepper alignment processes4. The strong

signal from these marks in the e-beam allowed for a significant decrease in the

signal averaging that was required to detect marks co-defined with the mag-

nets, and thus the alignment time decreased from ∼ 1 minute to ∼ 15 seconds

per chip. This decrease, in turn, decreased the overall time needed to write

both the magnets and the etch pits, as in both steps the alignment process was

longer than the writing process. Figure 3.10 shows an SEM image of a e-beam

alignment mark, while figure 3.11 shows an SEM image of an optical stepper

alignment mark. The shape and size of the alignment marks were dictated by

the requirements of the tools used.

4The backside alignment marks are written and etched during cantilever body fabrication.
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Figure 3.10: SEM of a e-beam alignment mark. This is the “global” align-
ment mark, of which two are placed at opposite edges of
the wafer, and used for the initial, rough alignment. “Local”
alignment marks in each die are then read to do the final align-
ment of wafer features. The shorter lines intersecting the large
cross show the areas in which the e-beam exposed the wafer
while reading the alignment mark.

3.3.1 Marks for the Silicon Oxide Pillar Process

Platinum marks could not be used for the silicon oxide pillar process, however,

as the high temperature silicon oxide growth caused platinum silicide to form.

Conversion of platinum to platinum silicide significantly changed the shape of

the platinum marks, rendering them unusable. Etched marks were selected be-

cause, protected by the silicon nitride layer, they would not be affected by the

furnace processing. To etch the necessary depth into the wafer while still us-
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Figure 3.11: SEM image of an optical stepper alignment mark. This is the
“local” alignment mark, placed in each die on the wafer, and
used to align the stepper system to each die.

ing e-beam lithography to define the marks, an aluminum hard mask was used.

Prior to e-beam lithography, a 300 nm blanket layer of aluminum was deposited

on the wafer by e-gun evaporation. The mark pattern, written in PMMA resist,

was transferred into the aluminum layer using a chlorine based plasma etch.

The marks were then etched ∼ 1 µm into the SOI wafer, using a CF4 reactive ion

plasma etch. The aluminum hard mask was removed in a wet chemistry etch

using a commercial solution of phosphoric, acetic and nitric acid5.

5Transcene Aluminum Etchant Type A
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Figure 3.12: SEM of photoresist contamination after critical point drying.
This resulted from failure to remove the through-wafer etch
photoresist mask before the release etch.

3.4 Backside Silicon Oxide

The use of a backside silicon oxide mask was necessary to prevent disastrous

cantilever contamination from through-wafer-etch photoresist during the re-

lease process. During the release process, any remaining photoresist tends to

detach from the back of the wafer, and often re-deposits on the cantilevers (Fig-

ure 3.12). The use of the backside silicon oxide mask allows the photoresist to be

removed in a solvent bath midway through the through-wafer etch, while there

is still sufficient handle silicon remaining to give the wafer mechanical stability.
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Figure 3.13: Optical micrographs of the silicon oxide membrane between
two dies (a) and adjacent to a cantilever (b). Taken in differen-
tial interference contrast imaging mode, they show the distor-
tion in the membrane caused by the compressive stress of the
silicon oxide layers. In (b) a crack is clearly visible. The scale
is the same for both images.

3.5 Release Process Issues

3.5.1 Silicon Oxide Membrane Cracking

At the completion of the through-wafer etch, the flop holes are covered with a

thin silicon oxide membrane composed of the thermally grown buried silicon

oxide layer and the PECVD deposited top silicon oxide layer. Both of these lay-

ers are in compressive stress, which causes the membrane to wrinkle when the

handle silicon is removed (Figure 3.13). The stress and thinness of these films

makes the silicon oxide membrane very susceptible to cracking and tearing. If

the cracks intersect with a cantilever the cantilever is also cracked.

If the crack enlarges to a hole in the membrane, this complicates further

through-wafer etching using the Bosch tool. The helium cooling control sys-
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tem in the Bosch tool regulates the flow rate by maintaining a setpoint pressure

of ∼ 3 Torr in the portion of the tool chamber facing the front (non-etching) side

of the wafer. Breaks in the silicon oxide membrane allow the He to rapidly es-

cape into the etching portion of the chamber (which is at 24 mTorr) so that the

He pressure cannot be maintained at the setpoint and the etch process auto-

matically terminates. If the system is run without the cooling He flow, the etch

process rapidly and deleteriously heats the wafer (see chapter 4).

To allow the through-wafer etch to continue with the He cooling after there

are breaks in the silicon oxide membrane, a second silicon wafer is attached to

the front of the SOI wafer using thermally conductive paste (Figure 3.14). The

second, “handler” wafer is etched so that the majority of the wafer surface is

100-200 µm below the height of the ∼ 5 mm wide rim. This inset prevents the

silicon oxide membrane from sticking to the handler wafer. The handler wafer

is attached when the backside resist mask is removed, when there is ∼ 100 µm

of handle layer silicon remaining in the flop holes. The handler wafer may also

prevent silicon oxide membrane cracking by adding mechanical stability to the

SOI wafer. The handler wafer is removed by carefully prying the wafers apart,

and removing the paste with acetone-soaked swabs. This is done shortly before

the SOI wafer is placed in the BOE solution. Chapter 4 covers how the handler

wafer was originally added to minimize heating of the SOI wafer during the

through-wafer etch.
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Figure 3.14: Illustration of the handler wafer as it is attached to the SOI
wafer. The thicknesses of both wafers has been exaggerated,
as well as the thickness of the thermally conductive paste.

3.5.2 Through-wafer Etch Non-uniformity and Resulting Silicon

Overetch

In all of the plasma etch processes described in this work, there is a radial non-

uniformity in the etch rate, such that material at the rim of the wafer etches ∼

10 % faster than material at the center. In the through-wafer etch, this means

that ∼ 40 µm of handle silicon remains under the cantilevers in the center chip

when the buried silicon oxide layer is reached in chips closest to the wafer rim.

In removing all of the handle silicon at the center of the wafer, the chips near

the rim are significantly overetched. This causes three complications: thinning

of the buried silicon oxide layer, cracking of the silicon oxide membrane, and

lateral etching of the handle silicon.

The Bosch etch process, as implemented in this work, has a selectivity of ∼

200:1 silicon : thermally grown silicon oxide. Thus, about 200 nm of the buried

silicon oxide is removed in chips near the rim of the wafer during the removal

of the final ∼ 40 µm of handle silicon from chips at the wafer center. This trans-
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fers the radial non-uniformity into the buried silicon oxide layer thickness. In

the BOE release etch, this radial non-uniformity causes the silicon oxide under

cantilevers near the rim to be removed well before the cantilevers in the center,

increasing the exposure of the magnets near the rim to the BOE which, as will

be shown in section 3.5.3, can cause damage to the magnet metal.

Longer exposure of the buried silicon oxide layer to the Bosch etch also in-

creases the amount of silicon oxide cracking. It is not known why this is the

case, as the resulting thinning of the buried silicon oxide layer should decrease

the amount of stress, and the estimated loss of 200 nm of silicon oxide is only

10% of the total membrane thickness. However, this is the observed result, and

often the decision on when to stop the through-wafer etch is a compromise be-

tween increasing cantilever yield by completing the etch for cantilever near the

center of the wafer, and decreasing cantilever yield from membrane cracks.

Over-etching in the through-wafer etch can result in a lateral etching of the

handle silicon. This leaves the edges of the device silicon die unsupported by

handle silicon. Vibration of the unsupported silicon ledge could dissipate en-

ergy from the cantilever, lowering the quality factor. Figure 3.15 shows opti-

cal micrographs of three cantilevers, in different locations on the same wafer.

The device silicon with handle silicon underneath is a darker shade than the

unsupported device silicon. Figure 3.15(a) shows insufficient etching leaving

some handle silicon (appearing purple) under the cantilever, Figure 3.15(b) a

nearly perfect amount of etching, with just a slight amount of unsupported de-

vice layer silicon, and Figure 3.15(c) a large degree of underetching, leaving a

ledge of unsupported device silicon several tens of µm wide.
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Figure 3.15: Optical micrographs illustrating varying degrees of handle
silicon under and over etching. All cantilevers are from the
same wafer, and are 200 µm long. The cantilever in (a) was
closest to the center of the wafer, and the cantilever in (c) the
closest to the wafer rim.

3.5.3 Magnet Damage From Hydrofluoric Acid Etch

Both nickel and cobalt are etched by the BOE solution used to remove the sili-

con oxide membranes in the release etch. For the few hundred nm sized mag-

nets used in this work, noticeable damage occurred between 2 and 3 minutes

of etching for cobalt, and between 6 and 8 minutes for nickel. This degradation

was measured by timed etches combined with SEM imaging (Figure 3.16). For

both metals, this etching of the magnet material by the BOE left a fairly narrow

process window to ensure complete silicon oxide membrane removal without

causing magnet damage. To minimize the time the magnets were exposed to

the BOE, the top silicon oxide layer thickness was set so that it would etch in the

same time as the full 400 nm of the buried silicon oxide layer. Thermally grown

silicon oxide etches at ∼ 100 nm per minute, while the top silicon oxide was

measured to etch at ∼ 400 nm per minute. By balancing the silicon oxide layer

thicknesses by their respective etch rates, the magnets would not be exposed to
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Figure 3.16: SEM images of 600 by 200 nm cobalt magnets, taken after (a) 1
minute and (b) 3 minutes of etching in 6:1 buffered hydroflu-
oric acid. The samples examined after 1 and 2 minutes were
early identical to the un-exposed magnets (not shown) while
the 3 minute samples showed obvious degradation.

the BOE until both silicon oxide layers were nearly gone. As mentioned earlier,

this balancing was complicated somewhat by the radial non-uniformity in the

buried silicon oxide layer caused, ultimately, by the non-uniformity of the Bosch

etch.

3.5.4 Precipitation of HF etch products

During a few of the wafer release processes, an oily film was observed to form

on the wafer in the first isopropanol bath. After critical point drying, these

wafers were covered by a large amount of tiny debris (3.17). It is suspected

that this contamination was the precipitated etch product of the BOE silicon ox-

ide etch. The product of the reaction between SiO2 and F is the gas SiF4. This

can react with the buffering agent (NH4)F to form the water soluble (NH4)2SiF6.

If there are insufficient water baths after the BOE etch to dilute this reaction
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Figure 3.17: SEM image of a cantilever tip coated with debris, after com-
pletion of the fabrication process. It is suspected that these
debris are (NH4)2SiF6 particles from the silicon oxide buffered
hydrofluoric etch reaction, precipitated in the isopropanol
rinse bath.

product in the water retained between baths in the wafer carrier, the (NH4)2SiF6

precipitates on the wafer when placed in the less polar IPA bath. This contam-

ination has been eliminated through the use of 6 H2O baths after the BOE etch.

It is reported [99] that (NH4)2SiF6 can be removed by vacuum annealing. If con-

ducted at suitably low temperature to avoid silicide formation, this could allow

recovery of contaminated wafers post-release.
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CHAPTER 4

SILICIDES

A silicide is a binary silicon-containing compound. Nearly all metals form sili-

cides, and they play a major role in the semiconductor industry, finding use

as ohmic contacts, gate electrodes, interconnects, and diffusion barriers. All of

the room temperature ferromagnetic metals form silicides. This work focused

on the silicide behavior of nickel and cobalt, however, iron [100] and gadolin-

ium [101] have been show to form silicides at similar temperatures to Ni and Co.

It is anticipated that the silicide problems experienced with Ni and Co will be

experienced with all of the elemental ferromagnets, and that methods of silicide

prevention will be broadly applicable.

Nickel and cobalt silicides form at the metal/silicon interface at room tem-

perature, upon deposition of the metal [102, 103]. After a thin layer of the sili-

cide has formed, the layer acts as a diffusion barrier preventing more of the

metal ions from reaching the silicon layer, and the reaction rate is thus diffusion

limited [104]. As the sample temperature is increased, the metal atoms become

more mobile and penetrate the silicide layer, forming more silicide. The grow-

ing silicide film, in turn, increases the diffusion barrier. The process is similar

to the thermal oxidation of silicon. For thin metal films, this process continues

until all of the metal is reacted, forming a metal-rich silicide.

If there is still un-reacted silicon present, a further temperature increase

drives the formation of more silicon rich silicides. In thick metal films, the for-

mation of more silicon-rich silicides begins before the complete reaction of all

the metal, as the thermodynamic barrier to the formation of the more silicon-

rich silicide species becomes smaller than the growing barrier to diffusion. Be-
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cause the process is diffusion limited, defining a temperature for the start of

silicide formation is difficult, and the literature has widely reported values.

Based on differential scanning calorimetry studies of multilayer metal / poly-

crystalline silicon samples, in this research it is assumed that silicide formation

starts at an appreciable rate for nickel at ∼450K, and cobalt at ∼550K [105, 106].

In the fabrication process of chapter 3, only in the deposition of the protec-

tive silicon oxide layers is the sample heated to a known temperature above 465

K. However, it appears that it is during the backside silicon etch in the Bosch

etch tool that the silicide formation occurs. This was an extremely unexpected

result, because there is no deliberate heating in this etch. Significant research ef-

fort trying to discover the mechanism for magnet damage in the cantilever fabri-

cation process was unsuccessfully expended before this discovery. The heating

is most likely caused by the exothermic reaction between silicon and fluorine

ions, which has an enthalpy of 602 kJ/mol. As an illustration of the heating this

reaction can cause, assume a 10 by 10 µm area of the handle silicon, 20 µm tall,

sitting on the buried silicon oxide layer. Etching of the first 10 µm of this block

generates ∼ 5 kJ. If all this energy is transferred to the remaining silicon in the

block (neglecting energy loss to the SiF4 etch products, surrounding silicon, and

the silicon oxide layer), the temperature increase will be ∼ 3× 104 K. Clearly the

silicon etch reaction with fluorine is a potential cause of material heating.

In the final portion of the through-wafer silicon etch, the magnet is sur-

rounded by the topside protective silicon oxide and the buried silicon oxide

layer, with only the thin cantilever body and any remaining backside silicon

providing a thermal conduit for heat to flow to other portions of the wafer. The

Bosch etch tool does have a cooling flow of room temperature helium, at a rate
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of a few SCCM, but even when it is applied directly to the magnets, in a sample

with no protective front silicon oxide, the gas flow is not sufficient to prevent

silicide formation. The importance of the thermal contact provided by the back-

side silicon is demonstrated in Figure 4.1. This series of SEM images are taken

of the same wafer, showing cobalt magnets after the completion of the fabri-

cation process. This wafer was processed before the formation of silicides was

identified, and no steps were taken to prevent heating during the through-wafer

etch. Cobalt silicide is soluble in HF [107]. Thus, the disappearance of the cobalt

magnets after the release process is attributed to the formation of silicides. In

this wafer, the etch was stopped after only the cantilevers nearest the rim of the

wafer were completely free of handle-wafer silicon (Fig. 4.1(f)). The dies closer

to the center of the wafer had an increasing amount of silicon remaining under

the cantilever (Fig. 4.1(d)). The die in the center of the wafer had backside sili-

con remaining under the entire region of the flophole (Fig. 4.1(b)). The degree of

damage to the magnets increased the further away from the center of the wafer

- the only change being the amount of backside silicon remaining. This leads to

the conclusion that the backside silicon must provide sufficient thermal contact

or, alternately, insulation to prevent the formation of silicides.

4.1 Evidence for Silicides

Unfortunately, all of the evidence for silicide formation is indirect. Because of

the fragility of the unreleased, through-etched wafers it would be nearly impos-

sible to prepare samples of the suspected silicides for transmission electron mi-

croscopy analysis, and the size of the magnets is too small for elemental analysis

techniques such as X-ray photoelectron spectroscopy, energy dispersive X-ray
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Figure 4.1: SEM images of wafer with incomplete through-wafer silicon
etch. Images on the left are close-up images of the tip magnets
of the cantilevers on the right. The scale bar is 400 nm long in
the images on the left, and 100 µm long in the images on the
right.
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spectroscopy, and Auger electron spectroscopy. As noted previously, Ni and Co

silicide are destroyed in the buffered hydrofluoric acid etch during the release

process.

The conclusion that silicide formation is the cause of loss of tip magnet ma-

terial is drawn from the careful SEM observation of numerous wafers up to the

protective silicon oxide deposition step (after which the magnets cannot be seen

until post release processing), combined with numerous control experiments

that ruled out magnet damage from the hydrofluoric etch, the critical point dry-

ing, or the protective silicon oxide layer. The backside silicon oxide etch is not

suspected as the cause, as the loss of magnet material was observed before the

backside silicon oxide layer was added to the fabrication procedure. This leaves

the backside silicon etch as the only step in which the damage to the magnetic

material could occur.

The most definitive proof of both silicide formation and the Bosch etch be-

ing the cause was a wafer processed without a front silicon oxide layer, thus

allowing SEM observation at points during the backside etch. Comparisons of

images taken after 360 µm of etching (Figure 4.2) with those at the completion

of the backside etch (Figure 4.3) shows a large growth next to each magnet, as-

sociated with varying amounts of structural change to each magnet. These

large growths were not observed anywhere but next to the magnets. The only

materials in contact or nearby the wafer during the etch were the silicon can-

tilever body, the buried silicon oxide layer, the chrome adhesion layer, the he-

lium cooling gas, and the aluminum lower plate of the etch tool. Given these

materials, silicide formation is the most reasonable conclusion. As additional

proof, with several of the magnets imaged, the growth appeared to be issuing
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Figure 4.2: SEM images of wafer with no front protective silicon oxide, af-
ter 360 µm of silicon has been removed in the through-wafer
etch.

Figure 4.3: SEM images of wafer with no front protective silicon oxide, af-
ter completion of through-wafer etch. Cantilever body is sit-
ting on buried silicon oxide layer.
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Figure 4.4: SEM images of wafer with no front protective silicon oxide, af-
ter completion of through-wafer etch. Silicide appears to be
coming from metal/silicon interface.

from the metal/silicon interface, consistent with silicide formation (Figure 4.4).

4.2 Barrier Layer for Silicide Prevention

In the semiconductor industry the method for preventing silicide growth is use

of a barrier layer. The barrier layer must be highly impervious to the diffusion

of metal atoms, and not react with the metal of interest. To be applicable to

the fabrication process for MRFM cantilevers, the barrier material must also be

resistant to HF etch. In order to not increase the surface-induced dissipation

expected when the cantilever approaches a surface, the barrier layer must be

thin, perhaps 20 nm or less. The material must promote sufficient adhesion be-

tween the silicon and the magnet. The ideal barrier layer for this process would

also be deposited by evaporation, so that it could be applied in the same step,
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and using the same lithographic mask, as the magnet. The two materials used

most commonly for silicide prevention barriers, SiO2 and Si3N4, are inapplica-

ble as both etch readily in HF, and evaporated films of these materials tend to

be porous. Three metals were tested as barrier materials: chromium, titanium,

and tantalum. The first was already in use in the fabrication process, as a 5 nm

adhesion layer. Titanium was selected as it is another commonly used adhesion

material. Tantalum was selected because it is extremely dense, and is used as a

copper diffusion barrier in integrated circuits. The magnet material was cobalt.

All materials were deposited with electron-gun evaporation, a 20 nm layer of

the barrier metal, followed by a 200 nm layer of cobalt. Because of the material,

tool and time costs in performing the full backside etch process on SOI wafers,

a simple furnace test was developed to mimic or exceed the thermal conditions

found in the Bosch etch tool. For each barrier metal, 4 samples were prepared:

one left bare, and the other three coated with a ∼250 nm PECVD silicon oxide

layer after the metal deposition. The bare sample and 2 of the silicon oxide-

coated samples were loaded into a 500 ◦C N2 furnace. The furnace run length

was 5 minutes, with an additional ∼ 3 minutes in a load or unload step. Dur-

ing the loading and unloading, the temperature of the samples was unknown

but likely close to 500 ◦C (from the thermal mass of the furnace load arm) and

the atmosphere that of the cleanroom air. The final sample was not heated, but

left as a control for any changes caused by the PECVD silicon oxide deposition.

After heating, the silicon oxide was removed from the control sample, as well

as one of the silicon oxide-coated, heated samples, in a 2.5 minute buffered HF

etch. The damage seen in the bare samples (Figures 4.5, 4.6, and 4.7) is now

believed not to be caused by silicide formation but rather oxidation of the mag-

net that occurred during the load process. Comparison of the morphology
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Figure 4.5: Ta barrier layer test structure, annealed with no protective sili-
con oxide.

Figure 4.6: Ti barrier layer test structure, annealed with no protective sili-
con oxide.
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Figure 4.7: Cr barrier layer test structure, annealed with no protective sili-
con oxide.

of the tantalum barrier layer sample annealed under silicon oxide (Figure 4.8),

to the sample coated with silicon oxide but not annealed (Figure 4.9), suggests

that the changes in morphology may be related to the BOE etch, as the time for

noticeable damage to cobalt magnets in this etch is between 2 and 3 minutes.

This testing was conducted when the silicide formation temperature of

cobalt was believed to be approximately 500 ◦C. With the currently accepted

value of ∼ 250 ◦C, and the suspicion that the damage seen was related to cobalt

oxide formation, it may be worth revisiting these tests, using a rapid thermal

annealing device to precisely control both the length of heating time, and to

mitigate cobalt oxide formation.

Finally, films of aluminum oxide produced by atomic layer deposition (ALD)

are also an interesting possible barrier layer material. Although the ALD pro-

cess results in a conformal film, it has been reported [108] that when deposited
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Figure 4.8: SEM images of 200 nm thick cobalt magnet atop a 20 nm tanta-
lum barrier layer. The sample was covered with PECVD silicon
oxide and annealed at 500 ◦C.

Figure 4.9: SEM images of 200 nm thick cobalt magnet atop a 20 nm tanta-
lum barrier layer. The sample was covered with PECVD silicon
oxide but not annealed.

69



over a patterned resist layer, thin films of Al2O3 shatter when the resist is re-

moved, allowing it to be deposited in a lift-off type process. Al2O3 is an ex-

tremely dense film, resistant to chemical etch, and unreactive to metals. ALD

deposition allows defect free films of only a few nanometers thickness to be

reliably deposited.

4.3 Alternative to the Bosch Etch

In the work by Stowe [109] the backside silicon was removed in a tetramethy-

lammonium hydroxide (TMAH) etch. TMAH, like KOH, anisotropically etches

silicon. With proper design of the backside mask to account for the non-vertical

etch, this method, which can be done in a few hours at 50-60 ◦C, would presum-

ably not have the concerns of heat build-up.

KOH etching was tested as a method for performing the last ∼ 100 µm of

through-wafer etch. The initial 400 µm of etching was performed in the Bosch

tool. The KOH etch was performed at 90 ◦C, where silicon etch rates are ∼ 1.3

µm/minute. These tests encountered several difficulties. Bubbles from the etch

and the viscosity of the KOH solution were believed to have caused significant

breakage of the silicon oxide membrane. This breakage was a problem even

through a surfactant was added. The selectivity of KOH to the silicon oxide

was quite a bit worse than in the Bosch process. For the front silicon oxide layer,

this could be surmounted by thickening the layer. The problem with the buried

silicon oxide layer was the low ( 50:1) selectivity to silicon, combined with the

radial non-uniformity of the Bosch etch. This meant that the buried silicon oxide

at the outer edge would be completely removed by the KOH before the silicon
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for the innermost dies was removed. This, however, would not be a problem

if KOH was used to etch through the entire wafer. Because of the selectivity

issue and silicon oxide membrane cracking, KOH etching was unsuitable for

the through-wafer silicon etch.

4.4 Heat Management in the Bosch Etch

4.4.1 Heat Sink Wafer

Controlling the heat generated in the Bosch process is difficult as there is no

direct temperature measurement of the wafer or wafer holder. Further, the av-

erage temperature of the wafer likely does not reflect the local temperature of

the magnets, especially during the crucial final portion of the backside silicon

etch. The addition of a second wafer as a heat sink was tried as a simple so-

lution to wafer heating. The wafer was attached to the front of the SOI wafer

using thermally conductive paste. Because of the fragility of the silicon oxide

membranes at the completion of the etch process, this second, ”handler” wafer

could only be in direct contact with the SOI wafer along the rim. This likely

significantly reduced any thermal flow between the two wafers, and perhaps

not unexpectedly, its inclusion did not resolve the silicide problem. Indeed, it

is possible that the addition of the second wafer worsened the SOI wafer heat-

ing, as it blocked the flow of cooling helium. As noted in chapter 3 the handler

wafer has nevertheless been kept in the process to allow etching to continue

after cracks develop in the silicon oxide membranes over the flop holes.
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4.4.2 Aperture Plates

The radial non-uniformity of the Bosch etch complicated application of heat

management schemes. As noted earlier, the crucial period for heat management

in the Bosch etch was while there was less than ∼100 µm of silicon remaining.

Because of the etch non-uniformity the outermost dies reached this thickness

threshold when the innermost dies had ∼140 µm of silicon to be removed. Thus

any heat management process had to be applied for 40% more etching than if the

Bosch etch rate was uniform across the wafer. As most of the heat management

schemes developed significantly decreased the etch selectivity to silicon oxide

and resist, and also decreased etch speed, increasing etch uniformity would be

beneficial. To improve the radial uniformity of the through-wafer etch, a se-

ries of circular aperture plates were produced from silicon nitride-coated silicon

wafers. The goal was to create an inverse of the non-uniformity initially, by

selectively etching regions of the wafer exposed through the plates. The aper-

tures were 25, 50, and 75 mm in diameter. Testing of various combinations of

the plates and etch depths found that three apertures did not provide sufficient

gradation to create the needed inverse of the etch non-uniformity, and the im-

provement was 20% at best. If this approach is tried again, use of a greater

number of apertures might improve performance.

4.4.3 Slow Etching

The most successful silicide mitigation scheme prevented heat buildup by de-

creasing the duration of continuous Bosch etching, and implementing timed

periods between etches to allow the tool chamber (in particular the poorly con-
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ductive ceramic wafer clamp) to cool. As there is no way to monitor the tem-

perature of this clamp, the length of the cooling periods was a best-guess, and

this led to variability and difficulty in reproducing the fabrication process. Re-

peatedly restarting the Bosch etch decreases the selectivity to silicon oxide. This

is because C4F8, the source of the protective fluoropolymer that gives the Bosch

process its anisotropy, is an aggressive silicon oxide etchant if there is an applied

bias between the sample and the plasma. Such a bias is necessary in lighting the

plasma. As mentioned in section 4.3 a high selectivity to silicon oxide is needed

to completely remove the silicon in the center of the wafer without destroying

the cantilevers nearest the wafer rim. A suitable balance between silicon oxide

selectivity and heat buildup was found with etch periods of 20 to 30 loops (with

etch period time 260 to 390 seconds), removing approximately 4 to 6 µm of sili-

con per period. The cooling period of 10 minutes was also a trade-off between

desire to allow the chamber to full cool, and the time availability of both the

equipment and researcher. 1 This procedure is highly dependent on the specific

Bosch tool used - moving the process to a different tool will require care and de-

tailed inspection of the tool’s wafer handling and cooling mechanisms, as well

as its etch rate (as a proxy for the thermal load).

4.4.4 Cryogenic Etch

The ideal tool to accomplish a low temperature backside silicon etch is a cryo-

genic silicon etcher. This type of tool, while having a slower etch rate, lower di-

rectional anisotropy, and worse selectivity to silicon oxide and photoresist than

1Experience gained from opening the etch chamber of the Bosch etch tool to check the clamp
temperature after etching suggests that a wait time of 30 minutes would allow the wafer clamp
to cool to room temperature.
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Bosch process tools, has the excellent property of keeping the wafer at cyrogenic

temperatures throughout the etch process [110]. Thus there should be no sili-

cide formation. Another potential advantage over the Bosch etch is that there is

no remaining sidewall material after completion of etching, in comparison with

the extremely difficult to remove fluoropolymer that remains on the sidewalls

after a Bosch etch. If such a tool is available, its use is highly recommended.
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CHAPTER 5

CANTILEVER AND MAGNET ANALYSIS

5.1 Probe

A custom-built probe 1 operating at 4.2 K and high vacuum (P ≤ 10−6 mbar) was

used for cantilever spring constant, frequency, and quality factor measurements.

The same probe was used to conduct cantilever magnetometry measurements

of the magnetic moment and coercivity of the tip magnets, surface-induced dis-

sipation and jitter measurements, and electron spin resonance MRFM experi-

ments [112].

5.2 Frequency, Spring Constant and Quality Factor Measure-

ment

Cantilever motion was monitored via a fiber optic Fabry-Pérot interferometer,

operating at 1310 nm [113]. The laser was temperature tuned so that the can-

tilever motion was centered on a fringe [114]; in normal operation cantilever

motion did not exceed the distance of one fringe. The spring constant was de-

termined by measuring the thermally driven motion of the cantilever, xth, and

using the relationship k = kBT/x2
th. The interferometer is aimed at the hexagonal

reflector pad, which is located 75 µm from the cantilever tip. To account for the

difference in amplitude of motion at the pad versus the tip, the measured xth

was multiplied by a factor αPT derived using the modeshape for the first can-

1See appendix C of Ref [111] for a complete description of the probe design.
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tilever mode. αPT = 2.02 for 200 µm long cantilevers, and αPT = 1.35 for 395 µm

long cantilevers. Any non-thermal driving of the cantilever, such as mechanical

vibrations, will result in a lower value for the spring constant when measured

in this way. Because the thermal driving is very small at 4.2K, the uncertainty

in the spring constant is fairly large.

Cantilever resonance frequency was measured by driving the cantilever into

self-oscillation [115] using a piezoactuator at the cantilever base, controlled by

a custom-built analog controller implemented in a fixed-gain positive feedback

loop. The digitized output of the interferometer was processed with a software

frequency demodulator [21], giving the instantaneous cantilever frequency.

The quality factor was determined by measuring the cantilever ring-down

time. The cantilever was driven into self-oscillation, the driving circuit turned

off, and the cantilever signal recorded. A plot of cantilever amplitude versus

time was created, and fit to A(t) = A0e−
t
τ + A∞ where A∞ is the thermally driven

cantilever amplitude. Q was calculated from Q = π fc τ, with fc the cantilever

frequency. The time τ is often referred to as the 1/e time, as in a time τ the

cantilever amplitude will decay to 1/e of its original magnitude.

5.3 Cantilever Magnetometry

The magnetic moment of the tip magnet was determined by frequency-shift can-

tilever magnetometry [37, 87, 116, 117]. In this technique a homogeneous mag-

netic field is applied along the long axis of the cantilever, while the cantilever is

driven in self-oscillation (Figure 5.1). The applied field exerts a torque on the tip

magnet as the bending of the oscillating cantilever creates an angle between the
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Figure 5.1: Illustration of geometry for cantilever magnetometry measure-
ments.

field of the tip magnet and the applied field. This torque acts as a restoring force

on the cantilever. The cantilever frequency is recorded as a function of applied

field. Modeling the tip magnet as a single-domain particle with uniaxial shape

anisotropy, the frequency shift versus field data was fit to:

∆ f
f0

=
µ

2k

(
α

l

)2 B∆B
B + ∆B

. (5.1)

with µ the saturated magnetic dipole moment, µ0 the permeability of free space,

k the cantilever spring constant, l the cantilever length, α = 1.377 a constant re-

lated to the modal shape of cantilever vibration, B = µ0H the applied magnetic

field, and ∆B = µ0µ∆N/V with V the magnet volume and ∆N = Nt −Nl the differ-

ence in the demagnetization factors for the nanomagnet along the cantilever’s

thickness and length, respectively. To compute magnetic volume, the magnet

area was estimated from scanning electron microscope images and the magnet

thickness was taken from a quartz crystal microbalance thickness monitor dur-

ing magnet metal deposition.

Figure 5.2b shows a plot of frequency shift versus applied magnetic field for
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one of the magnet-tipped cantilevers analyzed. The red line is the fit to equation

5.1. Figure 5.2(a) is the residuals of the fit, which shows extremely good agree-

ment except near zero applied field. This disagreement near zero field is due

to the hysteresis of the tip magnet, which is not accounted for by the model of

equation 5.1. Figure 5.2(c), a zoom-in of the data near zero applied field, shows

more clearly this hysteresis behavior. The arrows in the figure indicate the direc-

tion of the magnetic field sweep for each trace. The hysteresis shown is consis-

tent with single-domain switching at a coercive field µ0Hc = 50 mT. Above the

switching field the traces for the two field sweep directions are essentially indis-

tinguishable. The magnetometry data from all cantilevers analyzed is presented

in section 5.6.

5.4 Force Gradient Detection of Electron Spin Resonance

A limitation of cantilever magnetometry is that it provides information only

about the total magnetic moment of the sample. For MRFM experiments, it is

crucial that the leading edge of the magnet, the edge closest to the sample, be

well magnetized (i.e. free of non-magnetic material caused by oxidation or sili-

cide formation). Any such ”dead layer” effectively increases the magnet-sample

distance, decreasing the magnetic field gradient and thus the spin signal. To

show that the tip magnet’s leading edge is well magnetized, one cantilever was

used to mechanically detect electron spin resonance (ESR) from a nitroxide free

radical using a force-gradient approach [15, 43] modified to detect fast-relaxing

spins [118]. The sample was a 230 nm thick film of 40 mM TEMPAMINE in

perdeuterated polystyrene coated with 20 nm of gold. Operating at 4.2 K and

10−6 mbar, the cantilever was brought to 80 nm above the sample surface in the
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Figure 5.2: Data from cantilever magnetometry analysis of a overhanging
nickel nanomagnet. (b) Frequency shift versus applied mag-
netic field. The blue and green lines are data taken sweeping
the field in opposite directions, and the red line is the fit used
to calculate the tip magnetic moment. (a) The residuals from
the fit. (c) The magnet hysteresis near zero field. The arrows
indicate the direction of field sweep for each of the traces.
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pendulum geometry and driven to peak-to-peak amplitude of 80 nm. A static

magnetic field was applied along the width of the cantilever [15,87] which miti-

gates damping of the cantilever arising from tip-field interactions [14]. Note that

this is somewhat different than the geometry illustrated in Figure 1.5. In this ex-

periment, the static magnetic field was applied in the direction that would be

out of the plane of the illustration in Figure 1.5. To saturate sample spins, a

cantilever-synchronized train of 17.7 GHz microwave pulses was applied to the

sample, modulated at 9.56 Hz. Each pulse lasted for 6 cantilever cycles, fol-

lowed by 6 cycles without microwave irradiation. The cantilever frequency was

recorded using the method described in section 5.2.

5.5 Surface-induced Dissipation and Frequency Noise

Cantilever dissipation and frequency noise (or jitter) were measured as the can-

tilever was moved towards the same gold-coated polymer sample used for the

ESR-MRFM measurements. The total dissipation value at each point was deter-

mined by measuring the cantilever ringdown time, and then calculating Γ from

that value and the measured cantilever frequency and spring constant. The jit-

ter is determined by recording the instantaneous frequency of the cantilever for

time t, and then taking the power spectrum of fluctuations of the frequency from

the average frequency over that time period [22].
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Figure 5.3: Cantilever with a nickel magnet with a ∼ 50 nm overhang. This
was a result of insufficient SF6 etching.

5.6 Results of Cantilever Analysis

Following the fabrication process in chapter 3, five wafers were produced that,

from SEM analysis, had at least one undamaged magnet at the completion of

processing. All were nickel magnets. On two of the wafers, the undercut etch

was insufficient, leaving the magnets either negligibly (Figure 5.3) or not over-

hanging the silicon (Figure 5.4). Initial analysis was performed with a scanning

electron microscope. Typically, it was extremely obvious by this ”visual” inspec-

tion whether the fabrication process was successful, from the significant mor-

phological changes and/or lack of magnets on unsuccessful cantilevers (Figure

5.5). Although SEM analysis does not provide information about the magnetic

properties of the magnets, it is much faster than the methods that do, and is

a simple check to select candidates for more time-consuming analysis such as

cantilever magnetometry.
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Figure 5.4: Nickel magnet positioned several hundred nm back from the
cantilever tip. This was a result of an incorrect position adjust-
ment in the “etch pit” lithography.

Figure 5.5: SEM analysis showing partially or completely absent tip mag-
nets after cantilever fabrication.
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The magnification at which the tip magnets could be imaged, at best

150,000x, was far less than the 250,000x images that could be obtained at the

cantilever base. At higher magnifications, the tip would appear to oscillate

rapidly from the electron beam (Figure 5.6). Initially this was believed to be

caused by the electron beam driving the cantilever on resonance when focused

closely on the end of the cantilever. However, the time in which the oscillations

disappeared when the magnification was decreased did not correlate with the

long ringdown times measured for these cantilevers. A second hypothesis was

formed, that the charge deposited on the end of the cantilever was causing de-

flection of the electron beam, rather than the cantilever. This theory, however,

does not explain why the problem increased at higher beam voltages, which

should make the electron beam harder to deflect. As a practical concern, the can-

tilever ”driving” was decreased by decreasing the beam voltage, scanning at a

∼ 45 degree angle to the long axis of the cantilever, and using a frame-averaging

imaging mode rather than pixel averaging. Supporting the cantilever with a

grounded knife-edge near the tip should also decrease the driving, but would

increase the chance of breaking the cantilever.

From SEM analysis, magnets of dimensions from 70 nm by 100 nm to 600 nm

by 200 nm were fabricated on cantilevers both 200 and 395 µm long. Measured

magnet overhang lengths were from < 50 nm to ∼400 nm. It is possible that

magnets were also successfully produced on cantilevers of 1 and 1.5 mm length,

however, it proved impossible to image the cantilever tips with the required

resolution. This speculation is based on the presence of magnets on shorter,

395 µm long cantilevers on the same wafer.

From the cantilevers with tip magnets identified from SEM analysis, 3 were
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Figure 5.6: SEM images showing the end of a cantilever with some debris
attached. (a) This image was taken quickly, with no signal av-
eraging, to minimize the oscillations. (b) This image was taken
using a pixel averaging mode, which increases the beam dwell
time in each pixel, and results in significantly more apparent
cantilever oscillation.

84



Table 5.1: Measured cantilever and tip magnet properties. All of the can-
tilevers studied had dimensions of 200 µm by 4 µm by 0.34 µm.
Every cantilever produced on the same wafer as B and C has
shown a Q > 105. lm, wm, and tm are the length, width and thick-
ness of the magnet, and lover is the length the magnet overhangs
the cantilever tip. f0, k and Q are the measured frequency, spring
constant, and quality factor for the cantilever’s first mode of os-
cillation. µs is the tip saturation magnetic moment, ∆N is the cal-
culated difference in the demagnetization factors for the nano-
magnet along the cantilever’s thickness and length, and µ0Ms is
the saturation magnetization of the magnet. The magnetometry
data from cantilever C was only fit between -4 and 4 T.

A B C D

lm 1500 1475 1475 nm
wm 200 110.6 123 nm
tm 50 100 100 nm

lover 0 349 279 nm
f0 8778 8920 8705 8928 Hz
k 0.78 ± 0.13 0.78 ± 0.03 0.87 ± .08 0.71 mN/m

Q 86 500 235 000 189 000 85 000
µs 8.04 ± 1.29 5.24 ± 0.24 5.85 ± 0.53 fA/m2

∆N 0.54 ± 0.09 0.69 ± 0.03 0.71 ± 0.07
µ0Ms 0.68 ± 0.11 0.40 ± 0.08 0.41 ± 0.04 T

selected for analysis by cantilever magnetometry. These were drawn from two

different wafers, produced 6 months apart. All of the cantilevers analyzed were

200 µm long. Table 5.1 presents the data for these cantilevers. Data for cantilever

D, produced on the same wafer as cantilever A but without a tip magnet, is

included to show that the addition of the magnet does not significantly modify

the cantilever properties.

From the data for the best cantilever analyzed, the calculated minimum de-

tectable force at 4.2K is 3.7 attonewtons in a 1 Hz bandwidth. This is a 4x im-
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provement over the best cantilever produced by Jenkins [36].

The saturation-magnetization magnetometry measurements show that the

tip magnets are almost fully magnetized. The large uncertainty in the µ0Ms

value is primarily from uncertainty in the measurement of the spring constant.

The difference between cantilever A and cantilevers B and C is attributed to dif-

ferences in processing, and not caused, we believe, by the larger magnet over-

hang distance of cantilevers B and C.

ESR-MRFM measurements were done with cantilever B, to confirm that the

overhanging tip magnet material was magnetic. The measured spin-induced

cantilever frequency shift is shown in Figure 5.7(a) as a function of applied mag-

netic field. The field at which spins far away from the tip are in resonance is es-

timated to be near 0.62 T. The negative-going high-field peak in Figure 5.7(a) is

attributed to a small number of spins just below the tip, where the field from the

tip opposes the applied static magnetic field. The amplitude and lineshape of

the mechanically detected resonance signal – particularly the “local” high-field

peak – is a very sensitive function of the shape and magnetization of the tip’s

leading edge.

In Figure 5.7(b) the observed signal (circles) is compared to the signal calcu-

lated numerically by modeling the tip as a uniformly magnetized cuboid (solid

lines). The sample temperature is taken to be T = 11K based on prior work with

larger tips affixed to the cantilever by hand. The signal calculated assuming that

the entire overhanging region is damaged and nonmagnetic is essentially zero

(Model 1), completely inconsistent with the observed signal. Assuming a fully

magnetized tip (Model 2), on the other hand, overestimates the signal size and

the width of the local signal, suggesting that the tip may be partially damaged.
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Signal was therefore simulated for two additional models of tip damage. In

Model 3 the lower 50 nm of the tip is assumed to be magnetically dead while

in Model 4 a uniform 12 nm thick magnetic dead layer is assumed. Both of

these models better reproduce the width of the local signal, but the agreement

between simulated and observed lineshape is not quantitative. The most likely

reason for this disagreement is that the tip geometry deviates from the ideal

cuboid geometry assumed in the simulation. The general agreement between

observed and calculated signal seen in Figure 5.7(b) for models 3 and 4 never-

theless allows the conclusion that the tip’s leading edge is well magnetized with

a damage layer no thicker than ∼15 nm. The accuracy of the simulation model

was confirmed by excellent agreement between predicted and recorded signal

using the same TEMPO sample and a cantilever with a µm-diameter hand-glued

nickel magnet [118].

The dissipation and jitter, as a function of distance above the gold-coated

sample, were measured for cantilever B, in vacuum at 4.2K. The dissipation

data is shown in Figure 5.8. This excellent result shows that surface-induced

dissipation is less than the intrinsic dissipation until the magnet is ∼ 10 nm

from the surface. This is a dramatic improvement over the dissipation measured

using a bare silicon cantilever of the same leading edge dimensions (though

395 µm long), over a similar gold-coated polymer sample (Figure 5.9) [11]. The

dissipation of the bare cantilever increases above the intrinsic dissipation at a

distance of ∼ 130 nm above the surface. This is a complete validation of the

hypothesis that smaller, metal tips extending the silicon cantilever body will

experience much smaller surface-induced dissipation than a similar cantilever

with a non-overhanging magnet.
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Figure 5.7: ESR-MRFM data collected with cantilever B, and associated
modeling to estimate the size of the magnetically dead layer.
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Figure 5.8: Dissipation versus tip-sample separation data collected with
cantilever B over a gold coated polymer sample, at 4.2K.

Figure 5.9: Dissipation versus tip-sample separation data collected with a
bare silicon cantilever, over a gold surface at 4.2K.
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Figure 5.10 shows the jitter spectrum for cantilever B, taken at several dis-

tances from the surface. The intersection between the surface-induced jitter,

which has a frequency dependence proportional 1/f, and the detector frequency

noise, which is proportional to f2, results in a different optimum frequency of

lowest frequency noise at each tip-sample separation. Figure 5.11 shows the fre-

quency noise at this optimum frequency as a function of distance. This graph

shows that surface-induced jitter increases above the thermal minimum at much

greater distances than surface-induced dissipation, for reasons that are not clear.

This result is less promising for the application of these cantilevers in frequency

shift MRFM experiments, as it limits their use in measurements at close tip-

sample separation to amplitude-shift [4] rather than frequency shift [15, 18] de-

tection protocols.

5.7 Other Applicable Analysis Techniques

There are several other techniques that might be able to determine the material

or magnetic properties of the tip magnets, to non-destructively verify the suc-

cess of the fabrication process. In the area of material analysis is scanning trans-

mission electron microscopy (STEM) with electron energy loss spectroscopy

(EELS). The overhanging portion of tip magnets is less than 100 nm thick and

is therefore amenable to STEM-EELS analysis without the need for destructive

material thinning. The combined STEM-EELS data can show crystal grain sizes,

elemental content, and material electronic state with nanometer resolution. The

electronic state information would allow one to distinguish between elemental

nickel, and nickel in compounds such as oxides or silicides. It is the lack of elec-

tronic state information that makes other elemental identification techniques
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Figure 5.10: Power spectrum of frequency noise measured for cantilever B
at various heights over a gold coated polymer surface.

less useful, techniques such as energy dispersive X-ray spectroscopy and Auger

electron microscopy. X-ray photoelectron spectroscopy might be able to differ-

entiate between elemental nickel and nickel in compounds, but does not have

the spatial resolution needed, with X-ray spot sizes at least several µm across.

Methods to directly measure the magnetic field from the tip magnet could be

used, with modeling, to determine the magnetic material structure. This data

could also be used to map out the tip field gradient, necessary for successful

image reconstruction in an MRFM imaging experiment.

Three techniques identified with this capability are electron holography

[119], scanning SQUID magnetometry [120], and scanning diamond NV cen-
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Figure 5.11: Frequency noise power at the optimum frequency versus
height measured for cantilever B.

ter magnetometry [121]. The field gradient of interest is that of the tip magnet

in saturation, which requires operating in an applied magnetic field with a mag-

nitude on the order of the tip magnet material’s saturation magnetization. This

rules out N-V diamond magnetometry. It would also introduce a fair degree

of difficulty in using electron holography and scanning SQUID magnetometry.

For such an electron holography measurement, the applied field would need to

be homogeneous over the entire electron beam path. For scanning SQUID mag-

netometry, the applied field would need to be very steady, as minute changes

in the applied field magnitude would appear as changes in the tip magnetic

field. Additionally, to achieve the required spatial resolution the SQUID detec-

tion loop would need to be much smaller than so far demonstrated [122].
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Briefly, electron holography can produce images of magnetic field lines with

sub-µm resolution, and give quantitative measurement of the field at any point

in the image [123]. The technique is based on the interaction between the mag-

netic field and a beam of electrons, creating interference patterns in the elec-

tron beam image. Scanning SQUID magnetometry can map out the spatial field

magnitude from the tip magnet. A nanoscale scanning SQUID demonstrated a

field resolution of 74 bohr magnetons per root hertz with a detection loop of 0.3

square µm [122].

While these other methods might yield corroborating evidence of tip mag-

netization, it seems unlikely that they will produce more detailed information

about tip magnetization and damage layer thickness and shape than MRFM

measurements combined with STEM-EELS.
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

There are a few future directions possible for this work: using materials with a

higher saturation magnetization, adding a protective coating to prevent magnet

oxidation and reaction with silicon during processing, decreasing the magnet

size, and increasing the cantilever sensitivity. Initial work has been done in all

these areas, and the last three will be considered in more detail.

6.1 Better Cantilever Force Sensitivity

Returning to equation 1.8 and momentarily disregarding the quality factor, in-

creased force sensitivity can be realized by making the cantilevers longer, nar-

rower, or especially, making them thinner. Two factors limit this progression

towards long, narrow, and very thin cantilevers: the increase in frequency noise

at low frequencies, and the decrease in Q with decreasing oscillator volume. A

single experiment was run to explore the limits of cantilever length using this

fabrication protocol. The long cantilevers were of the same width and thick-

ness as the other cantilevers produced in this work, but were 1 and 1.5 mm

long. Small flutes (see Figure 6.1) were added to the base of these cantilever,

to reduce the strain at the clamping point. Yields were surprisingly high, 79 %

and 57 %, compared to the 43 % yield for 395 µm long cantilevers produced on

the same wafer. Optically, the cantilevers showed no sign of curling, indicating

that the silicon is virtually strain-free. While the cantilever properties have not

been measured, the theoretical minimum detectable force at 4.2K, assuming a

moderate Q of 50000, are 3.5 and 2.9 attonewtons, respectively. The calculated
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Figure 6.1: SEM image of a 1 millimeter long cantilever.

resonance frequencies are very low, around 440 and 200 Hz, respectively.

6.2 Smaller Magnets

Maximizing equations 1.11 and 1.12 finds that, for force detection of magnetic

resonance, the optimum magnet radius for a given magnet-sample separation

is 3 times the separation. This is calculated for spherical magnets, but should

be similar to the optimal separation versus magnet radius ratio for the magnets

produced in this work, which tend to have rounded corners. Based on the dis-

sipation measurements reported in Chapter 5, the cantilever used in those mea-

surements should be able to operate at the thermal noise limit 10 nm from the

sample surface. The magnet in that measurement was approximately twice the

optimal diameter for that separation. Shrinking the magnet to the optimal size
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of ∼ 60 nm should decrease surface-induced dissipation further, allowing for an

even smaller magnet-sample separation. One of the goals moving forward on

this work is to decrease the magnet dimensions to 50 nm and below.

The smallest overhanging magnets produced in this work were approxi-

mately 50 by 50 nm, made on test structures during development work on the

potassium hydroxide underetch. The smallest magnets fabricated on finished

cantilevers were ∼ 70 by 100 nm, though they have not been analyzed by can-

tilever magnetometry.

As magnet width decreases, successful fabrication becomes increasingly dif-

ficult, the ends of the magnets more rounded, and the edges rougher1. This

rounding and roughening is due to the resolution of the e-beam tool, the molec-

ular structure of the polymer resist, and the mechanics of the lift-off process. Of

these three, it is the liftoff process that sets the limit on magnet size. As the mag-

net width decreases, it becomes increasingly difficult for the evaporated metal

to reach the bottom of the resist pattern, and more likely to adhere to the sides

of the resist, and in the worst case pinches off the resist pattern, allowing no

metal in. Thinning the resist mitigates this to some degree, but also reduces

the amount of material that can be deposited. Material deposited on the side-

walls makes it difficult to lift-off the unwanted metal on top of the resist, and

often leaves jagged edges to the magnets from sidewall material that remained

stuck to the magnet. Reducing the magnet width to below 70 nm, although well

above the stated 15 nm resolution of the e-beam tool, is clearly not as simple as

changing the feature size on the software layout.

Process development was done targeting a 30 nm wide, 20 nm thick magnet.

1Magnets can be made almost arbitrarily thin by decreasing the amount of material de-
posited.
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Figure 6.2: Sub 50 nm wide cobalt magnet test structure fabricated on a
silicon wafer.

Factors varied were magnet size in CAD, resist thickness, resist development

method, and remnant resist removal or “descum” method. To allow for the thin

resist layers needed, a single layer of resist was used, rather than the bilayer

used for larger magnets. The best result obtained is a ∼ 40 nm wide, 30 nm

thick cobalt magnet, produced on a bare silicon wafer (Figure 6.2). When the

process was repeated using an SOI wafer, no magnets were found after the can-

tilever etch step, the first time that the magnets locations could be identified.

The observed zero yield was attributed to the difference in secondary electron

yield between bare silicon and SOI wafers. Further development work towards

smaller magnets needs to be conducted on SOI wafers, which will greatly in-

crease the development cost.

As the size of the magnet decreases to the tens of nanometers range, pre-

venting damage to the magnetic material from oxidation or silicide formation

becomes extremely critical. Nonmagnetic material, especially on the magnet

leading edge, effectively decreases the size of the magnet, requiring an even

closer approach to the spins in order to achieve the maximum signal per spin.

In other words, this same magnetically dead material effectively buries the spin

deeper beneath the surface of the sample, in terms of how close the leading

edge of the (dead layer) of the magnet must be to the sample surface. Returning
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again to the simplified spherical model, if a 30 nm diameter magnet had a 5 nm

oxide layer, it would be impossible to reach the optimum approach for the 20

nm effective magnet, before the sphere impacted the surface. Development of

preventative schemes for oxidation and silicide formation are therefore crucial

to achieving single proton sensitivity via mechanical detection.

6.3 Other Magnetic Materials

Stronger magnetic field gradients, and thus better magnetic force sensitivity,

could be realized by using a higher saturation magnetization material such as

iron or cobalt. After successful fabrication of nickel magnets, the same pro-

cess was used to attempt to produce similar cobalt magnet-tipped cantilevers2.

The first trials were unsuccessful, and extensive SEM analysis during subse-

quent fabrication runs found that the cobalt magnets were transformed into

large blobs (Figure 6.3). Further investigation found that the blobs formed after

the SF6 RIE plasma cantilever body etch, but the morphological change was only

visible after the wafer had been allowed to sit overnight, in the cleanroom. En-

ergy dispersive X-ray spectroscopy (EDS) analysis of the blobs, using a Bruker

Esprit EDS attached to a Zeiss Supra 55 SEM, identified the presence of chlo-

rine, which was found nowhere else on the wafers examined (Figure 6.4). At

the time of writing, the favored hypothesis is that, by an unknown mechanism,

the cobalt is converted to cobalt chloride during the cantilever body etch, which

then overnight absorbs moisture from the cleanroom air to become cobalt chlo-

ride hydrate. This explains both the presence of chlorine, the overnight mor-

phological change, and the significant magnet volume change.

2Iron was not tried because of the expected difficulty in preventing iron oxidation.
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Figure 6.3: Cobalt magnet after the cantilever body etch (left), and a “blob”
on the same wafer after it was left to sit overnight in the clean-
room.

Figure 6.4: Spatial map of EDS analysis of a blob from the same wafer as
figure 6.3. (a) An SEM image of the blob analyzed. (b) The
green dots indicate the spatial distribution of cobalt in the same
area as shown in (a). (c) The red dots indicate the spatial distri-
bution of chlorine in the same area as shown in (a).
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6.4 Magnet Capping Layers

To prevent chlorine contamination of cobalt magnets, and the oxidation of

magnet material during fabrication, conformal capping layers over the mag-

nets could be deposited. Silicon oxide and aluminum oxide films deposited

by atomic layer deposition were tried in preliminary experiments, and much

thicker layers of PECVD silicon oxide were used during the early stages of this

project, in conjunction with the KOH magnet underetch. As all are blanket de-

position methods, covering the entire wafer with material, these are not suitable

for a long-term capping layer, as they will need to be removed at the conclusion

of cantilever processing to prevent degradation of the cantilever quality factor.

Both SiO2 and Al2O3 are reported to etch in HF [124], and so the capping layers

could be removed as a part of the cantilever release process. By quickly mov-

ing the wafer through the necessary baths after the HF etch, and taking care to

blanket the cantilevers in an inert atmosphere after the completion of the critical

point drying process, the total time exposed to oxidizing environments can be

minimized.

The results with ALD silicon oxide suggest that the 25 and 50 nm thick lay-

ers were too thin to be mechanically robust after the underlying silicon was

removed – SEM’s of test structures show that the silicon oxide was mostly or

completely broken away after the SF6 underetch (Figure 6.5), and more signifi-

cantly it did not prevent the underlying cobalt magnets from reacting to form a

presumed cobalt chloride (Figure 6.6). This assumption is based on similarity to

other wafers on which cobalt chloride was confirmed by energy dispersive X-

ray spectroscopy. ALD aluminum oxide was also tried, but work halted when it

did not readily etch in buffered HF. The literature reference cited above did not
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Figure 6.5: 50 nm ALD deposited protective silicon oxide film over cobalt
magnet test structures. Images show an intact film (left) and
one which has mostly broken away (right). The images were
taken after the completion of the magnet underetch process
step.

Figure 6.6: 50 nm ALD deposited protective silicon oxide film, which
has failed to prevent chlorine contamination of the underlying
cobalt magnets.
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test buffered HF on an ALD Al2O3 film, which could explain the negative result.

Sub - 1 nm nanometer thickness ALD Al2O3 films have been reported to allow

9 months of atmospheric storage of silver coated nanospheres without change

to the silver layer, measured by continued activity in surface-enhanced Raman

experiments [125].

In this work, a protocol to fabricate nanometer-scale magnets overhanging

the ends of attonewton-sensitivity silicon cantilevers has been described, and

demonstrated with nickel magnets as small as 70 by 100 nm. Properties of these

cantilevers were confirmed by cantilever magnetometry and ESR-MRFM detec-

tion of the nitroxide electron spin label TEMPO in a perdeuterated polystyrene

film. This work is a significant improvement on the fabrication protocol of Jenk-

ins [36]. The magnets produced here are smaller and, because of the magnet

overhang, have extremely low surface-induced dissipation.

For the first time, ESR-MRFM has been demonstrated with a batch-

fabricated, magnet-tipped cantilever. This represents two important steps in

the development of MRFM as a general analytical technique. By placing the

magnet on the cantilever, the widest range of possible samples can be studied.

And with batch fabrication of such cantilevers, a path to mass production and

wide distribution of cantilevers is opened. In the probe used in this work, the

cantilever was the only hardware component that was neither off-the-shelf nor

could be easily produced by a commercial machine shop. Thus it is cantilever

mass-production which limited commercial production of such an MRFM mi-

croscope. The process developed in this work now provides a pathway to such

mass-production.

With these cantilevers, operating in a surface-dissipation limited ESR-
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MRFM experiment at a 10 nm separation, a single electron spin should be de-

tectable with a SNR of 5 (Modeling the magnet tip as a sphere of radius 70 nm,

and with 1 second of signal averaging).

With the extremely low surface-induced force noise and high force sensitiv-

ity demonstrated by the cantilevers produced in this work, single proton detec-

tion is feasible. To reach this milestone, only the magnet needs improvement.

Specifically, the size of the non-magnetic dead layer must be reduced. Further

investment is warrented to develop protection schemes, compatible with the

rest of the fabrication process, to eliminate magnet material damage.
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APPENDIX A

FABRICATION PROCESS FOR OVERHANGING MAGNET-TIPPED

CANTILEVERS USING SF6 ETCHING

Notation for resist spinning

Resist spinning and baking information are listed in an abbreviated form:

Resist type / spin speed / spin time

Post-spinning bake temperature / bake time

Unless noted, all spinners were set to accelerate at 1000 rpm/sec.

All solvents were obtained from Fisher Scientific or J. T. Baker and used as re-

ceived.

All metals were obtained from Kurt J. Leskar.

E-beam resists were obtained from Microchem, supplied in solvent.

A.1 Alignment Mark Preparation

1. Resist Bilayer

(a) 495,000 MW poly(methyl methacrylate) (495PMMA), 8 % by weight

in anisole (A8)1 / 3000 rpm / 70 sec

Bake 170 ◦C / 20 min

(b) 950,000 MW poly(methyl methacrylate) (950PMMA), 2 % by weight

in methyl isobutyl ketone(M2) / 4000 rpm / 60 sec

Bake 170 ◦C / 15 min
1If a specified concentration of resist is unavailable, the next higher or lower concentration

can be used, adjusting the spin speed to give the same approximate resist thickness.
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2. E-beam pattern writing

A JEOL JBX9300FS gaussian beam tool was used for all electron beam

lithography in this work.

(a) Magazine file “zerolayer” (unless specified otherwise, all magazine

and associated files are in directory “hickman” on the JEOL tool.)

(b) Before running job, run calibration routines CURRNT, INITBE, INI-

TAE, HEIMAP.

(c) Electron dose 2000 µCouloumbs cm−2

(d) Run job.

3. Resist development

(a) Soak in 1:3 methy isobutyl ketone (MIBK) : isopropanol (IPA) solution

for 75 sec with gentle agitation.

(b) Spray-rinse with IPA, blow dry with nitrogen.

(c) Remove any residual resist (descum) in the feature areas using the

Glen 1000 oxygen plasma cleaner, recipe # 3, 100 watts, 60 sec. Place

wafers on shelf B, set up to operate in RIE mode. (The same tool and

process is used for all resist descums, and will hereafter simply be

called “descum”).

4. Metal Evaporation

CVC SC4500 electron-gun evaporator used for all metal evaporations. The

CNF has two such tools, the “odd hour” tool was usually used.

All metals used were from CNF supplied stock, sourced from Kurt J.

Leskar.

Chrome (99.95% purity): 50 Å deposited at ∼ 2.5 Å/sec

Platinum (99.9% purity): 1000 Å deposited at ∼ 2.5 Å/sec
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5. Lift-off

(a) Soak in ∼ 1:1 acetone : methylene chloride (MeCl) solution for 10-15

minutes, until no metal is visible on the wafer surface 2.

(b) Remove wafer from lift-off bath, constantly spraying with IPA to pre-

vent metal particles from drying on the wafer surface.

(c) Blow dry with nitrogen.

A.2 Magnet Preparation

1. Resist bilayer 3

(a) 495 PMMA A8 / 3000 rpm / 70 sec

Bake 170 ◦C / 20 min

(b) 950 PMMA M2 / 4000 rpm / 60 sec

Bake 170 ◦C / 15 min

2. E-beam pattern writing

(a) Magazine file “onelayer magnetom 0109”. This will define magnets

50, 100, and 200 nm wide by 1500 nm long on 200 µm long cantilevers.

(b) Electron dose 1800 µCouloumbs cm−2

(c) Before job, run calibration files CURRNT, INITBE, INITAE, SFOCUS,

HEIMAP.
2Concerns about chlorine contamination from the MeCl has prompted use of pure acetone

lift-offs. This requires either several hours of soaking or sonication.
3The resist bilayer base layer thickness should be ≥ 2x the desired magnet thickness. The

procedure presented here works for magnets up to 200 nm thick.
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(d) Determine proper gain setting using the program ACGRG. Mark po-

sition for this program is 158250, 43140. Marks are 3 µm wide, 2000

µm long. Set sweep position 90 µm from mark center. All other set-

tings, such as scan time, number of scans, and sweep width, depend

on the quality of the marks and how well the wafer is loaded in the

tool chuck.

(e) Check gain settings and alignment quality by running SETWFR.

(f) Run job.

3. Resist development

(a) Soak in 1:3 MIBK : IPA solution for 75 sec with gentle agitation.

(b) Spray-rinse with IPA, blow dry with nitrogen.

(c) Descum.

4. Metal Evaporation

Chrome: 50 Å deposited at ∼ 2.5 Å/sec

Cobalt or Nickel (99.995 % purity): deposit at ∼ 2.5 Å/sec

5. Lift-off

(a) Soak in 1:1 acetone : MeCl solution for 10-15 minutes, until no metal

is visible on the wafer surface.

(b) Remove wafer from lift-off bath, constantly spraying with IPA to pre-

vent metal particles from drying on the wafer surface.

(c) Blow dry with nitrogen.
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A.3 Etch Pit Preparation

1. Resist layer

495 PMMA A8 / 2000 rpm / 75 sec

Bake 170 ◦C / 20 min

2. E-beam pattern writing

(a) Magazine file “twolayer magnetom 0109”.

(b) Electron dose 1800 µCouloumbs cm−2

(c) Before job, run calibration files CURRNT, INITBE, INITAE, SFOCUS,

HEIMAP.

(d) Determine proper gain setting using the program ACGRG. Set sweep

position 70 µm from mark center.

(e) Check gain settings and alignment quality by running SETWFR.

(f) Run job.

3. Resist development

(a) Soak in 1:3 MIBK : IPA solution for 75 sec with gentle agitation.

(b) Spray-rinse with IPA, blow dry with nitrogen.

(c) Descum.

A.4 Etch Pit Etching

SF6 / O2 RIE etch in Oxford Plasmalab 80. The CNF has two of these tools, the

“MOS clean” tool #2 was used.
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1. Run a 15 minute oxygen plasma chamber clean.

2. Without venting the chamber, run a 5 minute seasoning SF6 / O2 plasma.

3. Load wafer in center of platen, using quartz chips around the rim to keep

wafer in place.

4. Run 40 sec etch 4. Tool settings most recently used were 20 SCCM SF6, 10

SCCM O2, 200 W, chamber pressure 200 mTorr.

5. Resist removal

(a) Soak in ∼ 1:1 acetone : MeCl solution for about half of the time it took

to remove the metal during the lift-off processes.

(b) Remove wafer from lift-off bath, constantly spraying with IPA.

(c) Blow dry with nitrogen.

A.5 Cantilever Body Preparation

1. Resist layer

(a) Prime wafer with Microposit P-20.

(b) Shipley SPR 700 1.2 (Microchem)/ 4000 rpm / 40 sec

Bake 90 ◦C / 60 sec

2. Cantilever exposure

Exposed on GCA AS200 Autostep I-line stepper.

(a) Mask is “Magnetometry frontside all short”.

4Etch time is rate dependent, and as of 9/6/2009 generated a ∼ 400 nm magnet overhang.
The etch rate should be checked periodically and etch time adjusted. This also should be done
after any major change to the tool.
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(b) Stepper account is [100,66] with password “STEVE”.

(c) Run setup before exposing.

(d) Exposure command is “MAP CANT\MAP,EXPO”, exposure time

0.15 sec, alignment mark tone negative (N).

(e) Once alignment marks are found, manually rotate wafer chuck for

coarse alignment, then use keyboard for fine rotation and position

alignment.

(f) Note alignment residuals.

3. Post-exposure bake 115 ◦C for 60 sec.

4. Develop in Hamatech automated wafer developer, process “300 MIF 60

sec DP”.

5. Use optical microscope to check cantilever to etch pit alignment. If poor,

strip resist in acetone and re-shoot.

A.6 Cantilever Body Etching

1. Follow steps 1-4 of “Etch pit etch”.

2. Resist removal

(a) Soak in acetone for 2 minutes, with sonication.

(b) Spray rinse with IPA.

(c) Blow dry with nitrogen.
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A.7 Protective Top Silicon Oxide Deposition

GSI UltraDep plasma-enhanced chemical vapor deposition tool (PECVD)

1. Run the automated clean recipe with a 10 minute clean time.

2. Deposit silicon oxide on front of wafer using recipe “N1.46 undoped ox-

ide”, deposition temperature of 275 ◦C. 325 sec deposition time. Target

layer thickness is 1.6 µm 5 .

A.8 Backside Silicon Oxide Deposition

1. Run immediately following the top silicon oxide deposition.

2. Same recipe as the top silicon oxide, but with a deposition time of 430 sec,

for a target layer thickness of 2 µm.

A.9 Backside Resist Preparation

1. Resist layer

(a) Prime with P-20.

(b) Shipley SPR 200 7.0 (Rohm and Haas electronic materials) / 500 rpm

(accel at 250 rpm / sec) / 5 sec // 1800 rpm / 40 sec.

For adequate coverage use two droppers of resist.

Bake 115 ◦C / 60 sec. Do not quench after the bake.

5Silicon oxide layer thickness set by the thickness of the buried silicon oxide layer and the
relative etch rates of the buried silicon oxide and the deposited silicon oxide. See Section 3.5.3.
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2. Expose on electronic visions EV-620 contact aligner. Use the backside

alignment, soft contact recipe “Marohn harrell2” with a 25 sec exposure

time. Mask is “magnetometry backside all short”.

3. Develop in Hamatech, recipe “300 MIF 120 sec DP” followed by “300 MIF

60 sec DP”.

4. (Opt) Place wafer in 90 ◦C oven for >8 hour hard bake, if not done after

the backside silicon oxide etch.

A.10 Backside Silicon Oxide Etch

CHF3 / O2 RIE in Oxford Plasmalab 80.

1. Run a 5 minute oxygen plasma chamber clean.

2. Load wafer in center of platen, using quartz chips around the rim to keep

wafer in place.

3. Run a 20 minute CHF3 / O2 etch. Tool settings most recently used (80 #2)

were 50 SCCM CHF3, 2 SCCM O2, 240 W, chamber pressure 40 mTorr.

4. Check if silicon oxide was completely removed – etched areas will look

like standard silicon when removal complete.

5. Repeat steps 3 and 4 until silicon oxide is removed.

6. (Opt) Place wafer in 90 ◦C oven for >8 hour hard bake. This can also be

done before the backside silicon oxide etch.
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A.11 Through-wafer Silicon Etch

Bosch-process deep RIE using a Unaxis 770 tool.

1. Run 200 loops of recipe “1thru”.

2. Measure the etch depth using a P–10 mechanical stylus profilometer.

3. Let etcher cool for 15 minutes, then run an additional 200 loops of “1thru”.

4. Measure etch depth, and from calculated etch rate determine the number

of additional loops needed to reach a 400 µm etch depth.

5. Let etcher cool 15 minutes, then etch to 400 µm depth. If it requires more

than 200 loops of “1thru” to reach that depth, split into two etches, letting

tool cool 15 minutes between etches.

6. Strip resist in a 2 minute acetone soak.

7. Attach handler wafer to front of SOI wafer with Cool Grease 7016 ther-

mally conductive paste 6 .

8. For the last 100 µm of the through-wafer etch, the etch rate is progressively

slowed and the cooling period between etches somewhat increased. There

is no set steps for this process. When in doubt, allowing greater cooling

periods is always better. The general process followed is to run 50 loops

per cycle until the handle silicon clears nearest the edge of the wafer, then

run 25 loops per cycle until the etch is finished.

9. Continue etching until all the handle silicon is removed under the can-

tilevers (determined by optical microscopy) or the membrane cracking be-

6Handler wafer created by etching a standard silicon wafer ∼ 200 µm deep in the Unaxis 770.
The rim is created by the area of silicon protected by the wafer clamp.
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comes severe (see chapter 3 for a more detailed discussion of the end of

the through-wafer silicon etch).

A.12 Release

1. Remove handle wafer using a razor blade to carefully pry wafers apart.

2. Remove cool-grease with acetone-soaked swabs.

3. Buffered hydrofluoric acid (BOE) silicon oxide etch.

(a) Place Teflon transfer boat in a plastic tub. Fill tub with 6:1 BOE (35%

NH4OH, 7% HF, in H20, J. T. Baker) so that that the liquid level is ∼ 1

cm above the rim of the transfer boat.

(b) Place wafer face-up in the transfer boat, and let etch for 6 minutes.

(c) Move transfer boat and wafer to a water bath, keeping under liquid

(in transfer boat) during the move.

(d) Using the same transfer technique, run the boat and wafer through a

total of 6 water baths.

(e) Run the wafer through 3 IPA baths.

A.13 Critical point drying

Tousimis Automegasamdri CO2 critical point dryer.

1. Set purge time to 5 (= 25 minutes).

2. Fill CPD chamber ∼ 5 mm deep with IPA.
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3. Quickly move wafer from transfer boat to chamber.

4. Run CPD process.
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APPENDIX B

PROCESS MODIFICATION TO ELIMINATE PROTECTIVE FRONT

SILICON OXIDE

The purpose of producing a wafer with no protective front silicon oxide is to

allow SEM inspection of the magnets during the last stages of the through-wafer

etch, to monitor for silicide formation.

B.1 Backside Silicon Oxide Deposition

GSI UltraDep PECVD

1. Run the automated clean recipe with a 15 minute main etch time. Extend

the “wafer-unloaded” etch times to 4 minutes for the “clean” etch, and 2

minutes for the “high” etch.

2. Load SOI wafer face-down.

3. Run recipe “N1.46 undoped oxide”, temperature of 400 ◦C. Target film

thickness is 2.5 µm.

Follow procedure of appendix A, from A.1.1 through A.6.2.

B.2 Protective PMMA Front Coating

495 PMMA A11 / 2000 rpm / 75 sec

Bake 170 ◦C / 20 min
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Follow process steps in appendix A for “backside resist preparation” and “back-

side silicon oxide etch”.

B.3 Through-wafer Silicon Etch with SEM Monitoring

Unaxis 770 Bosch deep RIE

1. Etch to a depth of ∼ 350 µm with recipe 1thru. Use sets of 200 loops, al-

lowing 15 minutes of cooling between each etch cycle.

2. Strip backside photoresist and frontside PMMA in a acetone or acetone /

MeCl bath.

3. Magnets are now uncovered for SEM inspection.

4. Continue the through-wafer etch process, periodically inspecting the

wafer with SEM.

B.4 Release

The release process is the same as in A.12 and A.13, with the BOE etch time

shortened to 3 minutes because of the absence of the top silicon oxide. However,

since the magnets will be exposed to the BOE for the entire etch, it is likely that

the magnets will be damaged.
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APPENDIX C

FABRICATION PROCESS FOR OVERHANGING MAGNET-TIPPED

CANTILEVERS USING SILICON OXIDE PILLARS

C.1 Alignment Mark Preparation

1. Blanket aluminum deposition CVC SC4500 evaporator

2000 Å of aluminum at ∼ 5 Å/sec

2. Resist 495 PMMA A11 / 4000 rpm / 75 sec

Bake 170 ◦C / 20 min

3. E-beam pattern writing

(a) Magazine file “zerolayer”.

(b) Electron dose 2000 µCouloumbs cm−2

4. Resist development

(a) Soak in 1:3 MIBK : IPA solution for 75 sec with gentle agitation.

(b) Spray-rinse with IPA, blow dry with nitrogen.

(c) Descum.

C.2 Alignment Mark Etching - Aluminum

Plasmatherm PT–740 chlorine etcher

1. Season chamber for 5 minutes using sapphire wafer.
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2. Etch marks using recipe “aletch”. Etch times 3 minutes breakthrough etch,

5 minute aluminum etch, no passivation etch.

3. Immediately on unloading, place wafer in water tub, and then rinse using

a spin-rise-dryer.

C.3 Alignment Mark Etching - Silicon and Silicon Oxide

CF4 RIE etch in Oxford Plasmalab 80.

1. Run a 10 minute oxygen plasma chamber clean.

2. Without venting the chamber, run a 5 minute seasoning CF4 plasma.

3. Load wafer in center of platen, using quartz chips around the rim to keep

wafer in place.

4. Run 40 minute CF4 etch. Target etch depth > 1 µm1.

5. Resist removal

(a) Soak in ∼ 1:1 acetone : MeCl solution.

(b) Remove wafer from lift-off bath, constantly spraying with IPA.

(c) Blow dry with nitrogen.

6. Aluminum removal.

Etch aluminum in wet chemical etch “aluminum etchant type A”.

1This can be monitored during calibration work with the P-10 profilometer. However, more
critical than the actual depth is that the marks are deep enough to provide adequate contrast in
the e-beam alignment process.
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C.4 Silicon Nitride Layer Deposition

GSI UltraDep PECVD

1. Run the automated clean recipe with a 10 minute clean time.

2. Deposit silicon nitride on front of wafer using recipe “LS nitride”, deposi-

tion temperature of 400 ◦C. Target layer thickness is 50 nm.

C.5 Silicon Nitride Mask Preparation

1. Resist

495 PMMA A8 / 2000 rpm / 70 sec

Bake 170 ◦C / 20 min

2. E-beam pattern writing

(a) Magazine file “Ox pillars 0609”.

(b) Electron dose 1800 µCouloumbs cm−2

(c) Before job, run calibration files CURRNT, INITBE, INITAE, SFOCUS,

HEIMAP.

(d) Determine proper gain setting using the program ACGRG. Set sweep

position 70 µm from mark center.

(e) Check gain settings and alignment quality by running SETWFR.

(f) Run job.

3. Resist development

(a) Soak in 1:3 MIBK : IPA solution for 75 sec with gentle agitation.
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(b) Spray-rinse with IPA, blow dry with nitrogen.

(c) Descum.

4. Silicon nitride etch CHF3 / O2 RIE etch in Oxford Plasmalab 80.

(a) Run a 10 minute oxygen plasma chamber clean.

(b) Without venting the chamber, run a 5 minute seasoning CHF3

plasma.

(c) Load wafer in center of platen, using quartz chips around the rim to

keep wafer in place.

(d) Run 2 minute etch, recipe “Nitride etch”.

5. Resist removal

(a) Soak in ∼ 1:1 acetone : MeCl solution.

(b) Remove wafer from lift-off bath, constantly spraying with IPA.

(c) Blow dry with nitrogen.

C.6 Silicon Oxide Pillar Growth

“Anneal 3” furnace, “wet oxide no HCL” recipe.

Run growth at 1100 ◦C for 85 minutes. Target silicon oxide thickness > 2.2x

device layer thickness.
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C.7 Silicon Oxide Pillar Chemical Mechanical Polishing

Strasbaugh 6EC chemical mechanical polisher, Pad IC 1000, Slurry Celexis

CX495.

Run recipe “oxynitirde select”, polish time 85 seconds. The focus for the polish

time is that the pillars are conformal with the device silicon.

C.8 Silicon Nitride Layer Removal

1. Soak wafer in boiling 85 % phosphoric acid solution, 30 minute etch time.

2. Rinse in spin-rinse-dryer.

C.9 Magnet Preparation

Same as the procedure in appendix A, with the magazine file for e-beam writing

“mags for ox pillars”.

C.10 Cantilever Body Etch

Same as the procedure in appendix A.

For the rest of the fabrication process, follow the procedure given in ap-

pendix A. With regards to the release etch time, the silicon oxide pillar effec-

tively doubles the thickness of silicon oxide under the magnets. This requires

doubling the BOE etch time. This, in turn, requires doubling the thickness of
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the top protective silicon oxide layer, to ensure that the silicon oxide above and

below the magnets clear at approximately the same time.
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APPENDIX D

FABRICATION PROCESS FOR OVERHANGING MAGNET-TIPPED

CANTILEVERS USING POTASSIUM HYDROXIDE UNDERETCHING

Follow the process given in appendix A for both alignment mark and mag-

net preparation, through A.2.5. For these two e-beam writes, the magazine

files are “zerolayer.mgn” and “onelayer.mgn” in folder “garner” on the e-beam

tool. However, since the optical masks for this process are likely destroyed, it is

strongly recommended that all e-beam files be recompiled, and masks re-made,

from the CAD file “Harrell 20050829 magnets and stepper cantilevers”.

D.1 Thin Silicon Oxide Layer Deposition

GSI UltraDep plasma-enhanced chemical vapor deposition tool (PECVD)

1. Run the automated clean recipe with a 10 minute clean time.

2. Deposit silicon oxide on front of wafer using recipe “LS TEOS oxide”, de-

position temperature of 400 ◦C. 32 sec deposition time. Target layer thick-

ness is 180 nm.

D.2 Etch Pit Preparation

1. Resist layer

495 PMMA A11 / 4000 rpm / 75 sec

Bake 170 ◦C / 20 min
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2. E-beam pattern writing

(a) Magazine file “twolayer” in folder “garner”.

(b) Electron dose 2000 µCouloumbs cm−2

(c) Before job, run calibration files CURRNT, INITBE, INITAE, SFOCUS,

HEIMAP.

(d) Determine proper gain setting using the program ACGRG. Set sweep

position 70 µm from mark center.

(e) Check gain settings and alignment quality by running SETWFR.

(f) Run job.

3. Resist development

(a) Soak in 1:3 MIBK : IPA solution for 75 sec with gentle agitation.

(b) Spray-rinse with IPA, blow dry with nitrogen.

(c) Descum.

D.3 Etch Pit Silicon Oxide Etching

CHF3 / Ar RIE etch in Oxford Plasmalab 80.

1. Run a 15 minute oxygen plasma chamber clean.

2. Without venting the chamber, run a 5 minute seasoning CHF2 / Ar

plasma.

3. Load wafer in center of platen, using quartz chips around the rim to keep

wafer in place.

4. Run 10 min etch, to clear through thin protective oxide layer.
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D.4 Etch Pit Silicon Etching

SF6 / O2 RIE etch in Oxford Plasmalab 80.

1. Run a 15 minute oxygen plasma chamber clean.

2. Without venting the chamber, run a 5 minute seasoning SF6 / O2 plasma.

3. Load wafer in center of platen, using quartz chips around the rim to keep

wafer in place.

4. Run 30 sec etch

5. Resist removal

(a) Soak in a MeCl solution for about half of the time it took to remove

the metal during the lift-off processes.

(b) Remove wafer from lift-off bath, constantly spraying with IPA.

(c) Blow dry with nitrogen.

D.5 Potassium Hydroxide Silicon Underetch

1. 50 % KOH solution, 70 ◦C etch temperature.

2. Etch wafers in a 182-39M or 182-39MU teflon wafer holder, keeping the

wafers horizontal in the etch solution.

3. Etch time 70 seconds.

4. Rinse in DI H2O bath, followed by a spin-rinse-dryer.
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For the rest of the fabrication process, follow the procedure given in ap-

pendix A, starting with A.5.1, and using the appropriate masks for the can-

tilever and backside optical lithography processes. As noted above, the masks

for these two exposures are likely destroyed, but can be recreated from the CAD

file “Harrell 20050829 magnets and stepper cantilevers”.
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APPENDIX E

CAD AND MASK SETS

All cad files are in L-EDIT format.

The .JDF and .SDF files have the same names as the associated magazine file.

For 395 µm long cantilevers, with 400 and 600 nm wide, 1500 nm long over-

hanging tip magnets.

CAD: “wide mag 100 nm fromedge 20070817”

Magnet magazine file: “onelayer 100nm from edge”

Etch pit magazine file: “twolayer big etchpit”

(Both of these files are in folder “GARNER” on the e-beam)

Front optical mask: “Hickman 200802 frontside no pass shift”

Back optical mask: “Harrell 20051013 backside no edge bead removal”

For 200 and 395 µm long cantilevers with 50, 100, and 200 nm wide, 1500 nm

long overhanging tip magnets.

CAD: “magnetometry 01 29 08”

Magnet magazine file: “onelayer magnetom 0108”

Etch pit magazine file: “twolayer magnetom 0108”

Front optical mask: “Hickman 20080131 magnetometry front”

Back optical mask: “Hickman 20080206 magnetometry back”

For 1 and 1.5 mm long cantilevers with 400 and 600 nm wide, 1500 nm long

overhanging tip magnets.

CAD: “wide mag 100nm long 20080328”

Magnet magazine file: “onelayer longcant 0508”

Etch pit magazine file: “twolayer longcant”
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Front optical mask: “Hickman long levers front”

Back optical mask: “Hickman long levers back”

For 200 µm long cantilevers with 50, 100, and 200 nm wide, 1500 nm long

overhanging tip magnets.

CAD: “magnetometry 01 17 09”

Magnet magazine file: “onelayer magnetom 0109”

Etch pit magazine file: “twolayer magnetom 0109”

Front optical mask: “magnetometry frontside all short”

Back optical mask: “magnetometry backside all short”

For 200 µm long cantilevers with 50, 100, and 200 nm wide, 1500 nm long

overhanging tip magnets created by the silicon oxide pillars process.

CAD: “oxide pillar magnetom 060609”

Silicon oxide pillar magazine file: “ox pillars 0609”

Magnet magazine file: “mags for ox pillars”

Front optical mask: “magnetometry frontside all short”

Back optical mask: “magnetometry backside all short”

There are two cad files, with associated JEOL magazine files, that write arrays

of rectangular boxes for test structures.

Array of 200, 400 and 600 nm wide, 1500 nm long rectangles, with 4 copies of

the array per wafer.

CAD: “mega mag array spc”

Magazine file: “vary mag array 4copies spc2”

Array of 20, 30 and 50 nm wide, 1000 nm long rectangles, in sets of arrays with

varying electron beam dose between each array.
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CAD: “mega mag array small”

Magazine file: “small mag array varydose”
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