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Nutrients play a key role in central nervous system (CNS) development during 

fetal and early postnatal life, and their depletions can have devastating 

physiological results. One class of nutrients these nutrients are long-chain 

polyunsaturated fatty acids (LCPUFA), specifically docosohexaenoic acid 

(DHA) and arachidonic acid (ARA). These lipids accumulate rapidly in the 

CNS, and although neonates are able to produce them from precursors at low 

rates, optimal development depends on preformed sources from human breast 

milk or formula. We report a descriptive meta-analysis that considered 106 

studies of humauin breast milk and found that mean (±SD) concentration of 

DHA in breast milk (by weight) is 0.32 ± 0.22% and that of AA is 0.47 ± 0.13%. 

This comprehensive analysis of breast-milk LCPUFA indicates a broad range 

of these lipids worldwide and serves as a guide for infant feeding. 

 

Dietary components with unknown or potentially deleterious effects remain 

important to characterize. While epidemiological data has implicated the role 

of trans fatty acid in increasing risk factors for heart disease, studies show that 

isolated trans fatty acids do not show atherogenic effects and remain difficult 

to accurately detect in mammalian tissues. We report these fatty acids in 

samples from patients with histologically-confirmed Alzheimer’s disease and 

normal aged subjects and show differences to be nonsignificant.  The 



 

distributions of these trans fatty acids are consistent with their origin from diets 

that are a composite of dairy and partially hydrogenated vegetable oil trans 

sources. 

 

While a number of factors combine to result in decreased function and 

cognition in aging humans, the hypotheses that oxidation plays a major role in 

aging has garnered much attention.  While many antioxidant-derived plant 

compounds have provided promise against aging in animal models, 

resveratrol, a grape polyphenol, has received significant attention for its 

antioxidant properties and action as a calorie-restriction mimetic. We fed 

dietary resveratrol to wild-type and transgenic Alzheimer’s Disease mice and 

show a number of targets specific to the pathophysiology of Alzheimer’s, 

specifically transthyretin, drebrin, and glycogen synthase kinase-3, are 

positively influenced. These data suggest new mechanisms whereby this 

polyphenol putatively exerts protective effects in aging and beyond. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Nutrition and the developing brain 

 

Nutrients play a key role in regulating brain development during fetal and early 

postnatal life. Nutritional insults can have particularly pronounced effects 

between 24 and 42 weeks of gestation due to the rapid growth of a number of 

neurological structures and processes, including myelination and synapse 

formation during this period(1). While the young brain remains relatively plastic 

and able to recover from deficiencies after nutrition repletion, vulnerability 

remains as many depletions in critical stages of development result in 

irrecoverable developmental insults(2).  

 

While all nutrients play important roles in neuronal development, a number 

appear to have great or more specific effects during late gestational or early 

neonatal periods. These include protein, iron, iodine, zinc, choline, and long-

chain polyunsaturated fatty acids (LCPUFA).  

 

Table 1.1 lists these important nutrients in early brain development, the 

primary function(s) of that nutrient in the brain, and the regions of the central 

nervous system (CNS) where the nutrient plays its critical role. 

 

Table 1.1 shows that the effects of nutrient deficiencies are regionally 

distributed. During different developmental epochs, various regions of the 

brain undergo rapid development and nutrient requirements coincide with 
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growth spurts where demands for specific nutrients to support metabolic 

pathways and structural components are crucial. The hippocampus, visual and 

auditory cortexes, and striatim undergo rapid growth during late fetal and early 

neonatal life(2, 3). Myelination, the growth of electrically insulating material 

which wraps around the axon of a neuron, also accelerates during late fetal 

and early neonatal life and is subject to major setbacks if proper nutrients are 

not present. Though the field of brain nutrition remains relatively young, a 

careful balance and thorough understanding of CNS development and nutrient 

requirements is needed as a nutrient can at one point in development be 

necessary and at another toxic. For example, iron is a very selectively 

regulated nutrient in the brain whose excess or deficiency within a narrow 

range during different stages can induce abnormal brain development(4). 

Proper nutrition is also necessary to support and maintain non-neuronal and 

structural components of the CNS, such as glial cells. 

 

Generally speaking, nutritional insults that occur early in developmental 

periods of any given process are more likely to have a greater effect on cell 

proliferation leading to changes in cell number(5). Conversely, deficiencies 

that occur later during the course of developmental processes affect cell 

differentiation, size, and synaptic connections and function. Studies in the 

developing rat have shown that postnatal day 7 serves as an important 

benchmark in brain development, before which cell proliferation is the 

predominant trend in the brain.  

 

After postnatal day 7, a number of genes that control differentiation exhibit 
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Table 1.1. Nutrients and their deficiency in the brain by function  
and structure/processes affected. 
 
 

Nutrient Function of nutrient in brain 
during development  

Processes or structures 
primarily affected by 
deficiency of nutrient 

    
Protein (6) Neuronal proliferation and 

differentiation, 
synaptogenesis 

 Cortex, hippocampus 

Iron (7, 8) Myelin formation, 
monoamine synthesis, 
neuronal energy metabolism

 White matter, Frontal 
lobe, hippocampus 

Zinc (9, 10) DNA synthesis, 
neurotransmitter release 

 Autonomic nervous 
system, hippocampus, 
cerebellum 

Choline 
(11) 

Neurotransmitter synthesis, 
neuronal energy 
metabolism, antioxidant 
activity 

 Hippocampus, white 
matter 

LCPUFA 
(12) 

Synaptogenesis, 
neurotransmitter systems, 
myelin formation, memory, 
secondary messengers 

 Global, eye 
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preferential increases in expression(13). Although an imperfect model, it is 

worthwhile to note that postnatal day 7 in the rat brain roughly corresponds to 

late-gestation in the human fetal brain(14). 

 

 

Aside from structural changes and connections, nutrition can also affect the 

chemistry of normal brain processes. Nutrition has been shown to play 

important roles in neurotransmitter synthesis and reuptake(15). Although these 

changes are largely transient compared to structural changes, research 

continues to shed light on the role of nutrients in early CNS development 

events. 

 

1.2 n-3 Long-chain Polyunsaturated Fatty Acids 

 

n-3 long-chain polyunsaturated fatty acids (LCPUFA) are essential 

components of cell membranes throughout the CNS and in the retina. 

Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6) 

are the most abundant LCPUFA in the developing human brain (Figure 1.1) 

(16). The synthesis of these LCPUFA in humans appears to occur in great 

variability depending upon single nucleotide polymorphisms in a series of 

desaturate and Elongase enzymes required for their synthesis from 

precursors(Figure 1.2) (17). However, the developing fetus remains largely 

dependent on the maternal supply of these fatty acids because their synthesis 

and conversion for precursors remains low. 
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Under conditions of adequate supply, LCPUFA accumulate rapidly during the 

last trimester of pregnancy and throughout the first two years of life and are 

concentrated in neuronal membranes. More specifically, DHA is highly 

concentrated in brain grey matter and retina rod photoreceptors(18).  Retina 

membrane phospholipids are comprised of over 45% DHA, and approximately 

14% of brain gray matter fatty acids are DHA. 

 

Evidence from studies in a variety of mammalian species including humans 

shows that the developing brain responds to changes in the dietary fatty acid 

supply with changes in tissue fatty acid composition. In both humans and 

rodents, dietary n-3 fatty acid deficiency results in decreased DHA in brain 

phospholipids(19, 20).  

 

 

High levels of DHA in the retina and brain have led to increased research 

about its functional effects and outcomes associated with visual and cognitive 

development. Studies exist for which human infants have been assigned 

randomly to be fed formula supplemented with DHA and ARA, and then tested 

by standardized developmental scales. Infants supplemented with ARA and 

DHA during the first postnatal months have shown a seven-point increase in 

the mental development index (MDI) relative to controls(21). These infants 

also showed enhanced visual maturation and a correlation between plasma 

red blood cell DHA at 4 months and Mental Development Index scores at 18 

months. Further, a separate study showed at 10 months that infants fed for 4 

months a formula containing ARA and DHA performed better in a well- 

controlled means-ends problem-solving task than controls(22). Strikingly, 
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Figure 1.1. Chemical Structures of LCPUFA ARA (above) and DHA (below). 
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maternal supplementation with LCPUFA has also shown to result in significant 

increases in IQ at four years of age, demonstrating that n-3 PUFAs during 

pregnancy and lactation may be favorable for later mental development of 

children(23).  

 

As such, it is clear that LCPUFA play a key role in human CNS development. 

Human breast milk LCPUFA are variable and reflective of maternal diet. While 

breast milk is considered the ideal source of nutrition, supplementation of 

infant formulas with increased preformed LCPUFA also represents an 

important avenue for delivery of these critical nutrients to the developing infant 

brain. Prior to 1995, infant formulas worldwide were devoid of LCPUFA. While 

the United States infant formulas have contained DHA and ARA since 2002, 

the amount of DHA and ARA required for optimal development has not been 

well characterized. In 2001, a group of clinical researchers recommended a 

minimum of 0.35% (w/w) DHA and 0.40% (w/w) ARA(24). The amount of DHA 

and ARA present in infant formulas varies (in the United states 0.32-0.35% 

DHA and 0.6% ARA in all formulas except one company which includes 0.15% 

DHA and 0.4% ARA). Benefits to term infants of increased DHA levels have 

not been thoroughly investigated. Further, while worldwide breast milk levels 

have a mean of about 0.32% (w/w), ranges of at least 1% have been 

described in Inuit women of northern Canada who average about 1.4% DHA in 

breast milk. At these levels of DHA and other n-3 LCPUFA, it has been shown 

that the lipids have specific bioactivities associated with cardiovascular 

function that are not observed at more moderate intakes.  
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Figure 1.2. Metabolic pathways for conversion of linoleic acid (18:2n-6) and 
alpha-linolenic acid (18:3n-3) into long-chain polyunsaturated fatty acids(18). 
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Strong evidence that increased levels of DHA may impart benefits comes from 

the work of Hsieh et al. who demonstrate that moderate to high levels of 

LCPUFA supplementation in baboon neonates results in cerebral cortex DHA 

increases(25). This data demonstrated that DHA at concentrations higher than 

presently used in formulas normalizes CNS tissue composition closer to that of 

breastfeeding. Further, DHA and ARA supplementation has been shown to 

enhance the oxygen carrying capacity of neonatal blood, suggesting that 

LCPUFA may alleviate the severity of neonatal anemia(26).  

 

While increases in tissue concentrations and other biochemical parameters 

are compelling, these results should be combined with other studies of efficacy 

associated with improvements in functional outcomes. Until that time, it is 

reasonable to suggest that infant formula’s supplemented with LCPUFA mirror 

worldwide breast milk averages which are known to be safe and effective. 

 

1.3 Nutrients with unknown or potentially deleterious effects in the brain 

 

While a number of nutrients demonstrate an important role in normal brain 

development and function, diet may also provide an avenue which leads to 

harm in the CNS, either at normal or average levels of intake, or through 

excess. Specifically, lipids, which constitute about 50% of the dry weight of the 

brain, represent an important macronutrient with a broad range of molecules 

with varying function and action in the CNS.  

 

Saturated fats  represents a significant portion of energy, be it from early in 

life through breast milk or formula, or later in life through any number of foods 



 

10 
 

such as meat, dairy products, and cookies and pastries. Epidemiological 

studies provided the first evidence that saturated fat may be linked to brain 

function. Specifically, two large Dutch prospective population-based studies 

have provided the most epidemiological information regarding this 

relationship. In the Rotterdam study, of more than ten thousand subjects of 

age 55 and older, persons were followed for three to four years and dietary 

intake information as well as mini-mental state examinations, or a test of brain 

function in aged subjects, was administered. After adjustment for a number of 

cofounders, total fat, saturated fat, and cholesterol intakes were shown to 

increase the risk of dementia, and total and saturated fat especially of 

dementia with a vascular component(27). The Zutphen elderly study 

consisted of 939 men followed for eight years and demonstrated increased 

total fat intake but not saturated fat intake was associated with impaired 

cognitive function(28). In contrast, studies in Spain demonstrate that 

increased consumption of saturated fatty acids is associated with decreased 

cognitive function(29). While the underlying mechanisms behind such a 

possible association are poorly understood, mechanistic evidence from 

animal studies has led several researchers to hypothesize that saturated fat 

leads to decreases in neuronal plasticity through reducing brain-derived 

neurotrophic factor(30) as well as decreased insulin sensitivity which is 

associated with decreased cognitive function(31, 32) among others(33). It is 

of great importance to note that not all saturated fats have equivalent effects, 

as lauric (12:0), myristic (14:0) and palmitic acids (16:0) have been shown to 

possess hypercholesterolemic properties as compared with oleic acid (18:0) 

in humans(34).  
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Trans fatty acids (TFA) have also been studied in the development and 

maintenance of normal cerebral function. TFA enter the food supply as 

products of chemical hydrogenation intended to destroy labile polyunsaturates 

to increase shelf life and to fine tune physico-chemical properties of oils in 

order to enhance the palatability of foods(35).  Specific trans isomers also 

occur naturally as components of ruminant fats generated by bacterial 

biohydrogenation. Studies have shown that intake of industrial-derived TFA 

has been associated with several chronic diseases including coronary heart 

disease(36). Further, TFA have been associated with impairments in essential 

fatty acid metabolism, direct effects of which have been observed to alter 

cognitive function(33, 37).  

 

Trans fatty acids have been blamed for many of the adverse effects 

associated with consumption of partially hydrogenated vegetable oil (PHVO). 

Specifically, PHVO trans 18:1 fatty acids, while variable, can comprise up to 

50% of the fatty acids in PHVO, with trans-9 18:1 (elaidic acid) and trans-11 

18:1 (vaccenic acid) as the most predominant isomers. However, as even all 

trans fatty acid isomers may offer different biological functions, it has remained 

unclear the potential contribution of each specific isomer in PHVO to coronary 

heart disease risk, as specific bioactivities had not been investigated prior to 

2009. In 2009, a critical investigation directly compared these trans isomers 

with the effects of a PHVO diet in a Golden Syrian hamster model(38). In 

comparison to the control diet, the study found that the PHVO diet increased 

plasma ratios of total:HDL cholesterol and non HDL:HDL cholesterol by 17 

and 23% respectively. Alternatively, the elaidic acid (trans-9 18:1) diet 

decreased these values by 27 and 46% and the trans-vaccenic acid (trans-11 
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18:1) diet decreased these values by 8 and 14% respectively, both statistically 

significant positive changes. To much surprise, these results indicate an 

improvement in markers of atherosclerosis risk by feeding elaidic and trans-

vaccenic acid, while PHVO increased risk factors. Therefore, other factors 

present within PHVO are likely responsible candidates for increased coronoary 

heart disease risk. These data are particularly striking because a large pool of 

research has implied deleterious effects of TFA in PHVO in a number of 

tissues via numerous pathways(36), partially resulting in the labeling of TFA 

on foods sold in the United States and bans in many major US metropolitan 

restaurants in 2006. Overall, it is clear that much more research needs to be 

undertaken to specify the specific role of TFA and PHVO in human health.   

 

Only a handful of research exists regarding TFA and its potential effect in brain 

development and early life. Pregnant rats fed diets with varying concentrations 

of trans fatty acids did show decreased levels of the essential fatty acids 

linoleic (18:2n-6) and α-linolenic (18:3n-3) but not LCPUFA(39). Further, 

newborn pups from mothers fed trans fat diets while pregnant exhibit 

decreased LCPUFA in plasma and liver but not brain of newborn pups(40). 

Dietary trans fatty acid fed to pregnant rats has shown to be associated with 

decreased activities of Δ6-desaturase in the liver, a critical enzyme involved in 

the pathway of endogenous LCPUFA formation from precursors in 

newborns(41).  

 

Interestingly, during normal lactation in humans, trans fatty acids are present 

in human milk in high amounts and have been reported to be absorbed and 

stored in various tissues and organs(42) except brain(43). Such data has 
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caused Larque et al. to suggest that a protective mechanism to limit the 

incorporation of trans fatty acids in the CNS is in place(44). As far as the 

specific role of TFA in normal aged populations, only one study has suggested 

that dietary TFA intake is associated with diseases of the brain such as 

Alzheimer’s disease (45). There are as yet no reports of TFA in the CNS, and 

no studies have been performed on the role of TFA in nervous tissue.   

 

As measurements remain difficult to obtain, studying the potential action of this 

class of fatty acids or any specific isomer in the brain during normal 

maintenance and aging remain unclear. It is worth noting that a number of 

difficulties arise in studying TFA. Highly sensitive methods are required to 

measure these fatty acids and separate individual isomers from each other, 

especially as they exist in low concentrations in non-ruminant animals not 

consuming high amounts of PHVO. Chromatographic separation relying on 

older technologies has not always produced reliable results. In order that the 

individual bioactivities of isomers can be studied accurately, the development 

and implementation of highly sensitive and reproducible methods to detect 

TFA at low concentrations needs to continue to be an area of focus. It will also 

be important for researchers to keep in mind the potential effects of foodstuffs 

that contain TFA and their specific origins in food, such as in the case of 

PHVO versus natural (ruminant) sources. Further, since individual trans 

isomers are always consumed in tandem and never in isolation, studies 

examining the additive effects of TFAs in distributions normally found within 

the food system will need to be implemented as further research is done in 

brain.  
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1.4 Nutrition and the Aging Brain 

 

As proper nutrition undoubtedly plays a role in normal health and development 

during all stages of life, special consideration must also be given to the aging 

individual. Aging represents a number of barriers and special challenges to the 

uptake and metabolism of nutrients to maintain health. The most widespread 

concern which affects most aged persons is acute or chronic digestive 

disorders. Past age 65, men and women are five times more likely to develop 

gall bladder disease, ulcers, and diverticulosis(46), all of which can lead to 

difficulties absorbing and digesting nutrients from food. Changes in taste and 

smell as well as difficulties swallowing and passing food influence intakes in 

older populations and show that dietary preferences change as one ages(47).  

Aside from practical and behavioral changes, biochemical changes in the body 

lead to subtle changes in metabolism and nutrient requirements for a broad 

range of vitamins and minerals in the elderly. Changes in gastric secretions 

and pH and decreases in lean body mass and chronic disease factors provide 

a myriad of variables to navigate in determining vitamin needs. Some 

evidence suggests that the current daily recommended intakes for vitamin D, 

vitamin B6 and B12, vitamin C, and folate may not be adequate for older 

persons(48). 

 

As declining neurocognitive function presents as a major determinant to the 

quality of life for elderly persons, a large effort has been placed on discovering 

factors that slow or stop aging: the search for the supposed “fountain of 

youth”. While many assume that aging is simply a natural phenomenon that 

results in memory and cognitive decline, a batch of newer studies is beginning 
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to show that a large portion of the clinically significant decline in function in the 

elderly population can be averted or slowed(45).  As such, dietary and 

pharmacological interventions have been evaluated to estimate their relative 

contribution to protecting from loss of mental function. While the role of non-

modifiable factors, such as genetics and family history, are not trivial and still 

remains largely unknown, research interest in the causal and preventative 

roles nutrition and in aging has grown. 

 

Almost all aged persons will exhibit some cognitive setbacks regardless of 

genetics or diet. Dementia describes a syndrome characterized by multiple 

cognitive deficits that lead to impairments in occupational and social 

functioning. Dementia is largely broken down into two discrete classes of 

illness: Alzheimer’s Disease and vascular dementia(49). While the diseases 

present themselves differently pathologically, both have been shown to be 

responsive to dietary manipulation. Table 1.2 summarizes the results of 

several prospective studies where diet improves cognitive function. While 

epidemiological research clearly shows diet to play a role in the prevention of 

dementia, a large body of work remains to determine the mechanism and 

specific actions of dietary components. 

 

1.5 Nutrition and Alzheimer’s Disease 

 

Alzheimer’s Disease (AD) is the most common form of dementia, 

characterized by progressive memory losses as a consequence of neuronal 

cell death, neuritic plaques, and neurofibrillary tangles(53). As in almost any 
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Table 1.2. Prospective studies demonstrating positive effect of dietary 
compounds on dementia 
 
 
Dietary component Population Result 

Fish (intake expressed as 
meals containing fish per 
week) (27) 

Rotterdam, 
Netherlands - 55+ 
years of age 

Fish intake was 
associated with a 
slower rate of 
cognitive decline 

Fruits and vegetables 
(intake assessed in weekly 
intervals through 
questionnaires) (50) 

Across US - women 
70+ years of age 

Total vegetable 
intake significantly 
associated with less 
cognitive decline 

Red wine consumption 
(expressed as glasses/day, 
highest cohort drank 3-4 
glasses/day) (51) 

France - 65+ years 
of age 

3-4 glasses of red 
wine/d associated 
with lower relative 
risk of dementia and 
Alzheimer's disease 

Whole grains (grains, 
cereals, bread) (52) 

Poland - 55+ years 
of age 

Whole grain 
consumption lower 
in population with 
Alzheimer's Disease 
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syndrome, genetic and environmental factors interact in the development of 

clinical disease. Through its precise cause is unknown, a number of risk 

factors are involved in AD onset such as age(54), mitochondrial defects(55), 

ApoE4 genotype(56), and diet(57). Current treatment options, namely 

pharmaceuticals, offer little protection against the disease and often have side 

effects.  

 

Early onset Alzheimer’s disease affects a small population of individuals 

primarily before the age of 60 and is associated with mutations in the 

presenilin 1 and presenilin 2 genes located on chromosome 14 and 1, 

respectively. In addition, mutations have also been described in the amyloid 

precursor protein on chromosome 21. Altogether, these mutations lead to 

malprocessing of the amyloid precursor protein to hallmark amyloid beta 

plaque characteristic of Alzheimer’s. However, most AD is sporadic and late 

onset, and represents a complex combination of genetic and environmental 

factors. 

 

The major characteristic pathology of AD are senile plaques, composed 

primarily of the 39-43 amino acid peptide amyloid-beta. Neurofibrillary tangles, 

hyperphosphorylated forms of the microtubule-associated protein tau, are also 

a hallmark pathogenesis. The current dominating hypothesis in the field 

describes accumulation of amyloid-beta lesions from proteolytic processing of 

amyloid  precursor protein (APP) as the driving force to a cascade of 

neurodegenerative events due to the toxic effect of APP metabolism on 

neuronal integrity(58). A brief outline of the major events involved in amyloid 
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precursor protein metabolism and Alzeheimer’s Disease can be found in 

Figure 1.3.  

 

While the decline observed during AD involves multiple factors that influence 

several systems, the pathogenesis of the disease is still poorly understood. 

Much of the current research in the field has focused on environmental 

variables that influence AD, such as diet. The growing population of elderly in 

the United States has led to increased awareness and urgency to study the 

disease (Figure 1.4).  

 

1.6 LCPUFA and Alzheimer’s Disease 

 

LCPUFA, a critical nutrient in brain development, also remains important in 

maintaining and protecting healthy brain function. While the mechanisms of 

action of LCPUFA are complex, research is slowly starting to untangle its roles 

in the normal and aging brain. Broadly, the primary effects of LCPUFA in aging 

can be put into three categories: membrane effects related to its relationship 

with rhodopsin, modulation of eicosanoid production, and its relationship to 

neurotrophic and apoptotic factors. 

 

There is strong evidence that LCPUFA, specifically DHA, influences and alters 

rhodopsin function. Rhodopsin is a membrane protein present in rod outer 

segments and where it accounts for about 90% of the protein content and 

functions in a biochemical cascade leading to hyperpolarization and activation.  
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Membrane fatty acids alter the ability of photons to transform rhodopsin to its 

activated state. Animal studies show that declines of DHA of 50% in brain and 

retina have been associated with changes in neural function and visual 

acuity(59). Data in human infants suggest infants with higher red blood cell 

levels of n-3 LCPUFA demonstrate improved visual acuity at 4 months of age, 

further suggesting that LCPUFA are involved in visual maturation(60).  

 

LCPUFA play an important functional role as precursors of eicosanoids, 

oxygenated 20-carbon compounds with important regulatory roles as 

modulators of cellular responses. While arachidonic acid is the main substrate 

for most eicosanoids, they can also be produced from eicosapentaenoic acid 

(20:5n-3) and DHAl; DHA can similarly be modified into a 22 carbon signaling 

molecule called docosanoids. Whereas most eicosanoids are involved in the 

regulation of the circulatory system, the primary prostaglandins (PGE), a 

subset of the eicosanoid family, have direct neural activity. The formation of 

PGE2 and PGE2α result in altered release of neurotransmitters norepinephrine 

and serotonin, as well as sedation and sleep patterns(61). Human infants born 

of  mothers with higher plasma DHA levels are demonstrated more mature 

neonatal sleep-state patterning(62).   

 

As a neurotrophic factor, DHA administered to newborn rat retinal cells has 

been shown to lead cells to survive and differentiate into photoreceptor cells, 

whereas cells with no supply of DHA eventually die by apoptosis(63). DHA has 

also been shown to be antiapoptotic when taken up and esterified by 

membrane phospholipids during insult or serum starvation(65, 66). Some of
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Figure 1.3. The main events associated with amyloid beta production in Alzheimer’s Disease. 
Metabolism of APP by secretases can lead to Aβ oligomerization if the protein is not degraded. Plaques 
and neurofibrillary tanges have been associated with neuronal death.   
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Figure 1.4. The growth of the older population in the United States, aged 65 
and older. The population of the elderly has undergone tremendous growth 
and will continue at a rate higher than total population growth, a major 
consideration for diseases that appear later in life such as dementia and 
specifically Alzheimer’s Disease. Data from Taeuber(64). 
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these actions, in part, are thought to be controlled by regulation at the 

transcriptional level, as PUFAs have been shown to bind and interact with 

peroxisomal proliferators activated receptor (PPAR) and hepatic nuclear factor 

4-α(67).  

 

In the aging brain, levels of DHA decrease and DHA is more susceptible to 

oxidation, leading to changes in nervous system function(68). Evidence 

supporting the importance of adequate LCPUFA levels in aging is growing, as 

decreased LCPUFA have been associated with increased risk of cognitive 

impairment(69). Mouse models have demonstrated that DHA gives rise to a 

compound known as neuroprotectin D1 which has been shown to be 

protective against post-stroke neuronal injury(70). A mouse model of 

Alzheimer’s Disease demonstrated an association between decreased DHA in 

the frontal cortex with losses in key postsynaptic proteins involved in 

maintaining normal cognitive performance(71). One controlled trial in humans 

further demonstrated that higher fish intakes and LCPUFA consumption led to 

improvements in cognitive impairment in subjects with very mild Alzheimer’s 

Disease(72).  

 

1.7 Oxidation and antioxidants in Alzheimer’s Disease 

 

The free radical theory of aging, first proposed by Hartman in 1956, 

hypothesizes that the degenerative changes associated with aging may be a 

result of the accumulation of deleterious side reactions from free radicals 

produced during normal cell metabolism(73). The hypothesis suggests that 

free radicals can contribute to aging via several mechanisms: 
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1) Free radical induced DNA cross-links could lead to somatic mutations 

and loss of enzyme function 

2) Oxidation of sufhydryl groups could cause cellular damage to 

microtubules 

3) Membrane lipid peroxidation could destroy integrity of subcellular 

organelles 

 

Since the hypothesis was conceived, considerable support has suggested and 

extended the notion that free radicals play an important role in the 

pathogenesis of neuronal degeneration. Specifically, the brain is a good 

substrate for oxidation because it is a large consumer of oxygen and 

polyunsaturated fatty acids, molecules highly susceptible to lipid peroxidation, 

are a major component of neural cell membranes.  

 

Several studies indicate that elevated oxidative stress occurs in Alzheimer’s 

Disease. First, AD brains exhibit significant increases in protein oxidation 

compared to age-matched controls(74). Similarly, 3-fold increases in 

mitochondrial DNA oxidation have been measured in the parietal cortex of AD 

brains compared to controls(75). Postmortem studies have shown increased 

lipid peroxidation in the frontal cortex of AD patients compared to controls(76). 

 

Trace elements, such as iron, have been implicated to play a role in the 

generation of damaging radical oxygen species (ROS) in the AD brain. Iron 

and ferritin levels in AD are significantly increased in cortical gray matter 

regions, which facilitates the Fenton reaction and produces an abundance of 

ROS available for lipid perodixation(77) (Figure 1.5). 
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 Further, dopamine catabolism is also a significant source of free radical 

generation(78). More specific to Alzheimer’s disease, experimental evidence 

suggests that generation and aggregation of the amyloid beta protein 

produces increases in local ROS. In nerve cells, H2O2, a precursor molecule 

that is converted to the hydroxyl free radical, increased 3-fold after addition of 

amyloid beta to cell media(79). Data also suggests that AD patients have 

decreased CnZn-superoxide dismutase, glutathione peroxidase, and catalase 

in erythrocytes, three key enzymes that play a critical role in the normal health 

of a cell by fighting free radicals(80). Further, these enzymes are differentially 

downregulated in a number of regions of the AD human brain compared to 

controls(81). 

 

One significant reason the oxidative damage hypothesis in aging has attracted 

considerable attention is because it may be potentially influenced by dietary 

antioxidants(76). Clinical and epidemiological evidence has found that the fat-

soluble antioxidant vitamin E as well as the water-soluble vitamin C are 

significantly decreased in AD patients versus control despite adequate diets 

and are related to the degree of cognitive impairment(82, 83). In one 

randomized controlled trial, it was shown that α-tocopherol (vitamin E) delayed 

the occurrence of institutionalization, death, and loss of daily functioning and 

severe dementia(84). In another study, gingko biloba was evaluated in a group 

of AD patients and showed a modest advantage in supplemented patients on 

cognition, social functioning, and behavior(85), although one recent large 

review strongly suggested discontinued use of gingko biloba for prevention 
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and treatment of AD due to a number of side effects and very limited 

supporting data for its neuroprotection(86). 

 

Clearly, there is a role for oxidative stress in the pathogenesis of AD. Beyond 

large scale studies evaluating the effectiveness of isolated antioxidants or 

dietary ingredients, molecular studies tailored to and describing the specific 

interaction between oxidation and Alzheimer’s Disease have been quite telling. 

 

As hypothesized by some researchers, plant-based compounds may offer 

additional benefits beyond simply providing additional antioxidants through 

vitamins(87).  As many plant based products are considered safer than 

synthetic products, millions of Americans have turned to regular use of plant-

based supplements to improve their health. While a number of these plant 

based compounds and their complete extracts have shown protection in 

neurodegenerative AD mouse models (Table 1.3), there is a high level of 

chemical complexity and many inherent difficulties in studying these products. 

The recent identification of more than 8000 phenolic compounds presents an 

awesome challenge to modern medicine and science(88).  

 

Other than the sheer number of phenolic compounds, studying these 

biomolecules becomes increasingly complex since their mode of action and 

targets have been shown to differ in a concentration-dependent manner. For 

example, a low dose of red wine polyphenols has been shown to promote 

angiogenesis through activating the Akt/PI3K pathway but not the NF-κB 

pathway. Contrastingly, at higher doses, the polyphenols are anti-antiogenic 

and inhibit the Akt/PI3K pathway and enhance NF-κB signaling(89) 
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Similar is the case for epicatechin (a polyphenolic antioxidant found in cocoa, 

tea and grapes) where low concentrations have been shown to stimulate PI3K, 

an effect that disappears at ten-fold higher doses(90). Overall, these dose 

effects may be important factors in explaining the observed variability between 

the experimental outcomes in different models at varying concentrations.  

 

1.8 Polyphenols in Alzheimer’s Disease 

 

The origins of research interest in red wine can be traced back to 

epidemiological studies that reported a low incidence of cardiovascular 

disease in the French, despite diets high in saturated fat. A popular and widely 

held theory called the “French Paradox” supposed that the anti-platlet 

aggregation properties of red wine components led to decreased 

atherosclerotic plaques(91). A significant number of studies have supported 

the notion that polyphenols and other components in red wine constituents 

demonstrate protective effects against neurodegenerative conditions and are 

reviewed here(92).  

 

Briefly, phytochemicals can exert their protective health effects in a number of 

ways. Most obviously and first described, the wide variety of antioxidant 

molecules present in plants can scavenge oxygen and a number of other 

reactive oxygen species (ROS) in vitro, however the evidence that they 

significantly contribute to the antioxidant defense system in the central 

nervous system is not strong(93). Aside from their action as antioxidants, 

research suggests that polyphenols from foods may be more potent than 
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Fe2+ + H2O2 → Fe3+ + OH− + OH
.

 

 

Figure 1.5. In the Fenton reaction, iron(II) sulfate interacts with hydrogen 
peroxide resulting in a hydroxy radical that is a biological oxidant. 
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Figure 1.6. Resveratrol, a grape and red-wine polyphenol. 
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antioxidants administered as supplements(94). This has led researchers to 

hypothesize that these compounds may exert their activity by acting as signal 

transduction molecules or affecting the expression of genes. For example, the 

compounds resveratrol, curcimin and epigallocatechin gallate have been 

shown to block the activity of cyclooxygenase-2 and inhibit NFkB activation, 

important events involved in mediating the inflammatory response. Further, 

these compounds also stimulate the mitogen-activated protein kinease 

(MAPK) pathway, which leads to the activation of the antioxidant responsive 

element genes and a number of downstream detoxification enzymes(95). 

These plant-based compounds have also shown promise in altering behavior 

and neurocognitive ability in rats, as a number of studies have demonstrated 

that supplementation of mice with blueberries and strawberries led to 

improvements in spatial learning and memory as tested by Morris water 

maze(96). In addition, extracts from these fruits were further found to result in 

the reversal of age-related deficits in aged rats, including improved motor 

performance. The literature strongly suggests that polyphenolics, such as 

those contained in berry fruits, are a promising valuable asset in protecting 

and preventing development of age-related neurodegeneration. 

  

1.8 Resveratrol in Alzheimer’s Disease 

 

While grapes contain a significant number of polyphenols, trans-resveratrol (3, 

4’, 5-trihydroxystilbene) has emerged as one of the most promising 

compounds (Figure 1.6).  Resveratrol is also found in a number of other plants 

including peanuts, berries, as well as a popular Korean herb called kojo-

jan(97, 98). 
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In vivo, resveratrol has proven more effective in protecting against oxidative 

damage than vitamins E and C combined(99). Resveratrol also protects 

against mutant polyglutamine-induced toxicity and neuronal degeneration 

(100). Further, the compound has demonstrated neuroprotective effects by 

alleviating neurotoxin-induced oxidative damage in cultured neurons(101). In 

addition, resveratrol has demonstrated anti-inflammatory responses by 

attenuating nitric oxide synthase and COX-2 expression; the activities of both 

play an important role in neurodegeneration(102, 103).  

 

A number of in vitro studies have demonstrated resveratrol’s neuroprotective 

ability specific to AD. Resveratrol markedly lowers the levels of secreted and 

intracellular amyloid beta peptides in several cell lines, as well as promotes 

intracellular degradation of amyloid-beta (104). The compound also restores 

glutathione levels, cell viability, and neuroplasticity in vivo (105). Lastly, 

resveratrol has been shown to improve mitochondrial function, organelles 

whose dysfunction is implicated in the pathophysiology of AD(106, 107). In 

vitro and in vivo evidence demonstrates resveratrol as CR mimetic, increasing 

sirtuin enzymatic activity and inducing a calorie restriction (CR) metabolic state 

(97, 108). Likewise, CR has also shown to be neuroprotective in several AD 

models(109-111), largely through a highly conserved sirtuin family (SIRT1, 

SIRT2, SIRT3) of genes. Sirtuin upregulation induced by CR mimetics has 

demonstrated effects on cell aging and AD risk as well as extending the 

lifespan of a number of species (112).  
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In vivo mouse models of AD have shown protective effects of fasting and 

calorie restriction, however, only a few studies to date have determined 

whether a CR-induced state by resveratrol or any other CR mimetic provides 

neuroprotection in a transgenic AD mouse model. 

 

Of these studies, one demonstrated improvements in spatial-memory 

functions and decreased amyloidigenic peptides of AD transgenic mice 

consuming a Cavernet Sauvignon red wine for 7 months(97). In this study, it is 

interesting to note that improvements in cognitive function as well as 

biochemical changes did not accompany the ethanol only group, as some 

have hypothesized the beneficial effects of wine may be largely derived from 

its ethanol content. Previous studies have shown the positive effects of 

ethanol as alcohol consumption has been associated with decreased insulin 

resistance in humans as well as decreased body weight gain and liver 

triglycerides, and diabetes in mice(113, 114); experiments showing positive 

effects of ethanol on neurodegenerative conditions seems lacking and have at 

times shown mixed results which depend\ largely on concentration and timing 

of the ethanol dose(114). In contrast, experiments have also demonstrated the 

numerous positive effects of polyphenols on neuronal health and Alzheimer’s 

diease transgenic mice,  independent of alcohol, some of which can be found  

described in Table 1.3. Prominent scientists can be found on both sides of the 

issue. As studies in neurodegeneration comparing red wine constituents to 

ethanol are lacking, the debate regarding the partial benefit of alcohol or non-

alcohol constituents of wine continues, and further work may be needed 

before a firm conclusion can be reached. 
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Table 1.3. Effect of numerous polyphenols and plants on AD mouse models 

 

Polyphenol/Plant 
derivative 

AD Model Effects 

Blueberry(115) AD transgenic TG2576 
mice 

Improved Y-maze 
performance and 
decreased amyloid 
beta plaque burden 

EGCG/Green 
Tea(116) 

AD transgenic TG2576 
mice 

Decreased amyloid 
beta levels 

Garlic(117) AD transgenic TG2576 
mice 

Decreased amyloid 
beta levels, 
inflammation, and 
tangle-associated 
proteins 

Ginseng(118) AD transgenic TG2576 
mice 

Decreased amyloid 
beta levels 

Pomegranate(119) AD transgenic TG2576 
mice 

Improved water 
maze performance 
and decreased 
amyloid beta plaque 
burden 
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Further studies have shown resveratrol’s potential protective capacity in 

neuronal health. Reveratrol supplementation alone reduced 

neurodegeneration and cognitive decline in mice expressing a coactivator of 

cyclin-dependent kinase 5 and displaying massive forebrain degeneration with 

AD features(66). In a seperate study, resveratrol was shown to reduce plaque 

pathology in the cortex of AD mice(18). While a number of mechanisms for 

resveratrol’s protective effects in AD have been proposed, further identification 

and elucidation of targets are needed(120). 

 

While much of the initial effort and thrust for resveratrol began after its 

modulation of Sirt1 was discovered, a number of studies have demonstrated 

that some of resveratrol’s most important targets may in fact be Sirt-

independent, potentially opening up the door to a broad range of pleiotropic 

action for the nutrient in Alzheimer’s disease and other physiological 

conditions(121, 122).  

 

1.10 Summary 

 

LCPUFA represent a critical class of nutrients for optimal maturation of the 

CNS during neonatal and early life and a number of studies have examined 

different concentrations of LCPUFA in the development of neonates. This 

thesis examines worldwide breast milk DHA and ARA concentrations as a 

meta-analysis which can be used as a guide to infant feeding. Trans fatty 

acids have blamed for the negative health effects associated with partially 

hydrogenated vegetable oil consumption. While a number of studies have 

examined the physiological effect of trans fatty acids, these lipids remain 
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difficult to measure and haven’t been reported in the human central nervous 

system, where mechanisms limiting their incorporation is hypothesized. 

Described herein is a highly sensitive method applied to normal aged and AD 

postmortem brain samples showing no differences between disease states 

and an envelope of isomers similar to a composite of dietary trans from 

hydrogenated oils and rumimants. Finally, researchers have focused on the 

use of antioxidants from plant compounds as potent antiaging agnets. We 

describe a study that examines the role of dietary resveratrol in a transgenic 

AD mouse model with focus on targets associated with amyloid beta 

degradation, post-synpaptic integrity, and tau pathology, demonstrating the 

broad effects of this molecule in neuroprotection and beyond. 
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CHAPTER 2 

DOCOSAHEXAENOIC AND ARACHIDONIC ACID CONCENTRATIONS IN 

HUMAN BREAST MILK WORLDWIDE* 

 

 

2.1 Introduction 

 

Human breast milk is universally recognized as the optimal food for term 

infants. Fat is a critical component of breast milk, providing energy and, 

importantly, nutrients key to the development of the central nervous system 

which cannot be synthesized de novo by the infant(1).  Principal among these 

are the long chain polyunsaturated fatty acids (LCPUFA) docosahexaenoic 

acid (DHA) and arachidonic acid (ARA), which are now components of infant 

formulas in developed countries around the world.  The synthesis of DHA and 

ARA from precursor fatty acids appears to be limited for at least some human 

infants(2, 3). 

 

Both DHA and ARA are found in all breast milks examined to date using 

appropriate methodology. Short term diet clearly influences the LCPUFA 

content of breast milk and there is evidence that habitual intake has an 

influence as well(4-6). Fish eating populations have higher breast milk DHA 

concentrations than populations that do not consume marine foods(7, 8) and 

there is evidence that poorly nourished mothers conserve PUFA and LCPUFA 

in their breast milk at the expense of saturates(9). Breast milk fatty acid 

concentrations therefore vary with the lifestyle of the population of lactating 

 *Based on work from Brenna JT, Varamini B, et al. American Journal of Clinical Nutrition, 
Vol. 85, No. 6, 1457-1464, June 2007
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mothers under study, and thus fatty acid concentrations vary by region. 

 

The concentrations of human breast milk DHA and ARA have been reported 

since at least the 1970s(10). They have been tabulated in reviews (1) from 

small cross-sections of references, and these summary concentrations are 

quoted frequently. However, since breast milk DHA and ARA vary with diet, 

nutritional status, and other factors, analyses based on selected studies are 

biased because their findings are limited to the samples considered. There are 

no extant systematic reviews of breast milk DHA and ARA concentrations from 

the peer-reviewed literature.  

 

Our goal is to establish the distributions of DHA and ARA concentrations in 

mature breast milks of free living mothers. Our strategy was to identify all 

papers in the peer-reviewed literature that report DHA and ARA 

concentrations in breast milks from mothers of term infants. Mothers must 

have consumed their normal diets that were not purposefully influenced by 

experimental manipulations, such as marine oil supplementation. From the 

database of all papers that were identified, we selected those that used 

modern capillary gas chromatography (GC) for analysis, capable of resolving 

DHA and ARA from compounds that elute nearby. We also included selection 

criteria related to the completeness of reporting and sampling. Summary 

statistics are provided for the main analysis group and the excluded group. 

 

2.2 Subjects and Methods 

 

Inclusion criteria. PubMed searches were performed with the keywords “breast 
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milk” and “docosahexaenoic” periodically from 2004, most recently in 

November 2006. Studies that were written in languages other than English 

were not included. All data were from mothers of term infants in good health 

consuming free-living or control diets during the intervention studies. Data 

from experimental groups who had special diets or consumed LCPUFA 

supplements were excluded in the primary analysis, as were experiments that 

analyzed pooled breast milk.  

 

Studies that included data from only one mother, pooled or banked milk 

samples,and mothers of preterm infants were excluded. Because DHA and AA 

are more concentrated in phospholipids than are triacylglycerols, studies that 

reported concentrations by lipid class only were excluded. When values from 

multiple time points postpartum were available, the 2–6mopostpartum data 

were used. Studies meeting these criteria were split into 2 groups; the primary 

group consisted studies that used capillary GC columns that can fully resolve 

FA methyl esters with retention times very similar to those for DHA and AA; 

the secondary group consisted of mostly older studies that used packed GC 

columns which cannot resolve DHA and AA and thus may provide artifactually 

high values. We calculated means and SDs from both groups for comparison 

and reserved the analysis of the distribution of values for the primary group. 

FA concentrations are most often reported as a percentage of the total, by 

weight (wt:wt, or weight for weight). Several studies did not report FA data for 

saturates, monounsaturates, and PUFAs. Because percentages are the norm 

for reporting FAs, and percentages depend on the total number of FAs 

included in the calculation, we included only those values reported in the 

context of a full FA profile. All of the articles considered in this quantitative  
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Table 2.1. Studies included in the primary analysis1    

Reference  Site  
Infant 
age  Subjects DHA2 AA3  

  mo  n  

% of 
total 
fatty 
acids4  

% of 
total 
fatty 
acids4  

Yuhas et al, 2006 (11) Australia  1–12  48 0.23 0.38 

Yuhas et al, 2006 (11) Canada  1–12  48 0.17 0.37 

Yuhas et al, 2006 (11) Chile  1–12  50 0.43 0.42 

Yuhas et al, 2006 (11) China  1–12  50 0.35 0.49 

Yuhas et al, 2006 (11) Japan  1–12  51 0.99 0.4 

Yuhas et al, 2006 (11) Mexico  1–12  46 0.26 0.42 

Yuhas et al, 2006  (11) Philippines  1–12  54 0.74 0.39 

Yuhas et al, 2006  (11) United Kingdom 1–12  44 0.24 0.36 

Yuhas et al, 2006  (11) USA  1–12  49 0.17 0.45 

Sala-Vila et al, 2008 (12) Spain  0.5–1  10 0.31 0.49 

Olafsdottir et al, 2006 (7) Iceland  2 59 0.3 0.32 

Xiang et al, 2005 (13) China  3 23 0.18 0.51 

Kovacs et al, 2005 (14) Denmark  4 39 0.35 0.3 

Jensen et al, 2005 (15) USA, Texas  4 77 0.2 0.44 

Bopp et al, 2005 (16) 
USA.        
N.Carolina  3 22 0.21 0.41 

Stoney et al, 2004 (17) Australia  3 36 0.26 0.38 

Sala-Vila et al, 2004 (18) Spain  3 11 0.28 0.41 

Minda et al, 2004 (19) Hungary  1 18 0.19 0.59 

Fraricois et al, 2003 (20) USA, Oregon  2–11  14 0.2 0.5 

Marangoni, et al, 2002 (21) Italy  3 73 0.35 0.5 

Krasevec et al, 2002 (22) Cuba  2 52 0.43 0.67 

Hawkes et al, 2002 (23) Australia  1 27 0.26 0.46 

Jorgensen et al, 2001 (24) Denmark  4 39 0.35 0.3 

Helland et al, 2001 (25) Norway  3 111 0.47 0.37 

Auestad et al, 2001 (26) USA  4 29 0.15 0.48 

Xiang et al, 2000 (27) Sweden  3 19 0.25 0.38 

Wang et al, 2000 (28) Japan  0.3 20 1.1 1 
Vander Jagt et al, 2000 
(29) Nigeria, Niger  0.3–6  34 0.2 0.51 
Smit et al, 2000 (5) Netherlands  3 25 0.14 0.33 

Smit et al, 2000 (5) Pakistan  12 8 0.06 0.26 

Smit et al, 2000 (30) Israel  3–10  10 0.15 0.49 

 
 

 
 
 
   

 

(Continued) 
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Table 2.1 (Continued)     

Reference  Site  
Infant 
age  Subjects DHA2 AA3  

  mo  n  

% of 
total 
fatty 
acids4  

% of 
total 
fatty 
acids4  

Okolo et al, 2000 (31) Nigeria  
0.1–
0.5  28 0.32 0.58 

Okolo et al, 2000 (31) Nigeria  6–7  15 0.33 0.44 

Marangoni et al, 2000 (32) Italy  6 10 0.28 0.5 

Knox et al, 2000 (9) Nigeria, Niger  0.3–16  89 0.2 0.57 

Jensen et al, 2000 (33) USA  2 6 0.19 0.53 

Fidler et al, 2000 (34) Germany  1.5 5 0.21 0.43 

Xiang et al, 1999 (35) China  1 18 0.33 0.63 

Makrides et al, 1999 (36) Australia  4 33 0.2 0.39 

Dodge et al, 1999 (37) Xichang, China  2–18  10 0.22 0.52 

Dodge et al, 1999 (37) Beijing, China  2–18  10 0.28 0.63 

Dodge et al, 1999 (37) Enshi, China  2–18  9 0.15 0.35 

Woltil et al, 1998 (38) Netherlands  >0.3  29 0.19 0.4 

Yu et al, 1998 (39) Sweden  6 17 0.18 0.34 

Rueda et al 1998 (40) Spain  0.5–1  8 0.38 0.69 

Rueda et al, 1998 (40) Panama  0.5–1  8 0.32 0.52 

Rocquelin et al, 1998 (41) Congo  5 102 0.55 0.44 

Maurage et al, 1998 (42) France  1.5 15 0.14 0.24 

Helland et al, 1998 (43) Norway  0.75–2  22 0.38 0.34 

Francois et al, 1998 (44) USA  6 7 0.2 0.4 

Innis et al, 1997 (45) Canada  3 56 0.2 0.5 

Billeaud et al, 1997 (46) France  NR  25 0.32 0.52 

Auestad et al, 1997 (47) Canada  4 43 0.12 0.51 

Ratnayake et al, 1996 (48) Canada  0.75–1  198 0.14 0.35 

Makrides et al, 1998 (49) Australia  3 12 0.21 0.41 

Jorgensen et al, 1996 (50) Sweden  4 14 0.53 0.44 
Huisman et al, 1996 
(51) Netherlands  3 25 0.19 0.34 
Presa-Owens et al, 1996 
(52) Spain  0.6–1  40 0.34 0.5 

Cherian et al, 1996 (53) Canada  NR  5 0.3 0.4 

Makrides et al, 1995 (49) Australia  4 23 0.21 0.4 

Luukkainen et al, 1995 (54) Finland  3 10 0.18 0.33 

Chardigny et al, 1995 (55) France  0–3  10 0.32 0.5 

Luukkainen et al, 1994 (56) Finland  4 16 0.18 0.33 
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Table 2.1 (Continued) 

 
 
 
 
 
    

 
Reference  Site  

Infant 
age  Subjects DHA2 AA3  

  mo  n  

% of 
total 
fatty 
acids4  

% of 
total 
fatty 
acids4  

Innis et al, 1994 (57) Canadian Arctic  1–7  5 1.4 0.6 

Innis et al, 1994 (57) Vancouver  2–4  12 0.4 0.7 

Budowski et al, 1994 (58) Israel  
1.5–
2.5  26 0.38 0.59 

van Beusekom et al, 1993 
(59) Netherlands  0.5–1  5 0.26 0.47 
van Beusekom et al, 1993 
(60) 

Dominican 
Republic  0.75 7 0.4 0.5 

Martin et al, 1993 (61) France  1 24 0.24 0.36 

Guesnet et al, 1993 (62) France  3 28 0.38 0.5 

Henderson et al, 1992 (63) 
USA, 
Connecticut  0.5 5 0.37 0.67 

Ogunleye et al, 1991 (8) Nigeria  2–3  20 0.34 0.56 

Ogunleye et al, 1991 (8) Japan  
2.3–
3.3  53 0.53 0.36 

Boersma et al, 1991 (64) Saint Lucia  1 12 0.53 0.58 
van Beusekom et al, 1990 
(65) 

Dominican 
Republic  >0.3  6 0.91 0.33 

van Beusekom et al, 1990 
(65) Belize  >0.3  6 0.21 0.44 
van der Westhuyzen et al, 
1988 (66) 

Urban south 
Africa  6.8 12 0.2 0.6 

van der Westhuyzen et al, 
1988 (66) 

Rural south 
Africa  6.5 18 0.1 1 

Koletzko et al, 1988 (67) Germany  3–4  15 0.22 0.36 

Innis et al, 1988 (68) Canada  >3  17 0.2 0.5 

Muskiet et al, 1987 (69) Tanzania  >0.3  11 0.27 0.6 

Muskiet et al, 1987 (69) Curao  >0.3  47 0.43 0.71 

Muskiet et al, 1987 (69) Suriname  >0.3  20 0.41 0.58 

Carlson et al, 1986 (70) USA  0.5 11 0.19 0.59 
 
1 A total of 84 studies including a total of 2974 subjects are reported.  
NR, not reported; DHA, docosahexaenoic acid, AA, 
arachidonic acid.    
2 Mean ± SD: 0.32 ± 0.22      
3 Mean ± SD: 0.47 ± 0.13      
4 By weight 
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review are listed in Table 2.1 and Table 2.2. 

 

Sixty-five articles providing 84 mean values from 2474 subjects reported 

analyses with capillary columns and were judged to provide sufficient detail to 

be included in the primary analysis group (Table 2.1).The 41 articles judged to 

be outside the stated criteria and assigned to the secondary group are listed in 

Table 2.2. 

 

2.3 Results 

 

The distribution of DHA and AA concentrations (wt:wt) are shown in Figure 

2.1, and the summary statistics are shown in Table 2.3. The mean (±SD) 

concentrations of DHA and AAin the primary analysis group were 0.32 ± 

0.22% and 0.47 ± 0.13%, respectively. The secondary analysis group yielded 

somewhat greater values for DHA of 0.40 ± 0.41% and for AA of 0.56 ± 

0.26%. The mean value for AA deviates by 0.09% (wt:wt) from that of the 

primary reference group, whereas the mean value for DHA deviates by 0.08% 

(wt:wt). These statistics are consistent with the hypothesis that the poorer 

resolution of packed-column GC yields higher values for DHA and AA than 

does capillary GC; these data also included a few studies with DHA and AA 

values from colostrum, which is considered richer in LCPUFA than mature 

milk. We conclude that our exclusion criteria yielded slightly lower overall 

mean LCPUFA concentrations. Considering only the primary analysis, the CV 

for DHA was 0.22/0.32 = 69%, whereas that for AA was 0.13/0.47 = 28%. SDs 

are a composite of 1) analytic error (including variability in sampling, 

extraction, derivatization, and signal processing) and 2) real biological  



   

57 
 

 
 
 

   
Table 2.2. Studies excluded from the primary analysis1  
  

Reference  Reason for exclusion  

Straarup et al, 2006 (71) Preterm, pooled sample  
Agostoni et al, 2003 (72) Pooled sample  

Lapillone et al, 2000 (73) Pooled sample  

Fidler et al, 2000 (34) Analysis of colostrum  

Schmeits et al, 1999 (74) Analysis of milk TG only  

Pugo-Gunsam et al, 1999 (75) Analysis of milk TG only  

Kaila et al, 1999 (76) Banked samples  

Guesnet et al, 1999 (77) Few FAs reported  

Bougle et al, 1999 (78) Few Fas reported  

Babin et al, 1999 (79) Preterm  

Agostoni et al, 1999 (80) Only DHA and AA reported  

Henderson et al, 1998 (81) Few FAs reported  

Fidler et al, 1998 (82) Pooled sample  

Carnielli et al, 1998 (83) Preterm  

Clandinin et al, 1997 (84) Preterm  

Makrides et al, 1996 (85) Pooled sample  

Jacobs et al, 1996 (86) Preterm  

Foreman-van Drongelen et al, 1996 (87) Preterm  

Beijers and Schaafsma, 1996 (88) Preterm  

Ruan et al, 1995 (89) Packed column  

Luukainen et al, 1995 (90) Banked samples  

Glew et al, 1995 (91) Packed column  

Jackson et al, 1994 (92) Packed column  

Hoffman et al, 1993 (93) Preterm  

Spear et al, 1992 (94) One subject only  

Sanders et al, 1992 (6) Packed column  

Dotson et al, 1992 (95) n not provided  

Prentice et al, 1989 (96) Pooled sample  

De-Lucchi et al, 1988 (97) Packed column  

Specker et al, 1987 (4) Few FA reported  

Kneebone et al, 1985 (98) Packed column  

Finley et al, 1995 (99) Packed column  

Harris et al, 1984 (100) One subject consumed fish oil  

Okolska et al, 1983 (101) Packed column  
  (Continued) 
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Table 2.2  (Continued) 
Reference  Reason for exclusion  

Harzer et al, 1983 (102) Pooled sample  

Bitman et al, 1983 (103) Packed column  

Putnam et al, 1982 (104) Packed column  

Jansson et al, 1981 (105) Packed column  

Gibson and Kneebone, 1981 (106) Packed column  

Gibson and Kneebone, 1980 (107) Analysis of colostrum  

Hall et al, 1979 (10) Packed column  

  1 TG, triacylglycerol; DHA, docosahexaenoic 
acid; AA, arachidonic acid; FA, fatty acid.    
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Figure 2.1. Distribution of arachidonic acid (AA) and docosahexaenoic acid 
(DHA) in the primary analysis. The arrow refers to the location of the average 
at the 50th percentile. 
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variability, each of which contributes variance to the overall spread in the data.  

It is not possible to reliably estimate the relative contributions of each of these 

2 components of variability from so many studies. However, we note that the 

typical analytic test-retest precision for capillary GC  analysis of FAs of 0.1–

1.0% abundance is ~0.1%, and there is no reason to expect that the analytic 

variance for DHA should differ from that of AA. We can confidently assign 

excess variation in the data to real biological variability, induced primarily by 

diet but by other factors as well. We conclude that the excess variance in DHA 

distribution is evidence of the tighter control of AA concentrations in breast 

milk, which is consistent with many other data, which show that tissue AA 

concentrations are more refractory to dietary manipulation than are DHA 

concentrations(108). A plot of AA versus DHA concentrations for the primary 

analysis group is shown in Figure 2.2. The correlation was significant (r = 0.25, 

P = 0.02), which indicated that the prediction of the concentration of one mean 

LCPUFA from the other is nearly meaningless for a set of regional samples. 

This implies that the correlation of DHA and AA in any particular breast-milk 

sample is still lower because of the mathematical fact that the correlation 

between mean values is always greater than the correlation between data 

points making up those means. The shallow slope (0.15) shows that AA 

concentrations, on average, vary much less than do DHA concentrations, and 

inspection of the plot indicates that the significance of the slope is driven by a 

few high values for DHA. 

 

Using strict selection criteria for data quality in this meta-analysis, we found 

that worldwide mean DHA and AA concentrations in human milk are 0.32 ± 

0.22% and 0.47 ± 0.13%, respectively. 
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Figure 2.2. Mean concentrations of arachidonic acid (AA) versus 
docosahexaenoic acid (DHA) in breast milk. The slope is significant (P = 0.02). 
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2.4 Discussion  

 

There are ≥2 ways to compute worldwide mean LCPUFA values, both of 

which have inherent weightings that should be borne in mind. A simple mean 

of mean values, as we computed, is inherently weighted evenly by study and 

against the number of subjects in each study. For instance, a study with 8 

subjects is weighted the same as a study with 100 subjects. It is also biased 

toward regions in which more studies have been conducted, and away from 

regions in which fewer have been studied. This procedure has the advantage 

of effectively estimating a mean for each study population, which then 

contributes one data point (for DHA) to the meta-analysis. An alternative is to 

compute mean DHA and AA values by using weightings according to the 

number of subjects in each study. This mean is biased toward studies, and 

therefore regions, in which most of the subjects have been enrolled, and 

intuitively we see no rationale for doing so. Nevertheless, we computed this 

mean for comparison with our reported value. The weighted mean DHA was 

0.32%, equivalent to the non-weighted mean, and thus the 2 approaches yield 

the same result. The AA weighted mean was 0.45%, which represents a 

deviation of –0.02% from our reported value. There are data from many more 

natives of developed countries than for natives of traditional cultures, and this 

selection bias may have contributed to the deviation. Nevertheless, the 

magnitude of the deviation is a fraction of the AA SD, 0.13%. We know of no 

data to suggest that a difference of this magnitude is biologically significant. 

 

Concentrations of DHA and AA in breast milk depend on the amount of these 

preformed FAs in the mother’s diet and their biosynthesis from precursors. 
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Milk DHA content appears to be closely linked to maternal dietary DHA intake, 

with dose-dependent linear increases in breast-milk concentrations of this 

nutrient with increased maternal intake (85).  

 

In our study, the 5 locales with the greatest breast milk DHA concentration are 

Canadian Arctic, Japan, Dominican Republic, Philippines, and Congo (1.4–

0.6%); all but Congo are coastal or island populations that have a high marine 

food intake. In contrast, the lowest breast-milk DHA values are for Pakistan, 

rural South Africa, Canada, the Netherlands, and France (0.06–0.14%). These 

populations are either inland or are developed countries, both of which are 

usually associated with low marine food consumption. Thus, the extreme 

values are consistent with studies suggesting that marine food–consuming 

populations have greater breast milk DHA concentrations(7, 8). The response 

of milk AA concentrations to maternal dietary AA intake is less predictable 

than that of DHA and may be more sensitive to the profile of other maternal 

dietary FAs(30).  

 

Several studies have shown that the biosynthesis of DHA and AA from 

precursors is low: in 2 studies of men, <0.01% of labeled linolenic acid (18:3n-

3) was converted to DHA as measured in plasma(109, 110), although there is 

evidence that conversion is greater in women(111). Importantly, sustained 

high supplementary dietary linolenic acid (10.7 g/d) did not increase breast-

milk DHA(20). The majority of AA in milk was not from dietary LA conversion 

but rather from maternal stores(112). The weight of current evidence is that 

biosynthesis of DHA and AA is low, and augmentation of breast-milk DHA and 

possibly AA during lactation is best accomplished by consumption of 
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preformed DHA and AA. The higher variability of DHA than of AA is consistent 

with the conclusions of a recent study, which was included in the present 

analysis(11).  

 

This study conducted a comprehensive analysis of FA profiles in breast milk 

from women from 9 countries and concluded that DHA was the most variable 

of all the FAs, and that AA was much less so. The best estimates of worldwide 

mean breast-milk DHA and AA concentrations (wt:wt) from the primary 

analysis group are 0.32 ± 0.22% for DHA and 0.47 ± 0.13% for AA. These 

means are not much different from those obtained by weighting according to 

numbers of subjects and are lower than those obtained in studies that used 

packed columns and protocols that fall outside the other inclusion criteria. The 

correlation between DHA and AA is surprisingly low, which reflects a high 

degree of variability in the ratio of DHA to AA in individual breast-milk samples. 

In summary, this review of the literature describes worldwide breast milk DHA 

and ARA concentrations using strict inclusion criterion and can be used as a 

guide to infant feeding. 
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CHAPTER 3 

 POSITIVE IDENTIFICATION AND QUANTIFICATON OF TRANS 

MONOENE FATTY ACIDS IN HUMAN CEREBELLUM AND PARIETAL 

LOBE 

 

3.1 Introduction 

 

While the specific metabolic role and physiological function of long-chain 

polyunsaturated fatty acids has been demonstrated in a number of broad in 

vitro and in vivo studies, much less is known about the precise physiological 

role of trans fatty acids in mammalian systems and specifically the central 

nervous system.  Trans fatty acids (TFA) are unsaturates that contain at least 

one double bond in the trans (E) configuration.  Many positional isomers are 

possible since the double bond can be located anywhere along the 

hydrocarbon chain.  TFA enter the food supply as byproducts of chemical 

hydrogenation intended to increase shelf life and alter the physico-chemical 

properties of oils, notably melting point, to enhance the palatability of foods(1).  

Specific trans isomers also occur naturally as components of ruminant fats 

generated by bacterial biohydrogenation(2). 

 

The major food-based trans isomers are the C18 trans-monoene FA found in 

industrial partially hydrogenated vegetable oils (PVHO) such as 18:1n-9, 

elaidic acid, and biohydrogenated ruminant fats (18:1n-7, trans-vaccenic acid) 

(3, 4).  These TFA have double bonds generally located between the C6 and 

C12 carbons.  TFA are also intermediates of normal fatty acid metabolism, 

however these TFA are found at trace concentrations in tissues and are 
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structurally different than dietary TFA in that the trans double bond is located 

adjacent to the carboxyl group.  

 

The distribution of dietary TFA in mammalian tissue has been explored since 

the 1970s(1).   For instance, TFA have been identified in plasma, erythrocytes, 

liver, kidney, testes, heart, adrenals, adipose, and ovaries from 2.4 – 11.5% in 

rats fed trans-18-1 at 12% of FA over a four month period(5).  Tissue 

concentrations are dose-dependent and vary among different lipid classes 

(cholesterol esters, triacylglycerols, phospholipids). The brain is notably 

absent from the list because the few scattered reports of TFA in the central 

nervous system (CNS) have not used methods with sufficient specificity to 

unambiguously identify TFA at the levels at which they may exist.  

Conventional, high performance methods for detection of TFA, specifically 

high resolution gas chromatography and tandem mass spectrometry with 

collisionally activated dissociation, are not sufficiently selective to isolate and 

identify TFA isomers at low concentrations from the high concentration of cis-

monoenes in most natural fats. 

 

Dietary TFA are of intense public interest because of relatively recent 

associations with negative or positive health effects.  Industrially produced 

PVHO have come under scrutiny with recent epidemiological evidence that 

their intake is associated with an increased risk of coronary events(6).  

Population-based studies have demonstrated that PVHO intake leads to a 

high LDL, low HDL cholesterol profile(7) and has positive associations with 

cardiovascular disease and diabetes(8, 9).   While at least one study has 

suggested that dietary TFA intake is associated with diseases of the brain 
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such as Alzheimer’s disease (10), there are as yet no reports of TFA in the 

CNS, and no studies have been performed on the potential physiological role 

of TFA in nervous tissue.  On the other hand, specific TFA of ruminant fats 

show potent anticarcinogenic activity(11), specifically cis-9, trans-11-18:2, 

which is biosynthesized from trans-11-18:1 by stearoyl CoA desaturase (12). 

 

We applied a highly sensitive method to detect TFA in parietal lobe and 

cerebellum autopsy specimens of normal aged (NA) and histologically 

confirmed Alzheimer’s disease patients.  Analysis was by gas 

chromatography-covalent adduct chemical ionization tandem mass 

spectrometry (CACI-MS/MS)(13-18), previously shown to be highly selective 

and quantitative for monoene isomers in the presence of much higher 

concentrations of the more abundant cis monoenes (19).   

 

3.2 Methods  

 

Sample preparation.  Five male and five female subjects who died at age 61.5 

± 6.9 years (mean ± SD) donated parietal lobe and cerebellum in the context 

of a rapid autopsy protocol (20).  For AD subjects, duration of disease ranged 

from 1-9 years.  Samples were maintained at –80oC until processing.  Since 

most samples were stored at –80oC for 4+ years, RNA was extracted and 

evaluated for integrity using a ratio of absorbencies at 260 nm and 280 nm.  

RNA are among the most labile biomolecules because of rapid digestion by 

ubiquitous RNases; their preservation is indicative of good postmortem tissue 

preservation (21-23).   RNA was isolated using the RNeasy® RNA isolation kit 

(Qiagen, Valencia, CA, USA). The A260/A280 ratios ranged from 1.79 to 1.95 
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(1.88 ± 0.06, mean ± SD), where a ratio 1.8 or greater is considered an 

acceptable indicator of RNA preservation (24).  

 

Tissues were thawed on ice and aliquoted (~100 mg) into screw capped 

tubes.  All reagents were of analytical grade and mixtures were made fresh 

before use. 1,2-Diheptadecanoyl-sn-glycero-3-phophatidylcholine (Matreya, 

Inc. State College, PA USA) was added to each sample as an internal 

standard.  The internal standard is a 17:0 phospholipid which closely 

resembles the lipids to be analyzed in its chromatographic properties, but does 

not occur naturally in mammalian tissues. It is added when the tissue is first 

extracted so it is carried through the extraction, separation and methylation, as 

well as through chromatography. The area of all the sample peaks are then 

related to that of the internal standard, the absolute amount of which is known. 

In our laboratory, GC is used for routine analysis of lipids. Thus, we have set 

up and regularly test our system for quality control with known standards in 

order to ensure that the equipment is correctly functioning, and that it is not 

subject to gradual deterioration or random variation.  

 

A modified single extraction/derivatization method was used to prepare total 

fatty acid methyl esters for analysis (25) as described in detail in the appendix.  

FA extraction and transesterification was performed by addition of an aqueous 

and organic mixture to the tissue.  The aqueous reagent mixture consisted of 

methanol, 2, 2-dimethoxypropane, and concentrated sulfuric acid 85:11:4 by 

volume; 1.4 ml total was added to each sample.  The organic reagent mixture 

contained heptane and toluene 63:37 by volume; 1.6 ml total was added to 

each sample.  Heptane was added to bring the total volume of each tube up to 
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5 ml.  All samples were subsequently incubated at 85°C in a shaking water 

bath for 120 minutes.  After incubation, 2ml of saturated NaCl was added to 

assist the separation of the organic and aqueous layers.  After additional 

heating, the heptane layer containing the fatty acid methyl esters (FAME) was 

collected and dried under N2. 

 

Instrumentation.  All GC-MS/MS analyses were performed with a Varian Star 

3400CX gas chromatograph operated in splitless mode, coupled to a Varian 

Saturn 2000 ion trap tandem mass spectrometer  (Varian Inc., Walnut Creek, 

CA, USA).  A BPX70 capillary column (60m×0.32 mm×0.25μm; SGE Inc., 

Austin TX, USA) was used for all analyses.  The column temperature and 

injector parameters for both CIMS and CIMS/MS analysis were as follows:  

Injector temperature was maintained at 250°C in splitless mode with a purge 

at 0.85 min after injection, initial column temperature was 80°C ramped up to 

200°C at 50°C/min and held for 5 min then ramped to 220°C at 4°C/min for 12 

min, total run time 24.4 min.  Optimal [M+54] formation was obtained by 

adjusting the CI gas inlet valve to obtain an m/z 42 (MH) to 54 (MIE) ratio of 

about 6 with the acetonitrile reservoir at ambient temperature.  These methods 

have been described in detail elsewhere (26).  

 

FAME Quantification.  Trans 16:1n-7 and 18:1n-9 FAME standards were 

obtained from Matreya, Inc. (State College, PA USA).   All peak areas were 

derived by plotting the MS-2 diagnostic ions and using areas under the curve 

calculated with Varian Saturn software (version 5.1).  A calibration curve was 

produced by running four different concentrations of the standards in triplicate 

in the linear range of peaks of interest.  TFA concentrations below 1.0 ng 
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FAME / mg brain tissue were judged to be below quantifiable limits and are 

listed as “trace”.  Differences between and within brain regions by fatty acid 

isomer and disease state were tested using Students t-test in Microsoft Excel 

and ANOVA in JMP 5.1 (SAS Institute, Cary, NC). 

 

3.3 Results  

 

Figures 3.1A and 3.1B, respectively, present parietal lobe and cerebellar total 

brain FA concentrations (means + SD).  There were no significant differences 

found between major fatty acid concentrations in NA or AD subjects (p>0.05).  

Targeted analyses by CACI-MS/MS revealed a series of ten monoene FAME 

16 or 18 carbons in length.  Diagnostic ions of peaks with retention times 

revealing trans double bonds were used to generate plots indicative of double-

bond positions in 16 and 18 carbon monoenes as described previously (26). 

 

Table 3.1 shows profiles of monoenic TFA acids 16 and 18 carbons in length 

in parietal lobe and cerebellum, expressed as a percent of total TFA.  In cases 

for which a specific TFA were below detection limits for some but not all 

subjects, we report a mean and SD for those subjects for which the TFA were 

detectable only.   

 

The predominant TFA are trans-18:1n-9 and trans-18:1n-7 constituting almost 

half and a quarter, respectively, of all TFA detected in all samples.  In NA 

parietal lobe, none of the minor 18:1 TFA were detected in any samples, 

though they were detected in most but not all of the NA cerebellum, where 

trans-18:1n-8 was averaged about 10% of TFA in four of five specimens.  
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Similar results were obtained for the AD samples, though trans-18:1n-8 and 

trans-18:1n-6 were observed in a few samples of parietal lobe and cerebellum. 

Of TFA for which all samples were above detectable concentrations, there 

were no significant differences in TFA acid concentrations found between NA 

and AD subjects in either brain region analyzed (p>0.05).  Unlike the trans-

18:1, no trans-16:1 isomer predominates in any group.  All trans-16:1 were 

detected in all parietal lobe samples at relative mean concentrations of 3.8 to 

7.5%, except for 16:1n-8 which was not detected.  Results for the cerebellum 

were similar, though here the trans-16:1n-8 isomer was detected in half the 

samples, and the trans-16:1n-6 isomer was not detected in four of ten 

samples.   

 

Table 3.1 also reports the total TFA detected in each of the groups.  Means 

appear in a relatively small range, from 122 to 160 μg/mg tissue.   

  

3.4 Discussion  

 

We report, for the first time, positive identification of ten monoenic TFA in the 

postmortem brains of normal and AD human subjects, specifically parietal lobe 

and cerebellum.  The quantitative results in Table 3.1 provide clues to the 

origin of TFA in the human CNS.  The most prominent TFA in all samples is 

trans-18:1n-9(elaidic acid).  Elaidic acid is generally a major trans monoene in 

partially hydrogenated vegetable oils because it results from direct 

isomerization of oleic acid, the most prominent cis monoene in food (27).  This 

process, however, usually results in an envelope of intensities of cis and trans-

18:1 isomers with double bonds from positions 6 to 16.  In contrast, the major  
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Figure 3.1. Pooled parietal lobe (A) and pooled cerebellum (B) fatty acid 
profiles of control and AD subjects (FA expressed as wt% total). 
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Table 3.1. Trans fatty acid profiles (mean ± SD, %w/w of trans FA) and 
concentrations (ng FAME/mg tissue) in parietal lobe and cerebellum autopsy 
specimens from normal aged (NA) and Alzheimer’s disease (AD) human 
subjects. 

 
 Parietal lobe         Cerebellum 

Fatty acid NA AD  NA AD 
trans-16:1n-10 (trans 6-16:1) 5.2 ± 2.6 5.1 ± 2.0  6.7 ± 3.3 6.1 ± 2.8 
trans-16:1n-9 (trans 7-16:1) 6.2 ± 3.9 5.3 ± 2.5  5.9 ± 3.0 7.0 ± 4.0 
trans-16:1n-8 (trans 8-16:1) tr* tr  3.7 ± 5.1 (2†) 3.5 ± 3.4 (3) 
trans-16:1n-7 (trans 9-16:1) 7.5 ± 5.2 6.0 ± 2.6  10 ± 5.5 8.6 ± 3.4 
trans-16:1n-6 (trans 10-16:1) 4.3 ± 2.4 3.8 ± 1.4  2.2 ± 2.1 (3) 2.0 ± 1.9 (3) 
      
trans-18:1n-10 (trans-8-18:1) tr tr  0.9 ± 1.9 (1) 1.2 ± 2.5 (1) 
trans-18:1n-9 (trans-9-18:1) 53 ± 30 43 ± 17  37 ± 17 43 ± 15 
trans-18:1n-8 (trans-10-18:1) tr 10 ± 13 (3)  11 ± 8 (4) 8.3 ± 7.6 (3) 
trans-18:1n-7 (trans-11-18:1) 24 ± 14 22 ± 13  19 ± 10 19 ± 10 
trans-18:1n-6 (trans-12-18:1) tr 4.3 ± 7.3 (2)  3.4 ± 3.6 (3) 2.1 ± 3.0 (2) 

      
total trans  

(ng FAME/mg tissue) 156 140  160 122 

 
* trace, below quantifiable limits (<1.0 ng/FAME) for all subjects 
† number of subjects for which means were quantifiable in that group (each 
group n=5); mean and SD are for those subjects within quantifiable limits of 
trans.  No statistically significant differences exist between NA and AD groups 
for any trans isomers detected. 
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trans monoenes of dairy fat is 18:1n-7 (trans-11-18:1), with 18:1n-9 (trans-9-

18:1) being the second most prominent. NA parietal lobe shows strong signal 

from 18:1n-7 and 18:1n-9 with other isomers below quantifiable limits.  While 

these TFA are also at highest concentration in AD parietal lobe, 18:1n-8 and 

18:1n-6 are also at substantial concentrations. 

 

Figure 3.2 compares our pooled data on brain TFA with estimated 

consumption of TFA in North American foods from 1996-1999, adapted from 

Wolff et al. (27).  trans-18:1n-9 is the most prominent brain TFA, and is also 

the most prominent dietary TFA, coming primarily from PHVO.  Similarly, 

trans-18:1n-7 is the second most abundant TFA in brain and is also a major 

component of dietary trans, but about half originates from PHVO and half from 

ruminant fat.  trans-18:1n-8 is notably lower in ourbrain samples than from 

food sources. The figure demonstrates that that dietary intakes of TFA isomers 

from North American foods are qualitatively similar to those obtained from our 

samples. 

 

An older report from 1978 shows that the rat liver phospholipid trans-18:1n-8 is 

selectively depleted relative to trans-18:1n-9 and trans-18:1n-7 compared to 

the dietary trans distribution (28).  The liver triacylglycerol TFA distribution is 

nearly indistinguishable from the dietary input.  Liver is a major source of fatty 

acids for the brain.  Brain lipids are predominantly found as phospholipids and 

have very low concentrations of triacylglycerol, thus the TFA distribution in 

brain is consistent with selectivity against the trans-18:1n-8 isomer in PL, 

possibly originating in the liver, a prominent source of brain fatty acids.  

Finally, PHVO and ruminant fat contains about 20% trans isomers with the 
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double bond at position 4-7, and 13-16, none of which were detected in any of 

the brain samples.   

 

In situ cis-trans isomerization is another possible origin of trans-18:1.  Figure 

3.1 shows that oleic acid (cis-18:1n-9) and vaccenic acid (cis-18:1n-7) are the 

two most abundant cis monoenes.  The intensity ratio is similar to that found 

for the corresponding trans isomers, a condition that would be expected if non-

specific isomerization were operating.  Thermal, non-catalyzed cis-trans 

isomerization requires high energy, similar to that required for bond breaking, 

as might be available if samples were heated.  Other changes would also be 

expected, including rapid degradation of brain RNA, which was not observed.  

On the other hand, active metals or other catalysts, as might be released as 

cells and organelles die, could locally release active species capable of 

catalyzing isomerization, and this possibility cannot be ruled out by our data.   

 

trans-16:1 are normally of very low concentration in PHVO because the parent 

cis-16:1 is of very low concentration (29), however isomers with double bond 

positions from 4 to 14 are found in most ruminant fats, with the predominant 

trans-16:1n-9 present at 5-10 fold greater abundance than the n-8 and n-10 

isomers (30).  This strongly implies a ruminant fat origin for the trans-16:1 

isomers.  The brain distribution does not dramatically favor any particular 

isomer, though trans-16:1n-7, the predominant dietary 16:1 TFA in ruminant 

fats, is numerically greater in all groups.  Similar to trans-18:1n-8, trans-16:1n-

8 is at notably low levels; it is at trace concentration in parietal lobe and is 

quantifiable in only 5 of 10 cerebellum samples.   
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Figure 3.2. Pooled brain fatty acid profiles (wt% total) presented  
alongside estimated profiles of North American trans-18:1 intakes in  
the late 1990s; after Wolff et al. (27).   
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We know of no data to indicate whether there is any selection against trans-

16:1n-8, similar to the trans-18:1n-8 data, in PL synthesis.  Chain shortening in  

the CNS has been previously demonstrated in rodents (31), and thus this 

mechanism may operate to generate trans-16:1n-8 from trans-18:1n-8, or 

indeed any of the trans-16:1 isomers.    

 

The concentrations and pattern of TFA distribution was similar for NA and AD 

specimens, though there were minor differences in the abundance of specific 

trans-18:1.  Notably, trans-18:1n-8 was at trace levels in parietal lobe for NA 

specimens but easily detected for three of five AD specimens.   trans-18:1n-6 

was also present in two of five AD specimens and not detectable in NA, and  

these corresponded to subjects for which trans-18:1n-8 was found (data not  

shown).  Neither of these associations support a strong connection between 

TFA and AD, though we may hypothesize that the unknown mechanisms that 

select against trans-18:1n-8 in liver are related to the changes seen in AD.   

There were no obvious differences between NA and AD in cerebellum.   

 

The specific metabolic consequences of the presence of TFA in the brain 

remains unclear.  While one epidemiological study indicates a relationship 

between trans intake and risk of neurodegeneration (32), metabolic studies of 

the role of TFA in the CNS are limited.  Though TFA have been shown to 

decrease concentrations of neuroprotective DHA in plasma and liver (33), 

future work is necessary to establish any clinical relevance of such an 

association.    

 

Positive identification of TFA in the CNS raises many research questions, 
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specifically the transport, metabolism and physiological roles of these fatty 

acids in nervous tissue.   While region specific differences exist in other lipids 

measured in the brain, we report no statistically significant differences 

between parietal lobe and cerebellum for trans fatty acids. The effects of 

PHVO-derived TFA have been studied in a number of other tissue types and 

disease states.   

 

Most notably, a large body of population-based evidence indicates that TFA 

consumption is associated with an increased risk of coronary disease (8, 34-

39).  Mechanistically, TFA are implicated to have an indirect effect on 

cholesterol ester transfer protein activity in the hepatocyte leading to increased 

HDL clearance (40-42).  TFA are hypothesized to interact with receptors in 

endothelial cells, increasing NF-κB expression and endothelial dysfunction by 

up regulating E-selectin and other cell adhesion molecules (43, 44).  In 

adipocytes, TFA increase free fatty acid levels and decrease adipocyte insulin 

sensitivity (45).  Finally, TFA may interact with monocytes or macrophages 

leading to increased inflammatory response via TNF-α, IL-6, and C-reactive 

protein (43, 46).  In contrast to these negative health effects, the major 

ruminant-derived TFA, trans-11-18;1 (trans-vaccenic acid) is a precursor to the 

conjugated linoleic acid cis-9, trans-11-18:2.  This diene TFA has potent 

anticarcinogenic activity in rats (12).  Importantly, however, we found no 

evidence in any brain samples of the presence of these trans or conjugated 

dienes. 

 

Because of a general associations between TFA and increased disease risk, 

Larque et al. (47) suggest that the brain possesses a protective mechanism to 



   

93 
 

limit the transport of monoenic TFA into the CNS.  Studies that rely on infusion 

of isotopically-labeled nonesterified FA bound to albumin in brain perfusion 

(48) or whole animals (49, 50) find facile transport of SFA and monenes into 

the CNS.  In contrast, studies that infuse labeled fatty acids into the stomach 

of neonatal rats show transport of SFA into liver, lung and other organs but not 

into the brain; however polyunsaturated fatty acids are transported into the 

brain (51, 52).   We are not aware of any studies of TFA transport into the 

brain.  Our results indicate such studies are necessary to establish whether 

there is selectivity depending on double bond position and/or geometry for 

transport of fatty acids across the blood-brain barrier, and if so, why such a 

protective mechanism may exist.  Studies of bioactivities of specific TFA in 

nervous tissue are also warranted. In summary, the quantitative distributions 

of these trans fatty acids are consistent with their origin from diets that are a 

composite of dairy and partially hydrogenated vegetable oil trans sources, and 

describe the presence of these lipids in the human brain for the first time. 
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CHAPTER 4 

DIETARY RESVERATROL INDUCES PROTECTIVE CHANGES IN 

PROTEIN LEVELS OF TRANSTHYRETIN, DREBRIN, AND GLYCOGEN 

SYNTHASE KINASE 3-BETA IN MICE 

 

4.1 Introduction 

 

As humans age, cognitive setbacks occur regardless of genetics and diet. 

Dementia is a general term that describes any syndromes characterized by 

multiple cognitive deficits that lead to impairments in occupational and social 

functioning. Dementia is largely broken down into two discrete classes of 

illness: Alzheimer’s Disease and vascular dementia(1). 

 

Alzheimer's disease (AD) is a progressive, age-dependent neurodegenerative 

disorder resulting in cognitive impairment of the brain that is specifically 

characterized by losses in short-term memory and plaque deposits in the 

brain. While the decline observed during AD involves multiple factors that 

influence several systems, the specific pathogenesis of the disease is still 

poorly understood. It is widely hypothesized that increases in amyloid beta 

protein, a product of sequential proteolysis of amyloid precursor protein, leads 

to neurotoxic amyloid beta 1-42 aggregates,  causing downstream oxidative 

damage, neuroinflammation, and hyperphosphorylation of microtubule 

associated tau-proteins resulting in neurofibrillary tangles and neuronal death. 

As such, the presence of intraneuronal amyloid beta (Aβ) plaques and 

neurofibrillary tangles in the cortex and hippocampus with concomitant 

neuronal and memory loss are the hallmarks of AD(2). Although AD’s precise 
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cause is unknown, a number of risk factors are involved in AD onset such as 

age(3), ApoE4 genotype(4), and diet(5). Despite several FDA approved drugs 

demonstrating moderate symptomatic benefits, no available treatments have 

been shown to stop the progressive loss of cognitive function manifest in 

AD(6).  

 

Animal and epidemiological studies support that polyphenol constituents of red 

wine possess bioactivities that may afford protection against cardiovascular 

disease and possibly, central nervous system disorders such as Parkinson's, 

Huntington's,  and Alzheimer's disease(7). To date, a number of studies have 

examined dietary factors and neurodegeneration, and several naturally-

occuring plant compounds have been tested in treating AD(8). One of the 

most promising compounds to emerge has been resveratrol, a naturally 

occurring  polyphenol in grape skin and red wine(9).   

 

A number of in vitro studies have demonstrated resveratrol’s ability to protect 

against neuronal degradation(10) and reduce levels of secreted and 

intracellular amyloid beta peptides(11). It is well established that a major 

feature of resveratrol’s neuroprotective activity is due to its action as a calorie 

restriction mimetic(12, 13), thereby inducing the sirtuin family of proteins 

whose upregulation is associated with neuroprotection in several AD 

models(14-16).  In vivo, AD transgenic mice consuming a Cavernet Sauvignon 

red wine for 7 months demonstrated improved spatial-memory functions and 

decreased Aβ peptides(17). Further, resveratrol reduced neurodegeneration 

and cognitive decline in mice expressing a coactivator of cyclin-dependent 

kinase 5 and displaying massive forebrain degeneration with AD features(18). 



   

103 
 

In another study, resveratrol was shown to reduce plaque pathology in an AD 

transgenic mouse model(19).  

 

While a number of mechanisms for resveratrol’s protective effects in AD have 

been proposed, further identification and elucidation of targets are needed. 

Several studies suggest that resveratrol may also act on a number of sirtuin-

independent targets that lead to neuroprotection(20, 21). In vitro, glycogen 

synthase kinase 3, a protein central to a variety of biological processes 

including neurodegeneration, and transthyretin, a Aβ scavenger, are 

modulated by resveratrol (22, 23).  Further, resveratrol’s ability to modulate 

postsynaptic events suggest its neuroprotective benefits also be exerted at the 

synapse(24, 25). Drebrin is a key postsynaptic protein critical to maintaining 

synaptic function, losses of which have been reported in AD(17). We report 

here a test of the hypothesis that resveratrol modulates these proteins in vivo 

in AD transgenic and wild-type mice. The objective of this study was to 

examine whether dietary resveratrol altered the levels of a number of specific 

protein targets specific to AD and neurodegneeration.  

 

4.2 Materials and Methods 

 

Animals. 41-44 week old B6.Cg-Tg(APPswe,PSEN1ΔE9)85Dbo/J were 

purchased from Jackson Laboratories (Place, Maine). These transgenic mice 

express two mutations associated with early-onset AD; a chimeric 

mouse/human amyloid precursor protein (Mo/HuAPP695swe) and a mutant 

human presenilin 1 (PS1-dE9). These mice normally develop Aβ plaque at six 

to seven months of age with progressive increases in plaque up to 12 
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months(26).  The mice used in the study were singly housed in individually 

vented cages at Cornell University’s Biotechnology Mouse Facility at a 

constant temperature (71 ± 1°F), humidity (44 ± 4%) and illumination (12 h 

light/dark cycles) with food and water provided ad libitum. All procedures with 

the animals were approved by Cornell University’s Institutional Animal Care 

and Use Committee. 

 

Treatment. A total of 18 male mice were used, 9 wild-type and 9 transgenic. A 

9 week acclimation period occurred whereby all mice were introduced to singly 

housed cages at Cornell’s facility and fed AIN-93G diet ad libitum, and dietary 

regimens began at 50-53 weeks of age. Of the wild-type mice, 6 mice were 

assigned to receive control diet group and received a standard AIN-93D diet 

(Dyets Inc, Bethlehem, PA) while 3 mice were assigned to receive resveratrol 

at 0.19% w/w mixed homogenously into AIN-93G. Of the transgenic mice, 3 

mice received the control diet and 6 mice received the resveratrol-

supplemented diet (same formulations as above). The daily dosage in mice is 

174 mg/kg/d (3.3 g food per day for a 36 g mouse).  The equivalent dose in 

humans is 14 mg/kg or 0.98 g per day for a 70 kg individual. The dietary 

regimen lasted 16 weeks. Resveratrol (>98%) was purchased from Orchid 

Pharmaceuticals (Aurangabad, India) and mixed to homogeneity in the dark 

during manufacturing of the diets. Diets were stored at 4°C and replaced in all 

cages weekly.  All animals were inspected daily while body weight and food 

intake measurements were performed on a weekly basis throughout the 

experimental period. 

 

Tissue preparation. After 16 weeks of the dietary intervention, mice were 
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sacrificed by CO2 inhalation and rapidly dissected. Brains were removed and a 

thin coronal section containing cortex and hippocampus was excised using a 

rodent brain matrix and fixed in 10% neutral buffered formalin. The rest of the 

brain was separated into several regions, flash frozen in liquid nitrogen, and 

stored at -80°C until analysis. 

 

Immunoblot analysis. Cortex was homogenized in ice-cold lysis buffer (150mM 

NaCl, 1% Triton X-100, 1mM EDTA, 50mM Tris pH 7.5) with protease 

(Protease inhibitor cocktail, Sigma Aldrich, St. Louis, MO) and phosphatase 

(PhosSTOP Roche, Indianapolis, IN) inhibitors as indicated by manufacturer. 

Samples were centrifuged for 4 min at 4oC at 13,000 × g to obtain the soluble 

protein fraction. Protein concentrations were determined by a bicinchoninic 

acid (BCA) assay (Pierce Chemical Company, Rockford, IL). 25 μg of protein 

was loaded and electrophoresed by one-dimensional SDS-PAGE (12% w/v 

acrylamide), then electroblotted overnight onto 0.45 µm Immobilin-P PVDF 

membranes (Millipore, Medford, MA) and immunoblotted for drebrin (1:1000, 

Abcam, Cambridge, MA), insulin degrading enzyme (1:500, Abcam, 

Cambridge, MA), transthyretin (1:5000, Abcam, Cambridge, MA), total 

glycogen synthase kinase 3β (1:1000, Cell Signaling Technology, Danvers, 

MA), and phospho-glycogen synthase kindase-3β (Ser9) (1:1000, Cell 

Signaling Technology, Danvers, MA). Visualization of bands was 

accomplished using horseradish peroxidase-coupled (HRP) secondary 

antibodies and chemiluminescent substrates (West Dura, Pierce) with 

exposure to autoradiography film.  Film images were digitized and analyzed 

using NIH ImageJ 1.63 software.  Band intensities were normalized against 

corresponding bands for β-actin loading and transfer controls.  
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Immunohistochemistry. Coronal sections 5 μm thick were cut with a sliding 

microtome and processed as free floating sections at Cornell University’s 

Histology Laboratory. Briefly, sections were washed with TBS pH 7.6 and 

incubated in 3% hydrogen peroxide for 5 min to block endogenous peroxidase 

activity. Sections were blocked using rabbit serum and incubated with 

monoclonal mouse anti-human beta-amyloid 6F/3D primary antibody, 1:50 

(DakoCytomation, Glostrup, Denmark) in antibody diluent for 90 minutes. The 

secondary antibody, a biotinylated goat anti-mouse, was applied and the 

slides and incubated for 10 to 20 minutes at room temperature. Sections were 

then incubated in streptavidin-peroxidase conjugate for 10 minutes at room 

temperature. The chromogen, 3,3-diaminobenzidine-tetra hydrochloride (DAB 

from Dakocytomation) was applied to the slides for 1 minute at room temp and 

slides were counterstained using hematoxylin for 2 minutes and rinsed in 

distilled water. Slides were dehydrated using ethyl alcohol and cleared with 

xylene before being coverslipped using Permount mounting media (Fisher 

Scientific, Pittsburgh, PA). 

 

Plaque counts and percentage occupied by the 6F/3D were quantified in the 

cortex and hippocampus.  The region of interest was drawn manually under 4× 

magnification, the images were thresholded, and plaques were quantified 

using Metamorph 7.1 software (Molecular Devices, Sunnyvale, CA). The 

results of the analysis were confirmed in a blinded fashion by multiple 

researchers. 

 

Brain Aβ ELISA analysis. Brain cortex was homogenized in carbonate buffer 
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(100mM Na2CO3, 50mM NaCl, pH 11) containing protease inhibitors (Protease 

inhibitor cocktail, Sigma Aldrich, St. Louis, MO).  The homogenate was 

centrifuged at 14,000 x g for 20 min at 4°C. The supernatant (carbonate 

soluble) fraction was transferred to a new tube and stored at -80°C until 

analysis. The pellet was further homogenized in guanidine solution (5 M 

guanidine HCl in 50 mM Tris-HCl, pH 8.0). The homogenate was rocked for 4 

hours at room temperature and centrifuged at 14,000 x g for 20 min at 4°C. 

After centrifugation, the supernatant (insoluble fraction) was transferred to a 

new tube and stored at -80°C until analysis. Soluble and insoluble Aβ40 and 

Aβ42 levels were determined using the Human β Amyloid 1-40 and 1-42 

ELISA kits (Invitrogen, Camarillo, CA) according to manufacturer’s protocol.  

 

Statistics. Values reported are expressed as means ± SEM. p < 0.05 was 

considered significant. Statistical significance was tested by two tailed 

Students t-test and ANOVA using JMP 7 (SAS Institute Inc, Cary, NC).  

 

4.3 Results 

 

To determine the effects of resveratrol in both wild-type and AD transgenic 

mice on a number of key proteins involved in AD pathogenesis, western blot 

was used to measure levels of transthyretin, insulin degrading enzyme, and 

drebrin. Resveratrol significantly increased levels of transthyretin in mice 

consuming resveratrol compared to control diet (3.8-fold increase, Figure 4.1; 

p < 0.05, pooled data shown). However, resveratrol did not increase levels of 

TTR within transgenic mice, though the increase in TTR in the resveratrol-fed 

animals did approach significance (p=0.07). Resveratrol did not alter insulin 



   

108 
 

degrading enzyme levels in either wild-type or transgenic animals (Figure 4.2, 

pooled data shown). Resveratrol feeding significantly increased drebrin levels 

in both wild-type and transgenic animals (2.2-fold increase, Figure 4.2; p < 

0.05, pooled data shown). To determine the effects of resveratrol on GSK-3 

enzyme activity, total GSK3-beta and phospho-GSK3 β (ser9) were measured. 

Levels of phosphorylated GSK3-β were normalized to total levels of GSK-β. In 

both wild- type and transgenic groups, resveratrol significantly decreased 

GSK-3 β activity by increased phosphorylation at ser9 (Figure 4.3, 

phosphorylation at ser9; p < 0.05, pooled data).    

 

To test the effect of dietary resveratrol on plaque pathology, transgenic AD 

mice were fed control (AIN-93G) or +Resv (AIN-93G with 0.19% resveratrol) 

diet for 16 weeks. Brain sections were stained with an antibody specific for 

extracellular beta-amyloid (Figure 4.4). Quantification of plaque areas revealed 

no significant differences in plaque burden in hippocampus or cortex between 

dietary groups. To determine the effect of dietary resveratrol on cerebral Aβ 

protein levels, Aβ contents in the carbonate soluble and insoluble (guanidine-

soluble) fractions in the cortex were quantified by ELISA. No significant 

difference in soluble Aβ40 and Aβ42 was found between groups (Figure 4.5A). 

Further, no significant difference between insoluble Aβ40 and Aβ42 was found 

between groups (Figure 4.5B). 

 

These results are consistent with the immunohistochemical analyses that 

showed no significant difference between Aβ plaque deposition in 

hippocampus and cortex between dietary groups.  
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Resveratrol did not alter body weight or food intake in APP/PS1 transgenic AD 

mice.  Body weight and food intake measurements were recorded on a weekly 

basis throughout the experiment. Changes in body weight and total food 

intake did not vary between dietary groups (Table 3.1). 

 

4.4 Discussion 

 

In this study, aged AD transgenic mice fed dietary resveratrol for 15 weeks 

demonstrated increased protein levels of drebrin and transthyretin.  

Additionally, resveratrol-fed mice displayed increased phosphorylation of the 

protein glycogen synthase kinase-3 at serine 9 compared to controls. 

Resveratrol-fed mice did not demonstrate decreases in Aβ plaque load in 

hippocampus or cortex or secreted Aβ levels in cortex.   

 

Glycogen synthase kinase 3, a serine/threonine protein kinase, was originally 

identified as an enzyme which regulates glycogen synthesis but is now known 

to  affect a multitude of physiological events by interacting with a number of 

substrates(27, 28). Broadly speaking, GSK3 activity plays an important role in 

insulin resistance, tumorigenesis, inflammation, cardiac function, and 

neurodegeneration(28). Further, GSK-3 is intimately involved with memory 

formation, inflammation, as well as tau phosphorylation and other pathological 

hallmarks of AD, leading a number of researchers to classify it as a promising 

drug target and formulate the GSK3 hypothesis of AD(29-31). GSK activity is 

tightly regulated via its phosphorylation state, and its over-activation, which 

has been shown to occur in normally aged mammals(32), has been implicated 
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Figure 4.1. Resveratrol significantly increased levels of transthyretin in mice 
consuming resveratrol compared to control diet (3.8-fold increase; p < 0.05, 
pooled data shown). Resveratrol also increased levels of TTR within 
transgenic mice but not at statistically significant levels (p=0.07). Data 
represent means ± SEM of control (n=9) and resveratrol (n=9) groups. 
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Figure 4.2. Resveratrol feeding significantly increased drebrin levels in both 
wild-type and transgenic animals (2.2-fold increase; p < 0.05, pooled data 
shown). Resveratrol did not alter insulin degrading enzyme levels in either 
wild-type or transgenic animals (p < 0.05, pooled data shown). Data represent 
means ± SEM of control (n=9) and resveratrol (n=9) groups. 
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Figure 4.3. Total GSK3-beta and phospho-GSK3 beta (ser9) from brain cortex 
were measured and levels of phosphorylated GSK3-beta were normalized to 
total levels of GSK-beta. In both wild-type and transgenic groups, resveratrol 
significantly decreased GSK-3 activity (1.9-fold increase; p < 0.05, pooled data 
shown). Data represent means ± SEM of control (n=9) and resveratrol (n=9) 
groups. 

 

 

        Control                            + Resv
 WT  TG     WT  TG          WT  TG   WT  TG

Total GSK-3β 

p-GSK-3β (Ser9)

0

1

2

3

Control + Resveratrol

Fo
ld

-c
ha

ng
e 

of
 to

ta
l/p

ho
sp

ho
 ra

tio

     *



   

113 
 

in abnormal Aβ  production and is hypothesized to be the major mechanism 

leading to aberrant phosphorylation of tau (33, 34). 

 

Previous studies have shown that GSK co-localizes with neurofibrillary 

tanges(35) and its activity is increased in the frontal cortex and hippocampus 

in AD(36, 37). In the context of studies examining apoptosis, cell cycle 

regulation, and ischemia, in vitro data has shown resveratrol’s interaction with 

the phosphatidylinositol-3-kinase/Akt pathway leading to inactivation of GSK3 

β by phosphorylation at serine 9 (22, 38, 39). However, to date, no studies to 

our knowledge have reported the effect of dietary resveratrol in a mammalian 

system on GSK3 regulation.  

 

In our study, mice fed resveratrol demonstrated 1.9-fold increases in GSK3 β 

phosphorylation at serine 9 compared to control diet (Figure 4.3). Our 

resveratrol-fed mice expressed increases in phosphorylation at serine 9 in 

both wild-type and transgenic groups. Phosphorylation at serine 9 inhibits 

GSK3 β activity; namely, aberrant phosphorylation of tau a number of sites 

such as Ser-396 and Ser-404(40). Surprisingly, we detected no differences in 

total tau or disease-associated phospho-tau Ser-396 and Ser-404(see Figure 

4.6). No change in tau phosphorylation could be explained by several factors. 

First, when acting alone, GSK3 β phosphorylation of tau occurs at very slow 

rates and increases rapidly when tau is prephosphorylated at separate sites by 

other protein kinases, such as protein kinase A at Ser-214(41).  
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Figure 4.4 Resveratrol inhibits GSK3 beta by phosphorylation at serine 9. A 
number of proteins including protein kinase B (PKB) and others inhibit GSK3 
beta activity by phosphorylating GSK3 beta at serine 9. This phosphorylation 
event inhibits hyperphosphorylation of the microtubule-associated protein tau 
which can lead to neurofibrillary tangles, a hallmark of Alzheimer’s disease. 
The figure describes a proposed method where resveratrol directly binds a 
membrane receptor and inhibits GSK3 beta through inhibiting PKB. 
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Figure 4.5. Resveratrol did not alter plaque load in APP/PS1 transgenic AD 
mice. Representative coronal brain sections from AD transgenic mice showing 
hippocampus and cortex stained with antibody specific for extracellular beta-
amyloid. 
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Figure 4.6 A, ELISA of Aβ40 and Aβ42 levels in the carbonate soluble fraction 
of cortex homogenate show no significant differences between dietary groups.  
B, ELISA of Aβ40 and Aβ42 levels in the carbonate insoluble (guanidine-
soluble) fraction of cortex homogenate show no significant differences 
between dietary groups.   Data represent means ± SEM of control (n=3) and 
0.19% resveratrol (n=6) groups. 
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Figure 4.7. Total tau and phosphor-tau (Ser 396 and Ser 404) from brain 
cortex was measured and levels of phosphorlayed tau were normalized to total 
levels of tau. Resveratrol did not significantly alter levels of tau 
phosphorylation at sites Ser396 or Ser404.  

 

 

 

 

 

 

 

 

 

Total Tau

Phospho-Tau (Ser404) 

Phospho-Tau (Ser396) 

   Control Control  +Resv  +Resv



   

118 
 

 

 

 

 

 

 

 
 
Table 4.1. Body weight and food intake measurements were recorded on a 
weekly basis throughout the experiment. Differences in body weight and total 
food intake were not statistically significant between dietary groups. Data 
represent means ± SEM of control (n=9) and 0.19% resveratrol (n=9) groups. 

 

 Before treatmenta After treatment  

 Control Diet Resv Diet  Control Diet Resv Diet  

Body Weight 33 ± 0.8 33.8 ± 1 37.5 ± 0.7 39 ± 0.9 

Food Intake (g/week) 3.0 ± 0.1 3.1 ± 0.1 3.1 ± 0.1 3.2  ± 0.2 
 
a - Treatment was 16 weeks dietary resveratrol at 0.19%. Before treatment, all mice 
consumed standard control diet, AIN93G. 
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Since resveratrol’s inhibition of GSK3 β did not lead to differences in phospho-

tau Ser-396 and Ser-404, it is possible that tau was not primed via 

prephosphorylation by protein kinase A or other kinases. Priming of tau could 

have conceivably led to increased phospho-tau in non-resveratrol fed animals 

and increased differences between control and resveratrol diet groups. 

Second, rapid endogeneous dephosphorylation of normal tau proteins occurs 

after death; it has been observed that up to 80% of tau immunoreactivity at 

sites Ser-396 and Ser-404 disappears after a postmortem delay of 2 h at room 

temperature(42). In the case of our study, however, this remains unlikely as 

mice were rapidly dissected and brain sections were flash frozen within 5 

minutes of sacrifice. Additionally, brain lysates were treated with protease and 

phosphatase inhibitors. Third, it may be worth noting that our measurement is 

from the soluble fraction of the brain lysate, and that insoluble tau could 

represent a different pattern of phosphorylation at Ser-396 and Ser-404. 

Lastly, other posttranslational modifications of tau such as glycosylation have 

been shown to play a role in its phosphorylation. For example, deglycosylation 

of tau surpresses subsequent phosphorylation at Ser-404(43). Regardless, it 

remains clear that resveratrol’s ability to phosphorylate and inactivate the 

critical target GSK3 β constitutes an important new mechanism underlying 

resveratrol’s neuroprotective effects. 

 

Further, GSK3 remains an important target for a number of other physiological 

conditions. GSK3 inhibitors have shown beneficial effects for diabetes 

(increased glucose transport and decreased blood glucose), inflammation 

(increase of anti-inflammatory mediators and prevention of arthritis), cancer 

(inhibition of NF-κB), cardiac ischemia (reduction of infarct size), and stem cell 



   

120 
 

stimulation(44-50). Resveratrol’s inhibitory action on GSK3 represents an 

exciting finding whose effects may extend beyond neuroprotection. 

 

The precise relationship between cerebral Aβ deposition, tau pathology, and 

clinical AD is not obvious, as several studies have demonstrated amyloid 

deposition in cognitively normal aged individuals (51-53). A number of 

pathological studies may indicate that synaptic defects may be more directly 

related to AD, as post-mortem tissue studies suggest synaptic dysfunction as 

an early event in AD(54, 55). Substantial losses of postsynaptic proteins such 

as developmentally regulated brain protein (drebrin) and post-synaptic density 

protein 95 (PSD-95) have been reported in AD(17, 56, 57).  

 

Drebrin is a dendritic spine protein which plays an important role in synaptic 

function, losses of which have been reported beyond 70% in a number of 

separate studies and have been found in subjects with mild cognitive 

impairment(17, 57, 58). Levels of drebrin are significantly decreased in AD and 

correlate well with tau pathology(56, 57, 59). Further, losses in drebrin protein 

in the temporal cortex correlate to decreases in Mini-Mental State Examination 

and Braak scores, two questionnaire-based tests that predict neuropathologic 

stage(60). Drebrin has been shown to respond to diet, as its loss has been 

shown to be exacerbated in AD mice fed high-fat diets low in n-3:n-6 

polyunsaturated fatty acid ratio and rescued in AD mice fed DHA(61).  

 

In our study, resveratrol-fed mice exhibited 2.2-fold increases in cortex drebrin 

(Figure 4.2). Increases were observed regardless of wild-type or transgenic 

state, with both groups of animals exhibiting increased drebrin when fed 
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resveratrol. It is worth noting that differences in drebrin levels did not exist 

between wild type and AD mice on control diet, therefore this transgenic model 

may come up short in an attempt to mimic this physiological feature of AD. 

Regardless, a positive change in drebrin levels in the presence and absence 

of an AD genetic background indicates resveratrol’s action on drebrin may be 

independent of background neuropathic state. As with any protein, drebrin 

losses can be caused either by decreasing production (transcription or 

translation) of the protein or increased degradation.  

 

In this case, since drebrin levels did not differ significantly between wild-type 

and AD groups and were higher in all resveratrol-fed animals, it is likely that 

drebrin production increased either through increased mRNA transcripts or 

increased translation of existing transcripts. Increased drebrin mRNA 

expression has been shown to be inversely correlated to insoluble tau and 

paired helical fragment tau concentrations which make up neurofibrillary 

tangles, suggesting that drebrin losses are very closely related to AD 

pathology(59, 62, 63). Further, as drebrin has demonstrated to be an 

important predictor in memory function in even mildly impaired subjects, 

resveratrol intake could lead to improved neuronal health in populations that 

are otherwise dementia-free. Improvements in drebrin by resveratrol may 

prove to be an important observation as it describes a direct target and 

mechanism between resveratrol and neuronal health. 

 

As evidence has indicated an association between between altered APP 

processing and increased amyloid production and the development of AD (64), 

a concerted effort has been made in the last decade to develop drugs and 
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treatments that decrease the production or increase the clearance of Aβ (65). 

 

Transthyretin (TTR) represents at least 20% of the total protein in the 

cerebrospinal fluid. It is synthesized and secreted by the choroids plexus(66) 

and has been identified as the main Aβ binding protein in human CSF(67, 68). 

TTR has been shown to bind and sequester Aβ protein and prevent Aβ 

aggregation (69). In vitro, purified TTR can inhibit Aβ fibrils (70) and in C. 

Elegans has shown to lead to significant reductions in Aβ plaques (71). 

Further, an inverse relationship has been found between levels of TTR in 

human cerebrospinal fluid and severity of AD (72). Studies have shown TTR is 

responsive to  dietary compounds, including ginkgo biloba (73) and the long-

chain polyunsaturated fatty acid docosahexaenoic acid (DHA) (74).  Previous 

studies showing that resveratrol inhibits TTR-induced cytotoxicity make it a 

strong candidate for inhibiting TTR in vivo(75).  

 

In our study, dietary resveratrol increased levels of cortex TTR protein by 3.8-

fold (Figure 4.1). However, increased TTR levels did not translate into 

decreases in Aβ plaque, and TTR levels were only marginally higher in 

resveratrol fed AD mice versus control diet AD mice (p=0.07, data not shown).  

Resveratrol-binding sites have been discovered broadly in the rodent brain but 

appear most concentrated in the choroids plexus where TTR is produced. 

Further, resveratrol has been shown to be a potent mitogen-activated protein 

kinase (MAPK) activator, leading to activation of protein kinase A (PKA) or 

protein kinase C (PKC)(23). PKA and PKC regulate cAMP response element 

binding protein (CREB) which is suggested to activate downstream genes 

such as TTR and others involved in memory(76, 77). Altogether, this suggests 
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that resveratrol could increase TTR expression through binding at the choroids 

plexus, leading to MAPK, PKA, PKC, and CREB signaling cascades. In this 

study, it is possible that increases in TTR were not significant enough to 

translate into measurable differences in Aβ, or that TTR has a limited window 

of opportunity during Aβ accumulation to sequester and prevent intraneuronal 

Aβ aggregation. In spite of this, dietary modulation of TTR by resveratrol 

provides a new putative mechanism whereby resveratrol can exert protective 

neurological effects. 

 

Insulin degrading enzyme (IDE) is a proteolytic degrading enzyme for insulin 

and Aβ. IDE is upregulated in response to insulin signaling, and diabetic 

subjects have decreased insulin signaling and are at increased risk of AD(78). 

Insulin resistance is associated with decreased cerebral IDE and accumulation 

of Aβ (79) and increased insulin signaling has shown to prevent Aβ 

oligomers(80). While resveratrol has been shown to increase insulin signaling 

and sensitivity (12, 13), our results indicate no changes in levels of IDE when 

mice were fed dietary resveratrol (Figure 4.2). IDE is a tightly regulated 

protease and degrades not only insulin and Aβ but also a number of other 

peptides(81, 82). Further, IDE is much more selective for insulin than for Aβ, 

and a number of proteins and pathways  are involved in maintaining and 

regulating overall insulin signaling(83). Since IDE degrades soluble Aβ(84), 

these results are consistent with our ELISA data showing no differences in 

soluble Aβ levels across dietary groups (Figure 4.2A). 

 

Our study did not find differences in levels of hippocampal or cortex plaque or 

secreted Aβ protein in cortex between control diet and resveratrol-fed AD mice 
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(see Figures 4.4 and 4.5). Similarly, Karuppagounder et al have fed resveratrol 

at the same concentration in the same transgenic AD mouse for 45 days and 

report no changes hippocampal Aβ plaque, although they report decreased 

plaque levels in medial cortex (19). A number of studies show that progressive 

neurodegeneration may occur in AD patients despite removal of plaques, and 

many cognitively normal humans display Aβ plaques in equivalent densities as 

Alzheimer’s disease individuals(52, 53, 85).  

 

Since the role or neurodegeneration and its relationship with amyloid 

metabolism and the precise number and order of pathophysiological events 

that lead to AD are not fully known, nutrients and therapies that interact with 

targets more upstream than APP metabolism need to be identified. Our 

findings confirm and extend the role of resveratrol as a neuroprotective 

nutrient and open the door to a variety of new mechanisms and protein targets 

whereby resveratrol exerts its action, such as degradation of Aβ (TTR) positive 

structural and postsynaptic changes (drebrin), and inhibition of taupathology 

(GSK). These broad pleitropic effects initially appear to be sirt-independent, 

agreeing with previous studies showing a number of resveratrol’s beneficial 

effects may be different than that of calorie restriction(20, 21). 

 

It is important to note that resveratrol only describes one compound in a 

broader class called stilbenes, and that present in red wine are a large number 

of other polyphenols and phytochemicals with potential bioactivity. Health 

benefits have been reported for stilbenes, anthocyanosides, catechins, 

proanthocyanidin, as well as other phenolics in red wine (86). Resveratrol, 

along with many of other compounds, represent an antifungal or antibavterial 
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mechanism that improves survival of the grapes, and thus exposure to fungus 

and also geographic factors play a considerable role in the amount of these 

compounds present in a given sample and can even vary in the same region 

from one year to the next(87). Thus, reported levels of these different classes 

of compounds are quite variable. 

 

A study of red wine has shown that stilbenes exist in concentrations from 53-

89 ug/g of dry weight grape skin and 17-39 ug/g of dry weight grape skin for 

resveratrol (88). On average, a 750ml bottle of wine contains 1250 grams of 

grapes, 30% of which (about 375 grams) is dry weight (89). From the mean 

resveratrol values described in these data, estimates can be made that, on 

average, one bottle of wine contains about 10 mg resveratrol. To achieve 

numbers in a 70 kg human similar to those fed to mice in this study, 98 bottles 

of wine would need to be consumed per day (range 67 to 153 bottles). If it is 

assumed that all stilbenes are equally as potent, this number changes from 98 

bottles of wine to about 39 bottles per day. 

 

Year harvested, climate, extraction method, and specific grape species all play 

a role in the amounts of these compounds present in grapes. Further, it is 

difficult to separate and characterize these compounds using typical 

chromatographic methods, and technology is currently further being developed 

to characterize these molecules in a more accurate and rapid manner (90). 

Practically, it is important to consider that in the case of red wine as well as 

any other fruit, large numbers of molecules exist with potential bioactivities 

whose cumulative result can have additive and syngergistic effects on health. 
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CHAPTER 5 

CONCLUSION 

 

5.1 Summary 

 

We evaluated the presence and specific roles of a number of nutrients in 

neural development and neurodegeneration. Research has shown the 

importance of LCPUFA in human breast milk and formula, and worldwide 

breast milk averages serve as a useful guide for formula infant feeding. Our 

literature review considered eighty four studies of human breast milk published 

in English that were indexed by Medline. We included strict criterion to insure 

mean values for LCPUFA from studies that were well described and used 

modern chromatographic methods. For instance, studies that included data 

from only one mother, pooled or banked milk samples, and mothers of preterm 

infants were excluded. The use of capillary GC columns that fully resolve FA 

methyl esters were included as opposed to packed columns which cannot 

resolve DHA and AA and may provide artificially high values. Our calculated 

mean (±SD) concentration of DHA in breast milk (by wt) is 0.32 ± 0.22% and 

that of AA is 0.47 ± 0.13%. However, worldwide breast-milk DHA or AA 

concentrations calculated by our procedure or any other should not be seen as 

the exclusive criteria for establishing targets for DHA and AA contents in infant 

formulas. Studies of optimal DHA and AA levels for infant feeding beyond the 

present mean values are needed, since data have indicated that higher 

concentrations of DHA in formula support cerebral increases in DHA and 

induce positive changes in a number of genes(1). Previous studies have also 

described positive functional effects of these lipids in neurodevelopment as 
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well as visual acuity(2).  Further work should aim to elucidate and describe 

molecular mechanisms by which DHA and LCPUFA are involved in the 

function and development of the brain and seek to further define safe and 

effective levels of feeding in experimental studies.  

 

While trans fats have been associated with the harmful effects of partially 

hydrogenated vegetable oil (PHVO) consumption, more recent studies have 

shown that these lipids fed in isolation have effects that are markedly different 

than PHVO(3). Their detection in mammalian tissues, particularly in the brain 

where some have hypothesized protective mechanisms against their 

incorporation(4), are an important step in determining their precise 

physiological significance in the central nervous system and whether dietary 

recommendations regarding their intake should be made to the public. We 

describe a sensitive method whereby trans 16:1 and 18:1 isomers are 

detected and quantified in mammalian tissues in normal aged and Alzheimer’s 

disease subjects. It will be important for researchers to recognize that 

individual isomers of trans fatty acids may have differing biological effects, and 

that the source of trans as well as other components of any mixtures 

containing trans, such as PHVO, are important considerations. Future studies 

aimed at elucidating the specific physiological role of trans fats should 

continue to apply highly sensitive methods to biological tissues in order to 

study the role of these lipids and their metabolism and in health and disease. 

Further, studies should test specific isomers alone and in combination to 

elucidate their specific metabolic fate and consequences. 

 

As oxidation has also been described to be a major factor in aging, the use of 
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antioxidants, particularly antioxidant rich foods, has been of great research 

interest. We demonstrate that dietary resveratrol, a grape and red wine 

polyphenol, has a number of physiological effects in normal aged and 

transgenic Alzheimer’s Disease mice beyond those normally seen in calorie 

restriction. Further research examining resveratrol’s effects on these targets 

will be important, especially as neurodegenerative animal models whose 

pathophysiologly more closely reflects that of human conditions are 

developed. Through binding at the choroid plexus and increasing levels of 

transthyretin, resveratrol may contribute to increased binding and sequestering 

of beya amyloid peptides and decreased neuritic plaques.  Postsynaptically, 

resveratrol may provide protection to neurons by maintaining neuronal 

structure through its ability to increase levels of drebrin, a key protein whose 

loss in AD is associated with cognitive impairment. Finally, resveratrol’s action 

on glycogen synthase kinase-3 opens the door to studying the role of this 

molecule in a number of other diseases, such as cancer and diabetes, and 

provides further explanation for its protective effects in already published 

studies of the heart(5, 6).   

 

Resveratrol describes only one of a large number of compounds present in 

grapes and red wine. As this field moves forward, studies elucidating the 

particular benefit of these polyphenolic and other compounds in isolation or in 

symphony with each other will be crucial, as these compounds are naturally 

found in foods in varying concentrations. Already, studies have described the 

importance of the heterogeneity of these compounds found naturally in foods 

in fighting neurodegeneration. In particular, one study demonstrated that two 

distinct polyphenolic combinations from two different grape varieties both 
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provided neuroprotection in an Alzehiemer’s Disease model(7). However, the 

specific biological mechanisms and molecular events associated with the 

protection differed between these two grape species. Further studies 

describing bioavailability and metabolism of these compounds will also be 

important as researchers begin to tease out specific molecular targets of 

action. Already, research has shown that a number of compounds in grape 

seed extract which initially seem to possess only low bioavailability 

demonstrate improved bioavailability when they are chronically administered 

over time(8). Clearly, much work in this field remains, as the complex nature 

and combination of polyphenolic compounds in foods represents a new and 

exciting area in neurodegeneration research. 
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APPENDIX 

VALIDATION OF A RAPID, SINGLE TUBLE METHOD FOR PREPARATION 

OF FATTY ACID METHYL ESTERS FROM INTACT MAMMALIAN SOFT 

TISSUES 

 

A.1 Introduction 

 

Fatty acid composition and total lipid content of biological soft solid tissues 

often serve as important markers in a wide range of physiological and 

nutritional studies. However, conventional fatty acid preparation requires 

considerable manual manipulation. Lipid extraction typically involves separate 

steps for sample homogenization and selective organic solvent extraction, 

followed by a series of acid- or base-catalyzed reactions to produce fatty acid 

methyl esters (FAME) for gas chromatography (GC) analysis. Since its 

introduction, the Bligh and Dyer method (BD) (1) of lipid extraction is the most 

popular means for extracting lipids from biological tissues.  The method is a 

modification of the Folch method (2), uses a more economical solvent/sample 

ratio, and is more rapid. However, tissue homogenization and lipid extraction 

must be performed in separate manual steps for each sample, such that the 

method is burdensome when preparing large numbers of samples. 

 

Garces and Mancha (GM) developed a one-step method for lipid extraction 

and FAME preparation from fresh plant tissues in order to study the lipid 

content of several thousand seeds (3).  Lipids were extracted using an 

aqueous reagent mixture consisting of methanol, 2, 2-dimethoxypropane, and 

concentrated sulfuric acid (85:11:4) and an organic reagent mixture consisting 
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of heptane and toluene (63:37). Tissue digestion, lipid extraction and fatty acid 

transmethylation occur in one tube during a two hour incubation at 80°C, upon 

which the upper phase of a biphasic system contains FAME ready for 

analysis. Few manipulations and elimination of several steps make this 

method convenient and employable for lipid analysis of large numbers of 

samples. 

 

Though the GM method was originally applied to plant tissue, there are no 

studies that use the GM method for mammalian soft solid tissue. In the 

present study, a GM method slightly modified for high water content tissue 

was applied to representative mammalian soft tissue and compared to a 

classic protocol starting with mechanical homogenization and BD extraction, 

followed by conventional base catalyzed hydrolysis and FAME preparation 

with BF3/methanol. Previous studies have shown that extended incubations in 

the presence of acid catalysts may generate geometric (cis/trans) 

isomerization(4), therefore, olive oil was also studied at 1, 2, 4, and 24 hour 

incubations to test for artifactual isomerization. FAME were analyzed with GC-

mass spectrometry and quantified using internal standards.   

 

A.2 Methods 

 

All reagents used were of analytical grade and mixtures were made 

immediately before use.  FAME were prepared from six replicates (100 ± 10 

mg) of liver and muscle using both the BD and GM extraction methods. Bovine 

liver was chosen as a homogenous tissue at the 100 mg scale and canine 

cerebellum served as representative of a high lipid tissue.  
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Bligh and Dyer. Frozen tissue was thawed on ice, then homogenized in 1.92 

mL distilled water using a Brinkman polytron (Westbury, NY) equipped with a 

Kinematica homogenizer (Lucerne, Switzerland). 1,2-Diheptadecanoyl-sn-

glycero-3-phosphorylcholine (115 µg per 100 mg tissue; 98+% pure, Matreya, 

Pleasant Gap, PA, USA) was dissolved in chloroform and added as an internal 

standard. Samples were re-homogenized after addition of 4ml 

chloroform/methanol (2:1 v/v). The homogenizer probe was rinsed in 3.5 ml 

chloroform/methanol (2:1 v/v) and the rinse was added to the homogenate. 

Samples were then vortexed for 30 minutes and centrifuged for 10 minutes at 

3500 rpm. Cell debris was removed and the supernatant transferred to clean 

tubes, and 2.5 ml chloroform and 2.5 ml 1M NaCl were added. Samples were 

vortexed and centrifuged, after which the top layer of the biphasic system was 

discarded including a solid precipitate at the interface. The remaining 

chloroform was evaporated gently under nitrogen.    

 

To prepare FAME, 2mL of 0.5 N methanolic sodium hydroxide was added to 

samples and heated to 60°C for 5 minutes. Samples were methylated for 10 

minutes at 100°C with 14% BF3 in methanol. After methylation, 2 ml heptane 

was added and samples were incubated at 100°C for 1 minute and cooled to 

room temperature. After addition of 2 ml saturated NaCl, samples were 

centrifuged, after which the upper (organic) layer was transferred to a clean 

glass tube and gently dried under nitrogen gas. The prepared FAME were 

suspended in heptane and stored at -80°C until analysis. 5uL droplets of olive 

oil underwent the same procedure except the homogenization step was 

replaced by vortexing in the initial step.  
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Garces and Mancha.  Chunks of thawed frozen tissue, about 100 mg each, 

were placed in 16 x 125 mm ml screw cap test tubes. 1,2-Diheptadecanoyl-sn-

glycero-3-phosphorylcholine (115 µg per 100 mg tissue; 98+% pure, Matreya, 

Pleasant Gap, PA, USA) was was dissolved in chloroform and added to test 

tubes as an internal standard.  Fatty acid extraction and transesterification was 

performed by the addition of an aqueous and organic mixture.   

 

The aqueous mixture described in the GM originally contains 5% 2,2-

dimethoxypropane (DMP) by volume, however, the authors recommend 

increasing DMP levels when extracting lipids from high lipid and water 

containing tissues (3).  Thus, DMP was added at a concentration of 11% in the 

aqueous mixture. 1.4 ml of the aqueous mixture (methanol, DMP, and 

concentrated sulfuric acid 85:11:4 by volume) was added to each sample. 

Next, 1.6 ml of the organic reagent mixture (heptane and toluene 63:37 by 

volume) was added, followed by heptane, to bring the total volume up to 5 ml.  

Samples were capped and sealed with Teflon tape, vortexed for 1 minute, and 

incubated at 80°C in a shaking water bath for 120 minutes; olive oil was 

incubated in duplicate for one, two, four, or twenty-four hours.  After heating, 

the samples were cooled to room temperature for 10 minutes and vortexed for 

1 minute. To assist in the separation of the organic and aqueous layers, 2ml of 

saturated NaCl was added, and samples were vortexed and centrifuged for 10 

minutes at 3500 rpm. The upper layer was transferred to a clean glass tube 

and 2mL heptane was added to the sample tube. After additional vortexing 

and centrifugation, the upper layer of the sample tube was again transferred to 

the clean glass tube and dried gently under nitrogen. FAME were suspended 

in heptane and stored at -80°C until analysis. 
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Fatty acid concentrations were determined using a Hewlett–Packard 5890 

series II GC with a SGE BPX70 fused-silica capillary column (25 m × 0.22-mm 

i.d. × 0.25-μm) with H2 as a carrier gas. The oven temperature program 

started at 80°C, increased at 30°C/min to 170°C, was held for 2 min, then 

ramped at 10°C/min to 240°C for 1 min. Peaks were quantified using methyl 

heptadecanoate derived from the diheptadecanoyl phosphatidyl choline 

internal standard, and response factors were applied using an equal weight 

mixture analyzed separately. 

 

To test for possible artifactual isomerization products, olive oil samples at 1, 2, 

4, and 24 hour incubations were analyzed by covalent adduct chemical 

ionization tandem mass spectrometry (CACI-MS) (5,6), using with  trans 

16:1n-7 and trans 18:1n-9 FAME standards (Matreya, Inc..Pleasant Gap, PA 

USA).  A trans FAME concentration of 1.0 ng FAME/mg tissue was the lower 

limit of quantification (LLOQ).  

 

To compare quantities of individual and total fatty acids between the two 

methods, paired t-tests were calculated in Excel (Microsoft Office 2003, 

Windows XP Professional) and statistically significant differences are 

described where p < 0.05. 

 

A.3 Results 

 

Table A.1 presents the total lipid weights extracted from liver and brain. 

Compared to BD, GM extracted a higher concentration of total FAME for brain. 
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As expected, the lipid concentration was higher for brain than for liver in both 

methods.  

 

Table A.2 represents the total long chain (C>18) polyunsaturated fatty acids 

extracted from liver and brain. Compared to BD, GM extracted a higher 

concentration of total LCPUFA from liver and brain.  

 

Figure A.1 is a photograph of six tubes showing BD and GM for liver and brain 

tissues side by side.  The bottom layer of the GM tubes is clear apart from the 

cell debris settled at the floor of the tube, similar to the BD method, providing 

visual evidence that GM digests tissue and frees lipids for methylation without 

physical tissue disruption.  
 

Figure A.2 shows the fatty acid concentration for liver (A) and brain (B) by 

saturation. For liver, the two methods extracted comparable concentrations of 

saturated fatty acids, whereas BD extracted more monounsaturates and GM 

extracted more polyunsaturates. For brain, GM extracted more saturates, 

monounsaturates, and polyunsaturates. In both cases, the percentage of each 

category of saturation appears to follow a similar trend, where saturates, 

monounsaturates, and polyunsaturates represent about 43-44%, 11-13%, and 

44-46% of total lipid for liver and 44%, 36-39%, and 17-19% for brain, 

respectively.   
 

Figure A.3 shows the fatty acid concentration for liver (A) and brain (B) by 

omega series. For liver, the two methods extracted comparable concentrations 
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Table A.1. Total FAME extracted from liver and brain for GM and BD (ug 
FAME/mg start tissue). 
 
 
 
 
 

Total FAME extracted per tissue (μg FAME/mg tissue) 
(Mean ± SD, n=6) 

 Liver Brain 
GM 39.6 ± 0.9  55.2 ± 3.5* 
BD 39.4 ± 1.8  36.8 ± 2.6 

*denotes higher concentration (p<0.05) 
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Table A.2. Total LCPUFA extracted from liver and brain for GM and BD (ug 
FAME/mg start tissue). 
 
 

  LCPUFA extracted per tissue (μg FAME/mg tissue) 
(Mean ± SD, n=6) 
 Liver Brain 
GM 12.6 ± 0.6* 10.2 ± 0.9* 
BD 11.6 ± 0.5  5.8 ± 0.4 
*denotes higher concentration (p<0.05) 
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Figure A.1. Cell homogenates, one of each from liver and brain for BD  versus 
GM preparations. The GM tubes are shown post-incubation and vortexing 
after their contents have settled. The BD tubes are shown after mechanical 
homogenization, vortexing, and settling before centrifugation. 
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of n-6, whereas BD extracted more n-7 and GM extracted more n-9 and n-3. 

For brain, GM extracted more n-9, n-6, and n-3, with no significant differences 

between n-7 levels. For liver, the percentage of each category of omega series 

appears to follow a similar trend in both methods where n-9, n-7, n-6, and n-3 

represent 30-36%, 3-6%, 51-53%, and 10-11% respectively. For brain, the 

percentage of each category of omega series are also similar between 

methods, where n-9, n-7, n-6, and n-3 represent 56%, 12-17%, 19%, and 8-

13% respectively.  

 

Table A.3 shows the individual fatty acid concentrations (ng FAME/mg tissue) 

for liver and muscle.  Of the 33 fatty acids detected for the liver, 14 are higher 

in GM and 7 are higher in BD. Of the 24 fatty acids detected for the brain, 19 

are higher in GM and 2 are higher in BD. 18 of the fatty acids for which 

differences were detected between methods were long-chain (C>18) 

polyunsaturated fatty acids; in all of these, GM extracted a higher 

concentration of LCPUFA than BD.  

 

The methods were also compared for artifactual isomerization of monoenic 

fatty acids using olive oil.  Neither method produced detectable artifactual 

isomerization with as much as a 24 hour incubation above the LLOQ. 

 

A.4 Discussion 

 

Garces and Mancha (GM) extracted significantly higher concentrations of total 

fatty acids for brain but not liver compared to Bligh and Dyer (BD), as shown in 
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Figure A.2. Total FAME extracted from liver (A) and brain (B) for GM and BD (ug 
FAME/mg start tissue) by saturation. Percent values within bars represent 
percent  total of each category extracted per method by saturation. Asterisks 
represent significantly higher concentration of FAME extracted. 
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Figure A.3. Total FAME extracted from liver (A) and brain (B) for GM and BD (ug 
FAME/mg start tissue) by omega series. Percent values within bars represent 
percent total of each category extracted per method by omega series. Asterisks 
represent significantly higher concentration of FAME extracted.  
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Table A.3. Individual FAME extracted from liver and brain for GM and BD (values expressed as ng FAME/mg 
tissue ± SD, n=6 per tissue per method). Asterisks represent significantly higher concentration of FAME. 
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 GM Liver BD Liver GM Brain BD Brain
14:0 280.6 ± 16.7    277.8 ± 12.2     14:0 167.7 ± 9.6 *   107.8 ± 3.5  
B15:0 29.0 ± 2.7 *   13.1 ± 2.0     16:0 8883.3 ± 526.7 *   7172.3 ± 503.8  
15:0 95.1 ± 3.8    123.1 ± 15.1 *    18:0 11993.2 ± 817.0 *   8045.0 ± 609.4  
16:0 4732.6 ± 238.1    4943.3 ± 301.7     20:0 437.7 ± 33.6 *   66.7 ± 6.5  
B17:0 119.3 ± 6.3 *   18.1 ± 1.5     22:0 497.3 ± 44.4 *   31.3 ± 2.4  
18:0 11283.7 ± 529.0    11673.8 ± 350.0     24:0 2538.9 ± 273.3 *   237.4 ± 23.0  
20:0 73.3 ± 3.9    69.4 ± 3.8     16:1n-9 183.8 ± 19.2 *   116.6 ± 11.6  
22:0 120.8 ± 4.1    5.0 ± 0.5     18:1n-9 12064.7 ± 886.0 *   9539.7 ± 510.3  
23:0 26.2 ± 1.6 *   ND ± 0     20:1n-9 688.5 ± 38.6    715.8 ± 54.2  
24:0 163.2 ± 6.1 *   116.8 ± 9.1     20:2n-9 189.1 ± 14.1    175.4 ± 11.2  
14:1n-9 18.1 ± 0.8    36.7 ± 4.8 *    20:3n-9 502.9 ± 45.1    522.4 ± 37.3  
16:1n-9 109.8 ± 9.7    136.4 ± 10.8 *    22:1n-9 221.2 ± 24.9 *   131.2 ± 7.7  
17:1n-9 179.5 ± 14.2 *   62.9 ± 5.7     24:1n-9 3309.2 ± 376.5 *   ND ± 0  
18:1n-9 2507.0 ± 224.7    4142.4 ± 143.5 *    16:1n-7 351.6 ± 32.6 *   244.2 ± 10.4  
20:1n-9 22.1 ± 2.2    24.8 ± 2.3 *    18:1n-7 2122.1 ± 273.8    2646.1 ± 163.7  
20:2n-9 41.6 ± 1.7 *   28.4 ± 2.2     20:1n-7 345.3 ± 23.5    373.6 ± 15.9 * 
20:3n-9 3704.7 ± 172.5    3681.8 ± 64.0     22:1n-7 239.8 ± 20.8 *   97.3 ± 8.5 * 
22:3n-9 23.4 ± 1.6 *   ND ± 0     24:1n-7 625.3 ± 65.3 *   ND ± 0  
24:1n-9 67.6 ± 4.2 *   ND ± 0     18:2n-6 296.3 ± 32.9 *   262.5 ± 15.6  
16:1n-7 65.9 ± 2.6    268.9 ± 13.3 *    20:4n-6 3604.2 ± 395.5 *   2374.8 ± 149.4  
18:1n-7 1208.6 ± 90.7 *   392.0 ± 30.7     22:4n-6 1638.6 ± 148.7 *   1047.6 ± 27.8  
22:3n-7 32.9 ± 2.8 *   ND ± 0     24:4n-6 201.2 ± 18.4 *   127.9 ± 9.2  
18:2n-6 5416.5 ± 242.1    5441.5 ± 112.7     22:5n-3 185.8 ± 21.4 *   105.3 ± 6.6  
CLA 5.2 ± 0.5    7.1 ± 0.7     22:6n-3 3922.6 ± 294.0 *   1426.9 ± 123.1  
18:3n-6 183.4 ± 9.5    186.5 ± 8.9               
20:4n-6 4022.9 ± 178.0    3879.9 ± 184.6               
22:4n-6 2335.9 ± 112.1    1836.8 ± 131.4               
22:5n-6 49.1 ± 2.1 *   44.6 ± 4.9               
18:3n-3 110.3 ± 5.8    110.6 ± 3.2 *              
20:4n-3 105.6 ± 3.8    76.5 ± 3.1               
20:5n-3 176.2 ± 13.5 *   123.9 ± 10.5               
22:5n-3 1637.9 ± 76.1 *   1521.4 ± 88.5               
22:6n-3 462.4 ± 21.0 *   386.5 ± 28.8               
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Table A.1.  For brain, GM extracted 42% more lipid than BD. As liver is a 

highly homogeneous tissue at the 100 mg sample size, the variability 

associated with liver lipids was smaller than cerebellum, a highly 

heterogeneous tissue.   

 

Though GM extracted more lipids from brain than BD but similar levels for 

liver, the overall percentage of FAME extracted by degree of saturation and 

omega series remain comparable (Figures A.2 and A.3). This shows that, 

overall, there is no substantial selection bias or favorability based on 

saturation or omega series between the two methods; GM simply extracts 

more lipids from brain, a fattier tissue, than liver. Studies with samples 

containing <2% lipid have shown the Bligh and Dyer method to be very 

effective and reliable(7,8).  

 

However, in examining fish muscle with exogenously added fish oil, Iverson et 

al. have demonstrated the reduced efficiency of the Bligh and Dyer method 

compared to the Folch method(9). In their study, underestimation of lipid 

content by the Bligh and Dyer method increased significantly with increasing 

lipid content; in fact, in their highest lipid samples, lipid content was 

underestimated by up to 50% using the Bligh and Dyer method. The authors 

hypothesize that reductions in the final lipid yield by BD may be partially 

explained by fractions of the organic phase absorbed by the tissue which 

contains an equal lipid content as the recovered organic phase, thus leading 

to overall loss of lipids(8).  
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Similarly, since BD extracts native lipids as distinct covalent molecules, lipid 

losses are expected for fatty acids that are covalently linked to otherwise 

charged or very polar compounds, such as proteins in undigested tissue 

debris which remain with the aqueous phase and would usually be discarded.  

Specifically, studies have described selective readsorption of acidic 

phospholipids bound to protein in BD leading to lower yields(10), and inclusion 

of acid in the solvent system has been shown to recover adsorbed 

phospholipids(11).  

 

GM also extracted significantly higher concentrations of polyunsaturated fatty 

acids in both brain and muscle. Our extraction of FAME derived from BD was 

done with hexane or heptane, as is common in most labs, and may select 

against PUFA FAME. PUFAs have higher solubility in slightly polar or 

hydrophilic solvents(12). The presence of toluene in the organic phase in GM 

may partially explain improved PUFA yields in GM as it is slightly hydrophilic 

compared to hexane or heptane.   

 

The key feature of the BD lipid extraction method is careful adjustment of the 

solvent mixture (water, chloroform, methanol) to achieve a monophasic 

mixture, where the proportions are governed by the chloroform-methanol-

water ternary phase diagram.  The amount of water initially added to the 

homogenate must be adjusted based on the water content of the tissue in 

question to achieve a monophasic system.  Chloroform or water is then added 

later to convert to a biphasic system wherein the lipid is contained in the 

organic phase.   
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In this respect, BD is initially a dissolution, followed by an extraction. BD, then, 

yields all lipid classes which can be analyzed by, for instance, electrospray 

ionization mass spectrometry according to methods now termed “lipidomics”, 

or conventional HPLC or TLC to purify lipid classes prior to FAME analysis.  

 

In contrast, GM yields exclusively FAME for immediate analysis, and cannot 

be used for subsequent lipidomics analysis.  GM proceeds strictly as a 

biphasic system in which homogenization, saponification, methylation, and 

extraction are accomplished in one tube by chemical means, with vigorous or 

gentle shaking as the only mechanical agitation. The first three steps take 

place in the aqueous phase, and as FAME are synthesized they transfer to the 

organic (top) phase.  Digestion of tissue, fatty acid hydrolysis, and acid 

catalyzed methylation proceed simultaneously by the action of H2SO4.  Thus, 

GM may have the advantage of extracting bound fatty acids that BD does. 

Further, less pipetting/manual transfer of phases in GM may result in less 

sample loss and higher yields than BD. However, GM cannot be adapted in 

any obvious way for analyses that require saponifiable lipid classes to be 

preserved.   

 

Non-saponifiable lipids are extracted into the organic phase with GM.  They 

can obscure important FAME in chromatographic traces when tissue contains 

significant quantities. In our hands, chromatograms of a variety of samples 

have shown squalene and carotenoids that would be problematic for GC-FID 

analyses.  We routinely perform molecular identification with GC/MS/MS, and 

can perform quantitative analysis with MS/MS with proper choice of methods, 

and thus have not found this to be a major disadvantage. 
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Physical homogenization of samples and the need to break emulsions by 

centrifugation are two steps that are expensive to automate.  Separate steps 

for sample homogenization, lipid extraction, and FAME preparation present 

time and scale-limiting barriers using conventional methods. Large clinical 

studies that examine the relationship between fatty acids and health outcomes 

demand efficient, streamlined methodology.  Lepage and Roy (13) presented 

a one-step method whereby plasma fatty acids are directly transesterified in 

one hour with high recoveries.  Masood et al. (14) adapted this technique to 

demonstrate an automated robotic method to perform FAME analysis on a 

large number of research samples from clinical trials.  GM is similarly 

amenable for preparation of FAME from mammalian soft solid tissue for high-

throughput analyses.
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