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One goal of text mining is to provide automatic methods to help people grasp the

key ideas in ever-increasing document collections. Often these text corpora accumulate

incrementally over time by a self-referential process as documents propose new ideas,

build on or refute existing ideas, or draw connections between different existing ideas,

and so on. Such corpora are pervasive, including email, news articles, blogs, and re-

search publications. Search engines are effective for retrieving individual documents

from such corpora, but they do not typically provide information about the structure of

the corpora and how their ideas developed over time.

We propose a set of tasks, which we call information genealogy, which seek to an-

alyze and summarize a document collection’s development over time in terms of its

ideas. These methods focus on helping people grasp the document collection as a whole.

Specifically, we address the following tasks: What is each document’s (interesting) orig-

inal contribution of ideas to the corpus? How do ideas flow from one document to

another? What are the most important, influential documents and ideas?

We develop methods grounded in probability and statistics, specifically based on

generative mixture models for document language modeling. Consequently, unlike

heuristic approaches, these methods are both extensible and readily analyzable. In ad-

dition, the input for these methods consists of only the text and temporal ordering of

the documents, not any hyperlink information. Exclusively using document text in an

unsupervised setting allows these methods to apply in many domains. We evaluate these



methods on both synthetically-generated and actual research publications. In general,

these methods outperform heuristic baseline methods based on text similarity alone.
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CHAPTER 1

INTRODUCTION

1.1 Overview

In many domains, complete electronic records of documents now reach back for many

years, even to several decades in some cases. Often, these document collections form

by an archival process where, as documents are written, they accumulate and are stored

for posterity. Many domains of document collections result from such an archival pro-

cess, including research publications in journals and conferences, news articles, personal

email, online discussion boards, blogs, websites in general, and so on.

People often interact with these document collections and thus may be interested in

methods to help them better “use” the documents. For retrieving individual documents,

search engines have already been very successful. Other methods such as topic modeling

can provide a coarse overview of the topics in a document collection. While information

retrieval and topic modeling methods have been widely applicable and useful, current

methods for drilling deeper to understand the idea structure and development in a corpus

as a whole could still be improved.

We provide methods for a set of tasks that seek to uncover the inter-document re-

lationships by which ideas spread through a corpus over time. These methods focus

on supplying a fine-grained picture of idea flows over time to help users grasp the doc-

ument collection’s development as a whole. We will focus on several specific types

of idea structures, including influential relationships between documents, novel ideas

within documents, and original contributions of ideas from documents that can balance

novelty and impact.
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This thesis explores text-based language modeling approaches for these tasks. For

wide applicability, the methods use only document text, instead of including hyper-

link information which may be available for some corpora. We evaluate these methods

experimentally on several corpora, including research publications from the Neural In-

formation Processing Systems conference (NIPS Online, 2000). We have prepared a

cleaned-up dataset with the text proceedings and compiled a citation graph between

NIPS documents to conduct this evaluation.

1.2 Ideas in Text Documents

We use the term “idea” broadly, encompassing things such as news events, contributions

in research publications, or salient points in blog posts. Our hypothesis is that as humans

write documents, their ideas are encoded in statistical properties of the text. Further, we

assume (and will test experimentally) that analyzing these statistical properties of text

can recover the structure of ideas in the corpus and make precise the interaction between

documents and their ideas. In a sense, the assumption is that the statistical properties of

text can serve as a “signature” of an idea. We hope that much as people’s signatures are

intrinsic and basic to their identities, idea signatures are identifiable when they appear

in documents, so that they can be used to recover the idea structure.

In analyzing ideas, the methods will use document text exclusively so that they apply

widely to various document archives. Documents sometimes link to each other, e.g.,

citations in research publications, email replies or forwards, or blogs linking to other

blogs. In many cases, however, the only data available is the text of the documents

themselves. For example, news articles typically do not reference other news articles,

blogs that discuss news events often do not reference specific news articles, email only

2



explicitly connects to itself, but not to the myriad events that cause people to send email,

and even researchers cite existing papers for reasons other than giving credit for an

existing idea (MacRoberts & MacRoberts, 1989; Baird & Oppenheim, 1994; Aya et al.,

2005).

1.3 Authorship as a Copy Process

As authors write documents, they seek to express their ideas through document text.

By writing research publications, researchers propose novel and original content, while

simultaneously responding to and building on existing ideas from the literature. Idea

connections in research publications are often both implicit in the text and explicit in

the form of citations. News articles have a similar authorship process in the sense that

reporters write about new stories, while implicitly referring to past articles by summariz-

ing the background context of the news story. Email and discussion boards, too, provide

systems for proposing new ideas and discussing existing ideas.

These examples all depict diachronic document collections, which develop with a

temporal dimension by being grown incrementally over time, instead of formed all at

once. This temporal element allows such document archives to exhibit self-referential

behavior where authors build on, respond to, and are influenced by existing ideas ex-

pressed in previous documents. Of course, documents may also introduce novel ideas.

Generalizing the intuition from these examples to form an authorship model, documents

seem to be written as authors introduce novel ideas or respond to existing ideas, or by

some combination of these two. Here, responding to an existing idea is quite broad, in-

cluding mentioning it, refuting it, developing it, or even connecting it with other ideas.

We use the term “copy process” to refer to the model for how documents are written by

3



combining new and existing ideas.

In the copy process for ideas, on the one hand, authors express novel ideas – a new

method or result in a research paper, a key point in a discussion on the web or over

email, or a new topic for a blog – by writing text for that idea, which should then be dis-

tinguishable by its text signature. On the other hand, authors may reformulate existing

ideas, essentially “copying” the ideas from the previous documents. This copying is on

the idea level only, as in a newspaper article giving some background about an ongoing

story along with giving the latest developments, or a research publication containing a

related work section summarizing the contributions of previous work. The copying in

this case is not word-for-word copying as in plagarism detection (). Other ways of de-

signing documents could also be expressed by the copy process. Extending and further

developing an existing idea, e.g., by building a new method based on previous models

in research publications, is a mixture where the author writes partially about the exist-

ing idea in explaining it and partially about the novel idea in the improvement of the

method. Similarly, had the author written the document to refute an existing claim, the

document would still contain a mixture of novel and “copied” ideas.

1.4 What Is Information Genealogy?

To help people understand the structure of how ideas flow as they are addressed in other

documents, we propose a set of questions that we call “information genealogy.” The

word genealogy connotes exploring how ideas are picked up and explored throughout

the collection of documents. In an ideal world, we could paint a picture showing the

tracks that each idea takes, from its inception as a novel idea in some document to the

last instance where this idea occurs. Text is quite noisy, and there are many documents,
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so that we focus primarily on methods to help people grasp the most important ideas

and how they developed. After all, not many people have the time to try to understand

everything. In addition, people typically like to keep up-to-date with new and current

events, or to see who first thought of an idea historically. Thus our methods typically,

but not always, focus on the most important or earliest documents where ideas occur

instead of trying to discover the documents that still contain ideas after they have passed

their prime. This work therefore focuses on two specific properties of ideas: influence

and novelty.

1.4.1 Influence for Ideas

When writing, authors can refer to existing ideas from previous documents, thereby

causing ideas to flow from earlier documents to the documents they are writing. In

this scenario, we say that the earlier documents influenced the later documents, with

the notion of influence corresponding to the copying of ideas. (Copying here means

expressing or summarizing the existing idea, not plagarism.) Another way of thinking

about the copying or idea flow is that the text of the future document is influenced by the

ideas of the earlier documents that contain those influential ideas. Research publications,

especially, would seem to have explicit data for marking when ideas from one document

influence another document. The citation is a mechanism by which authors can cite

the sources from where they borrowed, built on, or otherwise responded to existing

ideas. However, authors often cite for other reasons besides acknowledging a previous

idea (MacRoberts & MacRoberts, 1989; Baird & Oppenheim, 1994; Aya et al., 2005).

In addition, other collections may not have explicit link information, which argues for

methods to detect these influence relationships by automatically analyzing text.
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The task of detecting influence seems quite broad, so we focus on several specific

questions in this work, which are the following: How can document text be used to de-

tect when one document influences another document? How is it possible to recover the

entire structure of the “influence graph” that shows which documents influence which

other documents, somewhat analogous to a citation graph, but based on text rather than

explicit citations? How is it possible to identify the most important or influential docu-

ments in the document collection?

We consider applications to set up the influence task. With the rapidly-increasing

number of research articles published recently, one application is to automatically iden-

tify a small set, e.g., 10 or 20 research publications that have most influenced the content

of the research field. We present such a method to identify the most influential research

publications among the documents published at the Neural Information Processing Sys-

tems (NIPS) conference (NIPS Online, 2000). People who read this limited subset of

articles could hopefully get the gist of the most important ideas and development of the

research community. Reading recent influential publications could give the user a good

sense of the latest trends and popular topics. As another example, for online discussion

boards, a few particularly-insightful comments often stand out from the rest and spark

much discussion. By starting with influential comments, the user could potentially save

time by reading only the important comments instead of skimming the whole discussion.

The influence method could also be used to visualize the development of ideas in the

corpus. For example, one could make a graph where the documents are the vertices, and

the (directed) edges are the strength of copying from between documents. This visual-

ization would clearly depict the spread of the most important ideas. We will threshold

the strength of influence to make an “influence graph” with edges between documents

connected by a strong-enough influence relationship. Alternatively, graphing the rel-

ative popularity ideas over time gives a sense of how the collection evolves. Another
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application for future work is based on the aggregation of the individual document and

idea influence information, namely that by associating documents with their authors,

the influence methods could be used to identify the authors that have contributed the

most influential ideas. It would also be interesting to see whether authors consistently

propose influential ideas or are known one or a few really great ideas that became highly

influential.

1.4.2 Novelty for Ideas

Apart from influence, we next address the task of identifying where novel ideas emerge.

The methods we propose will detect what makes each document novel with respect to

the documents that precede it in time. It will identify what is new and different about this

document in terms of the novel ideas that it contains. In news articles, the existence of a

novel idea may correspond to the occurrence of some news event. The first news article

that breaks the story with the description of the facts is the document that proposes this

new idea. For an ongoing story with developments, the novel idea in a document would

be the latest development that no other article has yet reported on. In a collection of

research publications, the novel ideas correspond quite naturally to the new research

and results that the researchers have published. Intuitively, research publications should

probably contain a large amount of novel content, as opposed to newspaper articles,

which typically present one or a few new developments in an ongoing story, with only

the occasional big story that is extremely novel.

The copy process, which will be made more precise later in the thesis, provides a

formal framework for reasoning about and detecting novelty in text. With such methods,

of the many specific questions that could be considered, we address the following: How
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can a human-understandable overview of the identified novel ideas in each document be

produced? How can the amount of novelty that each document has be quantified?

We consider real-life applications to inform how to answer these questions. With the

popularization of word clouds and tagging in blogs, people seem to be growing more

comfortable with browsing by keywords and sometimes just want a quick summary of

the novel updates. We develop a method based on the models for influence to summa-

rize the novel ideas in a document in terms of the most novel words from that document.

For research publications, an interesting application would be to identify the documents

that have the ideas with greatest novelty. Research publications by definition should be

highly novel. The most novel documents could give the reader a starting point for under-

standing which publications are most pushing the field in new and hopefully promising

directions. These most novel documents are the ones that propose radically new ideas,

regardless of whether they eventually become popular or influence other documents.

We develop a method based on information theory to quantify how much novelty each

document contains.

1.4.3 Original Ideas

As later experiments will show, novelty detection is not the right formulation for detect-

ing important new ideas because the methods do not consider the impact of the novel

ideas. We next combine novelty with influence to identify each document’s original

contribution. While novelty and influence each presents part of the picture of idea de-

velopment, their combination may be much stronger for analyzing the idea structure.

Looking at novel content only considers what is new or different about a document,

without any regard for whether the idea is important. Looking at influence can identify
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important ideas, but without any notion of novelty, influence alone cannot really identify

the source for these important ideas. We combine novelty and influence and refer to it

by the terms originality and original contributions. The original ideas in a document are

defined to be those that are novel to that document and that eventually become important

to the corpus.

Applications exist again for research publications. While the most novel publica-

tions are probably the ones that present the most unique methods, the most original

publications are the ones that proposed novel ideas that then become popular. It would

be extremely interesting to make a list of the most original research publications. As

a further step, we will present a method to identify the passage within each document

that has the most concentrated description of that document’s original contribution that

balances novelty and influence. For discussion boards or email discussions, typically

with just one thread of discussion, originality detection can zero in on the particular

comments that contain especially insightful new content that changed the course of the

conversation or led to a dialogue. We apply the original content method to identify-

ing the sentences from news articles that users select to begin discussions on the online

discussion board Slashdot.

1.5 General Approach

To address these tasks, we develop principled methods based on probabilistic language

models of text. Using principled methods has the advantage that the methods are read-

ily open to analysis, extension, and improvement. Previous approaches for the tasks

that we will address have typically used various heuristics, with the most popular being

Term Frequency (TF) combined with Inverse Document Frequencies (IDF) to form a
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keyword-weighting scheme typically called TFIDF (). This heuristic in fact does quite

well for applications in information retrieval (), text classification (), and document clus-

tering (), among many others. The assumptions inherent in TFIDF, however, are not

necessarily easy to express or analyze, although there have been analyses of TFIDF in

the past (). By formalizing a precise generative model for text, the assumptions in our

methods are obvious and easy to analyze. It also lends to extensibility, so that variants of

these models and methods may potentially be used for other tasks or applications related

to analyzing the idea structure.

We use methods that leverage only the text of the documents so that they apply to

many domains of data. Many domains have no information about the idea structure

besides what is expressed in the text of the documents themselves. Additionally, when

there is idea transfer in heterogeneous document collections, e.g., blogs responding to

news articles, or email responding to research publications, and so on, it is especially

difficult to use some standard mechanism such as the citation to mark idea transfers.

Using the text only is a two-sided sword. While one advantage is that unsupervised

methods that are based exclusively on text widely apply in many domains of documents,

one disadvantage is that link information between documents also contains information

that could be useful. For example, citation data for research publications could be used

in addition to document text to find the most influential ideas. Citation data is not perfect

for this task since people cite for various reasons, only one of which is to credit an

existing idea (). Since text and citations are different types of data, however, the errors

in these two types of data may cancel each other out to some extent, so that a method

that uses all the data may do better than a method that uses only one type of data. While

exploring combinations of text with other data is interesting, this thesis focuses on text-

based methods and leaves such extensions for future work.
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Evaluation of the methods is also not necessarily straightforward because of the lack

of labeled data. Therefore, the manner of evaluation often depends on what type of

data is available. In some cases, clever collection of particular real-world data allowed

conducting the evaluation. At other times, we did user studies to see how actual users

think these methods perform. Additionally, in most cases, we evaluate the methods on

synthetically-generated data. Synthetic data allows close examination of the individual

aspects of the models to see exactly how they might perform in different situations that

may arise in real data. Finally, when it is insightful, we present qualitative evaluation of

interesting cases or examples.
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CHAPTER 2

INTER-DOCUMENT INFLUENCE IN TEXT

The first information genealogy task that we explore is understanding the connections

between documents and their ideas, as manifested in the influence they have on each

other. As the document collection grows over time, and authors draw on existing ideas in

writing new documents, the text of these documents encodes these relationships. Specif-

ically, when the author of some document uses an existing idea, there is an influence re-

lationship from the earlier document that proposed the idea to the later document where

the idea appears again. Starting from these inter-document influence relationships pro-

vides a text-based method for identifying the most influential documents in a corpus.

2.1 Introduction

For self-referential document collections such as research publications, email, or news

articles, we would like to answer the basic question: Did one document d influence

another document d′? This information can then be put together to answer more com-

plicated interesting questions such as the following: What documents contain the most

influential ideas? These documents are the most important ones in the collection, since

they best represent the essence of the collection’s ideas. Answering this fundamental

question has many applications. On the web, methods such as Hubs and Authorities

(Kleinberg, 1999) and PageRank (Page et al., 1998) have been used to find important

documents. There is a whole research community that analyzes research publications

by their citations to determine which have the most impact (Garfield, 1955; Garfield,

1972). Citations may not be the best data for measuring influence, however, because

people cite documents for reasons besides acknowledging other important documents
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that their work is related to. Other uses for this work could include judging whether

citations were made to refer to influential ideas, suggesting citations for authors as they

are writing, or inferring and visualizing idea flows relationships to help users browse the

corpus.

Since much interesting text does not come with user-supplied hyperlink information,

in contrast to bibliometric methods that are limited to collections with explicit citation

structure, we investigate content-based methods requiring only the text and time stamps

of the documents. Aggregating such information provides an algorithm that can use

the text to infer the inter-document conduits through which ideas flow. Since ideas

that spread more are by definition more influential, this temporal dependency structure

between documents can then be used to make inferences about which documents are

most influential.

The premise for this research is that ideas manifest themselves in statistical prop-

erties of a document (e.g., the distribution of words), and that these properties can act

as a signature for an idea which can be traced through the database. Following this

premise, we present a probabilistic model of influence between documents and design

a content-based significance test to detect whether one document was influenced by an

idea first presented in another document. The test takes the form of a Likelihood Ratio

Test (LRT) and leads to a convex programming problem that can be solved efficiently.

Our goal is to use this test for inferring an influence graph derived from the text of the

documents alone.

Using corpora of scientific literature from the Neural Information Processing Sys-

tems Conference (NIPS) (NIPS Online, 2000) and the Physics ArXiv (Ginsparg, 1991),

we show that it is indeed possible to infer meaningful influence graphs from the text of

the documents. Evaluating against the explicit citation graphs for these corpora, we find
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that the automatically-computed influence graphs are similar to the citation graphs. The

ability to automatically generate an influence graph for a collection enables a range of

applications, from browsing, to visualizing and mining the structure of the network. As

a simple example, we demonstrate that the in-degree of the influence graph provides an

interesting measure of document impact, similar to the in-degree of the citation graph.

Furthermore, we show how that the Likelihood Ratio Test method based on the model

for influence is more effective than methods based on document similarity.

2.2 Related Work: Measuring Influence

To begin, we investigate and operationalize the notion of influence between docu-

ments. Influence is an interesting relationship between documents in historically grown

databases, since such corpora have grown through a self-referential process: documents

are influenced by the content of prior documents, but also contribute new ideas which in

turn influence later documents. Our goal is to uncover and mine how ideas introduced

in some document spread through the corpus over time.

At first glance, one might think that similarity, as captured by information retrieval

metrics like TFIDF cosine similarity (e.g., (Salton & Buckley, 1988)), provides the full

picture of influence. However, this is not the case.

On the one hand, similarity can occur without influence. First, if a document d(1)

introduces an idea that is picked up in documents d(2) and d(3), then d(2) and d(3) will

likely be similar but do not necessarily influence each other. Second, two documents

might concurrently propose the same idea. Again, neither document influences the other

although the documents likely are similar.
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On the other hand, influence can occur with very little similarity. In the scientific

literature, for example, a large textbook might devote a section to an idea introduced in

an earlier research paper. Clearly, the paper had influence on the textbook. However, the

overall similarity between the book and the paper is small, since the book covers many

other ideas as well.

As we will briefly review in the following, most prior work on analyzing temporal

corpora has focused on identifying relatedness between documents, not influence. We

will then develop a probabilistic model and a statistical test for detecting influence,

and show that it captures influence better than similarity and provides a more complete

understanding and model of influence.

2.2.1 Topic Detection and Tracking

Topic Detection and Tracking (TDT) (Allan et al., 1998a; Allan et al., 1998b) has the

goal of grouping documents by topic. Unlike influence, which is a directed relationship,

TDT aims to group documents into equivalence classes. While TDT approaches have re-

lied heavily on finding similarity measures that capture closeness in topic, this approach

is not necessarily detecting influence, as we have argued above. Methods that model

influence not only can detect and track topics and ideas, but also can provide reference

points for why a document collection developed as it did. Another minor difference is

that the TDT studies were performed in an online setting, while we assume access to the

full corpus at any time.

Similar work on detecting and visualizing topic development includes visualiza-

tion methods such as Temporal Cluster Histograms (Shaparenko et al., 2005) and The-

meRiver (Havre et al., 2002), EM-based corpus evolution detection (Mei & Zhai, 2005),
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temporal clustering methods (Blei & Lafferty, 2005; Wang & McCallum, 2006), contin-

uous time clustering models (Wang & McCallum, 2006), Thread Decomposition (Guha

et al., 2005), Independent Component Analysis (Kolenda et al., 2001), topic-intensity

tracking (Krause et al., 2006), and Topical Precedence (Mann et al., 2006).

2.2.2 Real-World Influence on Documents

Research on Burst Detection (Kleinberg, 2002) and TimeMines (Swan & Jensen, 2000)

aims to identify hidden causes based on changes in the word distribution over time.

However, their notion of influence is different from ours. These approaches deter-

mine influence from real-world events on topics (e.g., events influencing US State of

the Union Addresses). Instead, we model the influence of documents on each other.

2.2.3 Citation and Hyperlink Analysis

In bibliometrics, a document’s influence is measured through properties of the citation

graph (Osareh, 1996; Page et al., 1998; Kleinberg, 1999; Garfield, 2003). Our work

differs from citation analysis because our method is based on document content, not on

citations. We assume that influence is inherently reflected in the statistical properties

of documents. In particular, we conjecture that when one document influences another,

the influenced document shows traces of the word distribution of the earlier document1.

Besides bibliometrics’ consideration of citation analysis on research papers, other meth-

ods work on general hyperlink structure. One of the most well-known such methods is

PageRank (Page et al., 1998), which uses hyperlink structure to find influential Web

1Note that our goal is not plagiarism detection, where authors would try to disguise their choice of
words.
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pages.

2.2.4 Automatic Hypertext

There is related work on automatically adding hyperlinks in information retrieval and

related fields. Most prominently, Link Detection was a key task in the TDT evaluations

(Allan et al., 1998a). Several proposals and methods exist for introducing hyperlinks

between similar documents or passages of documents (Furuta et al., 1989; Coombs,

1990; Salton & Buckley, 1991; Lelu, 1991; Agosti & Crestani, 1993; Allan, 1995;

Agosti et al., 1997; Kurland & Lee, 2004; Kurland & Lee, 2006). Furthermore, the

problem of detecting different types of links was considered in (Allan, 1997) and in

(Aya et al., 2005). Good surveys are given in (Wilkinson & Smeaton, 1999) and the

1997 special issue of Information Processing and Management (Agosti & Allan, 1997).

The work we propose is different in several respects. First, our goal is to detect influence

between documents, not just their “relatedness.” This will allow a causal interpretation

of the resulting citation graph. Second, we take a statistical testing approach to the

problem of identifying influence links, which can be seen as synonymous to citations.

This will give a formal semantic to the predictions of the methods, give theoretical

guidance on how to apply the methods, and expose underlying assumptions.

2.2.5 Language and Topic Models

We take a probabilistic language modeling approach in the development of our meth-

ods. While we rely on a rather basic language model for the sake of simplicity, more

detailed language models exist and can possibly be employed as well. Previous work
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by Steyvers et al. (Steyvers et al., 2004) looks at how document text can be generated

by a two-step model of generating topics probabilistically from authors, and then words

probabilistically from topics. There has also been language modeling work done in the

natural language processing and machine learning (Manning & Schuetze, 1999; Hof-

mann, 1999; Blei et al., 2003b), speech recognition (Jelinek, 1998), and information

retrieval communities (Zhai, 2002; Kurland & Lee, 2004; Kurland & Lee, 2006).

2.3 Methods

In constructing an influence graph for a database of documents, the core problem is

to determine when and where ideas flow from one document to another document. In

the following, we propose a probabilistic model of influence in a language-modeling

framework, and develop a Likelihood Ratio Test (LRT) (Casella & Berger, 2002) for

detecting whether one document has significantly influenced another document.

2.3.1 Probabilistic Model and Motivation

To make the method widely applicable, we have only two basic requirements for our

corpus of documents — first, the documents contain text and, second, the documents

have time stamps. Formally, the corpus D is a collection of n documents {D(1) · · ·D(n)},

where each document D(i) ∈ D has an associated time stamp time(D(i)). The number of

unique terms (words) in the corpus is denoted by m.

We assume that each document D(i) is a vector-valued random variable of ni words,

i.e., D(i) = (W (i)
1 · · ·W

(i)
ni ). This notation describes a document as a sequence of word

random variables W (i)
j . A particular observed document is denoted as d(i) = (w(i)

1 · · ·w
(i)
ni ).
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In the following, we assume that each document D(i) ∈ D was generated by drawing

these words P(D(i) = d(i) | θ(i)) from a unigram language model with parameters θ(i)

specific to document d(i).

Model 2.1 (D LM)

A document D(i) ∈ D is assumed to be generated by independently drawing ni words

from a document-specific distribution with individual word probabilities parameterized

by θ(i), i.e., that

P(D(i) = d(i) | θ(i)) = P(D(i) = (w(i)
1 · · ·w

(i)
ni

) | θ(i))

=

ni∏
j=1

P(W (i)
j = w(i)

j | θ
(i))

=

ni∏
j=1

θ(i)
w(i)

j

We chose this basic language model for mathematical and computational conve-

nience. However, our approach can be extended to more complex language models as

well (e.g., n-gram models).

Since we wish to detect the flow of ideas and influence between documents, we

also need a model for inter-document relationships. We formalize this as a question of

how the language model θ(i) of a new document D(i) depends on the documents d(k)

that precede D(i) in time. The set of previous documents d(k) is indexed by the set

P = {k : time(D(k)) < time(D(i))}. Since the actual document language models θ(k)

are unknown for these documents d(k), we use the maximum likelihood estimator θ̂(k)

based on the word distribution of d(k). This mixture is a linear combination controlled

by document-specific mixing weights π(i). In short, we assume that the language model

θ(i) of a new document D(i) can be (approximately) expressed as a mixture distribution

over the language models θ̂(k) of previous documents d(k) with mixing weights π(i). We

formalize this assumption in the following model:
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Model 2.2 (I-D IM)

A new document D(i) is generated by a mixture distribution of the already existing doc-

uments D(k) with k ∈ P for previous document indices P = {k : time(d(k)) < time(D(i))},

in particular

P(D(i) = d(i) | π(i)) =
ni∏
j=1

∑
k∈P

π(i)
k θ̂

(k)
w(i)

j

(2.1)

with mixing weights π(i) satisfying 0 ≤ π(i)
k and

∑
k
π(i)

k = 1.

In this dependency model, a new document is composed of parts generated by the

word distributions of old documents, where the mixing coefficient π(i)
k indicates the frac-

tion of D(i) that is generated from the old document d(k). Clearly, there is direct influ-

ence from an existing previous document d(k) on D(i), if the respective mixing coeffi-

cient is non-zero. The resulting language model for D(i) is a unigram model, so that

P(D(i) = d(i) | π(i)) = P(D(i) = d(i) | θ(i)) with

θ(i) =
∑
k∈P

π(i)
k θ̂

(k). (2.2)

Actual documents typically contain some novel content that does not come from

previous documents. To account for document novelty in our model, we include a novel

language model θ̄(i) with weight π(i)
n in the mixture for D(i). This distribution models

words that are novel to D(i) and that cannot be explained by previous documents. (In

practice, we will assume that π(i)
n is fixed, but that we have no knowledge of θ̄(i).

Model 2.3 (I-D IM  N C)

A new document D(i) is generated by a mixture distribution of the already existing doc-

uments D(k) with k ∈ P for previous documents indices P = {k : time(d(k)) < time(D(i))},

and a document-specific novel component θ̄(i) with weight π(i)
n , in particular

P(D(i) = d(i) | π(i)) =
ni∏
j=1

π(i)
n θ̄

(i)
w(i)

j

+
∑
k∈P

π(i)
k θ̂

(i)
w(i)

j

 (2.3)
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with mixing weights π(i) s.t. 0 ≤ π(i)
k , π

(i)
n and π(i)

n +
∑
k
π(i)

k = 1.

In the case when the documents have no novel content, setting π(i)
n = 0 in the

Inter-Document Influence Model with Novel Content results in Model 2.2. Vice versa,

Model 2.2 also subsumes Model 2.3 by simply introducing an artificial single-word doc-

ument for each term in the corpus and constraining their mixture weights to sum to π(i)
n .

We will therefore focus our further derivations on Model 2.2 for the sake of simplicity.

We will now show how this probabilistic setup can be used in a significance test

for detecting whether a particular mixing weight π(i)
k is non-zero in a given document

collection.

2.3.2 A Statistical Test for Detecting Influence

How can one decide whether a candidate influential document d(can) had a signif-

icant influence on d(new) given the other documents in the collection? First, d(can)

can only have had an influence on d(new) if it had been published before d(new) (i.e.,

time(d(can)) < time(d(new))). Note that this is already encoded in the Inter-Document

Influence Models defined above. Second, influence should be attributed to the first

publication that introduced an idea through an novel section or portion, not to other

documents that later copied an idea. To illustrate this in the context of research pa-

pers, this means that influence should be credited to the earlier article, not a tutorial that

reproduced the novel idea.

Under these conditions, the decision of whether document d(new) shows significant

influence from d(can) can be phrased as a Likelihood Ratio Test (Casella & Berger, 2002).

In general, a Likelihood Ratio Test decides between two families of densities described
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by sets of parameters Π and Π0 that are nested, i.e., Π0 ⊂ Π. Applied to our case, Π will

be all mixture models of D(new) as in Eq. (2.1) with parameters π(new) for all documents P

published prior to t0 = time(d(can)) (and therefore prior to d(new)), as well as a parameter

π(new)
can for d(can).

Π =

π(new) : π(new)
can +

∑
k∈P

π(new)
k = 1 ∧ π(new)

k ≥ 0 ∧ π(new)
can ≥ 0


The subset Π0 of the mixture models in Π will be the models where d(can) has zero

mixture weight (i.e., π(new)
can = 0).

Π0 =

π(new) : π(new)
can +

∑
k∈P

π(new)
k = 1 ∧ π(new)

k ≥ 0 ∧ π(new)
can = 0


Note that the set of prior documents P = {k : time(d(k)) < time(d(can))} serves as a

“background model” of what was already known when d(can) was published. Against this

background, we can then measure how much the new ideas in document d(can) influenced

d(new).

The null hypothesis of the Likelihood Ratio test is that the data comes from a model

in Π0 (i.e., document d(new) was not influenced by d(can) given the documents published

before d(can)). To reject this null hypothesis, a likelihood ratio test considers the follow-

ing test statistic

Λd(can)(d(new)) =
sup
π∈Π0

{P(D(new) = d(new) | π)}

sup
π′∈Π

{P(D(new) = d(new) | π′)}

Note that P(D(new) = d(new) | π) is convex over Π and Π0, so that the suprema can be

computed efficiently. We will elaborate on the computational aspects below. Intuitively,

the value of Λd(can)(d(new)) measures whether using d(can) in the mixture model better

explains the content of d(new) than just using previously published documents. More

formally, Λd(can)(d(new)) compares the likelihood sup
π′∈Π

{P(D(new) = d(new) | π′)} of the best

mixture model containing d(can) with the likelihood sup
π∈Π0

{P(D(new) = d(new) | π)} of the best
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mixture model that does not use d(can) (i.e., π(new)
can = 0). The test then decides whether

there is significant evidence that a non-empty part of d(new) was generated from d(can), in

comparison to using a mixture only over the other language models.

If the null hypothesis is true, then the distribution of the LRT statistic

−2 log(Λd(can)(d(new))) is asymptotically (in the document length under the unigram

model) χ2 with one degree of freedom.

−2 log(Λd(can)(d(new))) ∼ χ2
1

The null hypothesis H0 should be rejected, if

−2 log(Λd(can)(d(new))) > c

for some c selected dependent on the desired significance level. For a significance level

of 95%, c should be 3.84. This captures the intuition that we can reject the null hy-

pothesis and conclude that d(can) had a significant influence on d(new), if the best model

that does not use d(can) has a much worse likelihood than the best model that considers

d(can). Specifically, if −2 log(Λd(can)(d(new))) is large, then d(can) significantly influenced

d(new) given all other documents published at that time.

To estimate the language models θ̂(k) of the previous documents d(k) used in the

mixture model of d(new), we use the maximum-likelihood estimator. We denote with t f (k)

the term frequency (TF) vector of document d(k), where each entry t f (k)
w is the number of

times that word w appears in the document d(k). The estimator is

θ̂(k)
w =

t f (k)
w

nk
,

which is simply the fraction of times the particular word occurs in the observed docu-

ment d(k). Using a more advanced estimator instead is straightforward, but we will not

discuss this for the sake of simplicity.
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2.3.3 Relating the LRT to Detecting Influence

What does it mean for the LRT to significantly reject the null hypothesis? A good

intuition is to think of this method in the context of trying to explain the ideas and

content found in d(new). There are two choices. First, explain d(new) using only other

documents preceding d(can) as well as some novel component. Second, explain d(new)

with these plus an additional d(can). If the first case already provides a wonderful model

for d(new), then adding d(can) will not explain d(new) any more accurately. Thus, d(can) really

does not contribute to d(new). On the other hand, if d(can) introduced some new ideas and

terminology that then flowed to d(new), using d(can) will provide a better explanation than

only using P. Consequently, the likelihood of d(new) using d(can) will be significantly

higher than without it, and we can reject the null hypothesis. To summarize, rejecting

the null hypothesis means that d(can) significantly exerted influence on d(new).

2.3.4 Computing the LRT

Computing the value of Λd(can)(d(new)) requires solving two optimization problems.

L0 = sup
π∈Π0

{P(D(new) = d(new) | π)} and (2.4)

L = sup
π∈Π

{P(D(new) = d(new) | π)}. (2.5)

Given our model, these problems can be solved efficiently. Note that we can write the

log-likelihood L(π | d(new),S) of the document d(new) w.r.t. a fixed π as

log L(π | d(new),S) = log P(d(new) | π,S)

=

nnew∑
j=1

log

∑
k∈S

π(new)
k θ̂(k)

w(k)
j


=

∑
w∈V

t f (new)
w log

∑
k∈S

π(new)
k θ̂(k)

w

 . (2.6)
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With S we denote the set of documents considered in the model. This gives S = P ∪

{can} for Π and S = P for Π0. In this notation, each of the optimization problems in

Eq. (2.4) and (2.5) takes the form

max
π∈<|S|

log L(π | d(new))

subject to
∑
k∈S

π(new)
k = 1

∀k ∈ S : π(new)
k ≥ 0.

For Model 2.3, the mixture in the likelihood contains the additional term π(new)
n θ̄(new)

w(new)
j

.

There is also an additional linear constraint is introduced to limit the amount of novel

content π(new)
n to not be more than a user-specified parameter σ. This constraint is neces-

sary, since otherwise the θ̄(new) mixture component could always perfectly explain d(new).

It is easy to see that these optimization problems are convex, which means that they

have no local optima and that there are efficient methods for computing the solution.

We currently use the separable convex implementation for the general-purpose solver

Mosek (MOSEK, 2008) to solve the optimization problems. However, more specialized

code is likely to be substantially more efficient.

While solving each optimization problem is efficient, analyzing a collection requires

a quadratic number of LRTs, each with on the order of n documents in the background

model. In particular, for each document d(new), we need to test all prior documents

C =
{
d(k) : time(d(k)) < time(d(new))

}
(2.7)

in the collection, since all of these are candidates for having influenced d(new). For each

document d(can) in the candidate candidate set C of d(new), we then have a background

model

Pd(can) =
{
d(k) : time(d(k)) < time(d(can))

}
. (2.8)
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Computing all tests exhaustively for a large corpus can be expensive. We therefore use

the following approximations.

Both approximations are based on the insight that some similarity is typically present

in documents joined by an influence relationship. The potentially influential document

d(can) should have some similarity with d(new). Therefore, we first approximate the candi-

date set to contain the kC nearest neighbors of d(new) from C. We use cosine distance be-

tween TF and TFIDF vectors for document similarity. Second, an analogous argument

applies to the background models Pd(can) . We therefore approximate the background

model, using only the kP most similar documents from P. Since selecting P combines

document vectors by addition, we use cosine distance between document TF vectors to

select P. In the experiments we set kC = kP and refer to this parameter as k. We will

empirically evaluate the effect of these approximations depending on k.

2.4 Experiments

We wish to measure how well these models’ assumptions match real data. First, how

does an influence graph inferred by the LRT method compare against a citation graph?

Second, can the influence graph identify top influential papers?

2.4.1 Experiment Setup and Corpora

The concept of influence and idea flow between documents corresponds well with the

notion of a citation. Consequently, we focus on research papers to provide a quantitative

evaluation of the LRT method by comparing with citations.
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Figure 2.1: ROC-Area comparing the LRT method against a cosine similarity
baseline. The x-axis is π(new)

can . At a π(new)
can level, the ROC-Area mea-

sures the quality of influence prediction in documents with the speci-
fied π(new)

can as compared against documents with π(new)
can = 0.

The first corpus is the full-text proceedings of the Neural Information Processing

Systems (NIPS) conference (NIPS Online, 2000) from 1987-2000, with a time stamp of

the publication year. NIPS has 1955 documents, with 74731 terms (features). We man-

ually constructed the graph of 1512 intra-corpus citations, but only compare to citations

of previous documents in time. We ignore citations of first-year documents since the

LRT requires a background model.

The second corpus is the theoretical high-energy physics (HEPTH) section of the

Physics ArXiv (Ginsparg, 1991) from Aug. 1991 to Apr. 2006. We aggregate the full-

text papers by year. HEPTH has 39008 documents, 229194 terms, and 557582 citations.

SLAC-SPIRES compiled these citations.
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Table 2.1: Papers that are influenced by NIPS paper 1541, “Shrinking the Tube: a
New Support Vector Regression Algorithm” written by B. Schoelkopf,
P. Bartlett, A. Smola, and R. Williamson. The leftmost column shows
the LRT statistic value. (Larger LRT statistic values represent greater
influence.)

−2 log(Λd(1541)(d(new))) Cite? Title and Author(s) of d′

321.2455 no “Support Vector Method for Novelty Detection” by B.

Schoelkopf, Robert C. Williamson, Alex Smola, John

Shawe-Taylor, John C. Platt

221.8297 yes “An Improved Decomposition Algorithm for Regression

Support Vector Machines” by Pavel Laskov

219.8769 yes “ν-arc: Ensemble Learning in the Presence of Outliers, Gun-

nar Raetsch” by B. Scholkopf, Alex Smola, Kenneth D.

Miller, Takashi Onoda, Steve Mims

184.5493 no “Fast Training of Support Vector Classifiers” by Fernando

Perez-Cruz, Pedro Alarcon-Diana, Angel Navia-Vazquez,

Antonio Artes-Rodriguez

168.8972 yes “Uniqueness of the SVM Solution” by Christopher J. C.

Burges, David J. Crisp

2.4.2 Inferring Influence Graphs

This set of experiments analyzes how well the LRT recovers the influence graph. Af-

ter an illustrative example, we explore the LRT’s sensitivity on synthetic data under

controlled experiment conditions, and then evaluate on two real-world datasets.
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Qualitative Evaluation

We first discuss a simple example to illustrate the LRT method’s behavior and how

it compares to citations. Table 2.1 shows those documents that NIPS document 1541

(Schoelkopf et al. on “Shrinking the Tube: a New Support Vector Regression Algo-

rithm”) most significantly influenced according to the LRT statistic. Three of the top

five papers actually cite document 1541 (or a document with equivalent content from

another venue). Furthermore, the top document could arguably have cited 1541 as well,

since it relies on the ν-parameterization of SVMs that document 1541 introduced to

NIPS. In fact, all papers (except “Fast Training of Support Vector Classifiers”) consider

this new parameterization. Note that the paper “ν-arc: Ensemble Learning in the Pres-

ence of Outliers” is not about SVMs, but uses the ν-parameterization in the context of

boosting.

The LRT appears to accurately focus on the paper’s novel contribution, the ν-

parameterization. General SVM papers do not score highly, since they are already

modeled by earlier papers, e.g., paper 1217 “Support Vector Method for Function Ap-

proximation, Regression Estimation, and Signal Processing” of V. Vapnik et al., which

was one of the first SVM papers in NIPS. When considering influencers of “A Sup-

port Vector Method for Clustering” by A. Ben-Hur et al. (using the conventional pa-

rameterization), the method correctly recognizes that paper 1541’s influence is low

(−2 log(Λd(1541)(d(new))) = 67.0) even though the documents are similar. Paper 1217 al-

ready “explains” the SVM content (−2 log(Λd(1217)(d(new))) = 535.0).
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Quantitative Evaluation on Synthetic Data

Beyond this qualitative example, how accurately can the LRT discover influence? How

much must d(new) copy from d(can) before the LRT can detect it?

To explore these questions, we constructed synthetic documents d(new) from the NIPS

corpus as follows. A candidate document d(can) and a set P of k = 100 previous doc-

uments are chosen at random form the NIPS corpus so that the documents in P pre-

ceed d(can) in time. Then, 101 artificial new documents are generated according to

Eq. 2.1, where each new document has been influenced by d(can) at the fractional levels

of π(new)
can ∈ {0.00, 0.01, 0.02, · · · , 1.00}. The remaining mixing weights π(new)

k are selected

by generating random numbers uniformly on the interval [0, 1], and then normalizing

them so that they sum to 1− π(new)
can . The LRTs are run on each new document. Addition-

ally, TF document vector cosine similarity is measured between d(can) and each d(new).

The entire process is repeated for 1000 random selections of P and d(can).

We computed ROC-Area in the following manner. First, we select a particular

π(new)
can ∈ {0.01 · · · 1.00}. The generated documents at the π(new)

can level are marked as posi-

tive examples. The negative examples are documents with π(new)
can = 0. Finally, a ranking,

either LRT statistic scores or cosine distance similarity, is used to compute ROC-Area.

Figure 2.1 shows that even if only a small portion (i.e., a few percent) of d(new) is

drawn from d(can), the LRT accurately detects the influence. The similarity baseline

needs a much larger signal. This example illustrates that similarity and influence are in

fact different, and that the well-founded statistical approach can be more accurate and

sensitive than an ad-hoc heuristic.

30



Quantitative Evaluation on Real Data

Moving to real data, we use the LRTs to discover the influence graph for NIPS and

HEPTH. For each document d(new), we first compute a set of candidate documents C

based on similarity. The elements of C are then ranked according to the LRT statistic

(i.e., whether d(can) was significant in explaining d(new)). The higher d(can) is ranked, the

more likely that it influenced d(new), and we can derive the influence graph by threshold-

ing (discussed below).

We evaluate the influence graph by a graph-based mean-average-precision (G-MAP)

metric. For a document d, average the precision of the ranked predicted list of influ-

encers at the positions corresponding to documents that d actually cites. Citations not

in the list are averaged as 0, i.e., ranked at infinity. (As an information retrieval analogy,

the influence list is the search result page, with citations being relevant results.) G-MAP

is the mean of the per-document average precision scores. We exclude documents from

the first two years due to edge effects (the LRT cannot predict citations for the first years

since C or P are empty).

We compare G-MAP for the LRT method against G-MAP of a similarity-based

heuristic, which serves as a baseline. This baseline method ranks the elements of C

not by LRT score, but by similarity. We explored several similarity measures. The best

similarity measures in our experiments are TF cosine and TFIDF cosine. We report their

performance.

Note that citations are not necessarily a perfect gold standard for influence, since

they reflect idiosyncracies of how scientific communities cite prior work. For example,

in Table 2.1 authors sometimes cited a journal paper or book instead of the NIPS paper.

Therefore, a G-MAP of 1 is not achievable.
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Table 2.2: G-MAP scores comparing the LRT against the similarity baseline. The
similarity measure to select P is the TF cosine and to select/rank C
is either the TF cosine or the TFIDF cosine. Results are reported for
k = 100 and σ = 0.05.

TF TFIDF

G-MAP LRT SIM LRT SIM

NIPS 0.4489 0.3948 0.4531 0.4412

HEPTH 0.2432 0.2216 0.2543 0.2167
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Figure 2.2: Precision vs. Recall on NIPS. The three lines are (from top to bottom)
the LRT method’s precision at a recall level with TFIDF cosine used to
select C, the TFIDF distance C similarity baseline, and the TF distance
C similarity baseline.

LRTs are more accurate than similarities Table 2.2 shows that the LRT achieves

higher G-MAP scores than the similarity baselines on both NIPS and HEPTH. Among

the two heuristic baselines, TFIDF cosine performs better then TF cosine. TFIDF cosine

also appears to select better sets C for the LRT. The HEPTH results are reported for a

random sample of 1600 documents.
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Table 2.3: G-MAP scores comparing the LRT for a range of d(can) influence mix-
ing weights σ against the similarity baseline. The similarity measure
to select C is either TF or TFIDF cosine. Results are reported on NIPS
for k = 100.

TF TFIDF

G-MAP LRT SIM LRT SIM

σ = .001 0.4575 0.4597

σ = .01 0.4620 0.4649

σ = .05 0.4489 0.3948 0.4531 0.4412

σ = .1 0.4475 0.4535

σ = .2 0.4373 0.4447

LRT scores are more comparable than similarities Table 2.2 showed that the LRT

can find the most influential papers for one particular document. Figure 2.2 measures

how well it can find the strongest edges in the whole influence graph. This precision-

recall graph uses the ranking of all LRT statistic scores of all documents, with actual

citations marked as positive examples. Figure 2.2 also shows the scores for using lists

of TF and TFIDF cosine similarities. The LRT graph dominates the similarity base-

lines over the whole range and the difference in performance is larger than in the per-

document evaluation. We conclude from this that LRT scores are more comparable

between documents than similarity scores. This is to be expected because the LRT val-

ues have a clear probabilistic semantic. However, the similarity scores have no such

guarantees.

Effects of the σ parameter Table 2.3 shows that the LRT is robust over a large range

σ values. The LRT’s G-MAP dominates the similarity baselines. However, σ = 0.01

seems to perform better than our initial guess of 0.05 used above.
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Table 2.4: G-MAP scores comparing the LRT against the similarity baseline for
two k-NN approximation levels. The similarity measure for selecting
C is either TF or TFIDF cosine. Results are reported on NIPS and
HEPTH for σ = .05.

TF TFIDF

G-MAP LRT SIM LRT SIM

NIPS (k = 100) 0.4489 0.3948 0.4531 0.4412

NIPS (k = 10) 0.4067 0.3754 0.4580 0.4226

HEPTH (k = 100) 0.2432 0.2216 0.2543 0.2167

HEPTH (k = 20) 0.2227 0.2037 0.2264 0.1943

Table 2.5: How close is the approximation to the optimal? G-MAP scores are
reported for S = .05.

Dataset (C) GMAP GMAP (perfect C)

NIPS (TFIDF) 0.4531 0.4556

NIPS (TF) 0.4489 0.4590

HEPTH (TFIDF) 0.2543 0.3803

HEPTH (TF) 0.2432 0.3906

Effect of k parameter in LRT approximations Table 2.4 shows G-MAP scores at

differing levels of the k-NN approximation. Recall from Table 2.2 that G-MAP scores

for HEPTH are substantially lower than for NIPS. We conjecture that this is due to the

size of the corpus in relation to k. With a large corpus, k = 100 is likely to exclude too

many relevant documents from consideration. We further analyze the role of k, in its

two roles in controlling the sizes of C and P.

First, k controls the size of C. If k is too small, truly influential documents will not

be tested by the LRT. E.g., in HEPTH, each document has 14 citations on average. With
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k = 10, it would be simply impossible to recover the entire citation graph. Therefore we

conclude that k must be large enough to include all documents that make contributions

to d(new). On HEPTH, k = 100 is better than k = 20 for TF and TFIDF cosine, and for

LRT and similarity baseline. We believe this is because k = 20 is too restrictive. NIPS

with TF cosine shows the same behavior.

Optimal C To better understand how much loss in performance is due to the k-NN

approximation of C, the following experiment explores the G-MAP scores of the LRT

for a “perfect”C. In particular, we constructC so that it includes all documents that d(new)

actually cites, and then fill the remaining places in C with the most similar documents.

Table 2.5 shows that for k = 100 the loss in performance due to an approximate C is

fairly small on NIPS. For HEPTH, on the other hand, k = 100 shows a much greater

loss, with G-MAP scores only about 60-65% of the optimal. We believe this loss occurs

because C is too small to accomodate all the influential documents.

2.4.3 Identifying Influential Documents

What are the influential documents that have the most effect on the document collec-

tion’s development? Which documents should one read to best grasp this development?

We have already shown that LRTs can be used to infer an influence graph that is similar

to a citation graph. We now investigate whether this influence graph can be used to

identify the documents with the overall largest influence on the collection. In analogy to

citation counts (i.e., the in-degree in the citation graph), we propose the in-degree in the

influence graph as a measure of impact. If not noted otherwise, we form the influence

graph by connecting each document d(new) with the l other nodes that receive the highest

LRT value. We typically use l = 10, although we also explore this parameter’s effect.
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Table 2.6: The most influential paper per year in NIPS, as measured by influence
graph in-degree, with k = 100, σ = .05, and TFIDF cosine for C. We
exclude years with edge effects and the last 3 years, since they are not
statistically significant. Comparison is against the within-NIPS citation
counts, and Google-scholar citation counts (on May 26, 2009).

Document Citation Counts

Year Document Title and Author(s) NIPS Google Scholar

1988 “Efficient Parallel Learning Algorithms for Neural Net-

works” by Alan Kramer, A. Sangiovanni-Vincentelli

2 89

1989 “Training Stochastic Model Recognition Algorithms as

Networks Can Lead to Maximum Mutual Information Es-

timation of Parameters” by John S. Bridle

11 172

1990 “Integrated Modeling and Control Based on Reinforce-

ment Learning” by R. S. Sutton

0 44

1991 “Bayesian Model Comparison and Backprop Nets by

David J. C. Mackay

1 38

1992 “Reinforcement Learning Applied to Linear Quadratic

Regulation” by Steven J. Bradtke

6 73

1993 “Supervised Learning from Incomplete Data via an EM ap-

proach” by Zoubin Ghahramani, Michael I. Jordan

12 246

1994 “Reinforcement Learning Algorithm for Partially Observ-

able Markov Decision Problems” by Tommi Jakkola,

Sizarad Singhal, Michael I. Jordan

10 178

1995 “EM Optimization of Latent-Variable Density Models” by

Chris M. Bishop, M. Svensen, Chistopher K.I. Williams

1 30

1996 “Support Vector Method for Function Approximation, Re-

gression Estimation, and Signal Processing” by V. Vapnik,

Steven E. Golowich, Alex Smola

2 610 (13364)

1997 “EM Algorithms for PCA and SPCA” by Sam Roweis 1 267

Qualitative evaluation

For each year in NIPS, Table 2.6 lists the paper with the highest in-degree in the influ-

ence graph computed by the LRT method with k = 100 and l = 10. We expect these
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Table 2.7: Rank metrics comparing the LRT against similarity on NIPS (k = 100)
and HEPTH (k = 20), using σ = .05 and TF or TFIDF cosine for C.
We ignore the first two and last two years because of edge effects.

TF

Corpus LRT SIM

τ RMap@3 @12 τ RMap@3 @12

NIPS 0.4216 0.2771 0.3126 0.3379 0.1475 0.2561

HEPTH 0.3887 0.2558 0.2376 0.3497 0.1421 0.1594

TFIDF

Corpus LRT SIM

τ RMap@3 @12 τ RMap@3 @12

NIPS 0.4163 0.2751 0.3022 0.3686 0.1959 0.2585

HEPTH 0.3549 0.1456 0.1582 0.3190 0.1139 0.1138

to have high citation counts, which we test by showing the paper’s citation counts both

from within the NIPS corpus (as of 2000) and from Google Scholar (as of 2007). For

most documents, the citation count is indeed high when compared to the average NIPS

document citation count of 0.7734 other NIPS papers. An interesting example is “Sup-

port Vector Method for Function Approximation, Regression Estimation, and Signal

Processing” from 1996. While this is one of the papers that introduced SVMs to NIPS,

it has only 3 citations within NIPS and only 44 citations in Google Scholar. Neverthe-

less, SVMs had a huge impact on NIPS. In this sense our LRT method is correct and is

not influenced by citation habits. In this example, most authors cite Vapnik’s later book

(with 5144 citations) instead of this paper. The LRT method is unaffected and correctly

identifies the SVM idea as highly influential on NIPS.
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Quantitative Evaluation

We compare the ranking of documents by in-degree in the influence graph to the ranking

by citation count. As similarity measures, we use Kendall’s τ and a ranking version of

MAP, which we term R-MAP.

Kendall’s τ Kendall’s τmeasures how many pairs two rankings rank in the same order.

It ranges between -1 and 1, with higher numbers indicating greater similarity. Formally,

τ =
2 · number of concordant pairs

total number of pairs − number of tied pairs

R-MAP@k R-MAP@k measures the average precision of a ranking. With the k top-

ranked documents as positive examples, average the ranking’s precision at the positions

of these documents. We calculate R-MAP@3 and R-MAP@12.

There is one caveat with rank-based metrics. Edge effects (e.g., older papers have

more citations, papers from the last year have no citations) make it difficult to present

one unified ranking of all documents. Therefore, we calculate each metric per-year and

average the year-by-year values to get a single score for the entire corpus. Additionally,

because of edge effects, the first two and the last two years are not used, since they do

not contain meaningful results.

The TF and TFIDF baselines use the most similar documents instead of the LRT

predictions.

LRTs are better than similarity Table 2.7 shows that the LRT gives substantially

better rankings than the similarity baseline for all metrics on both NIPS and HEPTH

with both TF and TFIDF cosine C.
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Figure 2.3: Using τ to compare the LRT against the similarity baseline, both with
the l parameter (left) and by thresholding the LRT statistic values
(right). Results are for NIPS with TFIDF cosine C and k = 100. The
TF plot looks similar, except that the baseline is smoother.

Effect of the parameter l The left plot of Figure 2.3 explores whether selecting in-

fluencers is sensitive to the parameter l. For the influence graph, we considered each

document’s l predicted influencers with highest LRT scores. Figure 2.3 shows how

varying l affects τ for both LRT and the similarity baseline. Since NIPS documents do

not have many citations, we explore l = 1 to 15. The upper line is LRT performance

with 95% confidence interval error bars. (The confidence interval is computed using the

multiple τ values per data point, because each graphed τ is the average of multiple (here,

10) years of τmetric scores.) The lower line depicts τ on the similarity baseline. For the

TFIDF cosine C, when l is small, the method computes a count over only the few top

influential documents selected by the LRTs for d(new). It turns out that small l seem to

perform better than our initial guess of l = 10. As l increases, more non-influential doc-

uments are counted and τ correspondingly falls. When l approaches 100 (not shown),

the LRT and the baseline are identical as expected by construction.

Thresholding on the LRT score The right plot of Figure 2.3 depicts how τ varies if

we do not select a fixed number of l neighbors per document, but instead use a threshold
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on the LRT statistic. The LRT is set up to reject the null hypothesis and declare that d(can)

influences d(new) if the LRT statistic is sufficiently large. Varying this threshold controls

the level of confidence in the LRT, so we use the threshold level as the x-axis and exam-

ine how it affects τ. Thresholding the LRT values actually gives better performance than

using the l parameter, since we are not forcing a certain number of influence links for

each document. There are four different regions in this graph. First, if the threshold is

too low, performance suffers because the null hypothesis is being accepted erroneously.

Second, performance increases as the threshold approaches reasonable confidence lev-

els. Third, a large range of threshold values (approximately 100-2000) give good and

similar τ scores, showing that the LRT method is robust. Fourth, when the threshold is

too high, many influential documents are no longer detected, and performance subse-

quently falls.

Note that a confidence level of 95% per test (i.e., a threshold of 3.84) performs

quite poorly. This level means that 5% of the influence links are erroneous. NIPS, with

2000 papers, would have an expected 100,050 false links (and only 1512 real citations).

Therefore, we need a much higher confidence level to account for the multiple-testing

bias. Using Bonferroni adjustment, each test’s level is the overall level divided by the

number of tests.

2.5 Discussion and Future Work

One obvious limitation of the current model is the simplicity of the language model.

The assumption that each document is a sequence of independent words is, in reality,

clearly violated. This observation motivates more expressive language models such as

n-gram language models.
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There is also the question of whether these methods can generalize to other domains.

LRTs do not use citation data, so many domains should be applicable. However, we have

only conducted experiments on research publications.

Finally, there is scalability and efficiency. Much of the computing time is spent solv-

ing convex optimization problems. While C and P prune this space, there may be other

criteria to provably eliminate certain LRTs without affecting the results. Furthermore,

the optimization problems have a special structure, which can probably be exploited by

specialized methods to solve the optimization problems.

2.6 Summary

We presented a probabilistic model of influence between documents for corpora that

have grown over time. In this model, we derived a Likelihood Ratio Test to detect

influence based on the content of documents and showed how the test can be computed

efficiently. We found that the influence graphs derived from the content resemble the

structure of explicit citation graphs for corpora of scientific literature. Furthermore, we

showed that in-degree in the influence graph is an effective indicator of a document’s

impact. The ability to create influence graphs based on document content alone has the

potential to open databases without explicit citation structure to the large repertoire of

graph mining algorithms.
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CHAPTER 3

NOVEL IDEAS IN TEXT DOCUMENTS

The Inter-Document Influence Model can identify how ideas flow between documents

in corpora and provides a text-based method for finding influential documents and their

ideas. Keeping in mind the high-level goal of understanding the idea structure in the

corpus, one logical next step is to find the places where novel ideas in the corpus orig-

inate. The task of detecting novel ideas is interesting because it focuses on what ideas

make a document new or different with respect to existing documents and their ideas.

The novel ideas are the ones that push the boundaries of the content expressed in the

document collection. The hope is that novelty detection methods can identify new and

interesting advances in the content that the corpus covers.

3.1 Introduction

Novelty detection has formerly been addressed in the literature, including as a task in the

well-known Topic Detection and Tracking (TDT) studies (Allan et al., 1998a). Novelty

detection in the TDT studies means marking news articles that cover new events or top-

ics. In this thesis, the novelty detection task differs in the following two ways: detecting

novelty with respect to earlier documents instead of real-world newsworthy events, and

offline analysis of the entire collection at once instead of emphasizing online novelty

detection. Besides the TDT studies, TREC has also organized several novelty tracks,

where the task was to mark the sentences in a ranked set of search results that provide

novel information. In that work, novelty was defined with respect to new information

about the user’s query in a list of retrieved search results, so as to reduce redundancy

in the results. This thesis considers novelty with respect to time, finding new ideas in
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documents as compared to older documents.

In the archival corpus setting considered in this thesis, addressing novelty means

identifying both the new ideas in the corpus and the documents that introduced those

ideas. Obvious application domains for such a novelty detection system are news ar-

ticles and research literature. For news articles, scoring documents by their novelty

might provide a ranking of the first articles that broke important stories. For research

publications, identifying the documents that contain the most novel content is also quite

interesting. Since the research literature is expected to be highly novel, applying novelty

detection methods to finding the most different ideas in such a setting is potentially very

exciting. We therefore will use research publications for experimental evaluation.

We propose two specific methods for the text-based novelty detection task. The first

method makes a description for each document’s novel idea by listing the set of terms

that are most novel in that document as compared against the background of ideas pre-

sented in previous documents. The most novel words are those which have the most

increased likelihood of occurring in the document vs. occurring in the ideas from previ-

ous documents. For this method, we present qualitative results on the most novel terms

for selected documents in a set of research publications. Besides describing what makes

each document novel, another interesting task is to determine just how novel each doc-

ument is. The second novelty detection method quantifies the amount of novelty per

document. This method is an application of information theory, in particular the KL-

Divergence, which arises straightforwardly as a scoring function to quantify document

novelty. We evaluate these methods on real and synthetic data from the research publi-

cations that appeared in the NIPS conference (NIPS Online, 2000).
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3.2 Related Work: Novelty Detection

There are various existing approaches for the task of detecting novelty in various set-

tings. The novelty detection task as we set it up here differs somewhat from these exist-

ing approaches.

3.2.1 Novelty Detection in TDT

In the Topic Detection and Tracking studies (Allan et al., 1998a; Allan et al., 1998b),

the novelty detection task focused on identifying the news articles that first introduced

novel topics. This task specifically focused on novel topics with respect to news events.

The desired output of this method is a set of articles that mark the first instances where

each event is mentioned.

The novelty detection task in the TDT setting differs from our notion of identifying

novel documents in several ways. First, the TDT studies place emphasis on the online

detection of novel articles in a news stream, while our methods focus more on retro-

spective analysis of the document collection. Second, the focus in the TDT studies is

on novelty with respect to real-world newsworthy events, while we define novelty with

respect to ideas as they are represented in text. For example, in the TDT3 corpus, the

news articles cover two different hurricanes. In the novelty event detection framework,

these are two different events, and thus the first documents reporting on each hurricane

should be marked as novel. With regard to ideas and their manifestation in text, however,

the “ideas” presented in the articles are probably very similar. The earliest coverage of

the first hurricane should still be detected as novel, but unless there was significantly

different circumstances, analysis, or reporting on the second hurricane, the text content
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presumably would not be very novel. This also means that our methods do not use a

“window” or “forget” past events. Especially for research literature, we really do want

to compare novelty against the text of all existing ideas, not just some recent window,

while in the TDT novelty detection setting, some window to forget older content is es-

sential.

The information theoretic method that arises from our document collection assump-

tions scores documents based on KL-Divergence. KL-Divergence has also been also

been used in the TDT setting (Lavrenko et al., 2002).

3.2.2 TREC Novelty Track

Besides the TDT studies, there have been other analyses of novelty in data mining. An-

other well-known group of work is the Novelty Track from various TREC conferences,

e.g., (Soboroff& Harman, 2003). Even though that task would appear to be quite similar

to this one in name, in fact they are really quite different. The TREC Novelty Track’s

task focuses on the setting of information retrieval, where there are a list of retrieved

documents for a query. Some of the sentences in the retrieved document set have sen-

tences that are relevant to the user’s information need. As the user would read through

the list of retrieved documents, the novel sentences consist of the subset of the relevant

sentences that contain new information related to the user’s query. Here, we detect nov-

elty in the context of a time-sorted, archived document collection, instead of a set of

search results. Furthermore, the representations of novelty that we consider, in novel

words and scores for the degree of document novelty, differ from the output of the novel

relevant sentences.
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3.2.3 Other Novelty Tasks

There are other settings where novelty has been considered in the literature, especially

when considering novelty to mean different. Novelty is really a combination of being

different and occurring later in time. Work from language modeling and temporal doc-

ument clustering have implicitly considered issues relating to novelty (Blei & Lafferty,

2006; Mei & Zhai, 2005).

3.3 Task 1: Describing Novel Ideas in Their Own Words

One goal of novelty detection is to help people understand the novel ideas in a document

collection. Here, we present a method that summarizes each document’s novel idea as a

list of the document’s most novel terms. Given a document, it will extract what is novel

about that document. The hope is that such a method can help users understand what is

novel about each document.

3.3.1 Method

In the context of the mixture models from Ch. 2, the most obvious way to identify

novel content is to use the probabilities from the estimated novel language model in the

Inter-Document Influence Model with Novel Content (Model 2.3). Even though this

model was explicitly designed for influence, not novelty, one of the side-effects is that it

contains a description of the novel content of each document. Even though this model

may not be the most straightforward for novelty detection, it provides a springboard

for our analysis of novelty. As before, we have the generative assumption that each
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document’s text is drawn from a mixture of a novel language model and the language

models estimated from prior documents.

Assume that each document D(i) is a vector of ni words W (i) = (W (i)
1 · · ·W

(i)
ni )′, which

come from a vocabulary V . As in the influence model, assume that documents are

generated from a mixture of language models θ̂(k) derived from a set of already-existing

previous documents D(k), as well as a document-specific novel language model θ̄(i). The

mixing weights π(i) are denoted by (π(i)
n , π

(i)
k ) for θ̄(i) and θ̂(k), respectively. With these

definitions and assumptions,

P(d(i)|π(i), d(1) · · · d(i−1)) =
ni∏
j=1

(π(i)
n θ̄

(i)
w(i)

j

+

i−1∑
k=1

π(i)
k θ̂

(k)
w(i)

j

)

The combination of previous-document unigram language models comprises the

background mixture against which the method will try to identify the document’s novel

ideas. According to this model, the entire document’s content consists of words drawn

from this background mixture and words drawn from the unigram multinomial distribu-

tion for novel content.

Inference

With this generative model, we can use the inferred novel language model to find the

most novel terms in the document. When fitting the model to explain the content of a

document d(i), the observed quantities are the text of all the documents. The parameters

are the mixture weights π(i) for document d(i) and the probabilities in the novel language

model θ̄(i). Inference should select the maximum-likelihood parameters for generating

the content of document d(i).

As it stands, this inference problem cannot be optimized globally in a straightfor-
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ward manner. To make the likelihood function convex, one solution is to constrain the

document to have a certain constant amount of novel content, in effect setting the π(i)
n

to a fixed value. This may not necessarily be a bad assumption. Research publications,

for example, are supposed to have a large amount of novel content, while typical news

articles might have several paragraphs (i.e., a relatively similar amount) of novel up-

dates followed by some background on the story. Once we have chosen a value for this

parameter, solving the maximum likelihood problem provides an estimated distribution

for the novel language model θ̄(i) and mixing weights for the background mixture. The

most novel terms are those with the highest probability in the novel language model

relative to the background mixture. Therefore, we rank the terms by their probability in

the inferred novel language model minus the probability in the background mixture. We

select the top terms from this ranking as the most novel terms for document d(i).

3.3.2 Experiments

We evaluate this method on the NIPS collection of fulltext research publications from

the Neural Information Processing Systems conference (NIPS Online, 2000), both on

the real data and on synthetic data that was generated based on these documents.

Novel Terms in Synthetically-Generated Data

To evaluate this method, we directly measure how well the learned novel language model

represents the actual novel language model used to generate the data. Here, we gener-

ated the synthetic documents d(i) according to Model 2.3, with novel language models

being maximum likelihood estimators of NIPS documents. First a set of kP = 10(100)

previous document indices P is selected uniformly at random which will be used for
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Figure 3.1: KL-divergence from the actual novel content distribution to the novel
distribution learned according to the Inter-Document Influence Model
(Model 2.3). The baseline shown is the KL-divergence from the ac-
tual novel language model to the MLE from the entire generated doc-
ument. The x-axis is π(i)

n . At a π(i)
n level, the KL-divergence measures

the amount of extra bits the inferred original content distribution (and
baseline) need to encode the information in the true original content
distribution.

the kP previous documents d(1) · · · d(kP). Then, a novel language model θ̄(i) (for i > kP)

is chosen by using the MLE of another NIPS document selected uniformly at random.

There are 101 documents that are generated using these models so that they have novel

content mixing weights π(i)
n of {0, 0.01, 0.02, · · · , 1}. The other mixing weights π(i)

k are

selected uniformly at random and normalized to sum to 1 − π(i)
n . This entire process

was repeated 100 times, for new selections of (P, θ̄(i), π(i)). The words in documents are

drawn according to their document language models, with the document length set to

1400 words, since that is the average NIPS document length.

We fit the Inter-Document Influence Model to these generated documents to estimate

the novel language model of each document d(i), for i > kP. To measure the quality of

the model for detecting novel terms, we measure how well this learned novel language
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Figure 3.2: KL-divergence from the actual novel content distribution to the
learned novel distribution. The baseline is the KL-divergence from
the actual novel language model to the MLE from the entire generated
document. The generated document length was 100000 words.

model captures the actual novel language model used to generate the documents. We

quantify this evaluation by using the KL-divergence of the learned novel language model

from the actual novel language model. As a baseline, we used the entire document

as an approximation of the novel content. In this case, the baseline value is the KL-

divergence of the entire generated document from the actual novel language model. For

both methods, we smoothed both distributions in the KL-divergence computation with

Jelinek-Mercer smoothing with λ = 0.001.

Figure 3.1 shows this comparison, where the generated document baseline actually

does much better than the novel terms method. This shows that when considering the

whole distribution, the generated document is a better approximation of the novel lan-

guage model than the inferred novel language model from the copy model. One con-

jecture is that the copy model places into the novel language model the terms that just

happened to be drawn more frequently, even though they are from the background, es-
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pecially if they had a high probability in the background. To test whether this was the

case, we repeated the experiment with documents of length 100000 words. The longer

documents mean that the drawn documents from the distributions should more accu-

rately reflect those distributions. Figure 3.2 shows that in this case the KL-Divergence

for the learned novel language model does outperform the generated document baseline

when there is 10% or more novel content. With very small amounts of novel content,

however, the generated document is better. To understand the reason for this, we read

lists of the highest probability terms from the learned novel language model when there

is little novel content and found that there were terms in the lists that were associated

with high probabilities in the previous documents. The intuition is that it is better for the

model to “fix” the probabilities for high-probability background terms that were drawn

more often randomly than to adjust low-probability words actually drawn from the novel

language model.

Novel Terms in Influential Documents

Next we perform a qualitative evaluation, identifying the most novel terms in the most

influential documents according to Model 2.3. This set of most influential documents

was presented in Table 2.6. Here, we summarize the set of novel terms by presenting the

terms that have the most difference in probability between the novel language model and

the background mixture of previous language models. As a baseline, we present the list

of terms that have the highest TFIDF values for each document. These results are shown

in Table 3.1. The novel terms selected by the Influence Model and the highest-weighted

TFIDF terms are quite similar for many documents. In the earlier documents, the TFIDF

terms seem to be somewhat more relevant to the novel aspects of each document’s sub-

ject. Perhaps this is because TFIDF has the advantage of looking into the future, since
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Table 3.1: Top 10 novel terms and highest-TFIDF (similarity baseline) terms for
the yearly most-influential NIPS paper (Papers from Table 2.6). With
kP = 100 and π(i)

n = 0.05.

Document Title and Author(s), Copy Model Novel Terms, Top-TFIDF Terms

1990 “Integrated Modeling and Control Based on Reinforcement Learning” by R. S. Sutton

Nov: dyna, planning, ahc, world, hypothetical, reward, architectures, trial, maze, experience

Sim: dyna, ahc, planning, policy, world, sutton, hypothetical, reinforcement, reward, ...

1991 “Bayesian Model Comparison and Backprop Nets” by David J. C. Mackay

Nov: evidence, occam, comparison, mackay, bars, ed, factor, posterior, aw, razor

Sim: occam, evidence, bayesian, gull, razor, diw, inference, interpolant, mackay, ...

1992 “Reinforcement Learning Applied to Linear Quadratic Regulation” by Steven J. Bradtke

Nov: lqr, linear, quadratic, iteration, ut, bradtke, regulation, zt, qv, qt

Sim: lqr, policy, dp, bradtke, controller, watkins, reinforcement, qv, ut, regulation

1993 “Supervised Learning from Incomplete Data via an EM approach” by Zoubin Ghahra-

mani, Michael I. Jordan

Nov: em, incomplete, expectation, hij, xii, gaussians, maximization, valued, involve, lse

Sim: missing, mixture, density, incomplete, em, hij, olok, xii, lse, xi

1994 “Reinforcement Learning Algorithm for Partially Observable Markov Decision Prob-

lems” by Tommi Jakkola, Sizarad Singhal, Michael I. Jordan

Nov: reward, alm, pomdp, slm, messages, message, improvement, average, mdp, learner

Sim: policy, alm, slm, mdp, pomdp, reward, learner, policies, messages, markov

1995 “EM Optimization of Latent-Variable Density Models” by Chris M. Bishop, M.

Svensen, Chistopher K.I. Williams

Nov: latent, oil, matrix, williams, visualization, svens, pipe, toy, gas, elements

Sim: latent, oil, em, pipe, svens, bishop, variable, visualization, density, distribution

1996 “Support Vector Method for Function Approximation, Regression Estimation, and Sig-

nal Processing” by V. Vapnik, Steven E. Golowich, Alex Smola

Nov: sv, svs, xi, inner, solving, xj, hilbert, smola, golowich, estimation

Sim: svs, sv, splines, xi, xj, golowich, inner, smola, kernel, hilbert

1997 “EM Algorithms for PCA and SPCA” by Sam Roweis

Nov: space, covariance, cc, datapoints, subspace, iterations, guess, rod, xly, panel

Sim: spca, pca, covariance, principal, em, subspace, datapoints, eigenvectors, cc, missing

it is computed over the whole corpus. In later documents, the method and the base-

line are more similar. One thing to notice is that both methods seem to pick up on the

most unusual terms, as can be seen in the most novel or highest TFIDF terms containing
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notation from the math or the author names from the document headings. This shows

that novelty alone is somewhat tricky, because although these terms are indeed novel,

they are not useful for helping a human understand the development of that document’s

ideas. Overall, this method was interesting to try, but does not appear qualitatively to be

much better than simply using TFIDF to select words.

3.4 Task 2: Quantifying Each Document’s Novelty

The next novelty task is motivated by the application of identifying the most novel doc-

uments. Here, we present a method to quantify the amount of novelty in each document.

3.4.1 Method

The method for novel terms came about as a side effect of the Inter-Document Influence

Model (Model 2.3). That method had to assume a constant amount of novel content

per document, which is quite likely violated in practice. We now present a completely

different method for novelty with the goal of quantifying the amount of novel content

in each document. To measure the amount of novelty per document more precisely,

we propose an information theoretic method to score documents by novelty. Detecting

novel documents can be re-framed as identifying the documents whose content most

differs from existing content in previous documents. The more novel a document’s ideas

are, the more difficult it would be to explain that document’s content with the word

distributions arising from the previous documents. We propose a method to quantify

novelty in documents by using the Kullback-Leibler Divergence (KL-Divergence) ().
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KL-Divergence Method

The goal of the novelty task is to quantify how novel each document’s content is. The

score for each document d(i) should be based on how much extra novel information d(i)

has when compared to the background of existing documents. For this task, we use KL-

Divergence because it measures the number of extra bits that are needed to encode the

novel unigram distribution when using an approximation for that distribution. To apply

the KL-Divergence to this novelty task, each document d(i) should be scored by how

much extra information is needed to encode the content of d(i) by using a code based on

best linear combination of prior existing documents d(1) · · · d(i−1). This scoring function

obeys the property we want, namely that if d(i) has a large amount of novel content, then

the distribution of θ̂(i) will differ quite a bit from the mixture defined by π(i∗). This will

require more extra bits in the representation, which is equivalent to producing a larger

novelty score.

We use the same notation, except with a slight change in the generative model. Here,

we assume that documents are generated from a mixture of existing language models

only, without any novel language model. The previous document language models are

still parameterized by θ̂(k). Their mixing weights π(i) consist of π(i)
k for the estimated

distributions θ̂(k), but no longer a novel mixing weight π(i)
n . With these assumptions, we

have this generative probability for a document

P(d(i)|π(i), d(1) · · · d(i−1)) =
ni∏
j=1

i−1∑
k=1

π(i)
k θ̂

(k)
w(i)

j

The inference method that arises from this model is based on seeing how well the

copy model can explain the content of document d(i) using only existing ideas. Specif-

ically, it tries to explain the content of d(i) using only a mixture of existing documents,

without any novel language model. To use KL-Divergence for this task, we want to find
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the divergence of the observed w(i) from the best possible explanation for the words w(i)

by using the language models θ̂(1) · · · θ̂(i−1) from the documents that precede d(i). In the

following, we overload the notation θ̂(i) to refer additionally to the distribution parame-

terized by θ̂(i), where appropriate. The optimal mixing weights are given by

π(i∗) = argmin
π(i)

KL(θ̂(i)||
i−1∑
k=1

π(i)
k θ̂

(k)
w(i)

j

)

= argmin
π(i)

−
∑
w∈V

θ̂(i)w log(
i−1∑
k=1

π(i)
k θ̂

(k)
w ) +

∑
w∈V

θ̂(i)w log θ̂(i)w

= argmin
π(i)

−
∑
w∈V

θ̂(i)w log(
i−1∑
k=1

π(i)
k θ̂

(k)
w )

subject to π(i)
n = 0 in the minimization, and the novelty score for d(i) is given by

s(i)
n = −

∑
w∈V

θ̂(i)w log(
i−1∑
k=1

π(i∗)
k θ̂

(k)
w ) +

∑
w∈V

θ̂(i)w log θ̂(i)w

Since the KL-Divergence is a convex function, this is straightforwardly optimizable.

We use the optimization package MOSEK (MOSEK, 2008) to do the optimization.

Handling Zero Probabilities

In the KL-Divergence computation, since document text is sparse, many terms will

be associated with a probability of 0 in the maximum likelihood estimates of uni-

gram multinomial distributions derived from documents in the corpus. One way to

resolve this situation is to smooth the term probabilities. We explore several common

ways of smoothing the term probabilities, including Jelinek-Mercer smoothing, Dirich-

let smoothing, and discount smoothing. These smoothing methods and their application

to information retrieval tasks have been explained previously (Zhai & Lafferty, 2004),

and we will mostly follow their notation and setup for smoothing in this section.
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For each smoothing method, the word probabilities from the maximum likeli-

hood unigram language models estimated directly from each document’s words will

be smoothed by the probabilities of those words occurring in the corpus. Let θ̂(D)
w rep-

resent the maximum likelihood probability of word w in the corpus D. Then, when

smoothing the unigram distribution θ̂(k) from document d(k), the probability of a word

θ̂(k)
w will include a summand αkθ̂

(D)
w .

Jelinek-Mercer Smoothing In Jelinek-Mercer smoothing, the αk is constant across

all documents d(k). This smoothing amount is typically referred to by the parameter

λ = αk. Instead of θ̂(k)
w , the probability of a word w in the language model derived from

a previous document d(k) is

λθ̂(D)
w + (1 − λ)θ̂(k)

w .

Working through the algebra, this problem is straightforwardly optimizable using a

similar setup as the optimization problem without smoothing, except that some quanti-

ties are scaled by λ or 1 − λ.

Dirichlet Smoothing Dirichlet smoothing is often described in terms of a parameter

µ, which is the (uniform) number of a priori counts that each word is assumed to have.

As a special case, when µ = 1, the smoothing method is called Laplace smoothing. In

this case, the smoothing parameter αk =
µ

|d(k) |+µ
depends on the length of document d(k).

The probability of a word w in the language model for a previous document d(k) is now

given by

αkθ̂
(D)
w + (1 − αk)θ̂(k)

w ,

which looks very similar to the Jelinek-Mercer smoothing, except that αk is not con-

stant across documents with Dirichlet smoothing. By introducing one more variable
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and working through some details, the optimization problem can once again be written

as a separable convex program. We introduced an extra variable to preserve sparsity in

the linear constraint matrix for obvious space efficiency reasons.

Discount Smoothing Discount smoothing differs from Jelinek-Mercer and Dirichlet

smoothing in that probability mass is removed (discounted) from the higher probability

terms and added onto the lower probability terms, instead of smoothing only by adding

some a priori term counts. The typical parameterization for Discount smoothing uses the

parameter δ ∈ [0, 1], which represents the number of the term counts that are removed

from the higher probability terms. In this case, the parameter αk =
δ|d(k) |u
|d(k) |

, where |d(k)|u

is the number of unique terms that are present are document d(k). The probability of a

word w in the language model for d(k) can be written as

αkθ̂
(D)
w +max(θ̂(k)

w −
δ

|d(k)|
, 0)

Once again, with appropriate rewriting, this is straightforwardly optimizable as a

separable convex program, with only one non-sparse vector for the background smooth-

ing probabilities in the constraint matrix.

Implementation Details

As in the Influence Model optimizations, we restrict the set of previous documents to be

the most similar kP documents according to cosine similarity. This approximation has

the effect of making the optimizations run much faster, while sacrificing some possible

previous documents and their ideas. Although we do not evaluate this approximation

here, we expect that in practice, it does not make a large difference, as was also the

case with the Influence method. When two documents have an influence relationship,
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Figure 3.3: ROC-Area analysis of the novelty score. The x-axis shows the amount
of novel content π(i)

n in the generated documents. The graph shows
ROC-Area of points ordered by the novelty score, for the various
smoothing methods, with documents at this π(i)

n level being positive
points and generated documents with π(i)

n = 0 being negative points.
The TFIDF baseline is based on taking the cosine distance from doc-
ument d(i) to the single nearest document that precedes it in time.

the influenced document draws on the ideas from the influencing document. One would

expect that these documents have some level of similarity, namely in the text regarding

the idea they share in common. Here, we expect that the approximation is valid because

if the document is novel with respect to the documents with the most similar content, it is

likely to be even more novel when compared against other more dissimilar documents.

3.4.2 Experiments

We test the method for quantifying the amount of novel content per document by using

synthetic data based on research publications from NIPS. Then, we present qualitative

results for actual NIPS publications.
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Novel

BM
NN

Mix

KM

Figure 3.4: This figure depicts the TFIDF Min distance baseline and why it may
not work in the setting in which we generate documents. The groups
of shaded boxes represent the MLEs from previous documents of sim-
ilar topics, perhaps Neural Networks, Bayesian Methods, and Kernel
Methods. The rounded box marked Mix in the middle represents the
weighted mixture of the previous documents. The box marked Novel
represents the novel language model. Here, as the novelty weight is
increased in the generated documents, the generated documents will
tend to lie along along the dotted line reaching from Mix to Novel.
When Novel is similar to a previous document, the cosine distance
between the TFIDF vectors of the generated document and the clos-
est previous document may actually decrease with increasing novelty
instead of increasing as would be intuitive.

Novelty in Synthetically-Generated Data

First, we evaluate the novelty score s(i)
n on synthetic data that was generated based on

the maximum-likelihood estimators from NIPS documents. Here, we generate the data

according to the Inter-Document Influence Model as described in Section 3.3.2.

We conduct the evaluation of the novelty score on this generated data using ROC-

Area in the following manner. For each positive fraction of novel content π(i)
n , we treat

the novelty scores of the documents d(i) with that π(i)
n as positive points, while the nov-

elty scores of the documents generated with π(i)
n = 0 are negative points. The novelty

score is used to order these points. At each level of π(i)
n , we compute the ROC-Area.
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We use two baselines based on TFIDF. Since TFIDF was designed to find the terms that

most represent a document relative to the rest of the corpus, it should be an effective

method for measuring what is novel about a document with respect to the past. The

documents used to compute the IDF values are the background documents d(k) as well

as the single d(i) at the specified novelty level π(i)
n . Since only one document in this

set has novel content, TFIDF should emphasize that document’s most novel terms. As

baselines, we compute for each document the cosine distance from the single nearest

previous document (TFIDF Min) and the cosine distance from the single farthest previ-

ous document (TFIDF Max). The Min/Max refers to the minimum or maximum amount

of novel content a document could have when compared against any single document

from the past.

Figure 3.3 presents the results of this evaluation. In fact, with optimal parameter set-

tings, all three smoothing methods with the Influence Model seem to do quite similarly.

If the documents have 20% novel content or more, the method is able to distinguish it

from the documents that do not contain any novel content with almost perfect accuracy.

With very little novel content, e.g., π(i)
n = 0.01, all methods and baselines have an ROC-

Area near 0.5, which would be random. Both TFIDF baselines do much worse than the

KL-Divergence method.

Interestingly, TFIDF Max (distance) does much better than TFIDF Min (distance),

which seems counterintuitive. Thinking of the language models as vectors, the MLE of

the novel document is in fact just another vector. Because of the way we generated the

documents, it likely shares quite a few words in common with some other background

documents. E.g., as shown in Figure 3.4, with 100 previous documents, perhaps there

are 40 on neural networks, 30 on Bayesian methods, and 30 on kernel methods. Now,

if the novel language model happened to be chosen as the MLE of another kernel meth-
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Figure 3.5: ROC-Area analysis of the novelty score for Jelinek-Mercer smoothing
with different λ for controlling the amount of corpus smoothing. The
baseline is TFIDF Max.

ods paper, then it should be relatively similar to the other kernel methods papers. In

fact, it will probably be more similar to these other kernel methods papers than to the

background mixture of all 100 previous documents. Therefore, as the amount of novel

content increases in a mixture, the mixture vector actually moves closer to this kernel

methods cluster, and the TFIDF Min distance decreases, which runs counter to intuition.

Such cases occur commonly enough that it causes TFIDF Min to plateau after a certain

amount of novelty. On the other hand, if the most dissimilar document were completely

orthogonal, with no words in common, then TFIDF Max would be completely useless

for scoring novelty, since all the distances would be one. In practice, enough words

overlap (even just common words such as “computer” or “experiments”) between the

generated documents (and the NIPS vectors) that TFIDF Max works in practice.
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Figure 3.6: ROC-Area analysis of the novelty score for Dirichlet smoothing with
different µ, compared against TFIDF Maximum Distance.
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Figure 3.7: ROC-Area analysis of the novelty score for Discount smoothing with
different δ, compared against TFIDF Maximum Distance.

Smoothing in Novelty Detection

In novelty detection, since some terms may have estimated probabilities equal to zero,

smoothing is quite important. We evaluate the three smoothing methods: Jelinek-
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Mercer, Dirichlet, and Discount, to see if there is a clear winner, and what smoothing

parameter settings are appropriate for this task.

Figure 3.5 shows that for Jelinek-Mercer smoothing, mixing λ amount of corpus

background does quite well for reasonable, small values of λ, such as 0.001 and 0.01.

With λ = 0.1, the method does worse than when using smaller values of λ, while being

very similar to the TFIDF Max baseline. With large values of λ (not shown), the method

becomes worse since the document term probabilities are overwhelmed by the corpus

probabilities used to smooth. In practice, one would want a small value for λ.

Figure 3.6 shows that the Dirichlet smoothing method is quite robust for many values

of the smoothing parameter µ, including the range 0.5 to 2. This range includes Laplace

smoothing, where µ = 1. Dirichlet smoothing with these various µ settings performs

similarly to Jelinek-Mercer smoothing with λ = 0.001, as was shown in Figure 3.3.

The novelty method with Dirichlet smoothing works much better than the TFIDF Max

baseline.

Figure 3.7 shows that for Discount smoothing, as in Jelinek-Mercer smoothing,

small values of δ such as 0.001 and 0.01 work quite well, and much better than the

TFIDF Max baseline. With δ = 0.1, the method gets noticeably worse, splitting the

difference with the TFIDF Max baseline. For larger values of δ, as with Jelinek-Mercer

smoothing, the method does worse because of too much smoothing. One would typi-

cally choose smaller values for δ.

With all three smoothing methods, one must become careful about making the

smoothing values too small. If the λ, µ, and δ are too small, then there is not enough

smoothing, and the probabilities are still practically zero. In these results, the minimum

presented values for these parameters are the minimum ones for which the optimization
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Figure 3.8: ROC-Area analysis of the novelty score for Jelinek-Mercer smoothing
with λ = 0.01 and 10, 30, and 100 previous documents.
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Figure 3.9: ROC-Area analysis of the novelty score for Discount smoothing with
δ = 0.01 and 10, 30, and 100 previous documents.

converged in our experiments on the synthetically-generated data. We also tried smaller

values, but then the optimizer ran into trouble because the probabilities were too close

to 0.
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Choosing Enough Previous Documents

It is important to choose enough previous documents so that the method has sufficient

background information against which to compare for novelty. The earlier experiments

used the full set of kP = 100 previous documents for the analysis. Here, we restrict that

set to the most similar 10 or 30 previous documents to determine how well the method

can identify novel documents.

Figure 3.8 shows the results for kP ∈ {10, 30, 100} previous documents for Jelinek-

Mercer smoothing in the novelty method. Obviously, with 100 previous documents, the

method does the best. With kP = 30, the method does much worse, even somewhat

worse than the TFIDF baseline (that used 100 previous documents), but still well above

random. With 10 previous documents, the method does much worse, in fact, even much

worse than the TFIDF baseline. Setting kP = 10 gives quite close to random perfor-

mance.

Figure 3.9 shows the results for kP ∈ {10, 30, 100} previous documents with Dis-

count smoothing. The overall results seem quite similar to the case with Jelinek-Mercer

smoothing. Using 100 documents is the best and much better than the TFIDF Max base-

line. With 30 previous documents, the method is slightly worse than the TFIDF baseline

(that used 100 documents). Using 10 documents is much worse than the baseline, and

near to, but slightly better than random, especially when the novelty mixing weight is

above 0.6 or 0.8.

Most Novel Documents in NIPS

We present here the list of the most novel documents in NIPS according to the novelty

score, using Discount smoothing with δ = 0.01. Table 3.2 shows the most novel doc-
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Table 3.2: The most novel documents in NIPS according to the KL-Divergence
score using Discount smoothing with δ = 0.01.

Score s(i)
n Document Title and Author(s)

8.556 “Author Index”

7.448 “Song Learning in Birds” by M. Konishi

7.034 “Author Index”

6.496 “Part VIII Applications”

6.437 “Part I Cognitive Science”

6.353 “A Neural Network to Detect Homologies in Proteins” by Yoshua Bengio, Samy

Bengio, Yannick Pouliot, Patrick Agin

6.161 “Author Index”

5.904 “Part II Neuroscience”

5.838 “Author Index”

5.827 “Connectionism for Music and Audition” by Andreas Weigand

uments from NIPS according to the KL-divergence novelty score. Table 3.3 shows the

most novel NIPS document from each year. These tables are insightful in seeing what

does not work with the novelty method. We had defined the most novel documents as be-

ing the ones that differed the most from existing content in preceding documents. These

tables show that the most novel documents are often the author indices. Since most au-

thors only publish a small number of times, or even just once, the list of all the author

names tends to be highly novel. These documents were included in the 1955 NIPS doc-

uments because they were part of the OCR-ed data provided. However, since these are

not really proper research publications, we removed author indices, track headings, and

introductory table of contents documents from the data, which left 1908 documents.

We ran the KL-Divergence novelty scoring method on this smaller cleaned-up set
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Table 3.3: The most novel document per year of NIPS according to the KL-
Divergence score using Discount smoothing with δ = 0.01.

Document Score

Year Document Title and Author(s) s(i)
n

1988 “Author Index” 8.556

1989 “A Neural Network to Detect Homologies in Proteins” by Yoshua Bengio,

Samy Bengio, Yannick Pouliot, Patrick Agin

6.353

1990 “Author Index” 5.838

1991 “Author Index” 5.763

1992 “Author Index” 5.247

1993 “Connectionism for Music and Audition” by Andreas Weigand 5.827

1994 “Grammar Learning by a Self-Organizing Network” by Michiro Negishi 5.371

1995 “Author Index” 7.034

1996 “Index of Authors” 5.531

1997 “Part VIII Applications” 6.496

of documents with the same smoothing settings. Tables 3.4 and 3.5 show the highest

scoring novel documents overall and per year. Many documents that have high novelty

scores indeed seem to be different from the typical content of NIPS. While these docu-

ments indeed seem to be novel and different, they are not necessarily the most influential,

because these ideas did not necessarily become very popular in following documents.

In the next chapter, we will address the combination of novelty with influence to lead to

a more refined method for identifying new and interesting ideas.
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Table 3.4: The most novel documents in NIPS according to the KL-Divergence
score, not including outlier documents, using Discount smoothing with
δ = 0.01.

Score s(i)
n Document Title and Author(s)

7.459 “Song Learning in Birds” by M. Konishi

6.353 “A Neural Network to Detect Homologies in Proteins” by Yoshua Bengio, Samy

Bengio, Yannick Pouliot, Patrick Agin

6.002 “Connectionism for Music and Audition” by Andreas Weigend

5.498 “Neural Architecture” by Valentino Braitenberg

5.358 “Grammar Learning by a Self-Organizing Network” by Michiro Negishi

5.321 “Acoustic-Imaging Computations by Echolocating Bats: Unification of

Diversely-Represented Stimulus Features into Whole Images” by James A. Sim-

mons

5.288 “Analytic Solutions to the Formation of Feature-Analysing Cells of a Three-

Layer Feedforward Visual Information Processing Neural Net” by D. S. Tang

5.177 “A B-P ANN Commodity Trader” by Joseph E. Collard

5.152 “Harmonet: A Neural Net for Harmonizing Chorales in the Style of J.S. Bach”

by Hermann Hild, Johannes Feulner, Wolfram Menzel

5.140 “Stability and Observability” by Max Garzon, Fernanda Botelho

Decreasing Novelty over Time

As an artifact of our model that measures novelty by term usage patterns, there may be

some edge effects for the first few years. The earlier documents seem to have higher

novelty scores when compared to later documents. Table 3.6 shows that the yearly av-

erage of the novelty score (computed over all documents in the corpus) decreases over

time. Additionally, the maximum value decreases, while the minimum value does not

obey this trend. In fact, what is probably happening is that the first few years of docu-
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Table 3.5: The most novel document per year of NIPS according to the KL-
Divergence score, not including outlier documents, using Discount
smoothing with δ = 0.01.

Document Score

Year Document Title and Author(s) s(i)
n

1988 “Song Learning in Birds” by M. Konishi 7.459

1989 “A Neural Network to Detect Homologies in Proteins” by Yoshua Bengio,

Samy Bengio, Yannick Pouliot, Patrick Agin

6.353

1990 “A B-P ANN Commodity Trader” by Joseph E. Collard 5.177

1991 “Harmonet: A Neural Net for Harmonizing Chorales in the Style of J.S.

Bach” by Hermann Hild, Johannes Feulner, Wolfram Menzel

5.152

1992 “Hidden Markov Models in Molecular Biology: New Algorithms and Ap-

plications” by Pierre Baldi, Yves Chauvin, Tim Hunkapiller, Marcella A.

McClure

5.013

1993 “Connectionism for Music and Audition” by Andreas Weigend 6.002

1994 “Grammar Learning by a Self-Organizing Network” by Michiro Negishi 5.358

1995 “The Role of Activity in Synaptic Competition at the Neuromuscular Junc-

tion” by S. R. H. Joseph, D. J. Willshaw

4.513

1996 “Spectroscopic Detection of Cervical Pre-Cancer through Radial Basis

Function Networks” by Kagan Turner, Nirmala Ramanujam, Rebecca

Richards-Korturn, Joydeep Ghosh

4.485

1997 “Gradients for Retinotectal Mapping” by Geoffrey J. Goodhill 4.687

ments probably get “novelty credit” for many background terms that were in existence

before the first NIPS document was ever written, such as “computer” or “information.”
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Table 3.6: Basic statistics for the novelty score for years of NIPS, computed using
Discount smoothing with δ = 0.01.

Year Minimum Maximum Average

1988 2.124 8.556 3.676

1989 1.405 6.353 3.280

1990 1.663 5.838 3.239

1991 1.834 5.763 3.170

1992 2.011 5.247 3.117

1993 1.808 5.827 3.180

1994 1.745 5.371 2.976

1995 1.949 7.034 2.969

1996 1.540 5.531 2.955

1997 2.116 6.496 3.149

1998 2.165 4.819 2.896

1999 1.855 4.469 2.827

2000 1.942 4.334 2.812

Novelty in Influential NIPS Documents

In addition, Table 3.7 presents the novelty scores for the most influential NIPS docu-

ments. In Table 2.6, we presented a list of the most influential NIPS document per years

of the conference. Here, we show their novelty scores and the percentile of their nov-

elty scores as compared against other documents within the same year. Overall, these

influential documents typically have percentiles in the middle or the low range of the

novelty scores for the year. That suggests that some documents expressed very different

and novel ideas, but that the most different ideas typically did not catch on or become

very popular. However, the documents that were most important in influencing future
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Table 3.7: The KL-Divergence novelty score using Discount smoothing with δ =
0.01 for the most influential paper per year of NIPS. The percentile is
of the novelty score compared against all documents in that year. More
details on how these papers are selected were presented in Table 2.6.

Document Score

Year Document Title and Author(s) s(i)
n Percentile

1988 “Efficient Parallel Learning Algorithms for Neural Networks”

by Alan Kramer, A. Sangiovanni-Vincentelli

3.049 18

1989 “Training Stochastic Model Recognition Algorithms as Net-

works Can Lead to Maximum Mutual Information Estimation

of Parameters” by John S. Bridle

2.988 38

1990 “Integrated Modeling and Control Based on Reinforcement

Learning” by R. S. Sutton

3.045 36

1991 “Bayesian Model Comparison and Backprop Nets by David J.

C. Mackay

3.109 51

1992 “Reinforcement Learning Applied to Linear Quadratic Regu-

lation” by Steven J. Bradtke

3.050 51

1993 “Supervised Learning from Incomplete Data via an EM ap-

proach” by Zoubin Ghahramani, Michael I. Jordan

2.977 40

1994 “Reinforcement Learning Algorithm for Partially Observable

Markov Decision Problems” by Tommi Jakkola, Sizarad Sing-

hal, Michael I. Jordan

2.534 18

1995 “EM Optimization of Latent-Variable Density Models” by

Chris M. Bishop, M. Svensen, Chistopher K.I. Williams

2.545 18

1996 “Support Vector Method for Function Approximation, Regres-

sion Estimation, and Signal Processing” by V. Vapnik, Steven

E. Golowich, Alex Smola

3.513 87

1997 “EM Algorithms for PCA and SPCA” by Sam Roweis 2.535 16
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content in the corpus typically were somewhat different, but not the most different. The

one exception is the highly novel Vapnik et al. SVM document from 1996 that was also

very influential. Overall, this table is quite telling in terms of just how novel the ideas

that became popular were.

3.5 Discussion and Future Work

The novelty-based methods enable people to find documents that have a high concentra-

tion of new ideas. As the experiments have shown, the catch is that in practice, novelty

itself is not necessarily enough. Since text is intrinsically quite noisy, novelty on the one

hand may indeed detect some important original idea, but on the other hand may simply

detect some noise or relatively inconsequential ideas in the data. Although finding the

most novel documents, while noisy, may be interesting for understanding the breadth of

content represented in the corpus, it is not really the right method for focusing attention

on the important new ideas. The next chapter will focus on combining novelty with

influence in the context of the copy models.

Additionally, with novel terms, we found that TFIDF was comparable or perhaps

slightly better than the novelty method based on the Influence Model. TFIDF has the

advantage of considering the entire corpus when deciding on which terms are important,

while the novelty model can only look at the past and the current document. Because

of the long tail of term occurrences, there are many terms that might just occur or not

because of chance, making it difficult to sort out rare term occurrence events from truly

novel content. Sorting through this noise can be remedied by looking not only at the

past, but also into the future as we consider a corpus offline.
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3.6 Summary

We presented a method based on the Inter-Document Influence Model with Novel Con-

tent (Model 2.3) for analyzing documents to figure out what makes them novel. This

method can look for novel terms according to the highest-probability terms from the

learned novel language model. Another task was to identify how novel each document

is. For this task, we proposed a KL-Divergence model for scoring the novelty of each

document relative to the best possible explanation of that document’s content using ex-

isting ideas in the corpus. Overall, these methods seemed to identify content that is

different from existing ideas. While these methods were able to identify new and differ-

ent content, such as the author indices, they did not focus on the most important ideas in

the corpus. In the final analysis, these methods were not really appropriate for the task of

finding the origins of the ideas that drove the development of the corpus. Consequently,

in the following chapter, we will explore methods that leverage both impact and novelty

to address this task of analyzing documents to identify original contributions that are

both new and important.
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CHAPTER 4

IDEA ORIGINS IN TEXT

While the methods for novelty detection in document collections seemed plausible, they

did not work that well because novelty alone was insufficient to distinguish between

novel ideas that had impact and novel ideas that did not influence other documents.

For example, in the larger set of documents that include author and subject indices, the

author indices often had high novelty scores. Even though this made sense, since many

authors publish relatively few papers in NIPS, so that their names were novel, we would

rather focus our attention on the content that influenced the overall development of the

corpus. This chapter builds on novelty, by combining it with impact, to identify those

important ideas that shaped the corpus.

In Ch. 2, we found that the Inter-Document Influence Model (Model 2.2) was able

to find influential documents quite well. This chapter refines that model to identify

the original contributions that not only influence future documents, but also differ from

existing content. Here, an original contribution is defined as combining both novelty

and influence. The goal is to help users find the most important ideas in the corpus by

pointing out where these ideas originate within document text.

4.1 Introduction

The key for finding original contributions is to point out each document’s novel ideas

that ultimately had impact on the future development of the corpus. Anybody can write

some spam on a discussion board, which would likely be novel to the discussion (at

least the first time), but not particularly interesting. In addition to novelty, measuring

the impact of an idea lets us focus on those ideas that are important, or that at least
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are interesting to a large number of people. Therefore, our operational definition of an

original contribution combines both novelty and impact.

Unlike methods that rely on explicit citations that must be localizable in each docu-

ment (Mei & Zhai, 2008), our methods require only the text of the documents. This

makes them more broadly applicable than citation-based measures (e.g., for email,

news). Furthermore, unlike novelty detection methods (Soboroff& Harman, 2003) (e.g.,

based on TFIDF-style measures), our methods combine novelty with impact, which pro-

vides a way of measuring the importance of novel ideas. The originality-detection meth-

ods we propose are derived from a probabilistic language model of diachronic corpora –

called the Passage Impact Model (PIM), which makes them theoretically well-founded

and more extensible than heuristic approaches. The method is evaluated on a corpus of

Slashdot discussions, as well as through a blind experiment with human judges on a col-

lection of NIPS research articles. In both experiments, the language modeling approach

was found to outperform a heuristic that focuses on novelty detection alone.

4.2 Related Work: Summarization and Novelty

The task of succinctly describing the original contribution of a document relates to sev-

eral existing research areas, including document summarization, topic detection, topic

modeling, and language modeling.

4.2.1 Document Summarization

The largest body of related work is in document summarization (see e.g., (NIST, 2001)).

Document summarization methods provide the user with a summary of the entire docu-
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ment, including both original and existing ideas, without explicitly making a distinction.

The difference between summarization and originality detection is most apparent for

documents that do not necessarily contain original content (e.g., textbooks, review arti-

cles). While such documents have a summary, their original contribution can be quite

different or even non-existent.

4.2.2 Novelty Detection

Another area of related work lies in novelty detection for Topic Detection and Tracking

(Allan et al., 1998a; Allan et al., 1998b) in news streams. There, the task is to identify

new topics and events as they appear in the news. One major difference is that the

Passage Impact Model segments the document to identify a single passage that best

describes that document’s original contribution. Thus the inference method can actually

find a text description within the document, instead of just marking that the document

contains a novel topic. A second difference is that the Passage Impact Model combines

novelty with impact, focusing on ideas that not only are novel but also affect the rest

of the corpus. The TREC Novelty track (Soboroff & Harman, 2003) solves a different

problem, combining novelty and relevance, not novelty and impact.

4.2.3 Impact-Based Summaries

One previous paper has tackled the problem of making “impact-based summaries” (Mei

& Zhai, 2008). Their method is based on citation contexts for explicit citations to a

document d. The task is to select the sentence s in document d that best describes the

contribution of d that had impact in these citation contexts. That work followed a KL-
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divergence-based information retrieval framework where the document d stands for the

corpus, the sentences s stand for the documents to be retrieved, and the citation context

is descriptive of the “query.” The Passage Impact Model is quite different in model

and inference, since it does not require citations. Instead, our method is based on an

extensible generative and unsupervised language-modeling framework. We start from

a generative model of the corpus and derive an inference method to identify the most

densely-concentrated original contribution in the document d. We do not need to use a

citation context, as the method is completely text-based.

4.2.4 Topic Modeling

On a higher level, topic models and other language models also provide generative mod-

els of corpora. In topic models, however, the focus is on discovering underlying topics,

without any explicit notion of originality or impact. Typically, topics are inferred by

fitting graphical models with topics as the latent variables. Latent Dirichlet Allocation

(LDA) (Blei et al., 2003b; Blei et al., 2003a) and its extensions (Blei & Lafferty, 2005;

Blei & Lafferty, 2006) are the most well-known, but there is much other work in topic

modeling (Hofmann, 1999; Mann et al., 2006; Wang & McCallum, 2006; Steyvers et al.,

2004; Griffiths & Steyvers, 2002; Dietz et al., 2007; McCallum et al., 2005; Mei et al.,

2007; Li & McCallum, 2006; Wang et al., 2006; Griffiths et al., 2004). In this sense,

topic models describe the relationship between topics and documents, but not the re-

lationships between individual documents. Our Passage Impact Model directly models

relationships between documents via a copy process. In this sense it builds on the Inter-

Document Influence Model from Ch. 2 and the Citation Model from (Dietz et al., 2007),

extending them to recognizing document substructure. We use simple unigram language

models in the PIM, but one could also use more complex language models (Manning &
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Schuetze, 1999; Hofmann, 1999; Blei et al., 2003b; Jelinek, 1998; Zhai, 2002; Kurland

& Lee, 2004; Kurland & Lee, 2006).

4.3 Methods

We take a language modeling approach and define a generative model for diachronic

corpora. An author writes a new document using a mixture of novel ideas and ideas

“copied” from earlier documents. An idea has impact if it is copied (i.e., discussed,

elaborated on) by future documents. This picture is one of idea flows, originating in

documents with impact and “flowing” to documents based on idea development. We

directly model idea flows between documents, without an extra level of the topic as in

topic models (Blei et al., 2003b). Identifying the original contribution of a document

means separating novel ideas from old ideas, and simultaneously assessing impact. We

assume that documents generally contain a key paragraph or sentence(s) that succinctly

describe the new idea, and we aim to identify this piece of original text. The following

gives more detail on our probabilistic model and inference method.

4.3.1 Passage Impact Model

We propose a generative model of a diachronic corpus that extends the Inter-Document

Influence Model with Novel Content 2.3 in Ch. 2 with respect to modeling original-

ity. We model a document D(i) containing ni words as a vector of ni random variables

W (i) = (W (i)
1 · · ·W

(i)
ni )′, one per word. Considering the process by which authors write

documents, the text can be split into several types: original content that will have impact

on following documents, novel content that will not have impact, and content “copied”
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from already-existing ideas in the corpus. The location of the original content in D(i)

is denoted by Z(i), where Z(i) ⊆ {1 · · · ni}. More concretely, the random variables W (i)

are partitioned into two sets: Z(i) ⊆ {1 · · · ni} for the indices of the words of D(i) that

are original and have impact, while Z̄(i) = {1 · · · ni} − Z(i) contains the rest of D(i) (i.e.,

the copied content and the novel content without impact). With these definitions, the

document is described by the tuple

D(i) = (W (i),Z(i)) (4.1)

and we will now define a probabilistic model of a document P(D(i) | D(1) · · ·D(i−1)).

Each document D(i) can draw on the ideas already expressed in the existing documents

D(1) · · ·D(i−1) in the corpus. The probability of an entire corpus C consisting of docu-

ments D(1) · · ·D(n), can be decomposed as

P(C) =
n∏

i=1

P(D(i) | D(1) · · ·D(i−1)). (4.2)

We decompose the probability for a single document D(i) into

P(D(i) | D(1) · · ·D(i−1)) = P(W (i),Z(i) | D(1) · · ·D(i−1))

= P(W (i) | Z(i),D(1) · · ·D(i−1))P(Z(i))

since the document text W (i) depends on the previous documents, but the author’s se-

lection of placement of original content is independent of previous documents. Prior

information about the placement of Z(i) in the document can be encoded in P(Z(i)). Fur-

thermore, in the inference described below, the quantity P(Z(i)) can be used to encode

constraints on the form of original content summary that is desirable (e.g., a single sen-

tence or a single paragraph).

Words in the original portion Z(i) are generated from a unigram language model with

word probabilities θ̃(i). The rest of the document (i.e. the words indexed by Z̄(i)) comes

from a mixture of existing ideas and text that is novel but without impact. That is, the
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Orig LM θ̃(k) Orig LM θ̃(i)

1

Figure 4.1: The generative process for a corpus. Document d(i) is the current doc-
ument, while d(k) precede d(i) in time and d(l) follow d(i). The shaded
boxes are original content Z(·), while the rest of the documents form
Z̄(·). The arrows depict the copy process.

words indexed by Z̄(i) are drawn from a mixture of a novel unigram model θ̄(i) (new

but without impact) and words copied from the original sections of prior documents.

Words are drawn uniformly and independently in this copy process so that it can also be

described by a unigram model with parameters θ̂(k) for each prior document D(k). The

document-specific mixing weights π(i) are (π(i)
n , π

(i)
k ) for θ̄(i) and θ̂(k), respectively.

With the assumption that text is generated from these unigram multinomial language

models, the generative model of the text given Z(i) and the existing corpus at time i is

P(W (i) | Z(i),D(1) · · ·D(i−1)) =
∏
j∈z(i)

(
θ̃(i)

w(i)
j

) ∏
j∈z̄(i)

π(i)
n θ̄

(i)
w(i)

j

+

i−1∑
k=1

π(i)
k θ̂

(k)
w(i)

j

 .
Figure 4.1 illustrates the generative process at document d(i), showing how d(i) copies

content from the original part Z(k) of earlier documents d(k) and showing how terms

indexed by Z(i) are copied by later documents d(l). We summarize this generative process

of a diachronic corpus in the Passage Impact Model.

Model 4.1 (P IM)

A corpus C = (D(1) · · ·D(n)) of temporally-sorted documents D(i) = (W (i),Z(i)), each

having parameters (θ̃(i), θ̄(i), π(i)), has probability P(C) =
∏n

i=1 P(D(i) | D(1) · · ·D(i−1))
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where

P(D(i) | D(1) · · ·D(i−1)) =
∏
j∈z(i)

(
θ̃(i)

w(i)
j

) ∏
j∈z̄(i)

π(i)
n θ̄

(i)
w(i)

j

+

i−1∑
k=1

π(i)
k θ̂

(k)
w(i)

j

 P(Z(i))

and where θ̂(k)
w is the probability of uniformly drawing word w from the words in the

original section z(k) of document D(k). Note that π(i)
n +

∑
k
π(i)

k = 1,
∑

j
θ̃(i)j = 1, and

∑
j
θ̄(i)j = 1.

4.3.2 Inference

Using the Passage Impact Model, we are primarily interested in inferring the subset Z(i)

of words in D(i) where the original contribution is most succinctly contained. The only

observed quantity is the text w(1) · · ·w(n) of all documents. We use maximum-likelihood

inference based on Model 4.1 for inferring Z(1) · · · Z(n) by maximizing P(D(1) · · ·D(n))

given w(1) · · ·w(n) w.r.t. Z(i), θ̃(i), θ̄(i), and π(i). Applying Bayes rule and independence

assumptions involving the placement of original content Z(·) in different documents

D(i) · · ·D(n), the inferred original content Z(i)∗ is given by the following:

(Z(1)∗ · · · Z(n)∗) = argmax
Z(1)···Z(n)

sup
(θ̃,θ̄,π)

P(w(1) · · ·w(n) | Z(1) · · · Z(n))P(Z(1) · · · Z(n))

= argmax
Z(1)···Z(n)

sup
(θ̃,θ̄,π)

P(w(1) · · ·w(n) | Z(1) · · · Z(n))P(Z(1)) · · · P(Z(n))

Note that we do not explicitly include the parameters θ̃, θ̄, and π in the notation for im-

proved readability, since their dependence is straightforward. To avoid the intractable

simultaneous maximization over all (Z(i) · · · Z(n)), we introduce some simplifying as-

sumptions that allow independent optimization for each Z(i). First, we assume that for all

prior documents d(1) · · · d(i−1), the copy probabilities θ̂(1) · · · θ̂(i−1) can be approximately
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estimated from the full set of words w(1) · · ·w(i−1), respectively, not merely the words in-

dexed by the original markers z(1) · · · z(i−1). In practice, this assumption can be expected

to have only minor impact1, and it can be removed if z(1) · · · z(i−1) are already known.

With this assumption, we have that for any i

(Z(i)∗ · · · Z(n)∗) = argmax
Z(i)···Z(n)

sup
Z(1)···Z(i−1)

sup
(θ̃,θ̄,π)

P(w(1) · · ·w(n) | Z(1) · · · Z(n))P(Z(1)) · · · P(Z(n))

= argmax
Z(i)···Z(n)

sup
(θ̃,θ̄,π)

P(w(i) · · ·w(n) | Z(i) · · · Z(n), θ̂(1) · · · θ̂(i−1))P(Z(i)) · · · P(Z(n))

Second, we introduce a simplified model for the future documents D(i+1) · · ·D(n) so that

one can maximize over Z(i) independently. When inferring Z(i), modeling exactly how

future documents D(l), l > i, had impact on each other is of minor importance, so that

we do not model their Z(l). Instead, we assume that the original and novel content

of future documents comes from a multinomial mixture, which can be captured by a

single multinomial language model θ̄(l). Thus, each D(l) depends only on the documents

D(1) · · ·D(i), and

P(w(i+1) · · ·w(n) | Z(i) · · · Z(n), θ̂(1) · · · θ̂(i−1)) =
n∏

l=i+1

P(w(l) | Z(i),w(i), θ̂(1) · · · θ̂(i−1))

Putting all of these assumptions together, we can rewrite the objective function as the

likelihood of the documents in the corpus starting from D(i), given all the documents that

precede D(i), which is P(D(i) · · ·D(n) | D(1) · · ·D(i−1)). We express this likelihood using

1Since each document can be a mixture of original content and previous content, when estimating θ̂(·)

from the entire document, it is equal to the true θ̂(·), mixed with some previous content that would have
come from the θ̂(·) of even earlier documents in the corpus. This assumption means that the θ̂(·) also could
include some content from θ̄(i). However, if this portion’s mixture component is relatively small, the θ̂(i)

will still be quite faithful to the Passage Impact Model’s definition.
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the parameters (θ̃(i), θ̄(i), π(i)) as follows:

Z(i)∗ = argmax
Z(i)

sup
(θ̃,θ̄,π)

P(Z(i))P(w(i) | Z(i), θ̂(1) · · · θ̂(i−1))
n∏

l=i+1

P(w(l) | Z(i),w(i), θ̂(1) · · · θ̂(i−1))

= argmax
Z(i)

sup
(θ̃,θ̄,π)

P(Z(i))
∏
j∈z(i)

(
θ̃(i)

w(i)
j

) ∏
j∈z̄(i)

π(i)
n θ̄

(i)
w(i)

j

+

i−1∑
k=1

π(i)
k θ̂

(k)
w(i)

j


n∏

l=i+1

nl∏
j=1

π(l)
n θ̄

(l)
w(l)

j

+

i∑
k=1

π(l)
k θ̂

(k)
w(l)

j


 (4.3)

Note that the various π(.) and θ̄(.), as well as θ̃(i), are linearly constrained to form

proper probability distributions, and that θ̂(i) can be computed in closed form for a given

z(i). For a fixed z(i), the above optimization problem is convex and has no local optima.

The prior P(Z(i)) can be used to enforce a particular form of original content description

(e.g., that the algorithm has to select a whole paragraph or a single sentence).

4.3.3 Implementation Details

When solving the optimization problem, the method can efficiently find the maximum

likelihood if given a specific z(i). In the following, we therefore give non-zero prior

P(Z(i)) only to a fairly small number of z(i) that can be enumerated explicitly. This allows

us to find the globally optimal solution of Eq. 4.3. In particular, we break documents

into consecutive passages of equal length, which we denote s1 · · · sK . We set P(Z(i) = sk)

to be uniform for each k = 1 · · ·K, with all other P(z(i)) = 0. One could also define a

non-uniform prior over the candidate passages z(i) to encode additional knowledge (e.g.,

bias toward the beginning or end of the document). With this particular assumption

on z(i), the entire likelihood maximization can now be reduced to a sequence of con-

vex problems, one per sk. The solution to this sequence of optimizations is the global

maximum likelihood across the passages. We use the general software optimization tool
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MOSEK to solve these convex optimizations (MOSEK, 2008).

While the individual problems are convex, for efficiency reasons, we have to con-

sider the number of parameters in the Passage Impact Model. Therefore, when per-

forming inference on document d(i), instead of using the full set of previous documents

{d(1) · · · d(i−1)}, we choose the set of kP nearest neighbors from these documents accord-

ing to cosine similarity. The document indices for these kP documents are given in the

setP. Besides d(i), the optimization also uses the likelihood of generating the documents

d(i+1) · · · d(n). Each of these “future” documents d(l) has its own set of mixing weights

and set of previous documents, again chosen from the documents {d(1) · · · d(i−1)} nearest

to d(l) by cosine similarity. While we do not use the following strategies for improving

efficiency, one could further reduce the size of the optimization problem. For example,

it is possible to consider a Passage Aggregated Impact Model, wherein all future text is

“lumped” together into one single “document” for inference. Then, there would only be

a single set of future document parameters. Equivalently, we could constrain all future

documents to have the same mixing weights and choose the set of previous neighbors

as those most similar to the concatenation of all future documents. There is a tradeoff

between using more information in more future documents vs. using more parameters

for a specific set of interesting previous documents.

4.4 Experiments

We conducted experiments to test the Passage Impact Model on both synthetic and real

data from research publications and news articles.
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4.4.1 Analyzing the Model with Synthetic Data

We use synthetic data to explore the range of problems and parameters under which the

methods work effectively and robustly. The synthetic data is generated with underlying

language models from documents in the full-text proceedings of the Neural Information

Processing Systems (NIPS) conference (NIPS Online, 2000) between 1987-2000. NIPS

has 1955 documents with text obtained by OCR, resulting in 74731 unique words (multi-

character alphabetic strings), except without stopwords.

To generate a document d(i), we selected a NIPS document d randomly and set the

original language model θ̃(i) for d(i) to be the distribution of words in d. The words

indexed in Z(i) are then generated according to θ̃(i). For Z̄(i), we set the novel language

models θ̄(i) and each θ̄(l) similarly, with each document selected for θ̄(l) following NIPS

document d in time. The mixing weights π(i)
k are selected uniformly at random, except

for explicitly exploring π(l)
i , l > i, (how much future documents d(l) copy from d(i)) and

π(i)
n (how much novel but not original content d(i) has) according to the values they might

take in practice.

The structure of Z(i) and Z̄(i) takes the form of K = 20 passages with L words per

passage. In the simplest case, Z(i) marks exactly one passage as original. In addition,

we test scenarios where the original content is more diffused through the document,

which poses a challenge in inference. One crucial assumption of our method is that

the prior P(Z(i)) used during inference matches the data-generating process. However,

the inference procedure as implemented above aims to find a single passage containing

all the original content, while the true Z(i) might diffuse it over other passages. To test

the robustness of inference w.r.t. the degree of diffusion, we include a fraction δ of

original content in the (mostly) non-original passages in data generation, but not during

inference.
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Evaluation on the synthetic data uses the percentage of (mostly) non-original pas-

sages with a greater likelihood than the original passage likelihood. Random perfor-

mance would be that half of the non-original passages are misranked, resulting in a

score of 50%. The error values show one standard error.

Impact Is Critical

In the first experiment, we explore the difference between pure novelty detection vs. the

additional use of impact when identifying Z(i). When not using any future documents,

our method might still be able to identify Z(i) merely by fitting the mixture model and

detecting that Z(i) cannot be expressed as a mixture of previous documents. In this

setting, our method becomes a pure novelty detection method. However, Table 4.1

shows that the signal from novelty alone is much weaker than novelty combined with

impact. While the performance is better than random when no future documents are

used (kF = 0), detection accuracy substantially improves when future documents and

impact are considered by the method. The table shows that two future documents that

copy 5% of their content from d(i) already provide a robust signal.

More Information in Longer Passages

We would like to determine the size of the original passage for which the Passage Impact

Model can perform well. Users may be interested in descriptions anywhere from one or

more sentences to paragraphs. Table 4.2 shows that, in general, when performing infer-

ence on longer passages, the method is able to perform more accurately. The method

performs very well for passages as short as 50 words. However, for very short passages

of length 25 words, there is some drop in accuracy. Longer passages – and therefore
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Table 4.1: Percentage of misranked non-original passages. Passage length L =
100, δ = 0.2, π(i)

n = 0.5, π(l)
i = 0.05, and π(l)

n = 0.6. 10 future doc-
uments d(l) were generated, and inference used the kF documents d(l)

most (cosine) similar to d(i).

kF % Err ± One Std Err

0 37.89 ± 3.23

1 2.95 ± 0.78

2 0.26 ± 0.16

5 0.00 ± 0.00

10 0.16 ± 0.16

Table 4.2: Percentage of misranked non-original passages with kF = 2 future doc-
uments. The data was generated with δ = 0.2, π(i)

n = 0.5, π(l)
i = 0.05,

and π(l)
n = 0.6.

Length % Err ± One Std Err

25 8.16 ± 1.61

50 2.26 ± 0.65

100 1.00 ± 0.99

400 2.26 ± 0.74

longer documents – provide more observations, and it is less likely that the method will

overfit to a few random draws.

Diffusiveness of Original Content in d(i)

The inference method searches for a single passage that contains the original contribu-

tion, but realistic documents will have original content spread throughout all passages.
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Table 4.3: Percentage of misranked non-original passages. kF = 2 future docu-
ments, passages length L = 100 words, π(i)

n = 0.5, π(l)
i = 0.05, and

π(l)
n = 0.6.

δ % Err ± One Std Err

0.1 0.00 ± 0.00

0.2 0.00 ± 0.00

0.3 4.74 ± 1.21

0.4 24.89 ± 2.80

0.5 45.26 ± 3.38

How much original content in other passages can our inference method tolerate? Table

4.3 shows that the method is very robust towards small to moderate diffusion. Even as δ

increases to 0.3 (i.e., 30% of each of the other passages is original content), the method

is still quite accurate. After that, performance degrades rather quickly, at least when

only two future documents are used.

How Much Copying Is Necessary?

As shown above, the Passage Impact Model relies on future documents copying the ideas

expressed in the original contribution of d(i). How much must each future document

copy to provide a sufficient signal? Table 4.4 shows that the method performs with

minimal errors for many values of π(l)
i , even in the situation where future documents

copy only 5% of their content (i.e., 100 words) from d(i). At lower values for copying,

the percentage of correctly ranked passages smoothly decreases. As π(l)
i approaches 0,

the method becomes essentially equivalent to a novelty detection method that does not

using any future documents.
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Table 4.4: Percentage of misranked non-original passages. kF = 2 future docu-
ments, passage length L = 100 words, δ = 0.2, π(i)

n = 0.5, and π(l)
n = 0.6.

π(l)
i % Err ± One Std Err

0.005 34.37 ± 3.16

0.01 28.58 ± 2.97

0.02 9.16 ± 1.41

0.05 0.11 ± 0.07

0.1 0.00 ± 0.00

0.2 0.00 ± 0.00

4.4.2 Predicting Quotations in Slashdot Discussions

Besides synthetic data, we also evaluate on the real world dataset of news articles linked

to on Slashdot under the Games topic. When users post an entry, they often link to

some article on the Web, and sometimes quote directly from it. Then other users read

and respond to these postings in a discussion board format. We collect linked-to web

documents and discussions from the Games topic where the original poster directly

quotes from a linked-to document. We regard the sentences in the human-selected direct

quotations as the label for the original content z(i) of the web document d(i).

We collected a set of 61 documents from the Games topic of Slashdot. These are the

entries posted from August 2008 through February 2009, inclusive, where the initial en-

try quotes a portion of the referenced article. The documents are the referenced articles.

In addition, we collect the first page of the user discussion on this topic, as selected by

Slashdot. Figure 4.2 shows a screenshot of Slashdot that depicts the data we collected.
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An original post including a quotation Part of the discussion

Figure 4.2: Left: A post that quotes from article d(i) by the link “the way video
games handle simulated emotions.” The label for the original content
z(i) in d(i) is the quotation text. Right: Part of the discussion to be used
as the future document d(l).

Experiment Setup

To do inference on Slashdot data, we sort the fulltext, linked-to news articles by their

posting date. For each article, we use the Passage Impact Method to rank all the sen-

tences in the linked-to web content d(i) by their likelihood under the model. The previous

documents d(1) · · · d(i−1) in this setting are the web content that have been linked to in ear-

lier discussions. The future content d(i+1) in this experiment is the user discussion on this

posting, except that any direct quotations from the fulltext article have been removed.

The user discussion may not contain all the comments, but only those that have been

voted up enough to be selected to appear with the posting. We collected seven months

(August 2008 to February 2009, inclusive) of articles that satisfy these criteria from the

Games subtopic of Slashdot, which netted a corpus of 61 web documents with their

associated discussions.
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Evaluation Method

For evaluation, we rank the sentences in the fulltext article in decreasing order of like-

lihood. The user quotations typically contain no more than a handful of sentences, but

often more than one. Thus, this implementation differs from the model where we as-

sume that there is a single original contribution marked in the passage Z(i). As a baseline,

we compare against a simple heuristic that identifies novelty. In particular, we rank the

sentences by a TFIDF score given by the sum of each sentence term’s IDF value. Then,

since we have the labels of the true original sentences, we evaluate using the standard

metrics of precision and recall at certain points in the ranking. Precision at a point in a

ranking is defined to be the number of original sentences at that position in the ranking

divided by the total number of sentences up to that point. For a point near the top of

the ranking, precision measures whether the sentences that the method most confidently

predicts as original are indeed original. Thus we report results for Prec@2. Recall at

a point in the ranking is defined to be the number of original sentences at that position

in the ranking divided by the total number of original sentences in the document. Re-

call measures how well the method can find all the original content in the document.

Since each labeled quotation typically contains several sentences, we report results for

Rec@10.

Results

The Prec@2 results in Table 4.5 show that the Passage Impact Model outperforms the

TFIDF heuristic baseline for predicting the human-selected sentences at the very top of

the ranking. For the task of finding a description consisting of a few good sentences

that succinctly describe the original content of a news article, the Passage Impact Model

is better than the baseline. The PIM also significantly outperforms the baseline when
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Table 4.5: Prec@2 and Rec@10 are based on the predicted ranking of sentences
by likelihood and TFIDF sum. Original sentences are the ones quoted
word-for-word from the article. Results are for π(i)

n = 0.2 and π(l)
n =

0.001.

Prec@2 ± One Std Err Rec@10 ± One Std Err

PIM 22.13 ± 3.38 36.09 ± 3.61

TFIDF 9.84 ± 3.03 25.01 ± 4.04

RAND 10.63 ± 1.10 23.92 ± 2.27

Table 4.6: Comparing the PIM with future documents, and PIM as a novelty de-
tection method (without future documents). Results are for π(i)

n = 0.2
and π(l)

n = 0.001.

Prec@2 ± One Std Err Rec@10 ± One Std Err

PIM Impact 22.13 ± 3.38 36.09 ± 3.61

PIM Novelty 9.84 ± 3.03 28.04 ± 4.24

trying to find most of the original content, as measured by Rec@10.

Importance of Impact Component

Similar to the experiment with synthetic data, the use of impact substantially improves

the performance over pure novelty detection. Table 4.6 compares the results when using

the discussion for detecting impact with the results when no future documents are used.

Using the discussion significantly improves the precision of the method.
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Table 4.7: Prec@2 and Rec@10 for various amounts of assumed novel content π(i)
n

in d(i). Sentences are marked as original if they appear word-for-word
as in the linked article. Results are for π(l)

n = 0.001.

π(i)
n Prec@2 ± One Std Err Rec@10 ± One Std Err

0.01 18.85 ± 3.10 35.51 ± 3.55

0.05 20.49 ± 3.15 36.03 ± 3.57

0.2 22.13 ± 3.38 36.09 ± 3.61

0.8 22.95 ± 3.39 36.45 ± 3.63

0.9 22.95 ± 3.39 36.45 ± 3.63

Robustness with respect to amount of novel content in d(i)

During inference, the method needs to assume a mixture weight for the novel content in

the non-original text Z̄(i). How sensitive is the method to the selection of this parameter?

Table 4.7 shows that the method is robust and provides good results for a wide range of

values for π(i)
n .

Minor Effect of Novel Language Model in Future Documents

Similarly, since Slashdot discussions are somewhat notorious for getting off topic at

times, we evaluated whether changing the amount of novel content in the “future docu-

ment,” i.e., the discussion makes a difference. As it turns out, Table 4.8 shows that for a

wide range of novel content mixing weights π(l)
n , the method is quite robust. The model

is able to focus on the portions that the discussion derives from the underlying linked

article.
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Table 4.8: Prec@2 and Rec@10 for various mixing weights π(l)
n for the noise

model in fitting future documents. Sentences are marked as original
if they appear word-for-word as in the linked article. The results are
reported for π(i)

n = 0.2.

π(l)
n Prec@2 ± One Std Err Rec@10 ± One Std Err

0.0001 20.49 ± 3.15 36.77 ± 3.58

0.001 22.13 ± 3.38 36.09 ± 3.61

0.01 16.39 ± 3.42 34.55 ± 3.73

0.1 18.03 ± 3.29 30.34 ± 3.47

0.5 20.49 ± 3.73 31.04 ± 3.47

4.4.3 A User Study

While the Slashdot data provided a reasonable mechanism for inferring ground-truth la-

bels, the most direct evaluation is by explicit human judgment. Therefore, we conducted

an experiment with human judges to evaluate the Passage Impact Model on a corpus

containing all 1955 papers from the NIPS conference (NIPS Online, 2000) between

1987-2000. In a blind experiment, we asked judges to compare passages extracted by

the PIM to those extracted by the TFIDF heuristic regarding how well they summarize

the original contribution of a NIPS paper.

Experiment Setup

Since breaking documents into paragraphs is non-trivial, especially when they are OCR-

ed and have many math equations, we arbitrarily defined passages as consecutive blocks

of text of length L = 100 (non-stopword) words. On average, there are 14 passages per

document.
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For inference using the Passage Impact Model, we constrained the novel θ̄(i) and

original θ̃(i) language models to be equal because research publications typically discuss

original contributions at length. Ideally, the identified passage should list the paper’s

contributions or conclusions. (Although the abstract has original content, it mostly fo-

cuses on placing the paper with the context of existing ideas.) The future document

novelty mixing weight of π(l)
n = 0.01 is small to force the model to “explain” the content

of future documents d(l) by identifying copied ideas. For efficiency, we used kF = 5

future documents. We compare against the TFIDF heuristic baseline. Each paper’s pas-

sages predicted by the PIM and the baseline were highlighted, and three judges selected

which passage better summarized the paper’s original contribution. The annotators are

machine learning graduate students familiar with the corpus and do not include anyone

involved in this project.

Since the judgment process is time-consuming, we selected a subset of NIPS publi-

cations for evaluation. We ranked all NIPS publications by their number of intra-corpus

citations and selected the top 50 most-cited documents. The first publication is “Opti-

mal Brain Damage” by Le Cun, Denker, and Solla, with 27 citations. The entire set of

50 documents includes documents down to those with only 5 intra-1987-to-2000 NIPS

citations. The PIM and the baseline selected the same passage on two documents, so we

use the remaining 48 for evaluation.

Results

On these 48 documents, the human judges preferred the Passage Impact Method over

the baseline 58.33% of the time, with one standard error of 3.54%. Thus the judges

significantly prefer the PIM over the baseline. To analyze the results more closely,

we separated the 48 evaluation documents into two sets. On 20 documents, all three
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annotators (independently) agreed on a single passage. For these, they preferred the

PIM 70% of the time. On the other 28 documents, two annotators preferred one passage,

while the third annotator preferred the other passage. Here, the preferences for PIM

and baseline were exactly 50%. This suggests that sometimes identifying a passage

that summarizes the original contribution is quite difficult. When this is not the case,

however, the PIM outperforms the baseline quite substantially with 70% preference.

4.5 Discussion and Future Work

While the Passage Impact Model provides a generative model of diachronic corpora and

the relationships between individual documents, the model is still quite simple. For ex-

ample, it is based on unigram models of text production. In modeling the probability of

W (i), one could instead use a more sophisticated sequence model, or at least n-gram lan-

guage models. Such information may help to identify coherent original ideas. Another

limitation is that the model is constrained to evaluate only a small number of candidate

Z(i) for efficiency reasons. Developing pruning criteria is a promising direction for sub-

stantially increasing the scope of Z(i) in hopes of finding better descriptions of original

contributions.

Other information available for some corpora could be integrated into the model

as well. For example, if citation information is available, it could provide additional

constraints on the parameters during inference. Citations could be used as priors for

mixing weights, modeling that documents copy primarily from those documents they

cite. This could improve the accuracy of the model, and it could improve efficiency of

the optimization since many mixing weights could be fixed at zero.

A more general direction for further work lies in the integration of originality de-
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tection with models for idea flow. The goal is to have a unified probabilistic model

that identifies the dependency structure of the corpus, with ideas originating in some

documents and then flowing through the corpus. Treating these inference problems sep-

arately seems suboptimal.

4.6 Summary

We have proposed an unsupervised generative model for diachronic text corpora that

provides a formal structure for the process by which authors form new ideas and build

on existing ideas. The model captures both novelty and impact, defining an (important)

original contribution as a combination of both. For this Passage Impact Model, we have

proposed an inference procedure to identify the most original passage of a document.

Under reasonable approximations, the inference procedure reduces to multiple convex

programs that can be solved efficiently. The method is evaluated on synthetic and real

data, and it is shown to significantly outperform a heuristic baseline for selecting a

passage describing the original contribution in the domains of online discussions and

research articles.
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CHAPTER 5

CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH

This thesis has addressed methods for helping people understand the development of

ideas in collections of time-stamped text documents. The modeling and evaluation led

to the following conclusions and ideas for future work.

5.1 Conclusions

We have proposed and evaluated methods for helping people understand the interactions

between documents and their ideas in self-referential document archives. These offline

methods were based on unsupervised generative models for such document archives

where documents accumulate over time and new documents refer to ideas from exist-

ing documents. For wide applicability, these methods analyzed exclusively the text of

the documents to uncover the idea structure hidden in the document text. One major

assumption of this work is that as authors write documents, their ideas are encoded re-

coverably in statistical properties of document text. We have called this set of tasks

Information Genealogy. By this term, we mean in a sense that these methods can trace

the textual “signatures” of ideas as they are passed from document to document over

time.

In developing methods to identify the idea structure, this work has addressed tasks

related to three specific concepts – influence, novelty, and original contributions. The

method for detecting influence uses the Likelihood Ratio Test to analyze pairs of doc-

uments to determine whether one influenced the other. This information can be aggre-

gated to find the most influential documents in the corpus. Then, the novelty method

applied KL-Divergence from information theory to identify the documents that have the
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most different ideas when compared against previously-existing documents at that time.

We found, however, that novelty detection was not the correct task for finding the impor-

tant new ideas that shaped the corpus. Consequently, we proposed the Passage Impact

Model (Model 4.1) that combines novelty and impact for identifying these important

new ideas. Within this big picture of tasks related to identifying the idea structure, we

have proposed specific methods to analyze text to identify the following:

• Inter-document influence relationships that mark idea flows

• A ranking of the most influential documents

• A ranking of the most novel documents

• The most novel terms from novel documents

• The portions of documents that express important original ideas

We evaluated these methods both on synthetic data and real data, primarily from the

domain of research publications. For the original contributions method, we additionally

evaluated on data collected from web discussion boards. The methods were compared

against text similarity baselines based on TFIDF. These methods overall were effective

when compared against text similarity, especially for detecting inter-document influence

and selecting important original passages.

5.2 Future Work

The experiments brought to light some ideas for further study in future work, including

these specific directions.
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5.2.1 More Sophisticated Language Models

The probabilistic language models that we considered were unigram multinomial dis-

tributions of words. While unigram language models have been successfully applied

to many tasks, such as text classification and information retrieval, the independence

assumption for unigram multinomial distributions is obviously not true. Authors do not

actually write documents by drawing words independently from unigram multinomial

distributions.

To relax this assumption, a first step would be to use more expressive language

models such as n-gram language models or another model where probabilities depend on

word order. More sophisticated language models could potentially take advantage of this

information to do better at detecting influential documents, novel documents, original

content, and so forth. In pursuing this direction, sparseness will increase with more

complex language models, so that smoothing would become much more important.

5.2.2 Integration of Non-Textual Data

Another obvious improvement is to integrate non-textual data into the methods. For

example, the citation structure for research publications or the hyperlink structure for

other document collections contains information about the influence structure between

documents. While sometimes citations do not denote influence since people do cite for

other reasons (), there are many cases where citations and other hyperlinks (e.g., on the

Internet) do signify that there is influence of one document on another. In these cases

where influence is made explicit, it makes sense to use this information in addition to

text.
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There are several ways to combine text and hyperlink data. In the influence method,

citations could be used to select the sets of candidate documents. Or, a single generative

model could describe both citations and text, so that the likelihood could simultaneously

represent influence according to both text and citations. For the original passages, it

might be possible to leverage the citation structure to further constrain parameters in

inference. One current limitation of the Passage Impact Model is that considering all

passages of text in the document is inefficient. Citations could be used to focus on the

text that is more likely to be an original contribution. Within a document, perhaps text

appearing in a citation context is less likely to be an original contribution, while text that

is similar to the text in citation contexts from future documents that cite this document

might be more likely to be an original contribution. A document’s citations could also

be used to select the documents that are used to explain the content of that document.

Using the citations as prior information in this optimization could focus the method

on the important background documents, since one of the limitations of the method is

currently the number of background documents that can be used in the optimization.

Overall, it seems there are many possibilities for using citations or other hyperlink data

besides the text.

5.2.3 Unified Model for Idea Structure Inference

Besides these obvious modeling extensions, the high-level goal is to build a unified gen-

erative model for identifying the idea structure and idea flows that describe how docu-

ment collections develop. Such a model could simultaneously consider not only novelty

in identifying new ideas and influence in idea flows between documents, but also other

important points in the idea structure of a corpus, such as marking where an idea ends

with the last document to consider it, or identifying the points where a document com-
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bines two or more existing ideas into a single idea that then becomes influential, or in

finding survey papers that tie together many sources of information in a conclusion. The

influence, novelty, and originality models in this thesis present a start to helping people

understand the idea structure of a corpus, but there is much work to be done in develop-

ing more general models that can simultaneously capture all of this development. The

advantage is that instead of performing inference on each of these tasks independently,

by conducting simultaneous inference in a more general model, perhaps the inference

procedure could take advantage of similarities or interaction between the tasks, e.g.,

influence and originality, to learn a better overall solution. On the other hand, the chal-

lenge is that as more layers are added and as one tries to uncover more complicated

idea structures, inference becomes tricker. For example, when combining influence and

novelty in the original contributions method, the inference problem became much more

complicated. Unifying the model is a good general direction for future work.

5.2.4 Evaluation and Collecting Data

On the experimental side, evaluating these models is difficult because of the lack of la-

beled data for these tasks. For the influence method, we were able to use citations to

evaluate the method, even though as we showed, the citations are not really a gold stan-

dard because of how people cite. For the original passages, collecting labeled data was

even more complex, but the methods were evaluated on some real data from Slashdot

discussion boards, as described in Ch. 4.

Even with the relative scarcity of labeled data, we still have evaluated the methods

on synthetically-generated data derived from research publications. Synthetic data has

obvious advantages, in that it is possible to control the generative setup and the data
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it produces, so that one can evaluate various aspects of the models. However, since

the synthetic data is generated according to the models, while the assumptions seem

plausible, it is not really possible to test the modeling assumptions, as would be the

case with real data. To conduct a more in-depth evaluation, more good-quality real data

would be very helpful. In the future, to strengthen the evaluation, we could collect more

real data or perhaps conduct user studies if there is no such data available.

5.2.5 Generalization to Other Domains

In conducting the evaluation, we also want to explore these methods on other domains

besides research publications. The domain of research publications is particularly con-

venient for several reasons, namely, that it follows the archival process where authors re-

fer to previous influential documents, that there are collections of these documents such

as NIPS freely accessible online, that it has in fact undergone much temporal develop-

ment in the documents that we analyzed, and that there is explicit citation information

available by which one can evaluate influence. For these reasons, much of the evalua-

tion in this thesis has concentrated on research publications, and especially on NIPS and

synthetic data generated according to NIPS documents.

We did explore data from the web discussion board Slashdot for the original con-

tribution methods. In that setting, the method was able to successfully identify the

sentences that users quoted in the discussion on web articles. The future direction is to

explore how well these methods work in other domains, such as news articles, blogs,

email, and so forth, or even some combination of these domains, such as how news

articles influence blogs.
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5.2.6 Scalability and Efficiency

Exploring these methods in other domains brings up issues of scalability and efficiency.

In solving the optimization problems, these methods generally compute a score for some

text, whether it be a document, a passage, or a set of future documents, according to the

likelihood that text was generated by some mixture of existing influential documents.

One limitation is in restricting the set of documents to use for computing the optimiza-

tions. For research publications, we typically used 100 previous influential documents.

The methods do not scale well to very large document collections because the optimiza-

tion problems grow quite large. On the other hand, with too few documents, the methods

cannot correctly identify which ideas have come from existing documents. One possible

solution is to use other data if available, e.g., a hyperlink structure to select the set of

previous documents.
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