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First identified in the Middle East in the 1930s, Tomato Yellow Leaf Curl Disease 

(TYLCD) is a whitefly-vectored viral disease of tomato that has spread rapidly 

throughout the world in the last two decades and is now one of the most serious 

constraints to tomato production worldwide. Significant efforts have been invested in 

its control, resulting in the development of numerous techniques and resistant cultivars 

that have minimized the disease’s impact wherever they are deployed. However, lack 

of access to agricultural inputs in developing regions such as West Africa has delayed 

the adoption of effective TYLCD control methods, leading to stagnant or volatile 

tomato yields. As demand for tomatoes has increased among West Africa’s growing 

urban population, imports of canned tomatoes have skyrocketed, demonstrating the 

potential for a viable West African tomato processing industry but highlighting the 

need for the higher and more consistent yields required for a cannery to be profitable. 

 

This dissertation describes a project in which a multinational, highly collaborative 

germplasm trialing network has been established in West Africa to identify vegetable 

cultivars well-adapted to the region and to mobilize those varieties into local seed 

distribution networks. Research partners in seven countries have evaluated 70 cultivars 

from both public and commercial breeding programs over the course of three years, 



 

focusing on TYLCD resistance, yield, and fruit quality. Currently, efforts are 

underway to distribute seeds of the most successful cultivars to farmers in West 

Africa.
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CHAPTER 1 

TOMATO YELLOW LEAF CURL VIRUS AND ITS CONTROL 

 

I.  The emergence of TYLCV as a global threat to tomato production 

In the summer of 1939 the farmers of the Jordan Valley, in what is now the State of 

Israel, observed a new disease on tomato (Solanum lycopersicum) of unknown 

etiology (Avidov, 1946). Within a month of transplanting, their tomato plants showed 

a highly unusual growth pattern characterized by severe stunting, erect shoots, and 

small, misshapen leaflets. Most strikingly, leaves developing after infection were 

highly chlorotic and showed an upward curling at the leaflet margins. Plants infected 

while still young were found to produce almost no marketable fruit at maturity. Given 

the symptoms, the disease was named Tomato Yellow Leaf Curl Disease (TYLCD, 

Cohen and Harpaz, 1964).  

 

TYLCD remained an occasional problem in the Jordan Valley for two decades until 

the summer of 1959, when a devastating outbreak of the disease decimated all 

tomatoes in the region and reduced yields to zero for the season (Cohen et al., 1961). 

Concerned that the disease had rapidly become significantly more problematic, 

farmers sought help from the Israeli Ministry of Agriculture. The Israeli Agricultural 

Research Organization (ARO) stepped in and determined that the disease outbreak 

was strongly correlated with a significant increase in whitefly (Bemisia tabaci) 

populations. The late 1950s had seen the initiation of large-scale cotton cultivation for 

commercial production in the Jordan and Bet She’an Valleys, and since cotton was a 

preferred host of the local whitefly biotype, the insect’s population had skyrocketed 

(Cohen and Lapidot, 2007).  Controlled transmission tests in the laboratory soon 

confirmed that the disease was whitefly-vectored and viral in nature (Cohen and 
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Harpaz, 1964). As a result the causal agent was named Tomato yellow leaf curl virus 

(TYLCV). 

 

In subsequent years, TYLCD-like diseases began to be described throughout the 

Mediterannean basin and the Greater Middle East. Very similar disease symptoms 

were observed in Sudan in 1965 (Yassin and Nour, 1965), Egypt in 1966 (Makkouk 

and Laterrot, 1983), Tunisia in 1967 (Cherif and Russo, 1983), Saudi Arabia in 1971 

(Mazyad et al., 1979), Cyprus in 1974 (Ioannou, 1985), Jordan (Abu-Gharbieh et al., 

1978) and Lebanon (Makkouk et al., 1979) in 1976, and Iraq in 1978 (Makkouk, 

1978). The mid-1970s also saw the emergence of similar virus symptoms on tomato in 

West Africa, being described in Nigeria (Lana and Wilson, 1976), Senegal, Cape 

Verde, The Gambia, Mauritania, Côte d’Ivoire, and Mali (D'hondt and Russo, 1985) in 

the late 1970s and early 1980s. 

 

Notably, similar whitefly-transmitted tomato viruses were described in the Indian 

subcontinent as early as 1948 (Vasudeva and Raj, 1948), and in Central and South 

America in the 1970s (reviewed by Polston and Anderson, 1997; and Varma and 

Malathi, 2003). It was clear from early on that these diseases were somewhat different 

in their symptomology from the “classic” TYLCDs, but it was not until the 

development of molecular tools for the more detailed characterization of these viruses 

in the late 1980s (Czosnek et al., 1988; Navot et al., 1989) that they were identified as 

different clades of virus species having diverged from the Mediterranean and African 

viral species as long as 130 million years ago, in the case of the New World isolates, 

with the separation of the Americas from the Gondwana landmass (Seal et al., 2006). 
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The early 1990s saw an explosion in the prevalence and importance of Mediterranean 

TYLCD throughout the world. The disease caused significant losses of tomato crops 

in the Western Mediterranean, starting in Sicily in 1989 (Credi et al., 1989) and 

spreading by the early 1990s throughout Italy and Spain (Moriones et al., 1993), 

arriving in Portugal in 1996 (Louro et al., 1996). Meanwhile, eastern Mediterranean 

TYLCV was inadvertently introduced in the Dominican Republic in 1994 (Nakhla et 

al., 1994), and quickly spread throughout the Caribbean (Bird et al., 2001; McGlashan 

et al., 1994; Ramos et al., 1996) and into the southeastern United States (Polston et al., 

1999; Valverde et al., 2001). In 1998 the same eastern Mediterranean virus was also 

introduced in Japan (Kato et al., 1998), and by  2006 had been identified in Australia 

(Tesoriero and Azzopardi, 2006), China (Wu et al., 2006), and Mexico (Brown and 

Idris, 2006). It was identified for the first time in California, the largest tomato-

producing region of the world, in 2007 (Rojas et al., 2007). 

 

Recent phylogenetic studies have determined that the TYLCD-associated viruses from 

the Mediterranean Basin and northern Sub-Saharan Africa consist of six distinct virus 

species, commonly known as the TYLCV cluster (Abhary et al., 2007). The Eastern 

Mediterranean species first isolated in Israel is known as Tomato yellow leaf curl virus 

(TYLCV), and is the species that has become truly worldwide in distribution in the 

last decade. The Western Mediterranean species common throughout Italy and Spain 

is known as Tomato yellow leaf curl Sardinia virus (TYLCSV), though importantly 

TYLCV has also been a serious problem in that region since its introduction through 

Portugal into Spain in the mid-1990s. Recombination between TYLCV and TYLCSV 

has created two very new virus species, Tomato yellow leaf curl Malaga virus 

(TYLCMalV, discussed in detail below, Monci et al., 2002), and Tomato yellow leaf 

curl Axarquia virus (TYLCAxV, Garcia-Andres et al., 2006), both likely emergent 
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only within the last decade. TYLCSV has also been found in Jordan, Morocco, and 

Tunisia. The TYLCD-associated virus species most prevalent in Sub-Saharan Africa is 

known as Tomato yellow leaf curl Mali Virus (TYLCMLV), and has been found 

throughout West Africa in Mali, (Dembele and Noussourou, 1991), Ghana (Osei et al., 

2008), Benin, Burkina Faso, Niger, Senegal, and Togo (Chen et al., 2009) as well as in 

Ethiopia (Shih et al., 2006). The sixth species in the TYLCV cluster is Tomato yellow 

leaf curl Sudan virus (TYLCSDV), which has been found only in Sudan and Yemen 

(Abhary et al., 2007). There are an additional 51 known species of whitefly-

transmitted tomato viruses outside of the TYLCV cluster (Fauquet and Stanley, 2005). 

These species have localized distributions throughout the world, particularly in the 

Americas and in Southern Asia. While their international spread has been minimal, 

their local importance in causing TYLCD-like diseases, sometimes in conjunction 

with a TYLCV-cluster virus and sometimes not, is undeniable and they are often 

highly adapted to their environments and highly destructive of tomato crops. In fact, it 

has been argued that the TYLCV cluster has not appeared in South America and in 

India because it cannot compete with the locally-adapted whitefly-transmitted tomato 

viruses (Abhary et al., 2007). 

 

There are numerous factors, both genetic and environmental, that set the stage for the 

rapid worldwide proliferation of TYLCD in the last two decades. This section 

addresses the particular features of the causal viruses, their vector, their host and their 

environment that have caused TYLCD to become the dominant constraint to tomato 

production worldwide in recent years. 

 



 

5 

 

Virus Nomenclature 

Given the complexity of the family of whitefly-transmitted tomato-infecting viruses, 

nomenclature rules have been laid out to ensure consistent naming practices (Fauquet 

and Stanley, 2005). Viruses are grouped into species, strains, and isolates, while the 

word variant is reserved for describing different viruses outside the context of proper 

nomenclature. Species are defined as having greater than 89% sequence similarity 

between all members. Within a species, variants showing different levels of infectivity 

or different symptomologies are known as distinct strains. Each individual instance of 

a virus that is cloned and sequenced is known as an isolate. Virus species names can 

be abbreviated (e.g. TYLCV) and strain names are separated from the species name by 

a hyphen. Thus, TYLCV-IL is the original TYLCV strain from Israel, and TYLCV-

Mld is a strain causing more mild symptoms. Within the 6 species of the TYLCV 

cluster there are a total of 15 strains. When relevant, isolates are differentiated by 

square brackets. Thus, TYLCV-IL[IT] is a TYLCV-IL isolate from Italy, while 

TYLCV-IL[DO] is a TYLCV-IL isolate from the Dominican Republic. More specific 

information, such as collection city or year, can be specified within the isolate 

designation if necessary to differentiate between isolates from the same country. In 

this work, TYLCV will be used as the generic term for all six species in the TYLCV 

cluster. When greater specificity is necessary, strain indicators will be provided. 

 

TYLCV Biology 

All species causing TYLCD-like diseases in tomato are members of the family 

Geminiviridae and the genus Begomovirus (Fauquet and Stanley, 2005). Members of 

the family Geminiviridae (known as geminiviruses) are identified as having single-

stranded DNA genomes consisting of one or two ~2.8 kb circular DNA molecules 

encapsidated in unique twinned, or geminate (hence the name geminivirus), quasi-
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isometric virion particles of ~20-30 nm in size (Jeske, 2009). There are four genera 

within the family Geminiviridae, distinguished by their host range, insect vector and 

genetic organization (Rojas et al., 2005). Genus Mastrevirus (type member: Maize 

streak virus, MSV) consists of viruses with monopartite genomes that are vectored by 

leafhoppers and typically infect monocotyledonous plant species. Members of the 

genus Curtovirus (type member: Beet curly top virus, BCTV) also have monopartite 

genomes, but with a different genome organization, and are also vectored by 

leafhoppers, albeit different leafhopper species. Their hosts are typically 

dicotyledonous plants, and though there are few distinct curtovirus species, each is 

capable of infecting many host plant species. Genus Topocuvirus has only one 

member, Tomato pseudo-curly top virus, which has a similar genome organization to 

that of curtoviruses, but is vectored by a treehopper species. Finally, genus 

Begomovirus (type member: Bean golden mosaic virus, BGMV) is by far the largest 

of the four geminivirus genera, containing the vast majority of known geminiviruses 

(132 species as detailed in Fauquet and Stanley, 2005). Most begomoviruses have 

bipartite genomes, though many of the Old World tomato-infecting begomoviruses 

(including all members of the TYLCV cluster) have monopartite genomes. 

Begomoviruses are vectored by the whitefly Bemisia tabaci (Gennadius), an 

agricultural pest with worldwide distribution and an exceedingly broad host range. In 

contrast to their whitefly vectors, most begomoviruses have a very narrow host range, 

infecting just a small set of related dicotyledonous plant species. 

 

All six species in the TYLCV cluster have monopartite genomes of ~2.75 kb with just 

six overlapping open reading frames (ORFs), two in the sense orientation of the viral 

genomic strand (known as V1 and V2) and four in the complementary strand (known 

as C1 through C4) (Moriones and Navas-Castillo, 2000). Despite its miniscule genetic 
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arsenal, TYLCV is highly adapted to its host and vector and is capable of executing a 

wide range of surprisingly far-reaching functions to catalyze its replication and 

distribution. These include entry into the host phloem via whitefly feeding, entry into 

host cells, movement of viral DNA into the nuclei of infected host cells, synthesis of a 

complementary genomic strand to make double-stranded DNA, synthesis of viral 

proteins, replication of viral genomic DNA, movement of viral genome molecules out 

of the nucleus and into neighboring cells, encapsidation of viral genomic molecules in 

a protein capsid capable of protecting the DNA during transit in the whitefly vector, 

and movement of virion particles into the plant phloem to allow for long-distance 

movement within the plant or acquisition by a feeding whitefly. In the process, the 

virus evades host defense systems, most notably by suppressing the plant’s post 

transcriptional gene silencing (PTGS) system, and alters the host metabolism both to 

favor the synthesis of viral particles and to generate symptoms, such as yellowing, that 

attract whiteflies to feed (Hanley-Bowdoin et al., 1999; Jeske, 2009; Rojas et al., 

2005). 

 

Among this long list of activities are some that are significantly more complex and 

involved than might immediately be apparent. For instance, because the virus lacks its 

own DNA polymerase complex, it must recruit the DNA-replication machinery of host 

cells to copy its genome. However, the vast majority of plant cells are terminally 

differentiated and lack DNA-replication enzymes. Thus, one of TYLCV’s six genes 

has been shown to interfere with the host plant’s cell cycle, causing the infected cells 

to reenter S-phase and reinitiate DNA replication and, in the process, replicate the 

virus’s own genome. This viral gene has strong sequence identity to a human cell 

cycle regulator known as retinoblastoma protein or pRb, a mutation of which is 

implicated in the unchecked cell growth of certain retinal tumors (Hanley-Bowdoin et 
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al., 1999). The virus additionally encounters constraints that inhibit its movement from 

cell to cell in the plant: while most plant cells are connected by pores known as 

plasmodesmata, those pores are typically too small, and too well-regulated, to allow a 

large DNA molecule like a begomovirus genome to pass through. Nonetheless, studies 

have shown that during TYLCV infection plasmodesmata are modified by the virus so 

that ssDNA molecules as large as 2.8 kb, whether associated with the virus or not, are 

capable of passing from cell to cell (Gilbertson et al., 2003). This upper limit of 2.8 kb 

appears to be the driving force keeping the geminivirus genome small – larger genome 

molecules cannot spread cell-to-cell during infection, and thus geminiviruses are 

severely constrained in their coding capacity. In some instances, TYLCV has evaded 

this limitation by adopting a satellite DNA molecule known as a DNA-β, which will 

be discussed later. 

 

Molecular Factors Affecting the Evolution of TYLCV 

There are features of TYLCV genetics that have allowed the virus to evolve quickly 

and thus to adapt to new environments and new hosts, leading to the worldwide 

expansion of the disease over the last two decades. The first such feature is a high 

mutation rate, and the second is a high rate of recombination between related TYLCV 

variants. 

 

High mutation rate 

DNA repair is a critical molecular function in most species that serves to prevent 

frequent mutations during regular DNA maintenance activities. Proofreading enzymes 

scan for mismatched base pairings in double-stranded DNA deriving from polymerase 

errors or oxidative damage and correct the mismatches before they can be propagated. 

RNA viruses typically use their own error-prone polymerases during genome 



 

9 

 

replication, and thus have a high mutation rate, but since DNA viruses typically use 

host DNA replication machinery one might expect them to have much lower mutation 

rates. A recent study of TYLCV sequences collected from around the world during the 

last two decades, however, shows that despite being replicated in nuclei with 

significant proofreading capabilities, TYLCV has a nucleotide substitution rate 

comparable to those of RNA viruses – approximately 3 ×10
-4

 substitutions/site/year in 

coding regions, and approximately 1.5 × 10
-3

 substitutions/site/year in noncoding 

regions (Duffy and Holmes, 2008). While it is unclear exactly what mechanism is 

responsible for the elevated mutation rate, there are several possibilities. Most species 

typically use methylation to differentiate between the template strand and the new 

strand in replicating DNA, allowing mismatches to be corrected in favor of the 

template. However, it is possible that geminivirus DNA molecules do not carry the 

proper methylation pattern, and therefore either cannot be corrected accurately or have 

a tendency to be corrected in favor of the error. Alternatively, the mechanisms of 

geminivirus DNA replication might prevent error correction even if the correct 

methylation pattern were present. Geminivirus genomes often replicate by rolling 

circle replication (RCR, Hanley-Bowdoin et al., 1999), in which the DNA is only 

transiently double stranded and therefore may not be accessible to proofreading 

enzymes. Geminiviruses might also recruit a more error-prone DNA polymerase 

(perhaps one lacking a base-excision repair mechanism altogether) from the host’s 

nucleus for their own genome replication. However, the patterns of nucleotide 

substitutions observed within the TYLCV cluster suggest an alternative explanation. 

The TYLCV sequence data show a marked bias towards C→T and G→A transitions 

at the expense of all other nucleotide substitutions. These two substitutions are both 

commonly attributed to the deamination of bases, in which cytosine is converted to 

uracil (which base pairs with adenine) and guanine is converted to xanthine (which 
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base pairs with thymine). Deaminating enzymes, which typically attack ssDNA, have 

been identified in plants, implying that the high mutation rate observed in TYLCV 

might be attributable to the deamination of the ssDNA genome rather than an 

avoidance of proofreading functionality during replication (Duffy and Holmes, 2008). 

 

Recombination 

While nucleotide substitutions are the ultimate source of genetic variation within the 

TYLCV cluster, recombination plays a very significant role in creating new genetic 

combinations that allow TYLCV to adapt to new environmental conditions and 

ecological niches. Homologous recombination is a regular part of the begomovirus 

infection cycle, and the vast majority of the viruses causing TYLCD-like diseases 

have been determined to be ancient recombinants (Moriones et al., 2007; Seal et al., 

2006). Though the precise mechanisms of recombination in geminiviruses are not 

fully understood, recent work has shown that, in addition to using RCR for DNA 

replication, geminiviruses also use a mechanism known as recombination dependent 

replication (RDR) in which the replication of genomic DNA is coupled with a 

recombination event (Preiss and Jeske, 2003). This mechanism appears to be 

widespread throughout the geminiviruses. When two or more viruses infect the same 

plant cell, RDR can lead to new hybrid variants that, if well-adapted in the population, 

may become widespread and even outcompete their parents. 

 

Given the distribution and evolutionary history of tomato-infecting begomoviruses, it 

seems highly unlikely that tomato has always been (or is even currently, in some 

cases) their primary host. Tomato, like all other crop species, was only domesticated 

within the last 10,000 years, and was not introduced to the Old World until the 16
th

 

century. It stands to reason that many of the tomato-infecting begomoviruses 
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identified throughout the world, which have been evolving in their respective 

environments for many millions of years, are also capable of infecting other plant 

species. In fact, this is very much the case. Most plant viruses are capable of infecting 

a range of wild species, often known as reservoir hosts since they maintain a pool of 

viral inoculum even when all individuals of the cultivated host are removed. Tomato-

infecting begomoviruses are no exception – most infect a range of reservoir species 

that are indigenous to their native region (Bedford et al., 1998; Cohen et al., 1988; 

Salati et al., 2002). 

 

When a highly virulent and infectious TYLCV variant is introduced to a new region 

(typically through human activity), it may not be well adapted to the locally preferred 

tomato varieties, the native reservoir host species, or the particular whitefly population 

in its new environment. However, co-infection of a plant with a locally-adapted 

begomovirus offers the opportunity for recombination and the generation of a hybrid 

virus possessing both the local adaptations of the native begomovirus and the 

virulence and infectivity of TYLCV. The result is often a highly infectious TYLCV 

strain that results in an epidemic. Recombination with local begomoviruses also 

allows TYLCV to overcome the genetic bottleneck associated with the founder effect 

– while the introduced variant might carry little genetic diversity that would allow it to 

adapt to its new environment, that diversity is often available in the local begomovirus 

population and thus TYLCV is readily capable of adapting to most tomato-growing 

regions of the world (Roossinck, 1997; Seal et al., 2006). 

 

There are numerous examples in the literature that illustrate the potential of 

recombination to drive TYLCV evolution and its colonization of new environments 

(reviewed by Moriones et al., 2007). Recent surveys in Italy and Spain have revealed 
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infections by several different tomato-infecting begomoviruses in the same field, and 

even in the same tomato plant, during outbreaks of TYLCD (Moriones and Navas-

Castillo, 2008). In addition, a survey of begomoviruses in southern Spain in the weed 

Solanum nigrum (European Black Nightshade), a known reservoir host of TYLCV, 

revealed infections by multiple TYLCV species in a single plant (Bedford et al., 

1998). Both of these observations demonstrate that opportunities for recombination 

between different tomato-infecting begomoviruses are frequently available. A 

laboratory study of recombination in tomato between TYLCV-IL and TYLCSD 

showed that recombination can occur quickly, with a recombinant form accounting for 

as much as 50% of the virus progeny isolated within just one infection cycle 

(Moriones et al., 2007). Notably, TYLCV-IL and TYLCSV co-infections are 

commonly found in nature (Garcia-Andres et al., 2006; Monci et al., 2002). 

 

Phylogenetic studies of extant members of the TYLCV cluster have shown all of these 

viruses to be patchworks of recombined elements, with sequence matches between any 

two viruses typically spanning only a portion of each virus’s genome (Abhary et al., 

2007). For instance, TYLCV and TYLCSV are closely related species, but sequence 

analysis shows that they differ significantly from each other, and from the other 

members of the TYLCV cluster, in a small region containing portions of ORFs C1 and 

C4 and the intergenic region. In that region TYLCV-IL has greatest sequence 

similarity to an Indian tomato-infecting begomovirus species named as Tomato leaf 

curl Karnataka virus, and the closest match for TYLCSV in that genomic region is 

South African cassava mosaic virus (Moriones et al., 2007). This implies that the 

common ancestor of TYLCV-IL and TYLCSV underwent separate recombination 

events with an Asian begomovirus and an African begomovirus to yield the current 

strains associated with TYLCD. It is plausible that these recombination events gave 



 

13 

 

the ancestors of TYLCV-IL and TYLCSV a greater host range or some other selective 

advantage in their respective environments that allowed them to become the highly 

adapted viruses they are today.  

 

Since the early 1990s, researchers in Spain have been carefully monitoring tomato-

infecting begomovirus populations to ensure a quick reaction to any new 

introductions. As a result, they have been able to observe recombination in action as 

TYLCV adapted to the ecological niche in Spain. The initial colonization of Spain by 

TYLCV took place in the early 1990s with the introduction of TYLCSV-ES (Noris et 

al., 1994). Given the limited genetic variation in the introduced viral population the 

virus remained stable but with relatively low infectivity and virulence. However, the 

introduction of TYLCV-IL and TYLCV-Mld was reported in 1997 (Navas-Castillo et 

al., 1997), providing greater genetic variation and opportunities for recombination 

with the locally established strain. Sure enough, in 2002 a report was published 

describing a novel species named Tomato yellow leaf curl Málaga virus 

(TYLCMalV), a recombinant between TYLCSV-ES and the TYLCV-Mld (Monci et 

al., 2002). This naturally-occurring variant soon proved to be more highly adapted 

than either of its two parents and quickly became the dominant tomato-infecting 

begomovirus in southern Spain, providing a real-world contemporary illustration of 

the power of recombination to yield new, highly-adapted begomoviruses. 

 

DNA-β satellites 

First discovered in 1997 (Dry et al., 1997), DNA-β satellites are DNA molecules of 

approximately 1,360 nucleotides that have been found to be associated with some 

begomoviruses (reviewed in both Briddon et al., 2008; Mansoor et al., 2003). 

Incapable of independent replication, DNA-βs depend on their associated helper 
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begomovirus for their accumulation, movement and encapsidation. However, many 

helper viruses are incapable of inducing disease symptoms without the help of a DNA-

β satellite. DNA-β molecules consist of a degenerate replication-initiation site that 

apparently allows a given satellite to be replicated by a range of different 

begomoviruses, increasing opportunities for transfer from one helper virus to another 

during mixed infections. In addition, DNA-βs carry a single open reading frame 

known as βC1, which has been described as a pathogenicity determinant and a 

suppressor of post-transcriptional gene silencing, and has been shown to increase 

levels of viral DNA in planta and to bind to viral DNA and potentially be involved in 

viral movement. DNA-βs have been associated with some of the worst outbreaks of 

begomovirus-associated diseases in recent years, and given their significant diversity 

and their ability to switch associations between helper viruses it is likely that they are 

a major factor in both the adaptation of begomoviruses to new niches and in the 

outbreaks of new begomovirus-associated diseases. 

 

The Whitefly Vector – Bemisia tabaci 

While begomovirus biology is an exceedingly important player in the evolution of the 

complex of viruses causing TYLCD throughout the world, it is not the only factor 

involved. An equally important factor in the transmission of TYLCV from one plant to 

the next is its insect vector, the whitefly Bemisia tabaci. 

 

Bemisia tabaci, sometimes known as sweet potato whitefly, is a hemipteran insect 

native to arid tropical and subtropical regions throughout the world (reviewed in 

Brown, 2007). It has an exceedingly broad worldwide distribution and can overwinter 

in any location without sustained periods of freezing temperatures – in colder climates, 

it is not uncommon to find whiteflies adapted to protected greenhouse conditions. Like 
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all hemiptera, Bemisia tabaci feeds by piercing plants with its specialized mouthparts 

and sucking the sap from the phloem. There is a significant amount of diversity within 

the Bemisia tabaci species, and numerous biotypes exist with different feeding 

patterns – some biotypes are highly polyphagous, feeding on a wide range of plant 

species, while others have narrow host ranges and are occasionally even limited to a 

single plant species. Reproduction in Bemisia whiteflies follows an unusual 

arrhenotokous parthenogenetic pattern, in which unmated females lay haploid eggs 

destined to become males, and mated females can lay haploid male eggs or diploid 

female eggs. The eggs are laid while the female is feeding on a plant, and are 

deposited in a semi-circular pattern on the underside of the leaf as the female swivels 

around the feeding site. Bemisia whiteflies are poor fliers, but regularly travel 10 km 

in the wind (Cohen et al., 1988), and around the globe in association with the transport 

of plants by humans (Caciagli, 2007). 

 

Virus-Vector Interaction 

The relationship between begomoviruses and Bemisia tabaci is an exclusive one – no 

other insect can vector the viruses. This implies significant molecular specificity 

between the virus and its vector, but while the path of the virus through the vector has 

been described (Brown, 2007), little is known about the molecular interactions. Upon 

being taken up by the whitefly, the begomovirus travels with the plant sap to the 

insect’s gut, where it crosses the gut barrier and enters the hemolymph. The virus 

circulates in the hemolymph and enters the salivary gland, where it waits until it can 

be released into saliva and thus enter a new host plant. In this process the only known 

molecular interaction takes place between the coat protein of the virus and a heat 

shock protein (HSP60) synthesized by the endosymbiont Candidatus portiera 

aleyrodidarum, a bacterium that lives in the whitefly gut and synthesizes some amino 
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acids not found in sufficient quantities in plant sap. The HSP60 is believed to act as a 

chaperone for the viral capsid, helping it to maintain its structural integrity as it makes 

its way from the gut to the salivary gland. While no other molecular interactions have 

yet been described, it is believed that the viral capsid does interact with various 

whitefly receptors as it makes its way from the gut to the salivary gland, and also with 

other factors within the whitefly that stabilize the capsid and possibly protect the 

whitefly from developing an immune response to the virion particle. Genetic evidence 

points to an association between mutations in the begomovirus coat protein and 

particular genotypes of the whitefly vector (Seal et al., 2006). These associations 

imply coevolution of the virus and the vector, and support the existence of molecular 

interactions between the viral coat protein and proteins in the whitefly.  

 

The B-Biotype 

The explosion of TYLCV starting in the late 1980s is strongly correlated with the 

emergence of a new whitefly variant, the B biotype, that first began appearing globally 

in the early 1980s (Brown, 2007; Polston and Anderson, 1997; Schuster et al., 1990). 

The B biotype is a relatively new whitefly biotype of unknown origins with several 

features making it a particularly effective begomovirus vector. It is highly 

polyphagous, feeding on a wide variety of fiber and vegetable crops including bean, 

cotton, cucurbits, eggplant, pepper, okra, tomato, brassicas, Lantana, soybean, sesame, 

and a number of ornamental species. This makes the whitefly well-adapted to a wide 

range of environments, and increases opportunities for begomoviruses to spread to 

new hosts, potentially increasing their host range and offering greater opportunities for 

recombination and the acquisition of new DNA-β satellites. In addition, the Bemisia 

tabaci B biotype has very high fecundity, with a single female producing as many as 

300 eggs, almost 5 times the number of many other biotypes (Bedford et al., 1994; 
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Brown, 2007). The B biotype is also resistant to certain pesticides, such as carbamate 

and organophosphate insecticides, that are often used to control outbreaks of 

whiteflies (Brown, 2007). Finally, the B biotype causes phytotoxicity in its own right, 

causing irregular ripening in tomatoes (Schuster et al., 1990) and generating a 

symptom known as “silverleaf” in a number of other crops. 

 

The accidental introduction of the B biotype of Bemisia tabaci to the USA and 

Caribbean from an unknown location in 1986 first brought this whitefly variant to the 

attention of the agricultural community and raised awareness of the potential for 

whiteflies to be invasive vectors of disease (Polston and Anderson, 1997; Schuster et 

al., 1990). As the whitefly spread, new begomoviruses began to be reported 

throughout the tropical Americas. In 1991 B biotype populations exploded, reaching 

unprecedented levels in irrigated cropping systems in the Southwestern USA, the 

Caribbean, and the tropical Americas, reaching South America in 1994. In the 

following years outbreaks were reported in Australia, China, Egypt, Mediterranean 

Europe, Israel, Japan, Pakistan and Turkey. In many regions, the B biotype has 

replaced endemic biotypes. However, one other biotype, known as the Q biotype, has 

shown to be competitive with the B biotype and is recognized as a rising threat 

(Brown, 2007). The Q biotype, which appears to have originated in southern Spain, is 

highly polyphagous and has high fecundity, similar to the B biotype. However, it is 

resistant to a different group of pesticides, so that pesticides currently used to control 

the B biotype are unlikely to be effective on the Q biotype. As of 2005 the Q biotype 

was identified on ornamentals in China, Japan, Mexico and the USA. It is expected 

that without proper controls on global plant movements, the Q biotype will pose a 

major threat to agricultural production in the coming years (Brown, 2007). 
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Human Activities 

While begomovirus evolution and the emergence of new whitefly biotypes are 

strongly associated with the explosion of TYLCD throughout the world’s tomato-

growing regions in the last two decades, there is no doubt that human activities have 

been an integral factor in shaping the development of this plant disease pandemic. 

Two human activities in particular can be implicated in the increasing severity of 

TYLCD around the globe – agricultural intensification, and the global transport of 

plant materials. 

 

Agricultural Intensification 

The last century has seen a gradual but remarkable change in the way agriculture is 

conducted around the globe. While these changes are highly multifaceted, they tend to 

include a trend towards larger farms growing a less diverse collection of crop varieties 

in environments that are made more homogenous through soil amendments and 

irrigation (Matson et al., 1997). These changes have drastically increased crop yields 

and consequently decreased the overall cost of food production, but have done so at 

the expense of the diversity of the ecology of the farming environment, thereby 

altering the nature of the evolution of pests and diseases. In heterogeneous 

environments in which multiple crop varieties are grown, a disease that evolves to 

exploit a weakness of a particular crop variety is limited in host range to only that crop 

variety or any others that share the same weakness. In a monocropping system, 

however, all plants in the same field, across the same region, and often even across the 

globe share the same genetics and therefore the same weakness, vastly increasing the 

evolutionary fitness of that newly emergent disease variant. Increased fitness leads to 

an increase in the replication of the disease, which in turn leads to an increase in 

opportunities for mutations or recombination events that further increase fitness 
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(Thresh, 1982). Thus agroecological homogeneity tends to rapidly increase the rate of 

development of new disease variants with higher virulence and infectivity.  

 

It is precisely these features of agricultural homogeneity that have led to the explosion 

of the TYLCV cluster of viruses and the B biotype of the Bemisia whitefly (Varma 

and Malathi, 2003). The cultivated tomato species Solanum lycopersicum has a very 

narrow genetic base, containing less than 5% of the variation contained within its wild 

relatives (Bai and Lindhout, 2007), and high yielding processing cultivars with even 

less genetic diversity have become the norm in many parts of the world in the last 

several decades. Tomato has also increased in global popularity during that time, 

leading to a significant increase in the land area under tomato cultivation (FAOSTAT, 

2009). TYLCV has precisely evolved to exploit commonly shared genetic weaknesses 

in all tomato cultivars grown across the world. In the meantime, the non-genetic 

features of environmental homogeneity in agroecosystems have been exploited by 

whiteflies. As the mass-marketing of agricultural chemicals has become a global 

enterprise, Bemisia whiteflies have evolved resistance to the most popular pesticides 

(Brown, 2007). Whiteflies have also adapted to exploit modern efficient irrigation 

systems. Many tomatoes are grown in arid areas that are too dry for most insects, and 

are irrigated by means of efficient drip lines that deliver water directly to the plant 

roots. However, whiteflies exclusively obtain water from plant phloem, and therefore 

the increased prevalence of irrigation has actually increased the geographic 

distribution of whiteflies (Seal et al., 2006).  

 

Global Movement of Plant Materials 

While agricultural intensification has created optimum environments around the world 

for the development of new, more debilitating plant diseases, the spread of those 
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diseases would be severely limited without the global movement of plant materials. 

Whiteflies are capable of regional movement – if a single whitefly can move 10 km in 

a week by wind dispersal (Cohen et al., 1988), it stands to reason that over the course 

of  several years viruliferous whiteflies could spread significant distances over land, 

provided the proper wind currents and the existence of virus-susceptible vegetation 

every 10 km or so. However, given their poor flying abilities and significant fragility, 

it seems highly unlikely that whiteflies could cross oceans (Byrne and Bellows, 1991), 

and evidence strongly supports the notion that the TYLCV outbreaks in the Caribbean 

and the Americas, Australia, Japan, Cape Verde, and Réunion were all caused by the 

introduction of the virus from the Mediterranean Basin (Abhary et al., 2007). As a 

result, it is recognized that the international movements of plant materials by humans 

is largely responsible for the global spread of TYLCV in the last two decades. 

 

Several studies have pointed to factors that make TYLCV and its whitefly vector well-

suited to international travel. Firstly, whiteflies are relatively highly adept at surviving 

on plant materials during long-distance transport (Caciagli, 2007). At an upper limit of 

30-40ºC adult whiteflies can only survive ~6 hours, but of course very few plant 

materials are transported under those conditions. At the lower limit, adult whiteflies 

have been shown to survive up to 4 days at 6ºC. Tomatoes, by comparison, are 

typically shipped between 10 and 20ºC (Suslow and Cantwell, 2009). Juvenile 

whiteflies can survive even longer at low temperatures – nymphs can survive at least 8 

days at 4ºC, and eggs are still able to hatch after storage at 6ºC for 8 days. While most 

studies have not found TYLCV to be transovarially transmitted from parent whiteflies 

to progeny, at least one study has (Ghanim et al., 1998), suggesting the possibility that 

even if transport conditions are prohibitive for adult whiteflies, juveniles or eggs might 

be able to carry the disease during long-distance travel. 
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It has also been shown that whiteflies can acquire TYLCV inoculum directly from 

tomato fruit (Delatte et al., 2003). On Réunion Island, an overseas department of 

France approximately 800 km east of Madagascar, over 50% of imported tomato fruits 

coming primarily from Spain and Morocco were found to carry significant levels of 

virus inoculum. Furthermore, it was shown that whiteflies could acquire TYLCV by 

feeding on infected fruit, and could then transmit the virus to healthy plants. There are 

currently no international controls on the transport of tomato fruit from TYLCV-

infected areas. As a result, it seems highly plausible that, even if the movement of 

planting materials is regulated, TYLCV can be transported internationally with 

produce imports. 

 

Conclusions 

The capacity of begomoviruses to acquire and recombine genetic diversity, and the 

polyphagous nature and high fecundity of the virus’s whitefly vector, are both 

perfectly suited to take advantage of the homogenous agricultural environments that 

have become the norm across the globe in the last several decades. Furthermore, 

human beings have helped by transporting the virus and the vector from one location 

to another. The result has been the development of an unprecedented global pandemic 

in which the vast majority of tomato-producing regions of the world have faced 

decreasing yields and the need to apply protective measures to control the spread and 

the effects of TYCLV. The following section describes various control methods for 

TYLCV that have been developed since its emergence. 

  



 

22 

 

II.  Methods for the control of TYLCV 

Given the worldwide prominence of TYLCV, it is no surprise that significant efforts 

have been invested in its control. Earlier efforts focused primarily on physical and 

chemical barriers to prevent whiteflies from accessing plants, and more recently 

cultural practices for decreasing viral inoculum load in fields have shown serious 

success. The primary focus of TYLCV control efforts today is the breeding of tomato 

varieties with resistance to either the virus or the whitefly vector. 

 

Physical and Optical Barriers 

The most straightforward methods for controlling the spread of TYLCV involve those 

that place a physical barrier around growing tomato plants, thereby preventing 

whiteflies from accessing the plants (Polston and Lapidot, 2007). One common 

approach is to grow the tomatoes in net houses constructed of whitefly-proof 50-mesh 

screen material. These net houses provide extremely effective whitefly control, and 

can limit whitefly populations to just 1% of those observed in greenhouses lacking 

whitefly-proof screens (Berlinger and Lebiush-Mordechi, 1995). Unfortunately these 

screens are not sufficient to prevent TYLCV infection on their own as small numbers 

of whiteflies can gain access to the net houses through gaps in the screening material 

around entrances and by clinging to personnel. However, in conjunction with 

infrequent pesticide applications TYLCV can be completely controlled in these 

structures. The downsides of using such fine-mesh net houses are that they are 

expensive and can create problems of shading, overheating, and poor ventilation. In 

mid-summer these conditions can lead to heat-stress on tomatoes, affecting fruit set 

and quality. In addition poor ventilation can lead to increased humidity and enhance 

the spread of foliar diseases. Positive pressure ventilation systems have been used to 

overcome the overheating and ventilation problems, and in addition increase the 
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whitefly-exclusion properties of the net houses (Weintraub and Berlinger, 2004), but 

add even more to production costs. 

 

An alternative whitefly exclusion method uses ultraviolet-absorbing plastic films for 

the construction of greenhouses or hoop-houses (tunnels) (Antignus et al., 1996). 

These films, which consist of a regular greenhouse polyethylene film impregnated 

with a UV-blocking material, allow 80% transmission of light in the visible range (380 

– 700 nm) but only 5% transmission in the UV range (280 – 380 nm). In contrast, 

regular polyethylene films allow 13-20% UV transmission. This decrease in UV light 

transmission can play a significant role in preventing whitefly infestations. Unlike 

humans, insects can perceive ultraviolet (UV) light, and it plays an important role in 

various aspects of their behavior, including orientation, navigation, feeding, and 

mating. Feeding behavior in whiteflies involves a chain of events that begins with the 

whitefly orienting towards the plant from a distance (Byrne and Bellows, 1991). The 

exclusion of UV light from the growing area essentially blinds whiteflies, inhibiting 

their ability to find host plants upon which to feed. Greenhouses with UV-absorbing 

plastic films have been observed to have as much as an 80-fold reduction in TYLCD 

incidence (Antignus, 2007). However, like net-houses, UV-blocking greenhouses have 

problems of overheating and poor ventilation. Positive-pressure ventilation systems 

can improve performance, but again at an increased financial expense that is not 

always feasible. 

 

Optical barriers to whitefly access also exist for field-grown tomatoes, in the form of 

reflective mulches. Yellow plastic mulches have been in use since the 1960s (Nitzany 

et al., 1964), when it was discovered that the color yellow may be a component of the 

whitefly’s host-selection mechanism (Mound, 1962). (This correlates well with the 
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tendency for begomoviruses to induce yellowing symptoms.) Yellow mulches appear 

to disorient whiteflies by inhibiting their ability to accurately discern host plant leaves 

against the yellow background. As a result, a significant portion of whiteflies are  

attracted to the mulch rather than the plant – in the hot, arid environments common to 

many tomato-growing regions the whiteflies then typically die of overheating and 

desiccation within one hour (Cohen, 1982). The effectiveness of yellow mulches is 

inversely correlated with the density of the plant foliage – as plants mature and their 

foliage covers a significant portion of the mulch, the amount of reflected yellow light 

is diminished until it becomes ineffective. However, since the impact of TYLCD is 

greatest when plants are infected early in development, the 20 – 30 days of protection 

offered by yellow plastic mulches has a serious impact on the losses from the disease. 

In one study, at 38 days after transplanting only 10% of the tomato plants protected by 

a yellow mulch showed TYLCD symptoms, as compared with 100% of the control 

plants (Cohen and Melamed-Madjar, 1978). 

 

Interestingly, yellow mulches have limited effectiveness in humid climates, where 

whiteflies are not quickly dehydrated by the high heat of the mulch (Csizinszky et al., 

1999). In such cases, highly reflective aluminized mulches have been found to be 

significantly more effective. While the mechanism of the protection offered by 

aluminized mulches in humid climates is not fully understood, it is believed that the 

high reflectivity of both visible and UV light has a more significant disorienting effect 

on whiteflies, and thus is more effective at preventing their landing on plant leaves 

once they survive their initial landing on the mulch. Both yellow and aluminized 

mulches offer an inexpensive and effective method of whitefly control in developed 

countries, but lack of access in the developing world often make them prohibitively 

expensive. 
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Chemical Control of Whiteflies 

While physical and optical barriers provide significant protection from whiteflies, they 

are often used in conjunction with chemical methods of whitefly control for more 

complete reduction of disease incidence. A number of chemical classes have been 

used to reduce whitefly populations including chlorinated hydrocarbons, 

organophosphates, neonicotinoids, pyridine-azomethines, and pyrethroids (Polston and 

Lapidot, 2007). Over time, repetitive and frequent use of these pesticides has led to 

resistant whitefly variants in many locations (Palumbo et al., 2001), in addition to 

resistant secondary pests such as leafminers (Polston and Lapidot, 2007). In the 

decade since their introduction, neonicotinoid insecticides such as thiamethoxam, 

imidacloprid, and dinotefuron have become particularly popular due to their narrow 

targeting of sucking insects such as whiteflies, aphids and leafhoppers and their 

consequently mild effect on beneficial insects that act to control pest insect 

populations in the field (Ahmed et al., 2001; Mason et al., 2000). These insecticides, 

which have a low toxicity to mammals, are taken up by plant roots and can be found 

systemically throughout plants, typically limiting their impact to those insects that 

ingest plant tissues or sap (Jeschke and Nauen, 2008). However, their extensive use 

has led to increasing incidence of neonicotinoid resistance in whiteflies in several 

places around the world (Cahill et al., 1996; Elbert and Nauen, 2000). Today, the 

exclusive use of insecticides and other chemical insect controls such as insect growth 

regulators, oils, and soaps is considered insufficient for the control of TYLCD, as 

whiteflies are sufficiently fecund, mobile, and resistant to chemicals to serve as an 

effective begomovirus vector even when pesticides are applied three times per week 

(Antignus, 2007). However, in conjunction with other protective methods chemicals 
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do provide a further layer of protection to prevent whiteflies from spreading TYLCV 

from one plant to the next. 

 

Cultural Practices 

While physical and chemical approaches can offer significant reductions in whitefly 

populations and therefore significant reductions in the spread of TYLCV, there are 

several cultural practices that have been shown to be effective in reducing the 

incidence of the virus without requiring any specialized inputs. One such approach is 

the use of bait crops, in which preferred hosts are offered to attract whiteflies away 

from tomatoes, and another is the use of a host-free period to clear viral inoculum 

from the area prior to the planting of a host crop. 

 

Bait Cropping 

Bait cropping is a means of slowing the accumulation of viral inoculum in the regional 

host and vector populations by offering a crop for whitefly feeding that is an attractive 

host for the insect but is a non-host for the virus (Antignus, 2007). Cucurbit species 

such as squash and cucumber have been effectively used to reduce infection rates of 

TYLCV in tomato. It has been shown that while whiteflies show no particular 

preference for landing on a tomato leaf or a cucurbit leaf, once they do land they are 

more likely to remain on the cucurbit leaf to feed (Cohen et al., 1988). A study in 1982 

in which rows of tomato were planted alternately with rows of cucumber that had been 

planted 30 days earlier showed that the development of TYLCV symptoms on the 

tomatoes was delayed by almost two months compared with a control plot (Al-musa, 

1982). Unfortunately, intercropping is a labor-intensive process that does not integrate 

well with today’s mechanized approaches to large-scale agriculture. However, a more 

recent study from 2004 showed that tomatoes in a plot neighboring a plot of squash 
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had fewer instances of TYLCV infection than those in a plot neighboring other tomato 

plots (Schuster, 2004). Thus, while bait cropping might not be effective as an 

exclusive method of TYLCV control, it does help to reduce disease pressure, 

particularly in smaller-scale situations. 

 

Host Free Period 

The strength of the viral disease pressure on field-grown host plants depends not only 

on the population of the insect vector, but also on the quantity of viral inoculum 

accumulated in the local host and vector populations. Any means of reducing the viral 

load in the system, whether or not it also reduces vector populations, should be 

effective at reducing the disease pressure incident on the local cultivated host 

population. The host-free period is a community-based approach to reducing both 

local vector populations and overall viral load by removal of all host plants for a set 

period of time during an agreed-upon off-season. While not particularly common due 

to its requirement for communal organization and participation, the use of a host-free 

period has successfully reduced the significance of TYLCV in Cyprus (Ioannou, 

1987), Israel (Ucko et al., 1998), and the Dominican Republic (Salati et al., 2002). 

 

The basic logic of the host-free period starts with the understanding that 

begomoviruses are not passed transovarially from parent whiteflies to their progeny, 

and that the whitefly adult lifespan is only approximately one month long (Byrne and 

Bellows, 1991). It stands to reason that if a community of growers can prevent all 

whiteflies from taking up new viral inoculum for one month then all viruliferous 

whiteflies will die and all viral inoculum will be flushed from the system. During the 

host-free period, all farmers in a region agree to abstain from growing any hosts of the 

begomovirus in question. During that time period, viruliferous whiteflies may find 
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hosts to feed upon, but those hosts will not be susceptible to the virus and therefore 

will not allow the virus to replicate and create a new pool of inoculum. Over the 

course of several weeks, all whiteflies carrying the virus will die, and thus by the end 

of the host free period the whitefly population will be completely free of viral 

inoculum. In the weeks following the host-free period, when virus-susceptible 

seedlings are transplanted to the field, the virus pressure will be low enough to allow 

the seedlings to mature to a stage where they can better withstand a TYLCV infection 

without losing their entire yield. Of course, unless the region practicing the host-free 

period is exceedingly isolated, TYLCV will eventually be re-introduced from a 

neighboring region, but the reduced pool of viral inoculum at the start of the season, 

when the host plants are the most susceptible, can have a serious impact on yield. 

 

There are several factors that affect the success of a host-free period. Firstly, 100% 

cooperation is important. A single farmer who chooses to break the rules can cultivate 

a tremendous reservoir of viral inoculum in his field, negating the efforts invested by 

others. Most communities that adopt a host-free period impose harsh penalties to 

prevent violations – in the Dominican Republic, for instance, violators of a legally-

enforced host-free period in June, July and August are subject to having all of the 

plants in their fields immediately destroyed upon discovery. Secondly, it is very 

important for a community to understand the local ecology and epidemiology of the 

virus, which requires knowing which cultivated and wild species can serve as a host 

for the virus. This includes species that act as symptomless hosts, which allow 

significant accumulation of viral inoculum without showing any perceptible outward 

symptoms (Salati et al., 2002). With a quickly-evolving virus it is important to 

continuously monitor the viral host range in order to adapt to any changes that arise. 

For example, farmers in southern Spain have traditionally only grown tomatoes during 
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the warmer summer months, and have therefore had a natural host-free period during 

the winter months. When TYLCSV was first introduced to the region in the early 

1990s, this fact helped to control the spread of the virus. However, when TYLCV-IL 

was introduced in the late 1990s, it came with a slightly different host range that 

worked to its significant advantage – it could replicate in common bean (Phaseolus 

vulgaris), which is regularly grown through the cooler months in southern Spain 

(Sanchez-Campos et al., 1999). As a result TYLCV quickly increased in prevalence 

and surpassed TYLCSV as the dominant tomato-infecting begomovirus in the region 

(Moriones and Navas-Castillo, 2008). Finally, it is important for those engaging in a 

host-free period to practice very thorough sanitation methods in their fields. At the end 

of the growing season, all tomato plant residues must be destroyed, preferably by 

some form of cultivation such as deep plowing or disking, to prevent any leftover 

materials from remaining as viable hosts for the virus during the host-free period. Old 

tomato plants left to languish in the field allow viral replication, but are undesirable 

whitefly hosts which encourage the dispersal of viruliferous whiteflies to neighboring 

fields, thus encouraging the spread of the disease (Gilbertson et al., 2007). In addition 

to old plants, volunteer host plants must be removed during the host-free period to 

prevent the spread of viral inoculum. 

 

The most successful account of a host-free period for the control of TYLCV began in 

the Dominican Republic in 1995. In the late 1980s the Dominican Republic had a 

flourishing tomato processing industry with ~8000 hectares under cultivation and 

producing enough tomato paste to satisfy the needs of the ~7-8 million inhabitants of 

the country (Gilbertson et al., 2007). However, in 1992 tomato transplants were 

imported from foreign sources after local seedling nurseries failed to produce viable 

transplants due to heavy rain. Some of the foreign tomato transplants were likely 
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infected with TYLCV, as the disease quickly established itself on the island during the 

1992-1993 growing season (Nakhla et al., 1994). By the following year the disease 

had become so pervasive and damaging that tomato yields were estimated to have 

decreased by 75%, leading to losses estimated at over US$10 million as well as the 

need to import over 16,000 tons of tomato paste. A host-free period was established 

during June, July and August of 1995 for a variety of local vegetable crops including 

not only tomato, bean and pepper, which can all function as hosts for at least some 

TYLCV strains, but also cucurbits, eggplant, and okra, which are TYLCV non-hosts 

but are favored hosts for whiteflies (Salati et al., 2002). The host-free period was 

remarkably successful in reducing the TYLCV disease pressure during the 1995-1996 

growing season, likely due at least in part to government enforcement of the host-free 

period. As a result, farmers in the Dominican Republic began to accept the host free 

period as part of their yearly routines, and voluntary compliance greatly increased in 

subsequent years. The host-free period is still in use today, and monthly whitefly 

monitoring since 1997 has shown a consistent pattern in which virus levels in the local 

whitefly population drop dramatically going into the host-free period, and stay low 

through September, October, and often the first half of November as well. Though 

levels then typically increase dramatically, often leading to 100% infection rates in 

January and February, the continuity of the decrease in viral inoculum levels into the 

beginning of the growing season provides farmers with a significant head start against 

the disease, and has allowed the tomato industry of the Dominican Republic to again 

become self sufficient (Gilbertson et al., 2007). 

 

Breeding for Resistance to TYLCV 

Given the limited success and/or high costs (in both material and time) of the various 

cultural, chemical, and physical approaches to the control of TYLCV, it has been clear 
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from early on in the disease epidemic that the best hope for successful control of the 

virus lies in the development of tomato cultivars that are resistant to the disease. 

Resistance entails a range of possible reactions, from immunity, in which a plant 

functions as a non-host, allowing no viral replication, to tolerance, in which the plant 

allows viral replication and shows some level of disease symptoms but nonetheless 

has high fruit set and quality. Efforts to identify TYLCV-resistant tomato varieties 

began in the 1960s with several screens of popular cultivars, but the results were 

uniformly negative (Pilowsky and Cohen, 1974). It has since been determined that all 

known tomato cultivars (species Solanum lycopersicum) are susceptible to TYLCV (Ji 

et al., 2007b).  

 

In the 1970s plant breeders began turning to wild species closely related to tomato in 

an effort to identify begomovirus resistance genes. Wild Solanum lycopersicum, the 

ancestor of cultivated tomato, is just one of ten recognized species that make up 

Solanum L. section Lycopersicon, the wild tomatoes (Spooner et al., 2005). All wild 

tomato species are endemic to western South America, with a distribution stretching 

from Ecuador to northern Chile. Eight of the species can be found along the coast and 

in the Andes highlands, while two more are native to the Galápagos Islands. The wild 

tomato species have a variety of mating systems ranging from autogamous self-

compatible to facultative allogamous self-compatible to allogamous self-incompatible. 

All can be crossed to cultivated tomato, though often with difficulty. Given the low 

level of genetic diversity available within S. lycopersicum, though, wild tomato 

species have become an important source of genetic material for plant breeders and 

have been used extensively as sources of disease resistance and agronomic traits (Bai 

and Lindhout, 2007). 
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To date TYLCV resistance has been identified in Solanum cheesmaniae, Solanum 

chilense, Solanum habrochaites, Solanum peruvianum, and Solanum pimpinellifolium. 

In each case resistant accessions were identified in screens in which many (sometimes 

thousands) of accessions were evaluated. While protocols differ from one study to the 

next, these resistance screens often involve the controlled inoculation of tomato plants 

by incubation in a greenhouse or insect-proof net house containing viruliferous 

whiteflies (Lapidot, 2007). The whiteflies are maintained in a separate net house on a 

preferred host, such as cotton (Gossypium hirsutum L.), and the viral culture is 

maintained in yet another net house on a susceptible host such as cultivated tomato or 

Datura stramonium. Whiteflies are raised on the preferred host, incubated on the 

susceptible host for a set period of time for the acquisition of the virus, and then 

transferred to the enclosure containing the test plants for inoculation. Typically several 

plants of each accession are tested, since accessions represent collections from a single 

location but cannot be guaranteed to be genetically homogenous, and in allogamous 

species such as S. peruvianum and S. chilense can be almost guaranteed to be 

heterogeneous. In some screens, especially earlier ones, plants were field grown and 

inoculation was by local populations of viruliferous whiteflies. 

 

The identification of accessions of a wild tomato species resistant to TYLCV is often 

followed by an attempt to introgress the resistance trait into a cultivated tomato 

variety, a challenging endeavor due to various barriers inhibiting the success of an 

interspecific cross (Pico et al., 2002) and the existence of wild, undesirable traits that 

can be carried along with the disease resistance trait by linkage drag (Gur and Zamir, 

2004). While wild and cultivated tomato species can technically be crossed, oftentimes 

special techniques are required to promote seed set. In almost all cases, the wild 

species must be used as the pollen donor, as cultivated pollen will rarely lead to seed 
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set in a wild individual (Hogenboom, 1972). In cases with only mild crossability 

barriers, mixtures of wild and cultivated pollen can be used to ensure fruit set 

following pollination (Philouze, 1967). In more severe situations, however, embryo 

abortion occurs, leading fruit to set but with no viable seeds (Rick and Butler, 1956). 

To overcome this barrier embryo rescue techniques are used, in which the nascent 

embryo is removed from a seed and grown in culture (Stewart, 1981). Even in cases 

that result in successful hybrids, undesirable wild traits that are difficult to remove are 

often found in the progeny. Most wild tomato species lack some of the basic traits of 

the tomato domestication syndrome, including both consumer-oriented traits such as 

large, tasty, red fruit, and grower-oriented traits such as compact growth habit and 

earliness. In interspecific hybrids between wild and cultivated tomatoes, inhibition of 

recombination due to differences in genomic sequence often leads to the existence of 

large linkage blocks that might contain both the trait of interest (e.g. TYLCV 

resistance) and undesirable traits (Bai and Lindhout, 2007). Breaking those linkage 

blocks is a significant challenge that plant breeders address when introgressing 

desirable traits from a wild species of tomato. 

 

In the last three and a half decades extensive efforts have been invested in the 

development of TYLCV-resistant tomato cultivars through the identification of novel 

resistance sources, the generation of resistant breeding lines, and the identification of 

molecular markers linked with resistance genes. Below is a summary of all of those 

efforts organized by resistance source.
1
 

 

                                                 
1
 Until a recent reevaluation of the phylogeny of genus Solanum, all tomato species were considered to 

be members of the genus Lycopersicon, and thus are often referenced in the literature by their former 

names (Spooner, Peralta et al. 2005). For that reason, synonyms of each species name are provided in 

the heading of each subsection below. The synonym for Solanum lycopersicum is Lycopersicon 

esculentum. 
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Solanum pimpinellifolium (syn. Lycopersicon pimpinellifolium) 

The first major effort to identify accessions of wild tomato with TYLCV resistance 

was conducted by Pilowsky and Cohen of the Israeli ARO in 1974. They focused their 

efforts on S. pimipnellifolium (common name: currant tomato) since of all the wild 

tomatoes it is the most compatible for crossing with cultivated tomato. Through their 

screens they identified several resistant accessions showing only moderate viral 

accumulation and strongly attenuated symptoms. This included accession LA 121, 

which they crossed with S. lycopersicum to study its inheritance. Genetic analysis of 

F1 – F3 and backcross generations indicated the incomplete dominance of resistance 

over susceptibility, which they suggested implied monogenic control of resistance 

(Pilowsky and Cohen, 1974). Despite the strong TYLCV resistance shown by LA 121, 

tomato breeding lines descended from it had moderate disease symptoms but 

significantly decreased vigor and yield, resulting in the termination of this effort. 

 

Further accessions of S. pimpinellifolium were screened by Geneif in Sudan in 1977-

1982, along with accessions of S. peruvianum, S. habrochaites and S. lycopersicum 

(Geneif, 1984). S. pimipnellifolium accession LA 1478 was identified as a good source 

of TYLCV resistance and a strong performer in the hot and dry environment of Sudan, 

and was therefore crossed with locally popular commercial cultivars including Money 

Maker and Early Pack to generate TYCLV resistant cultivars. Inheritance studies 

showed a clear 3:1 ratio of resistant to susceptible phenotypes in the F2 generation, and 

backcross progenies segregated in a 1:1 ratio, implying that resistance was controlled 

by a single dominant gene. 

 

In 1988 and 1989 Kasrawi et al. of the University of Jordan evaluated numerous 

accessions of several different tomato species, including both LA 1474 and the 
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accession hirsute INRA of S. pimpinellifolium. Both were shown to have strong 

TYLCV resistance (Kasrawi et al., 1988) which was conditioned by a single dominant 

gene, designated Tylc (Kasrawi, 1989). 

 

In 1997 a research study was conducted to identify the locus responsible for TYLCV 

resistance in the hirsute INRA (Chagué et al., 1997). A TYLCV-resistant tomato 

breeding line containing introgressions from hirsute INRA was crossed with a 

susceptible breeding line followed by several rounds of selfing to generate F4 lines. 

Thirty individuals from each line were evaluated for TYLCV resistance by 

agroinoculation, and the five most resistant and six most susceptible lines were used 

for Bulk Segregant Analsysis. Four random amplified polymorphic DNA (RAPD) 

markers, all mapping to an introgression of 17.3 cM on chromosome 6, were reported 

to be linked to the resistance trait.  

 

Solanum peruvianum (syn. Lycopersicon peruvianum) 

One of the first major resistance screens to look at accessions of S. peruvianum as well 

as S. habrochaites, S. cheesmaniae and a large selection of commercial cultivars was 

conducted by a team at the University of Cairo in Egypt starting in 1980 (Hassan et 

al., 1982). Greenhouse inoculated plants were scored on a symptom severity scale of 0 

to 4.  While none of the commercial cultivars showed any virus resistance, all 

accessions of S. peruvianum showed almost no symptom development. Of the L. 

peruvianum accessions identified in this screen, the most important to emerge was 

CMV sel INRA, which was crossed with the locally popular cultivar Mortelglan using 

the mixed pollen technique (Hassan et al., 1984). 3 F2 plants were found to be free of 

virus symptoms and were propagated with selection to the F4 generation, at which 

point all plants were found to be resistant to TYLCV. F5 seeds were collected and sent 
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to the French National Institute for Agricultural Research (L’Institut National de la 

Recherche Agronomique, INRA) where a gene pyramiding breeding project was 

conducted (described in detail below). 

 

The first commercially available TYLCV-resistant line, TY-20, was released in Israel 

in 1988. Designated a tolerant variety, TY-20 derived its resistance from the S. 

peruvianum accession PI 126935. When infected with TYLCV, young TY-20 plants 

did show mild interveinal chlorosis, and older plants did display minor leaf cupping, 

but plants were nonetheless able to give a decent yield (Pilowsky and Cohen, 1990). 

Evaluation of the genetics of the TYLCV tolerance derived from PI 126935 indicated 

that the trait was controlled by five recessive genes. Virus transmission tests 

additionally showed that infected TY-20 plants were as effective at transmitting the 

virus as popular susceptible cultivars (Pilowsky and Cohen, 1990), though later tests 

showed that the virus titer in TY-20 was only ~50% of that in various susceptible 

cultivars (Rom et al., 1993). Given TY-20’s complicated genetics and its poor ability 

to slow the spread of TYLCV, researchers quickly sought better resistance sources. 

 

Continued screening efforts at the ARO in Israel identified several accessions of S. 

peruvianum with stronger levels of resistance: PI 126926, PI 126930, PI 390681, and 

LA 441. These four accessions were each crossed with susceptible cultivated tomato 

line 1630 using the mixed pollen approach, and after many rounds of backcrosses, sib 

crosses, and phenotypic evaluation, a single highly resistant individual showing a 

symptomless reaction to TYLCV was selected and its bulked offspring were 

designated line TY172 (Friedmann et al., 1998). When compared with plants of 

susceptible and tolerant cultivars in controlled inoculations, TY172 had only very 

minor yield losses under disease pressure, and showed significantly reduced 
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accumulation of viral transcript (Lapidot et al., 1997). When TY172 was crossed with 

a susceptible individual, the resultant F2 population had a mix of plants showing mild 

symptoms in response to TYLCV in addition to individuals with symptomless 

responses. The ratio of symptomless to mildly-symptomatic plants was measured as 

approximately 7:64, implying that TYLCV resistance in TY172 is controlled by at 

least three genes (Lapidot et al., 2000). 

 

Solanum chilense (syn. Lycopersicon chilense) 

A team at the Hebrew University in Jerusalem conducted of a field-based screen of 23 

tomato accessions representing several different wild tomato species in the Jordan 

River Valley in 1988. One accession of S. chilense, LA 1969, stood out as an 

extremely promising source of resistance, showing no TYLCD symptoms and almost 

no viral accumulation (measured by squash blot hybridization) as long as 84 days after 

planting, in a region that routinely sees 100% infection rates (Zakay et al., 1991). 

Similar results were subsequently obtained following inoculation with viruliferous 

whiteflies in a greenhouse. An evaluation of LA 1969 in Florida in 1990 showed it to 

be resistant to the locally emerging tomato begomovirus, likely Tomato mottle virus, 

ToMoV (Scott and Schuster, 1991), and a similar study in Taiwan in 1994 additionally 

showed the accession to be resistant to Taiwan tomato yellow leaf curl virus, 

TTYLCV (Chiang et al., 1994). 

 

With the strength of the begomovirus resistance in LA 1969 firmly established, a 

breeding program was initiated at Hebrew University to introgress the trait into 

cultivated tomato. In 1988 Zamir et al. crossed LA 1969 with tomato cultivar M82-1-8 

to obtain a population of interspecific hybrids (Zamir et al., 1994). Due to the strong 

crossability barriers between S. lycopersicum and S. chilense only one single 
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interspecific hybrid was produced from 300 pollinated flowers, and when that one 

plant was crossed as a male parent back to S. lycopersicum, only five fertile BC1 plants 

were obtained from the 100 fruits set. However, two of those five plants were found to 

be TYLCV-resistant, and they were selfed to generate BC1S1 populations for a typical 

backcross breeding program. Populations were phenotyped in three different locations 

in Israel and/or in controlled inoculation setups in greenhouses, and the most resistant 

individuals were selected for further rounds of backcrossing and selfing. What 

differentiates this breeding program from previous efforts to breed TYLCV-resistant 

tomato cultivars is that restriction fragment length polymorphism (RFLP) molecular 

markers were used to correlate chromosomal segments with TYLCV resistance, 

allowing the later stages of the breeding program to be accelerated as genotyping 

could help narrow the pool of individuals needing phenoytping. Resistance genes were 

roughly mapped in the BC2S1 population to chromosomes 6, 3, and 7, and finely 

mapped in the BC3S1 population. The TYLCV-resistance trait was found to be 

associated with a partially-dominant gene located on chromosome 6, which was 

assigned the name Ty-1, and two modifier genes on chromosomes 3 and 7. Since the 

breeding program yielded not only breeding lines nearly isogenic to S. lycopersicum 

with introgressions for TYLCV resistance, but also molecular markers associated with 

the introgressed TYLCV-resistance genes, Ty-1 has become an extremely popular 

source of TYLCV resistance and has been incorporated into many tomato breeding 

programs in the last decade. 

 

Concurrently with the breeding efforts at Hebrew University, a breeding program 

working with S. chilense was initiated in Florida in 1990 with the specific goal of 

developing tomato cultivars with resistance to the bipartite begomovirus ToMoV 

(Scott et al., 1995). A screen of 23 S. chilense accessions showed all to have 
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significant ToMoV resistance, so the 12 with the fewest confounding features were 

selected for the breeding program. (For example, smaller-leaved plants were excluded 

due to the possible confounding effect of less surface area for whitefly feeding.) 

Crosses with a cultivated tomato breeding line yielded 597 fruit but just 15 F1s, ten 

from true seed and five from embryo rescue. Subsequent efforts were made to 

maintain the genetic diversity in the breeding pool through early generations by 

extensively using embryo rescue to prevent the exclusion of any genetic combinations 

with superior disease resistance but poor germination ability. The initial backcross 

generation contained only 43 BC1 plants, but following embryo rescue that number 

increased to 555. Subsequent rounds of selection, backcrossing and selfing narrowed 

the pool to descendents of just 6.3% of the original 555 BC1 plants. Homozygosity for 

ToMoV resistance began to be observed by the F1BC1S4 or F1BC2S3 generation, at 

which point 37,000 plants had been screened for virus resistance. The final selection 

included 12 lines representing five resistance sources: LA 1932, LA 1938, LA 1961, 

LA 1968, and LA 2779. These 12 lines were sent to the Dominican Republic for 

TYLCV resistance trials, where they were shown to carry resistance not only to 

ToMoV but also very strongly to TYLCV-IL[DO], with 9 of the 12 varieties 

performing significantly better than TY-20. 

 

Since the introduction of these begomovirus resistant breeding lines, those derived 

from LA 1932 and LA 2779 have shown to provide the strongest resistance and have 

been commonly used in breeding programs throughout the world. Several efforts have 

been made to map the resistance genes in these lines with successively finer 

resolution, providing breeders with molecular markers to accelerate their breeding 

pipelines. Inheritance studies and QTL  mapping using RAPD markers indicated that 

three loci on chromosome 6 are responsible for resistance to both ToMoV and 
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TYLCV (Agrama and Scott, 2006; Griffiths and Scott, 2001). More recently, a study 

using sequence-characterized amplified region (SCAR) markers further refined the 

location of the major gene controlling TYLCV resistance and designated it Ty-3 (Ji et 

al., 2007a). Ty-3 has been found to be responsible for approximately 65% of the 

TYLCV resistance in lines derived from LA 1932 and LA 2779. Since it is not 

possible to concurrently score for resistance to TYLCV and ToMoV in the same plant, 

the mapping of resistance to the two begomoviruses could not be performed in the 

same mapping population, but the major factor for ToMoV resistance did map to the 

same location, implying that Ty-3 may be responsible for both resistances. 

 

Though they are on the same chromosome arm, it has been determined that Ty-1 and 

Ty-3 are unlikely to be allelic for a variety of reasons (Ji et al., 2007a). Firstly, while 

the introgression on the long arm of chromosome 6 from S. chilense in lines derived 

from LA 2779 does overlap with the region containing Ty-1, the introgression in lines 

from LA 1932 does not. Similarly, the introgression in many Ty-1 lines derived from 

LA 1969 does not overlap with the Ty-3 locus. In fact, the map locations for Ty-1 and 

Ty-3 are approximately 15 cM apart. Additionally, Ty-1 does not confer resistance to 

ToMoV, while Ty-3 does. Finally, Ty-1 has been shown to be almost completely 

dominant, while Ty-3 confers equal contributions to TYLCV resistance from 

dominance and additive effects. Given these facts, it seems likely that Ty-1 and Ty-3 

are two separate genes, which raises the possibility that they could be combined for 

even greater resistance. Unfortunately the two genes are linked in trans, and since 

genomic sequence divergence tends to inhibit recombination, it will take more time 

and effort for breeders to break those linkages. The availability of tightly linked 

molecular markers will help, however, by allowing breeders to screen plants at an 
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early stage, saving both time and space and allowing breeders to generate many more 

plants with potential recombination events.  

 

Solanum habrochaites (syn. Lycopersicon hirsutum) 

In addition to S. peruvianum, several accessions of S. habrochaites were also 

evaluated at the University of Cairo in 1980 for TYLCV resistance (Hassan et al., 

1982). Of the seven resistant accessions identified, LA 386 proved to be the most 

highly resistant. Meanwhile, a screening program in Cyprus in 1985 also reported 

several resistant accessions of S. habrochaites, including LA 1777 (Ioannou, 1985). 

The resistance of these two accessions was confirmed several times in the intervening 

years (Hassan et al., 1984; Zakay et al., 1991), but it was not until 1998 that a breeding 

program attempted to use them as a resistance source. In that year a breeding team at 

Hebrew University crossed the two accessions, yielding highly resistant F1 hybrids. 

These F1 hybrids were then crossed twice with S. lycopersicum, with embryo rescue 

being necessary following the first cross to generate viable progeny. Rounds of 

phenotypic evaluation, involving whitefly-mediated inoculation in greenhouses, were 

alternated with rounds of selfing until fixed TYLCV resistant lines were obtained in 

the BC1F4 generation (Vidavsky and Czosnek, 1998). In these lines, inheritance 

studies implied a single dominant factor associated with tolerance (i.e. ability to 

perform well despite infection by the virus) and two or three recessive genes 

associated with immunity (i.e. prevention of the accumulation of viral transcript). One 

particular breeding line from this program, Ih902, has become a popular source of 

TYLCV resistance. 

 

A separate line of work with S. habrochaites was initiated concurrently with Hassan’s 

screens in 1982 at Haryana Agricultural University in India. A series of screens there 
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identified a number of S. habrochaites accessions resistant to Tomato leaf curl virus 

(ToLCV), a tomato-infecting begomovirus endemic to India. One accession in 

particular, S. habrochaites f. glabratum B6013, exhibited very promising resistance, 

showing no symptoms at all during the screen (Banerjee and Kalloo, 1987a). 

Inheritance studies showed that the resistance trait of B6013 is controlled by two 

epistatic genes (Banerjee and Kalloo, 1987b). Accession B6013 was crossed with 

several locally popular tomato cultivars in 1982, and F1s were phenotypically 

evaluated for ToLCV resistance by controlled inoculation with viruliferous whiteflies 

in a greenhouse. Resistant individuals were backcrossed to their cultivated parents, 

and the procedure was repeated until the BC6 generation, at which point lines were 

observed to be fixed for ToLCV resistance (Kalloo and Banerjee, 1990). 

 

While the breeding lines from Haryana Agricultural University were subsequently 

found to carry resistance to only some tomato-infecting begomoviruses, they were 

very effective throughout much of Asia including south India, Taiwan, Japan, and 

north Vietnam, and were therefore were used extensively by the Asian Vegetable 

Research and Development Center (AVRDC, now known as the World Vegetable 

Center) in its breeding program in Taiwan. (Line H24 in particular was a very popular 

source of resistance.) Researchers at AVRDC mapped the resistance trait using RFLP 

markers in a collection of F3 families from a cross between H24 and a susceptible 

tomato cultivar, and found it to be associated with a single introgression of 14.6 cM on 

the short arm of chromosome 11 (Hanson et al., 2000). Formally named Ty-2 (Hanson 

et al., 2006), the gene has been further mapped to a 10 cM region surrounding a single 

PCR-based molecular marker (Ji et al., 2007b). 
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Pyramiding resistance genes 

At this point in time, TYLCV resistance genes have been identified in S. 

pimpinellifolium, S. peruvianum, S. chilense, and S. habrochaites, and each source has 

yielded breeding lines that offer strong protection against TYLCV in the field. While 

it has been argued persuasively that Ty-1 and Ty-3 are not at the same locus, it remains 

to be seen whether any of the other resistance genes identified in different species 

actually represent the same locus. In that vein, several recent observations are 

enlightening. An analysis of TY197, a line deriving from the work with S. peruvianum 

at the ARO in Israel (Lapidot et al., 1997),  has shown that the line does not carry 

introgressions from S. peruvianum corresponding to the Ty-1, Ty-2, or Ty-3 loci (Ji et 

al., 2007b). One of the four markers mapped to the introgression responsible for 

TYLCV-resistance in a S. piminellifolium hirsute INRA-derived line (Chagué et al., 

1997) has more recently been found to map very closely to Ty-3, near 25 cM on 

chromosome 6 (Ji et al., 2007b). It is therefore possible that these genes are allelic. 

Finally, cultivars in Guatemala deriving their resistance from the Israeli S. 

habrochaites-derived breeding line Ih902 (Vidavsky and Czosnek, 1998) have been 

shown to have many identical sequences to S. chilense LA 2779-derived varieties in 

the 13 cM to 32 cM range of chromosome 6, which contains Ty-3 (Ji et al., 2007b), 

implying the possibility that Ty-3 is also responsible for some S. habrochaites-derived 

resistance. 

 

As the collection of successful TYLCV-resistant breeding lines grows, attention in the 

breeding community is beginning to shift towards the pyramiding of multiple TYLCV 

resistance genes in a single cultivar. The earliest work in this vein was conducted by 

an international team of researchers let by H. Laterrot of INRA in Avignon, France in 

the mid-1990s (Laterrot, 1995). Various breeding populations generated from 
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interspecific crosses between a resistant accession of a wild species and a susceptible 

cultivated line were sent to collaborators in locations with strong TYLCV pressure 

including Cyprus, Egypt, Israel, Jordan, Lebanon, Mali, Senegal, Sudan, and Turkey. 

Populations were screened in each location, and half the seeds from the selected 

individuals were sent back to INRA, while the other half were used as the resistance 

sources in local breeding programs. (Hence the work of Hassan et al. with S. 

peruvianum in 1984.) Partners were also free to share their breeding lines with INRA. 

Each year, selections and breeding lines representing two different resistance sources 

were combined to generate a single population with multiple resistance genes. Thus, 

the Chépertylc 92 population was bred in 1992 from selections from two populations, 

one with S. cheesmaniae LA 1401 as a resistance source, and the other using S. 

peruvianum CMV selection INRA. Similarly, Pimpertylc 93 was derived from 

populations based on L. pimpinellifolium Hirsute INRA and L. peruvianum CMV 

selection INRA. It is not clear if these materials were successfully bred into 

commercial cultivars, but at the very least they provided a very solid theoretical 

foundation for further work in pyramiding resistance genes. 

 

More recent work in pyramiding resistance genes has been conducted by Vidavsky et 

al. (2008), who have begun making diallele crosses between one susceptible breeding 

line and six resistant lines representing S. pimpinellifolium (line PIMHIR, derived 

from accession Hirsute INRA, Laterrot, 1992), S. peruvianum (lines TY172, 

Friedmann et al., 1998; and TY197, Lapidot et al., 1997), S. chilense (lines Fla-595-2, 

Griffiths and Scott, 2001; and TY-52, Zamir et al., 1994) and S. habrochaites (line 

Ih902, Vidavsky and Czosnek, 1998). Progeny of these crosses have shown that 

hybrids between a resistant breeding line and a susceptible breeding line are always 

more TYLCV resistant than the susceptible parent, and when two resistant breeding 
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lines are crossed the resultant hybrid is typically at least as resistant as the more 

resistant parent. Interestingly, the most highly resistant hybrid resulted from the cross 

between S. habrochaites Ih902 and S. peruvianum TY172, the former of which is 

thought to possibly contain Ty-3 as well as several recessive factors conditioning 

immunity, and the latter of which has been characterized as having at least three genes 

responsible for TYLCV resistance (as described above). 

 

Cultivars combining several different sources of TYLCV resistance promise a range of 

advantages over those derived from single sources. Cultivars derived from single 

sources of resistance have at times been found to offer resistance to only some of the 

many tomato-infecting begomoviruses responsible for TYLCD, and their resistance 

therefore breaks down in locations with different complements of viral strains (Hanson 

et al., 2000). By pyramiding resistance genes, a breeder can increase the odds that the 

same cultivar will offer a decent level of virus resistance in multiple locations 

throughout the world. Multiple resistance genes also often offer a stronger level of 

resistance than single genes, as they have the potential to interfere with multiple steps 

of the begomovirus infection cycle. Resistance to a wider range of viruses and 

stronger suppression of a range of viral capacities can work together to strongly 

decrease the evolution of the virus: as fewer viral strains infect the same plant, there 

are fewer opportunities for recombination events to yield new strains, and with a 

diminished capacity to undergo rounds of replication, the virus also has fewer 

opportunities to experience mutations. As a result, pyramiding resistance genes can 

strongly decrease the odds of a virus evolving to overcome the resistance trait, 

rendering cultivars combining multiple resistance sources very valuable resources in 

the fight against TYLCV. 

 



 

46 

 

Breeding for resistance to Bemisia whiteflies 

While the majority of the breeding work aimed at decreasing the impact of TYLCV 

has focused on breeding for resistance to the virus itself, there has also been some 

work focused on breeding for resistance to the whitefly vector. Resistance to 

whiteflies would be equivalent to broad-spectrum resistance to all begomoviruses, and 

would thus be a very valuable trait in cultivated tomato. 

 

Solanum pennellii has high densities of type IV glandular trichomes on all green 

above-ground tissues of the plant, and 90% of the exudates from these trichomes have 

been shown to be acylsugars. Acylsugars have a deterrence effect on a wide range of 

pests, including Bemisia tabaci. The deterrence effect manifests as a strong delay in 

feeding, with insects waiting longer before probing a leaf surface, and probing fewer 

times thereafter, than on leaves without strong concentrations of acylsugars. In 

addition, high acylsugar concentration strongly reduces oviposition by whiteflies. 

These deterrence effects can have a serious impact on the spread of whitefly-vectored 

viruses, as decreased probing by the whitefly is equivalent to a decrease in 

inoculations. Furthermore, acylsugars offer an advantage over many other whitefly 

control methods in that they are unlikely to lead to the development of resistance in 

the whitefly. While pesticides exert a strong selective pressure on the insect 

population, tomatoes are not even a preferred host of whiteflies, and whiteflies could 

likely identify another source of food preferable to acylsugar-covered tomato plants, 

thus minimizing the selective pressure on the whiteflies to become acylsugar-tolerant. 

 

Efforts have been focused on the introgression of the genes for acylsugar production 

from S. pennellii LA 716 into cultivated tomato (Mutschler and Wintermantel, 2006). 

Initial lines generated in this program possessed strong insect resistance, but were 
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found to have a wide range of horticulturally undesirable traits due to linkage drag, 

including delayed germination, delayed fruit set and size, delayed maturity, and 

reduced seed set. It was determined that these lines carried 7 or 8 introgressions from 

S. pennellii accounting for 25-30% of the genome (Mutschler et al., 2005). Significant 

efforts have been invested in reducing the number and size of the introgressions from 

S. pennellii in these acylsugar tomato lines, with the most recent published report 

describing lines with as few as 4 introgressions from S. pennellii accounting for as 

little as 10% of the genome (Lobato-Ortiz et al., 2007). It is expected that the 

pyramiding of acylsugar-mediated whitefly resistance from these materials with genes 

for TYLCV resistance will have a serious impact on the future success of tomato 

cultivars in regions with significant TYLCV pressure. 

 

Conclusion 

The speed with which TYLCV has risen in prominence during the last two decades 

has made research on TYLCV control methods a top priority around the world. While 

no one method has yet proven to be a complete solution to the TYLCV problem, 

various combinations of physical and chemical methods for whitefly control and 

cultural and genetic methods for virus control have been successfully deployed in 

many regions with heavy TYLCV pressure. Unfortunately, all of these control 

methods require access to resources including physical materials, seeds, and most 

importantly, money, that are not always available in the developing world. TYLCV 

does not recognize international borders, and has become a tremendous constraint to 

tomato production in West Africa in the last three decades. The following section 

reviews the history of the development of tomato-infecting begomoviruses in West 

Africa and their impact on tomato production in the region.  
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III.  The Emergence of TYLCD in West Africa 

West Africa is defined by the United Nations as the portion of the African continent 

south of the Sahara desert and west of an imagined north-south axis lying at 

approximately 10º E longitude. The region is bordered both to the west and to the 

south by the Atlantic Ocean, and is situated entirely between the Tropic of Cancer and 

the Equator. The region has a range of climatic zones that vary both in average 

temperature and in the amount and timing of seasonal rainfalls. Arrayed in bands that 

run east-west across the continent, these zones run from the Sahel (250 – 500 mm 

annual rainfall) in the north through the Sudano-Sehelian Zone (500 – 900 mm) and 

the Sudanian Zone (900 – 1100 mm) to the Guinean Zone (>1100 mm) in the south. 

Countries in the region include Benin, Burkina Faso, Côte d’Ivoire, Cape Verde, The 

Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali, Mauritania, Niger, Nigeria, 

Senegal, Sierra Leone, and Togo. Of these 16 countries, 13 are on the United Nations 

list of Least Developed Countries (LDCs), with only Côte d’Ivoire, Ghana, and 

Nigeria remaining outside that classification. 

 

Agriculture is the major industry of West Africa, with 60% of the regional workforce 

engaged in agricultural activities (FAOSTAT, 2009). In some of the least developed 

countries, this number climbs as high as 90%. Agriculture in this region is typically 

low-input, as access to resources, including credit, improved seeds, chemical inputs, 

farm machinery, and even extension services is severely limited (Breman et al., 2001; 

Kelly et al., 2003). Other significant constraints include highly degraded soils 

(Sanchez, 2002), shifting weather patterns (Giannini et al., 2008; Nicholson, 1980), 

and a wide range of damaging pests and diseases (Nwilene et al., 2008). 
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Tomatoes are an extremely popular vegetable in West African cuisine (see next 

chapter for more details) and are grown throughout the entire region. Major production 

areas tend to be concentrated in the drier, more northern zones, especially the Sudano-

Sahelian Zone, where lower humidity limits the development of fungal diseases, 

which are a tremendous constraint to tomato production in the southern regions. The 

Sahel is characterized by a heavy rainy season of no more than four months centered 

on August (Giannini et al., 2008), and tomatoes are typically grown immediately 

following the rainy season, with wells dug to access the increased groundwater supply 

used as a source of irrigation. Irrigation is additionally provided by several major 

rivers that run through the arid regions of West Africa. The largest of these, the Niger 

river, brings water to arid regions of Mali, Burkina Faso, Benin, and Niger. Other 

rivers include the Senegal River (Mali, Senegal), the Gambia River (Gambia, Guinea, 

Senegal), and the Volta (Burkina Faso, Ghana).  

 

Agricultural intensification in the West African tomato sector over the last several 

decades (described in detail in the next chapter) has resulted in ideal conditions for the 

development of epidemic TYLCD throughout the region. The arid climate combined 

with irrigated cropping systems is ideal for whitefly proliferation (Seal et al., 2006), 

which is only compounded by the prevalence of preferred whitefly hosts such as okra 

and cotton (Omondi et al., 2005). Widespread cultivation of a very limited set of 

tomato cultivars has offered tomato-infecting begomoviruses a tremendous pool of 

hosts in which to replicate and evolve, while limited access to new materials has left 

farmers with no means of halting the spread of the virus short of ceasing cultivation of 

tomato, and no means of improving their yields. 
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History of TYLCD observations in West Africa 

TYLCD-like symptoms were first observed in West Africa in 1974 on tomato plants in 

a home garden in southern Nigeria (Lana and Wilson, 1976). Infected plants of the 

variety Atom Bite showed stunting and small leaflets with yellowing and upward 

cupping. The disease was transmissible to all other tomato varieties tested by grafting 

and by whitefly inoculation, but not by sap inoculation, implying a begomovirus-

caused disease. However, tools for the molecular analysis of TYLCV did not exist at 

the time and therefore no more is known about the disease observed in that instance. 

 

Similar disease symptoms were observed in Senegal in 1976, The Gambia in 1978, 

Mauritania in 1979, Côte d’Ivoire in 1980, and Mali in 1983, often with devastating 

results (reviewed by D'hondt and Russo, 1985). For instance, D’hondt and Russo 

observed some regions of Senegal with disease incidence reaching nearly 100%. They 

performed the first characterization of a West African tomato-infecting begomovirus 

to go beyond symptomology and transmission studies by describing the disease-

mediated changes in subcellular structure observed by electron microscopy. These 

changes, which included the accumulation of virion particles and inclusion bodies, 

conformed with those described previously for geminivirus infection (Goodman, 

1981), providing further support to the notion that the observed disease was caused by 

a begomovirus. Interestingly, their report describes the screening of not only 30 

tomato cultivars, but also S. pimpinellifolium LA 121 for resistance to the virus. LA 

121 had previously shown to be resistant in the Middle East (Pilowsky and Cohen, 

1974). While all 30 tomato cultivars were completely susceptible, LA 121 showed 

only mild susceptibility, implying the possibility that the observed begomovirus was 

in fact a member of the TYLCV cluster or a closely related variant. 
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With the isolation of the TYLCV genome in 1988 (Czosnek et al., 1988) further tools 

began to be available for the characterization of tomato-infecting begomoviruses as 

they were identified around the world. A study published in 1989 documents the first 

use of a DNA probe to identify TYLCV in symptomatic tissue samples by squash blot 

hybridization (Navot et al., 1989). Squash blot hybridization involves the squashing of 

leaf disks on a charged nylon membrane – as cells rupture and release their contents 

onto the membrane, the DNA is electrostatically attracted to the membrane and 

remains fixed there. Such blots are extremely stable, with their diagnostic capacity 

remaining intact for months at room temperature, making them a very useful tool for 

the diagnosis of plant diseases in remote locations. Unfortunately, the nucleic acid 

hybridization mechanism only provides an approximate indication of the sequence 

similarity between the squashed sample and the probe – chimeric sequences, for 

instance, which are common among begomoviruses, can often go undetected unless 

multiple probes spanning the length of the viral genome are used. 

 

The first worldwide survey of TYLCV using squash blot hybridization was conducted 

in 1990 (Czosnek et al., 1990). Samples from symptomatic plants were collected in the 

Mediterranean Basin (Cyprus, Egypt, Israel, Italy, Lebanon, and Turkey), West Africa 

(Cape Verde, Mali, Nigeria and Senegal), Southeast Asia (Taiwan, Thailand) and the 

Americas (Florida, Costa Rica, Venezuela) in 1987, 1988 and 1989. The DNA probe 

used for TYLCV detection was generated from the intergenic region of TYLCV-IL, a 

genomic region found in all geminiviruses that differs significantly between viral 

species and is associated with the regulation of gene expression and proper 

encapsidation of viral genomes (Lazarowitz, 1987). Samples positive for TYLCV 

infection were identified from all locations in the screen except for those in the New 

World. While still not demonstrating that TYLCV-IL was the actual viral strain 
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responsible for TYLCD in West Africa, this study did imply that the African, Asian 

and Mediterranean tomato-infecting begomoviruses are descended from a common 

ancestor not shared with the New World tomato-infecting begomoviruses. (Notably, 

the Israeli isolate of TYLCV had not yet been introduced in the New World, and thus 

all New World begomoviruses included in the survey were endemic to the Americas.) 

 

In 1995 a survey of tomatoes with TYLCD-like symptoms was conducted in Burkina 

Faso (Konate et al., 1995). The authors described the disease as economically 

important in the country, and observed approximately 60% disease incidence in a 

high-pressure year. A serological method was used to detect the differences in 

antigenic properties between Burkinabé virus samples and others isolated in Senegal 

and Italy. The begomovirus CP gene, which codes for the coat protein that makes up 

the viral capsid, is highly conserved across begomovirus species since it must retain 

specificity for the virus’s whitefly vector. Nonetheless, a panel of monoclonal 

antibodies raised against a series of begomoviruses can have enough differential 

hybridization with different begomovirus coat proteins to distinguish between some 

begomovirus strains (Harrison et al., 1991). In an Enzyme-Linked Immunosorbant 

Assay (ELISA) using a panel of monoclonal antibodies raised against African cassava 

mosaic virus the authors identified two distinct tomato-infecting begomovirus strains 

in Burkina Faso. One, from the Sahelian region in the far north of the country, showed 

a similar, though not identical, serological profile to TYLCSV (the Western 

Mediterranean virus), while another, from the Kou Valley in the central Sudano-

Sahelian region of the country had a similar profile to an isolate from Senegal. 

Interestingly, the northern isolate had a very similar profile to several viral isolates 

from tobacco in the same region, implying the possibility that those isolates represent 

a single virus with a host range that includes both tomato and tobacco. Also interesting 
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is that isolates of Okra-infecting and tomato-infecting begomoviruses from the Kou 

Valley showed extremely similar serological profiles, supporting the possibility that 

they are adapted to transmission by the same whitefly variant. However, unlike with 

DNA sequences, similarities in serological profiles are not automatically assumed to 

imply relatedness, and therefore little can be considered validated by this study beyond 

the existence of two distinct tomato-infecting begomovirus variants with economic 

importance in Burkina Faso. 

 

A second worldwide survey of tomato-infecting begomoviruses, based again on 

squash blot hybridization, was conducted in 1997 (Czosnek and Laterrot, 1997). In the 

seven years since their initial survey, the authors had collected additional samples 

from the Eastern Mediterranean Basin and the Middle East (Jordan, Syria), the 

Western Mediterranean Basin (Spain), Sub-Saharan Africa (Burkina Faso, Cameroon, 

Côte d’Ivoire, Sudan, and Tanzania), Central Asia (Turkmenistan), and the Americas 

(Cuba, the Dominican Republic, Argentina). Many of these new samples represented 

newly emergent strains of tomato-infecting begomoviruses, while those in the 

Dominican Republic and Cuba were known to have been introduced from the Middle 

East in the intervening years. All samples from the original study were also included 

in the new survey. Several new approaches were used in this survey to elicit further 

information from the squash blot hybridization results. Firstly, two DNA probes were 

utilized – the first, from the intergenic region of TYLCV-IL, served as a specific probe 

for that strain of the virus while the second, a full-length clone of the same TYLCV 

strain, served as a more general probe. Secondly, hybridizations were performed at 

two different levels of stringency to differentiate between strong and weak sequence 

identity. This allowed each sample in the survey to be placed into one of four 

categories based on the strength of its apparent relatedness to the Israeli TYLCV.  
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Using this protocol all samples from the Eastern Mediterranean and Middle East, as 

well as those from Cuba and the Dominican Republic, were given a score of 4, 

indicating hybridization of both the general and specific probes under high stringency 

conditions. In contrast, the samples from the Western Mediterranean and Southeast 

Asia received scores of 2, indicating hybridization of both the general and specific 

probes only under low stringency conditions. The samples from West Africa fell into 

three categories. Those from Senegal and Cape Verde received scores of 3 

(hybridization of the general probe under high stringency, but hybridization of the 

specific probe only under weak stringency), while samples from Côte d’Ivoire, Mali 

and Nigeria received scores of 2, and samples from Burkina Faso received a score of 1 

(hybridization of the general probe only under weak stringency), the same score 

received by samples from Argentina, Cameroon, Tanzania and Turkmenistan. These 

results imply a significant level of diversity in the tomato-infecting begomoviruses of 

West Africa, and further imply that some West African isolates share a more recent 

common ancestor with the Middle Eastern strains of the virus than is shared between 

begomovirus isolates from the Eastern and Western Mediterranean Basin. Whether 

this was indicative of a recent recombination event or a more ancient divergence in 

phylogeny was not revealed by the study. 

 

As of 2002 when the first West African begomovirus genome sequence was published, 

the abovementioned studies were the only reports of TYLCD incidence in West 

Africa. They paint a picture of a diverse viral complex that was widespread throughout 

the region and was, at least in isolated incidences, highly destructive, but the lack of 

more detailed descriptions of the impact of the disease on tomato production makes it 

difficult to know with certainty how important the disease was in the region. Bacterial 

wilt, early blight, Fusarium wilt, root knot nematodes, Helicoverpa armigera, and 
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spider mites are also major pests and diseases of tomato in West Africa, and few 

reports were published on those constraints as well. However, given the existence of a 

diverse set of tomato-infecting begomoviruses throughout West Africa going back to 

at least the mid-1990s, and given that the tomato-infecting begomoviruses of West 

Africa have more recently been characterized to be a major constraint to production 

(as described below), it seems reasonable to conclude that by the mid-1990s TYLCD 

was, at the very least, one of the region’s more damaging diseases of tomato. 

 

The Tomato-Infecting Begomoviruses of West Africa 

The detailed characterization of West African tomato-infecting begomoviruses began 

with the sequencing of the genome of a West African TYLCD-associated 

begomovirus in 2002 (Théra et al., 2002). Isolated in Mali, this begomovirus was 

found to most closely match a Middle Eastern TYLCV isolate in most of its sequence, 

but it most closely matched Hollyhock leaf curl virus (HLCrV) from Egypt in its C1 

and C4 ORFs.  At the time it was tentatively described as an isolate of TYLCV, and 

therefore dubbed TYLCV-Mali. Since then, it has been identified as a separate 

begomovirus species Tomato yellow leaf curl Mali virus  (TYLCMLV, Fauquet and 

Stanley, 2005), and further isolates have been identified in Ethiopia (Shih et al., 2006), 

and Ghana (Osei et al., 2008). 

 

With the advent of the Agricultural Biotechnology Support Project II (ABPSII) 

program on tomato in West Africa in the last several years (described in detail in the 

next chapter), significant work has been done by the Robert Gilbertson lab at U.C. 

Davis to fully characterize the tomato-infecting begomoviruses of West Africa. 

Samples have been collected in Benin, Burkina Faso, Ghana, Mali, Niger, Nigeria, 

Senegal, and Togo, and viral genomes from all locations have been amplified and 
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sequenced. Descriptions of a total of three West African tomato-infecting 

begomovirus species, one associated with a DNA-β satellite, have been published. 

They are Tomato yellow leaf curl Mali virus (TYLCMLV), Tomato leaf curl Mali 

Virus (ToLCMLV), and Tomato yellow leaf crumple virus (ToYLCrV). 

 

TYLCMLV causes typical TYLCD-type symptoms in infected plants, including 

stunting, leaf yellowing and cupping, flower abscission, and significant yield losses 

when plants are infected early. It has been identified thus far in Benin, Burkina Faso, 

Ghana, Mali, Senegal, and Togo, often causing up to 100% disease incidence in those 

countries during peak whitefly season. As described earlier, it is a recombinant virus 

in which the majority of the genome is derived from a Middle Eastern TYLCV isolate 

known as TYLCV-Mld, while the remainder is most closely related to HoLCrV (Chen 

et al., 2009). Importantly, sequence similarity between TYLCMLV and these two 

viruses is approximately 90%, implying a period of geographic isolation during which 

mutations accumulated in the TYLCMLV genome following recombination. In other 

words, TYLCMLV is not a recent recombinant, though the exact timing of the 

recombination event is difficult to calculate. This is further supported by the existence 

of the Ghanaian and Ethiopian strains of TYLCMLV, which are 97 and 91% identical 

to TYLCMLV, respectively – for the Ethiopian strain to have diverged 9% from the 

Malian strain implies that significant time has elapsed since the two shared a common 

recombinant ancestor. TYLCMLV does fall within the TYLCV complex of tomato-

infecting begomoviruses, but it falls within a sister clade to the Middle Eastern 

TYLCV strains and is in fact its own species. 

 

TYLCMLV has been found to be associated with a DNA-β satellite that is not 

required for the virus’s replication but which can significantly increase the symptom 
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severity of a TYLCMLV infection (Chen et al., 2009). Plants co-infected by 

TYLCMLV and its DNA-β show a severe stunting sometimes described as a 

“broccoli” symptom. Sequence analysis of this satellite molecule has shown it to be 

nearly identical to a DNA-β known as Cotton leaf curl Gezira betasatellite 

(CLCuGB), a satellite typically associated with malvaceous species such as cotton and 

okra that has been found in begomovirus-infected okra in Sudan and Mali. Given the 

promiscuity of many DNA-βs and the polyphagous nature of the B-biotype of Bemisia 

tabaci, which in Ghana has been shown to favor both okra and tomato as hosts 

(Omondi et al., 2005), it is perhaps not surprising that a tomato-infecting begomovirus 

has been found associated with a DNA-β more commonly found in okra. Since a 

minor portion of the TYLCMLV genome is descended from a malvaceous 

begomovirus (an ancestor of HoLCrV), it has been proposed that the recombination 

event gave a selective advantage to TYLCMLV by allowing it to associate with a 

common African DNA-β satellite, perhaps increasing its host range or its replication 

capacity (Chen et al., 2009). While this theory is intriguing, the majority of 

TYLCMLV infections do not involve the DNA-β, and no specific advantage has been 

found to co-infection by the virus and the DNA-β. 

 

ToLCMLV and ToYLCrV both cause the common TYLCD-associated symptoms in 

tomato with minor variations: ToLCMLV does not cause significant leaf yellowing, 

and instead often causes a purple veination pattern, while ToYLCrV does cause 

yellowing but causes leaves to crumple rather than curl. Analysis of their genome 

sequences shows that both viruses are closely related to each other, but fall outside the 

major TYLCV complex (Zhou et al., 2008). In fact, ToLCMLV and ToYLCrV fall 

into a clade of African begomoviruses, and their next closest known relatives are 
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Tobacco leaf curl Zimbabwe virus and Tomato curly stunt virus from South Africa. 

Both can be found in Benin, Burkina Faso, Ghana, Mali, Niger, Senegal, and Togo. 

 

Importantly, mixed infections of two or more of these begomoviruses have been 

observed in single tomato plants throughout West Africa. When ToYLCrV is 

involved, multiple symptom types are visible on the same plant. The results of mixed 

infections are typically stronger disease symptoms – in moderately infected fields, 

plants with mixed infections stand out due to their stronger than average stunting. 

 

In addition to TYLCMLV, ToYLCrV, and ToLCMLV, two additional West African 

tomato-infecting begomoviruses have been identified through the ABSPII West 

African tomato program (Gilbertson RL, personal communication). One was isolated 

in Nigeria, and is provisionally named Tomato leaf curl Nigeria virus (ToLCNgV) and 

the other was isolated in Togo and is provisionally named Tomato leaf curl Togo virus 

(ToLCTgV). Full genome sequences place the two viruses within the African 

begomovirus clade. A DNA-β satellite has been found in association with ToLCTgV; 

while it does cluster with the African DNA-β sequences, it is different from previously 

identified satellites and is still being characterized. 

 

Conclusion 

The diversity of tomato-infecting begomoviruses in West Africa, including viruses 

both from within and without the TYLCV cluster, implies the existence of a 

significant pool of genetic variation enabling the viruses to adapt to new hosts as they 

become prevalent in the region. In addition, the regional environment has several 

features such as high temperatures, frequent irrigation in arid areas, and a prevalence 

of whitefly-favored hosts such as okra and cotton that enable the accumulation of 
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significant whitefly populations in the region. The result is that West Africa is highly 

susceptible to the emergence of new begomovirus diseases as crop production is 

intensified. Given the additional regional constraints including a wide variety of 

damaging pests and diseases, unpredictable weather patterns, degraded soils, and lack 

of access to credit, inputs and markets, it is clear that the potential for emergence of 

new, highly damaging begomoviruses in the region is a significant threat to an already 

fragile system. 

 

The following chapter describes the history of tomato production in West Africa, from 

its colonial roots to its significant intensification and collapse in the latter decades of 

the 20
th

 century. It then moves on to discuss projects that have been underway in West 

Africa in recent years to alleviate the impact of tomato-infecting begomoviruses in the 

region and to improve access to seeds of modern tomato cultivars. 
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CHAPTER 2 

TOMATOES IN WEST AFRICA: GROWTH, DECLINE, AND 

PLANS FOR RECOVERY  

 

Introduction and Intensification 

While not indigenous to West Africa, tomatoes have been a part of the region’s 

culinary landscape for hundreds of years. Originally domesticated in the New World 

(Bai and Lindhout, 2007), tomatoes were likely brought to Africa by European 

explorers or merchants in the 16
th

 century. The history of their introduction and 

subsequent integration into the local cuisine are unfortunately not well documented 

due to a general lack of recorded histories among African peoples, but primary 

literature from outside traders, colonialists and explorers implies that tomatoes have 

likely been part of the West African diet since at least the mid-19
th

 century. An 1849 

botanical treatise on the flora of West Africa, for instance, describes tomato as being 

commonly cultivated in Fernando Pó, an island in the Gulf of Guinea which was, at 

the time, an administrative center of the British Empire (Hooker et al., 1849). The 

treatise additionally describes tomato as being commonly found escaped from 

cultivation throughout Africa, supporting the notion that tomatoes were readily 

available for culinary use in West Africa at that time. In 1863, a travelogue titled 

“Wanderings in West Africa from Liverpool to Fernando Po” describes a meal in 

Accra (now the capital of Ghana) in which tomatoes were an ingredient in “Palaver 

sauce” (Burton, 1863), a mixed-vegetable stew that is still today a staple of West 

African cuisine, typically made with greens, tomatoes and meat and served over a 

starch such as rice, yams, or a porridge known as fufu. While this meal was served by 

a British colonialist, it consisted of local specialties and was prepared by local people, 

implying that tomato likely was a locally-used ingredient by that time. By 1898 there 
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is evidence that tomatoes were intentionally cultivated by people thoughout West 

Africa. A lengthy treatise on the British territories in Africa published in that year 

describing the land and its flora and fauna, as well as its inhabitants and their customs, 

mentions “degenerate” tomatoes growing “semi-wild” around most villages in the 

region (Johnston, 1898). While the author of that treatise may not have had the highest 

regard for the locally favored tomato varieties in West Africa at that time (tomatoes 

had undergone a second round of intense domestication in Europe in the 18th and 19th 

centuries, Bai and Lindhout, 2007) his observation of tomatoes surrounding most 

villages strongly supports the notion that people were eating the tomatoes, and either 

intentionally cultivating them or at least allowing them to grow as volunteer plants 

from dropped tomato seeds. By the 1920s, cookbooks for West African colonial 

administrators were making specific references to buying tomatoes in local markets, 

demonstrating that by that time tomatoes were undoubtedly being grown for 

consumption in the region (Tew, 1920). 

 

While the exact timeline of the integration of tomatoes into the West African culinary 

canon is not easily discerned, it is clear that by the 1960s, when most West African 

nations were gaining their independence, tomatoes had become integral to the regional 

diet. In what is now considered classic West African cuisine, tomatoes are typically 

fried in oil with onions and made into a paste that then serves as a base for many 

different stews and sauces. As a result, when commercial canned tomato paste became 

available in West Africa, it quickly increased in popularity, especially in the growing 

urban centers. In 1967, for instance, West Africa imported 18,000 tons of tomato paste 

from Italy alone (NAS, 1974). 
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Recognizing a significant opportunity, farmers in West Africa began increasing their 

tomato production starting in the 1960s, with land under tomato cultivation more than 

doubling in the decade between 1961 to 1971, and doubling again from 1971 to 1981 

(FAOSTAT, 2009). Several young West African governments saw domestic tomato 

production and processing as a major opportunity for economic development, and 

invested heavily in infrastructures to support the growing industry. In 1964, for 

instance, a state-owned cannery was opened in Mali  in the town of Baguineda, a 

major irrigated production area outside the capital city of Bamako (Kelly et al., 2005). 

Like many other areas scattered throughout Francophone West Africa, Baguineda 

benefitted from a pre-existing irrigation project built decades earlier by the French 

colonial service (Eicher and Baker, 1992), and was therefore an ideal location for 

high-yield tomato production. Built in part with funds from the Yugoslavian 

government, the cannery had two processing lines, one for tomato paste and the other 

for mango puree. Both were intended to help provide a market for surplus horticultural 

production during the peak harvest season, and to decrease dependence on canned 

imports by providing a domestic alternative. The country began a major campaign to 

encourage farmers to grow tomatoes – many of the older farmers throughout Mali 

today recall that campaign as the primary impetus for their adoption of tomato 

cultivation at the time (Soumaré and Moore, 2005). 

 

A similar project was initiated in Ghana starting in 1968 (Khor and Hormeku, 2006). 

Three state-owned tomato processing facilities were opened that year in three 

geographically distinct locations throughout Ghana: one in the northern region in the 

town of Pwalugu, one in the central region in the district of Wenchi, and one in the 

south in Nsawam, near Accra. The canneries operated on partial contract arrangements 

with smallholder growers, guaranteeing to buy specific quantities of tomatoes at set 
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prices, which had the added value of providing farmers with information about market 

pricing and thus giving them greater control when negotiating with buyers for fresh 

market distribution. In 1975, Ghana additionally initiated a major irrigation project in 

the Upper East Region to develop an area of 24,000 hectares for the growing of 

irrigated crops. The Tono dam was completed in 1985 and is one of the largest 

agricultural dams in West Africa. Since its completion, close to 90% of the two 

million people living in the Upper East Region have taken up tomato growing, finding 

tomato to be more lucrative than all other crops (Khor and Hormeku, 2006). 

 

These and other tomato-related projects sponsored by governments, including research 

and extension programs in many countries (NAS, 1974), led to significant increases in 

tomato yields throughout West Africa in the 1960s, 70s and 80s. In the 1960s tomato 

yields in West Africa averaged just 6.3 tons per hectare (t/ha), but starting in the early 

1970s they began to rise steadily and by 1990 had reached 13.0 t/ha (FAOSTAT, 

2009). However, it is worth noting that in contrast, tomato yields in the United States 

were 25.4 t/ha in 1961 and had reached 55.1 t/ha in 1990. Thus, while African 

governments were encouraging significant agricultural intensification around tomato 

production, major constraints were still preventing farmers from producing at the 

levels seen in the developed world. 

 

Policy Changes and Decline of the Tomato Processing Industry 

In the mid-1980s the International Monetary Fund (IMF) and the World Bank began 

changing their policies for lending to developing countries. Based on the principle that 

loans to a country with significant debt should be accompanied by a series of 

conditionalities that move that country towards greater liquidity of resources and thus 

increased capacity to cover its expenses, the IMF and the World Bank began requiring 
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loan recipients to institute a series of Structural Adjustment Programs (SAPs, 

Williamson, 1983). These SAPs were very broadly designed to allow free market 

forces, rather than government policies, to set industry and trade priorities. A series of 

measures such as the lifting of import and export barriers, the removal of price 

controls and state subsidies, and the privatization of state-owned enterprises were 

enacted across West Africa in the late 1980s and early 90s. 

 

The effects of the SAPs on tomato processing in West Africa were felt quickly and 

decisively. Countries sold their canneries to private buyers, who soon found that they 

could not compete against the subsidized tomato paste imported from Europe (Sumner 

et al., 2001) that began flooding the market when import restrictions were lifted. 

Tomato yields in West Africa were simply too volatile for consistent tomato paste 

production, and consistent production was necessary for profitability in the face of 

such stiff competition. (In contrast, when the canneries had been government owned 

they could operate at a loss if necessary for greater social welfare.) By the mid-1990s, 

two of the three canneries in Ghana had closed (Khor and Hormeku, 2006), as had the 

cannery in Mali (Kelly et al., 2005), leaving tomato farmers without the extension 

services, markets, and bargaining power they had come to depend upon. 

 

Since that time, tomato production in West Africa has been in a state of flux. A trend 

towards urbanization (UNOWA, 2007)  has created strong localized demand for both 

canned and fresh tomatoes in major cities. Tomato paste imports from Europe and, 

more recently, from China, have skyrocketed, from approximately 29,000 tons in 1990 

to 222,000 tons in 2006 (FAOSTAT, 2009). Fresh market demand has also increased, 

and while tomato producers in many of the most concentrated tomato-producing 

regions have had success marketing their yield to the growing urban population, their 
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situation is fragile and easily disrupted by a single misstep. While production levels 

have increased with increasing land under cultivation, yields have been unpredictable 

due to a wide variety of issues including TYLCD and other diseases, lack of finance, 

inconsistent seed quality, lack of access to chemical inputs, and unpredictable weather 

(Adu-Dapaah and Oppong-Konadu, 2002; Asare-Bediako et al., 2007; Maatman et al., 

2004; Soumaré and Moore, 2005). Farmers often find themselves with insufficient 

yields to make a decent profit, and when yields are high there is often a short-term glut 

on the market driving prices down practically to zero and making it difficult for 

farmers to find buyers. Furthermore, a very small number of players control the 

produce markets in some of the major urban areas throughout West Africa, giving 

farmers little bargaining power: if they don’t accept the buyers’ price offers, the 

buyers simply take their trucks elsewhere, often across the border into neighboring 

countries to find a better price (Kufuor, 2008). 

 

Projects for the Improvement of Tomato Production in West Africa 

The intensification of tomato production in West Africa followed by the decline of the 

tomato processing industry has made tomato the highest priority vegetable crop for 

improvement in the region, according to a consortium of West African government 

agricultural researchers (Levasseur, 2004). The sheer number of constraints on tomato 

production makes it difficult to even know where to begin recovery efforts, but 

TYLCD has become a particular focus for several reasons: it is a recently developed 

and highly pervasive problem, its levels fluctuate from year to year, making 

predictions of its impact difficult, and significant worldwide efforts have been devoted 

to its control, offering many options for programs to alleviate the impact of the disease 

in West Africa. This section describes a series of projects started in 1998 for the 
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control of tomato-infecting begomoviruses and the improvement of tomato production 

in West Africa. 

 

Integrated Pest Management Collaborative Research and Support Program 

Recovery efforts focused on TYLCD began with the initiation of a project in 

Baguineda, Mali in 1998 to characterize the nature of West African TYLCD-causing 

viruses and to develop a strategy for their control. The loss of the tomato cannery had 

been devastating to the farming community in Baguineda, and was blamed primarily 

on increased incidence of whitefly-vectored diseases that had grown in prevalence in 

the region since the 1980s, leading many farmers to quit tomato production for other 

crops (Noussourou et al., 2008; Soumaré and Moore, 2005). Funded by the United 

States Agency for International Development (USAID) and coordinated by the 

Integrated Pest Management Collaborative Research Support Program (IPM CRSP), 

the project in Baguineda identified TYLCMV as the primary disease agent of TYLCD 

in the region (Théra et al., 2002) and evaluated a number of potential cultural 

approaches to management of the virus (IPM-CRSP, 2001). Given the existing 

organization of farmers in Baguineda, which had arisen due to the management 

necessities of the local irrigation system, the implementation of a three-month host-

free period preceding the primary tomato growing season was determined to be the 

most optimal approach for TYLCD control. With the help of local extension officers, a 

host-free period excluding both tomatoes and peppers from cultivation during June, 

July and August was implemented starting in 2004 (Noussourou et al., 2008). While 

compliance in the first year of the project was limited due to skepticism on the part of 

the farmers, incremental yearly improvements convinced growers that the host-free 

period could have a significant impact on the incidence of TYLCD, and compliance 
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did increase dramatically over time, such that by 2006 only .005 hectares of tomatoes 

or peppers could be found growing during the host-free period in all of Baguineda. 

 

Unfortunately, despite the significant decreases in TYLCD incidence precipitated by 

the adoption of the host-free period, yields in Baguineda did not increase as 

dramatically as expected. Access to modern cultivars in West Africa was severely 

limited, and many of the varieties in use in the region were several decades old. The 

IPM CRSP project introduced several modern tomato hybrids in Baguineda to assess 

their performance under the host-free period conditions. Despite having no resistance 

to TYLCD, these varieties significantly outperformed the popular local cultivars under 

the reduced viral load following the host-free period (Noussourou et al., 2008). It was 

determined as a result that future work in the region should focus on the introduction 

of modern high-yielding tomato varieties. 

 

Agricultural Biotechnology Support Project II 

 As the IPM CRSP project began the implementation of a host-free period in 

Baguineda in 2004, AVRDC-The World Vegetable Center established a satellite 

center in West Africa and began to explore the ways in which vegetable production 

could be improved in the region. A workshop of government agricultural researchers 

from many West African nations was convened at the AVRDC regional headquarters 

in Bamako, Mali in March of 2004 to set priorities and plan research activities 

(Levasseur, 2004). By consensus, tomato was selected as the highest priority crop due 

to its economic importance in the region and the wide range of constraints limiting its 

production. 
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In 2005, as IPM CRSP was winding down its involvement in Baguineda, a new 

USAID-funded project was getting started. The Agricultural Biotechnology Support 

Project II (ABSPII) aims to improve agricultural production in the developing world 

through biotechnology, and initiated a project in 2005 to address tomato production in 

West Africa. A partnership was formed between researchers at AVRDC, Cornell 

University, and the University of California-Davis (UC Davis), the latter having been 

partners on the IPM CRSP project in Baguineda. National agricultural research 

services (NARS) of seven West African countries – Benin, Burkina Faso, Ghana, 

Mali, Niger, Senegal, and Togo (Table 2.1) – joined up with the management team to 

address the tomato begomovirus epidemics in West Africa and to improve the quality 

of germplasm available in those countries. A multi-pronged approach was laid out, 

including molecular biology work to characterize the tomato-infecting begomoviruses 

of West Africa, breeding work to combine potyvirus and begomovirus resistances in a 

single tomato variety, and a series of variety trials to identify germplasm well-adapted 

to the region, with significant capacity-building components to ensure that the work 

Country Institution Abbreviation Location

Benin Institut National de Recherche Agricoles INRAB Cotonou, Bénin

Burkina Faso
Institut d'Etudes Environnementales et 

de Recherches Agricoles 
INERA

Bobo Dioulasso, 

Burkina Faso

Ghana Crop Research Institute CRI Kumasi, Ghana

Mali Institut d'Economie Rurale IER Bamako, Mali

Niger
Institut National de Recherche 

Agronomique du Niger 
INRAN Niamey, Niger

Senegal

Centre pour le Developpement de 

l'Horticulture/Institut Senegalais de 

Recherche Agricole 

CDH/ISRA Dakar, Senegal

Togo Institut Togolais de Recherche Agricole ITRA Lomé, Togo

Table 2.1 – National agricultural research services (NARS) of the seven West 

African countries participating in the vegetable germplasm trialing network 
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could continue in West Africa after the project ended. In addition the project was 

designed to interface with any establishments associated with seed increase and 

distribution that might develop in West Africa during the duration of the project to 

help establish a pipeline of varieties from the trials to farmers’ fields. 

 

Characterization of West African Tomato-Infecting Begomoviruses 

As described in the previous chapter, a significant component of the ABSPII project 

was the identification of the tomato-infecting begomoviruses responsible for TYLCD 

in West Africa. Led by the Gilbertson lab at U.C.Davis, this work involved the 

collection of thousands of begomovirus samples from potentially infected plants 

identified throughout West Africa. Leaf discs of crop plants and weeds showing 

disease symptoms were squashed onto nylon membranes in Africa, and the 

membranes were then analyzed by either squash blot analysis or PCR to detect 

begomoviruses and to determine their identities. Though this work was initially done 

entirely by visiting scientists from U.C. Davis during twice-yearly trips to West 

Africa, the sample collection was later performed by researchers from the West 

African NARS as well. This allowed for the collection of samples from a wider 

geographic distribution, as well as the training of NARS researchers in the basics of 

DNA sample collection in the field. From this research at least five new tomato-

infecting begomoviruses were identified, as discussed in chapter 1 of this work. 

 

To further build biotechnology capacity in West Africa, a weeklong intensive 

molecular biology training workshop was held at the University of Bamako in August 

2007 to teach the NARS partners basic molecular biological theory and practice 

through integrated lectures and laboratory exercises. Over 20 participants from all 

seven partner countries learned a wide range of relevant topics including basic 
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molecular biology and genetics; techniques for detecting, manipulating and identifying 

nucleic acids; genetic engineering and plant transformation; basic molecular plant 

pathology and disease detection; and protein detection and analysis. In the laboratory, 

participants performed squash blot hybridizations to identify begomoviruses in local 

tomato samples, conducted PCR amplification to genotype transformed and 

untransformed plant DNA, and conducted an ELISA to test for bacterial wilt in 

eggplant. Whereas most of the partner countries’ agricultural research institutions lack 

the necessary equipment and supplies for these methods, the knowledge-building 

associated with the workshop was designed to enable the project’s research partners to 

make informed decisions when establishing molecular research programs in the future. 

In order to provide an immediate practical benefit from the workshop, however, 

participants were also trained in the use of kits with minimal equipment requirements, 

such as ImmunoStrips (Agdia Inc., Elkhart, IN), which allow diagnostic tests for 

disease identification to be performed in the field. 

 

Establishment of a Regional Vegetable Germplasm Trialing Network 

The primary focus of the ABSPII project in West Africa was the establishment of a 

region-wide vegetable germplasm trialing network that could independently evaluate 

new varieties from around the world for adaptation to local growing conditions, select, 

with input from farmers, the optimal varieties for the region, and move those new  

materials into farmers’ fields in a timely manner. Over the course of three years from 

2005 through 2008, this network was slowly developed through the trialing of nearly 

100 putatively TYLCD-resistant tomato varieties in the seven participating countries. 

These materials came from a wide range of multinational seed companies and public 

breeding institutions (Table 2.2). 
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 The first year of the project (the 2005-2006 growing season) saw the systematic 

evaluation of 40 begomovirus-resistant tomato varieties in each of the participating 

countries. Designated as preliminary screening trials by the partners, these evaluations 

consisted of unreplicated trials, in which 26 plants of each variety were planted on 

agricultural research stations and evaluated for disease resistance according to a 

TYLCD symptom severity scale (Lapidot and Friedmann, 2002). The regionally 

popular variety Roma VF was used as a susceptible check, and natural levels of virus 

inoculum, delivered via indigenous populations of whiteflies, were relied upon for 

disease development in the field. Partners encountered a range of problems in the first 

Organization Location

AVRDC - The World Vegetable Center Shanhua, Taiwan

CIRAD - French Agricultural Research Centre 

for International Development
Guadeloupe

De Ruiter Seeds Bergschenhoek, The Netherlands

Enza Zaden Enkhuizen, The Netherlands

Gentropic - Semillas Tropicales Sacatepéquez, Guatemala

Harris Moran Seed Company Modesto, CA, USA

Hazera Genetics Shikmim, Israel

Hebrew University of Jerusalem Jerusalem, Israel

Nunhems Haelen, The Netherlands

Seminis St. Louis, MO, USA

Soli Kiryat Malachi, Israel

Syngenta AG Basel, Switzerland

Takii Seed Kyoto, Japan

Tropicasem Dakar, Senegal

University of Florida Gainsville, FL, USA

Agricultural Research Organization of Israel - 

Volcani Center
Bet Dagan Israel

Table 2.2 – Public and private seed sources providing TYLCD-resistant tomato 

cultivars for inclusion in the West African tomato variety trials 2005-2008 
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year, including insufficient disease pressure, poor seed germination, and inconsistent 

trial management practices between countries. Despite these issues, sufficient data 

were generated to select 11 promising varieties showing high levels of TYLCD 

resistance for inclusion in the next years’ trials. (See chapter 3 for trial results.) 

 

In the project’s second year, the 11 varieties selected in the first year were evaluated in 

advanced trials. Having learned from the mistakes of the previous year, the project 

partners developed a detailed trialing protocol to resolve inconsistencies among 

locations, and to ensure the statistical relevance of the data. Trials were maintained as 

if for commercial production, with pesticide applications being used to control 

diseases and pests other than whiteflies. In addition, attempts were made to plant the 

trials in areas known to be free of other important regional pathogens, such as root-

knot nematode, the fungus Fusarium oxysporum f. sp. lycopersici (causal agent of 

fusarium wilt), and the bacterium Ralstonia solanacearum (causal agent of bacterial 

wilt). Plants were evaluated for TYLCD resistance at flowering, fruiting, and first 

harvest using the standardized symptom severity scale.  In addition, three randomly 

selected plants from each plot were evaluated for yield, which was extrapolated to tons 

per hectare. 

 

Overall, the results of the second year’s trials showed a marked improvement in 

quality over the previous year, indicating the value of hands-on experience in the 

development of germplasm trialing capacity. With few exceptions, the trials showed 

significant improvements in yield over typical tomato yields in the region. In several 

locations, trial coordinators solicited anecdotal farmer opinions on the trial materials. 

In these cases, farmers were generally very enthusiastic about the new varieties and 

provided helpful insight into their variety selection process, typically showing a 
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preference for medium-sized firm fruits that stand up well to shipping. At the end of 

the season, the top four varieties based on disease resistance and yield were selected 

for a third round of trials. Representatives from each country also selected two 

additional varieties based on local performance and preferences. (See chapter 4 for 

trial results.) 

 

In addition to the 11 varieties evaluated in the advanced trials, 28 new varieties were 

trialed in preliminary screening trials during the 2006-2007 growing season. These 

preliminary screens were conducted similarly to the advanced trials, but without 

replication. Of the more than 60 new varieties tested, many showed significant levels 

of TYLCD resistance, and 20 were selected by at least one of the participating 

countries for inclusion in advanced trials during the project’s third year. (See chapter 6 

for trial results.) 

 

The 2007-2008 growing season was the final year of the project. Top materials from 

the 2006-2007 trials were evaluated in multi-location trials throughout West Africa. 

These trials used a protocol similar to that of the advanced trials of the previous 

season, but were conducted on farms (as opposed to agricultural research stations) in 

two locations in each of the seven participating countries, preferably in different 

agroecological zones. While providing yet another opportunity for the evaluation of 

new varieties, these multi-location trials also met two important goals not addressed 

by the previous years’ trials. Firstly, they offered an opportunity to evaluate 

germplasm within the context of an actual vegetable production area, rather than in the 

more controlled environment of an agricultural research station. Trials were managed 

according to the customs of the farmers in the region and, thus, offered a more realistic 

view of the potential performance of the selected varieties in a true production setting. 



 

74 

 

Secondly, these multi-location trials served as the bridge between germplasm 

evaluation and variety distribution. Situated among the fields of commercial tomato 

producers, these trials functioned as demonstration plots for the new cultivars, helping 

to spread the word about modern varieties and diminishing some of the risk associated 

with adoption a new, unknown technology. By the end of this growing season local 

farmers had seen the potential of the new varieties, and many expressed interest in 

conducting small on-farm trials of the selected materials. (See chapter 5 for trial 

results.) 

 

A set of advanced trials using the material selected during the preliminary trials of the 

2006-2007 season were also conducted. (See chapter 7 for results.) No preliminary 

screens were conducted during the 2007-2008 growing season as the focus shifted 

from evaluating germplasm to mobilizing high-performing materials into the seed 

distribution pipeline. 

 

The following chapters report the results of each of the five trials conducted 

throughout West Africa in 2005-2008
2
. 

  

                                                 
2
 The variety trials described in this document were a collaborative effort by many individuals, with 

separate national teams of researchers holding the responsibility for conducting the trials in each 

participating country. Management of the trials was divided between Cornell University and AVRDC. 

As the project leader at Cornell, the author held primary responsibility for all matters related to the 

trial's germplasm collection, including acquisition of materials, analysis of trial data for the assessment 

of variety performance, oversight of the variety selection process, and detailed yearly reporting to each 

of the project's seed donors. The author additionally performed a significant coordinatory role in the 

execution of the variety trials, participating in yearly planning meetings in Bamako, Mali and 

contributing to the design of each year's trial protocol. The author visited each of the trial sites during 

the 2006-2007 and 2007-2008 seasons (with the exception of the one site in Senegal in 2006-2007 and 

the two sites in Niger in 2007-2008). During these visits, the author provided guidance to the trial 

managers regarding disease scoring, yield data collection, and general trial maintenance, and 

additionally visited nearby farming areas to discuss the impact and management of TYLCD. 
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CHAPTER 3 

YEAR 1: PRELIMINARY SCREENING TRIAL 

 

Introduction 

The first round of variety trials for the identification of TYLCD-resistant tomato 

cultivars highly adapted to the growing conditions of West Africa was conducted 

during the 2005-2006 growing season in eleven locations throughout West Africa. As 

many of the research partners managing the trials were new to variety trialing and had 

limited training, the trial protocol was designed to be easily executed. Forty tomato 

cultivars from thirteen seed sources, including commercial, public and academic 

organizations, were evaluated in the trial. 

 

Materials and Methods 

 

Plant Materials 

40 tomato varieties with putative TYLCD resistance were selected by 13 seed 

companies and public breeding institutions for inclusion in the 2005-2006 preliminary 

screening trial. These varieties carry TYLCD resistance from a range of sources, 

including S. chilense, S. peruvianum, S. habrochaites and S. pimpinellifolium, and in 

some cases include genes pyramided from more than one source. Aside from their 

shared TYLCD resistance, the initial trial materials were not selected for any other 

common traits. Table 3.1 lists all included varieties along with the organization that 

provided them and, when known, their resistance sources. Seeds of two varieties, FTC 

6231 from Harris Moran Seed Company, and Sasya 0202 F1 from Seminis-India, were 

in limited supply and therefore each was only trialed in half of the trial locations 

throughout West Africa.  



 

76 

 

  

Seed Source Variety Name Resistance Source (where known)

AVRDC CLN 2123A Ty-2

CLN 2460E Ty-2

CLN 2468A Ty-2

CLN 2498E Ty-2

CLN 2545A Ty-2

CLN 2545B Ty-2

PT 4722A Ty-2

TLCV 15 Ty-2

Cirad Guadeloupe O4 108

O4 240

O4 495

O4 498

O4 501

De Ruiter Seeds Bybal

Industry DR 10403

Lety F1

Realeza

Thoriya

Enza Zaden Atak

Chenoa

Ponchita

Yosra

Harris Moran FTC 6231** Ty-1

FTC 6236 Ty-1

FTC 7088 S. chilense  LA 1969, S. habrochaites  H24

FTC 7127 Ty-2 , S. habrochaites  H24

FTC 7351 S. chilense  LA 1969 and LA2779

FTC 7483 S. pimpinellifolium

HMX 4810 S. chilense LA 1969

Hazera HA 3060

Hebrew University Favi 9 Ih902

Seminis GemPride Ty-1

PS 43316

Seminis - India Sasya 0202 F1**

Syngenta Cheyenne E448

Nirouz TH 99806

Yassamen TH 99802

Takii TY 75 Ty-2

Tropicasem F1 3019 Galina

Nadira

Roma VF Susceptible check

Table 3.1 – Tomato varieties included in the 2005-2006 TYLCD resistance trials. 

Varieties marked with ** were only included in half the trials. 
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The variety Roma VF was used as the susceptible check in all trials. Roma VF is a 

very popular cultivar throughout West Africa, despite its marked susceptibility to 

TYLCD, and is readily available in seed markets in major urban centers throughout 

the region. The Roma VF seeds used in the trials were obtained from Tropicasem.  

 

A total of 25 additional cultivars were included in select trials. The majority were 

additional putatively TYLCD-resistant cultivars which were available only in limited 

supply. These were trialed primarily by AVRDC at the Samanko research station. 

Performance data for these varieties are available in Appendix 2, but will not be 

discussed at length in this chapter. Additionally, some trials included locally popular 

TYLCD-susceptible varieties as additional susceptible controls – in those cases, 

variety performance will be mentioned alongside Roma VF performance. 

 

The majority of the materials included in the trial were F1 hybrid cultivars. Open 

pollinated tomato varieties are uncommon in commercial growing settings, and since 

the majority of varieties were donated by commercial seed companies they were 

primarily F1 hybrids. The exception was the breeding lines from AVRDC.  

 

Seeds were collected in bulk at the AVRDC regional headquarters in Bamako, Mali, 

where they were repackaged into trial-sized packets and distributed to the research 

partners located throughout West Africa. Contingent upon availability, approximately 

65 seeds per cultivar were sent to each trial location. 

 

Trial Locations 

Trials were located in eleven locations in seven countries throughout West Africa. 

Participating agencies were INRAB (Benin), INERA (Burkina Faso), CRI (Ghana), 
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IER (Mali), INRAN (Niger), CDH/ISRA (Senegal), and ITRA (Togo), as well as 

AVRDC. Each agency chose one site for the establishment of a trial, except for IER, 

which as a partner on the management of the project chose four sites for trials. In all 

cases, trials were conducted on agricultural research stations. Efforts were made to 

situate trials near tomato-growing regions. Figure 3.1 shows the locations of all eleven 

preliminary trials conducted during the 2005-2006 growing season. 

 

Trial Establishment and Management 

Many aspects of the trial management were left to the discretion of the trial managers, 

who were encouraged simply to follow local customs when planting and maintaining 

their trials. This approach was chosen for two reasons. Firstly, it ensured that the trials 

would expose the cultivars under evaluation to realistic field conditions. Field 

management practices vary from one location to the next within West Africa, due both 

to differential availability of resources and to cultural conventions, and though 

improving West African farmers’ field management techniques would be a 

worthwhile goal, it was important that the trials select varieties appropriate for 

contemporary, and not idealized, field conditions. In addition, many of the trial 

managers participating in this project had never run replicated variety trials before, 

and it was therefore decided to start with very straightforward trialing approaches and 

to slowly add more complex elements, such as replication and more detailed 

observations, over the course of the three years of the project. 

 

Seeds were planted in seedling nurseries managed as per local customs. After three to 

four weeks, seedlings were transplanted into 1.5 × 6.0 meter elementary plots, one plot 

per cultivar, with 26 plants per plot. Within each elementary plot plants were arrayed 

in two rows with a spacing of .6 meters between rows, and .5 meters within rows. The  
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total trial area was 35.5 × 23 m, creating a grid of 16 × 3 elementary plots with .5 m 

spacing. Every fifth elementary plot was planted with the susceptible check Roma VF, 

and in addition the entire trial was ringed with rows of Roma VF. These large 

quantities of the susceptible check variety were intended to help increase the whitefly 

population and the pool of viral inoculum within the trial. 

 

Plots were irrigated and fertilized in a manner typical for their locations, and trial 

partners were free to manage pests in any way that would not diminish whitefly 

populations. 

 

Disease severity scoring and yield calculations 

Scoring for disease severity was performed two weeks after transplant, at flowering, 

and at fruiting. Each plant was scored individually for symptom severity on a 0-4 scale 

commonly used in the TYLCD community (Lapidot and Friedmann, 2002), and 

observations were averaged to obtain a single severity score for each variety. 

 

Pictoral symptom severity cards, shown in Illustration 3.1 and Illustration 3.2, were 

given to each trial manager to facilitate the accurate identification of TYLCD 

symptoms. The symptom severity scale differentiates classes of symptoms as follows: 
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0 No symptoms 

1 Very slight yellowing of leaf edges 

2 Yellowing and curling of leaves 

3 Marked yellowing, curling, and cupping of leaves, accompanied by a 

continuation of plant growth 

4 Severe stunting, curling, and cupping of leaves, accompanied by a cessation of 

plant growth 

 

Efforts were made to train trial managers in the differentiation of TYLCD symptoms 

from heat and water stress, which can cause similar symptoms in plants. This is 

particularly problematic in West Africa, where one of the regional TYLCD-associated 

species (ToLCMLV) causes purple veining, a typical symptom of water stress. 

 

 Some research partners chose to calculate yields for each variety in the trial. Yields 

we initially calculated as kg per plot. To convert yields to kg/hectare, yield values 

were divided by the plot size (9.75 m²), and then multiplied by 10,000 m²/ha. 

 

Characterization of Local TYLCD-Associated Viruses 

An important component of the ABSPII project in West Africa was the 

characterization of the strains of tomato-infecting begomoviruses found throughout the 

region. This work was conducted by the lab of Robert Gilbertson at U.C. Davis, in 

cooperation with all of the West African APSPII research partners. During the tomato 

growing season, the research partners collected leaf samples from plants displaying 

TYLCD-like symptoms and squashed leaf discs onto nylon membranes. Squash blot 

hybridization was performed on the membranes at U.C. Davis to detect for the 
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presence of tomato-infecting begomoviruses. When relevant, the results of that work 

will be mentioned here to illustrate both the disease pressure present at a given trial, 

and the ability of the research partners to distinguish between symptoms of TYLCD 

and symptoms of other diseases or physiological stress responses. 

 

Results 

 

Benin (INRAB) 

The trial in Benin was conducted at the INRAB Agonkamey research station near 

Cotonou, on Benin’s Atlantic coast in the southern part of the country. Seeds were 

sown Nov. 2, 2005, and seedlings were transplanted to trial plots on Nov. 25, 2005. 

The trial ended Feb 6, 2006.  

 

Several problems were encountered during the trial that limit the validity of the 

TYLCD severity scores reported by the partners in Benin. As a result of climate 

differences, the major season for tomato production in southern Benin is somewhat 

earlier than that of the more Sahelian regions of West Africa, where the tomato 

growing season typically runs from October through February. The rainy season in 

southern Benin begins as early as April and ends by July, making July through 

November the ideal tomato season in that region. By planting in November, at the end 

of the tomato season, the research partners in Benin inadvertently exposed their trials 

to elevated levels of pests and diseases that had accumulated in the region during the 

tomato growing season. As a result, the trial cultivars showed significant damage from 

root knot nematodes, Fusarium and bacterial wilts, spider mites, and Helicoverpa 

armigera.  Since the trial managers were unaccustomed to the symptoms of TYLCD 

they appear to have scored the symptoms of many of these diseases and pests as 
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TYLCD. While the data from the trial (below) support this conclusion, further 

evidence can be gleaned from the squash blot samples prepared by the research 

partners in Benin for analysis at U.C. Davis. While all samples showing stunting and 

leaf yellowing were positive for begomovirus infection, the majority of the samples 

collected only showed leaf rolling, and tested negative for begomoviruses. 

 

Figure 3.2 shows the development of TYLCD symptoms on the trial in Benin over the 

course of the growing season. Several things are evident from this graph. Firstly, 

symptom severity remained relatively weak throughout the course of the trial, with 

only a single variety (Chenoa) scoring a 3 by the fruiting time point, and the average 

variety scoring only a 2.25. Secondly, at any given time point the range of disease 

scores was extremely narrow, with the difference between the highest- and lowest-

scoring varieties at fruiting being just 1 point on the symptom severity scale. Finally, 

Figure 3.2 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points at the Agonkamey research station near 

Cotonou, Benin. Red dots represent the TYLCD symptom severity scores of Roma 

VF. 
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the susceptible check variety Roma VF did not perform as expected, falling in the 

lowest quartile of symptom severity observations at 2 weeks after transplant (WAT) 

and flowering, and failing to even be in the top ten varieties at fruiting. Based on these 

observations, it appears that one or several diseases were major constraints on tomato 

production in southern Benin during the trials, but there is no way to discern the 

effects of tomato-infecting begomoviruses from among all other diseases that were 

also interpreted to be TYLCD. 

 

Given the strong disease and pest pressure seen on the trial in Benin, yields were very 

poor, and were therefore not reported. 

  

Burkina Faso (INERA) 

The trial in Burkina Faso was conducted in a major tomato growing area in the Kou 

Valley, near Bobo Dioulasso. Seeds were sown Dec. 3, 2005, and seedlings were 

transplanted Jan. 5, 2006. The trial ended in early April 2006. 

 

Whitefly populations were observed to be very high in the trial region, with significant 

infestations occurring both on the agricultural research station and in farmers’ fields. 

This may be due to the fact that the region is a significant producer of cotton, which is 

a preferred host of whiteflies. Squash blots of plants from the region with TYLCD 

symptoms were positive for begomovirus infection. TYLCD severity was very strong 

in the trial, with Roma VF developing a score of 3.6 by flowering and 4 by fruiting 

(Figure 3.3). A number of varieties demonstrated resistance to the virus, both through 

delayed development of symptoms and through an overall decrease in symptoms. 

Several varieties ended the trial with scores of less than 2.0 at fruiting, implying 

significant resistance: Thoriya, Atak, TY 75, Cheyenne E448, Chenoa, Bybal, 
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Yassamen TH 99802, and Ponchita. An additional 15 varieties scored less than 3.0 at 

fruiting. Also interesting were varieties that showed delayed symptom development 

under TYLCV pressure, which often allows plants to develop higher yields before 

succumbing to virus symptoms. One particularly notable variety is Industry DR 

10403, which, while scoring 2.9 at fruiting, developed the majority of its symptoms 

after flowering, having only scored a 0.3 at flowering. Due to this late onset of disease 

symptoms, Industry DR 10403 had one of the higher yields in the trial (7.6 t/ha) 

despite showing what would appear to be a significant susceptibility at fruiting. 

 

Yields were reported for this trial, and ranged from 0.2 t/ha for Roma VF to 10.2 t/ha 

for Yassamen TH 99802, with a mean value of 4.4 t/ha. Yields were strongly 

negatively correlated with symptom severity (Figure 3.4). While the Burkinabe 

research partners did report a decrease in yield due to Helicoverpa and blossom end 

Figure 3.3 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in the Kou Valley, Burkina Faso. Red dots 

represent the TYLCD symptom severity scores of Roma VF. 
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rot, they pointed out that these very low yields were actually quite good for the region. 

TYLCD has become such a constraint in Burkina Faso that farmers have moved 

steadily southwards in an attempt to escape the high disease pressure accumulated in 

their original growing region. They argued what while 10 t/ha may seem low, to a 

tomato farmer in Burkina Faso it would make a big difference in livelihood. 

 

Ghana (CRI) 

The trial in Ghana was conducted twice consecutively in Kumasi, the second-largest 

city in the country. Kumasi is located towards the southern end of central Ghana, and 

thus has seasons similar to those of the Sahelian Zone to the north, but with generally 

higher humidity. Seeds for the first trial were sown Dec. 1, 2005, and seedlings were 

transplanted to the field on Dec. 21, 2005. During the first trial, several heavy rains 

created ideal conditions for the development of fungal diseases. Severe bouts of early 

blight and Fusarium wilt completely overpowered the TYLCD symptoms, making 

Figure 3.4 – Total yield plotted against TYLCD symptom severity at fruiting in 

Bobo Dioulasso, Burkina Faso. Slope = -2.50,   R² = .59, p = 1.16e-08 
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scoring very difficult. Disease scores were collected at fruiting and flowering, and in 

addition yield data were collected, but prior to the fruiting stage the research partners 

decided to redo the trial following an application of fungicides. Therefore seeds for the 

second trial were sown on Feb. 4, 2006, and following an application of fungicides 

were transplanted to test plots on Feb 27, 2006. The trial ran through May 2006, and 

included 31 of the varieties that had been in the first trial. There were not enough 

seeds of the remaining 9 varieties: Atak, Chenoa, CLN 2123A, CLN2 2545B, F1 3019 

Galina, Industry DR 10403, Lety F1, Ponchita, and PS 43316. 

 

The second trial developed TYLCD pressure slowly, but by the fruiting stage the 

disease pressure was very strong, with Roma VF showing a symptom severity of 3.6 

(Figure 3.5). Only three varieties emerged from the trial with disease scores below 2: 

FTC 6236, FTC 7351, and Yosra. Yields were not calculated as insufficient yields 

Figure 3.5 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Kumasi, Ghana. Note that no measures 

were taken at 2 WAT. Red dots represent the TYLCD symptom severity scores of 

Roma VF. 
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were produced. A number of non-fungal diseases and pests were observed on this trial, 

possibly confounding TYLCD severity measurement. They include root knot 

nematodes, bacterial wilt, and Helicoverpa. 

 

Mali (IER) – Baguineda 

One of the four trials in Mali was conducted at the IER Baguineda research station, 

which is located 20 km from Bamako, the capital of Mali, in a zone with a very typical 

Sahelian climate. Seeds were sown Jan. 16, 2006, and seedlings were transplanted just 

six days later on Jan. 22. (The research partners from IER in particular were found to 

have little experience with establishing seedling nurseries, an issue which was 

addressed in subsequent years.) The trial ended in April, 2006. 

 

Squash blots of plant samples taken from the region confirm the presence of tomato-

infecting begomoviruses, but disease pressure was relatively low in Baguineda (Figure 

3.6). This was likely due to the host-free period conducted in July and August of that 

year, leading to slow accumulation of virus pressure. Analysis of the data shows that 

no significant symptom levels were observed in the trial until fruiting. At that time 

point, Roma VF did show one of the highest disease scores in the trial, but scored only 

a 2.7, indicating strong but not severe symptoms. Four varieties were scored as 

symptomless throughout the entire trial (Atak, Bybal, Chenoa, and Realeza) and 12 

more varieties scored less than 1. Yield data were calculated and were quite low, 

ranging just from 1.1 to 6 t/ha, with a median value of 3.3. Yields were not statistically 

significantly correlated with TYLCD symptom severity. 
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Mali (IER) – Cinzana, Sikasso and Sotuba 

Research partners from IER established three further trials in areas around Mali. One 

was located in Cinzana, a region 35 km east of the city of Segou in eastern central 

Mali. A second was located in Sikasso, in southeastern Mali near the border with 

Burkina Faso and approximately 150 km from Bobo Dioulasso. Finally the last was 

located in Sotuba, a town on the outskirts of Bamako. All three trials experienced low 

disease pressure, and data were not shared.  

 

Mali (AVRDC) – Samanko 

The AVRDC regional headquarters in West Africa are based in Samanko, Mali, 

approximately 35 km from Bamako. The seeds for the trial at Samanko were sown 

Nov. 25, 2005, and seedlings were transplanted four weeks later on Dec. 20. Plots 

were fertilized prior to transplanting, and were managed as per AVRDC 

Figure 3.6 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Baguineda, Mali. Red dots represent the 

TYLCD symptom severity scores of Roma VF. 
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recommendations. Plots were sprayed with deltamethrin every ten days at the rate 

indicated by the manufacturer for the control of Helicoverpa. TYLCD severity 

scorings were conducted on Jan. 6, 2006 (2 WAT), Jan. 30 (first flowering), and 

March 3 (first fruiting). 

 

Whitefly populations were observed to be very high during the trial, and squash blots 

showed tomato-infecting begomoviruses to be present. Based on the symptom severity 

scores, it appears that TYLCD pressure increased gradually over the course of the 

season, and that cultivars in the trials showed a range of reactions from strong 

susceptibility to nearly complete immunity (Figure 3.7). At all three time points, Roma 

VF was one of the highest-scoring varieties, supporting the notion that TYLCD was 

the primary disease affecting the trials. At fruiting, one variety, Thoriya, showed no 

TYLCD symptoms, and nine additional varieties received scores lower than 1.0, 

Figure 3.7 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Samanko, Mali. Red dots represent the 

TYLCD symptom severity scores of Roma VF. 
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indicative of very mild symptomatic responses: Bybal, Yassamen TH 99802, Ponchita, 

Lety F1, Chenoa, Atak, Yosra, Realeza, and FTC 6236. An additional eight varieties 

scored less than 2.0. Several varieties are also notable for slow development of 

TYLCD symptoms, despite eventually developing strong reactions to the disease. HA 

3060 received a score of 2.8 at fruiting, but only 0.5 at flowering, and TLCV 15 had a 

score of only 0.2 at flowering, eventually developing to 3.2 at fruiting. 

 

Yields were reported for the trial at Samanko, and were quite high compared with 

those from most other trials in the region. Yields ranged from 4.8 t/ha (CLN 1466J) to 

23.4 t/ha (HMX 4810), with a median value of 15.6. A yield measure was not 

provided for Roma VF. There was a statistically significant negative correlation 

between symptom severity and yield; interestingly, the correlation was stronger for 

symptom severity at flowering than at fruiting, supporting the notion that symptoms 

developed early may have a stronger impact on yield than those developed after 

flowering.  

 

Niger (INRAN) 

The trial in Niger was conducted at the INRAN Gabagoura research station, 

approximately 15 km west of Niamey. The trial was planted in mid-December, but a 

low whitefly population led to an absence of TYLCD pressure on the trial. Squash 

blots collected from fields around the trial did show low levels of begomovirus 

infection, but showed no significant infestations. Other pathogens were observed, 

though, including Helicoverpa, root knot nematodes, Fusarium wilt, and bacterial wilt. 
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Senegal (CDH/ISRA) 

The trial in Senegal was conducted at the Sangalkam research station in Rufisque, 

about 40 km east of Dakar on Senegal’s Atlantic coast. Seeds were sown in Dec. 2005, 

and the trial concluded in March 2006. The locally popular variety Xina was included 

in the trial as an additional susceptible check.  

 

A high incidence of TYLCD was observed in the fields surrounding the research 

station very early on in the trial. By local standards for tomato production the trial was 

planted late, and thus significant virus pressure had already built up in the surrounding 

area. Nonetheless, TYLCD incidence in the trial was only scored as moderate, with 

Roma VF and Xina ending the trials with scores of 2.9 and 3.2, respectively (Figure 

3.8). Interestingly, the majority of symptom development occurred between 2 WAT 

and flowering, with only slight increases (and even occasional decreases) in severity 

Figure 3.8 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Rufisque, Senegal. Colored dots 

represent the TYLCD symptom severity scores of susceptible checks: red = 

Roma VF, blue = Xina.  
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occurring between flowering and fruiting. This may reflect a decrease in viral 

inoculum in the surrounding region as the local tomato season ended and whitefly 

populations declined. Twelve varieties ended the trial with symptomless reactions: 

Atak, Bybal, Chenoa, Favi 9, FTC 6231, FTC 6236, Ponchita, Realeza, Thoriya, TY 

75, Yassamen TH 99802, and Yosra. An additional 14 varieties scored less than 1.0. 

Yields were reported for the trial in Senegal and were quite high, with a few varieties 

surpassing even 60 t/ha. A significant negative correlation was observed between yield 

and TYLCD symptoms, with symptom severity scores at flowering and fruiting 

having equally significant correlations with yield.  

 

Togo (ITRA) 

In Togo, the research partners from ITRA conducted the trial at the Agbodrafo 

research station, approximately 30 km from Lomé, the nation’s capital. The research 

station is in southern Togo, a coastal region known for extremely sandy soils. Seeds 

for the trial were sown on Nov. 10, 2005, and seedlings were transplanted Dec. 1. 

 

TYLCD symptoms were observed on plants in the vicinity of the trial, and squash 

blots were positive for begomovirus infection. However, numerous other diseases and 

pests were also observed, including Fusarium wilt, bacterial wilt, spider mites, 

Helicoverpa, and root knot nematodes, which are particularly problematic in sandy 

soils. This may be a result of similar conditions to those observed in Cotonou, Benin, 

which is in the same climatic zone and only approximately 130 km away. While there 

is no immediate evidence that symptoms associated with other diseases were attributed 

to TYLCD in the Togalese trial, the data cannot be considered reflective of TYLCD 

incidence since the susceptible check received a lower severity score at fruiting than 

nearly half the varieties in the trial (Figure 3.9). However, several varieties did receive 
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particularly low symptom severity scores, implying decent performance in the face of 

whatever disease pressure may have been present. Varieties scoring less than 1.0 

include Thoriya, Industry DR 10403, and Lety F1, and varieties scoring less than 2.0 

include Sasya 0202 F1, Realeza, Nadira, Cheyenne E448, O4 108, Atak, CLN 2460E 

and CLN 2123A.  

 

Very low yields were observed in Togo due to the wide range of disease and pest 

problems encountered, and yields were thus not reported. 

 

  

Figure 3.9 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Lome, Togo. Red dots represent the 

TYLCD symptom severity scores of Roma VF. 
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Discussion 

 

Trial Location 

A variety of difficulties were encountered during the preliminary TYLCD-resistant 

tomato trials conducted throughout West Africa in 2005-2006. Most notable among 

these were the prevalence of several diseases and pests, such as Fusarium wilt, 

bacterial wilt, root-knot nematodes, and spider mites, which could easily be confused 

with TYLCD symptoms and thus made TYLCD symptom severity scores from several 

locations difficult, if not impossible, to interpret. Conversely, in other locations, 

disease pressure from TYLCD was found to be too low to cause observable 

symptoms, diminishing the relevance of the trials. 

 

Figure 3.10 shows the distribution of TYLCD symptom severity scores at fruiting for 

all trial locations. Two different types of distributions can be observed: Benin, Ghana, 

and Togo show very low variance, with the vast majority of observations falling 

within 1 symptom severity point, while Burkina Faso, both locations in Mali, and 

Senegal show much wider distributions, spanning 3 or more symptom severity points. 

In fact, these two groups correspond to the geographic distribution of the trials: trials 

in Burkina Faso, Mali and Senegal were all firmly within the semi-arid Sudano-

Sahelian climatic zone, which was the primary target of this project, while the trials in 

Benin, Ghana and Togo were situated in the much wetter Guinean Zone (See Figure 

3.1). The Guinean Zone has a different growing season than the Sudano-Sahelian 

Zone, with different climatic conditions and different pests and diseases that make the 

qualities of tomato cultivars adapted to the Sudano-Sahel very different from those 

adapted to the Guinean Zone. Trials conducted within the Guinean Zone were planted 

after the local tomato season had ended, exposing the cultivars under evaluation to a 
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range of pests, diseases, and weather conditions atypical for the tomato growing 

season. As a result, TYLCD symptom severity data from those trials could not be 

considered an accurate reflection of susceptibility to the disease, and were considered 

only secondarily when selecting the best-adapted varieties in the trial. The four trials 

with significant TYLCD pressure in the Sudano-Sahelian Zone – Burkina Faso, Mali-

Baguineda, Mali-Samanko, and Senegal – will be referred to as “significant” trials for 

the remainder of this discussion. 

 

Cultivar Selection 

Table 3.2 shows a summary of the responses of all cultivars in all locations to 

TYLCD. It is clear that there was a range of responses, from strong TYLCD-resistance 

  

Figure 3.10 – Box and whisker plot of TYLCD symptom severity distributions 

for each trial location. Red dots represent variety Roma VF. Location codes: 

BEN: Benin; BUR: Burkina Faso; GHA-2: Ghana second trial; MAL-BAG: 

Baguineda, Mali; MAL-SAM: Samanko, Mali; SEN: Senegal; TOG: Togo. 
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to marked susceptibility, and that many varieties were relatively consistent in their 

responses across at least the four significant trials. While the table bases its 

comparisons on symptom severity scores at fruiting, several varieties are notable for 

other reasons. Industry DR 10403 and HA 3060, for instance, are two varieties that 

demonstrated resistance in the form of slow development of symptoms. Even when 

they did have high symptom severity scores at fruiting, both of these varieties were 

notable for low symptom severity at flowering. Yields are additionally relevant to this 

discussion. Yields were generally statistically significantly negatively correlated with 

symptom severity (Figure 3.11), confirming that TYLCD has an impact beyond just 

the development of symptoms. Interestingly, when compared across the four 

significant trials, yield was found to vary significantly by variety, though (perhaps not 

surprisingly, given the data) location was found to have a greater effect. 

 

 

Figure 3.11 – TYLCD symptom severity at fruiting is significantly correlated 

with yield. Slope = -5.9, R² = .19, p-value = 1.44×10
-8
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Cultivars were selected for inclusion in the following year’s advanced trials at a 

meeting of the NARS trial managers in June 2006 in Bamako, Mali. Based primarily 

on demonstrated TYLCD resistance, but also based on yield, resistance to other 

diseases, or any other horticultural traits, each trial manager voted for their ten top 

variety choices from the trials. All varieties receiving more than four votes were 

selected for the following year’s advanced trials (11 cultivars total). An additional 10 

cultivars with two or three votes were selected as alternates, to be trialed in some (but 

not all) of the locations. 

 

Recommendations for the 2006-2007 Growing Season 

A number of changes were recommended based on the results of the preliminary trials 

of the 2005-2006 growing season. First and foremost, it was recommended that 

several trials be moved to locations more appropriate for a dry season tomato trial. 

Benin, Ghana and Togo all have very significant tomato-growing communities in their 

northern regions, which are situated within the Sudano-Sahelian Zone. These regions 

tend to be further from the headquarters of most agricultural research scientists, who 

are located in the southern regions near major administrative centers. Nonetheless, 

research partners were strongly encouraged to situate their trials in regions with 

tomato growing seasons that overlap with the trial dates. It was additionally 

recommended that the partners from Niger seek a more relevant trial site in a major 

tomato-growing region where disease pressure from TYLCD might be higher. 

 

Recommendations were also made regarding the management of trials. Following the 

high incidence of pests and diseases in several trials in the 2005-2006 season, it was 

decided that more effort should be invested in protecting trials from these problems. 

Partners agreed to identify trial sites known to be free of soil-borne pathogens in the 



 

103 

 

following season, and committed to using chemicals when necessary to control pest 

infestations. Attention was also given to the establishment of seedling nurseries, and a 

protocol was developed to ensure more consistent practices between all participating 

countries.  

 

Finally, numerous participants noted that 2 weeks after transplant was typically too 

early a time point for the observation of TYLCD symptom development. As a result, it 

was agreed that in the following year the three symptom severity time points would 

instead be flowering, fruiting, and first harvest. 

 

The following chapter presents the results of the 2006-2007 advanced trial, which 

evaluated the materials selected in the 2005-2006 preliminary trial using a replicated 

design for greater statistical power. 
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CHAPTER 4 

YEAR 2: ADVANCED TRIAL 

 

Introduction 

In 2006-2007 a series of advanced trials was conducted around West Africa to further 

evaluate the disease resistance and overall performance of tomato varieties selected 

during the preliminary screening trials of 2005-2006. A total of 23 varieties were 

included in the advanced trials, with the top 10 varieties from the 2005-2006 trials 

being evaluated in all participating locations, and with each of the remaining 13 

varieties being trialed in whichever areas they had been most successful the previous 

year. As in the previous year, trials were conducted in seven countries, though for the 

advanced trials more careful attention was given to site selection within each country 

to ensure that trials were conducted in tomato-growing areas and during the tomato-

growing season. The advanced trials incorporated a replicated design to allow for 

statistical analysis, and were scored for basic symptom severity, total yield, and 

marketable yield. 

 

Materials and Methods 

 

Plant Materials 

23 tomato cultivars with proven TYLCD resistance were selected for inclusion in the 

2006-2007 advanced trial (Table 4.1). These varieties were selected by all 

participating NARS partners based on performance in the previous years’ trial. Seeds 

were again collected at AVRDC headquarters in Bamako, Mali, where they were 

repackaged and distributed to trial managers in each participating country. Contingent 

upon availability 200 seeds of each cultivar were sent each location. 
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Trial Locations 

Trials were conducted in eleven locations in seven countries throughout West Africa 

(Figure 4.1). Trials in Baguineda, Samanko, Sikasso and Sotuba, Mali and Bobo 

Dioulasso, Burkina Faso, were held on the same research stations as in the previous 

year. Trials in Benin, Ghana and Togo were moved from the southern regions to the  

  

Seed Source Variety Name BEN BUR GHA MAL SEN TOG

AVRDC CLN 2764-99-13-18 

TLCV 15 

De Ruiter Seeds Bybal      

Industry DR 10403      

Lety F1      

Realeza      

Thoriya      

Enza Zaden Atak      

Chenoa      

Ponchita      

Yosra      

Harris Moran FTC 6236    

FTC 7127 

FTC 7351 

HMX 4810  

Hazera HA 3060  

Seminis Gempride      

Syngenta Cheyenne E448  

Nirouz TH 99806   

Yassamen TH 99802  

Takii TY 75 

Tropicasem Nadira 

Roma VF      

Table 4.1 – Cultivars included in the 2006-2007 advanced trials and their sources. 

A check mark indicates inclusion in a particular trial. Country codes: BEN – Benin; 

BUR – Burkina Faso, GHA – Ghana; MAL – Mali; SEN – Senegal; TOG – Togo. 
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northern regions of those countries to ensure more appropriate climatic conditions. 

The trials in Cinzana, Mali and Niamey, Niger were moved closer to tomato-growing 

regions to increase the TYLCD pressure on the trials. 

 

Starting in the project’s second year, the author recorded GPS coordinates of all trial 

sites during visits. GPS coordinates of each trial location can be found in Appendix 3.  

 

Trial Establishment and Management 

In the previous year, many aspects of trial management were left up to the NARS 

research partners with the understanding that their management practices would likely 

mimic those of their local tomato farming communities and would thus make the trial 

results more locally relevant. Based on the results of the 2005-2006 preliminary 

screening trial, it was agreed that certain management practices should be adopted by 

all project participants to prevent the loss of trials to diseases other than TYLCD and 

to better evaluate the relatively subtle differences in yield potential and yield quality 

between the selected cultivars.  Therefore the trial protocol for the 2006-2007 

advanced trial included specific practices related to site selection, seedling nursery 

establishment, and field management. To minimize the impacts of some of the most 

devastating diseases observed in the previous year, the protocol specified that sites 

must be known to be free of soil-borne illnesses such as root-knot nematodes, 

Fusarium oxysporum f.sp. lycoperisci, and Ralstonia solanacearum. Seedling 

nurseries were to be established as per the protocols of the NARS, as in the previous 

year, but the trialing protocol specified that healthy seedlings would be transplanted 

three to four weeks after germination to prevent the trial managers from transplanting 

early and in the process unwittingly exposing fragile seedlings to the field 

environment before they reached maturity. Fertilization practices were also specified: 
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both mineral fertilizers (i.e. NPK) and organic matter (farmyard manure or compost) 

were to be incorporated into the soil in advance of transplanting, and top dressing with 

NPK was recommended during the growing season. Finally, the protocol specified that 

Helicoverpa armigera and other insect pests would be controlled by regular 

applications of selective pesticides, and that weeds would be controlled regularly. 

 

Plot layout was similar to the previous year’s, with 26 plants per elementary plot being 

laid out in two rows of 13 plants each. Spacing was again 0.6 m between rows, and  

0.5 m within rows. However, unlike the previous year’s preliminary trial protocol, the 

advanced trial protocol included three replications following a randomized complete 

block design in which all varieties were included in all blocks, and in which the 

placement of the elementary plots within each block was randomized. Due to space 

constraints, only one plot of Roma VF was included in each block. 

 

Disease severity scoring and yield calculations 

Disease scoring was done at three time points during the growing season and 

according to the same symptom severity scale used in the 2005-2006 trials (Illustration 

3.2). However, due to uniformly low symptom severity scores at 2 weeks after 

transplanting in the first year’s trial, the three time points were shifted later, to 

flowering, fruiting, and first harvest. In addition to scoring for symptom severity, trial 

managers were also to calculate both total and marketable yields (i.e. only undamaged 

fruit) in t/ha or kg/ha based on eight total harvests. Since in the follow-up to the 

previous year’s trial many trial managers had also expressed an interest in seeing more 

yield-related measures such as fruit size and weight and fruits per plant or fruits per 

cluster, many trials reported such measures for the 2006-2007 advanced trial. 
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Yields were statistically analyzed by ANOVA for significant differences due to 

variety, block, and disease severity. All statistical analyses were performed in R. 

When necessary, yield data were transformed by a Box-Cox transformation to ensure 

normality of the data. Tukey HSD was used as a multiple-testing method for 

determining which yields were statistically significantly different from each other. 

 

Results 

 

Benin (INRAB) 

 The advanced trial in Benin was conducted in the village of Kargui, in the far north of 

the country near the city of Malanville and the borders with Burkina Faso and Niger. 

Seeds were sown on Nov. 20, 2006, and seedlings were transplanted on Dec. 18. First 

harvest took place on March 15, 2007, with the final harvest taking place April 20. 

 

The Beninoise advanced trial was of significantly higher quality than the previous 

year’s preliminary trial. This is due in part to its location – Kargui has a climate 

typical of the Sudano-Sahelian zone and is thus an ideal location for dry season tomato 

production, whereas the previous year’s trial had been in the humid southern zone 

where various diseases severely limit production in October through March. However, 

the higher quality of the trial was also likely associated with improved management 

practices. The Beninoise research partners fertilized their plots before transplanting, 

and again around flowering. In addition they applied carbofuran to prevent nematode 

infestation, and fungicides and insecticides to address fungal and insect problems as 

they arose during the growing season. The result is that no diseases and pests other 

than TYLCD became significant problems during the Beninoise advanced trial. 
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Based on the distribution of TYLCD symptom severity scores (Figure 4.2) it is clear 

that the cultivar responses to TYLCD in Benin were bimodal, either expressing 

complete resistance or complete susceptibility. In fact, the only cultivar to develop 

symptoms during the trial was the susceptible check Roma VF, which at first harvest 

had an average symptom severity score across the three blocks of 3.2, implying 

moderately strong disease pressure. Observations of whitefly population levels and 

disease severity symptoms during the trial confirm the presence of TYLCD pressure 

that was sufficient for screening but not severe.  

 

Yields for the trial were quite high, ranging from a maximum of 46.5 t/ha (Yosra) to a 

minimum of 19.1 t/ha (Roma VF). Interestingly, marketable yields were exceedingly 

close to total yields, differing from them by at most 1.4 t/ha – this is likely a further 

indication of the excellent management practices of the trial managers. ANOVA 

Figure 4.2 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Kargui, Benin. Red dots represent the 

TYLCD symptom severity scores of each plot of Roma VF. 
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showed that yields varied significantly by variety, and a Tukey HSD test showed that 

three varieties (Yosra, Industry DR 10403, and Realeza) had significantly higher total 

yields than the lowest-scoring variety, the susceptible check Roma VF. 

 

Burkina Faso (INERA) 

The advanced trial in Burkina Faso was again conducted in the Kou Valley near Bobo 

Dioulasso, and again TYLCD pressure was extremely high. Seeds for the trial were 

sown on Nov. 22, 2006 and transplanted on Dec. 22. The trial partners decided to do 

four repetitions instead of three since they had enough space and enough seeds. 

 

Whitefly populations were very high in the trial, and TYLCD symptoms were 

observed to be very high in neighboring fields early on in the trial. However, root-knot 

nematodes and bacterial wilt were also observed, and appeared to be overwhelming 

the TYLCD symptoms at earlier stages of the trial. 

 

The TYLCD symptom severity distribution plot (Figure 4.3) shows a steady increase 

in symptom severity over the course of the season. At flowering essentially no 

symptoms were visible on any plants, but by fruiting there was a range of responses, 

from completely symptomless (one plot of Atak) to a score of 3.4 (one plot of Realeza 

– Roma VF had an average score of 3.0 across all four blocks). By first harvest there 

were no symptomless plants, and scores ranged from 2.1 (single plots of Nirouz TH 

99806 and Bybal) to 4.0 (Roma VF in three plots). The symptom severity data at first 

harvest are extremely narrowly distributed and therefore difficult to interpret, but at 

fruiting three varieties had an average symptom severity score below 1: Atak, Bybal, 

and Yosra. Two additional varieties had symptom severity scores below 1.1: 

Yassamen TH 99802, and Ponchita. 
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Average yields in the trial were much better than those seen the previous year, ranging 

from 4.4 t/ha for Roma VF to 23.4 t/ha for Industry DR 10403. Analysis of variance 

shows that yield differences between varieties were significant, but also that yield 

comparisons between blocks were highly significant. Figure 4.4 shows that yields 

increased from block 1 to block 4 in a highly significant manner. Similarly, Figure 4.5 

shows that TYLCD symptom severity measures varied between blocks, with block 1 

being the highest and block 4 being the lowest. One possible explanation for this 

observation is that there was a TYLCV pressure gradient across the trial, with many 

more viruliferous whiteflies approaching the trial from one side than the other. This is 

in fact highly plausible – in a field adjacent to the trial site, a farmer had allowed old  

  

Figure 4.3 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in the Kou Valley, Burkina Faso. Red dots 

represent the TYLCD symptom severity scores of each plot of Roma VF. 
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Figure 4.4 – Box and whisker plot of the distribution of total yield measurements 

across four blocks in the advanced trial in the Kou Valley, Burkina Faso. Letters 

above each box plot indicate statistically significant groupings at p < .05. Red dots 

represent the susceptible check cultivar Roma VF. 

 

Figure 4.5 – Box and whisker plot of the distribution of TYLCD symptom 

severities at first harvest across the four blocks of the advanced trial in the Kou 

Valley, Burkina Faso. Red dots represent the susceptible check Roma VF. 
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tomato plants to continue growing, rather than plowing them under. As a result, those 

tomato plants were likely serving as a reservoir for TYLCV inoculum, placing higher 

disease pressure on the block closest to the infested field than on the block located 

farthest from it. An equally plausible explanation, however, is that the field had a 

gradient of soil-borne pathogens, and that symptoms from soil-borne illnesses were 

being confused with TYLCD symptoms. In either case, the advantage of the replicated 

trial design is very evident – without blocking, the gradient effect would not have been 

detectable and would have influenced comparisons of yields between cultivars. 

 

A Tukey HSD test showed that, when accounting for the effects of both variety and 

block, two varieties had significantly higher yields than Roma VF, the lowest yielding 

variety. They were Industry DR 10403, and Nirouz TH 99806. 

 

The research partners from Burkina Faso conducted a root knot nematode count on all 

varieties to see if they could discern any levels of resistance. Varieties were scored on 

scale of 1-5 based on the number of root nodules observed. Three varieties had scores 

lower than 2 – Atak, HA 3060, and Industry DR 10403 – and one variety, FTC 6236, 

had a score of less than 1, implying highly significant nematode resistance. 

 

Ghana (CRI) 

The advanced trial in Ghana was conducted in Navrongo, in the Sudano-Sahelian 

northern region of the country very near the border with Burkina Faso. Seeds for the 

trial were sown on Nov. 14, 2006, and seedlings were transplanted to the field on Dec. 

11. The first harvest was conducted very late, on March 15, 2007, and the last harvest 

was conducted on March 30. The trial partners were in the midst of an internal review 

during the trial, and were not available to visit the trial plot regularly. Evidently the 
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technicians overseeing the trial significantly delayed harvest in the hopes that their 

superiors would come to see the trial prior to harvest. As a result, many fruits were 

damaged by rodents while still on the vine, and thus marketable yield was 

significantly lower than total yield. One interesting outcome, though, was the 

discovery that the fruits of FTC 6236 have very significant longevity on the vine, 

leading that variety to have the highest yields in the trial. (No significant differences 

were found between varieties for yield, however.) 

 

TYLCD incidence in the Ghanaian advanced trial was quite high (Figure 4.6). While 

disease pressure at flowering was very mild, by fruiting some varieties were showing 

marked symptoms, with Roma VF averaging 2.1 on the symptom severity scale. Roma 

VF ended the trial at first harvest with a symptom severity score of 3.7, implying very 

high disease pressure. Nonetheless several varieties performed very well under the 

pressure, with Lety F1 and Bybal scoring below 1, and Thoriya, Industry DR 10403, 

Ponchita, FTC 6236, Gempride and Chenoa scoring below 2.  

 

As noted previously, yield was not found to differ significantly between varieties. 

Yields were quite good across the whole trial, ranging from 40.2 t/ha for FTC 6236 to 

18.8 t/ha for FTC 7351. Marketable yields ranged from 32.0 t/ha for FTC 6236 to 9.9 

t/ha for FTC 7351, and were also found to not vary significantly between varieties. 
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Mali (IER) – Baguineda, Niono, Sikasso and Sotuba 

The research partners at IER conducted advanced trials in four locations throughout 

Mali. Three of the four (Baguineda, Sikasso, and Sotuba) were also trial sites in the 

previous year’s preliminary trials, while Niono was selected as a new site, 

approximately 85 km north of Segou. While the trials in Sikasso, Sotuba, and in 

particular Niono were well-managed, they developed no TYLCD symptoms and 

therefore no data from those trials were shared. In contrast, the trial in Baguineda did 

develop significant levels of the disease, with the susceptible check Roma VF showing 

a symptom severity score of 4.0 by first harvest (Figure 4.7). However, it is relevant to 

note that Baguineda had implemented a host-free period prior to the tomato growing 

season that year – it was likely only due to the relatively late planting (November vs. 

September) that significant TYLCD pressure developed in the trial. Disease pressure 

was low at flowering, but by fruiting the majority of the symptom development in the 

Figure 4.6 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Navrongo, Ghana. Red dots represent the 

TYLCD symptom severity scores of each plot of Roma VF. 
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trial had already occurred, with minimal increases taking place between fruiting and 

first harvest. Varieties in the trial showed a range of reactions, from symptomless 

through significant susceptibility. Two varieties, Atak and Yosra, remained 

symptomless at first harvest, and four more showed symptom severity levels below 

1.0 (Chenoa, Lety F1, Ponchita and Realeza). Yields were reported for the trial, and 

ranged from 25.5 t/ha for Lety F1 to 44.7 t/ha for Cheyenne E448.  

 

Mali (AVRDC) – Samanko 

AVRDC again conducted a trial at the Samanko research station. Disease pressure was 

moderately high, with Roma VF developing an average TYLCD symptom severity 

score of 3.3 at first harvest (Figure 4.8). All other varieties in the trial remained mostly 

symptomless, with the highest disease score (0.3) developing on CLN 2764-99-13-18, 

Figure 4.7 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Baguineda, Mali. Red dots represent the 

TYLCD symptom severity scores of Roma VF. 
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an AVRDC breeding line trialed only in Samanko and not included in the previous 

year’s preliminary trial. 

 

Total yields for the trial were quite high. Interestingly, Roma VF showed the highest 

average total yield of 39.6 t/ha, while Lety F1, a cherry tomato, showed the lowest 

yield of 19.5 t/ha. This may be indicative of a combination of good management 

practices and late onset of TYLCD. Yields did not vary significantly between 

varieties, but blocks did have a significant impact on yields (Figure 4.9). This was 

likely due to an irrigation problem – drip irrigation was used, but a line was clogged, 

preventing blocks from being watered equally. This additionally led to the 

development of blossom end rot in some blocks, which along with high levels of sun 

scorch caused marketable yields to be very low for the trial. 

 

Niger (INRAN)  

The INRAN advanced trial in the 2006-2007 growing season was conducted on a 

research station in Birni-N’Konni, a town in southern Niger approximately 350 km 

east of Niamey and less than 10 km from the border with Nigeria. Birni-N’Konni is in 

a region best known for its onions – the most popular onion variety in all of West 

Africa, Violet de Galmi, is named for the town of Galmi just 35 km to the east. 

Tomatoes are also an important crop in the region, however, and since low TYLCD 

incidence was observed in Niamey the previous year the NARS partners from Niger 

decided to move their trial to Birni N’Konni. Seeds for the trial were sown on Nov. 16, 

2006, and transplanted Dec. 23. 
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Figure 4.9 – Box and whisker plot of the distribution of total yield measurements 

across the three blocks in the advanced trial in the Samanko, Mali. Letters above 

each box plot indicate statistically significant groupings at p < .05. Red dots 

represent the susceptible check cultivar Roma VF. 

 

Figure 4.8 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Samanko, Mali. Red dots represent the 

TYLCD symptom severity scores of each plot of Roma VF. 
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While whitefly populations were observed to be moderately high at the Nigerien 

advanced trial, TYLCD pressure was very low and no significant symptom levels 

developed during the course of the trial. In the nearby valley of Dogueraoua, in which 

tomatoes are a major crop (though secondary to onions), TYLCD symptoms were 

observed but were not seen to be a major constraint, with Helicoverpa and root-knot 

nematodes causing much more damage. 

 

Yields were reported for the trial, and ranged from 58.4 t/ha for Atak to 33.0 t/ha for 

Lety F1. Since Lety F1 is a cherry tomato, it is relevant to note that the cultivar with 

the next-lowest yield was Roma VF, with 39.1 t/ha. There was no statistically 

significant yield difference between cultivars in the trial. 

 

Senegal (CDH/ISRA) 

The Senegalese advanced trial was again conducted at the Sangalkam research station 

in Rufisque, about 40 km east of Dakar. Seeds were sown Nov. 14, 2006, and 

seedlings were transplanted on Dec. 19. The trial was well managed, with a balanced 

fertilizer applied at transplanting, and again in mid-January. A fungicide was applied 

for Alternaria solani in mid-January, and Iprodione was applied for nematodes at the 

end of February. First harvest was on Feb. 21, 2007, and harvest went through April 

17. TYLCD observations were conducted on Jan. 31, Feb. 21, and March 12 – thus the 

second observation coincided with first harvest, and the third observation was actually 

halfway through the harvest period. 

 

TYLCD pressure at the Senegalese advanced trial was moderate to strong, with both 

Roma VF and the local susceptible cultivar Xina gradually developing symptoms over 

the course of the growing season, eventually reaching 3.7 and 4.0, respectively, at 
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mid-harvest. However, no other varieties showed any disease symptoms at any time 

points (Figure 4.10). 

 

Yield data were reported, and ranged from 55.9 t/ha for either Roma VF or TY 75 to 

17.9 t/ha for Xina., with those two yields being significantly different from one 

another. Unfortunately, there was an irreconcilable discrepancy between the original 

data tables and a summary table of the data, making it difficult to know if Roma VF or 

TY 75 was the cultivar to yield 55.9 t/ha. 

 

Togo (ITRA) 

In 2006-2007 the Togalese trial was moved from the southern city of Lomé, where it 

had been the previous year, to the Tantiégou research station in the northern city of 

Dapaong, near the border with Burkina Faso. Dapaong falls within the Sudano-

Figure 4.10 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Rufisque, Senegal. Colored dots represent 

the TYLCD symptom severity scores of individual plots of the susceptible checks: 

red = Roma VF, blue = Xina, purple = both Roma VF and Xina. 
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Sahelian climatic zone, and the trial was thus conducted during the local tomato-

growing season.  

 

Mild TYLCD pressure was observed in the Togalese trial, but it appears to have been 

overwhelmed by the symptoms of at least one other disease, possibly early blight. 

Additionally, in mid-February trial technicians were found to have been spraying 

pyrethroid insecticides to control insect populations during the trial, thereby 

inadvertently reducing whitefly populations and the spread of tomato-infecting 

begomoviruses. These technicians were instructed to stop spraying the insecticides, 

but it was probably too late: Roma VF had developed a symptom severity score of 

only 2.0 by the first harvest (Figure 4.11).  Mild TYLCD symptoms did develop on 

several other cultivars, while still others remained mostly symptomless. Atak, Chenoa, 

Industry DR 10403, and Realeza all shared the lowest symptom severity score of .33 

at first harvest, and Lety F1, Thoriya, and Nirouz TH 99806 all had scores below 1.0. 

Figure 4.11 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Dapaong, Togo. Red dots represent the 

TYLCD symptom severity scores of each plot of Roma VF. 
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Yields were reported for the Togalese advanced trial, and ranged from 20.2 t/ha for 

Realeza to 46.0 t/ha for Industry DR 10403. Roma VF had the second-lowest yield of 

20.4 t/ha. No statistically significant differences were found between the yields of any 

of the tested cultivars. 

 

Discussion 

 

TYLCD Resistance 

The varieties included in the 2006-2007 advanced trials had previously undergone one 

round of selection for TYLCD resistance during the 2005-2006 preliminary screening 

trials. As a result, it is no surprise that all varieties in the trial showed significantly 

higher resistance to TYLCD than the susceptible check Roma VF, evidenced both by 

low symptom severity scores and high yields. Under the moderately strong disease 

pressure seen in some trials, including those in Benin, Samanko, Mali, Senegal, and 

Togo, no varieties under evaluation showed any susceptibility to TYLCD. 

Importantly, this does not imply that TYLCD pressure was low – in all of those trials, 

with the possible exception of that in Togo, the susceptible check Roma VF developed 

significant TYLCD symptoms during the course of the trial, showing that for locally 

popular tomato varieties, TYLCD is still a major constraint to production. 

 

Among the collection of resistant cultivars, it is difficult to discern differences in the 

levels of resistance based on the data from the advanced trial. Table 4.2 shows the 

symptom severity scores at first harvest from Burkina Faso, Ghana, and Baguineda, 

Mali, all of which experienced high enough TYLCD pressure during the trial to induce 

symptoms on some of the test cultivars. Aside from the marked susceptibility of Roma 
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VF, no other obvious patterns are evident. A few varieties, such as Ponchita and 

Chenoa, were neither the most resistant nor the least resistant cultivars in any of the 

three trials. The majority of the cultivars, however, performed exceedingly well in at 

least one of the three trials and exceedingly poorly in another. Yosra, for instance, had 

the second lowest TYLCD symptom severity score of all varieties in Baguineda, and 

the third lowest score in Burkina Faso, but had the highest score of any variety other 

than Roma VF in Ghana. Similarly, Realeza had the third lowest symptom severity 

score in Baguineda, but the second highest score in Burkina Faso and the third highest 

score in Ghana. There are several potential explanations for these discrepancies. It is 

plausible that different species of tomato-infecting begomoviruses are prevalent in 

each location, and that varieties in the trial carried varying levels of resistance to 

Table 4.2 – TYLCD symptom severity scores at first harvest in Burkina Faso 

(BUR), Ghana (GHA) and Baguineda, Mali (MAL-BAG). Cell colors range from 

yellow (lowest score in each location) to blue (highest score in each location).  

VARIETY NAME BUR GHA MAL-BAG

Atak 2.25 2.07 0.00

Bybal 2.39 0.96 1.00

Chenoa 2.48 1.93 0.40

Cheyenne E448 2.65 2.70

FTC 6236 2.52 1.47

FTC 7351 3.23

Gempride 2.81 1.52 1.20

HA 3060 2.65 2.20

HMX 4810 2.58 2.60

Industry DR 10403 2.70 1.21 2.10

Lety F1 2.80 0.81 0.50

Nirouz TH 99806 2.44

Ponchita 2.53 1.27 0.60

Realeza 2.96 2.50 0.30

Roma VF 3.96 3.73 4.00

Thoriya 3.06 1.17 1.10

Yassamen TH 99802 2.48

Yosra 2.40 3.53 0.00
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different strains of tomato-infecting begomoviruses, leading to different responses by 

the same cultivars in different regions. Further surveys of local virus populations 

would be necessary to confirm this possibility. An alternative explanation is that 

symptom severity scoring continued to be confounded by other diseases and stresses 

during the advanced trials of 2006-2007, and that diseases not associated with 

begomoviruses were responsible for at least some of the symptoms described as 

TYLCD on cultivars under evaluation. In either case, it is evident that all varieties in 

the advanced trial were resistant to TYLCD, and that other measures such as yield 

traits would need to be considered when selecting varieties for inclusion in further 

trials. 

 

Yield Measures 

A variety of yield measures were collected during the 2006-2007 advanced trials to 

help determine the appropriateness of the evaluated cultivars for local production 

needs. Total yield and marketable yield were calculated for each trial (with the 

exception of Burkina Faso, which only reported total yield). In addition, while no 

specific guidelines were provided for the collection of fruit characteristics such as fruit 

size and weight, and yield traits such as fruits per plant, the collection of those data 

were discussed at the annual planning meeting preceding the 2006-2007 advanced trial 

and therefore many of the trial managers collected at least some of those data. 

 

Table 4.3 shows yield-related measures for the 11 tomato cultivars included in all 

advanced trials. (Data from varieties included in only some of the trials can be found 

in the trial data located in Appendix 2.) The length-to-diameter ratio (L/D ratio) 

provides a measure of the fruit shape for a given variety – values around 1.0 represent 

spherical fruits, while values above 1.0 represent long, plum-shaped fruits and values 
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below 1.0 represent flattened, beefsteak types. Several trends are clear in these data. 

Firstly, Lety F1 clearly falls into its own category as a small, nearly spherical cherry 

tomato with a very high number of fruits per plant. Of the other varieties, several, such 

as Roma VF, Thoriya, and Realeza, have a plum-type shape, and tend to have 

relatively low fruit weight and a moderate number of fruits per plant. Others, such as 

Industry DR 10403, Gempride, and Chenoa, are spherical to slightly flattened, have 

moderate fruit weight, and may have relatively high numbers of fruits per plant 

(though Chenoa does not). Finally, varieties such as Bybal, Yosra, Ponchita and Atak 

Table 4.3 – Yield traits in the advanced trials. Superscripts indicate groupings 

supported by a Tukey HSD test, p < .05. FPP: Fruits per plant. L/D: 

Length/Diameter.  

Variety Total Yield Variety Weight Variety FPP

Industry DR 10403 38.65a
Bybal 148.8a

Lety F1 88.6a

Yosra 34.46ab
Yosra 118.4ab

Gempride 58.8b

Atak 33.56
ab

Atak 112.5
abc

Industry DR 10403 42.8
bc

Gempride 32.19ab
Industry DR 10403 101.1bc

Realeza 46.5bcd

Bybal 30.07
ab

Realeza 81.4
bcd

Thoriya 37.6
bcde

Thoriya 29.83ab
Chenoa 91.1bcd

Roma VF 39.1bcde

Realeza 29.67ab
Gempride 80.2cd

Atak 34.7bcde

Roma VF 28.75
b

Ponchita 80.1
cd

Yosra 30.0
cdef

Ponchita 28.18b
Roma VF 63.9d

Ponchita 28.2def

Chenoa 27.82b
Thoriya 58.2e

Chenoa 25.9ef

Lety F1 23.71
b

Lety F1 31.1
e

Bybal 23.6
f

Variety Length Variety Diameter Variety L/D Ratio

Realeza 60.4a
Bybal 63.7a

Atak 0.82

Roma VF 57.0ab
Yosra 58.2ab

Ponchita 0.82

Industry DR 10403 55.9abc
Atak 59.0ab

Yosra 0.86

Thoriya 56.1abc
Industry DR 10403 55.6abc

Bybal 0.86

Bybal 54.6abcd
Chenoa 55.0abc

Chenoa 0.91

Gempride 50.6bcde
Gempride 51.9bcd

Lety F1 0.94

Yosra 49.8
cde

Ponchita 53.7
bcd

Gempride 0.98

Chenoa 49.9cde
Realeza 47.0cde

Industry DR 10403 1.01

Atak 48.5de
Thoriya 45.1de

Thoriya 1.24

Ponchita 44.2e
Roma VF 39.5e

Realeza 1.29

Lety F1 34.4f
Lety F1 36.8e

Roma VF 1.44
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are flattened spheres and tend to have high fruit weight and low numbers of fruits per 

plant. Notably, Industry DR 10403 is the only variety to have significantly higher 

length, diameter, weight and number of fruits per plant than the varieties with the 

lowest measurements in each of those categories, which may explain its also being the 

only variety to have a significantly higher total yield than the lowest-yielding varieties. 

 

Farmer Preferences 

Many research partners solicited farmer opinions during the trial, either informally or 

during field days when groups of farmers were brought to see the trials for a more 

formal evaluation process. In general, farmer response to the cultivars was very 

positive. Farmers were impressed with the high levels of disease resistance shown by 

the cultivars, and tended to gravitate towards fruits with firm textures, which hold up 

better under the rough transport conditions in West Africa. Flavor was also mentioned 

as a major factor in selection, though farmers in Benin noted that an advantage of less 

flavorful tomatoes is that they are less appealing to Helicoverpa armigera and 

therefore less likely to be damaged prior to harvest. 

 

Research partners in Baguineda, Mali had farmers rank cultivars in order of 

preference. From highest to lowest preference, farmers ranked the varieties as follows: 

Industry DR 10403, HA 3060, HMX 4810, Cheyenne E448, and Gempride. It is not 

clear if all cultivars were offered for evaluation, or if the five included in the ranking 

were the only ones evaluated. 

 

It is important to note that farmer opinion, especially when collected in this anecdotal 

manner, has limited relevance to the potential agronomic or commercial success of a 

variety. Farmers are likely very familiar with their consumers’ tastes, but those tastes 
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are based on the current landscape of available varieties and do not reflect what 

consumers might prefer given access to all varieties. Furthermore, the possibility of 

reviving the tomato processing industry in West Africa (see chapter 8) means that 

consumer preference might have no bearing at all on the success of an introduced 

variety. Despite all these factors, the collection of farmer opinion is nonetheless 

informative as it provides an indication of the likely willingness of farmers to adopt 

the new varieties when they are introduced. If the most disease-resistant and high-

yielding varieties were also the least popular among farmers, it would be relevant to 

consider whether an incentivization program might be necessary to improve adoption 

rates. In our case, given the high popularity of the most successful varieties, it was 

clear that preferences would not be a major factor in limiting the adoption of the 

selected varieties. 

 

Cultivar Selection 

Given the high performance of so many materials in the trials, it was difficult for 

research partners to make selections. Each research partner submitted a list of all 

cultivars they would like to include in multi-location trials in the following year. Four 

varieties were requested nearly unanimously, and were therefore selected for all multi-

location trials. They were Atak, Bybal, Gempride, and Industry DR 10403. In 

addition, research partners had the opportunity to select two more cultivars for 

inclusion in the following year’s trial. 

 

Recommendations for Year 3 

The 2007-2008 multi-location trials were designed to evaluate selected cultivars in 

realistic farm conditions and to introduce them to farmers, and it was therefore 

decided to conduct them on rented farm plots in major tomato production areas. It was 
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generally agreed that the protocol for the advanced trial had been very successful, but 

that several aspects needed updating. In particular plot design in the advanced trial 

was seen as somewhat weak due to the lack of a significant number of plants of Roma 

VF interspersed among all the trial varieties for better infiltration of virus pressure. 

The elementary plots were therefore redesigned to include one row of test cultivar 

surrounded by rows of Roma VF. In addition, low germination rates in a number of 

the advanced trials called attention to the need for a uniform protocol for the 

establishment of seedling nurseries. 

 

The following chapter presents the results of the 2007-2008 multi-location trials. 
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CHAPTER 5 

YEAR 3: MULTI-LOCATION TRIAL 

 

Introduction 

In 2007-2008 the top-performing TYLCD-resistant tomato cultivars selected during 

the previous two years’ trials were evaluated in multi-location trials throughout West 

Africa. While similar to advanced trials in plot design and recorded measurements, 

these trials had several features that were specifically designed to transition selected 

cultivars from variety trials into farmers’ fields. Firstly, the trials were conducted on 

rented farmland, rather than on research stations, allowing them to function as 

demonstration plots for the varieties under evaluation. It was expected that farmers 

viewing the trials would become interested in the new varieties, and that word of 

mouth would help spread the news about their performance, decreasing the risk that 

might be associated with adopting those varieties in subsequent seasons. Secondly, the 

trials were conducted in two locations in each country, preferably within distinct 

farming communities, to maximize the exposure of the selected cultivars to farmers. 

When possible, these different farming communities were additionally located in 

different agroecological zones to determine the extent to which each variety would be 

well-adapted in multiple environments. 

 

A very significant delay in funding distribution in 2007 unfortunately caused several 

of the multi-location trials to be canceled, and several more to be planted late. While 

in previous years the funding from USAID for the NARS partners was routed through 

AVRDC, in 2007 the funding was instead routed through the Institut du Sahel 

(INSAH), which waited several months before disbursing the funds. While some of 

the NARS partners were able to secure advances from their own agencies to cover the 
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costs of the trials until the funding from USAID arrived, those in Burkina Faso and 

Senegal were not able to do so, and therefore they did not plant any trials in 2007-

2008. The remaining trials were not planted until as late as January of 2008, 

representing a serious delay from previous years. 

 

Materials and Methods 

 

Plant Materials 

Forty initial entries were evaluated throughout West Africa over the course of two 

rounds of variety trials from 2005-2007. Based on TYLCD resistance, yield, and fruit 

types, the four highest-performing varieties were selected for inclusion in the 2007-

2008 multi-location trial. They were Atak, Bybal, Gempride, and Industry DR 10403. 

Seeds of these four varieties were requested from their sources, but unfortunately De 

Ruiter Seeds did not have a sufficient supply of Industry DR 10403 for inclusion in 

the trials. As a result, Yosra was selected to replace Industry DR 10403 as the fourth 

variety in the trials. However, since there were not enough seeds of Yosra, it was not 

evaluated in Mali. In addition, each NARS partner was given the option of including 

at least two more cultivars in their multilocation trial. Selected varieties included HA 

3060, HMX 4810, Lety F1, Ponchita, Realeza, and Thoriya (Table 5.1). 

 

Trial Locations 

Though the seven partner countries intended to participate in the trial, Burkina Faso 

and Senegal were not able to conduct trials due to lack of funding, and therefore trials 

were only conducted in Benin, Ghana, Mali, Niger, and Togo. In each country, two 

locations were selected, representing two distinct tomato farming communities (Figure 

5.1). If possible, these communities were to be located in distinct agroecological 
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zones. Trials were to be conducted on farms, rather than on research stations; in many 

cases, trial managers hired local farmers to manage the day-to-day maintenance of the 

trials to ensure that trials would be managed as per local customs. If local farm plots 

were too small for an entire trial, trials could be split across multiple farms which each 

farm representing a different block. 

 

Trial Establishment and Maintenance 

The trial protocol was again very similar to the previous year’s, with a few notable 

changes to further improve management practices. Detailed instructions were provided 

for the establishment of seedling nurseries: seeds were to be treated with a fungicide 

(thioral) and planted at 5cm spacing in seedling trays filled with a pasteurized 1:1:1 

mixture of sand, clay and manure. Seedling nurseries were to be watered lightly every 

day and protected from bright sunlight. Two weeks after emergence seedlings were to 

be fertilized with a urea solution, and three weeks after emergence watering was to be 

reduced to prepare seedlings for transplant. Seedlings were to be transplanted four  

Seed Source Variety Name BEN GHA MAL NIG TOG

De Ruiter Seeds Bybal     

Lety F1 

Realeza 

Thoriya 

Enza Zaden Atak     

Ponchita  

Yosra    

Harris Moran HMX 4810 

Hazera HA 3060 

Seminis Gempride     

Tropicasem Roma VF     

Table 5.1 – Varieties included in the multi-location trials in Benin (BEN), Ghana 

(GHA), Mali (MAL), Niger (NIG), and Togo (TOG). 
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weeks after emergence in soil up to their first leaves. In addition, a more detailed 

fertilization schedule for trial plots was provided. 

 

Multi-location trials again entailed a randomized complete block design with three 

replicates. Elementary plot layout, however, was changed to increase disease pressure 

and to minimize edge effects: seedlings of varieties under evaluation were planted in 

single rows of 12 plants surrounded on both sides by spreader rows of 12 plants of 

Roma VF. Within-row spacing was .5 m and between-row spacing was .6 m, and the 

total size of each elementary plot was 2 m × 6 m. 

 

Disease severity scoring and yield calculations 

Disease scoring was again performed at flowering, fruiting, and first harvest, 

according to the symptom severity scale described in Chapter 3 (Figure 3.2). Total and 

commercial yields were also collected as per the previous year’s protocol. Collection 

of yield characteristics from one location per country were formalized in the multi-

location trial protocol. Three plants in each elementary plot in the selected location 

were tagged prior to fruiting, so as to avoid biasing data towards particularly high-

yielding plants. The number of fruits per plant and the number of fruits per cluster 

were to be calculated for each marked plant. In addition, 15 fruits were to be randomly 

selected from each variety’s yield, and those fruits were to be measured for weight in 

grams, length and diameter in millimeters, and firmness on a subjective scale of 1-3. 

 

Statistical analysis of yield data was again performed using R.  
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Results 

 

Benin (INRAB) 

The multi-location trials in Benin were conducted in Kargui, the site of the previous 

year’s advanced trial, and the village of Tomboutou, approximately 20 km to the east. 

It actually would have been significantly easier for the research partners from Benin to 

situate one of the trials further to the south, closer to their offices in Cotonou, but they 

misunderstood the reasons for choosing multiple locations and chose a second 

northern site to avoid having trials in two distinct agroecological zones. Seeds for both 

trials were sown on Dec. 4, 2007, and seedlings were transplanted on Jan. 11, 2008. 

 

TYLCD severity in Kargui was moderate, with Roma VF developing a symptom 

severity score of approximately 3.3 by first harvest, while all other varieties had scores 

less than 1.0 (Figure 3.2). Farmers in the village described the symptoms of TYLCD 

as a major problem affecting their tomato production, implying that the moderate 

pressure is sufficient to have a serious impact on yield. The trial in Tomboutou had 

somewhat higher disease pressure, though symptom severities were only scored at 

flowering and fruiting (Figure 3.3). At fruiting, Roma VF had an average TYLCD 

symptom severity score of 2.8 in Tomboutou, compared with just 1.7 in Kargui. At 

that timepoint all varieties under evaluation in Tomboutou had scores under 1.0 with 

the exception of Gempride, which had a symptom severity score of 1.4. 
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Figure 5.2 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Kargui, Benin. Red dots represent the 

TYLCD symptom severity scores of each plot of Roma VF. 

 

Figure 5.3 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Tomboutou, Benin. Red dots represent 

the TYLCD symptom severity scores of each plot of Roma VF. 
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Yields were significantly higher in Kargui than in Tomboutou, possibly due to the 

higher TYLCD pressure though also possibly due to inconsistent management 

practices. In Kargui, yields ranged from 31.4 t/ha for Realeza to 11.3 t/ha for Roma 

VF. Realeza and Thoriya were both found to have significantly higher yields than 

Roma VF. Marketable yields were only slightly lower than total yields in Kargui, and 

had the same statistical significance. In Tomboutou, yields ranged from 13.6 t/ha for 

Atak to just 2.1 t/ha for Roma VF, and no significant differences were found between 

any of the total or marketable yields. 

 

Aside from fruit size and weight, which will be discussed below, the research partners 

from Benin also reported instances of blossom end rot and cracking. Roma VF was the 

only variety that was susceptible to blossom end rot, and Atak was reported to be 

prone to cracking. 

 

Many farmers in the region visited the trials and were interested in the cultivars under 

evaluation. They expressed a strong preference for hard fruit, which they said are 

necessary for shipping. They did express that flavor is the second most important trait 

to them when selecting tomato varieties. Of the varieties in the trial, Atak appeared to 

be the favorite among the local villagers in Kargui, while the farmer managing the trial 

in Tomboutou expressed a preference for Yosra. Several farmers expressed a lack of 

interest in Gempride because it is a relatively soft-fruited variety. 

 

Ghana (CRI) 

The Ghana multi-location trials were held in Navrongo and in Techimanitia. 

Navrongo, the site of the previous year’s advanced trial, is a major tomato growing 

center in the northern part of the country, near the border with Burkina Faso. 
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Techimantia is also a major tomato growing region, though tomatoes there tend to be 

grown during the rainy season. It is located in the much more humid southern region, 

approximately 70 km northwest of Kumasi. 

 

TYLCD pressure was high and very similar between the two trial locations, though 

just slightly higher in Techimantia than in Navrongo. In Techimantia Roma VF had an 

average symptom severity score of approximately 3.7, implying very strong disease 

pressure (Figure 5.4). Under that pressure Lety F1 scored below 1.0, Yosra scored 

approximately 1.0, and Atak, Bybal and Gempride scored between 1.0 and 2.0, with 

Gempride having the highest score. In Navrongo Roma VF had an average score of 

approximately 3.2, and all other varieties scored in the same ranges as in Techimantia 

(Figure 5.5). 

 

Yield data were presented for Navrongo, but not for Technimantia. In Techimantia 

local farmers harvested all of the fruit for themselves since the fruit quality and yield 

were much higher than that of their own cultivars. This unfortunate turn of events did 

have a silver lining: farmers were well versed in the different varieties in the trials and 

were happy to discuss their preferences. Lety F1 was listed as the favored tomato, 

since it has much higher yield and better flavor than the local cherry tomato. Cherry-

type tomatoes are slowly gaining popularity in the region, and though farmers 

expressed some concern about the size of the market for cherry tomatoes, they mostly 

agreed that Lety F1 was of sufficient quality to have no marketability issues. In order 

of preference, the remaining cultivars were ranked as follows: Yosra, Bybal, Atak, 

Gempride, and Roma VF. 
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Figure 5.4 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Technimantia, Ghana. Red dots represent 

the TYLCD symptom severity scores of each plot of Roma VF. 

 

Figure 5.5 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Navrongo, Ghana. Red dots represent the 

TYLCD symptom severity scores of each plot of Roma VF. 
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Yields in Navrongo ranged from 44.2 t/ha for Yosra to just 9.9 t/ha for Roma VF. 

With the exception of Yosra and Bybal, the yields of all varieties were significantly 

different from the yields of all other varieties. For some of the higher yielding 

varieties, marketable yields were quite a bit lower, differing from total yields by as 

much as 8 t/ha. Again, nearly all marketable yields were found to be statistically 

significantly different from one another – Atak and Gempride were the only two 

varieties whose marketable yields were not significantly different. 

 

Mali (AVRDC) 

Since IER had had difficulties identifying sites with high TYLCD pressure in the 

previous two years, AVRDC was the only organization to conduct multi-location trials 

in Mali in 2007-2008. The trials were conducted in Sibby, a town 40 km southwest of 

Bamako towards the border with Guinea, and in Djakorba, a Millennium Village near 

Segou, approximately 300 km north of Bamako. While both villages are located 

within the Sudano-Sehelian climatic zone, Sibby is closer to the Guinean Zone and has 

much higher humidity than Djakorba, which is nearly in the Sahel. 

 

Red spider mites proved to be a major constraint in both Djakorba and Sibby, 

eventually destroying both trials and therefore preventing collection of some of the 

data. In Sibby, only one TYLCD symptom severity time point was collected before the 

trial was destroyed by the red spider mites. In Djakorba, the red spider mites did not 

become a serious problem until mid-harvest, allowing for the collection of more data. 

However, water stress seemed to be a problem in that trial: the empowered mentality 

of the Millennium Villagers had led many of them to volunteer to manage the trial, 

and they therefore split it among themselves on a plot-by-plot basis. The result was 

that each elementary plot was being managed by a different person, and some of those 
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people were more diligent about watering than others. This problem was eventually 

discovered and corrected, but during the earlier stages of plant development some 

plots were severely under-watered and others were not, potentially affecting yields. 

 

In Sibby, TYLCD pressure at flowering was observed to be quite high, with Roma VF 

having a TYLCD symptom severity score of 1.8, which is high for such an early time 

point. Most other varieties showed much less susceptibility – HMX 4810 had a score 

of 0.4, and Atak, Bybal, Gempride and Ponchita remained symptomless. TYLCD 

pressure was also high in Djakorba, where by first harvest Roma VF had developed a 

TYLCD symptom severity score of 3.7 (Figure 5.6). At that time point Gempride had 

a score of 1.8, HMX 4810 had a score of 0.8, and Atak, Bybal and Ponchita remained 

symptomless. Only two of eight harvests were conducted in Djakorba before red 

spider mites destroyed the trial, and thus yields were exceedingly low and difficult to 

Figure 5.6 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at two time points in Djakorba, Mali. Red dots represent the 

TYLCD symptom severity scores of each plot of Roma VF. 
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compare. It is notable, however, that Gempride had a very low yield compared to the 

other cultivars – this may be because of its higher susceptibility to TYLCD, but it was 

observed that at least one of the plots containing Gempride had been severely under-

watered earlier in the season, so it is difficult to know the cause of Gempride’s low 

yield. 

 

Farmers in Djakorba specifically mentioned a preference for Atak and Bybal, which 

they liked because of their large fruits. In the year following the trial, excess seeds of 

HA 3060 and HMX 4810 were distributed to farmers in N’Tonimba, approximately 10 

km northwest of Bamako. These farmers have reported receiving a premium price for 

the fruit of these cultivars, and have expressed strong and repeated interest in gaining 

access to further seeds. 

 

Niger (INRAN) 

Despite a history of low TYLCD pressure, INRAN did conduct multi-location trials in 

2007-2008 to introduce farmers to the advantages of modern tomato varieties. Trials 

were conducted in Kollo, a town approximately 80 km east of Niamey, and in Birni 

N’Konni, the town where the advanced trial had been situated the previous year. Seeds 

for the trials were sown extremely late, on Feb. 11, 2008 in Birni N’Konni and on Feb. 

13 in Kollo, and transplanting took place on Feb. 19 in Birni N’Konni and on Feb. 24 

in Kollo. Harvest spanned from May 27 to June 10 in Birni N’Konni, and from May 

28 to June 14 in Kollo. 

 

There was again no TYLCD pressure in the Nigerien trials, and therefore TYLCD 

symptom severity scores were not reported. Yields were reported, and varied 

significantly between Birni N’Konni and Kollo. In Kollo the yields were extremely 
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low, ranging from 2.3 t/ha for Roma VF to just 8.0 t/ha for Bybal, and were not 

statistically significantly different from one another. No particular constraint was 

reported to explain the low yields, implying that management practices might have 

been to blame. Yields in Birni N’Konni, on the other hand, were significantly higher 

and fell into three groups, with Yosra having the highest yield of 19.6 t/ha, followed 

by Atak, Bybal, and Ponchita, which were not significantly different from each other 

and averaged approximately 15 t/ha, and finally followed by Gempride and Roma VF, 

which were not significantly different from each other and which had yields of 7.9 t/ha 

and 5.0 t/ha respectively.  Marketable yields were primarily less than 1 t/ha lower than 

total yields, and fell into the same three groups as total yields.  

 

Togo (ITRA) 

The Togalese multi-location trials were conducted in Dapaong and Kara. Dapaong, in 

the far north of the country, was also the site of the previous year’s advanced trial. 

Kara is a town approximately 200 km south of Dapaong – it is also considered to be in 

northern Togo, and does have a similar Sudano-Sahelian climate to that of Dapaong. 

Both towns are major centers of tomato production in Togo. Seeds for the trial in 

Dapaong were sown on Dec. 7, 2007, and seedlings were transplanted on Jan. 4, 2008. 

TYLCD symptom severity scores were measured on Feb. 18, March 13, and Apr. 2, 

2008. Seeds for the trial in Kara were sown on Dec. 8, 2007, and seedlings were 

transplanted on Jan. 6, 2008. Symptom severity scores were recorded on Feb. 9, 

March 7, and March 22, 2008. 

 

During the trial, TYLCD symptoms were observed on tomato in farmers’ fields 

surrounding the trial in Dapaong. Nonetheless, TYLCD severity in the trial was scored 

as only moderate, with Roma VF having a symptom severity score of only 2.8 at first 
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harvest (Figure 5.7). Furthermore, all cultivars under evaluation developed symptoms 

to a similar degree, with symptom severity scores ranging from 1.7 for Bybal to 2.3 

for Yosra. Similar results were observed in Kara, where Roma VF developed a 

TYLCD symptom severity score of 3.4, and the scores of the test cultivars ranged 

from 2.1 for Gempride to 3.3 for Atak (Figure 5.8). There are several possible 

explanations for the narrow distribution of TYLCD symptom severity scores observed 

in these trials. Very strong bacterial wilt symptoms were observed at the trial in Kara, 

and those symptoms could have been mistaken for TYLCD, giving the impression that 

all varieties were essentially equally susceptible to the virus. While bacterial wilt was 

not specifically observed in Dapaong, there is precedent for non-begomovirus-

associated diseases being associated with TYLCD in Togo, and therefore it is 

plausible that symptom severity scoring was not accurately reflective of TYLCD 

symptom severity. An alternative explanation is that none of the varieties in the trials 

were strongly resistant to the newly discovered Tomato Leaf Curl Togo Virus 

(ToLCTgV), which may be the dominant tomato-infecting begomovirus in Togo, 

though more research will need to be conducted to confirm this. ToLCTgV is 

associated with a novel DNA-β that may be responsible for “breaking” the resistance 

of the TYLCD-resistant tomato cultivars included in the trial. For this to be the case, it 

would also need to be true that ToLCTgV and its DNA-β are only moderately virulent, 

since even Roma VF did not develop strong symptoms in either trial. 

 

Yields in the Togalese trials were relatively low. In Dapaong, total yields ranged from 

13.3 t/ha for Atak to 3.2 t/ha for HA 3060. Marketable yields were consistently exactly 

6.4% lower than total yields, implying that trial managers estimated marketable yields 

rather than calculating them directly. No significant differences in yield were found 

between any cultivars in the trial. In Kara, yields ranged from 28.9 t/ha for Thoriya to  
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Figure 5.7 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Dapaong, Togo. Red dots represent the 

TYLCD symptom severity scores of each plot of Roma VF. 

 

Figure 5.8 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Kara, Togo. Red dots represent the 

TYLCD symptom severity scores of each plot of Roma VF. 
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10.0 t/ha for Atak. Marketable yields were 21.8% lower than total yields in the trial. 

Thoriya was found to have a significantly higher yield than four other varieties: Roma 

VF, Yosra, Bybal, and Atak. 

 

Farmers in Kara visited the trial and expressed a general preference for Atak and 

Bybal over both the other cultivars in the trial and their locally popular cultivars. 

 

Discussion 

The 2007-2008 multi-location trial was the third in a series of variety trials aimed at 

identifying tomato cultivars suitable for West Africa. While the previous two years’ 

preliminary screening and advanced trials were designed to differentiate between 

tomato cultivars based on their resistance to TYLCV and their performance in the 

production environment of West Africa, the 2007-2008 multi-location trial had two 

different goals: to confirm the performance of the selected cultivars in the less 

forgiving environment of farmers’ fields, and to publicize the varieties to producers in 

many regions throughout West Africa.  

 

Interestingly, the performance of the selected cultivars did suffer in farmers’ fields. 

The cultivars in the multi-location trials showed more TYLCD symptoms than they 

had in previous years on research stations under equivalent disease pressure, and had 

lower yields due to both lower fruit set and to the production of smaller, lighter fruits. 

Nonetheless, farmers who witnessed the trials were uniformly enthusiastic about the 

new cultivars and many expressed interest in gaining access to seeds. 
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TYLCD resistance and cultivar performance 

Table 5.2 compares the average performance of the selected cultivars in the 2007-2008 

multi-location trials with the performance of the same cultivars in the 2006-2007 

advanced trials. The table illustrates the performance advantage of all selected 

cultivars over Roma VF. In both the advanced trials and the multi-location trials, all 

selected cultivars had lower average TYLCD symptom severities and higher average 

yields than Roma VF, demonstrating lower levels of TYLCD susceptibility and 

greater yield potential. It is notable that average TYLCD symptom severity on Roma 

VF did not change significantly between year 2 and year 3, implying that there was no 

change in overall TYLCD pressure in the region. However, the cultivars under 

evaluation did show approximately two-fold increases in TYLCD symptom severity 

and two-fold decreases in yield in the switch from the advanced trials to the multi-

location trials. This is likely a reflection of the change in environment – while the 

advanced trials were conducted on research stations with relatively controlled 

environments and relatively advanced management practices, the multi-location trials 

were conducted on farms with uncharacterized soils and unknown local disease 

pressures. While the change to a less-controlled environment had a significant impact 

on the performance of the selected cultivars, it had an even greater impact on the 

performance of Roma VF, which saw a four-fold decrease in yield for the same 

transition. Thus, the selected varieties offer not only disease resistance and increased 

yield potential, but also stochastic dominance over the regionally popular TYLCD-

susceptible tomato varieties. In other words, while performance might vary from one 

environment to the next, the selected TYLCD-resistant varieties consistently 

outperform their TYLCD-susceptible counterparts. This is crucial in the 

heterogeneous, often degraded environments of West Africa where farmers have 

limited access to inputs and therefore limited control over their environments. By 
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offering consistently higher yield potential in all environments, the selected varieties 

promise farmers more predictable returns, and thus more consistent livelihoods. 

 

Table 5.2 – Comparison of the performance of selected cultivars in the advanced trial 

(AT) of Year 2 (2006-2007) and the multi-location trial (MLT) of Year 3 (2007-2008). 

Changes in symptom severity (SS) scores and total yields are indicated. 

Variety 
Year 2 - AT Year 3 - MLT Change 

SS Yield SS Yield SS Yield 

Atak 0.85 33.56 1.82 16.58 +113% -51% 

Bybal 0.86 30.07 1.65 14.54 +91% -52% 

Gempride 1.06 32.19 1.70 12.48 +61% -61% 

Yosra 1.25 34.46 1.51 16.12 +21% -53% 

Roma VF 3.34 28.75 3.29 6.90 -2% -76% 

 

Next steps 

In all trial locations visiting farmers expressed interest in the cultivars evaluated in the 

multi-location trials. Atak, Bybal, Lety F1 and Yosra were mentioned frequently, and 

Gempride was the only variety farmers were not interested in, due to the softness of its 

fruit. As a result, efforts are underway to introduce those cultivars into seed 

distribution channels in West Africa. This process is discussed at length in Chapter 8. 
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CHAPTER 6 

YEAR 2: PRELIMINARY SCREENING TRIAL (GROUP 2) 

 

Introduction 

During the 2005-2006 TYLCD-resistance trials, several seed companies and public 

breeders continued to send putatively TYLCD-resistant materials for evaluation. As a 

result, a second preliminary screening trial was conducted during the 2006-2007 

growing seasons to evaluate materials that had been received over the course of the 

previous year. 

 

Materials and Methods 

 

Plant Materials 

A total of 28 tomato cultivars were selected by seed companies and public breeders for 

inclusion in the 2006-2007 preliminary screening trial. Aside from putative TYLCD 

resistance, these cultivars were not selected for any shared traits. Table 6.1 lists all 

included materials and the organization that provided them. 

 

In addition to the 28 tomato cultivars, 25 breeding lines were received, 18 from the 

tomato breeding program at AVRDC in Taiwan and 7 from the tomato breeding 

program at the University of Florida. The U. Florida materials used S. chilense LA 

1932, LA 1969, and LA 2779 as resistance sources. Seeds of the lines from both 

breeding programs were received in small quantities, and therefore were only trialed in 

the AVRDC trial at Samanko. Results for these materials will not be discussed in this 

chapter, but data are available in Appendix 2. Roma VF was again used as the 

susceptible check variety in the trial. 
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Seed Source Variety Name

DeRuiter Seeds Athyla F1

Dennolino F1

DRW 7215 F1

Industry DR 10401

Porfyra F1

Valor F1

Enza Zaden Aegean

Espadilha

Hamoud Mumyes / E 26 31998

Sensei

Setcopa

Gentropic Llanero

Hazera HA 3019

HA 3074

Israel ARO - Volcani Center F1 1494

Nunhems BWTH CO03

BWTH CO12

BWTH CO17

NUN 5025 TO

Seminis Gem Pack

Gem Pear

Seminis - India Mrutunjanya

SOLI Industries F1 641

F1 Floradida 495

F1 Veuona 483

Syngenta Nirouz TH 99806

Takii MT 158

Tropicasem F1 Savana

Roma VF

Table 6.1 – Tomato varieties included in the 2006-2007 preliminary screening 

trial for resistance to TYLCD. 
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Trial Locations 

Trials were conducted concurrently with the 2006-2007 advanced trials in eleven 

locations in seven countries throughout West Africa (Figure 6.1). Participating 

agencies were INRAB (Benin), INERA (Burkina Faso), CRI (Ghana), IER (Mali), 

INRAN (Niger), CDH/ISRA (Senegal), and ITRA (Togo), as well as AVRDC. Each 

agency chose one site for the establishment of a trial, except for IER, which as a 

partner on the management of the project chose four sites for trials. All preliminary 

trials were conducted in the Sudano-Sahelian climatic zone in the same locations as 

the concurrent advanced trials, with the exception of the trial in Ghana, which was 

conducted on the same site as the preliminary trial of the previous year in southern 

Ghana. Figure 6.1 shows the locations of all eleven preliminary trials conducted 

during the 2006-2007 growing season. 

 

Trial Establishment and Management 

Suggested management practices for the 2006-2007 preliminary screening trial 

matched those of the advanced trial conducted in the same locations at the same time. 

In particular these included specific practices related to site selection, seedling nursery 

establishment, and field management. To minimize the impacts of some of the most 

devastating diseases observed in the preliminary trials of the previous year, the 

protocol specified that sites must be known to be free of soil-borne illnesses such as 

root-knot nematodes, Fusarium oxysporum f.sp. lycoperisci, and Ralstonia 

solanacearum. Seedling nurseries were to be established as per the protocols of the 

NARS, but the trialing protocol specified that healthy seedlings would be transplanted 

three to four weeks after germination. Fertilization practices were also specified: both 

mineral fertilizers (i.e. NPK) and organic matter (farmyard manure or compost) were 

to be incorporated into the soil in advance of transplanting, and top dressing with NPK  
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was recommended during the growing season. Finally, the protocol specified that 

Helicoverpa armigera and other insect pests would be controlled by regular 

applications of selective pesticides that did not target whiteflies, and that weeds would 

be controlled regularly. 

 

Elementary plot layout was again 26 plants per plot laid out in two rows of 13 plants 

with a spacing of .6 m between rows and .5 m within rows. Elementary plots were laid 

out in a grid of any dimensions that fit the available space in each location. Empty 

elementary plots were planted with extra plants of Roma VF to increase incident virus 

pressure. 

 

Disease severity scoring and yield calculations 

Disease scoring was done at three time points during the growing season (flowering, 

fruiting, and first harvest) and according to the same symptom severity scale used in 

the 2005-2006 preliminary screening trial (Illustration 3.2). In addition, total and 

marketable yields were calculated. Since the trial did not involve replication, yields 

were not statistically analyzed. 

 

Results 

 

Benin (INRAB) 

The preliminary trial in Benin was conducted in the village of Kargui, in the far north 

of the country near the city of Malanville and the borders with Burkina Faso and 

Niger. Seeds were sown on Nov. 20, 2006, and seedlings were transplanted on Dec. 

18. First harvest took place on March 15, 2007, with the final harvest taking place 

April 20.  
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As in the advanced trial of the same year, disease pressure in Benin was relatively 

mild. The vast majority of the tested cultivars remained symptomless at first harvest 

(Figure 6.2). Roma VF had the highest symptom severity score of 3.5, and 6 other 

cultivars developed symptoms: Gem Pack, HA 3074, Mrutunjanya, Valor F1, F1 

Veuona 483, and F1 Floradida 495. Yields in the preliminary trial ranged from a high 

of 37.3 t/ha for Llanero to 10.0 t/ha for Roma VF. Marketable yields were very close 

to total yields, being on average just 1.7% lower. This may reflect the very good 

management practices of the Beninoise trial managers (as described in Chapter 4). 

 

Burkina Faso (INERA) 

The 2006-2007 preliminary trial in Burkina Faso was conducted in the Kou Valley 

near Bobo Dioulasso, and experienced very high TYLCD pressure. Seeds for the trial 

were sown on Nov. 22, 2006 and transplanted on Dec. 22. As in the advanced trial in 

Figure 6.2 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Kargui, Benin. Red dots represent the 

TYLCD symptom severity scores of Roma VF. 
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the same year, whitefly populations were very high in the trial, and TYLCD symptoms 

were observed to be very high in neighboring fields early on in the trial. However, 

root-knot nematodes and bacterial wilt were also observed, and appeared to be 

overwhelming the TYLCD symptoms at earlier stages of the trial. 

 

The TYLCD symptom severity plot for the trial shows a steady increase in virus 

pressure over the course of the season, with Roma VF developing a symptom severity 

score of 3.0 by fruiting and 4.0 by first harvest (Figure 6.3). Cultivars in the trial 

showed a wide range of responses, from strong resistance to nearly complete 

susceptibility. Nun 5025 TO was the only variety to score below 1.0, and Dennolino 

F1, F1 1494, DRW 7215 F1, and Sensei scored below 2.0. Yields in the trial were 

extremely low, ranging from 1.3 t/ha for BWTH CO03 and BWTH CO17 to 11.9 t/ha 

for Gem Pear. There were additionally two outliers that might have had very high 

yields, or might have been mistyped by the project technicians: F1 Savana had a yield 

Figure 6.3 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in the Kou Valley, Burkina Faso. Red dots 

represent the TYLCD symptom severity scores of Roma VF. 
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of 20.1 t/ha, and Aegean had a score of 50.2 t/ha. Marketable yields were on average 

0.6 t/ha lower than total yields; however, due to the very low total yields, this 

averaged out to a 22% loss. 

 

Interestingly, the most resistant cultivars in the 2006-2007 preliminary trial in Burkina 

Faso showed stronger disease resistance than the resistant cultivars in the advanced 

trial conducted that year in the same location. This may imply that the new batch of 

materials under evaluation in 2006-2007 had some higher-performing varieties than 

those evaluated during the preliminary trial of 2005-2006. Alternatively, the presence 

of a disease pressure gradient across the blocks of the advanced trial, as described in 

Chapter 4, raises the possibility that the preliminary trial was situated at the low end of 

this pressure gradient. However, the yields in the preliminary trial were much lower 

than those in the advanced trial, making that possibility less likely. 

 

Ghana (CRI) 

The 2006-2007 preliminary trial in Ghana was conducted on the same site as the 

previous year’s preliminary trial in Kumasi, towards the southern end of the country. 

As in the previous year, the trial was damaged significantly by a wilt disease, 

preventing the collection of data. However, the disease did not develop significantly 

until soon before the first harvest, and therefore two TYLCD symptom severity 

scorings were conducted before the trial was destroyed. 

 

TYLCD pressure in the trial was quite high, with Roma VF showing a symptom 

severity score of 3.6 by fruiting (Figure 6.4). However, the wilt disease may have been 

misdiagnosed as TYLCD at first, as the lowest symptom severity score at fruiting was 

1.4 (Industry DR 10401). Three varieties scored below 2.0 (Industry DR 10401, 
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Dennolino F1, and DRW 7215 F1) and three more scored 2.0 (F1 1494, F1 Savana, 

and Gem Pack). 

 

Yields were not calculated as the trial was destroyed by a wilt prior to the first harvest. 

 

Mali (IER) – Baguineda 

As described in Chapter 4, three of the four trials conducted by IER in 2006-2007, 

located in Niono, Sikasso, and Sotuba, had no incident TYLCD pressure and therefore 

data were not shared. The trial in Baguineda, in contrast, did experience significant 

disease pressure, with Roma VF developing a TYLCD symptom severity score of 4.0 

by first harvest (Figure 6.5). Three varieties remained symptomless during the trial in 

Baguineda: F1 1494, F1 Savana, and Sensei. An additional 8 varieties received 

Figure 6.4 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at two time points in Kumasi, Ghana. Red dots represent the 

TYLCD symptom severity scores of Roma VF. 
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symptom severity scores of less than 1.0: Espadilha, Dennolino F1, F1 Floradida 495, 

Porfyra F1, Athyla F1, DRW 7215 F1, Aegean and Setcopa. 

 

Yields were calculated in the trial, however the seeds of four varieties had such low 

germination rates that an insufficient number of plants was available for calculating 

yield: BWTH CO17, Llareno, MT 158, and Sensei. This highlighted the need for the 

development of a protocol for the establishment of seedling nurseries for the 

subsequent year. The yields that were calculated ranged from 2.1 t/ha for Nirouz TH 

99806 to 33.6 t/ha for F1 Savana, with Roma VF having a yield of 9.8 t/ha. 

Marketable yields were very close to total yields, typically within less than 1 t/ha. 

 

Figure 6.5 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Baguineda, Mali. Red dots represent the 

TYLCD symptom severity scores of Roma VF. 



 

159 

 

Mali (AVRDC) – Samanko 

The 2006-2007 preliminary trial in Samanko included 53 cultivars and breeding lines. 

Symptom severity scores were only collected at two time points, fruiting and first 

harvest, but these scores were sufficient for differentiating between resistant and 

susceptible cultivars. The trial experienced moderate disease pressure, with Roma VF 

developing a TYLCD symptom severity score of 3.2 by first harvest (Figure 6.6). This 

is similar to the results seen with the concurrent advanced trial. Two varieties, Athyla 

F1 and Setcopa, were symptomless at the end of the trial, and 8 varieties had scores of 

less than 1.0: Dennolino F1, Espadilha, F1 1494, Hamoud Mumyes, Sensei, DRW 

7215 F1, Nirouz TH 99806, and F1 Floradida 495. In addition, two breeding lines 

from University of Florida and one from AVRDC received scores of than 1.0. 

 

Yields were again quite high, ranging from 49.4 t/ha for HA 3019 to 22.2 for Athyla 

F1. However, marketable yields were quite low, likely due to the development of 

Figure 6.6 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at two time points in Samanko, Mali. Red dots represent the 

TYLCD symptom severity scores of Roma VF. 
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blossom end rot following a blockage of the drip irrigation system, as described in 

Chapter 4. Marketable yields ranged from 31.5 t/ha for DRW 7215 F1 to 5.0 t/ha for 

F1 Floradida 495, with the average loss being 41% of total yield. 

 

Niger (INRAN) 

The INRAN preliminary trial in the 2006-2007 growing season was conducted 

concurrently with the advanced trial in Birni-N’Konni in southern Niger 

approximately 350 km east of Niamey and less than 10 km from the border with 

Nigeria. Seeds for the trial were sown on Nov. 16, 2006, and transplanted Dec. 23. 

 

While whitefly populations were observed to be moderately high at the Nigerien 

advanced trial, TYLCD pressure was very low and no significant symptom levels 

developed during the course of the trial. Total yields were calculated and had a very 

significant range, from 49.0 t/ha for F1 1494 to 0.8 t/ha for Mrutunjanya. Notably, the 

advanced trial did not show any exceedingly low yields, ranging from 58.4 t/ha to 33.0 

t/ha. There was no obvious explanation for the wide range in yields in the preliminary 

trial. 

 

Senegal (CDH/ISRA) 

The Senegalese preliminary trial was conducted concurrently with the advanced trial 

at the Sangalkam research station in Rufisque, about 40 km east of Dakar. Seeds were 

sown somewhat later than those of the advanced trial, on Nov. 23, 2006, and seedlings 

were transplanted on Dec. 26. First harvest was on March 3, 2007, and final harvest 

took place on Apr. 19. 
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Interestingly, disease pressure in the preliminary trial was quite a bit lower than in the 

advanced trial, with Roma VF developing a symptom severity score of only 2.9 by 

first harvest, and with the local susceptible variety Xina developing a score of only 2.1 

(Figure 6.7). In contrast, in the advanced trial Roma VF and Xina developed scores of 

3.7 and 4.0, respectively. Yields in the preliminary trial ranged from 65.9 t/ha for 

HMX 4810 to 10.6 t/ha for Espadilha. Marketable yields were on average 40% lower 

than total yields, with HMX 4810 and Espadilha again showing the maximum and 

minimum values, respectively. 

 

Togo (ITRA) 

In 2006-2007 the Togalese preliminary trial was conducted at the Tantiégou research 

station in the northern city of Dapaong, near the border with Burkina Faso. As with the 

advanced trial, TYLCD symptoms may have been overwhelmed by another disease, 

Figure 6.7 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Rufisque, Senegal. Red dots represent the 

TYLCD symptom severity scores of Roma VF, and blue dots represent the 

TYLCD symptom severity of locally popular variety Xina. 
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possibly early blight. In addition, in mid-February it was discovered that trial 

technicians had been spraying pyrethroid insecticides to control insect populations 

during the trial, thereby inadvertently reducing whitefly populations and the spread of 

tomato-infecting begomoviruses. As a result of these two occurrences, symptom 

severity scores were very low, and Roma VF was not scored as the most susceptible 

variety (Figure 6.8). BWTH CO03 and F1 1494 shared the highest score of 2.0 at first 

harvest, while Dennolino, Espadilha, Hamoud Mumyes and Setcopa remained 

symptomless. Roma VF, in constrast, received a score of 1.4. Yields were reported, 

and ranged from 31.9 t/ha for Industry DR 10401 to 9.7 t/ha for Hamoud Mumyes. 

Marketable yields were, on average, about 1.6 t/ha lower than total yields. 

 

Figure 6.8 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Dapaong, Togo. Red dots represent the 

TYLCD symptom severity scores of Roma VF. 
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Discussion 

 

TYLCD resistance and cultivar selection 

When compared with the previous year’s preliminary trial, the preliminary screening 

trial of 2006-2007 more consistently exposed cultivars under evaluation to TYLCD 

and limited exposure to other regionally important diseases including Fusarium wilt, 

bacterial wilt, and root knot nematodes. This was primarily due to its association with 

the 2006-2007 advanced trial, which had enhanced management protocols dealing 

with site selection, fertilization, and pest control to prevent TYLCD symptoms from 

being masked by other diseases. 

 

Figure 6.9 shows the TYLCD symptom severity score distributions at first harvest for 

all trial sites. A number of different conditions can be observed. For instance, Benin 

and Senegal showed very weak TYLCD pressure, with Roma VF nonetheless 

receiving one of the highest symptom severity scores. The trials in Baguineda and 

Samanko, Mali, in contrast, experienced moderate disease pressure, with Roma VF 

showing strong disease symptoms but other varieties in the trial remaining 

symptomless at first harvest. Finally, the trials in Burkina Faso and Ghana experienced 

very strong TYLCD pressure and possibly other diseases as well, with Roma VF 

showing strong disease symptoms and the most resistant cultivars receiving symptom 

severity scores of approximately 1.0. The trial in Togo was the only trial to yield 

questionable results, with symptom severities falling into a very small range and with 

Roma VF receiving a relatively low TYLCD symptom severity score as compared 

with the highest scorers in the trial. 
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Figure 6.9 – Box and whisker plot of the distribution of TYLCD symptom 

severity scores at first harvest in each trial location. Red dots represent the variety 

Roma VF. Locations include Benin (BEN), Burkina Faso (BUR), Ghana (GHA), 

Baguineda, Mali (MAL-BAG), Samanko, Mali (MAL-SAM), Senegal (SEN), and 

Togo (TOG). Note that the data shown for Ghana represent TYLCD symptom 

severity scores at fruiting since no data were collected at first harvest. 
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Yields could not be statistically analyzed across trials because yield distributions 

varied very significantly between trial sites. Figure 6.10 shows yield distributions for 

each trial site, with notches representing what amounts to an approximate 95% 

confidence interval of the median. 

 

Selections were again made based on votes by all participating NARS partners. Ten 

varieties were selected for the following year’s advanced trial, as shown in Table 6.2. 

 

  

Figure 6.10 – Notched box and whisker plot of the distribution of total yields of 

all cultivars under evaluation in each trial location. Red dots represent the variety 

Roma VF. Locations include Benin (BEN), Burkina Faso (BUR), Ghana (GHA), 

Baguineda, Mali (MAL-BAG), Samanko, Mali (MAL-SAM), Senegal (SEN), and 

Togo (TOG). 
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The next chapter presents the results of the 2007-2008 advanced trials evaluating the 

varieties selected in the 2006-2007 preliminary trial. 
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CHAPTER 7 

YEAR 3: ADVANCED TRIAL (GROUP 2) 

 

Introduction 

In 2007-2008 an advanced trial was conducted to further evaluate the TYLCD-

resistant materials selected in the 2006-2007 preliminary screening trial. Like the 

advanced trial of 2006-2007, this trial used a replicated design to more fully 

differentiate between cultivars based on disease resistance, yield, and fruit 

characteristics. However, several constraints particular to the 2007-2008 trial season 

limited the scope of the trial. Firstly, seeds of several selected varieties could not be 

obtained from their respective sources due to lack of availability. Therefore only six of 

the ten selected varieties could be included in the trial. Furthermore, the issues with 

funding distribution described in Chapter 5 had an even greater impact on the 

advanced trials of 2007-2008 than on the multi-location trials. Priority was given to 

the multi-location trials since one of their goals was to demonstrate variety 

performance to farmers, and therefore if limited funds were available for pre-

financing, NARS partners were encouraged to skip the advanced trial in favor of the 

multi-location trial. As a result, trials were not conducted in Burkina Faso, Niger, and 

Senegal, and in Mali AVRDC conducted a trial but IER did not. Finally, the trial in 

Ghana suffered from the accidental closure of an irrigation lateral and completely 

dried up prior to the first scoring. As a result, only three advanced trials were 

conducted in 2007-2008. Nonetheless, the data from these trials do help to further 

evaluate the performance of the TYLCD-resistant cultivars selected in the previous 

year’s preliminary trial, and help to differentiate between their performance and 

characteristics. 
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Materials and Methods 

 

Plant Materials 

Of the 28 cultivars evaluated in the 2006-2007 preliminary trial, ten were selected for 

inclusion in the advanced trial based primarily on their demonstrated resistance to 

TYLCD. Unfortunately, four of those varieties were not available and therefore could 

not be included in the trial. They are Aegean and Hamoud Mumyes from Enza Zaden, 

and DRW 7215 F1 and Industry DR 10401 from De Ruiter Seeds. The remaining six 

varieties included in the trials are shown in Table 7.1. Roma VF was used again as the 

susceptible check. 

 

Trial Locations 

As mentioned above, advanced trials were conducted in only three locations in 2007-

2008 (Figure 7.1). Two of these locations, in Kargui, Benin and Dapaong, Togo, were 

the same sites used for the concurrent multi-location trials. This came with the 

advantages of allowing farmers to more easily see the trials, but came with the 

disadvantages of less intensive management practices that reduced yields and fruit  

Seed Source Variety BEN MAL TOG

De Ruiter Seeds Athyla F1  

Dennolino F1   

Porfyra F1   

Enza Zaden Espadilha   

Sensei   

Setcopa   

Tropicasem Roma VF   

Table 7.1 – Varieties included in the 2007-2008 advanced trial and their sources. 

Check marks indicate inclusion in a given trial. Trials were conducted in Benin 

(BEN), Mali (MAL), and Togo (TOG). 
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qualities and increased the development of TYLCD symptoms on infected plants, as 

shown in Chapter 5. The trial in Mali was conducted at the AVRDC research station in 

Samanko. 

 

Trial Establishment and Management 

The trial protocol was very similar to that of the concurrent multi-location trial, with 

specific instructions related to seedling nursery establishment, site selection, and field 

management (see Chapter 5 for details). As in the multi-location trials, elementary 

plots consisted of rows of 12 plants of the variety under evaluation surrounded by 

spreader rows of Roma VF to ensure uniform disease pressure. A total of five 

replications were performed, with each block containing all six test cultivars plus a 

plot of Roma VF.  

 

Disease scoring and yield calculations 

Disease scoring was again performed at flowering, fruiting, and first harvest, 

according to the symptom severity scale described in Chapter 3 (Figure 3.2). Total and 

commercial yields were also collected as per the 2006-2007 trial protocols. Collection 

of yield characteristics were performed as described for the concurrent multi-location 

trials. Three plants in each elementary plot in the selected location were tagged prior 

to fruiting, so as to avoid biasing data towards particularly high-yielding plants. The 

number of fruits per plant and the number of fruits per cluster were calculated for each 

marked plant. In addition, 15 fruits were randomly selected from each variety’s yield, 

and those fruits were measured for weight in grams, and length and diameter in 

millimeters. 
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Statistical analysis of yield data was again performed using R. ANOVA and Tukey 

multiple comparison testing were used to identify varieties that differed significantly 

by yield characteristics. Box-Cox transformation was used, when necessary, to 

normalize data prior to analysis. 

 

Results 

Benin (INRAB) 

The Beninoise advanced trial was conducted in Kargui, in the far north of the country 

near the city of Malanville and the borders with Niger and Burkina Faso. Seeds for the 

trial were planted on Dec. 4 2007, and seedlings were transplanted on Jan. 11 2008. 

 

TYLCD pressure on the advanced trial was moderate (Figure 7.2), as seen additionally 

on the concurrent multi-location trial. In both trials TYLCD pressure built steadily 

over the course of the season, and by first harvest Roma VF had developed a symptom 

Figure 7.2 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Kargui, Benin. Red dots represent the 

TYLCD symptom severity scores of each plot of Roma VF. 
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severity score of 3.3. All varieties in the trial had symptom severity scores of less than 

1.0 at that time point with the exception of Espadilha, which had a score of 1.2. Thus 

all varieties in the trial demonstrated significant resistance as compared with Roma 

VF. 

 

Yields were reported in Benin, and ranged from 16.4 t/ha for Setcopa to 9.1 t/ha for 

Porfyra F1. Varieties were not found to differ significantly by yield. However, 

significant differences were found between some of the marketable yields: Setcopa 

and Sensei were found to have significantly higher marketable yields than Espadilha 

and Porfyra F1. The Beninoise trial partners did report disease and pest incidences on 

different varieties, and while Espadilha and Porfyra F1 had slightly higher levels of 

Helicoverpa damage, this isn’t enough to explain the observed differences. This might 

imply, though, that Setcopa and Sensei have better keeping qualities or resistance to 

other pests and diseases than Espadilha and Porfyra F1. 

 

Mali (AVRDC) 

The AVRDC advanced trial was conducted at the Samanko research station near 

Bamako, Mali. Since it was on a research station the trial showed lower disease 

pressure and higher yields than the trials conducted on rented farmland in Benin and 

Togo. The AVRDC multi-location trial was conducted off the research station, and 

therefore results cannot be compared. 

 

By first harvest Roma VF developed an average TYLCD symptom severity score of 

3.3, but no other cultivars in the trial showed any disease symptoms (Figure 7.3). 

Yields were calculated, and ranged from 29.5 t/ha for Dennolino F1 to 15.0 t/ha for 

Roma VF. Dennolino F1, Sensei, and Setcopa, which all had yields in the 29 t/ha 
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range, were found to differ significantly in yield from Roma VF. Marketable yields 

ranged from 25.0 t/ha for Dennolino F1 to 6.7 t/ha for Roma VF. Dennolino F1, 

Sensei and Setcopa were again found to differ significantly from Roma VF. In 

addition, Dennolino was found to have a significantly higher marketable yield than 

Porfyra F1. 

 

Togo (ITRA) 

The Togalese advanced trial was conducted side-by-side with the multi-location trial 

in Dapaong, in the far north of the country near the border with Burkina Faso. Seeds 

for the trial were sown on Dec. 7, 2007, and seedlings were transplanted on Jan. 4, 

2008. Symptom severity scorings were conducted on Feb. 18, March 13, and Apr. 2, 

2008.  

 

Figure 7.3 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Samanko, Mali. Red dots represent the 

TYLCD symptom severity scores of each plot of Roma VF. 
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As with the concurrent multi-location trial, the Togalese advanced trial showed 

moderate disease pressure, but relatively uniform responses across all cultivars (Figure 

7.4). At first harvest, Roma VF received a TYLCD symptom severity score of 2.8, 

implying low disease pressure. However, all cultivars under evaluation received scores 

over 1.5, higher than the scores they received under much higher disease pressure in 

Benin and Mali. Therefore, it seems that once again the TYLCD scorings in Togo did 

not necessarily accurately reflect susceptibility to TYLCD, but instead reflected the 

presence of some other disease which confounded symptom severity measurements. 

 

Yields were reported for the trial and were exceedingly low, ranging from a high of 

just 4.2 t/ha for Setcopa to a low of 1.0 t/ha for Porfyra F1. Marketable yields were 

nearly the same as total yields. For both measures, Setcopa was found to have a 

significantly higher yield than Porfyra F1. 

 

Figure 7.4 – Box and whisker plot of the distribution of TYLCD symptom 

severity measures at three time points in Dapaong, Togo. Red dots represent the 

TYLCD symptom severity scores of each plot of Roma VF. 
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Discussion 

 

Despite only being conducted in three locations throughout West Africa, the 2007-

2008 advanced trial did demonstrate that the selected tomato cultivars could perform 

significantly better than Roma VF both on agricultural research stations and in 

farmers’ fields. In all locations all tested cultivars had lower symptom severity scores 

than Roma VF, and in Benin and Mali, where disease scores were likely to represent 

response to TYLCD, tested cultivars had very low symptom severities or even 

remained symptomless (Table 7.2). 

 

Table 7.3 shows various yield characteristics for the cultivars evaluated in the trial, 

including total yield, fruit weight, length, and diameter, number of fruits per plant, and 

the length / diameter ratio, which gives an approximate measure of fruit shape. While 

no significant differences were found between yields, it is notable that Sensei, Setcopa 

and Dennolino F1 had higher yields than other cultivars in all trials. While Roma VF 

did have the highest number of fruits per plant, its fruits were also the lightest and the 

Variety BEN MAL TOG

Athyla F1 0.6 1.6

Dennolino F1 0.6 0.0 1.7

Espadilha 1.2 0.0 1.8

Porfyra F1 0.9 0.0 2.2

Roma VF 3.3 3.3 2.8

Sensei 0.6 0.0 1.7

Setcopa 0.7 0.0 1.8

Table 7.2 – TYLCD symptom severity scores of all tested cultivars at first harvest 

in Benin (BEN), Mali (MAL), and Togo (TOG). Colors are assigned separately for 

each trial on a linear scale with the lowest value being colored yellow and the 

highest value being colored blue. 

 



 

178 

 

narrowest. Notably, Roma was the only plum-shaped tomato selected, with all others 

being spherical to flattened. 

 

Since this advanced trial was conducted during the third and final year of the ABSPII 

trialing project, no varieties were selected for multi-location trials. Rather, efforts have 

begun to connect the sources of the best varieties in both rounds of trials with seed 

distribution channels in West Africa. These efforts are described in detail in the next 

chapter. 

 

 

  

Variety Total YieldNS
Variety Weight Variety Length

Setcopa 22.91 Porfyra F1 108.1a
Roma VF 65.3a

Sensei 22.73 Athyla F1 85.4ab
Porfyra F1 52.1b

Dennolino 22.51 Setcopa 82.6ab
Setcopa 46.0bc

Espadilha 17.84 Dennolino 70.9bc
Dennolino 45.6bc

Athyla F1 16.16 Espadilha 70.3
bc

Athyla F1 45.5
bc

Roma VF 16.08 Sensei 62.1bc
Espadilha 44.7bc

Porfyra F1 15.33 Roma VF 47.4c
Sensei 40.6c

Variety Diameter Variety FPP Variety L/D Ratio

Porfyra F1 57.8
a

Roma.VF 35.9
a

Athyla F1 0.79

Athyla F1 57.3
a

Dennolino 29.9
ab

Setcopa 0.82

Setcopa 56.0a
Sensei 25.4bc

Espadilha 0.83

Dennolino 49.9ab
Setcopa 20.2cd

Sensei 0.87

Espadilha 53.7ab
Athyla.F1 18.4de

Porfyra F1 0.90

Sensei 46.9b
Espadilha 18.4de

Dennolino 0.91

Roma VF 37.3c
Porfyra.F1 14.0e

Roma VF 1.75

Table 7.3 – Yield and fruit characteristics for all varieties in the 2007-2008 

advanced trial. Total yield is measured in t/ha; weight is measured in g; and length 

and diameter are measured in mm. FPP = fruits per plant, NS = no significant 

differences found. Superscript letters represent groupings supported by a Tukey 

HSD test at p < .05. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Introduction 

The identification of high-yielding tomato varieties with strong resistance to the 

tomato-infecting begomoviruses of West Africa creates new opportunities for the 

revival of the tomato processing industry in West Africa. However, several challenges 

lie ahead. For the potential impact of these varieties to be realized, seeds need to find 

their way into local seed distribution channels. The seed sector of West Africa is 

unfortunately significantly underdeveloped (Rohrbach et al., 2003), and thus efforts 

will need to be invested in the establishment of a regional seed industry. This industry 

will need to be widely distributed to ensure access by the poorest farmers who may 

live farthest from urban areas. Furthermore, the canneries in the region will need to be 

reopened in a timely manner to ensure that the higher yields produced by farmers who 

have adopted the new varieties do not end up in the fresh market where they will drive 

prices down and cause all farmers, but especially the poorer, more risk-averse non-

adopters, to lose money. 

 

These challenges, while significant, can be met thanks to several programs that are 

currently in motion in West Africa. This section describes the current and future work 

being invested in the development of seed dissemination channels in West Africa and 

the revival of the tomato processing industry. The potential economic impacts of this 

work are also discussed. 
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Seed Distribution and the West African Seed Alliance 

A variety of historical circumstances have left seed distribution networks in West 

Africa severely underdeveloped (Rohrbach et al., 2003). During colonial and post-

colonial times, seed increase and distribution tended to be controlled by a single 

government-run entity in each separate country in the region, with little competition 

allowed. Liberalization of seed markets as a result of structural adjustment programs 

in the early 1990s opened up opportunities for development of commercial seed 

enterprises (Gisselquist and van der Meer, 2000), but several factors have discouraged 

entry into the market. Firstly, regulation of the seed industry has differed from one 

country to the next, often inhibiting the movement of seed across borders and making 

it difficult for distributors to attain the economies of scale necessary to enter into such 

a low-margin business (Rohrbach et al., 2003). International aid efforts have been an 

additional barrier: while donated seed offers an immediate solution to scarcity, it 

destroys incentives for commercial seed distribution by offering consumers a free 

alternative to purchased seed (Tripp and Rohrbach, 2001). Furthermore, the efforts of 

many NGOs have served as an impediment by focusing on the development of local-

scale seed increase and distribution networks; while these networks are highly 

valuable for the preservation of landraces, they discourage competition and limit seed 

availability to a narrow range of local cultivars (Tripp and Rohrbach, 2001). Finally, a 

general lack of access to startup capital for small businesses has made it difficult for 

small seed enterprises to finance their operations at or beyond a minimum efficient 

scale of operation, while a lack of available credit for farmers has slowed the 

development of a market for improved varieties. 

 

Recent efforts to encourage the development of commercial seed enterprises in West 

Africa have taken a three-pronged approach. On the regional scale, efforts have 
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focused on the harmonization of seed policy and regulations to establish a protocol for 

the movement of seeds between countries and to reduce the barriers preventing a seed 

distributor from operating in more than one country in the region. Work has also 

begun in the development of regional foundation seed production capacity to facilitate 

the increase of high-quality seed directly in West Africa. Finally, programs have been 

implemented to provide resources and training to a network of agro-dealers throughout 

West Africa who provide the link between centralized resource access points and the 

smallholder farmers distributed throughout the region. These three approaches are 

being coordinated in part by the newly established West African Seed Alliance 

(WASA), a USAID-funded project with the goal of establishing a sustainable 

commercial seed industry in West Africa to ensure that farmers have “affordable, 

timely and reliable” access to high quality seeds (CNFA, 2009). 

 

Harmonization of Seed Policy 

There are several organizations worldwide that coordinate the harmonization of seed 

policy between nations (Rohrbach et al., 2003). For instance, intellectual property 

rights for plant varieties are protected by the International Union for the Protection of 

New Varieties of Plants (UPOV) convention (UPOV, 1997), while the Trade-Related 

Aspects of International Property Rights (TRIPS) agreement, administered by the 

World Trade Organization, sets down minimum standards for the regulation of 

intellectual property of many different forms, including plant materials (WTO, 1994). 

International conventions also exist for the regulation of phytosanitary control 

measures: the International Seed Testing Association (ISTA) establishes 

internationally agreed upon rules for seed sampling and testing and provides an 

accreditation program for seed testing laboratories (ISTA, 2009), and the International 

Plant Protection Convention, administered by the Food and Agriculture Organization 
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(FAO) of the United Nations (UN), is an international treaty setting out regulations to 

prevent the movement of plant pests and diseases (FAO, 1997). 

 

Historically, the governments of Sub-Saharan African countries have managed all 

aspects of seed certification independently, and often inefficiently, in some cases 

requiring all seeds to be tested in field trials for three years by a national research 

service even if the variety has already been so evaluated in a neighboring country with 

a similar agroecology. Criteria used by the national varietal release committees to 

evaluate varieties often additionally lack transparency and may be unevenly applied 

(Rohrbach et al., 2003).  In contrast, many non-African countries use truth-in-labeling 

laws to enforce seed quality measures. The United States, for example, allows 

companies to sell uncertified seeds so long as their labels truthfully report relevant 

information such as germination rates and weed content as determined by the 

company’s own field supervision and laboratory tests, and the European Union has 

similar regulations for vegetable seeds (Gisselquist and van der Meer, 2000). 

However, steps have been taken in recent years to move African nations towards the 

adoption of international standards for plant movement and varietal release. With 

regards to vegetable seeds, the African Seed Trade Association (AFSTA) released a 

position paper in 2003 recommending the adoption of truth-in-labeling laws to allow 

companies to take on the burden of seed quality certification on their own, thereby 

easing and expediting the process of vegetable seed release in Sub-Saharan Africa 

(AFSTA, 2003). In May 2008 the members of the Economic Community of West 

African States (ECOWAS) adopted a regional agreement aimed at facilitating cross-

border trade in seeds, which included provisions for harmonized regulation of seed 

certification and variety release, publication of a regional seed catalogue to list 

varieties whose seed can be marketed freely in the region, and the establishment of a 
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West African Seed Committee (COASEM) to facilitate the implementation of the 

harmonized regulations (FAO, 2008). Many of these regulations are yet to be 

implemented by participating nations, but WASA has held two workshops in the last 

year to help provide informational support for policy makers (CNFA, 2009).  

 

Foundation Seed Production 

Seeds typically undergo numerous rounds of increase to turn the relatively small 

quantities of seed generated by breeders into sufficient quantities for commercial sale. 

It stands to reason that the production of high-quality seeds of high purity depends on 

very careful controls in the earlier generations of increase to ensure quality and 

consistency. The term “foundation seed” is typically used to describe the generation or 

generations that come between breeder seed and commercial seed. While many seed 

companies perform seed increases in-house or contract them out to qualified 

companies, public breeding institutions often lack the resources and infrastructure 

necessary to oversee the process of seed increase. As a result, successful public 

breeding programs depend on foundation seed programs to produce sufficient 

quantities of high quality seeds of public varieties for subsequent increase by 

commercial seed producers (Tripp, 2006). While the tomato varieties selected by the 

West African vegetable germplasm trialing network in 2005-2008 were primarily 

commercial hybrids, the recent establishment of a vegetable breeding program at 

AVRDC in West Africa (described below) emphasizes the need for foundation seed 

production in the vegetable sector. To address the need for foundation seed in West 

Africa, WASA helped to establish a foundation seed program in Nigeria in 2008 to 

produce seed of millet, rice, groundnut, cowpea, and several vegetables (CNFA, 

2009). It is expected that availability of these seeds will boost activities of small 

commercial seed producers in the region in coming years. In addition, the 
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development of foundation seed production capacity in West Africa raises the 

possibility of large multinational seed companies turning to African enterprises for 

their seed increase needs in the future.  

 

Resources for Agro-Dealers 

While regional seed policy harmonization and the establishment of foundation seed 

production capacity help create an environment more conducive to the development of 

a regional seed industry, that development is unlikely to occur without the 

establishment of educational programs and other resources for seed dealers. In that 

vein WASA has instituted an expansive program to offer training to small scale 

agrodealers and to improve their access to high quality materials (CNFA, 2009). 

Educational programs include a 6-module business management training course 

focused not only on seed marketing but also on the marketing of fertilizers, tools, and 

crop protection products, as well as programs on the proper usage of inputs and on the 

establishment of demonstration plots to more effectively market new products to risk-

averse farmers and to demonstrate improved agricultural practices. In 2008, training 

programs began in Mali, Ghana and Nigeria, with further expansion into Niger and 

Burkina Faso expected in coming years. In addition, WASA helps to form connections 

between agrodealers dispersed throughout its target countries and centralized sources 

of high-quality modern agricultural inputs, ensuring that access to seeds and other 

inputs is widespread throughout the region. WASA aims to have a network of 850 

agrodealers in each of its target countries by the end of the project in 2012 (Maroya N, 

personal communication). 

 

 

 



 

185 

 

Financing for Agro-Dealers and Credit for Farmers 

While a favorable policy environment and accessible training programs are likely to 

help facilitate the establishment of a more robust seed distribution system, these 

efforts might not yield fruitful results if financing is not available to both farmers and 

small agribusiness entrepreneurs. Agro-dealers require startup capital to build their 

businesses, and farmers often require credit to purchase inputs. WASA does not 

directly address these needs, but numerous programs in West Africa have been 

instituted in recent years to help provide financing in the agricultural sector, including 

USAID’s African Global Competitiveness Initiative for businesses and a “warrantage” 

credit system established by ICRISAT for small farmers (Tabo et al., 2007). It is 

notable that both WASA’s network of agro-dealers and any new canneries that are 

established in the region could serve as further sources of credit for farmers hoping to 

buy seeds or inputs. 

 

Distribution of TYLCV-Resistant Tomato Cultivars in West Africa 

The work performed by WASA creates a very favorable environment for the 

introduction of the high-performing TYLCD-resistant tomato cultivars identified by 

the West African germplasm trialing network in 2005 through 2008. Representatives 

of some of the multinational seed companies providing some of the most successful 

materials in the trials have been put in touch with representatives of WASA, and work 

is underway to arrange for the sale of selected TYLCD-resistant cultivars throughout 

West Africa in the near future. Importantly, given the competitive nature of the tomato 

breeding industry in the developed world, some of the selected varieties are already no 

longer in use in the countries they were originally bred for, and thus surplus seed can 

be made available in West Africa at a reduced price that might increase the odds of 

adoption by poor smallholder growers. 
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The dynamics of variety adoption are exceedingly important in determining whether 

the variety introduction will be pro-poor or merely benefit the most well-off farmers. 

A seminal work by the agricultural economist William Cochrane in 1958 described a 

process dubbed the technology treadmill governing the benefits to farmers of 

technology adoption. Cochrane observed that the earliest adopters of a yield-

increasing technology are often the most significant beneficiaries, as their output 

increases without having a significant impact on the market, and thus prices remain 

the same and their incomes rise. As more farmers adopt the technology and average 

yields begin to rise, market supply begins to increase, causing prices to drop. The 

losers, then, are the farmers who adopt the technology last or never adopt at all, as 

their yields remain at pre-technology (low) levels after the market has shifted to a new 

post-technology (low) price. Thus, the dynamics of the adoption of yield-increasing 

technologies are such that farmers must continually adopt newly available 

technologies to keep pace with the yields of their neighbors and remain profitable 

(Cochrane, 1958). 

 

Several factors have been found to influence the tendency of a farmer to adopt a new 

yield-increasing technology. A high perceived risk of adopting a new technology is 

often a significant disincentive, especially for poor farmers who cannot afford short-

term losses in exchange for long-term gains. Plenty of agricultural technologies only 

offer a yield advantage if used properly, and the possibility of failure is enough to 

discourage poor farmers from making the investment. Technology adoption can 

additionally be constrained by remoteness. In areas with poor transportation 

infrastructure, new technologies can take time to diffuse to less accessible areas, 

putting those areas in a disadvantageous position on the technology treadmill and 



 

187 

 

often making them less likely to be well-off (Feder and Umali, 1993; Sunding and 

Zilberman, 2001). 

 

Several features of WASA’s agrodealer development program are pro-poor measures 

that may help to remove some of the technology adoption disadvantages typically 

experienced by the poor. Firstly, the focus on demonstration plots and farmer field 

days could help to dramatically reduce the perceived risk to farmers of adopting the 

new varieties. It has been shown that farmers effectively learn to extract yield 

potential from new varieties not only by growing the varieties themselves, but also by 

observing them being grown by others (Foster and Rosenzweig, 1995). As a result, 

WASA’s program to train agrodealers in the establishment of trial plots may result in 

the dissemination of information crucial to the most effective use of the new varieties. 

This could in turn lead to decreased risk assessments of the new varieties by poorer, 

more risk-averse farmers, thereby increasing adoption rates. In addition, the 

distributed nature of WASA’s agrodealer network could minimize the lower access 

typically experienced by more remote farmers, thereby allowing the new varieties to 

more efficiently diffuse to less-accessible areas.   

 

Perceived risks associated with adoption of the new high-yielding TYLCD-resistant 

tomato cultivars might also be mitigated by programs implemented by the newly 

reopened tomato canneries such as short-term subsidy programs for the purchase of 

seeds or contracts guaranteeing a set purchase price for tomatoes. However, for these 

programs to be successfully implemented the canneries will need to reopen in a timely 

manner. If the reopening of the canneries is dependent on private sector investment, it 

will be necessary to demonstrate that the yield potential offered by the new tomato 

varieties is sufficient to make the canneries profitable again, even in the face of 
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competitively priced imports from Europe and China. The following section addresses 

the economics of operating a tomato processing plant in West Africa and the question 

of profitability in a competitive market.  

 

Reestablishment of the Tomato Processing Industry 

A breakdown of the costs associated with tomato paste production both in Europe and 

in Mali, as reported in a recent analysis published by USAID, reveals the ways in 

which the operation of tomato canneries might once again become profitable in West 

Africa. (All values and calculations in this section are from Easterling, 2005 unless 

otherwise noted.) Per kilogram, the cost of imported European tomato paste in Mali is 

US$2.25. One kg of tomato paste is made from 5 kg of fresh tomatoes, which in 

Europe cost the processor only 5¢ per kg due to government subsidies paid to growers 

(Sumner et al., 2001). Thus one kg of paste costs 25¢ in fresh tomatoes. Of the 

remaining $2.00 in costs, $1.00 goes to manufacturing costs and margin, 25¢ goes to 

transportation to Mali ($4,000 per 20 ton container) plus handling in Mali, and 75¢ 

goes to the 60% import duty currently levied on all processed food items coming into 

the West African Economic and Monetary Union (WAEMU). Thus, for tomato 

processing in Mali to again be competitive, its product will need to cost less than 

$2.25 per kg of paste. 

 

The cost structure of paste production for domestic consumption in Mali is somewhat 

different than that of paste production for export in Europe. Obviously transportation 

costs are much lower and import tariffs are not levied on domestic production. 

However, manufacturing costs in Mali are higher due to the need to import cans and 

labels and due to the higher cost of electricity compared with that in Europe. It is 

difficult to accurately estimate the cost of tomato paste production in Mali without a 
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more detailed study of energy and materials costs. However, Easterling roughly 

estimates a manufacturing cost of approximately $1.50 per kg of paste produced. For 

the purposes of our present analysis we will proceed with this estimate, but we will 

revisit it towards the end of the discussion. If on top of this $1.50 in manufacturing 

costs we assume taxes and profit margin totaling 25¢, we leave tomato processors in 

Mali 50¢ to spend on fresh tomatoes for every kg of paste produced, which amounts to 

10¢ per kg of fresh tomatoes. 

 

The 10¢ per kg to be spent on tomatoes in Mali are not directly comparable to the 5¢ 

spent per kg of tomatoes in Europe. While European growers are subsidized, the 

subsidy amounts to only about 2¢ per kg of tomatoes – in the United States, 

processing tomatoes are typically valued at about 7¢ per kg. However, in the United 

States and in Europe, the fresh market and the processing market are entirely 

independent from one another. In the United States, fresh market tomatoes are 

typically sold by the farmer for 55-75¢ per kg. This significant price difference is due 

to differences in the economies of scale between the two tomato types – fresh market 

tomatoes tend to be indeterminate and therefore highly labor intensive, requiring 

staking, tying, and staggered harvest, while processing tomatoes, which are typically 

determinate, need no individual per-plant attention during the growing season and can 

be mechanically harvested. In West Africa, in contrast, there is currently no distinction 

drawn between processing tomatoes and fresh market tomatoes. Tomatoes are rarely 

eaten raw in West Africa, and tend to be used as the base for stews and sauces, which 

means processing-type tomatoes with their high soluble solids are actually preferred 

by fresh market consumers. These tomatoes are also preferred by producers for their 

harder texture, which protects them from damage during transport. As a result, the 10¢ 
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available to a tomato processor to pay for 1 kg of tomatoes in Mali needs to be 

competitive with the price of tomatoes on the fresh market. 

 

The most basic criterion for establishing the feasibility of reopening the tomato 

cannery in Mali, according to Easterling, would be the possibility of obtaining a price 

from farmers of 10¢ per kg of tomatoes. While it is difficult to estimate tomato prices 

in West Africa due to constant fluctuations, both seasonally and from year to year, 

Easterling cites a Malian government estimate of 750 FCFA, or about 15¢, per kg. 

(This value seems plausible based on anecdotal experience.) Thus, if production costs 

per hectare were to remain the same for farmers, the drop in price by 33% from 15¢ 

per kg to 10¢ per kg would need to be matched by an increase in yield of 33% to keep 

the farmers’ net revenues constant. Of course the adoption of yield increasing seeds 

comes with increased costs, and thus yields would need to increase even further. The 

same Malian report cited by Easterling estimates an average cost per hectare for 

tomato production in Mali of approximately $770. Assuming yields of 6.9 t/ha, which 

is the average yield of Roma VF observed during the 2007-2008 multilocation trials 

throughout West Africa and is additionally a value that conforms with those observed 

prior to the institution of the host free period in Baguineda (Noussourou et al., 2008), 

in the absence of a change in production costs tomato yields would need to increase to 

10.4 t/ha to keep farmers’ net revenue constant. If production costs were to double, 

yields would need to increase to 18.1 t/ha. These yield increases seem entirely 

attainable – the average yields of over 16 t/ha recorded for cultivars Atak and Yosra 

during the multi-location trials reflected typical low-input management practices in 

which the only increase in production cost would be the cost of the seeds. During the 

advanced trials of 2006-2007, which were conducted on research stations with 

reasonably high input, yields for those two cultivars averaged approximately 34 t/ha, 
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representing an almost 5-fold increase in yield over those demonstrated by Roma VF 

in low-input conditions. Thus an initial rudimentary analysis implies that, with the 

introduction of the selected varieties from the TYLCD-resistance trials, tomato yield 

increases in West Africa will be sufficiently high to maintain or increase farmers’ 

earnings at a price that allows canneries to effectively compete against low-cost 

imports.  

 

The above analysis does not account for the link between the processing and fresh 

tomato markets in West Africa. To account for that link, tomato yields would need to 

be sufficient to keep farmers’ net revenues constant while also driving prices in the 

fresh market down to 10¢ per kilogram to prevent farmers from selling to the fresh 

market instead of to the factory. Anecdotal evidence shows that the price elasticity of 

demand for fresh tomatoes in West Africa is relatively low: very significant price 

fluctuations are observed during the course of the tomato season as supply increases 

and decreases. As a result, as long as high yields are maintained it is expected that the 

fresh market would probably not have a significant impact on the willingness of 

farmers to sell to the cannery – if market prices were to briefly rise above 10¢ per 

hectare, the flood of excess tomatoes from producers trying to take advantage of the 

higher price would quickly drive the price back down again. 

 

Easterling’s initial assumption of a $1.50 manufacturing cost for one kg of tomato 

paste in Mali was based on a very rough estimation that paste manufacturing costs are 

50% higher in West Africa than in Europe. The ramifications of a change in this value 

could potentially be significant. A manufacturing cost of $1.40 would allow the 

market price for tomatoes to be 12¢ per kg, meaning that even with doubled 

production costs tomato yields would still only need to reach 15 t/ha to allow 



 

192 

 

processors to compete as buyers in the fresh market. In contrast, a manufacturing cost 

of $1.60 would drop the target price for tomatoes to 8¢ and would raise the necessary 

yields to 22.7 t/ha. By the time manufacturing costs were to reach $1.80 per kg, 

tomato yields would need to reach 45 t/ha to maintain the target price of 4¢ per kg. It 

is clear, then, that relatively small changes in manufacturing costs could have a 

significant impact on the viability of the tomato processing industry in West Africa. 

 

While the specific cost is not known, there are several steps that could be taken in 

tandem with the opening of a processing plant that might help reduce processing costs. 

The manufacture of tomato paste is primarily an energy-intensive exercise in 

dehydration, with excess water being removed from tomatoes to yield concentrated 

solids, or paste. One approach to improving the efficiency of the dehydration process 

would be to use drier starting materials, i.e. tomatoes with lower water content. The 

tomato varieties included in the West African TYLCD-resistance trials had a wide 

range of water contents, and it would be prudent to select those with the lowest water 

contents for processing, or even to try to introduce some dedicated processing 

varieties. An additional approach to saving costs in paste-manufacture would be to use 

more efficient and accessible energy sources to drive the dehydration process. 

Processing plants are most effectively situated near tomato growing regions, but these 

rural regions are often without a reliable source of power, sometimes necessitating the 

use of expensive fuel-based generators. The use of sustainable energy sources in rural 

West Africa has gained some traction in recent years, especially as the manufacturing 

costs of power-generating equipment have dropped. The tomato harvest in Sahelian 

West Africa takes place primarily during the cool dry season, when sunlight is 

abundant. It stands to reason, then, that the use of solar energy to generate electricity 

or heat for the tomato paste production process could be an effective method for 
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decreasing the cost of paste production, thereby increasing the target price for 

tomatoes and lowering the necessary yield increases. 

 

Until now we have considered whether tomato yields could be sufficient to support a 

price that could fit within a tomato processing budget, but it is also relevant to 

question whether total tomato production in Mali would be sufficient for the needs of 

a cannery. The cannery in Baguineda closed in the mid-1990s not specifically because 

of low and inconsistent yields, but because those low and inconsistent yields resulted 

in an insufficient total supply of raw materials to keep the cannery operating 

profitably. While many of a cannery’s costs are at least semi-variable with production 

level, including the costs of tomatoes, cans, electricity, water, and labor, the cost of 

installing new processing and canning equipment or of rehabilitating the old 

equipment will likely be fixed and substantial, and therefore to attract investors there 

must be strong evidence of profitability. Official statistics in Mali put countrywide 

tomato production at approximately 75,000 tons in 2006 (FAOSTAT, 2009). 

Easterling estimates that the total quantity of tomato paste imported yearly to Mali is 

28,000 tons, corresponding to 140,000 tons of fresh tomatoes. Thus, if tomato yields 

were to double, sufficient quantities would be available to meet half of the country’s 

tomato paste demand without significantly changing the dynamics of the fresh market. 

Assuming 25¢ of net revenue per kg as detailed above, this puts the cannery’s 

potential net revenue at $3.5 million per year. While this is likely an attractive-

sounding number for investors, it is unlikely of course that production will reach this 

level in one year: adoption of new varieties will not be an immediate process and will 

likely not immediately demonstrate full yield potentials, and issues such as the 

staggering of the harvest to meet the cannery’s scheduling needs and transportation 

logistics will invariably take several years to work out. However, given the proper 
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investment, it does seem likely that the operation of a tomato cannery in Mali (and, by 

extension, any other country in West Africa) could be profitable. If this were 

determined to be beneficial for the national economy (as discussed below) it might be 

appropriate for the government to share in the investment in the short term to help 

attract investors and thus ensure a smooth transition to higher-yielding varieties 

without major price fluctuations, with the intention of divesting once the cannery 

became profitable. 

 

Interestingly, the necessity of maintaining the cannery as a significant buyer of 

tomatoes to prevent a crash of market prices requires that farmers grow varieties with 

high yield stability. Were all farmers to opt for yield potential at the expense of yield 

stability, a single shock causing low yields could put the cannery out of business and 

leave farmers without a sufficient market in subsequent seasons. However, this runs 

contrary to farmers’ typical inclinations – if given the choice between a variety with 

high yield potential and another variety with high yield stability, it has been shown 

that poor farmers will tend to choose the higher yield potential (Lybbert, 2006). This 

may be due to the fact that yield stability only proves to be advantageous in years of 

high disease pressure, drought, or other short-term shocks, leading the added cost of 

seeds with high yield stability to appear to be an investment that is unlikely to pay off, 

and thus giving those seeds a greater perceived risk for poor farmers. Of course the 

varieties selected in the 2005-2008 variety trials offer significantly higher yield 

potentials than the popular cultivars in the region, providing farmers with plenty of 

incentive to adopt the new varieties. However, if higher-yielding, non-TYLCD-

resistant materials were to become available in West Africa, it might be necessary for 

canneries to implement programs to encourage farmers to grow the more yield-stable 

varieties. This might be as simple as specifying varieties to be grown in a contract 
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with farmers, a practice that is common in the tomato processing industry elsewhere in 

the world. 

 

While an analysis of the potential profitability of tomato processing in West Africa 

given the introduction of new high-yielding TYLCD-resistant tomato varieties shows 

very promising returns, it does not guarantee investment. However, there is reason to 

believe that there is significant foreign interest in the tomato processing industry of 

West Africa. For instance, it has been reported that a Swiss company is interested in 

reopening the tomato processing facility in Baguineda with a throughput of 100,000 

tons of fresh tomatoes (20,000 tons of paste) per year (Nathan-MSI, 2002). Reports 

have also circulated of an Indian company expressing interest in opening a cannery in 

Burkina Faso. In Ghana, this type of investment has already taken place – the Pwalugu 

tomato cannery reopened in February 2007 as a partnership between the Ghanaian 

government and an Italian tomato processing company. Named the North Star Tomato 

Company (NSTC), the factory was to buy tomatoes from the northern region of Ghana 

to manufacture tomato paste for domestic consumption. Unfortunately, due to the as-

of-yet unsolved problem of low and inconsistent yields, the factory experienced a 

variety of market issues: in general tomato production was insufficient to keep the 

cannery supplied with raw materials, and fresh market traders offered better prices 

leading farmers to sell their produce for fresh market consumption. In 2008 farmers 

scaled up their tomato plantings to capitalize on the increased demand created by the 

cannery, but despite the resultant drop in fresh market prices the cannery could not 

afford to compete with the fresh market, and did not operate. The resultant loss in 

expected revenue was devastating for farmers, and three tomato farmers in northern 

Ghana committed suicide in 2008. This clearly illustrates the very important need to 

coordinate the establishment of tomato processing capacity with the introduction of 
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high-yielding tomato varieties in West Africa. WASA may be able to help with this 

coordination in the coming years as it has a goal of using its agrodealer network to 

link farmers not only with input channels but with output channels as well. 

 

Potential Economic Impacts of the Reestablishment of Tomato Processing Capacity 

While it can be demonstrated that the introduction of high-yielding TYLCD-resistant 

tomato varieties in West Africa would likely allow tomato processing in the region to 

again be profitable, it is not unreasonable to ask whether this is actually in the best 

interest of the farmers or the rural or national economies involved. This section 

explores the potential economic impacts of introducing high-yielding tomato varieties 

and opening tomato canneries in the region. 

 

In general, the literature strongly supports the notion that growth in the agricultural 

sector leads to overall economic growth in developing countries, and numerous 

empirical studies have demonstrated this (reviewed by Irz et al., 2001; and Thirtle et 

al., 2003). For instance, Ravallion and Datt (1996) examined the poverty alleviation 

effects of economic growth in different sectors and different areas in India and 

determined that rural growth reduced poverty in both rural and urban areas, while 

urban growth had some benefits for the urban poor but had no impact on rural poverty. 

In addition, they found that agricultural growth had a positive benefit for the poor in 

both urban and rural areas. Thorbecke and Jung (1996) came to similar conclusions, 

finding that in Indonesia the agricultural and service sectors contributed much more to 

poverty alleviation than the industrial sector. Several studies attempt to quantify the 

effect of rural or agricultural growth on incomes by calculating a multiplier for the 

effect. For instance, Timmer (1995) demonstrates that in Kenya, an increase in 

agricultural output raises national incomes by 1.64 times that increase, while an 
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increase in industrial output has a multiplier of just 1.23. Gallup et al. (1997) conduct 

a meta-analysis of the relationship between growth and poverty across multiple 

countries and find that a 1% increase in agricultural GDP leads to a 1.61% increase in 

the incomes of the poorest quintile, while the effects for similar increases in GDP from 

manufacturing or services are just 1.16% and 0.79%, respectively. 

 

It is worthwhile to note several characteristics of the planned agricultural growth in 

West Africa’s tomato processing sector that might complicate the accumulation of 

downstream benefits. Firstly, this growth in agricultural production is occurring in a 

sector in which the market is already sometimes saturated in some locations. Without 

the coordinated increase in processing capacity this growth could be expected to have 

very significant negative short-term impacts as many farmers were forced out of 

tomato production due to complete saturation of the market, even if long-term benefits 

were positive. Furthermore, the reestablishment of tomato processing capacity will 

take place in an already-competitive market which will constrain the potential increase 

in earnings deriving from increased tomato production. As mentioned above, there is a 

very significant difference between the impacts of agricultural growth and the impacts 

of industrial growth, and depending on how the tomato processing sector is viewed it 

can fall into either of these categories. Despite these potential constraints, it seems 

likely that if implemented properly the increase in tomato production and processing 

will have a significant positive downstream impact. The following sections explore the 

respective impacts on the farm economy, the rural economy, and the national 

economy. 
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Farm Economy 

The two most elementary consequences of agricultural growth are higher incomes for 

farmers and higher demand for on-farm labor (Irz et al., 2001). In many cases, higher 

income for farmers deriving from yield-increasing technologies can disproportionately 

favor wealthier farmers due to access constraints and higher levels of risk aversion 

among poor farmers (Hazell and Haddad, 2001). As described above, several elements 

of WASA’s program for agrodealer development specifically address these issues in a 

pro-poor manner. In the case of tomatoes in West Africa, increased incomes are 

additionally constrained by the competitive tomato paste market which sets a cap on 

the price of tomatoes. For the project to be marginally successful, yields will have to 

rise to at least the minimal level where the price of tomatoes on the fresh market is 10¢ 

per kg, and where total farm output at that price gives farmers the net revenue they 

currently earn from tomato production. For yield increases beyond that minimal level, 

the cannery will be able to absorb excess production and continue to pay farmers 10¢ 

per kg, thereby avoiding a drop in prices deriving from excess production. This 

implies the existence of a “sweet spot” in the tomato production distribution at which 

the price will remain 10¢ per kg on the fresh market and the cannery will be operating 

at full capacity, generating maximal net revenues for farmers as an aggregate group. 

This sweet spot will need to be determined empirically, and careful management of 

harvest schedules and processing capacity will be necessary for its proper execution. 

However, at this level of tomato production it is expected that farmer incomes will rise 

significantly. The level of increase in incomes will depend on how much agricultural 

intensification is necessary to achieve the desired yields: increased need for inputs will 

reduce net earnings, as will increased need for on-farm labor. 
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The extent to which higher-yielding TYLCD-resistant tomato varieties will require an 

increase in on-farm labor is questionable. Higher yields are likely to require more 

hands for harvesting, and increased input usage will additionally require more labor. 

However, one report from Mali indicates that tomato farmers currently only devote an 

average of 20 days per season to their tomato fields (Nathan-MSI, 2002). Thus it is 

likely that increased labor needs will go primarily to farmers and their family 

members. However, this may remove farmers and their family members from the local 

labor pool, reducing the market supply of labor and thus increasing wages. 

 

Rural Economy 

The effects of increases in agricultural productivity on rural and national economies 

are often described as farm-nonfarm linkages, and fall into three categories: upstream 

production linkage, downstream production linkages, and consumption linkages (Irz et 

al., 2001).  

 

Upstream production linkages are increased expenditures in the agricultural inputs and 

services sector as a result of increased farm revenue. These linkages are likely to be 

highly developed for tomato production in West Africa, thanks in a large part to 

WASA and its network of agrodealers. Expenditures on seeds will certainly increase, 

and it is likely that expenditure on inputs such as fertilizers and crop protection 

products will increase as well. This leads to jobs and increased incomes for 

agrodealers and product support specialists as well as all those involved in the input 

supply chain. While these linkages are often affected by the level of infrastructure 

development in the region, the activities of WASA will likely minimize some of the  

negative effects of remoteness. 
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Downstream production linkages are increases in jobs and incomes in agricultural and 

food processing and related industries. This linkage will certainly be a tremendous 

driver of growth associated with the introduction of higher-yielding tomato varieties. 

Canneries nominally need workers to run the canning machinery, but they additionally 

create jobs in transport of raw materials and finished products, the manufacture of raw 

materials such as labels and cans, and marketing, to name just a few. Both the 

upstream and downstream production linkages create higher demand for labor through 

the creation of jobs, thereby leading to overall increases in wages in the local rural 

economy. 

 

Consumption linkages, which have been estimated to represent as much as 75% of all 

farm-nonfarm linkages, are increased jobs and incomes that arise as farmers and 

laborers spend their increased incomes on goods and services in the local rural 

economy. Calculated multiplier effects for these linkages in Sub-Saharan African 

countries have ranged from 1.3 to as much as 4.6 (Delgado et al., 1994; Delgado et al., 

1998; Haggblade et al., 1991). Given the number of different sectors expected to 

benefit from the increase in tomato production and the establishment of processing 

capacity, it is expected that consumption linkages will be very significant.  

 

There are several other linkages that may be relevant to the growth of the rural 

economy following development of the tomato industry in West Africa. For instance, 

increased incomes may lead to increased expenditures on food, health and education 

that will, in turn, improve social welfare (Timmer, 1995). Since tomato is not a staple 

crop, the macronutritional benefits sometimes seen from lower food prices will likely 

not apply, but lower prices of tomatoes could well improve micronutrient intake in 

rural areas by increasing vegetable consumption. The required scheduling of the 
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tomato harvest over a longer period of months to ensure optimal efficiency of the 

canning operation will additionally lead to the availability of inexpensive vegetables 

over a longer period of time each year, further improving micronutrient intake. A shift 

from reliance on imported tomato paste to domestic production will cause a shift in the 

source of tax revenues from import duties to locally collected taxes from the cannery, 

farmers and laborers with higher incomes, and/or sales. While the magnitude of the 

difference in total tax revenue will depend in a large part on each country’s tax 

regime, the shift to more locally collected taxes may be of significant rural benefit in 

areas with strong regional and local governments. The needs of the processing 

industry will create demand for improved infrastructure such as roads and energy 

supply, and strong local governments will likely capitalize on the increased tax 

revenues to initiate infrastructure development projects. Finally, the improved 

dynamics of the farm sector deriving from increased interactions between agrodealers 

and input consultants, farmers, processors, and banks may lead to the formation of 

social capital as these parties gain confidence in working together and pursue further, 

non-agricultural businesses. 

 

National Economy 

The impact of agricultural growth on the national economy derives primarily from the 

accumulation of capital within the agricultural sector and the subsequent transfer of 

that capital to other sectors both through purchases and through investment (Irz et al., 

2001). Investment can take the form of savings by the agricultural population, but 

governments often accelerate the process by taxing agriculture directly or indirectly. 

According to Schiff and Valdés (1992), agriculture makes significant contributions to 

net government revenue in developing countries. 
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The development of increased tomato processing capacity will additionally offer a 

domestic product to replace an imported one, thus slowing the export of foreign 

exchange and increasing opportunities for the import of capital goods that may be 

critical for further development projects and cannot be manufactured in West Africa 

(Irz et al., 2001). 

 

Future Activities of the West African Vegetable Germplasm Trialing Network 

The establishment of a region-wide coordinated vegetable germplasm trialing network 

in West Africa has allowed participating countries to evaluate tomato cultivars for true 

region-wide adaptation in a way that had not previously been possible. This is 

particularly relevant given recent efforts to harmonize seed policy and regulation 

across the region. The continued operation of this network offers the promise of more 

rigorous varietal screening procedures focusing on the traits that are of greatest 

importance on a regional scale, freeing up national efforts to focus on more local 

issues and increasing the efficiency of wide-scale varietal introduction in the region. 

 

While the identification of high-yielding TYLCD-resistant tomato cultivars suited for 

growth throughout West Africa is a significant accomplishment, there are still many 

opportunities for further improvement of tomato. The trials have allowed the research 

partners to identify other highly pressing diseases of tomato that are serious 

constraints to production in West Africa. For instance, fungal diseases are a 

particularly significant problem in the humid southern areas, and bacterial wilt and 

root knot nematodes can be found everywhere throughout the region. Trials aimed at 

identifying materials resistant to those diseases would likely have a significant impact, 

especially for tomato farmers in the south. In addition, the trialing network now has 
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the opportunity to begin working on other vegetables of economic importance in the 

region. Onions, peppers, okra, and cabbage are all of particular importance. 

 

A recent program initiated by AVRDC has begun to develop vegetable breeding 

capacity in West Africa. Called Vegetable Breeding and Seed Systems (vBSS) and 

funded by the Bill and Melinda Gates Foundation, this program has begun breeding 

efforts in several locations in Sub-Saharan Africa, including at the AVRDC research 

station in Samanko, Mali. Work is under way to develop cultivars of commercially 

important vegetables as well as indigenous vegetables (AVRDC, 2008). It will likely 

be some time before materials from this program are ready for distributed trials, but 

when they are the vegetable germplasm trialing network may offer an ideal resource 

for coordination of the evaluation of those materials throughout West Africa. 

 

Summary 

Since the late 1980s, the tomato production and processing industries of West Africa 

have suffered from poor yields and unstable markets. While many different factors 

may have a role in this situation, the lack of modern varieties with resistance to 

Tomato Yellow Leaf Curl Disease (TYLCD), one of the most debilitating constraints 

to tomato production in the region, were identified as particularly weak points that 

could easily be addressed. In 2005-2008 a series of variety trials was conducted in 

seven countries in West Africa to evaluate over 100 modern tomato cultivars from 

public and private sources with putative resistance to TYLCD. Managed by a newly 

formed West African vegetable germplasm trialing network, these trials served as 

much as an opportunity for training as one for variety evaluation. By 2008 several 

TYLCD-resistant cultivars with consistently high yields across multiple environments 

were selected by the trialing network for introduction in the region. Work is now 
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under way, through a partnership with the West African Seed Alliance, to make those 

varieties available to farmers and to encourage the reestablishment of tomato 

processing capacity in the region. 
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APPENDIX 1 

WEST AFRICAN BIOTECHNOLOGY TRAINING WORKSHOP 

 

 

The Agricultural Biotechnology Support Project II (ABSPII), which was the primary 

source of funding for the development of the West African vegetable germplasm 

trialing network and for the execution of the TYLCD-resistance trials, defines its 

primary mission as the use of biotechnology for the support of agricultural 

development. While none of the TYLCD-resistant tomato cultivars included in the 

variety trials were transgenic, several other avenues of biotechnology support were 

provided to the participating West African countries. The centerpiece of this support 

program was a week-long intensive biotechnology training workshop, conducted in 

Bamako, Mali in August 2007, to train NARS research scientists basic molecular 

biology theory and techniques to help them develop further research capacity in their 

countries. Twenty one participants from all seven ABSPII partner countries attended 

the workshop, which was held in the biotechnology laboratory at the University of 

Bamako. The following pages contain the syllabus from that training workshop. 

 

Note: All lecture topics taught by the author are marked with an asterisk in the detailed 

syllabus below. Laboratory exercises were collaboratively taught by both the author 

and Kari Perez. 
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Molecular Biology for Agricultural 
Research Applications 
August 27 th – 31st, 2007 – Bamako, Mali 

 

Introduction 
 

This document outlines a curriculum for an intensive hands-on workshop on molecular 

biological theory and techniques to be held in Bamako, Mali August 27th – 31st, 2007. The 

workshop will introduce the ABSPII West African NARES partners, who have been involved in 

conducting trials of begomovirus-resistant tomatoes, to applications of molecular plant 

genetics and pathology through integrated lectures and laboratory exercises. The goal of the 

workshop is to build regional intellectual capacity in West Africa for the continuation of 

ABSPII-related activities, including modern plant breeding, germplasm screening, and 

pathogen detection by scientists and practitioners in the region. Structured to acknowledge 

the conditions of the research programs in the participants’ countries while simultaneously 

building expertise for future capacity expansion, the workshop’s laboratory exercises cover 

techniques with minimal equipment requirements alongside the state-of-the-art approaches 

to transgene detection and pathogen identification. 

 

 

  



 

207 

 

Course Details 

Instructors 
Jeff Gordon, graduate student, Cornell University. jsg54@cornell.edu 

Kari Perez, graduate student, Cornell University. kwp6@cornell.edu 

 

Location 
Biotechnology Laboratory, University of Bamako, Mali 

Dean of the Faculty of Science and Technology: Saliku Sanogo 

Director of the Biotechnology Laboratory: Ousmane Koita 

 

Onsite Coordinators 
Dr. Issoufou Kollo Abdourhamane, Project Coordinator, AVRDC  

Dr. Ousmane Cisse, University of Bamako 

Dr. Youssouf Sanogo, University of Bamako 

 

Course Outline: 
 

The course will be conducted over a period of five days, with all days having both lecture and 

laboratory components. The following is a breakdown of the topics covered by day: 

 

Section Topics:  

1. Basic plant molecular biology and genetics 

Associated laboratory exercise: getting acquainted with the lab 

2. Basic techniques for detecting, manipulating and identifying nucleic acids 

Associated laboratory exercise: DNA extraction 

3. Genetic engineering and plant transformation 

Associated laboratory exercise: DNA detection – PCR and gel electrophoresis 

4. Basic molecular plant pathology and disease resistance 

Associated laboratory exercise: DNA detection – Squash blots 

5. Detection of proteins 

Associated laboratory exercise: Protein detection – ELISA and immunostrips 
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Day 1: Basic plant molecular biology and genetics  
 

This section will serve as an introduction to the biological concepts necessary for subsequent 

sections of the workshop. Of course, it is impossible to teach all of plant molecular biology in 

one day, and therefore this section will be carefully designed to emphasize the aspects of 

plant molecular biology that are most relevant to the techniques covered in the workshop. 

Topics: 

 Introduction to the plant cell 

 From DNA to protein – transcription and translation* 

 Cell cycle: Mitosis and meiosis 

 Molecular genetics: Mendel meets DNA* 

 

Laboratory Exercise: Getting acquainted with the lab 

Workshop participants may be unfamiliar with the basic tools, facilities, and safety 

procedures of molecular biology labs. This laboratory section will be used to ensure that 

participants are ready to begin conducting experiments by day 2. 

 Tour of laboratory equipment and facilities 

 Overview of laboratory safety regulations and protocols 

 Pipetting practice 
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Day 2: Basic techniques for detecting, manipulating and 

identifying nucleic acids 
 

Detection and manipulation of nucleic acids serve as the foundation of molecular genetics. In 

this section, workshop participants will learn about the basic toolkit available to molecular 

geneticists from a practical standpoint. 

 

Topics: 
 Theory and practice of DNA extraction* 

 Hybridization – using complementarity for specific detection* 

 Cutting and pasting – restriction enzymes and ligases* 

 Separation – gel electrophoresis* 

 Amplification – PCR, RT, and bacterial amplification* 

 Combining techniques for in-depth analysis  – Mapping, cloning, and sequencing* 

 

Laboratory Exercise: DNA Extraction 
 

Laboratory exercises for days 2 will focus on three different methods for extracting DNA from 

plant materials. Each method meets different scientific needs and is appropriate for different 

analyses: 

 CTAB method – used to purify DNA from fresh leaf tissues in the laboratory. Is 

appropriate for most downstream applications. 

 

 FTA cards – used for collecting samples in the field, and for long-term storage of DNA 

or RNA at room temperature. Can be used as templates for DNA or RNA 

amplification. 

 

 Squash blots on nylon membranes – also used for collecting samples in the field. 

They are appropriate for detection of specific DNA sequences by hybridization. 
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Day 3: Genetic engineering and plant transformation 
 

The lectures on day 3 will focus on how and why transgenics are made. Genetic engineering 

of plants can potentially offer solutions to agricultural problems in the developing world, 

from virus resistance to drought tolerance. It is also a major tool in modern molecular 

biology, and a capacity that is relevant to modern laboratory research even when no 

agricultural product is intended. This section will elucidate the basic processes involved in 

generating transgenic plants. 

 

Topics: 

 

 Why transgenics – crossability barriers and the linkage problem* 

 Genetic engineering – design and assembly of a transgene cassette 

 Transformation – Agrobacterium and gene guns* 

 

Laboratory Exercise: DNA Detection 
 

Laboratory exercises for day 3 will introduce two different approaches for detecting specific 

sequences in DNA samples. For these exercises participants will use the DNA samples they 

extracted the previous day. 

 

 Transgene detection by PCR: Polymerase chain reaction (PCR) is a powerful 

technique used for amplifying short, specific sequences of DNA for detection or 

further manipulation. Participants will use PCR to amplify the sequences for both a 

transgene and a housekeeping gene from both transgenic and wild-type DNA 

samples. Agarose gel electrophoresis will be used to visualize the PCR results. 

 

 Geminivirus detection by squash blot: Squash blots allow for the direct detection of 

high-copy sequences, such as viral genomes, in tissue samples collected in the field. 

Participants will be use squash blots to search for geminiviruses in plants collected in 

Bamako. On day 3 participants will set up the squash blot hybridizations. 
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Day 4: Basic molecular plant pathology and disease resistance 
 

This section will mark a change of focus from the theory and practice of molecular biology to 

the more applied topic of plant pathology. Pathogens are a serious constraint to production, 

and appropriate control depends on proper pathogen identification. A special session on day 

4, led by Dr. Issoufou Kollo Abdourhamane, will introduce participants to many of the 

pathogens endemic to West Africa. Lectures will address the different types of pathogens, 

their impacts on plant function, and plant defense responses, with a focus on the translation 

of molecular processes into visible symptoms. 

 

Topics: 
 Fungi, nematodes, bacteria and viruses – an overview of plant pathogens 

 Local plant diseases – an introduction to West African pathogens 

 Molecular disease – pathogen effects on cell and molecular processes* 

 Resistance genes – dominant vs. recessive resistance 

 

Laboratory Exercise: Squash Blot Detection of Geminiviruses (cont’d) 

 
Workshop participants will continue the squash blot protocol started on day 3 by conducting 

various washes of the blots, and setting up the color development reaction. 
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Day 5: Detection of proteins 
 

The detection and analysis of proteins is vital to molecular biology. While the tools of 

genetics offer scientists many opportunities to study protein function indirectly, it is often 

necessary to more directly detect, isolate, and manipulate proteins to better understand 

their functions. The session will begin with a study of antibodies and their use in diagnostic 

aspects of molecular plant pathology, and will continue to cover more advanced protein 

analysis techniques and their uses in modern proteomics studies. 

 

Topics: 

 

 Antibodies – what are they? 

 Antibody production and purification 

 Protein detection methods using antibodies 

 Advanced protein analysis* 

 

Laboratory Exercise: Ralstonia detection in tomato 

 
Ralstonia solanacearum is a bacterial pathogen that causes bacterial speck disease in 

tomato. It can be detected using DNA or protein methods – in this session we will be using 

two different protein methods to detect Ralstonia in samples collected from around Bamako. 

 

 Enzyme-Linked ImmunoSorbent Assay (ELISA) is a sensitive laboratory technique for 

detecting proteins with specific antibodies. Antibodies are linked to an enzyme that 

generates a colored precipitate when exposed to a colorless buffer, allowing 

detection of very low levels of the protein being sought.  

 Immunostrips are modern protein detection kits designed for use directly in the field. 

Though based on similar chemistry to ELISA, they sacrifice the flexibility and semi-

quantitative nature of ELISA for extremely high speed and ease of use. 
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Year 1 Preliminary Trial – Cotonou, Benin 

 

Variety Sev1 Sev2 Sev3 

Atak 0.3 1.2 2.2 

Bybal 0.2 1.4 2.3 

Chenoa 0.3 1.3 3 

Cheyenne.E448 0.2 1.6 2.2 

CLN.2123A 0 0.9 2.3 

CLN.2460E 0 1.8 2.1 

CLN.2468A 0 1.6 2.3 

CLN.2498E 0 1.5 2.2 

CLN.2545A 0.3 1.7 2.4 

CLN.2545B 0.1 1.9 2.3 

F1.3019.Galina 0 1.7 2.1 

Favi.9 1 2 2.4 

FTC.6231 0.2 1.3 2.4 

FTC.6236 0.1 1.3 2.2 

FTC.7088 0.6 1.6 2.8 

FTC.7127 0 1.6 2 

FTC.7351 0.8 2.3 2.6 

FTC.7483 0.3 1.5 2.3 

GemPride 0.5 2 2.1 

HA.3060 0.4 1.8 2 

HMX.4810 0.6 1.7 2.5 

Industry.DR.10403 0.4 1.6 2.4 

Lety.F1 0.9 1.8 2 

Nadira 0 1.8 2.1 

Nirouz.TH.99806 0.2 1.8 2 

O4.108 0.3 1.9 2.1 

O4.240 0.4 2.2 2.1 

O4.495 0.2 1.6 2 

O4.498 0.7 2.1 2.2 

O4.501 0.8 1.9 2.4 

Ponchita 0.6 1.8 2.2 

PS.43316 0 2 2 

PT.4722A 0.2 2.1 2.4 

Realeza 0.2 1.1 2.4 

Roma.VF 0.1 1.5 2.4 

Thoriya 0.5 1 2.1 
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Variety Sev1 Sev2 Sev3 

TLCV.15 0 1.8 2.2 

TY.75 0.3 1.8 2.5 

Yassamen.TH.99802 0.3 2 2.5 

Yosra 0.2 1 2.3 
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Year 1 Preliminary Trial – Kou Valley, Burkina Faso 

 

 

Variety Sev1 Sev2 Sev3 Total Yield 

Atak 0.1 0.7 1.8 6.3 

Bybal 0 0.6 1.5 7.4 

Chenoa 0 1.3 1.6 3.8 

Cheyenne.E448 0 0.5 1.7 8.8 

CLN.2123A 0.1 3.2 4 1.5 

CLN.2460E 0.1 2.6 3.7 1.3 

CLN.2468A 0.4 3.2 3.5 1.1 

CLN.2498E 0.2 3.3 3.7 1.4 

CLN.2545A 0.1 3.3 3.6 1.9 

CLN.2545B 0.2 3.5 3.4 2.8 

F1.3019.Galina 0 0.6 2.1 8.1 

Favi.9 0 1.5 3.5 3.9 

FTC.6236 0 1.3 2.3 7.9 

FTC.7088 0 0.7 2.4 4.9 

FTC.7127 0 0.4 3.5 1.8 

FTC.7351 0 1.9 3.6 1.5 

FTC.7483 0 0.4 2.7 2.8 

GemPride 0 1.2 2.1 6.6 

HA.3060 0 2.3 2 5.3 

HMX.4810 0.1 0.8 2.5 7.3 

Industry.DR.10403 0 0.3 2.9 7.6 

Lety.F1 0 1.7 3 3 

Nadira 0 0.6 2.7 5.3 

Nirouz.TH.99806 0 0.3 2 9.2 

O4.108 0 1.5 2.4 2.1 

O4.240 0 1.9 3.2 2.1 

O4.495 0 1.6 2.6 3.5 

O4.498 0 1.7 3.1 2.2 

O4.501 0 1.3 3.3 3.9 

Ponchita 0 0.2 1.2 2.9 

PS.43316 0 0.5 2.4 5.4 

PT.4722A 0.2 1.8 3.7 1.3 

Realeza 0 0.4 2.5 4.3 

Roma.VF 0.3 3.9 4 0.2 

Sasya.0202.F1 0 1.9 3.5 3.7 

Thoriya 0 0.6 1.9 7.7 



 

217 

 

TLCV.15 0 0.2 3.7 1.8 

TY.75 0 1.2 1.7 9.1 

Yassamen.TH.99802 0 0.5 1.4 10.2 

Yosra 0 0.7 2.1 3.7 
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Year 1 Preliminary Trial – Kumasi, Ghana (Trial 1) 

 

 

Variety Sev1 Sev2 Sev3 Total Yield 

Atak 
 

2 4 0.7 

Bybal 
 

2 3 2.3 

Chenoa 
 

2 3 3.2 

Cheyenne.E448 
 

2 2 1.9 

CLN.2123A 
 

1 2 3.5 

CLN.2460E 
 

2 3 2.5 

CLN.2468A 
 

2 3 2.6 

CLN.2498E 
 

2 3 0.9 

CLN.2545A 
 

1 2 3.9 

CLN.2545B 
 

1.9 3 2 

F1.3019.Galina 
 

2 3 2.3 

Favi.9 
 

2 3 9.1 

FTC.6231 
 

1 1.8 2.3 

FTC.6236 
 

0 1 4.2 

FTC.7088 
 

1 2 3 

FTC.7127 
 

2 3 1.7 

FTC.7351 
 

2 2 6 

FTC.7483 
 

3 3 3.1 

GemPride 
 

2 2 7.5 

HA.3060 
 

1 2 2 

HMX.4810 
 

1 3 2 

Industry.DR.10403 2 3 2.6 

Lety.F1 
 

1 3 1 

Nadira 
 

2 3 1.9 

Nirouz.TH.99806 
 

1 3 4.1 

O4.108 
 

1.8 2 2.2 

O4.240 
 

0 1.5 2 

O4.495 
 

2 3 1.1 

O4.498 
 

1 2 2.2 

O4.501 
 

1 3 0.8 

Ponchita 
 

2 4 1 

PS.43316 
 

1 3 2.6 

PT.4722A 
 

1 2 9.1 

Realeza 
 

1 1 5.2 

Roma.VF 
 

1.6 2.7 1.1 

Thoriya 
 

2 2 3.5 
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TLCV.15 
 

1 3 0.7 

TY.75 
 

1 3 2.9 

Yassamen.TH.99802 2 2 7 

Yosra 
 

0 2 1.6 
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Year 1 Preliminary Trial – Kumasi, Ghana (Trial 2) 

 

 

Variety Sev1 Sev2 Sev3 

Bybal 
 

0 3.8 

Cheyenne.E448 
 

1 3.4 

CLN.2460E 
 

1.7 3.2 

CLN.2468A 
 

0 3.3 

CLN.2498E 
 

1 3.3 

CLN.2545A 
 

1.2 3.6 

Favi.9 
 

0 3.3 

FTC.6231 
 

0.3 3.3 

FTC.6236 
 

0.2 1.6 

FTC.7088 
 

0 3 

FTC.7127 
 

0.1 3.1 

FTC.7351 
 

0.3 1.8 

FTC.7483 
 

0.3 3.3 

GemPride 
 

0.1 1.5 

HA.3060 
 

0.5 3.6 

HMX.4810 
 

0.8 3.4 

Nadira 
 

0.6 3.4 

Nirouz.TH.99806 
 

1.5 3.4 

O4.108 
 

0.7 3.1 

O4.240 
 

0 3.3 

O4.495 
 

1 3.6 

O4.498 
 

0 3.1 

O4.501 
 

1 3.3 

PT.4722A 
 

0.2 3 

Realeza 
 

0.5 3.9 

Roma.VF 
 

0.7 3.6 

Thoriya 
 

1 3.3 

TLCV.15 
 

0.8 3.2 

TY.75 
 

1.5 3.5 

Yassamen.TH.99802 0.8 3.4 

Yosra 
 

1.5 1.8 
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Year 1 Preliminary Trial – Baguineda, Mali 

 

 

Variety Sev1 Sev2 Sev3 Total Yield 

Atak 0 0 0 5.2 

Bybal 0 0 0 3.8 

Chenoa 0 0 0 5.2 

Cheyenne.E448 0 0 0.8 5.9 

CLN.2123A 0 0.3 1.9 5 

CLN.2460E 0 0 1.6 4.5 

CLN.2545A 0 0.1 1.6 1.3 

F1.3019.Galina 0 0 0.6 2.3 

Favi.9 0 0.1 2.3 3.4 

FTC.6236 0 0.1 1.9 2.6 

FTC.7127 0 0.1 1.9 3.8 

FTC.7351 0 0.2 2.8 2.3 

FTC.7483 0 0.2 0.4 2.3 

GemPride 0 0.2 1.4 3.3 

HA.3060 0 0.1 0.7 4.1 

Industry.DR.10403 0 0 0.7 1.8 

Lety.F1 0 0 0.2 1.1 

Nadira 0 0 1.1 3.1 

Nirouz.TH.99806 0 0 0.8 3.7 

O4.108 0 0 2 1.2 

O4.240 0 0 0.9 6 

O4.495 0 0 1 4.3 

O4.498 0 0 1.2 4.1 

O4.501 0 0.1 1.6 3.3 

Ponchita 0 0 0.1 1.5 

PS.43316 0 0 2.1 3.9 

PT.4722a 0 0.2 2.9 2.5 

Realeza 0 0 0 3.7 

Roma.VF 0.1 0.2 2.7 2 

Thoriya 0 0.1 0.2 3.7 

TLCV.15 0 0 0.2 1.9 

TY.75 0 0.2 0.3 2 

Yassamen.TH.99802 0 0.1 1.4 1.9 

Yosra 0 0 1.5 2.6 
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Year 1 Preliminary Trial – Samanko, Mali 

 

 

Variety Sev1 Sev2 Sev3 Total Yield 

Atak 0 0.1 0.3 19.8 

Bybal 0 0 0.1 13.1 

Chenoa 0 0 0.3 15.2 

Cheyenne.E448 0.3 0.5 1.7 17.2 

CLN.1466J 1.5 2.8 3.6 4.8 

CLN.2123A 0.8 1.3 2.3 13.5 

CLN.2460E 0.4 1.5 3.4 13.6 

CLN.2468A 0.5 1.4 2.9 7.2 

CLN.2498E 0.4 1.3 2.4 8.1 

CLN.2545B 0 1.9 3 12.1 

CLN.2714-117232961211 1 2.8 3.2 7.7 

CLN.2764-82-5-12 0 1.9 3 17.3 

CLN.2764-99-13-18 0 0.9 2 18.8 

CLN.2768-69-23-30 0.1 0.4 2.2 18 

CLN.27777-168-27-2 0.3 1.6 2.4 15.9 

F1.3019.Galina 0.2 0.9 1.9 19.1 

F1.483 0.3 0.7 2.1 13.8 

F1.495 0 0.4 2.1 18 

F1.641 0.3 0.1 1.6 18.3 

F3.1 0.2 0.7 2.9 16.7 

F3.10 0 0 0 14.7 

F3.11 0.5 1 2.3 11.8 

F3.2 0 0.7 2.8 15.4 

F3.3 0.3 0.9 2.2 13.8 

F3.4 0 0.1 1.6 9.5 

F3.5. 0.4 1.7 3.1 12.1 

F3.6 0 0.2 1.8 18.5 

F3.7 0.2 1.4 2.9 14.4 

F3.8 0.4 0.8 2.1 18 

F3.9 0 0 0.2 11.8 

Favi.9 0.2 1.3 2.7 17.8 

FLA.456-4 0 0 0.5 12.7 

FTC.6236 0 0.3 0.5 19.7 

FTC.7088 0.3 1 1.8 20.6 

FTC.7127 0.4 2.2 3 12.6 

FTC.7351 0.4 1.9 3.3 10.1 
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GemPride 0 0 1.6 19.6 

HA.3019 0 0.2 1.7 16.1 

HA.3060 0 0.5 2.8 15.8 

HMX.4810 0 0.5 2 23.4 

Industry.DR.10403 0.2 0.4 1.3 20.3 

Lety.F1 0 0.3 0.3 12.5 

Nadira 0.4 1.2 2.7 14.6 

Nirouz.TH.99806 0 0.1 1.6 23.1 

O4.108 0.5 1.2 2.3 14.7 

O4.240 0.3 1.5 3.1 20.7 

O4.495 0 0.2 2 17.1 

O4.498 0.1 0.2 1.8 20.2 

O4.501 0.6 2 3.2 13 

Ponchita 0 0 0.3 15.8 

PS.43316 1 2.5 2.5 14.2 

PT.4722A 0.5 2.5 3.3 12.5 

Realeza 0.2 0.3 0.5 14.7 

Roma.VF 1 2.9 3.5 
 Sasya.0202.F1 0.3 1.1 2.8 15.9 

Thoriya 0 0 0 18.2 

TLCV.15 0.4 0.2 3.2 13.9 

TY.75 0 0.2 1.1 15.6 

Yassamen.TH.99802 0 0.1 0.3 15.8 

Yosra 0 0 0.5 15.7 
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Year 1 Preliminary Trial – Rufisque, Senegal 

 

 

Variety Sev1 Sev2 Sev3 Total Yield 

Atak 0 0 0 31.8 

Bybal 0 0 0 24.7 

Chenoa 0 0 0 28.1 

Cheyenne.E448 0 0.5 0.8 44.8 

CLN.2123A 0 1.1 1.9 20 

CLN.2460E 0.2 2.9 3.3 11.3 

CLN.2468A 0.2 2.8 3.7 15.8 

CLN.2498E 0.4 2.1 2.7 11.9 

CLN.2545A 0.2 1.2 1.9 14.9 

CLN.2545B 0.1 1.5 2 17.1 

F1.3019.Galina 0 0.4 0.4 68.1 

Favi.9 0 0 0 53.7 

FTC.6231 0 0 0 46.7 

FTC.6236 0 0 0 28.1 

FTC.7088 0.1 0.2 0.2 35 

FTC.7127 0.1 2.5 2.5 13.6 

FTC.7351 0.1 1.9 2.3 12.1 

FTC.7483 0 1.6 1.6 11.9 

GemPride 0 0.1 0.1 19.2 

HA.3060 0.1 0.1 0.1 22.1 

HMX.4810 0.1 0.3 0.3 56 

Industry.DR.10403 0 0.3 0.3 41.7 

Nadira 0 0 0.2 36 

Nirouz.TH.99806 0 0.2 0.2 37.3 

O4.108 0.1 0.3 0.3 43.7 

O4.240 0 0.3 0.5 34.2 

O4.495 0 0.3 0.3 52 

O4.498 0 0.6 0.8 65.1 

O4.501 0.2 0.9 1.2 27.6 

Ponchita 0 0 0 26.6 

PS.43316 0 1.2 1.1 11.4 

PT.4722A 0.2 1.5 1.8 19.6 

Realeza 0 0 0 47.4 

Roma.VF 0.1 3 2.9 20.3 

Sasya.0202.F1 0 0.6 0.6 40.9 

Thoriya 0 0 0 35.9 
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TLCV.15 0.1 2.3 3 26.2 

TY.75 0 0 0 53.4 

Xina 0 2 3.2 12.4 

Yassamen.TH.99802 0 0 0 51.5 

Yosra 0 0 0 54.1 
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Year 1 Preliminary Trial – Lomé, Togo 

 

 

Variety Sev1 Sev2 Sev3 

Atak 0 0.9 2.7 

Bybal 0 1.3 3.2 

Chenoa 0 1.5 3 

Cheyenne.E448 0 1 2.1 

CLN.2123A 0 2.7 2.9 

CLN.2460E 0 2.1 2.9 

CLN.2468A 0 3.2 3.4 

CLN.2498E 0.1 2.5 3 

CLN.2545A 0.1 2.2 3.3 

CLN.2545B 0.1 2.5 3.6 

F1.3019.Galina 0 2.4 3.3 

Favi.9 0 2 3 

FTC.6236 0 2.4 3.3 

FTC.7088 0 2 3.2 

FTC.7127 0 2 3.2 

FTC.7351 0 3 3.1 

FTC.7483 0 2.8 3.2 

GemPride 0 2 3.4 

HA.3060 0 2.3 3 

HMX.4810 0 1.8 3 

Industry.DR.10403 0 0.9 1.2 

Lety.F1 0 0.4 0.6 

Nadira 0 1.7 2.1 

Nirouz.TH.99806 0.2 2.5 3.4 

O4.108 0 1.7 2.7 

O4.240 0.2 1.8 3 

O4.495 0.1 1.9 3 

O4.498 0.1 2.3 3.2 

O4.501 0 2.6 3.1 

Ponchita 0 2.4 3 

PS.43316 0 1.9 3.2 

PT.4722A 0.3 2.7 3.3 

Realeza 0 1.1 2 

Roma.VF 0 2.4 3.1 

Sasya.0202.F1 0 1.1 2 

Thoriya 0 1.1 1.6 
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TLCV.15 0 2.1 3 

TY.75 0 2.6 3.4 

Yassamen.TH.99802 0.2 2.2 3 

Yosra 0 2.4 3.6 
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Year 2 Advanced Trial – Kargui, Benin 

 

 

Variety Sev1 Sev2 Sev3 Total Yield Marketable Yield 

Yosra 0 0 0     45.5a        46.1a 

Industry.DR.10403 0 0 0     38.7ab        37.9ab 

Realeza 0 0 0     35.8abc        35.4abc 

Atak 0 0 0     33.4abcd        32.6abc 

Nadira 0 0 0     33.2abcd        32.8abc 

Gempride 0 0 0     32.4abcd        30.9abc 

FTC.7127 0 0 0     31.4abcd        30.6abc 

Ponchita 0 0 0     30.0abcd        29.0abc 

Chenoa 0 0 0     29.6abcd        28.6abc 

Thoriya 0 0 0     27.1abcd        25.8bc 

Bybal 0 0 0     26.1bcd        25.8bc 

TLCV.15 0 0 0     23.9bcd        23.1bc 

Lety.F1 0 0 0     22.6cd        21.9bc 

Roma.VF 0 2 3.2     19.4d        19.1c 
 

 

 

Variety Weight (g) Length (mm) Diameter (mm) Fruits Per Plant 

Atak 143.2 46.5 61.4 44.9 

Bybal 192.4 54.8 68.4 31.3 

Chenoa 102.5 48.9 56.1 35.6 

FTC.7127 99.8 55.8 48.3 61.0 

Gempride 80.7 48.5 56.2 81.8 

Industry.DR.10403 130.2 54.4 59.2 45.8 

Lety.F1 20.9 27.6 31.2 107.8 

Nadira 131.1 53.4 56.2 55.9 

Ponchita 85.1 43.8 58.7 33.3 

Realeza 96.6 61.2 44.6 61.8 

Roma.VF 75.4 55.4 37.1 44.6 

Thoriya 68.1 57.5 46.8 34.6 

TLCV.15 122.9 49.9 52.3 61.8 

Yosra 144.9 48.4 62.5 53.3 
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Year 2 Advanced Trial – Kou Valley, Burkina Faso 

 

 

Variety Sev1 Sev2 Sev3 Total Yield Fruits Per Plant 

Industry.DR.10403 0.0 2.3 2.7 23.4a 45.2 

Nirouz.TH.99806 0.0 1.7 2.4 21.0ab 29.3 

HA.3060 0.1 1.6 2.7 20.4abc 23.3 

HMX.4810 0.0 1.9 2.6 19.5abc 24.1 

FTC.6236 0.0 1.9 2.5 19.4abc 28.8 

Atak 0.0 0.5 2.2 14.2abc 28.2 

Gempride 0.0 2.1 2.8 13.8abc 31.7 

Yassamen.TH.99802 0.0 1.1 2.5 12.8abc 15.6 

Bybal 0.0 0.8 2.4 12.6abc 20.7 

Thoriya 0.0 2.1 3.1 12.1abc 33.2 

Cheyenne.E448 0.0 1.6 2.6 10.6abc 17.9 

Realeza 0.1 2.3 3.0 10.2abc 25.4 

Ponchita 0.0 1.0 2.5 8.3abc 21.7 

Lety.F1 0.0 1.8 2.8 7.7abc 76.5 

Yosra 0.0 1.0 2.4 6.7abc 17.2 

Chenoa 0.0 1.3 2.5 5.5bc 21.3 

Roma.VF 0.2 3.0 4.0 4.4c 18.3 
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Year 2 Advanced Trial – Navrongo, Ghana 

 

Variety Sev1 Sev2 Sev3 
Total 

YieldNS 
Marketable 

YieldNS 
Atak 0.0 0.1 2.1 30.1 19.4 
Bybal 0.0 0.1 1.0 26.4 15.2 
Chenoa 0.0 0.1 1.9 22.5 16.3 
FTC.6236 0.0 0.6 1.5 40.2 32.0 
FTC.7351 0.0 1.8 3.2 18.8 9.9 
Gempride 0.0 1.0 1.5 27.2 15.6 
Industry.DR.10403 0.0 0.8 1.2 31.0 16.7 
Lety.F1 0.0 0.4 0.8 19.3 11.0 

Ponchita 0.0 0.0 1.3 22.4 13.6 
Realeza 0.0 0.7 2.5 27.5 18.6 
Roma.VF 0.6 2.1 3.7 24.0 15.6 
Thoriya 0.0 0.0 1.2 29.9 19.2 
Yosra 0.0 0.4 3.5 20.7 11.0 

 

 

 

 

Variety Weight (g) Length (mm) Diameter (mm) 
Atak 101.2 58.3 63.3 
Bybal 126.9 63.6 68.6 

Chenoa 83.7 56.9 59.8 
FTC.6236 89.7 65.6 60.2 
FTC.7351 121.1 64.4 70.2 
Gempride 85.1 58.8 54.9 
Industry.DR.10403 88.1 65.7 60.8 
Lety.F1 26.8 41.2 41.4 
Ponchita 89.0 53.1 61.0 

Realeza 75.8 71.9 53.0 
Roma.VF 50.1 65.1 43.0 
Thoriya 53.1 59.4 47.1 
Yosra 97.1 57.7 66.2 
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Year 2 Advanced Trial – Baguineda, Mali 

 

(replicate data not provided – no statistical analysis performed) 

 

 

Variety Sev1 Sev2 Sev3 Total Yield Marketable Yield 
Atak 0 0 0 41.2 38.9 
Bybal 0 0.8 1 34.7 32.9 
Chenoa 0 0.3 0.4 38.8 36.5 
Cheyenne.E448 0.7 2.6 2.7 44.7 41.3 
Gempride 0.4 1.1 1.2 40.6 37.1 
HA.3060 0.3 1.9 2.2 34.4 28.6 

HMX.4810 0.3 2.3 2.6 42.8 38 
Industry.DR.10403 1.1 2 2.1 42.9 40.5 
Lety.F1 0 0.5 0.5 25.5 25.2 
Ponchita 0.1 0.6 0.6 40.8 39.4 
Realeza 0 0.2 0.3 43.2 41.4 
Thoriya 0 0.9 1.1 44.1 42.3 
Yosra 0 0 0 42.2 41.4 
Roma.VF 2 3.6 4 35.4 34.7 

 

 

 

Variety Weight (g) Length (mm) 
Diameter 

(mm) 
Fruits Per 

Plant 
Atak 108.7 42 53 20 
Bybal 156.0 48 56 9 
Chenoa 107.3 43 50 14 
Cheyenne.E448 87.3 51 69 14 
Gempride 102.7 47 46 29 
HA.3060 154.0 48 60 18 
HMX.4810 154.7 52 65 20 
Industry.DR.10403 98.7 54 50 28 
Lety.F1 12.0 28 34 30 
Ponchita 112.0 43 52 12 

Realeza 74.0 55 42 19 
Thoriya 59.3 53 44 16 
Yosra 184.7 41 51 17 
Roma.VF 42.7 56 35 23 
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Year 2 Advanced Trial – Samanko, Mali 

 

 

Variety Sev1 Sev2 Sev3 Total YieldNS 
Marketable 

YieldNS 
Atak 0.0 0.0 0.0 30.5 7.0 
Bybal 0.0 0.0 0.0 24.6 6.5 
Chenoa 0.0 0.0 0.1 21.8 5.0 
CLN.2764-99-13-18 0.0 0.7 0.3 27.6 5.9 
FTC.6236 0.1 0.7 0.3 31.7 6.0 
Gempride 0.0 0.6 0.1 33.1 8.9 
HMX.4810 0.0 0.3 0.1 36.4 8.9 

Industry.DR.10403 0.0 0.3 0.4 29.4 7.0 
Lety.F1 0.0 0.0 0.0 19.5 5.8 

Nirouz.TH.99806 0.0 0.0 0.0 24.6 4.5 
Ponchita 0.0 0.0 0.0 26.2 7.9 
Realeza 0.0 0.4 0.1 21.0 5.6 
Roma.VF 0.2 1.3 3.3 39.6 9.6 
Thoriya 0.0 0.0 0.0 26.5 7.0 
Yosra 0.0 0.1 0.1 27.8 7.0 
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Year 2 Advanced Trial – Birni N’Konni, Niger 

 

 

Variety 
Total 

YieldNS 
Marketable 

 YieldNS 
Weight 

(g) 
Length 
(mm) 

Diameter 
(mm) 

Atak 58.4 50.7 77.3 38 45 
Bybal 52.4 43.7 108.1 41 44 
Chenoa 45.9 41.9 68.6 44 42 
Gempride 54.4 50 55 40 38 
Industry.DR.10403 43.7 37.5 83.3 44 40 
Lety.F1 33 27.9 12.3 21 20 
Ponchita 56.3 49.8 71.3 38 42 

Realeza 56.7 53 50.9 46 31 
Thoriya 54.1 48.4 53.8 44 42 

Yosra 56.7 49.5 102.2 42 44 
Roma.local 42.4 40 43 43 28 
Roma.VF 39.1 37.6 40.9 49 18 
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Year 2 Advanced Trial – Rufisque, Senegal 

 

 

Variety Sev1 Sev2 Sev3 Total Yield 
Marketable 

Yield 

Roma.VF* 1.3 2.8 3.7 55.9a 38.4a 

Ponchita 0.0 0.0 0.0 33.1ab 26.4ab 

TY.75* 0.0 0.0 0.0 44.9ab 24.5ab 

Realeza 0.0 0.0 0.0 38.4ab 24.1ab 

Atak 0.0 0.0 0.0 38.0ab 24.0ab 

Yosra 0.0 0.0 0.0 36.6ab 23.6ab 

FTC.6236 0.0 0.0 0.0 36.1ab 22.3ab 

Chenoa 0.0 0.0 0.0 31.0b 21.1b 

Industry.DR.10403 0.0 0.0 0.0 34.6ab 18.6b 

Lety.F1 0.0 0.0 0.0 36.4ab 18.6b 

Bybal 0.0 0.0 0.0 35.5ab 18.4b 

Thoriya 0.0 0.0 0.0 30.1bc 17.8b 

Gempride 0.0 0.0 0.0 30.9bc 17.1b 

Xina 0.8 2.2 4.0 17.9c 8.3c 
 

* Note – A discrepancy between data and summary tables makes 

measurements for these two varieties potentially invalid   

 

 

 

Variety Weight (g) Length (mm) Diameter (mm) Fruits Per Plant 
Atak 93.1 41.6 59.0 38.0 

Bybal 117.1 47.7 61.7 24.6 
Chenoa 85.8 45.0 55.6 26.2 
Gempride 66.9 47.5 50.0 81.8 
Industry.DR.10403 72.9 44.9 50.4 41.6 
Lety.F1 112.2 54.9 58.5 105.2 
Ponchita 15.5 26.8 30.2 37.2 

Realeza 90.5 43.1 56.8 68.3 
Roma.VF 115.2 46.4 61.8 66.6 
Thoriya 47.2 56.8 38.0 53.9 
Yosra 52.8 46.5 42.8 28.2 
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Year 2 Advanced Trial – Dapaong, Togo 
 

 

Variety Sev1 Sev2 Sev3 
Total 

YieldNS 

Industry DR 10403 0.0 0.0 0.3 46.0 
Bybal 0.0 0.3 1.3 38.3 
Chenoa 0.0 0.0 0.3 38.1 
Yosra 0.3 0.7 1.1 37.1 
Yassamen TH 99802 0.7 0.8 1.4 35.6 
Thoriya 0.0 0.0 0.7 35.6 
HA 3060 0.0 1.2 1.7 34.9 

Gempride 0.0 1.0 1.3 33.6 
Atak 0.3 0.3 0.3 32.4 
Nirouz TH 99806 0.3 0.3 0.8 32.2 
Cheyenne E448 0.8 0.7 1.4 29.9 
Ponchita 0.0 0.0 0.0 29.4 
Lety F1 0.3 0.7 0.7 22.4 
Roma VF 0.3 1.1 2.0 20.4 
Realeza 0.0 0.0 0.3 20.2 
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Year 3 Multi-Location Trial: Kargui, Benin 
 

 

Variety Sev1 Sev2 Sev3 Total Yield Marketable Yield 

Realeza 0.0 0.1 0.4 31.4a 26.0 

Thoriya 0.0 0.1 0.3 27.5ab 22.7 

Atak 0.0 0.2 0.5 23.4abc 19.7 

Gempride 0.1 0.3 0.5 17.5abc 13.3 

Bybal 0.1 0.3 0.6 16.9abc 13.1 

Yosra 0.1 0.3 0.6 15.3bc 12.3 

Roma VF 0.1 1.7 3.3 11.3c 9.1 
 

 

 

Year 3 Multi-Location Trial: Tombotou, Benin 

 

 

  

Variety Sev1 Sev2 Sev3 Total Yield Marketable Yield 

Atak 
 

0 0.8 13.6 12.1 

Thoriya 
 

0 0.4 10.4 9.3 

Realeza 
 

0 0.4 9.7 8.0 

Gempride 0 1.4 7.8 6.6 

Yosra 
 

0 0.6 7.4 5.6 

Bybal 
 

0 0.5 6.1 4.3 

Roma VF 
 

0 2.8 2.1 1.2 
 

 

  



 

237 

 

Year 3 Multi-Location Trial – Navrongo, Ghana 
 

 

Variety Sev1 Sev2 Sev3 
Total 
Yield 

Marketable 
Yield 

Yosra 0.0 0.4 0.9 44.2a 38.3a 

Bybal 0.0 0.6 1.7 40.9a 32.9b 

Atak 0.0 0.6 1.3 34.1b 26.4c 

Gempride 0.0 1.0 1.8 27.6c 22.4c 

Lety F1 0.0 0.2 0.6 20.6d 17.2d 

Roma VF 0.5 1.5 3.2 9.9e 6.4e 
  

 

 

 

Year 3 Multi-Location Trial – Techimantia, Ghana 
 

 

Variety Sev1 Sev2 Sev3 

Lety F1 0.0 0.2 0.8 

Yosra 0.0 0.6 1.0 

Bybal 0.0 0.8 1.4 

Atak 0.0 1.0 1.7 

Gempride 0.0 1.3 2.0 

Roma VF 0.6 1.7 3.7 
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Year 3 Multi-Location Trial – Djakorba, Mali 
 

 

Variety Sev1 Sev2 Sev3 Total Yield 

Bybal 0 
 

0 1.2 

Gempride 0.1 
 

1.8 0.2 

Atak 0 
 

0 1.1 

HMX 4810 0 
 

0.8 0.6 

Ponchita 0 
 

0 0.7 

Roma VF 0.4 
 

3.7 0.6 
  

 

 

 

Year 3 Multi-Location Trial – Kollo, Niger 

 

 

Variety Total YieldNS Marketable YieldNS 

Bybal 23.9 20.3 

Atak 19.9 17.6 

Ponchita 17.9 16.3 

Yosra 11.9 11.2 

Gempride 7.4 6.4 

Roma VF 6.9 6.2 
  

 

 

 

Year 3 Multi-Location Trial – Birni N’Konni, Niger 

 

 

Variety Total Yield Marketable Yield 

Yosra 58.8a 56.2a 

Ponchita 46.4b 44.3b 

Atak 45.1b 42.2b 

Bybal 44.4b 43.5b 

Gempride 23.8c 21.7c 

Roma VF 15.0c 13.0c 
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Year 3 Multi-Location Trial – Dapaong, Togo 
 

 

Variety Sev1 Sev2 Sev3 
Total 

YieldNS Marketable YieldNS 

Atak 0.7 1.2 2.2 13.3 12.5 
Thoriya 0.7 1.5 2.1 11.9 11.3 
Yosra 0.3 1.2 2.3 9.5 9.1 
Bybal 0.8 1.2 1.7 4.5 4.2 
Gempride 0.6 1.0 2.1 3.9 3.8 
Roma VF 0.8 2.1 2.8 3.9 3.6 
HA 3060 0.8 1.4 1.9 3.2 3.1 

  

 

 

 

Year 3 Multi-Location Trial – Kara, Togo 
 

 

Variety Sev1 Sev2 Sev3 Total Yield Marketable Yield 

Thoriya 0.3 1.4 2.3 28.9a 21.3a 

Gempride 0.5 1.4 2.1 20.3ab 15.7ab 

HA 3060 0.6 1.8 2.9 18.2ab 13.0ab 

Roma VF 0.9 2.4 3.4 13.9b 12.3ab 

Yosra 0.6 1.3 2.7 12.9b 9.8b 

Bybal 0.4 1.7 2.9 10.6b 8.0b 

Atak 0.3 2.0 3.3 10.0b 8.8b 
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Year 2 Preliminary Trial – Kargui, Benin 
 

 

Variety Sev1 Sev2 Sev3 Total Yield Marketable Yield 

FTC 6236 0.0 0.0 0.0 39.5 39.1 

Llanero 0.0 0.0 0.0 37.3 36.7 

HA 3060 0.0 0.0 0.0 32.6 32.2 

HA 3074 0.0 2.0 3.0 32.1 31.5 

Bwth CO12 0.0 0.0 0.0 31.7 31.3 

HMX 4810 0.0 0.0 0.0 31.5 30.9 

BWTH CO03 0.0 0.0 0.0 30.3 29.9 

Industry DR 10401 0.0 0.0 0.0 29.8 29.3 

F1 641 0.0 0.0 0.0 29.5 29.0 

HA 3019 0.0 0.0 0.0 28.3 28.0 

Porfyra F1 0.0 0.0 0.0 27.1 26.6 

NUN 5025 TO 0.0 0.0 0.0 26.0 25.6 

MT 158 0.0 0.0 0.0 26.0 25.7 

Hamoud Mumyes 0.0 0.0 0.0 25.2 24.8 

DRW 7215 F1 0.0 0.0 0.0 25.0 24.7 

F1 Savana 0.0 0.0 0.0 24.9 24.6 

Gem Pear 0.0 0.0 0.0 24.7 24.3 

Dennolino F1 0.0 0.0 0.0 24.6 24.2 

F1 1494 0.0 0.0 0.0 24.5 24.3 

CLN 2545B 0.0 0.0 0.0 24.5 23.8 

Nirouz TH 99806 0.0 0.0 0.0 23.3 22.8 

Bwth CO17 0.0 0.0 0.0 23.3 22.7 

Espadilha 0.0 0.0 0.0 23.2 22.8 

Aegean 0.0 0.0 0.0 23.0 22.7 

Setcopa 0.0 0.0 0.0 22.9 22.6 

Athyla F1 0.0 0.0 0.0 22.5 22.1 

Gem Pack 0.0 1.5 3.0 22.2 21.9 

TY 75 0.0 0.0 0.0 22.0 21.6 

PS 43316 0.0 0.0 0.0 21.3 20.9 

F1 Veuona 483 0.0 0.5 2.2 21.3 20.9 

Mrutunjanya 0.0 0.2 3.0 20.9 20.3 

F1 Floradida 495 0.0 2.0 2.0 20.7 20.0 

Sensei 0.0 0.0 0.0 19.5 19.1 

Valor F1 0.0 2.0 3.0 19.5 19.0 

Roma VF 1.0 2.0 3.5 10.0 9.9 
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Year 2 Preliminary Trial – Kou Valley, Burkina Faso 
 

 

Variety Sev1 Sev2 Sev3 Total Yield Marketable Yield 

Aegean 0.0 0.4 2.3 50.2 50.0 

F1 Savana 0.1 0.5 2.3 20.1 18.8 

Gem Pear 0.1 1.6 2.8 11.9 9.8 

Sensei 0.0 0.0 1.4 11.8 11.0 

F1 Floradida 495 0.1 1.8 3.0 10.3 10.0 

Setcopa 0.2 0.4 2.3 9.2 8.1 

Espadilha 0.0 0.7 2.8 9.0 7.8 

Mrutunjanya 0.4 2.3 3.0 9.0 7.7 

Nirouz TH 99806 0.3 1.1 2.8 7.7 6.6 

F1 1494 0.0 0.0 1.3 7.6 6.8 

HA 3019 0.0 0.8 2.7 7.2 6.7 

Dennolino F1 0.0 0.4 1.3 6.1 5.2 

HA 3074 0.1 0.5 2.8 5.7 5.2 

F1 Veuona 483 0.0 2.0 3.0 5.0 4.6 

Hamoud Mumyes 0.0 0.3 2.7 4.9 4.3 

Valor F1 0.0 0.3 2.9 4.6 4.4 

Nun 5025 TO 0.0 0.0 0.9 4.4 4.2 

Industry DR 10401 0.0 1.2 2.9 3.7 2.9 

MT 158 0.1 1.1 2.9 3.6 3.0 

BWTH CO12 0.2 2.5 3.4 3.4 2.8 

Gem Pack 0.1 2.0 3.0 3.2 2.3 

Porfyra F1 0.0 0.1 2.2 3.0 2.9 

DRW 7215 F1 0.3 0.3 1.4 2.9 2.5 

Athyla F1 0.0 0.3 2.7 2.6 2.1 

F1 641 0.0 0.4 3.0 2.5 2.4 

Roma VF 0.2 3.0 4.0 1.9 1.5 

Llanero 0.0 1.5 3.0 1.5 1.4 

BWTH CO03 0.2 1.1 3.0 1.3 1.3 

BWTH CO17 0.5 0.0 3.5 1.3 1.1 
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Year 2 Preliminary Trial – Navrongo, Ghana 
 

 

Variety Sev1 Sev2 

Industry DR 10401 0.3 1.4 

Dennolino F1 0.3 1.5 

DRW 7215 F1 0.2 1.5 

F1 1494 0.4 2.0 

F1 Savana 0.7 2.0 

Gem Pack 1.5 2.0 

Gem Pear 1.3 2.3 

Sensei 0.1 2.4 

BWTH CO12 1.4 2.5 

F1 641 0.8 2.5 

Mrutunjanya 0.4 2.5 

Athyla F1 1.7 2.6 

BWTH CO03 1.6 2.6 

F1 Veuona 483 1.5 2.6 

HA 3074 1.5 2.7 

NUN 5025 TO 0.5 2.7 

Roma VF (local Ghana) 1.5 2.7 

Valor F1 1.1 2.7 

BWTH CO17 1.2 2.8 

Hamoud Mumyes 1.3 2.8 

HA 3019 1.5 2.9 

Llanero 0.9 2.9 

Aegean 1.3 3.0 

F1 Floradida 495 1.4 3.0 

MT 5025 TO 1.2 3.0 

Nirouz TH 99806 0.7 3.1 

Setcopa 0.5 3.4 

Espadilha 0.8 3.5 

Porfyra F1 1.2 3.5 

Roma VF 1.5 3.6 
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Year 2 Preliminary Trial – Baguineda, Mali 
 

 

Variety Sev1 Sev2 Sev3 Total Yield Marketable Yield 

Aegean 0.0 0.1 0.8 3.4 3.3 

Athyla F1 0.0 0.0 0.7 10.4 10.2 

BWTH CO03 0.3 0.9 1.3 15.0 14.2 

BWTH CO17 1.0 3.0 3.5 
  Dennolino F1 0.0 0.1 0.2 7.0 7.0 

DRW 7215 F1 0.1 0.2 0.7 12.2 11.3 

Espadilha 0.0 0.0 0.1 10.5 10.3 

F1 1494 0.0 0.0 0.0 5.9 5.8 

F1 641 0.5 0.8 1.9 27.6 21.6 

F1 Floradida 495 0.0 0.0 0.2 12.4 9.8 

F1 Savana 0.0 0.0 0.0 33.6 32.3 

F1 Veuona 483 0.2 1.0 2.3 15.0 11.9 

Favi 9 0.3 0.3 1.7 11.3 9.1 

Gem pack 1.1 2.4 3.0 21.3 16.5 

Gem pear 0.1 0.6 3.1 12.5 8.4 

HA 3019 0.1 0.3 1.2 3.4 2.8 

HA 3074 0.1 0.3 1.4 10.8 9.7 

Industry DR 10401 0.2 0.7 2.4 18.1 17.8 

Llanero 0.0 0.0 3.0 
  Mrutunjanya 1.0 1.2 2.3 4.1 3.7 

MT 158 0.5 1.0 1.0 
  Nirouz TH 99806 0.2 1.0 3.0 2.1 1.8 

Nun 5025 TO 0.2 0.2 1.8 26.4 22.3 

Porfyra F1 0.1 0.1 0.2 8.3 8.2 

Roma VF 1.1 3.0 4.0 9.8 9.7 

Sensei 0.0 0.0 0.0 
  Setcopa 0.1 0.2 0.8 24.7 24.5 

Valor F1 0.0 0.8 2.4 22.8 18.3 
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Year 2 Preliminary Trial – Samanko, Mali 
 

 

Variety Sev1 Sev2 Sev3 Total Yield Marketable Yield 

HA 3019 
 

0.4 1.3 49.4 26.5 

CLN 3074 
 

0.0 0.7 49.2 27.0 

CLN 2768-31-18-6-5 
 

0.3 1.3 47.8 25.7 

CLN 3069 
 

1.7 2.3 47.5 22.7 

Porfyra F1 
 

0.3 1.2 46.7 30.2 

CLN 3076 
 

0.3 1.3 46.4 33.3 

CLN 2777-168-27-2-7-17 
 

1.2 2.2 46.3 27.2 

CLN 3077 
 

0.1 1.4 45.5 34.4 

Llanero 
 

0.3 2.0 44.9 25.9 

CLN 2768-69-23-30-30-27 
 

0.9 1.8 43.9 30.5 

CLN 3022 
 

0.3 1.7 43.1 33.7 

CLN 3078 
 

0.1 1.1 42.6 30.3 

BWTH CO17 
 

1.4 1.5 41.1 30.9 

FLA 060825-8 
 

1.0 1.0 41.0 31.1 

Valor F1 
 

0.8 2.0 39.4 23.2 

CLN 3024 
 

0.6 1.1 39.1 25.0 

BWTH CO12 
 

2.4 2.9 38.7 29.0 

Mrutunjanya 
 

0.3 1.6 38.4 28.9 

HA 3074 
 

1.0 1.4 37.5 23.2 

BWTH CO03 
 

1.1 1.4 37.4 14.4 

Setcopa 
 

0.0 0.0 37.3 27.4 

DRW 7215 F1 
 

0.2 0.7 36.4 31.5 

Industry DR 10401 
 

0.3 1.4 36.3 22.5 

Roma VF 
 

2.1 3.2 36.0 22.7 

CLN 3048 
 

0.5 1.6 35.1 21.0 

CLN 2777-168-27-2-15 
 

1.0 1.0 34.6 19.5 

FLA 060702-Y9 
 

0.8 1.7 34.3 21.5 

Gem Pear 
 

1.5 1.6 34.1 6.4 

NUN 5025 TO 
 

1.0 1.5 34.0 14.3 

FLA 024525-9 
 

0.3 1.0 33.8 19.3 

FLA 000595-2 
 

0.0 1.5 33.8 23.3 

Aegean 
 

0.0 1.0 32.9 14.1 

CLN 2768-31-18-6-7 
 

1.6 1.8 32.5 25.8 

F1 Veuona 483 
 

0.9 2.8 32.1 7.3 

CLN 2777-168-27-2-7-8 
 

0.3 1.2 32.0 24.2 
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Variety Sev1 Sev2 Sev3 Total Yield Marketable Yield 
Gem Pack 

 
2.2 2.6 30.8 9.1 

F1 641 
 

0.6 1.4 30.6 9.3 
F1 Savana 

 
0.0 1.8 30.6 8.0 

CLN 3021 
 

0.9 2.1 29.1 13.4 
Espadilha 

 
0.0 0.5 29.0 21.7 

F1 1494 
 

0.0 0.5 28.2 18.8 
Nirouz TH 99806 

 
0.7 0.8 28.2 13.2 

F1 Floradida 495 
 

0.1 0.9 28.1 5.0 
Hamoud Mumyes 

 
0.0 0.5 27.4 19.8 

CLN 2460E 
 

0.3 1.8 27.1 20.2 

MT 158 
 

1.4 2.4 27.0 5.5 
Fla  024652-Y1 (GC 
173) 

 
0.0 1.5 26.7 16.9 

FLA 060856-YSBK 
 

0.6 0.2 26.1 10.3 
Fla 060887-Y10 

 
0.2 0.8 24.2 19.5 

Sensei 
 

0.4 0.5 24.0 17.8 
Dennolino F1 

 
0.0 0.1 23.0 17.0 

Athyla F1 
 

0.0 0.0 22.2 12.3 
CLN 2764-99-13-18-
10-15 

 
0.8 1.8 20.4 14.8 
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Year 2 Preliminary Trial – Birni N’Konni, Niger 

 

Variety Total Yield 
F1 1494 49.0 
Roma VF 48.4 
Athyla F1 48.0 
Nadira 46.5 
Industry Dr 10401 41.9 
Aegean 41.1 
Hamoud Mumyes 38.5 

Cheyenne E448 36.8 
Bwth Co12 35.8 

Drw 7215 F1 35.0 
F1 Veuona 483 35.0 
Espadilha 34.6 
Sensei 34.5 
Roma VF (local Niger) 34.2 
Bwth Co17 33.2 
Nirouz Th 99806 31.8 
Dennolino F1 31.4 
F1 Savana 30.5 

Valor F1 30.4 
Mt 158 29.9 
F1 641 29.2 
Setcopa 28.5 
Nun 5025 To 23.9 
F1 Floradida 495 21.0 
Llanero 20.4 
Ftc 6236 18.4 
Gem Pear 17.7 
TY 75 16.3 
Gem Pack 16.0 
Ha 3074 15.9 

Porfyra F1 15.9 
BWTH CO03 11.2 
Yassamen Th 99802 9.8 
Ha 3019 8.3 
Hmx 4810 8.0 
Ha 3060 6.1 
Mrutunjanya 0.8 
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Year 2 Preliminary Trial – Rufisque, Senegal 

 

Variety Sev1 Sev2 Sev3 
Total 
Yield 

Marketable 
Yield 

HMX 4810 0.0 0.3 0.3 65.9 38.4 
FTC 7088 0.0 0.1 0.0 62.8 26.1 
Industry DR 10401 0.0 0.2 0.3 56.9 31.7 
HA 3060 0.0 0.1 0.1 53.8 15.7 
Sensei 0.0 0.0 0.0 52.3 34.8 
Valor F1 0.0 0.2 0.3 51.6 27.2 

FTC 6231 0.0 0.5 0.6 51.4 31.0 
Sasya 0202 F1 0.3 0.9 1.3 51.2 36.2 

Gem Pack 0.1 0.1 0.5 49.3 23.9 
Nirouz TH 99806 0.0 0.1 0.1 47.7 34.8 
Gem Pear 0.0 0.2 0.5 47.3 21.7 
Mrutunjanya 0.1 0.7 0.8 46.1 38.1 
F1 Veuona 483 0.0 0.2 0.4 44.3 21.4 
Porfyra F1 0.0 0.0 0.0 44.1 23.4 
Favi 9 0.0 0.2 0.3 44.0 24.2 
Yassamen TH 99802 0.0 0.0 0.0 43.8 26.0 
Roma VF 0.9 2.8 2.9 40.6 29.3 
Nadira 0.0 0.0 0.1 40.5 30.2 

NUN 5025 TO 0.0 0.0 0.1 40.1 13.8 
DRW 7215 F1 0.0 0.0 0.0 39.8 29.1 
BWTH CO17 0.6 1.9 2.1 39.7 26.2 
HA 3074 0.0 0.0 0.0 39.6 21.5 
F1 Floradida 495 0.0 0.0 0.0 39.0 21.1 
F1 1494 0.0 0.0 0.0 38.9 31.0 
Athyla F1 0.0 0.0 0.0 38.9 20.0 
F1 641 0.0 0.3 0.9 38.8 16.2 
Llanero 0.0 0.0 0.0 34.8 20.3 
HA 3019 0.0 0.0 0.0 31.0 13.6 
BWTH CO12 0.5 2.0 2.4 30.0 16.9 

MT 158 0.0 0.0 0.0 29.8 15.9 
BWTH CO03 0.7 1.4 1.9 29.7 16.0 
F1 Savana 0.0 0.0 0.0 27.6 20.1 
Dennolino F1 0.0 0.0 0.0 21.5 16.1 
Aegean 0.0 0.0 0.0 18.2 10.1 
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Variety Sev1 Sev2 Sev3 
Total 
Yield 

Marketable 
Yield 

Setcopa 0.0 0.0 0.0 17.8 13.8 
XINA 0.5 1.5 2.1 14.6 11.9 
Hamoud Mumyes 0.0 0.0 0.0 13.7 10.4 
Espadilha 0.0 0.0 0.0 10.6 7.2 
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Year 2 Preliminary Trial – Dapaong, Togo 

 

Variety Sev1 Sev2 Sev3 
Total 
Yield 

Marketable 
Yield 

Industry DR 10401 0.0 0.0 1.0 31.9 29.7 
DRW 7215 F1 1.0 1.0 1.0 26.1 24.6 
Sensei 0.0 0.0 1.0 26.0 25.8 
Athyla F1 1.0 1.0 1.7 23.2 20.4 
BWTH CO03 1.5 1.7 2.0 22.5 22.2 
BWTH CO17 1.0 1.0 1.0 22.1 17.7 

Mrutunjanya 0.0 1.0 1.5 21.6 20.6 
F1 1494 0.0 0.0 2.0 21.5 20.0 

BWTH CO12 1.0 1.0 1.0 21.0 19.2 
Aegean 1.0 2.3 1.8 19.0 15.3 
F1 Floradida 495 1.1 1.2 1.6 18.3 17.7 
Porfyra F1 0.0 1.0 1.0 18.2 16.8 
Espadilha 0.0 0.0 0.0 17.3 15.7 
Nirouz TH 99806 0.0 1.0 1.0 17.0 15.7 
F1 Savana 0.0 1.0 1.5 16.0 15.3 
F1 Veuona 483 1.1 1.3 1.3 16.0 13.7 
Roma VF 0.5 1.2 1.4 15.9 11.5 
Setcopa 0.0 0.0 0.0 15.5 13.4 

F1 641 1.0 1.0 1.0 14.2 14.0 
Gem Pack 0.0 1.1 1.1 14.1 13.4 
Valor F1 0.0 0.0 1.0 14.0 10.3 
HA 3019 0.0 1.6 1.1 13.8 12.7 
HA 3074 1.0 1.0 1.5 13.7 12.5 
Dennolino F1 0.0 0.0 0.0 13.2 12.2 
Gem Pear 1.0 1.2 1.1 11.9 11.3 
NUN 5025 TO 0.0 1.0 1.4 11.0 9.8 
MT 158 0.0 1.2 1.1 10.0 9.1 
Llanero 1.0 1.0 1.0 9.8 8.8 
Hamoud Mumyes 0.0 0.0 0.0 9.7 8.2 
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Year 3 Advanced Trial – Kargui, Benin 

 

Variety Sev1 Sev2 Sev3 
Total 

YieldNS 
Marketable 

Yield 

Setcopa 0.1 0.3 0.7 16.4 11.9a 

Sensei 0.0 0.3 0.6 16.4 11.4a 

Athyla F1 0.1 0.3 0.6 16.2 10.2ab 

Dennolino F1 0.1 0.4 0.6 15.5 8.7ab 

Roma VF 0.4 1.8 3.3 17.2 8.2ab 

Espadilha 0.1 0.6 1.2 10.3 5.8b 

Porfyra F1 0.1 0.4 0.9 9.1 4.9b 
 

 

 

Variety 
Weight 

(g) Length (mm) Diam (mm) Lobes 

Porfyra F1 108.1a 52.1b 57.8a 3.9 

Athyla F1 85.4ab 45.5bc 57.3a 4.3 

Setcopa 82.6ab 46.0bc 56.0a 4.3 

Dennolino F1 70.9bc 45.6bc 49.9ab 2.6 

Espadilha 70.3bc 44.7bc 53.7ab 3.9 

Sensei 62.2bc 40.6c 46.9b 2.7 

Roma VF 47.4c 65.3a 37.3c 2.5 
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Year 3 Advanced Trial – Samanko, Mali 

 

Variety Sev1 Sev2 Sev3 Total Yield Marketable Yield 

Dennolino F1 0.0 0.0 0.0 29.5a 25.0a 

Setcopa 0.0 0.0 0.0 29.4a 20.5ab 

Sensei 0.0 0.0 0.0 29.1a 22.4ab 

Espadilha 0.0 0.0 0.0 25.3ab 16.6abc 

Porfyra F1 0.0 0.0 0.0 21.5ab 12.8bc 

Roma VF 0.4 1.8 3.3 15.0bc 6.7c 
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Year 3 Advanced Trial – Dapaong, Togo 

 

Variety Sev1 Sev2 Sev3 
Total 
Yield Marketable Yield 

Setcopa 0.9 1.1 1.8 4.2a 4.2a 

Dennolino F1 1.0 1.2 1.7 3.0ab 3.0ab 

Sensei 0.9 1.1 1.7 2.4ab 2.4ab 

Espadilha 1.0 1.1 1.8 2.2ab 2.0ab 

Athyla F1 1.0 1.1 1.6 2.0ab 2.0ab 

Roma VF 1.1 2.1 2.8 1.8ab 1.8ab 

Porfyra F1 1.2 1.8 2.2 1.0b 1.0b 
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APPENDIX 3 

GPS COORDINATES OF TRIAL LOCATIONS 

 

Guene, Benin:  11.9323 N  3.23347 E 

Tomboutou, Benin:  11.8751 N  3.27585 E 

Kou Valley, Burkina Faso:  11.2294 N  4.16361 W 

Kumasi, Ghana:  6.68025 N  1.66864 W 

Navrongo, Ghana:  10.836 N  1.09864 W 

Techimantia, Ghana:  7.21949 N  2.0156 W 

Djakorba, Mali:  13.5781 N  5.91255 W 

Niono, Mali:  14.2793 N   5.95072 W 

Samanko, Mali:  12.5309 N  8.07708 W 

Sibby, Mali:  12.3518 N  8.38469 W 

Sotuba, Mali:  12.6525 N  7.926 W 

Birni N'Konni, Niger:  13.8241 N  5.28861 E 

Rufisque, Senegal:  14.7771 N  17.2239 W 

Dapaong, Togo:  10.8787 N  0.160417 E 

Kara, Togo:  9.3631 N  1.32491 E 
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