PHROURIA LOKRIKA:
ASPECTS OF MILITARY PRESENCE IN HELLENISTIC OPOINTIAN LOKRIS

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
In Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

by
Emil Hristov Nankov
May 2009
This dissertation evaluates the significance of fortification building in Opountian Lokris as a testimony to specific strategic demands made by the Successors of Alexander III of Macedon on her territory. I argue that there is a link between large-scale movements of Macedonian armies, installment of royal garrisons in Greek cities and the construction of artillery fortifications on a trans-regional scale. I examine this newly-emerging reality by looking at military power as a productive force, one that was transmitted horizontally through complex networks, and on different levels. Chapter One, *Geography and routes*, examines the various ways trans-regional traffic by land and by sea impacted the local landscape. Based on literary, epigraphic and archaeological data, I contextualize the available evidence for routes and types of travel through a region that continuously served as a land of passage and a port of call for Macedonian military shipping. Chapter Two, *Towards the military history of a terra incognita*, traces the military developments based on a critical survey of the pertinent literary and epigraphic sources. Life after Alexander demanded new social strategies, since many communities had to put up with the presence of Macedonian garrisons. Chapter Three, *A Gazetteer of sites*, forms the empirical base of the dissertation. A site-by-site diachronic survey of the fortifications known from topographical studies and archaeological excavation helps measure the amount of change witnessed during the Hellenistic period. Chapter Four, *Mapping urban phouria*, reexamines the issue of function by assembling the available evidence for
occupation within the fortified area. The impact of Macedonian garrisons is surprisingly substantial, as reflected in the emergence of artillery fortifications, modern urban planning, new burial practices and foreign religious cults. Chapter Five, *Phrouria Lokrika: construction, chronology and function*, inquires into who benefitted from their construction. An attempt is also made to reconstruct and quantify the various stages of building. Comparanda from other regions of mainland Greece, including the Black sea region, deepen our understanding of what has been hitherto perceived as a strictly regional enterprise.
BIOGRAPHICAL SKETCH

Emil Hristov Nankov was born on October 21, 1974 in Sofia, Bulgaria. In 1999, he completed a five-year program (equivalent to American BA plus MA) in Classical archaeology from the Department of Archaeology at Sofia University. He enrolled as a Ph.D. student at Cornell University in the fall of 2002. He has done archaeological fieldwork and excavations in Bulgaria, Greece and Italy. Since the summer of 2003, he has been associated with the Cornell Halai and East Lokris Project. During 2005-2007, he was a School Fellow of the American School of Classical Studies at Athens where for his dissertation project he was also awarded the Eugene Vanderpool Advanced fellowship. In the spring of 2007, he co-organized a School trip to archaeological sites in Bulgaria.

He has been happily married to Valeria Bineva with whom he has a lovely daughter, Dara.
На родителите ми
ACKNOWLEDGMENTS

For the completion of this project I have become indebted to a number of people to whom I would like to express my deepest gratitude. My warmest thanks go to Prof. John E. Coleman, who first introduced me to the archaeology of Opountian Lokris and has since constantly supported my decision to pursue this topic as a Ph.D. dissertation, both at Cornell University and in Greece. I also am immensely grateful to the other advisors in my committee; Prof. Andrew Ramage for always reminding me of the importance of being precise and attentive to detail; Prof. Kevin Clinton for inspiring me to study inscriptions with greater care and develop appreciation of their value for the study of ancient history.

My travels in Greece, as a graduate student, were funded by the Cornell Halai and East Lokris Project, Department of Classics, Department of History of Art and Visual Studies, Mario Einaudi Center for International Studies and the Hirsch Foundation. I gladly took the opportunity to spend two years at the American School of Classical Studies at Athens, as a School Fellow (2005/2006) and Eugene Vanderpool Advanced Fellow (2006/2007). The stay in Greece allowed me to visit and study in detail a countless number of archaeological sites, the value of which cannot be overstated, especially by those studying military architecture. In addition, I was able not only to get access to unpublished documentation from the ASCSA archives thanks to the helpful assistance of Natalia Vogeikoff-Brogan, but also to study small finds from Hetty Goldman’s 1911-1935 excavations at Halai, now stored in the Archaeological museum at Thebes. For this work I was granted a permit from the Greek Ministry of Culture thanks to the efforts of ASCSA and the museum’s director, Vassilis Aravantinos. My thanks go to Nikos Liaros, who made my work at the museum much easier and enjoyable. I am grateful to Dr. Fanouria Dakoronia and Dr. Polikseni Bouyia from the 14th Ephoreia of Prehistoric and Classical Antiquities.
from whom I received early encouragement for my work on Lokrian fortifications, as well as to Olga Kyriazi, Filitsa Tileli, Petros Kounouklas and Vlassis Charagliannis from the Archaeological museum at Atalandi for their help when I needed it.

I am grateful to all staff members and volunteers of CHELP for their sincere devotion to archaeology, as well as for creating an intellectually challenging atmosphere during the hot days and cool nights of the summers at Vivos. I thank also Lisa Corkum for teaching me how to create digital maps, Georgos Michalopoulos for showing me around the acropolis of Lcope and Teodor Rokov for taking the time to locate the city wall of Odessos.

On a personal note, I am grateful to my parents, to whom I wholeheartedly dedicate this work, for their love, support and early encouragement to pursue my interest in archaeology. But, above all, I thank Valeria and our daughter, Dara, for being there and constantly reminding me that life is beautiful.
TABLE OF CONTENTS

Biographical sketch .. iii
Dedication .. iv
Acknowledgements ... v
Table of contents ... vii
List of figures .. xi
List of tables ... xvi
List of maps ... xvii
List of abbreviations ... xviii
List of editorial symbols ... xx
Preface .. xxi

Introduction ... 1

Chapter 1: Geography and routes .. 9
 1.1: Study area .. 9
 1.1.1: Landscape and boundaries .. 11
 2.1: Communications .. 15
 2.1.1: Trans-regional routes ... 16
 2.1.2: Regional routes .. 30
 2.1.3: Summary .. 32
 2.1.4: Sea route .. 35
 2.1.4.1: Ports of call .. 36
 2.1.4.2: Factors influencing sea travel ... 44
 2.1.4.3: An example .. 53
 2.1.5: Trade routes and chemins militaires ... 55
 2.1.5.1: Commercial ports ... 58
 2.1.5.2: Military harbors .. 66
 2.1.6: Summary .. 68

Chapter 2: Towards the military history of a terra incognita .. 71
 2.1: Fighting at home and abroad .. 71
2.1.1: The Persian Wars ... 72
2.1.2: The Peloponnesian Wars ... 77
2.1.3: The Corinthian War .. 84
2.1.4: The Battle of Tegyra .. 86
2.1.5: The Sacred Wars ... 89
2.1.6: Alexander’s campaign and the Lamian War 90
2.1.7: In the Shadow of the Successors ... 91
2.1.8: The Gallic invasion ... 100
2.1.9: The Carian expedition of Antigonus III Doson 101
2.1.10: The Garrisons of Philip V ... 104
2.1.11: The expedition of Herodoros to Atalante island 108
2.1.12: The Third Macedonian War .. 110
2.1.13: The Achaean War ... 114
2.1.14: The First Mithridatic War .. 114
2.1.15: The Romans ... 120
2.2: Observations .. 120
2.3: Lokrian epigraphy: a brief overview 124
2.4: Macedonian garrisons in Opountian Lokris 125
 2.4.1: A Boeotian dedication in honor of Peisis from Delphi 126
 2.4.2: The diagramma for a garrison of Philip V from Kynos 136
 2.4.3: The transfer of Sarapis and Isis from Thessalonike to Opous 150
2.5: Lokrians abroad ... 158
 2.5.1: Military lists .. 159
 2.5.2: Tombstones .. 164
2.6: Summary .. 165

Chapter 3: A Gazetteer of sites .. 170

3.1: The Sites .. 173
 3.1.1: Alope/Ayia Aikaterini ... 173
 3.1.2: Palaiokastra Livanaton,Villovo .. 183
 3.1.3: Kynos/Pyrgos, Livanates ... 188
 3.1.4: Prophitis Elias, Megaplatanos 195
<table>
<thead>
<tr>
<th>3.1.5: Opous/Atalandi</th>
<th>199</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.6: Oion/Atalante island</td>
<td>206</td>
</tr>
<tr>
<td>3.1.7: Kokkinovrachos, Kyparissi</td>
<td>214</td>
</tr>
<tr>
<td>3.1.8: Kastraki, Kyparissi</td>
<td>219</td>
</tr>
<tr>
<td>3.1.9: Korseia/Neochori</td>
<td>222</td>
</tr>
<tr>
<td>3.1.10: Palaiopyrgos, Kolaka</td>
<td>235</td>
</tr>
<tr>
<td>3.1.11: Palaiokastro, Proskynas</td>
<td>239</td>
</tr>
<tr>
<td>3.1.12: Boumeliteia/Chiliadou</td>
<td>241</td>
</tr>
<tr>
<td>3.1.13: Mikrovivos</td>
<td>247</td>
</tr>
<tr>
<td>3.1.14: Mikrovivos II</td>
<td>250</td>
</tr>
<tr>
<td>3.1.15: Halai/Ayios Ioannis Theologos</td>
<td>252</td>
</tr>
<tr>
<td>3.1.16: Larymna/Kastri, Larmes</td>
<td>277</td>
</tr>
<tr>
<td>3.1.17: Anchoe/Pazaraki</td>
<td>288</td>
</tr>
</tbody>
</table>

Chapter 4: Mapping urban phrouria

4.1: Occupation 297
4.2: Internal buildings 299
 4.2.1: Halai 300
 4.2.2: Opous 320
 4.2.3: Kynos 326
 4.2.4: Alope 329
 4.2.5: Towers in the countryside 331
4.3: Summary 343
4.4: Burial practices 347
 4.4.1: Halai 347
 4.4.2: Palaiokasta Livanaton, Vilovo 367
 4.4.3: Opous 380
 4.4.4: Alope 382
 4.4.5: Korseia 383
 4.4.6: Other necropolises 385
4.5: Summary 388

Chapter 5: Phrouria Lokrika: construction, chronology and function

391
5.1: Building materials ... 393
5.2: Quarries ... 396
5.3: Transport ... 408
5.4: Cost .. 410
5.5: Construction techniques ... 412
 5.5.1: Masonry .. 412
 5.5.2: Surface treatment and joints .. 416
 5.5.3: Curtains ... 424
 5.5.4: Abbreviated curtains ... 429
 5.5.5: Wallwalks ... 433
 5.5.6: Roofed curtains .. 440
 5.5.7: Towers ... 443
 5.5.8: Gates ... 456
5.6: Summary ... 461
5.7: Chronology ... 464
5.8: Function .. 467
5.9: Comparanda ... 483
 5.9.1: Anthedon ... 483
 5.9.2: Delion .. 488
 5.9.3: Akraiphia .. 491
 5.9.4: Haliartos .. 494
 5.9.5: Eutresis .. 495
 5.9.6: Oinoe .. 498
 5.9.7: Skyros .. 503
 5.9.8: Echinos .. 503
 5.9.9: Megara .. 507
 5.9.10: Lechaion ... 510
 5.9.11: Sounion ... 513
 5.9.12: Eretria .. 516
 5.9.13: Odessos ... 519
 5.9.14: Mesambria .. 522

Conclusions .. 526

Bibliography ... 535
LIST OF FIGURES

1.1: Atalandi, Kokkinovrachos hill (Opous) and Gaidaros island 20
1.2: The route of Philip V during his march from Thessaly to the Peloponnese 25
1.3: The pass near Pyrgos (Tegyra) 28
1.4: View from Alope looking northwest 38
1.5: View from Kynos looking northwest 39
1.6: The valley and bay of Vivos looking south 40
1.7: The bay of Mikrovivos looking north 41
1.8: The bay of Theologos and Aetolyma peninsula looking northeast 41
1.9: Keratopyrgos; medieval tower; view from north 42
1.10: Bay of Vichada/Lekouna looking southeast 43
1.11: Bay of Larmes looking south 44
1.12: Direction of currents in the Aegean 49
1.13: Boeotian harbors associated with the naval program of Epameinondas 67
1.1: Marble base for a bronze statue inscribed with an epigram of Peisis 126
2.2: The diagramma for the service of a garrison of Philip V from Chalcis 139
2.4: Marble statues of a Macedonian ruler identified with Cassander 147
2.5: The Transfer of Sarapis and Isis in Opous from the Sarapeion at Thessalonike 150
3.1: View of the acropolis at Alope looking southwest 174
3.2: Plan of the acropolis of Alope 176
3.3: Ashlar masonry from the acropolis of Alope 177
3.4: Polygonal masonry from the acropolis of Alope 178
3.5: The north wall of Alope exposed through salvage excavation looking east 179
3.6: Sate plan of the north wall of Alope 179
3.7: Reused ashlars from the Hellenistic wall as door jambs in the late Roman basilica 182
3.8: Reused ashlar from the Hellenistic wall in the late Roman basilica 182
3.9: Exposed wall from Palaiokastra, Villovo looking north 184
3.10: A partially preserved tower from Palaiokastra, Villovo looking south 186
3.11: Abbreviated wall at Palaiokastra, Villovo looking northwest 187
3.12: Axial gate (?) at Palaiokastra, Villovo looking northeast 188
3.13: Palaiopyrgos hill identified with Kynos looking east 189
3.14: Reused ashlars from the Hellenistic wall in a medieval tower at Kynos 190
3.15: Oldfather’s sketch, top left, plan of architectural remains 192
3.16: Jog on the Hellenistic wall at Kynos 193
3.17: Hellenistic wall at Kynos 193
3.18: Prophitis Elias hill near Megaplatanos looking northeast 196
3.19: Plan of the rubble circuit on Prophitis Elias hill 197
3.20: Fortified complex at Megaplatanos 198
3.21: The town of Atalandi; a general view from Prophitis Elias 200
3.22: The acropolis of Atalandi with sections from the Hellenistic walls of Opous 202
3.23: State plan of the north Hellenistic wall at the locality “Makedonika” 203
3.24: A detail of Fig. 3.23; note the absence of inner wall in the curtain 203

xi
3.25: A section from a polygonal wall and a tower excavated in Kiriakopoulou plot 205
3.26: Atalante island looking northeast 207
3.27: Sites affected by the earthquake of 426 BC 213
3.28: Kokkinovrachos hill looking south 215
3.29: Plan of the polygonal circuit at Kokkinovrachos hill 216
3.30: Polygonal wall at Kokkinovrachos hill looking south 216
3.31: Bird view from Kokkinovrachos hill looking northwest 219
3.32: The oval-shaped hill of Kastraki flanked by the road Atalandi-Kolaka 220
3.33: Overgrown remains of the fortification wall at Kastraki 221
3.34: Kolaka uplands from the plain of Atalandi looking south 222
3.35: The medieval castle at Gardinitza looking north 224
3.36: Plan of the circuit at Korseia 224
3.37: Bird view from the Hellenistic tower at Korseia 226
3.38: Hellenistic tower at Korseia looking east 227
3.39: Hellenistic tower at Korseia; cuttings for joists 228
3.40: Polygonal wall of limestone and Hellenistic tower of breccia 229
3.41: The joint between the east wall of limestone and the tower of breccia 229
3.42: Ashlar masonry from Tower 2 230
3.43: Ashlar masonry from Tower 1 231
3.44: Ashlar masonry from the south wall 232
3.45: Korseia; axial gate of polygonal masonry looking east 233
3.46: Korseia; rectangular enclosure of polygonal masonry looking east 234
3.47: The site of Palaiopyrgos 235
3.48: Palaiopyrgos; broken ashlar block 236
3.49: Church of Ayios Nikolaos 237
3.50: Church of Ayios Nikolaos 237
3.51: View from Palaiopyrgos to Korseia looking northeast 238
3.52: Plan of the circuit at Proskynas 239
3.53: A megalithic block from the curtain at Proskynas 240
3.54: Church of Ayios Georgios and the hill of Chliadou 242
3.55: Chliadou; ashlar block of conglomerate 242
3.56: Fortified complex at Chliadou looking north 244
3.57: A detail of Fig. 3.56; note a possible mason’s mark Γ or Π 245
3.58: Ashlar masonry from a Hellenistic tower in the Macedonian fort 246
3.59: Ashlar masonry from the Hellenistic city wall at Corinth 246
3.60: Fortified complex at Mikrovivos looking northwest 248
3.61: Watchtower at Mikrovivos looking west 248
3.62: Fortified complex at Mikrovivos, state plan 249
3.63: Watchtower at Mikrovivos II looking north 251
3.64: Watchtower at Mikrovivos II, black painted tiles, summer 2008 252
3.65: Bay of Theologos looking north 254
3.66: Topographic plan of the acropolis and lower town of Halai 258
3.67: Plan of the acropolis of Halai with features documented by CHELP 259
3.68: Halai; the North Gate looking south 261
3.69: Halai; outer wall from the south wall looking west 265
<table>
<thead>
<tr>
<th>Image</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.70</td>
<td>Halai; south wall during Goldman excavations</td>
<td>265</td>
</tr>
<tr>
<td>3.71</td>
<td>Halai; inner wall from the south wall looking east, 2008</td>
<td>266</td>
</tr>
<tr>
<td>3.72</td>
<td>Halai; a balloon photograph of Bastion II</td>
<td>268</td>
</tr>
<tr>
<td>3.73</td>
<td>Halai; Bastion II looking northeast</td>
<td>269</td>
</tr>
<tr>
<td>3.74</td>
<td>Halai; the crosswalls inside Bastion II looking north</td>
<td>269</td>
</tr>
<tr>
<td>3.75</td>
<td>Halai; the inscribed block</td>
<td>272</td>
</tr>
<tr>
<td>3.76</td>
<td>Halai; inscribed letters, kappa and epsilon (KE)</td>
<td>272</td>
</tr>
<tr>
<td>3.77</td>
<td>Halai; scaled drawing of the top surface of the inscribed block</td>
<td>273</td>
</tr>
<tr>
<td>3.78</td>
<td>Bay of Larmes marked with arrow, looking north</td>
<td>278</td>
</tr>
<tr>
<td>3.79</td>
<td>Leake’s sketch of Larymna</td>
<td>279</td>
</tr>
<tr>
<td>3.80</td>
<td>Georgiades’ plan of Larymna</td>
<td>280</td>
</tr>
<tr>
<td>3.81</td>
<td>Georgiades’ plan of Larymna adapted by the German survey</td>
<td>281</td>
</tr>
<tr>
<td>3.82</td>
<td>Acropolis of Larymna</td>
<td>283</td>
</tr>
<tr>
<td>3.83</td>
<td>Larymna; round tower and polygonal curtain</td>
<td>284</td>
</tr>
<tr>
<td>3.84</td>
<td>Larymna; abbreviated wall and Towers A and B</td>
<td>286</td>
</tr>
<tr>
<td>3.85</td>
<td>Larymna; step-like base of Tower C</td>
<td>287</td>
</tr>
<tr>
<td>3.86</td>
<td>Larymna; submerged remains of Towers B, B1, B2 and B3</td>
<td>289</td>
</tr>
<tr>
<td>3.87</td>
<td>View from Pazaraki towards the bay of Larmes</td>
<td>290</td>
</tr>
<tr>
<td>3.88</td>
<td>Cyclopean wall at Pazaraki</td>
<td>291</td>
</tr>
<tr>
<td>3.89</td>
<td>Plan of the acropolis at Pazaraki</td>
<td>292</td>
</tr>
<tr>
<td>3.90</td>
<td>Polygonal wall on the acropolis at Pazaraki looking west</td>
<td>293</td>
</tr>
<tr>
<td>3.91</td>
<td>Wheel-rut at Pazaraki; note the deep cutting in the bedrock</td>
<td>300</td>
</tr>
<tr>
<td>4.1</td>
<td>The North Gate Buildings on the acropolis of Halai</td>
<td>302</td>
</tr>
<tr>
<td>4.2</td>
<td>Black glazed spool saltcellar, 325-295 BC</td>
<td>304</td>
</tr>
<tr>
<td>4.3</td>
<td>Black glazed kantharos, 310-300 BC</td>
<td>306</td>
</tr>
<tr>
<td>4.4</td>
<td>One-handled kantharoi, late fourth century BC</td>
<td>308</td>
</tr>
<tr>
<td>4.5</td>
<td>Moldmade bowl with bands of floral decoration</td>
<td>310</td>
</tr>
<tr>
<td>4.6</td>
<td>Bronze arrowheads from the acropolis of Halai</td>
<td>312</td>
</tr>
<tr>
<td>4.7</td>
<td>Areas C and H with exposed remains</td>
<td>314</td>
</tr>
<tr>
<td>4.8</td>
<td>The Northeast Gate and the Northeast Gate shops</td>
<td>316</td>
</tr>
<tr>
<td>4.9</td>
<td>Unpublished coins from Goldman excavations</td>
<td>318</td>
</tr>
<tr>
<td>4.10</td>
<td>Boeotia, bronze, 196-147 BC (SNG Cop. 179-181)</td>
<td>319</td>
</tr>
<tr>
<td>4.11</td>
<td>Thebes, bronze, 146-27 BC (SNG Cop. 394)</td>
<td>321</td>
</tr>
<tr>
<td>4.12</td>
<td>Sikyon, silver, 323-251 BC (SNG Cop. 91)</td>
<td>323</td>
</tr>
<tr>
<td>4.13</td>
<td>Antigonus Gonatas or Cassander, Macedonia</td>
<td>325</td>
</tr>
<tr>
<td>4.14</td>
<td>Antigonus Gonatas, Macedonia, 277-239 BC</td>
<td>327</td>
</tr>
<tr>
<td>4.15</td>
<td>Circular loomweights from Opous and Halai</td>
<td>329</td>
</tr>
<tr>
<td>4.16</td>
<td>Fortified complex near Sphaka in Phokis</td>
<td>331</td>
</tr>
<tr>
<td>4.17</td>
<td>Beacon sites from Mt. Athos to Mycenae</td>
<td>333</td>
</tr>
<tr>
<td>4.18</td>
<td>Hellenistic graves from the necropolis at Halai</td>
<td>335</td>
</tr>
<tr>
<td>4.19</td>
<td>The south façade and door of a Hellenistic built chamber tomb</td>
<td>337</td>
</tr>
<tr>
<td>4.20</td>
<td>A ground plan of a Hellenistic built chamber tomb</td>
<td>339</td>
</tr>
<tr>
<td>4.21</td>
<td>Macedonian tombs from central Greece</td>
<td>341</td>
</tr>
<tr>
<td>4.22</td>
<td>A map showing the distribution of Macedonian tombs in central Greece</td>
<td>343</td>
</tr>
<tr>
<td>4.23</td>
<td>Macedonian amphorae from the necropolis at Halai</td>
<td>345</td>
</tr>
</tbody>
</table>
4.24: Spatial distribution of Hellenistic graves in the necropolis at Triandaphyllia
4.25: Bronze mirror from the necropolis at Triandaphyllia
4.26: Bronze and silver sprinklers from Triandaphyllia, Potideia and Vergina
4.27: *Pithos* burial immediately outside the north fortification wall at Opous
4.28: Spatial distribution of Hellenistic graves in the necropolis near Korseia
4.29: Sphagia marble relief from a grave stele attributed to Larymna
5.1: Halai; Quarry #1 at the bay of Vivos
5.2: Halai; Quarry #2 at Tou Pethamenou near cape Kerata
5.3: Halai; Quarry #3 on Aetolyma peninsula
5.4: Seaside quarry ca. 2 km northwest of Anthedon looking west
5.5: Detail of Fig. 5.4; note the deep separation trenches
5.6: Quarrying by separation trenches using a pick, *left*; tool, *right*
5.7: Petrographic analysis on samples taken from the harbor works at Anthedon
5.8: Petrographic analysis on samples taken from Halai
5.9: Schematic view of a typical ashlar block
5.10: Drafted margins on Bastion II, *left*, and round tower at Halai, *right*
5.11: Beveled edges on south-east wall at Halai, *left*, and south wall at Kynos, *right*
5.12: Tooled face with chevron pattern on the walls at Palaiokastro Livanaton
5.13: Making drafted margin with a flat chisel and mallet
5.14: Drafting on corner blocks at Korseia and Kynos
5.15: Rectangular cuttings on the upper surface of an ashlar from Tower II-1 at Halai
5.16: A detail of Fig. 5.15
5.17: Similar pair of cuttings on an ashlar block from Kynos
5.18: Rectangular cutting on the upper surface of an ashlar from the Northeast Gate
5.19: A detail of Fig. 5.18; note the absence of a second cutting
5.20: Rectangular cutting on the side surface of an ashlar from Anthedon
5.21: Rectangular cutting near the upper edge of an ashlar from Kynos
5.22: Diagram showing the outer face of the solid base of an *emplekton* tower
5.23: *Emplekton* walls at Akraiaphia, *top*, and Opous, *bottom*
5.24: Abbreviated walls at Halai, Napes, Gela and Larymna, *right*
5.25: Abbreviated *emplekton* walls at Halai and Larymna
5.26: Abbreviated *emplekton* wall at Gela, Sicily
5.27: Restored plan of the east and southeast wall at Halai
5.28: Reconstruction of the east and southeast wall, *bottom*, at Halai
5.29: Missing strap walls in the east wall, see Fig. 5.28
5.30: Outer face of the south wall at Halai
5.31: Reconstruction of the city wall at Athens
5.32: South face of Tower C at Larymna
5.33: South face of Bastion II at Halai
5.34: Suggested comparanda for the tower at Korseia
5.35: *Emplekton* tower with projection at Opous
5.36: Circular tower from the closed harbor at Phalasarna
5.37: Balloon photograph of the circular tower from the Northeast Gate at Halai
5.38: Stone objects on display in Atalandi museum
5.39: Catapult stone ball from the acropolis of Halai
LIST OF TABLES

1.1: Sites affected by traffic along the trans-regional routes 18
1.2: Attested and suggested nomenclature for the trans-regional routes 19
1.3: Harbors and capes in the Bay of Atalanti 45
1.4: Coastal distances between major ports of call from Piraeus to Thessalonike 48
1.5: Coastal distances between ports of call from Chalcis to Larissa Cremaste 56
1.6: Time of travel between Chalcis and Larissa Cremaste 56
1.7: Typology of sea travel in the Euboean Gulf 68
2.1: Synoptic view of major military events in Hellenistic Opountian Lokris 166
2.2: Flowchart showing lines of communication 168
3.1: Synoptic view of the sites and some essential features 171
3.2: Proposed identifications of ancient sites attested in the literary sources 172
4.1: Excavated lamps from the acropolis of Halai 312
4.2: Towers in the countryside by type and size 332
4.3: Identified coins from excavated sites by mint and findspot 371
4.4: Synoptic view of major military events in Opountian Lokris 389
5.1: Quarries by site, type of use and date 397
5.2: Attested ashlar modules by size and nomenclature 413
5.3: Ancient and modern measurements of the ashlars 413
5.4: Comparison between ashlars of conglomerate or breccia from towers and curtains in early Hellenistic Greece and West Black sea coast 415
5.5: Distribution of ashlars by position in the course 426
5.6: Current extent of ashlar fortifications in Opountian Lokris 445
5.7: Urban towers with recorded sizes by site 445
5.8: Distribution of *emplekton* towers in Hellenistic Greece by region and site 470
5.9: Distribution of sites with ashlar masonry of conglomerate or breccia in relation to routes and attested Macedonian presence 485
LIST OF MAPS

1.1: Geography and boundaries of Opountian Lokris and her neighbors
1.2: Routes discussed in the text
1.3: Major ports of call in the Euboean Gulf
1.4: Distances between Thessalonike and Piraeus
1.5: A boat trip from Chalcis to Larissa Cremaste with suggested ports of call
1.6: Sea routes in the Aegean
3.1: Sites discussed in the dissertation
5.1: Sites with *emplekton* masonry of conglomerate or breccia
LIST OF ABBREVIATIONS

BMC
British Museum Catalogue of Greek coins: Central Greece (Locris, Phocis, Boeotia, and Euboea). Head, B. V. London, 1884.

CID

CIL III

FD III. 4

FGrH

IG IX. 1

IGBulg I²

IGCH

LGPN
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syll</td>
<td>Sylloge Inscriptionum Graecarum. Dittenberger, W., Lipsiae. 4 vols. 1915-1924.</td>
<td></td>
</tr>
<tr>
<td>SNG Cop</td>
<td>Sylloge Nummorum Graecorum: The Royal Collection of Coins and Medals Danish National Museum. Copenhagen.</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF EDITORIAL SYMBOLS

[] restoration
<> editorial correction
Α ambiguous Greek letter
[— —] lacuna of unknown length
[.. .] lacuna of ca. four letters
v vacat
PREFACE

In transliterating the names of Greek sites I have predominantly followed the Greek spelling: thus Atalandi, not Atalanti, and also to avoid confusion with Atalante island. Exceptions are Ayios Nikolaos, not Agios Nikolaos, and Ayia Aikaterini, not Agia Aikaterine. I have used Latinized or Anglicized form of the names that have long since gained currency in scholarly literature, such as Corinth, not Korinthos, Athens, not Athenai, and Thebes, not Thebai.

All maps, tables, diagrams, drawings and photographs are by the author, unless otherwise indicated. Translations are from the Loeb Classical Library.
Introduction

In a story dismissed as a fiction (Bakhuizen 1970, 15), Strabo (9. 2. 9) recounts the tragic tale of Salganeus, a Boeotian, who served as a guide of the Persian fleet, while the latter was sailing along the Euboean Gulf on its way from Artemision to Piraeus in 480 BC. Upon reaching the winding passage near Chalcis, he was put to death by Megabates, who was under the erroneous impression that the ships were deliberately led to a cul-de-sac; little did he know that the route was in fact the only way to get there by sea. While the episode is telling of the labyrinth-like nature of Greek topography, perhaps more importantly, it also reveals the openness of locals to assisting foreign powers. From a modern perspective, however, the study of this power relation creates a methodological difficulty in that it requires dealing with evidence fraught with contradiction.

In a stimulating essay entitled, “Paradigms and Paradoxes in the Hellenistic World”, John Ma (2008, 384) has recently identified “…the relation between supra-local empires and local powers, and impact on the Greek city,” as one of three major ‘paradoxes’ that the historians of post-classical Greece need to face. The same concern rings true among students of Greek fortifications, and is the goal of the dissertation presented here: to examine the interactions between foreign garrisons and local communities of Hellenistic Opountian Lokris through the lens of unprecedentedly wide-ranging material and in social context. To a great extent I thus

2 Ma 2008, 384 identifies rupture vs. continuity of the Greek poleis and Greek vs. non-Greek identity as the other two. On different approaches to the modern study of Greek history, see Davies 2002, 226-232.

3 E.g. Caraher and Gregory 2006, 346: “The fort of Mt. Oneion is highly relevant to debates on whether we should understand Greek fortifications as a local, in this case Corinthian, defensive response or as the work of non-local powers – Athens, Thebes, Sparta or Macedon.”
partake of the optimism recently expressed by Shipley (2006, 322) that the standing remains of military architecture could provide a subject worthy of scholarly pursuit.

The topic, as defined, is novel. My main objectives are to move away from a narrative that is conveniently constricted to the boundaries of a single ancient region, to supplant studies that are exclusively concerned with the architectural analysis of extant fortifications, and to address the social complexity of military presence. I see my study as a step towards bridging the gap between various disciplines, as well as making up for the inadequacy in the study of ancient warfare first recognized by Austin (1986, 456), who drew attention to the fact that subjects like war, economy and kings are often portrayed as unrelated. Similarly, discussions devoted to Greek cities, urban planning and fortifications, normally minimize the impact of exogenous factors, despite the quite early emphasis by Scranton (1941, 69, 132, 140) on the importance of Macedonian garrisons for the understanding of Greek masonry techniques of the late fourth century BC. While the focus falls on technical aspects of fortification building, with the assumption of a linear progression from simplicity towards greater sophistication, in the context of the ongoing debate over how vital the role of a city
wall was to the existence of early Greek *poleis*, the massive early Hellenistic fortifications scattered throughout Greece are undeservedly understudied, as if the often-quoted passage from Aristotle’s *Politics* says it all. Furthermore, perhaps paying homage to the scathing *stylus* of Polybius, current scholarship sees Macedonian garrisons predominantly as a negative force, one that was imposed in order to dominate and control.

I consider it extremely important to problematize the available evidence from Opountian Lokris the period following the death of Alexander III in 323 BC provides for the establishment of a large number of urban foundations, resulting from voluntary or forced *synoicism*, and often exacted through the agency of Macedonian kings. Most of these large-scale projects were accompanied by consignment of troops; troops which previously undiscussed evidence, as I examine in Chapter 2, suggests actively partook in carrying them out. In the chapters to follow, I explore the potential of such data in relation to royal garrisons stationed in Greek cities and take issue with the frequent definition of their presence as purely detrimental or even destructive, hence

8 Garlan 1974a, 87-103, Ducrey 1995 and Camp 2000, 47-51 are essential. See also Hansen and Frederiksen 2004, 135-137. For a wide-ranging treatment on urbanization and fortification, see Gat 2002. See also recent work on the subject by Polinskaya 2006, 76-77; Kosak 2006, 176-179; Bowie 2006, 130-135. On using the intramural area of a walled city as a way to calculate urban population, see Hansen 2006, 35-63.

9 Arist. *Politics*, 1331a: “Particularly in view of the inventions that have now been made in the direction of precision with missiles and artillery for sieges. To claim not to encompass cities with walls is like desiring the country to be easy to invade and stripping it of hilly regions, and similarly not surrounding even private dwellings with house-walls on the ground that the inhabitants will be cowardly. Another point moreover that must not be forgotten is that those who have walls round the city can use their cities in both ways, both as walled cities and as open ones, whereas cities not possessing walls cannot be used in both ways. If then this is so, not only must walls be put round a city, but also attention must be paid to them in order that they may be suitable both in regard to the adornment of the city and in respect of military requirements, especially the new devices recently invented. For just as the attackers of a city are concerned to study the means by which they can gain the advantage, so also for the defenders some devices have already been invented and others they must discover and think out; for people do not even start attempting to attack those who are well prepared.”

10 See, for example, McCredie 1966, 89: “From time to time in the Hellenistic period foreign rulers of Athens kept Athenian bids for freedom in check by means of garrisons placed on the Mouseion hill in the city itself and on the Mounychia in Piraeus.” Similar sentiment is shared by Archer et al. 2002, 83-84; Delrieux et al. 2003, 119-121.
readily dispensed with by the community when opportunity presented itself.¹¹

A closely related issue is that of terminology. The decision to insist on *Phouria Lokrika* in the title is not accidental. As much as it derives from my recognition of the tremendous scholarly achievement of William Abbott Oldfather, perhaps the best specialist on all things Lokrian;¹² it also stems from a paradox first observed by Lawrence (1979, 137), namely that for the Greeks “…a phourion did not connote a fort within a city.” Yet, in the early Hellenistic period such existed. The pages of later historians like Diodorus Siculus, Polybius and Livy, including two little discussed inscriptions (Chapter 2), testify to the presence of Macedonian garrisons in major communities of Hellenistic Opountian Lokris. I argue that the coeval emergence of early Hellenistic fortifications should no longer be considered separately,¹³ but that both phenomena should be examined as related.¹⁴ I point to the fact that the divorce between scholarship on the garrisons and on Hellenistic walls has also been a coincidence of mismatched terminology, where, according to the convention, the Macedonian garrison forts are designated by the Greek term ϕρούριον, while city walls themselves have received popularity via the Latin term *fortificatio*, which misleadingly circumscribes the act of wall construction to merely strengthening a given location.¹⁵ In Greek, a ϕρούριον, the structure occupied by a garrison, comes from the verb ϕρούρεω, to watch, for the act of providing protection results from the

¹¹ Much recent work on the subject of foreign garrisons, however, based primarily on epigraphic material, has begun to remove this negative stigma, most notably by Chaniotis 2002, 99-113 with Ma 2002, 115-122; Chaniotis 2005, 88-93 and Ma 1999, 108-178. See also Shipley 2005b, 319-321.

¹³ E.g. Fossey 1990, 139-150; Bouyia 2000a, 59.

¹⁴ Commenting on the Macedonian garrisons at Athens, McCredie 1966, 89 observes: “These fortifications are now very poorly preserved, but judging from the remains of the Mouseion fort, they, too, were positions of considerable strength fortified with carefully built walls…”

physical presence of somebody who watches and observes, on behalf of a certain authority. There is the tendency, which derives in part from the fifth century historians, such as Thucydides and Xenophon, to equate φρούρια with border forts or extra-urban fortified bases established by a foreign power, whereas the application of the same term to the garrison forts stationed at the heart of the Greek cities from the Hellenistic period has for a long time been marginalized. Thus, lost in terminology, has been awareness of the main players, the urban fortifications have been detached from their possible link to the Hellenistic φρούρια, and at times the former are even qualified as simple “extensions” or “refurbishments” on pre-existing circuits.

Elaborating on the latter part of the above definition of the Greek term φρούρια, I assert that the significance of the component “presence” must not be registered solely through the architectural study of city walls, for example. Dismissing the separation as counterproductive, the main thrust of the dissertation postulates a link between large-scale movements of Macedonian armies, installment of royal garrisons in Greek cities and the emergence of artillery fortifications on a trans-regional scale. It should be stressed at the outset that appreciation of the productive side of military presence is made possible by the adoption of what I call a synesthetic approach. By recognizing that fortification building was not, as is often maintained, simply an art or engineering, the potential of several disciplines are deployed in order

16 On φρούρια from the Classical period, see Nielsen 2002, 50-63.
17 Note the symptomatic absence of an entry on φρούριον in RE, XX, Kortenbeutel 1941, 773-781; Kleine Pauly, IV, Volkmann 1972, 821-822 and Neue Pauly, IX, Welwei 2000, 965. Aside from Lawrence 1979, 137-140, Adkins and Adkins 1997, 114 are among the few who acknowledge the fact that “fortified towns with garrisons were also sometimes called phouria.” See also Archer et al. 2002, 83, who assert that “Macedonian power in Greece rested on garrisoned fortifications in the major cities along the choke points of communications.” On foreign garrisons in Greek cities of the Hellenistic period, see Launey 1949, 634-641; Hatzopoulos 2001, 29-32; Chaniotis 2002, 99-113; Ma 2002, 115-122; Chaniotis 2005, 88-93. On Asia Minor, see Bikerman 1938, 53-55; Ma 1999, 108-178; Baker 2000; Labarre 2004. On Ptolemaic Egypt, see Bagnall 1976.
18 E.g. Scranton 1950, 5: “Fortification was an art in many ways.”
to understand its complexity as a social phenomenon. The structure of the dissertation is therefore designed to knit together several unrelated strings of evidence: geographic, literary, epigraphic, numismatic, archaeological and architectural. The decision to do so stems not from an often-lamented paucity of the available data for the study of Opountian Lokris but from the elusive nature of a period that the ancients never knew as ‘Hellenistic.’

Useful in reassessing the role of Macedonian garrisons in Greek cities, is the concept of power as developed in the works of the French philosopher Michel Foucault. Power is seen not as repressive, one that is imposed from above, but as a productive force transmitted horizontally through complex networks, and on different levels. To quote Hirst (2005, 167), who nicely summarizes the concept: “Power is productive of knowledge and knowledge is productive of power; it does not just draw on social resources in the form of levy, but acts to create and multiply resources.” In my analysis, the productive power of the Macedonian kings relied on the surveillance principle, and required the maintenance of institutions through the isolation of individuals. I find it useful to implement in my analysis of the way Macedonian garrisons functioned the metaphor of the Panopticon, Jeremy Bentham’s circular Inspection House. A striking application of the “visibility trap,” it also serves to

19 See Hirst 2005, 184 who asserts that “architectural, military and socio-economic history need to be combined to explain how fortifications were used”. Similar concern is expressed by Whitley 2006, 17, who emphasizes the increasing importance of context in understanding material culture in general.

20 On the history of the term Hellenismus ‘invented’ by the German historian Johann-Gustav Droysen in 1836, see Préaux 1978, 5-9; Momigliano 1994, 147-161; Austin 1981, vii, n. 1 and Cartledge 1997, 2-3. For the purposes of the dissertation, however, I generally stick to the traditional chronology, starting from the death of Alexander in 323 BC and ending with the Roman capture of Egypt in 31 BC.

21 I draw on his Naissance de la prison, Surveiller et punir, Gallimard, 1975.

22 Ancients too made often use of the “visibility trap.” Xenophon Anab. 7. 2. 18, for example, informs us how the Thracian leader Seuthes outsmarted his enemies by ordering his night-guards to stand some distance away from the watch-fires, so that they remain unseen under the cover of darkness, while those approaching would be immediately spotted in the light. The principle is described again in his Cyropaedia, 3. 3. 25.
stress the importance of the construction of a walled space in forging the relationship between the king, the troops, and the local community. I find beneficial for the study of both Macedonian garrisons and Greek fortifications, to point out, with Hirst (2005, 168, 170), that military architecture should be regarded as an expression of certain power relations configuring space, as well as a structure embodying the surveillance principle. According to Foucault, the *Panopticon* is “an example of supra-individual strategy, a definite pattern of means and objectives that can be discovered across a number of sites.”

I do not wish to imply, however, based on the analogy with Bentham’s *Inspection House*, that Macedonian garrisons were there to discipline and punish those who misbehaved, although we know for a fact that Philip V, for example, maintained a *career* at Chalcis.

In light of these similarities, it may be surprising that the idea of the *Panopticon* has never been applied to the study of garrisons, including ancient fortifications. Pointers, disguised as uniformity and multiplicities, do exist, however. In short, the large body of material analyzed in each chapter shows that the gradual integration of Opountian Lokris into the complex networks of land and sea communications sustained by Macedonian kings may not be viewed outside the emergence of artillery fortifications, modern urban planning, circulation of royal bronzes, introduction of foreign religious cults, new burial practices and unexpected prominence in Hellenistic political alliances. Finally, the presence of Macedonian garrisons served to ‘monumentalize’ the physical boundaries of a society that for most of its history lived, perhaps very much like the Aetolians, in the old-fashioned way, i.e. κατὰ κόμας ἀτειχίστους (Thuc. 3. 94. 4). For the Lokrians, on the other hand, what that interaction also meant was a necessity to intermittently redefine their civic

23 As quoted by Hirst 2005, 170.
identity in opposition to the “new comers,” who, perhaps somewhat ironically, actually helped to preserve it.
Chapter 1: Geography and routes

“From the standpoint of Hellenic history, eastern Locris resembled the Spercheus valley in being a land of passage.”
M. Cary. *The Geographical Background of Greek and Roman History*. 1949, p. 68

The purpose of this chapter is to provide a basic description of the territorial scope of the study, as well as to address the question of how, and to what extent, trans-regional traffic by land and by sea was bound to impact the local landscape. The text is divided in two sections: (1) physical geography and (2) communications. Since the regional lines of communication in Opountian Lokris have rarely been studied in detail, a strong emphasis is laid on the Hellenistic road system, as far as it can be determined. A particular attention is given to the discussion of the sea-route along the North Euboean Gulf (Gehrke 1992, 107-111; Koder and Hild 1976, 101-104). Thus natural features such as mountains, river valleys, coastal plains and the sea are described with reference to the roads connecting them.

1.1: Study area

The study area coincides entirely with the ancient borders of what is known as Opountian Lokris, which forms a part of the bigger geographic entity of East Lokris, together with its northwestern neighbor, Epiknemidian Lokris (Map 1.1). The distinction between the two subregions is geographical as much as it is political.

26 The modern toponyms and hydronyms used throughout are those appearing on the 1:50, 000 sheets Pelasgia, Elateia, Livanatai and Larymna, which I was able to obtain from the Hellenic Military Geographical Service. When applicable, ancient names are also provided.
27 The region of Epiknemidian Lokris is currently studied by an interdisciplinary team directed by Adolfo J. Domínguez from the Universidad Autonoma de Madrid, with the main research objective being the reconstruction of the historical topography of the region. See the preliminary results published by Domínguez in *Teiresias* 35.1, as well as the web presentation supplied with images at http://www.uam.es/proyectosinv/sterea/project/project.htm.
Strabo (9. 4. 1; 9. 3. 1; 9. 3. 17) says that when the city of Daphnous (modern Ayios Konstantinos) belonged to Phokis, it split East Lokris in two. Epiknemidian Lokris (Etym. Magn. 360. 32) received its name on account of its proximity to Mt. Knemis (938 masl), whereas Opountian Lokris was so designated because of the administrative importance demonstrated by the metropolis Opous (modern Atalandi) in historical periods (Klaffenbach 1926; Larsen 1968, 48-58; Martin 1975; Nielsen 2000). Another designation, Hypoknemidian, is also attested in an inscription of ca. 500-450 BC (Gschnitzer 1958, 56-60; Meiggs and Lewis 1989, 20; Beck 1999, 52-63) and fourth century coins, which refers to those living under or at the foot of Mt. Knemis and the Opountians (Klaffenbach 1926, 87-88; Larsen 1968, 50), from Alope.

28 The coins, assigned to 338-300 BC, bear the legend ΛΟΚΡΩΝ ΥΠΟΚ, cf. BMC Locris, nos. 38-40; Babelon 1914, nos. 438-441; MacDonald 1901, no. 12.
to Larymna (Nielsen 2000, 92). As a whole, East Lokris is treated separately from West or Ozolian Lokris, but in many cases, ancient writers indiscriminately applies the label “Lokris” to either, thereby creating confusion as to which one of the two is meant (Nielsen 2000, 95-96; 2004, 664).

1.1.1: Landscape and boundaries

Opountian Lokris is essentially a narrow strip of coastal land bounded by high mountains to the south and the island of Euboea to the north.\(^{29}\) Covering an area of 1456 km\(^2\)\(^{30}\), it stretches along the coast of the North Euboean Gulf, surrounded by Epiknemidian Lokris to the northwest, Phokis to the southwest and Boeotia to the south and southeast.\(^{31}\) The dominant feature of the landscape is the chain of mountains running in a northwest-southeast direction. The northwest extremity is constituted by Mt. Knemis (938 m) and Xerovouni (605 m), through which the Dipotamos river flows and debouches into the sea near Daphnous (modern Ayios Konstantinos). The northern foothills of these highlands are marked by the small coastal plains of Longos and Arkitsa. Alope (modern Ayia Aikaterini) is the first settlement belonging to Opountian Lokris, situated on a projecting mountain ridge of Xerovouni, at the midpoint between the two low-lying plains. From Alope the contact with the interior is facilitated along the valley of the Dipotamos river debouching from the plain of Longos into the sea. The importance of the town, however, derives from the fact that it lies along the coastal road coming from the Malian Gulf and Thermopylai.

Further to the southeast, the Alanyma river separates Xerovouni (605 masl) from Mt. Chlomon (1081 masl), ancient Delos,\(^{32}\) which is also the highest peak of the

\(^{29}\) Hom. Il. 2. 535: “…οἱ ναύουσι πέριν ἵππης Ἐὔβοιας.” Cf. Strabo 9. 4. 1: “…οἱ πρὸς Ἐὔβοιαν Ἀκροί.”

\(^{30}\) An estimate given in Kotoulas 2002, 9.

\(^{31}\) A fuller description of the geography of Opountian Lokris may be found in Oldfather 1926, 1135-1142 and Philipson and Kirsten 1951, 346-362. For a shorter version in English, see Fossey 1990, 11-17.

mountain spine of Opountian Lokris. East of it, a lower ridge constitutes the Kolaka plateau (484 masl), which, together with Mt. Chlomon, forms the watershed with the North Kopaic basin and Boeotia to the south and southeast. They also mark the southern boundary of the triangular plain of Atalandi, which stretches for ca. 7 km as far as the sea to the east. The fertile plain, which Strabo (9. 4. 2) knew as πεδίον εὕδακνίμον is today used for the cultivation of olives, maize and tobacco. The town of Atalandi, nestled in the foothills of Mt. Chlomon to the south, is the largest agglomeration in the region, as well as its administrative center. The villages of Livanates (ancient Kynos) and Kyparissi mark the northwestern and the southeastern extremities of what is (and always had been) the most extensive coastal plain of Opountian Lokris. The prominent hill of Prophitis Elias (280 masl), located ca. 1 km northwest of the village of Megaplatanos, is the most conspicuous outlier of the Xerovouni mass, providing spectacular views over the entire plain. Nowadays, apart from the church of the patron saint, it houses a military satellite station on the top.

Ca. 6 km east of Atalandi is situated the modern harbor village of Skala Atalandis (formerly Kato Pella), which in the past was connected with Chalkis by steamers (Lolling 1894, 190, 216; Gomme 1911-1912, Pl. IX). Straight across the village, out in the sea, lies the uninhabited island of Atalante. It consists of three separate peaks, of which – the central one, called Prophitis Elias (127 masl) is the highest. Immediately to the north, a tiny islet, which was probably severed from the

33 This is no doubt ὁροὺς ὑψηλοῦ mentioned by Pausanias 9. 24. 4.
34 Strabo 9. 3. 3. used the same epithet to describe the Crisaean plain on the Corinthian Gulf. On the agricultural productivity of these plains, see Jarde 1925, 70 and Semple 1932, 351. See also Michell 1957, 64 who surmised that “the pastures of the rich coastal plain of Opous” allowed the breeding of horses.
35 Theophrastus HP 1. 14. 3 and Pliny HN 21. 104 mention a fruit resembling the Indian fig, or the prickly pear, which was particularly abundant around Opous, as it is in other regions of Greece, cf. Philippson and Kirsten 1951, 355. The fruit of the prickly pear, frangosyka in modern Greek (Frankish fig), or Cactus Opuntia, is edible after scraping off the small spines on the surface. It also produced sweet refreshing juice that may be consumed as a substitute of water.
Atalante island as a result of the 426 BC earthquake (Lolling 1876, 253-255), houses the church of Ayios Nikolaos. Although the recurring seismic activity, which is so characteristic of the Atalandi Fault, and especially the earthquake of 426 BC described by Thucydides (3. 89. 3), Diodorus Siculus (12. 59. 1-2) and Strabo (1. 3. 20) has certainly affected its morphology (Fossey 1990, 183-184; Antonopoulos 1992, 83-93; Kramer-Hajós 2005, 36-38) there is no question that it has always been an island.

The village of Kyparissi also provides a natural connection with the small plain of Tragana to the southeast, the eastern boundary of which is marked by the mountain torrent of Revenikos, ancient Platanios (Pausanias 9. 24. 5). At the time of his visit Girard (1881, 39) was told by the locals that Revenikos was a perennial stream but Oldfather (1916b, 165, n. 4), who visited Lokris in 1914, was unable to confirm this. Today it is a seasonal torrent. The deep ravines in the plain (4-5 m high) cut by the rushing waters of Revenikos, however, bear witness to the amount of alluvial fill deposited over the centuries (Fossey 1990, 13). Ca. 2.5 km southeast of Kyparissi, the imposing hill of Kokkinovrachos (302 masl) marks the northwestern extremity of a continuous mountain chain that extends to the east as far as the village of Tragana. In this area the plain narrows considerably and the coastal strip is almost touched by the steep slopes of the mountain ridge to the south. After a kilometer or so, the plain widens again to the north of Tragana, where the tiny islet of Mitrou marks its northernmost extent. Formerly connected to the mainland, Mitrou (Kramer-Hajós 2005; Van de Moortel 2007, 243-254; Kramer-Hajós and O’Neill 2008, 163-250),

37 The British Admiralty Chart of 1847 shows that it also served as a lighthouse for ships en route to Skala Atalandis, cf. Philippson and Kirsten 1951, 353; Mediterranean Pilot IV, 144.
38 Pliny HN 2. 90. 204 says, however, that Atalante island, along with the island of Makri, was detached from Euboea. It is interesting to note that Ptolemy 3. 15. 23 mentions the coordinates of Atalante island in the context of his description of Euboea. Finally, Pliny HN 4. 12. 71 places the outlet of the North Euboean Gulf at Atalante island.
39 Girard 1881, 39 noticed a scatter of sherds, a few stones and a grave near the spot where Revenikos emptied into the sea at the bay of Mitrou. On account of this material, he thought that this was the location of a harbor, probably controlled by Korseia, which he identified with Chiliadou.
belongs to the angular bay of Almyros, which is characterized by the presence of the recently formed island of Gaidaros (103 masl) immediately to the northwest (Cundy et. al. 2000).

North of the village of Proskynas, a small triangular valley extends as far as the bay of Vivos, bounded on either side by a series of low hills. Today the valley is well watered and extremely fertile.

The southeastern part of Opountian Lokris consists of the uplands belonging to the Aetolyma peninsula, which juts out from the mainland into the North Euboean Gulf in a northwest-southeast direction. Cape Kerata and Cape Theologos constitute the outer extremities of yet another smaller peninsula attached to it, where the slopes of Vrahaki (211 masl) fall steeply into the sea. The two peninsulas are separated by the small triangular plain of Theologos (ancient Halai), the southeastern boundary of which is marked by Lymoremma, a seasonal torrent debouching into the sea.

The administrative center of the Aetolyma peninsula, however, is the thriving village of Malesina, founded by Albanian settlers in the late 14th century (Koder and Hild 1976, 212; Katsonopoulou 1990, 58-62; Kiel and Sauerwein 1994, 34-42, 78-82), which sprawls atop the rolling hills, a few kilometers southeast of the bay of Theologos. The Byzantine monastery Ayios Georgios is located just 1 km northeast of the village (Karastathis 1987, 9-70). The importance of Malesina is reflected in the existing communication network, of which it is the hub. Several roads emanate from Malesina; one connects the bay of Ayios Ioannis Theologos with the National Road

40 Although it was detached from the mainland after the earthquake of 1894, today it is connected to it by a causeway.

41 Vasmer 1941, 106, no. 34 traces back the etymology of the town’s name to the presence of the Slavs by translating it as “mountain land.”

42 At a location called Venetika, marked on the British Admiralty Chart as “Venetian ruin,” east of Malesina, there are medieval remains, no longer extant. Oldfather 1916a, 265, n. 5; 1927, 1136; cf. Philippson and Kirsten 1951, 357; Koder 1973, 97, n. 184; Koder and Hild 1976, 212; Fossey 1990, 148, 150 interpreted the structure as a Venetian watchtower on account of the elevated location permitting extensive views along the Euboean Gulf.
Thessaloniki-Athens, while another, recently constructed road leads to Larymna to the southeast. A separate road provides the nearest access point to the sea, at the bay of Lekouna north of Malesina.

The high peak of Prophitis Elias (637 masl) marks the boundary with the North Kopaic basin and Boeotia to the south. At the northern foothills of Prophitis Elias, the village of Martino, located just ca.1 km west of the National Road, links the interior with the bay of Larmes, where the southernmost harbor settlement of Opountian Lokris, Larymna, is situated. Larymna is ringed with mountains all around, while controlling the small inland plain opening out into the bay. The harbor is well connected with Boeotia to the south by an asphalt road, which eventually reaches the North Kopaic basin at the village of Ayios Ioannis (Fossey 1988, 287-288, fig. 37). The valley is well watered through a number of springs fed by Melas River, which reappears again at Kephalari, after having disappeared into the Binia sinkhole (καταβόθρα) situated at the northeast corner of the Kopaic basin (Lauffer 1986, 233, 243; Higgins and Higgins 1996, 76).

2.1: Communications

To study the landscape of a country in terms of how people travelled is a challenging task. According to Pikoula's (2007, 78) travel may be defined as, "any temporary move of a person from his home to another, remote place he has to stay overnight". Yet people did not initiate a journey for the same reasons. Most would agree, for example, that essential differences set apart the experiences of individual travelers like Pausanias (Hutton 2005, 30-33), the Roman emperor Hadrian (Halfmann 1986, 40-47, 188-212) or a pilgrim to Delphi from that of merchants en route to a foreign market or soldiers during campaign. One fundamental difference has to do with the question of scale. In this type of discourse the evidence pointing to trade and warfare normally assumes priority, which in turn leads to the formulation of various
concepts explaining the movement of people, as well as positing the existence of trade routes (Bérard 1902, 69), or chemins militaires and Heerstrassen (Bergier 1626; Curtius 1855). Although East Lokris is often understood as a place of inter-regional importance, an “axis of communications” for trade and warfare, little work in detail has been done on the subject.

The approach adopted here does not aim to reconstruct a comprehensive picture of existing regional road-networks, as is frequently done, as much as it attempts to gauge, based on literary, epigraphic and archaeological data, the effects of large-scale movements of people through a region, which is by and large little known. I have also tried to illustrate the reasons for arranging the roads in separate categories in accordance with the type of traffic they accommodated.

2.1.1. Trans-regional routes

The contact between Opountian Lokris and central Greece was made possible by the following lines of trans-regional routes (Map 1.2):

43 In models seeking to explain the wide travel of bronze coinage, for instance, the movement of people for reasons of trade and war has been understood through what Knapp 2005, 38 has called “peripatetic” and “destination” travel.

44 For Pritchett 1980, 151, before the era of modern road building, “any road was essentially a military one.” For Greek roads, an essential starting point is the study of Despotopoulos 1940, 255-261, 329-338, 530-540 and that of Pritchett 1980, 143-196. Much work on the subject has been done by Pikoulas 2007, 78-87 with a full list of his earlier studies. For the ancient terminology of Greek roads, see the useful collection of the evidence in Lolos 2005, 137-174.

45 Daverio Rocchi’s 1999, 416 article in Der neue Pauly provides the best summary of the state of the question: “West and East Lokris lie at the crossing point of a road system that represented a super-regional axis of communications for ancient Greece; it served as a trade route and as a corridor for mass migrations, resettlements and military operations.” For a closely similar statement, see most recently Dakoronia 2006, 483-484.

47 It is not surprising that Fossey and Morin 1995, 818 deliberately decided to omit roads from the map of central Greece, which they prepared for the atlas of Talbert 2000, because “…information on them is either too scrappy or too general in nature to warrant making road courses.”
Route 1: Thermopylai-Kopai-Akraiphia-Thebes

This is the major coastal corridor connecting northern and southern Greece, to a great extent coinciding with the National Road Thessalonike-Athens. Essentially, it accommodated the inland traffic passing through and/or originating from the Malian Gulf. A journey thus required a successful negotiation of the narrow pass at Thermopylai. Before reaching Opountian Lokris, land traffic passed through the territories of several cities belonging to Epiknemidian Lokris: Alponos, Nikaia, Scarpheia, Thronion, Knemides and Daphnous (Map 1.1). Within the territory of Opountian Lokris, however, the road affects only the sites of Alope, Kynos, Kokkinovrachos, Tragana, Proskynas and Chliadou (Table 1.1).
Table 1.1: Sites affected by traffic along the trans-regional routes discussed in the text

<table>
<thead>
<tr>
<th>ROUTE</th>
<th>OPOUNTIAN LOKRIS</th>
<th>PHOKIS</th>
<th>BOEOTIA</th>
<th>ATTICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alope Kynos</td>
<td>Kopai</td>
<td>Eleutherai</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kokkinovrachos</td>
<td>Akraiphia</td>
<td>Mazi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tragara</td>
<td>Thebes</td>
<td>Oinoe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proskynas</td>
<td>Plateia</td>
<td>Athens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chiliadou</td>
<td>(Daphnous)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Kynos</td>
<td>Polygyra</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Megaplatanos</td>
<td>Orchomenos</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opous</td>
<td>Onchestos</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thebes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Opous</td>
<td>Tegyra</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kastraki</td>
<td>Orchomenos</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palaipyrigos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kolaka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Larymna</td>
<td>Ayios Ioannes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pazaraki</td>
<td>Akraiphia,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thebes,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kopai</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tegyra</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orchomenos</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At Alope, Kokkinovrachos and Tragara, for example, the adjoining plains are reduced to narrow coastal strips to such an extent that they can accommodate only the road, which at these points is literally trapped between high mountains and sea. The area around Kynos, on the other hand, is an important crossroads thanks to its commanding position situated on a natural eminence by the sea, ca. 1 km east of the National Road. It thus served as a point of entry for the incoming traffic by sea bound to continue inland via Opous to Orchomenos, while overseeing the land traffic to Thermopylai. After skirting around Chiliadou, the road passes through Kopai and the Mycenaean fortress of Gla then continues on level ground to Akraiphia and thence to Thebes. It is
important to note that in the segment from Akraiphia to Kopai, Pausanias (9. 24. 1) refers to it as εὐθεία ὁδός (Table 1.2).

Table 1.2: Attested and suggested nomenclature for the trans-regional routes discussed in the text

<table>
<thead>
<tr>
<th>Route</th>
<th>Ancient nomenclature</th>
<th>Modern nomenclature</th>
<th>Evidence</th>
<th>Possible military use</th>
<th>Date (B.C.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>εὐθεία ὁδός</td>
<td>highway</td>
<td>Paus. 9.24.1</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>λεωφόρος εὐθεία ὁδός</td>
<td>thoroughfare</td>
<td>Paus. 10.35.1</td>
<td>Hdt. 8.28</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Paus. 10.35.5</td>
<td>Xen.</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hell. 6.4.27</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ps.-Call. 1.45</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>πορθμός</td>
<td>sea crossing</td>
<td>Strabo 10.1.5</td>
<td>Polyb. 4.67.7</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Polyb. 2.52.7-8</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Livy 28.7.7</td>
<td>208</td>
</tr>
<tr>
<td>3</td>
<td>λεωφόρος (?)</td>
<td>-</td>
<td>τὰ Στενά near Pyrgos</td>
<td>Plut. Pelop. 16-17</td>
<td>375</td>
</tr>
<tr>
<td>4</td>
<td>λεωφόρος (?)</td>
<td>-</td>
<td>wheel-ruts Larymna-Pazaraki</td>
<td>Livy 45.35.4</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>engineer Crates</td>
<td>Plut. Sull. 26.1</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cleans clogged sinkholes near Pazaraki</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An intriguing piece of evidence may point to intent to control the traffic passing along Route 1. According to the British Admiralty Chart of 1847, two “Long Walls” may have existed at a place variously called Anderas, Veles, Mills, and Mesolophos, located between the sea and an imposing outlier of Mt. Chlomon, Kokkinovrachos, ca. 1.5 km west of Tragana. Both are clearly visible on the map designated by the labels “Ancient wall” and “Artificial Embankment” (Fig. 1.1). The first wall reached up to the slopes of Kokkinovrachos (302 masl.), while the second, which is almost parallel to the first and located ca. 2 km to the northwest, immediately after the village of Kyparissi, probably continued to the Kourkouras hill (229 masl).
Figure 1.1: Atalandi, Kokkinovrachos hill (Opous) and Gaidaros island; note the two features marked with “Artificial embankment” and “Ancient wall” (source: British Admiralty Chart of 1847)

Of the two walls, apart from an earth embankment still noticeable today on either side of the National Road, nothing has survived. In the early 19th century, however, Sir William Gell (1819, 229) reports the following: “A mill called Papa, turned by a great stream, rising from the rock, I. Here are the remains of a wall and gate, of enormous stones, which defend the pass between the mountain and the sea.” Edward Dodwell (1819, 57-58) also saw and described the remains of “a strong wall” ca. 70 paces long (63 m), with large blocks measuring 10 feet in length at a narrow pass called Andera.48 One can infer from these observations that the wall described by the early travelers correspond to the wall reaching the slopes of Kokkinovrachos marked on the British Chart as “ancient wall.” No mention is made by the travelers of the second wall, which I believe may be identified with the earth embankment northwest of Kyparissi. Since both walls are not visible today, it seems that they lie buried underneath the

48 It remains uncertain, however, whether the reported length coincided with the original extent of the wall.
enbankments or have vanished without a trace during construction works for the modern roads, which now follow their course, or after the havoc wrought by the earthquake of 1894, as suggested by Etienne and Knoepfler (1976, 43, n. 149).

Scholarly opinion is divided on the question of function of these walls. Ross (1851, 97) thought that this was a kind of “Long wall” connecting the citadel on Kokkinovrachos hill with the sea. Dodwell (1819, 57), followed by Körte (1878, 271, n. 2) surmised that it may have served as a frontier wall between Opountian Lokris and Boeotia (Walker and Goldman 1915, 421; Oldfather 1916a, 46, n. 1). These suggestions, however, do not take into account the second wall marked on the British Chart with the label “Embankment”. Building on Ross’ suggestion, Lawrence (1979, 443, n. 7) took these walls to be the remains of two parallel “Long Walls” belonging to the citadel on top of Kokkinovrachos hill, formerly identified as Opous. He attributed the construction to the years 457-447 BC, “when Athens controlled Opous,” while not excluding the possibility that the walls may have been used to control flooding (Oldfather 1927, 1196; 1939, 814-815).49

Although it is sometimes questioned whether marching armies from the north actually ever used Route 1 (Oldfather 1916a, 46), I focus on its proximity to the Anderas pass as a way of identifying the needs which justified such conspicuous consumption of resources. Even if long-distance military traffic was unlikely to negotiate it very often, Gell’s and Dodwell’s descriptions point to the conjecture that we may be dealing with some sort of defensive walls.50 In light of the available evidence, the hypothesis for the existence of Long Walls built by the Athenians during

49 Interestingly, Lolling 1989, 316-317 mentions a third “Erdwall” passing near the now extinct Turkish village of Moulki, marked on the British Admiralty Chart, which continued up to the coast south of Skala Atalandis, where he also saw the remains of a “Salzmagazin.” No trace of this embankment survives today, nor is it marked on the British Chart (Fig. 1.1).

50 If the reported size of the blocks is correct, i.e. 3 m, cf. Dodwell 1819, 57, it is conceivable that they belonged to a fortification wall of considerable strength.
their 10-year control of Opous is hard to defend. The relationship with the citadel on Kokkionvrachos is also problematic. Instead I suggest that the Athenians garrison installed on the Atalante island during 431-421 BC may have been responsible for the construction of these defensive works. Thucydides (2. 26. 1) outlines the nature of the existing threat clearly; plunderers from Opous and other unspecified Lokrian centers, after having sailed from the coast, ravaged the neighboring coast of Euboea. It is conceivable that, apart from fortifying the island, the Athenians carried out a larger building program, with the aim to contain the entire plain of Atalandi, of which the barring of the Anderas pass was an integral part. The advantages of choosing this spot are obvious; it disrupted the land communications and supply lines between Opous and two other important harbors, Halai and Larymna, with the garrison on the Atalante island controlling the approaches from the sea. In this way Opous would have been, if not completely precluded, at least considerably held back from the opportunity to mount further incursions against Euboea.

Route 2: Kynos-Opous-Orchomenos

The route provides the most important communication line of Opountian Lokris with central Greece and the Corinthian gulf. Called εὐθεῖα ὁδὸς and λεωφόρος by Pausanias (10. 35. 1; 10. 35. 5), it is the flattest, widest and easiest road leading to both Boeotia and Phokis, with the territory of Opous serving as a crossroad for the traffic coming along the coastal road from Thermopylai (Pritchett 1982, 105-109). Furthermore, it also had potential of accommodating sea traffic disembarking at Kynos bound for an inland journey through Phokis and Boeotia (Larsen 1965, 116-138).

51 Pausanias 2. 24. 5, 8, 54, 5 uses both terms to described the road from Argos to Tegea.
52 The idea that Opous was situated on an important junction of roads may be supported by epigraphic evidence. A marble statue base of late second – early first century BC contains a dedication to Artemis Ennodia (IG IX. 1, 281: Σωσίβιος Σωσίβιου ὁ ἱερεύς / Ἀρτέμιτι Ἐννοδία), made from a priest of her cult at Opous, cf. Fossey 1990, 156; Chrysostomou 1998, 193-194. Ennodia was the goddess of roads and crossroads (Dubois 987, 461), the cult of whom is most prominently attested in Thessaly, often syncretized with Artemis and Hecate, as recorded in many inscriptions found outside Thessaly, cf. Graninger 2006, 182, 185.
120). From Kynos to Opous the road follows a straight course, passing at the foot of Prophitis Elias (280 masl) near the village of Megaplatanos. After reaching Opous, the road skirts the town from the northwest along the valley of Daphnoremma, the tributary of Alanyma, following a southwest direction through the hills. A few kilometers before Kalapodi, it forks due south and continues to follow the level ground enclosed by Prophitis Elias (694 masl) to the west and Kalogria (661 masl), the westernmost outlier of Mt. Chlomon, to the east. After reaching the Phokian town of Hyampolis, the road branches in two directions; to the southeast via Abai, Polygyra and Orchomenos it leads to the Kopaic basin, and to the southwest via Parapotamoi and Panopeus it reaches the Corinthian Gulf.

Our knowledge of Route 2 comes from the brief description of Pausanias (10. 35. 1; 10. 35. 5) and the accounts of the early travelers (Pritchett 1982, 109-111). That the road was of a high order is evident from the fact that Pausanias refers to it as both λεωφόρος and εὐθεία ὁδὸς (Table 1.2). The latter normally meant a main road or a highway (Pritchett 1989, 337-338; Lolos 2005, 140), and these usually connected cities of neighboring regions rather than small villages of a single country (Pritchett 1982, 112; Ellinger 1993, 23, n. 57, 26, n. 69; Typaldou-Fakiris 2004; Crielaard 2006, 281-282).53 Λεωφόρος designates a frequented road or a thoroughfare (Lolos 2005, 141, n. 13).

This route also facilitates interaction across an important border zone between Phokis and Opountian Lokris, focused on the sanctuary of Artemis Elaphebolia at Kalapodi, which was administered by Hyampolis for most of the Classical period (Morgan 1997, 182). Furthermore, material culture shows close similarities between many Phokian and Lokrian centers since LH IIIC, while most contacts between

53 Pausanias uses εὐθεία ὁδὸς to describe the roads Sykion-Phlious (2. 12. 3), Argos-Epidauros (2. 25. 10) and Thebes-Plataea (9. 1. 6), among others.
Kalapodi and Euboea during archaic and Classical times were no doubt mediated by Route 2 (Morgan 1997, 175-184).

Despite Pritchett’s (1982, 122-138) belief that military traffic was more likely to penetrate into the valley of Kephissos via the mountain passes of Epiknemidian Lokris, rather than through the territory of Opountian Lokris (Map 1.1), literary references to the movement of armies illustrate the importance of this road further (Table 1.2). An-often quoted passage is that of Herodotos (8. 28) about the Thessalian cavalry charging into Phokis through the Opountian territory (McInerney 1999, 56). The same route may have been used by Alexander III on his way from Thessaly to Thebes in 335 BC. Arrian (1. 7. 5) says that upon passing through the Thermopylai, Alexander reached Onchestos in 5 days. No further details of the road his army took, however, are provided. Pseudo-Callisthenes (1. 45), however, informs us that after passing through several cities, Alexander decided to stop in “that of the Lokrians”, where the army camped for one day (Stoneman 1991, 78). That the city was Opous may be supported by the fact that in the meantime Alexander paid a visit to the sanctuary and the oracle of Apollo at Tegyra (Muller 1846, 49; cf. Schachter 1981, 75). If the identification is correct, it seems likely that after passing the Thermopylai the army marched along the coastal route before making the stop at Opous whence they reached Onchestos by way of Orchomenos and Haliartos, skirting around the

54 In the Loeb edition of Arrian’s *Anabasis*, Brunt 1976 32-33, n. 4 argues that Alexander went to Onchestos by the Kephissos valley, with “ton Pylon” in Arrian’s text referring to the Asopos pass south of Heraclea Trachis as opposed to the Thermopylai.

55 Scholarly treatment on this campaign limits the discussion to the accounts of Arrian and Diodorus who focus on the siege and destruction of Thebes, while furnishing no details about the logistics of Alexander’s army before the arrival at Onchestos, cf. Hammond and Walbank 1988, 56-66.

57 Oldfather 1926, 1215, who mentions the passage in brief, thought that Alexander stopped at Naryx or Opous because he wanted to pay homage to the native town of Lokrian Ajax and Achilles’ father (Map 1.1).
southwest edge of Kopais. 58

When Thermopylae was guarded, however, Route 2 acquired alternative importance because an invading force from Thessaly had to resort to transportation of the troops by sea. In 219 BC, for instance, Philip V had to disembark at Kynos in order to reach Phokis (Fig. 1.2), which he eventually did by marching through Opous (Polyb. 4. 67. 7). The same route was probably used by Demetrius II during his invasion of Boeotia in 236 BC (Hamond and Walbank 1988, 327), as well as by Antigonus III Doson during his campaign in 224 BC (Polyb. 2. 52. 7-8).

Figure 1.2: The route of Philip V during his march from Thessaly to the Peloponnese in the winter of 219 BC (after Larsen 1965, 118)

58 Further substantiation of the plausibility of such a route taken by the army may be sought in the fact that Phokian and Lokrian cavalry joined Alexander during the Asian campaign, most notably at the battle of Arbela in 331 BC. It is perhaps no coincidence that according to the Syriac version of Pseudo-Callisthenes 1. 45, upon stopping at the city of the Lokrians, i.e. Opous, Alexander obtained food and horses before continuing further. For an English translation, see Budge 1889.
Similarly, other occasions confirm the fact that Opous was very easily reached from Phokis as well. In 370 BC on his way back from Leuctra (Xen. *Hell. 6. 4. 27*), Jason of Pherai captured the suburbs of Hyampolis, after which he reached Heraclea Trachis by marching through Opountian Lokris (Diod. Sic. 15. 57. 2). In 208 BC Philip V marched from Elateia towards Opous in order to help the Opountians, while Attalos was escaping through Kynos (Livy 28. 7. 7).

Route 3: Opous-Kolaka-Tegyra-Orchomenos

The route follows the modern asphalt road Atalandi-Kolaka, which leads to Orchomenos via Pyrgos into Boeotia. The road branches off at the midpoint between Atalandi and Kyparissi and follows a southerly direction throughout, negotiating the rolling hills of the Kolaka plateau by the use of wide and sharp turns. After reaching the village of Kolaka it begins to descend gradually by skirting the lower foothills of Mylovouni (448 masl) and Kalamos (368 masl) and eventually reaches the village of Pyrgos, ancient Tegyra (Fossey 1988, 367-368, fig. 48) on level ground. On the whole, the road is difficult to negotiate until it reaches the top of the ridge at the village of Kolaka; thence it descends rapidly towards the North Kopaic basin by skirting around low hills. The road passes east of Mt. Chlomon in close proximity to the sites of Kastraki, Palaiopyrgos and Kolaka (Map 1.2). As soon as the road begins the descent after Kolaka and before reaching the Narrows, “τὰ Στενὰ,” an offshoot continues in a northeasterly direction, passing through the village of Loutsi, until it joins the undivided course of Prosikynas-Olmones-Tegyra and Tragana-Olmones-Tegyra routes.

59 On Xenophon, see Tuplin 1993, 118, n. 49, who, however, suggests that Jason did not advance through Opountian Lokris but pushed along the valley of the Dipotamos river after reaching Elateia and thence to Heraclea Trachis. On Diodorus’ account, see Stylianou 1998, 413 and Oldfather 1926, 1215 who both think that Jason crossed through Opountian Lokris.

60 This is a relatively little understood artery of communication. The road, for example, is omitted from the description of overland communications of Boeotia, as presented in Buckler 1980, 5. See the criticism of Knoepfler 1981, 145, n. 21; 1986, 617, n. 87, who has repeatedly insisted on the recognition of this often-forgotten mountain route ensuring direct connection between Opountian Lokris and Boeotia.
at the summit near Dendri, ancient Hyettos (Paus. 9. 24. 3; Etienne and Knoepfler 1976; Fossey 1988, 293-295). After the junction with these roads it passes through a narrow point, now called “Steni”, bounded on either side by high cliffs. Unlike the modern asphalt road Kolaka-Pyrgos, which cuts through a low foothill of Milovouni (408 masl) on the west side, the ancient road seems to have followed the course of the mountain torrent, now called Anianni, which ran exactly between the high cliffs of “Steni”. The single surviving reference testifying to the possible use of the road in antiquity comes from Plutarch (Pelop. 16-17).

In 375 BC, the Thebans defeated the Spartans who were caught unawares as they were returning from an expedition into Lokris.\(^6\) A pitched battle ensued near Tegyra, where there was also a sanctuary and oracle of Apollo, as soon as the Spartans emerged from a narrow pass, called “τὰ Στενά.” Thus determining the precise location of the battle and the “Narrows” depends entirely on the modern identification of Tegyra. Scholarly opinion is divided between Polygyra (Pritchett 1982, 104-109 with older lit.; Pritchett 2003, 323-332; Buckler 1995, 43-55; Sprawski 2004, 15) and Pyrgos (Leake 1835, 159, 163; Roesch 1965, 35; Lauffer 1986, 161-162; Fossey 1988, 372). Etienne and Knoepfler (1976, 237) have suggested that “τὰ Στενά” should be located at Kolaka, implying that the Spartans were marching along the path emanating from Hyettos before they rushed down into the plain.\(^7\) Pritchett (1982, 112, n. 25), citing Plutarch (Pelop. 17. 1.), dismissed their identification on account of the fact that the “Narrows” were visible to the Thebans, long before they engaged the Spartans in battle, since if the “Narrows” were placed at Kolaka it would have been simply impossible for them to see them. Close inspection of the topographic features

\(^6\) This is a typical example of indiscriminate use of the geographic term Lokris. As in other cases, the context of the story makes it clear beyond any doubt that in fact Opountian Lokris is meant.

\(^7\) Lauffer 1986, 161, Abb. 169, who makes no reference to the work of the French scholars, reached the same conclusion.
associated with the Kolaka-Pyrgos segment of Route 3, however, clearly corroborates the interpretation put forward by Etienne and Knoepfler. The location of Plutarch’s “τὰ Στενά” should be equated with the modern appellation of the same name (“Steni”), which, as I noted above, designates the narrowest point of the road before it reaches the level ground near Pyrgos (Map 1.2).

Trapped between the high cliffs of Milovouni (408 masl) and Koutsouro (210 masl), the “Narrows” are well visible from the plain below, in accordance with the statement of Plutarch (Fig. 1.3). It thus seems reasonable to assume that, at least on their way back from Opountian Lokris, the Spartans negotiated the Kolaka uplands in order to return to the original point of departure at Orchomenos. As soon as they emerged from the pass, they clashed near Tegyra with the already waiting Thebans who claimed the final victory.

Figure 1.3: The pass near Pyrgos (Tegyra) just before it issues on level ground in the Kopaic plain; Orchomenos marked with arrow

63 The identification of “τὰ Στενά” proposed here thus supports the opinion that Tegyra should be placed at Pyrgos, cf. Lauffer 1986, map 1; Fossey 1988, 372; Talbert 2000, Map 55.
Route 4: Larymna-Pazaraki-Ayios Ioannis-Akraiphia

The route served as an important connection between the North Kopaic basin and the Euboean Gulf. The close connections of Opountian Lokris with Boeotia are anticipated through the fact that geologically the bay of Larmes was an outlet of the Kopaic basin (Higgins and Higgins 1996, 76-77; Oldfather 1916c, 347). Emanating from Larymna, the road follows a valley by skirting the mountain peak of Kapetanios (415 masl) in a southwest direction. On the other side, the road passes at the foot of another lower peak, Pazaraki, which is an outlier of the twin peaks of Kokkini (400-451 masl). Further evidence for the actual use of Route 4 is provided by the discovery of a ca. 300 m stretch of wheel-ruts cut deeply into the bedrock at the foot of Pazaraki (Lolling 1989, 176; Oldfather 1916c 347; Pritchett 1989, 114-115; Jansen 2002, 20-21; Hope Simpson and Hager 2006, 82). In addition to the long segment uncovered at Pazaraki, Oldfather (1916c, 349) seems to have located another stretch belonging to the same road, “on the way over the saddle between the Kopaic lake and the upper valley of Larymna”. After a few kilometers, the road reaches the Kopaic basin at the village of Ayios Ioannis, where it joins Route 1 via Kopai or Akraiphia. The findings of wheel-ruts may reflect the praised qualities of the bay of Larmes as a natural harbor, λίμνη ἄγριος (Paus. 9. 23. 7). It has been further suggested (Schachter 1994, 295) that the stretch between Akraiphia and Larymna may have been used for the transportation of the imported marbles to the sanctuary of Apollo at Ptoion (Lauffer 1959, 1528-1563; 1986, 267). In the available literature, the route has been normally understood in relation to Orchomenos, even described as an artery linking the latter with its port, at the bay of Larmes (Oldfather 1916a, 40; Buckler 1980, 5).64

In this context the episode with the cleaning of the clogged καταβόθρα by Crates, an

64 Fossey 1980, 155-162 has argued that several fortified hilltops in the area of NE Kopais, arguably of Mycenaean date, were constructed under the auspices of Orchomenos in order to protect the drainage system of the lake.
engineer from Chalcis hired by Alexander, is sometimes seen as a way of reclaiming the access to the sea, as well as restoring the former glory of Orchomenos, which, together with Plataia, also received the right to rebuild their walls after Alexander’s destruction of Thebes in 335 BC. It is also possible to assume that Pausanias (9. 23. 7), if he actually made the journey, went from Akraiphia to Larymna using Route 4 (Heberdey 1894, 102, n. 84; Papahatzis 1981, Map 1, 14-15; Hutton 2005, 90). That Larymna served as a stopping point during a coastal voyage, as well as for shipping of soldiers, is implied by Ps-Skylax (Periplous 60), Pomponius Mela (2. 3. 40), Polybius (20. 5. 7) and Plutarch (Sull. 26. 1-4).

2.1.2: Regional routes

I put the routes described below in a separate category based on the following criteria: (1) the end points either connect with traffic passing along trans-regional corridors or (2) traffic originates and stops within Opountian Lokris or in her immediate neighbors, Epiknemidian Lokris, Phokis and Boeotia.

Route 5: Daphnous-Elateia

Strabo (4. 9. 3) says that the distance between Daphnous and Elateia is 120 stadia long, ca. 22 km (Baladié 1996, 138, n. 6; Pritchett 1982, 172, 175). Although the road follows the Dipotamos river, the approach by way of Kalapodi was easier (Lolling 1989, 310).

Route 6: Daphnous-Golemi-Palaiokastro-Megaplatanos-Opous

The road forks east via the Ayia Anagryia church, leading to the sites at Golemi and Palaiokastro (Fossey 1990, 87, fig. 16; Dakoronia 1993a, 122, fig. 5).

65 Strabo 9. 2. 18: “ὁ μεταλλευτής Κράτης ἀνήρ Χαλκιδεύς, ἀνακαθαίρειν τὰ ἐμφράγματα ἐπαύσατο στασισάντων τῶν Βοιωτῶν, καίπερ, ὡς αὐτὸς ἐν τῇ πρὸς Ἀλέξανδρον ἐσπευσμένη φήσει, ἀνεψηνυμένον ἄνθη πολλῶν.” See also Diogenes Laertios 4. 5. 23; Steph. of Byzantium s. v. Athenai.

66 This large-scale enterprise, which ultimately failed because of turmoil among the Boeotians, is traditionally dated to 334-331 BC. The sources mentioning the event are conveniently collected and critically discussed by Gullath 1990, 89-95, cf. also the informative remarks of Baladie 1996, 90, n. 3.
Thence it gradually descends towards the Atalandi plain, where it reaches level ground at the village of Megaplatanos.

Route 7: Alope-Palaiokasta-Kynos

A road emanating from Livanates leading westwards passes through the church of Metamorphosis and skirts around the northern foothills of Xerovouni before descending to the village of Melidoni and the hamlet of Ayia Aikaterini, ancient Alope.

Route 8: Elateia-Golemi-Palaiokasta-Kynos

Leake (1835, 174) suggests that Palaiokasta, Villovo served to protect Kynos from incursions coming from Elateia. The road outflanks the site from the north continues westwards until reaching Golemi, where Fossey (1990, 180-182) described a fortified acropolis, sometimes called Roustiana (Dakoronia 1993a, 126). Thence it follows the valley of the Dipotamos river by which it reaches Elateia.

Route 9: Kyparissi-Korseia-Kolaka

This dirt road connects Korseia and Gardinitza with Route 3 from which it branches off ca. 1 km north of the village of Kolaka. After reaching the church of Ayios Nikolaos, it begins to descend along the Kolaka uplands towards Korseia, and Gardinitza. The road joins with Route 1 by way of Kyparissi, at which point it reaches level ground in the plain of Atalandi.

Route 10: Tragana-Hyettos-Pyrgos

This is a dirt road that branches off the National Road, ca. 2.5 km east of Tragana, and starts to ascend the steep slope of Kolaka plateau by following the gorge of the Revenikos river. After reaching the summit near Hyettos, it joins Route 11.

Route 11: Proskynas-Hyettos-Olmones-Tegyra

This is a dirt road exiting the village of Proskynas to the north, which gradually begins to negotiate the ascent of the Kolaka plateau by following the gorge of the
torrent of Plisias. After reaching the summit near Hyettos, it joins Route 10. After the village of Paulos, ancient Olmones (Paus. 9. 24. 3; Fossey 1988, 296-298), the dirt road turns into an asphalt road maintaining a southwest course. By gradually descending and passing between the low hills of Asprovouno (388 masl) and Koutoumba (344 masl), it eventually reaches the level ground near the Melas River, ca. 2.5 km southeast of Pyrgos.

Route 12: Proskynas-Halai

The road provides access for the community of Halai to the trans-regional Route 1 leading to Kopai, Akraiphia and Thebes. Another road directly north of Proskynas leads to the bay of Vivos.

Route 13: Chliadou-Malesina-Halai

A second road connecting Halai with the interior issues from Chliadou maintaining a northeast direction. After ascending to Malesina, it gradually descends on level ground towards the plain of Theologos, where it joins with Route 12 at the north foot of Skopia hill.

Route 14: Chliadou-Martino-Larymna

After leaving Chliadou, Route #1 forks east passing through the village of Martino. After 5 km or so, it issues down at the bay of Larmes, providing an outlet to the sea at the harbor of Larymna.

2.1.3: Summary

Route 1, known also as the coastal road or εὐθεία ὁδός (Paus. 9. 24. 1), no doubt was a carriage-road capable of accommodating wheeled traffic, as well as the movement of heavy baggage of armies (Larsen 1965; McInerney 1999, 58-59; contra Pritchett 1982, 175). Routes 2 and 4 provide access to the Euboean Gulf, as well as an opportunity for maritime communications. Thus, the territory around and between Opous and Kynos may be perceived as a major node where an overland and a sea-
route intersect. It is questionable to a certain extent, however, that past the territory of Opous incoming traffic from Route 1 would have always followed the National Road Thessalonike-Athens in order to reach Boeotia. It is more likely to admit of the possibility that at least armies preferred the course of Route 2, despite the necessity of having to cross the territory of another region, that of Phokis (Table 1.1). The flooded plains around the bay of Akraiaphia, as well as the northeast part of Kopaic lake, on the other hand, may have posed an additional obstacle discouraging large-scale movements along what is now a modern highway traversing the plain reclaimed after the complete drainage of Kopaic lake in the late 19th century. Route 3, while avoiding the territory of Phokis, invited a mountain crossing over what at all times was a border zone between Opountian Lokris and Boeotia. The episode with the battle of Tegyra indicates, among other things, that negotiation of the Kolaka uplands was likely to originate on the Boeotian side. Very much like Route 2, the area around Larymna, Kopai and Akraiphia served as another major node accommodating traffic from Route 1 and Route 4. In the latter case, we also have the evidence of the wheel-ruts near Pazaraki, which were recently attributed to the fourth century BC (Jensen 2002, 20, n. 55).

In addition, Routes 5-14 were, for the most part, utilized by the local communities serving as tracks connecting the mountain plateaux with the major communities in the plain of Atalandi. Nowadays the importance of Routes 10 and 11, for example, is strictly regional, as it probably was in antiquity. The importance of the sanctuary of Apollo at Tegyra (Plut. Pelop. 16-17; Moralia 412 B), along with the potential to attract visitors from far afield, however, should not be underestimated.

67 To cross from Akraiaphia to Copai, Pausanias 9, 24. 1 had to take a boat: “...διαπέλευσαντι εἰσιν Κόπαι.” On the dam works around the bay of Akraiaphia, see Kalcyk 1988, 5-14, Abb. 3-5, 6-8.
68 In his discussion of what Fossey 1988, 275 calls “one of the main routes between Central and Northern Greece,” he acknowledges the importance of Akraiaphia by suggesting that “commerce along this route would not have been to the city’s disadvantage.”
although it was also reachable by way of Abai along Route 2. It is therefore clear that, for the most part, they served local needs playing a secondary role within the mountain chain of communications. Subsidiary to the trans-regional arteries 1-4, most, if not all, regional routes may be described as trampled paths (ἀτραπός) or beaten tracks (τριπός), intended to accommodate people on foot or on packed animals. On the whole, the approaches from the plains were more difficult because of the steep slopes of the Xerovouni mass, the Kolaka uplands and Aetolyma peninsula.

In sum, the overland routes on the territory of Opountian Lokris show that one needs to distinguish between two basic types of routes: (a) arteries of trans-regional character, Routes 1-4 and (b) roads of local significance, Routes 5-14. It is interesting to observe that all major sanctuaries are located in border zones, as well as served by trans-regional routes; Apollo and Artemis Elaphobia at Kalapodi (Routes 1 and 2), Apollo at Tegyra (Routes 2 and 3) and Apollo at Ptoion (Routes 1 and 4). From the available evidence, it is reasonable to suspect that Opountian Lokris exerted some kind of control on the long-distance traffic passing through her territory. Key areas where foreign traffic could be checked were those around Kynos and Opous, serving Routes 1 and 2, and Larymna and Akraiphia, serving Routes 1 and 4. These are also the points where the influence of incoming or outgoing sea-traffic was more strongly felt, with the proximity of the sea anticipating higher frequency of travel, as compared with that generated along the remaining routes. To demonstrate the ways by which this difference translated into practice requires a closer examination of the relevant literary and epigraphic sources (Chapter 2). Before I continue with this, however, an investigation of the sea-route along the North Euboean Gulf is necessary.

69 Discussing the mountain trails over the Kolaka uplands, Oldfather 1916c, 348, aptly concluded that they “are of course quite out of the question as arteries of trade”. See also Gomme 1911/1912, 202 observing that the ancient inhabitants of Korseia, Kyrtones, Hyettos, Olmones and Kopai were “almost exclusively shepherds”.

70 On the terminology of such roads, see Lolos 2005, 149-152.
2.1.4: Sea route

The Euboean Gulf (Euboikos Kolpos) is a naturally formed depression (graben) separating the mainland from Euboea. The island, covering an area of ca. 3530 km², which shares the same geological characteristics with the mainland, originally formed the outer extremity of the continent from which it later became detached (Cary 1949, 73; Philippson and Kirtsen 1951, 564; Higgins and Higgins 1996, 83-87). Philippson and Kirsten (1951, 551) distinguish four parts: (1) Atalandi channel, (2) the strait at Chalcis, (3) Eretria channel and (4) the bay of Petaloi. The Atalandi channel is connected with the Malian Gulf to the northwest, where a strait ca. 4 km wide separates Cape Knemis or Vromolimni on the mainland with Cape Kenaion and the Lichades islands on Euboea. The southern boundary is formed by the Petaloi islands and Cape Geraistos on the tip of Euboea continuing westwards to Sounion in Attica (Gehrke 1992, 99).

At the outset it is important to point out that when it came to negotiating the North Euboean Gulf nowadays, as in antiquity, the ports-of-call along the mainland belonging to Boeotia and East Lokris were the preferred alternative (Dehnam 1970, 49). To a great extent this may be attributed to the fact that the Euboean coast opposite was rather inhospitable, lacking in good harbors and drinking water. The only sheltered harbor for ships, for example, between the Lichades islands and Cape Kenaion, situated off the northwestern corner of Euboea, and the Euripus at Chalcis, 71

71 Cf. Pliny *HN* 4. 12. 21: “...et in ipsis faucibus euripi, quem facit obiecta insula Euboea” and Strabo 10. 1. 1: “Ἐπεὶ δὲ ἡ Ἐβοϊκα παρὰ πᾶσαν τὴν παραλίαν ταύτην παραβῆληται τὴν ἀπὸ Σοῦνίου μέχρι Θετταλίας, πλὴν τῶν ἄκρων ἐκατέρωθεν, οἰκέον ἄν εἰ συνάψαι τὸς εἰρημένος τὰ περί τὴν νῆσον...” The dimensions from N to S are 90 miles, with largest breadth of 30 miles. The estimates of Strabo 10. 1. 2 (1, 200 x 150 stadia) and Pliny *HN* 4. 12. 21 (150 x 40 miles) are incorrect.

72 The importance of the Lichades and Petaloi islands for the maritime traffic in the Euboean Gulf may be gleaned from a fragmentary decree from Eretria dated to the sixth century BC: *IG* XII. 9. 1273/1274, II. III. 1-3, τὸς πλέοντας ἀρίστης μισθὸν/κοῖτινες ἃν Ἡπείρους ἤ Kέναιων/ἄμεσα πρώτα, cf. Ziebarth 1929, 123; Vanderpool and Wallace 1964, 381-391. It is notable that in a document of 1262 AD, the Lichades islands and Petaloi islands are still described as the northern and southern boundaries of what the Venetians called *totum comerclum maris*. They also acquired the notorious reputation of serving as hide-outs for pirates in 13th and 14th centuries AD, cf. Koder and Hild 1976, 204, 236.
was at the bay of Aedepsos (Sackett et al. 1967, 37-39). In his description of Greece, however, Heraclides Creticus (1. 29)\(^{73}\) talks about two currents; one from Anthedon and another along the coast of Euboea converging near the harbor of Chalcis. The latter implies that ships may have travelled along the Euboean coast as well, taking advantage of the favorable north-south current (Bakhuizen 1985, 14-15, fig. 8). The coast opposite Euboea, on the other hand, possessed several headlands and bays sheltered from the heavy mountain squalls coming from Euboea.\(^{74}\)

2.1.4.1: Ports of call

Pseudo-Skylax (*Periplous* 61) gives the distance between Alope and Larymna as 200 stadia (37 km), but this, as Allain (1977, 164) points out, is likely to reflect the direct measurement of 250 stadia (Map 1.3). Assuming that a vessel hugged the coast closely, however, I estimated (see below) that the distance covered would be 340 stadia (62.9 km), which coincides with the distance of 350 stadia calculated by Müller (1861, 48).\(^{75}\)

The shore between Cape Longos and Cape Arkitsa\(^{76}\) was rather low and sandy (Fig. 1.4), albeit somewhat exposed to the strong northerly wind (*Mediterranean Pilot* IV, 143). Although Alope is a coastal site, it did not possess a natural harbor. This may be the reason why the Athenians chose to disembark at Thronion before engaging the Alopeans on the coast in 431 BC (Thuc. 2. 26. 1).\(^{77}\) That Thronion was a preferred

\(^{73}\) The surviving three fragments of the *Description of Greece* attributed to Heraclides Creticus were first published by Müller 1855, 97-106. Translations and commentaries in German can be found in Pfister 1951 and, most recently, Arenz 2005. For an English translation of Fragment I, see Austin 1981, no. 83, 151-154. On Heraclides, see also Dihle 1991, 67-77.

\(^{74}\) Cf. the dangers to shipping posed by the strong winds around the harbors of Chalcis described by Livy 28. 6. 10: “nam et uenti ab utrisque terrae praesertim subiti ac procellosi deiciunt.”

\(^{75}\) Peretti 1979, 483 offers no discussion of the passage in question.

\(^{76}\) The *Mediterranean Pilot* IV, 143 mentions a circular masonry tower, 42 feet high, located on the extremity of the Cape, serving as a lighthouse for sailing ships. Traces of ancient settlement, however, are no longer visible, cf. Gell 1819, 233; Dodwell 1819, 60-61; Girard 1881, 47; Fossey 1990, 88, 90. That the area around Cape Arkitsa may have belonged to Kynos is evident from Strabo 9. 4. 2.

\(^{77}\) Commenting on this passage, Hornblower 1991, 282 incorrectly identified Lokrian Alope with its namesake located on the Malian Gulf. See Lazenby 2004, 37, n. 25.
place and used as a military harbor, is confirmed by Livy (35. 37. 8-9; 38. 14), who says that in 192 BC Herodoros, after assembling a fleet of 30 ships there, set sail to Atalante island. It is perhaps no coincidence that Euripides (Iph. Aul. 262-264) writes of Lokrian Ajax who joined the allied fleet at Aulis after leaving “the famed citadel of Thronion” with 50 ships.⁷⁸

Map 1.3: Major ports of call in the Euboean Gulf

Ps.-Skylax (*Periplous* 60) simply mentions Alope as the first coastal *polis* belonging to the Lokrians. Strabo (9. 4. 3) says that after Kynos one arrives at Alope and Daphnous, where there was a harbor (λίμνη), 90 stadia from Kynos, which was already destroyed by his time.

The next port-of-call was Kynos, for which Strabo (9. 4. 2) and Pausanias (10. 1. 2) say it was the ἐπίνειον of Opous,\(^79\) even though the physical conditions of the shore around Kynos, such as the heavy currents and the northerly wind, prevented the formation of a natural harbor (Fig. 1.5).\(^80\) Pliny (*HN* 4. 7. 27) says that Kynos and Opous were both *oppida*, while for Ptolemy (*Geography* 3. 15. 10) Kynos, along with

\(^{79}\) Livy 28. 6. 12 calls it *emporium Opuntiorum*.

\(^{80}\) The presence of rocks, some showing above water, immediately northwest of the shore, made sailing close to the shore precarious. The *Mediterranean Pilot* IV, 144 advised that the western part of Atalandi bay should be given a wide berth.
Knemides,81 belong to the coastal cities of Opous. Strabo (9. 4. 2) mentions that the distance between Kynos and Aedepsos was 160 stadia. In another passage, Strabo (10. 1. 5) describes the sea passage between Aedepsos and Kynos as a ἑπερκείμενον τοῦ ἐπὶ Κῦνον πορθμοῖ, implying that it was in fact a place used for sea crossing (Map 1.3; Table 1.2).82 The importance of Kynos as a shipping center can be traced back to the Late Bronze age, as some archaeological finds testify (Crieelard 2006, 282-284).83 Strabo (13. 1. 68) also speaks of Lokrian Kanai, a πολίχνιον, founded by Kynos on the southern tip of Lesbos.84 Apart from being the ἐπίνειον of Opous in Roman times, Hellenistic Kynos served as a point of entry for the sea transport of troops (Polyb. 2. 81).85 Pritchett 1982, 188-189. For an unpublished ASCSA paper providing a first-hand description of the material remains, see Cole 1972.83 The Greek excavations on Palaiopyrgos hill near Livanates have brought to light three fragments of LH IIIC craters with painted decoration consisting of armed warriors standing on the deck of ships, as well as terracotta ship models, cf. Wachsmann 1998, 131-137, figs. 7.8, 7.15, 7.16.84 On Lokrian Kanai and the date of the foundation, see Hertel 2008, 187-193.

81 Strabo 9. 4. 4: ἱερῶν ἐρημων. For a description of the site, see Oldfather 1921, 908; Pritchett 1982, 188-189. For an unpublished ASCSA paper providing a first-hand description of the material remains, see Cole 1972.

82 The ferry boat services Arkitsa-Loutra Aedepsos today parallels the ancient practice described by Strabo.

83 The Greek excavations on Palaiopyrgos hill near Livanates have brought to light three fragments of LH IIIC craters with painted decoration consisting of armed warriors standing on the deck of ships, as well as terracotta ship models, cf. Wachsmann 1998, 131-137, figs. 7.8, 7.15, 7.16.

84 On Lokrian Kanai and the date of the foundation, see Hertel 2008, 187-193.
Cape Arkitsa and Cape Kerata form the boundaries of what Strabo (9. 4. 2) knew as “κόλπος Όπούντιος.” The bay of Atalanti, as it is known today, provided not only a good anchorage but also was the first possible shelter for ships setting sail from the Malian Gulf (Sailing Directions, 1852, 52). Drinking water was obtainable from natural springs located in the small bays of Almyros and Vivos (Fig. 1.6).

Figure 1.6: The valley and bay of Vivos looking south

Ca. 1.5 km west of Vivos, the tiny bay of Mikrovivos provides a good anchorage but the area is lacking in drinking water (Fig. 1.7). East of the bay of Vivos, the well-sheltered bay of Ayios Ioannis Theologos provided a natural harbor for the community.

85 Hansen 1997, 23-24 points to Stephanos of Byzantium, FGrHist 1 F 131, who informs that according to Hecataeus, Kynos was a polis, in order to support the claim that the latter was one of the many poleis comprising the Lokrian League of the fifth century BC. In later times, the status of Kynos was reduced to that of an ἐπίλεηνλ dependent on Opous. See also Caspari 1910, 242, n. 23 and Visser 1997, 399.

86 Cf. also the remark of Pomponius Mela 2. 3. 45, who compares the size of the Opountian Gulf to that of the Malian, “…Malaeus et Opountius grandes sinus”.

87 Local sources inform about the existence of an ancient well located near the shore (J. Coleman pers. com.)
of Halai (Fig. 1.8). Although the accounts of Strabo (9. 4. 2; 9. 2. 12) and Pausanias (9. 23. 7) have no value for the study of its role as a port-of-call, indirect evidence suggests that this potential was never put to use on a grand scale.
bypasses the Aetolyma peninsula completely (Map 1.2).\footnote{According to Oldfather 1916c, 348, Halai was “anything but the natural outlet for the Kopaic basin.”} Secondly, sailing ships may have often avoided venturing into the eastern side of the bay of Atalandi on account of the dangerous waters immediately to the north of Cape Kerata.\footnote{The Mediterranean Pilot IV, 143 recommends “a wide berth” for the ships sailing around it on account of the existence of a shoal extending for some 400 m directly north of Cape Kerata.} This may help explain why Ps.-Skylax (Periplous 60) and Pomponius Mela (2. 3. 40) omitted Halai from their accounts. The building of a watchtower, now called Keratopyrgos (38 masl), on a rocky outcrop connected to Vrachaki (211 masl) by a low saddle quite possibly reflects the awareness of the hidden dangers (Fig. 1.9).\footnote{The site is marked as “Pyrgos” on the British Admiralty Chart, as well as mentioned by the Mediterranea Pilot IV, 143. On the map prepared by Philippson and Kirsten 1951, it is labeled as “nachantiker Thurm”. A small arc of mortared masonry (ca. 0.60 m thick) has survived of the circular tower with a diameter of ca. 5 m. Large lumps of concrete, stones and tiles still lie scattered in its immediate vicinity. In all probability it was originally constructed during the Medieval period. It shows no sign of earlier phase. Contrary to the claims according to which it may have belonged to Halai in Classical times, serving to signal the approach of “hostile ships and fleets” (Coleman, forthcoming) or withstand pirate attacks from the sea (Katsonopoulou 1990, 57) runs the observation that the tower has no direct line of sight to the acropolis of Halai. It seems more plausible to suggest that it served as a lighthouse since it could have been easily spotted from as far away as Cape Arkitsa and Kynos, where a similar, square tower was also in existence during the Medieval period, cf. Fossey 1990, 81. It is ironic that Karastathis, 1987, 102, a native of Malesina, who was apparently unable to find the tower, was later cited as an authority behind Fossey’s erroneous conclusion (1990, 148, n. 4) that the tower is no longer findable, cf. Coleman forthcoming.}
Furthermore, Kretschmer (1909, 637) has already identified Cape Kerata with Cavo Blanco mentioned in the Catalan Atlas of 1375 (Grosjean 1978, sheet 4a), a port of call located between Longavitza, identified with Loukisia (ancient Anthedon) and Ratisa, identified with Cape Arkitsa (Kretschmer 1909, 637). Lastly, if the identification with Cavo Blanco is correct, 1375 may be also considered a *terminus ante quem* for the building of Keratopyrgos.\(^91\)

East of Cape Kerata, Aetolyma peninsula terminates in Cape Theologos, off the coast of which some remains from a Byzantine wreck, dated to 11\(^{th}\) century, have been found (Kazianes et al. 1990, 229-231).\(^92\) After Cape Theologos a safe anchorage was possible at the sandy beach of Vlichada/Lekouna bay (Map 1.1), well sheltered by the steeply rising hills of the Aetolyma peninsula (Fig. 1.10).

![Figure 1.10: Bay of Vlichada/Lekouna looking southeast](image)

\(^{91}\) Katsonopoulou 1990, 57, n. 34 cites the opinion of Timothy Gregory, who thought based on the masonry that the tower may be dated to the Frankish period, i.e. 13\(^{th}\) century.

\(^{92}\) The site was surveyed by the Ephoreia of Underwater antiquities in 1985. The divers uncovered a cluster of 50 amphorae and 2 iron anchors lying on the seabed at a depth of 20 m, ca. 75 m off the shore. The lack of ship remains may suggest that the vessel was trying to escape rough sea conditions or heavy mountain squalls descending from Euboea (*Mediterranean Pilot IV*, 142) by dumping overboard some of the cargo, including the heavy anchors. Without discussing the apparent absence of ship wreckage, the authors, however, left the question open, but given the situation, the term “wreck” may not be the most appropriate, especially because it has since gained currency in the literature, cf. Doorninck 2004, 233, n. 54.
The access from the interior, however, is rather difficult; a circuitous road originating north of Malesina makes a steep descent from the rolling hills until it reaches level ground at the shore (Katsonopoulou 1990, 56).

The last port-of-call belonging to Opountian Lokris lies in the narrow bay of Larmes (Fig. 1.11).

![Figure 1.11: Bay of Larmes looking south](image)

The well-sheltered inlet to the east of the bay had deep waters (Paus. 9. 23. 7), while numerous springs in the area provided drinking water. Strabo (9. 2. 13) knew the town as πολίχνιον, while Pliny (HN 4. 7. 27) says it was an oppidum on the Lokrian coast. According to Ps.-Skylax (Periplous 60) Larymna was the first coastal town of the Lokrians if sailing towards Thermopylai, and the last if sailing in the opposite direction towards Sounion (Pomponius Mela 2. 3. 45). Unlike Halai, the harbor was well connected with the interior through Route 4, despite the communication problems posed by the drainage of Lake Kopais.

2.1.4.2: Factors influencing sea travel

From the overview presented above is clear that the coastal geography of
Opountian Lokris made little impression on the ancients (Map 1.1; Table 1.3). One is essentially left with the short and possibly corrupt passages of Ps.-Skylax and Pomponius Mela, as well as the brief references in the writings of Strabo, Ptolemy, Pliny and Pausanias. It must be realized at the outset, however, that the purpose of ancient *Periploi* was not to describe coastal features but to record the experience of sailing (Kowalski et al. 2007, 50). Essentially, they described maritime routes whereby the sequence of the cities was presented in chronological order (Kowalski et al. 2007, 56).

Table 1.3: Harbors and capes in the Bay of Atalandi attested in literary sources, portolans and charts

<table>
<thead>
<tr>
<th>MODERN NAME</th>
<th>ANCIENT NAME</th>
<th>TYPE</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayia Aikaterini</td>
<td>Alope</td>
<td>polis</td>
<td>Ps.-Skylax Periplous 60</td>
</tr>
<tr>
<td>Arkitsa</td>
<td>Ratisa</td>
<td>cape</td>
<td>Catalan Atlas</td>
</tr>
</tbody>
</table>
| Livanates | Kynos | *ἐπίνειον emporium* | Strabo 9.4.12
 | | | Paus. 10.1.2
 | | | Livy 28.6.12 | |
| Skala Atalandis | | *harbor* | Mediterranean Pilot |
 | | | IV, 143 |
| Atalante island | Atalante | *harbor base* | Thuc. 2.26.1
 | Talanda | | Livy 35.37.8
 | | | Pira Reis 8.18 |
| Theologos | Halai | *πολίχνιον* | Strabo 9.4.2
 | | *πόλισμα* | Paus. 9.23.7 | |
| Kerata | Cavo Blanco | *cape* | Catalan Atlas |
| Kastri Larmes | Larymna | *λίμνη* | Paus. 9.23.7 |
 | | *ἀγχυβαθῆς* | |

Thus, the omission of Halai from the *Periplous* of Ps.-Skylax and the *Chorography* of Pomponius Mela may signal the fact that a sailing boat continued directly to Skala.

93 Indirect appreciation of the importance of the Lokrian exposure to the sea may be gleaned from Eur. *Rh.* 700: “...παραλίαν Λοκρῶν νεμόμενος πόλιν”
Atalandis or Kynos, as was also the case in the Medieval period, rather than furnish the proof that “the Hellenistic establishment of Halai occurred after 350 BC” (Haas 1998, 14). What needs further emphasis, however, is the often-overlooked fact that Ps.-Skylax and Pomponius Mela described two different sea voyages; one towards the Malian Gulf and another towards Sounion. Despite the problems surrounding the correct order of harbors mentioned in Mela’s account (2. 3. 45-47), it remains important to recognize that a vessel putting to sea from the Malian Gulf bound to Sounion was likely not only to sail along but to actually stop, should a need arise, at Thermopylai, Opous, Scarphaia, Knemides, Alope, Anthedon, Larumna, Aulis, Marathon, Rhamnous, Thorikos, Brauron, Sounion and Piraeus (Map 1.3, 1.4, Table 1.4). The value of the information provided by Ps.-Skylax, on the other hand, as I will try to show, increases considerably when analyzed in the context of his whole work. Throughout the *Periplous*, for instance, he gives the distances between places in stadia and in days (Allain 1977, 67). While the practice of measuring distance in terms of the time it took to cover it may go back to the literary tradition of fifth century BC (Allain 1977, 67), it nonetheless provided a dynamic aspect of representing sea distances. Of course the time needed to sail from point A to point B depended on variables such as currents, winds, stops, etc. Ps.-Skylax (*Periplous* 69)

94 Fossey 1990, 171 has rightly noted that of all sites mentioned, Opous and Larumna are directly transliterated from Greek, as well as that both are incorrectly placed in the sequence. Another obvious error is the omission of Kynos, which Pomponius Mela 2. 3. 40 wrongly describes, along with Kaliaros, as an inland site, “De locis atque urbis quae non adluit haec maxime memoranda sunt:…in Locride Cynos et Calliaros.” See the comments of Silberman 1988, 46, n. 1. The correct order of coastal sites is: Thermopylai, Scarphaia, Knemides, Alope, Opous (Kynos), Larymna, Anthedon, Aulis, Rhamnous, Marathon, Brauron, Thorikos, Sounion and Piraeus, cf. Silberman 1988, 188, n. 4, who, however, omits Kynos, Sounion and Piraeus. Curiously, Romer’s 1998 edition of Mela, esp. 80-82, makes no reference to these problems.

95 The *stadion* was a unit of measuring distance used by Greek and Roman authors. On *stadia* in Ps.-Skylax, see Peretti 1979, 53, n. 31, 303, n. 333. The *stadion* employed by Strabo and Pliny the Elder equals 185 m, which is also 1/10 of a nautical mile, cf. Bekker-Nielsen 2004, 13 and Casson 1989, 278. My measurements throughout the text are calculated on the basis of a *stadion* of 185 m.

Map 1.4: Distances between Thessalonike and Piraeus in stadia (redrawn with additions from Reinders 2003, fig. 1.5)
Table 1.4: Coastal distances between major ports of call from Piraeus to Thessalonike in stadia, nautical miles and kilometers

<table>
<thead>
<tr>
<th>Ports of call</th>
<th>From</th>
<th>To</th>
<th>Distance (Stadia)</th>
<th>Distance (Nautical miles)</th>
<th>Distance (Kilometers)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sounion</td>
<td>Piraeus</td>
<td>330</td>
<td>33</td>
<td>61</td>
<td></td>
<td>Strabo 9.1.2</td>
</tr>
<tr>
<td>Chalcis</td>
<td>Sounion</td>
<td>670</td>
<td>67</td>
<td>124</td>
<td></td>
<td>Strabo 9.2.8</td>
</tr>
<tr>
<td>Thermopylai</td>
<td>Chalcis</td>
<td>530</td>
<td>53</td>
<td>98</td>
<td></td>
<td>Strabo 9.4.17</td>
</tr>
<tr>
<td></td>
<td>subtotal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermopylai</td>
<td>Piraeus</td>
<td>1,530</td>
<td>153</td>
<td>283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spercheios</td>
<td>Demetrias</td>
<td>800</td>
<td>80</td>
<td>148</td>
<td></td>
<td>Strabo 9.5.22</td>
</tr>
<tr>
<td>Peneios</td>
<td>Demetrias</td>
<td>1,000</td>
<td>100</td>
<td>185</td>
<td></td>
<td>Strabo 9.5.22</td>
</tr>
<tr>
<td>Thessalonike</td>
<td>Peneios</td>
<td>660</td>
<td>66</td>
<td>122</td>
<td></td>
<td>Strabo 8.8.5</td>
</tr>
<tr>
<td></td>
<td>subtotal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thessalonike</td>
<td>Spercheios</td>
<td>2,460</td>
<td>246</td>
<td>455</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piraeus</td>
<td>Thessalonike</td>
<td>3,990</td>
<td>399</td>
<td>738</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Says that a day’s voyage equals 500 stadia (92.5 km). Given the actual distance of 340 stadia between Alope and Larymna, it may be shown that a ship would have been in a position to sail along Opountian Lokris in less than a day. In order to evaluate the significance of such an estimate, however, four variables must be taken into account: (1) current, (2) wind (3) type of vessel and (4) direction of travel.

The currents in the Euboean Gulf are affected by the inflow coming from the Hellespont, which follows a southwest direction (Fig. 1.12). The direction of currents, however, changed according to season, as well as direction and strength of the current.

prevailing wind. The heavy squalls blowing sideways from the high mountains of Euboea also affected sailing conditions. In addition, the current can flow in different directions, especially at narrow points like the Euripus near Chalcis. In straits the speed changed as well. On reaching the south end of Euboea, the speed of the current coming from the Hellespont, for example, could reach 7 knots along the Doro channel (Morton 2001, 43). The normal speed of the current in the Euboean Gulf was about 1.5 knots (Dehnam 1970, 48).

An important factor affecting the speed of sailing ships was the formidable presence of what Greeks knew as the Etesians, or the north-easterly winds.98 Sailing southwards or westwards was considerably easier and faster, allowing the ships to

98 Hes. \textit{Works and Days}, 663-677; Ap. Rhod. \textit{Arg.} 2. 498. Cf. Philip II of Macedon who in order to deter the Athenians from arriving promptly deliberately decided to deliver his attack on Thrace either in autumn when the Etesians blew stronger or in the winter, Dem. 4. 31: "φυλάξας τοὺς ἐτησίας ἢ τὸν χειμῶν’ ἐπηχεῖτο, ἣν ἦν ἡμέρᾳ μὴ δυναμένθ’ ἐκεῖς ὄφθενθα."
harness the power of what Casson (1951, 138) has called “favorable winds”. In contrast, when a ship needed to sail northwards or eastwards, it had to struggle against it, which in turn reduced its speed. On the basis of literary evidence, Casson (1951, 138-142) has shown that the speed of a ship sailing with the help of a favorable wind was between 4 and 6 knots, and 2 knots with unfavorable wind. If the voyage was coastal, however, the speed was 3-4 knots. In other words, a ship sailing from the Malian Gulf en route to Chalcis would be able to complete the trip much faster, and with a less effort, as opposed to a ship making a return journey. A rarely cited passage from Theophrastus’ treatise On Winds (28), illustrates the importance of the Etesian winds for ships sailing in the Euboean Gulf by pointing to the crucial role played by what was known as “the return north wind”. The latter allowed the ship, on which Theophrastus was traveling, to make a return trip from Oropos to Chalcis.

It is also essential to be aware of the differences between military and commercial shipping. War ships such as triremes or pentekonters were extremely light vessels, built primarily for speed and maneuver (Gomme 1933, 17). For their speed they relied on oars, and since they could not afford any deadweight, they had no room for storage of food and water on board. This is the reason why triremes needed frequent stops and, as Gomme (1933, 18) points out, the success of their sailing from point A to point B was to a great degree dependent on a friendly coast. Merchant ships, 99 on the other hand, mustered by smaller crews, sailed into the open sea for days without having to rely on the shores for their meals and lodging. They were also unsuited for sailing in coastal waters for practical reasons, being much heavier than

99 Ploia strogyla, cf. Hdt. 1. 163, Theoph. HP 5. 7. 1; ploia fortigika, cf. Xen Hell. 5. 1. 21;olkades, cf. Hdt. 3. 135, Thuc. 7. 7. 3. There were six classes of merchant ships based on size: (1) 500 talents (13 tons), (2) 500-1,000 (26 tons), (3) 1,000-3,000 (78 tons), (4) 3,000-5,000 (130 tons), (5) 5,000-10,000 (260 tons), (6) over 10,000, cf. Stronk 1992/1993, 130; Velissaropoulou 1980, 62-64. A decree dated to third century BC, for example, regulating the use of the commercial harbor of Thasos (IG XII suppl. 348) separates the ships weighing 3, 000 (78 tons) from those of 5, 000 talents (130 tons), whereas ships less than 2, 300 talents (60 tons) had to moor in a different location.
war ships, and with larger drafts. Unfavorable winds and calm waters also affected their voyage to a great degree because in such cases they had to rely only on the oars of the crew. In the case of the Euboean Gulf, it would also be of essence to establish based on the available sources if commercial shipping ventured into its waters (see section 2.1.5).

Another important category of sea travel in the North Euboean Gulf is the documented practice of traversal crossings, the existence of which may be presumed from literary evidence (Table 1.2). One example is the Lokrian raids on Euboea which led to the installment of an Athenian garrison on Atalante island in 431 BC (Thuc. 2. 26. 2). More information can be gained from a short passage in Polybius (4. 67. 7), describing the route via Northern Euboea and Kynos taken by the troops of Philip V in 219 (Walbank 1957, 522-523; Larsen 1965, 117). It is notable that Philip V ferried his troops, 3, 000 hoplites, 2, 000 light-armed, 300 Cretans, 400 horse royal guard, in the winter (Fig. 1.3). The episode furnishes, among other things, another proof for the suspicion that the sea, at least for military purposes, was not entirely closed during the winter months (Simonsen 2003, 265-266).

The significance of this route, however, should be treated in conjunction with the Geography of Strabo (9. 4. 2, 10. 1. 5), who on two occasions, describes the passage in question as a πορθμός (Map 1.3). It is surprising that a combined treatment of these three passages concerning Kynos usually escapes scholarly attention (Larsen 1965, 117; Fossey 1990, 71-74; cf. Hatzopoulos 2001, 32).100 As Baladié (1980, 230) puts it, πορθμός designates the existence of overland communication at the point where a road had to cross the sea. In the opinion of Schuttrumpf and Gehrke (1996, 496-498).

100 Strabo 10. 1. 5 is even omitted from the entry on Kynos in Der neue Pauly, although it was mentioned in the RE article by Oldfather 1937, 30. See also Les Belles Lettres edition of Strabo, where no comment has been made on the importance of the sea passage between Aedepsos and Kynos, Lasserre 1971, 24, n. 2.
the term implies the existence of regular maritime communication in the sense of transport of both people and goods. In the Corinthian Gulf, for example, the following sea crossings are described as πορθμός: Patrai-Kalydon, Rhion-Antirhion, Oiantheia-Aigeira, Sikyon-Delphi (Freitag 2000, 322).

Since the actual measurement of the sea crossing is 80 stadia (14.4 km), Strabo’s distance of 160 stadia (28.8 km) is usually dismissed as a mistake. Commenting on this passage (9. 4. 2), however, Baladié (1996, 216) has suggested that the measurement of 160 stadia is probably correct because it corresponds to the distance between Opous and Aedepsos. In light of the fact that Kynos was not an independent settlement but the ἐπίνειον of Opous, Baladié’s conjecture seems reasonable. Also it is natural to imagine that people and goods in transit had to reach a final destination at Opous or continue to Phokis or Boeotia via the Opous-Hyampolis-Orchomenos road rather than end the journey on the seacoast, at Kynos.

That πορθμός signals the existence of a complex of land-sea communications is also evident from the existence of another term, διαρμα, which denotes simply the crossing from one coastal site to another. Strabo (9. 2. 13) says that the διαρμα between Anthedon and Aigai on Euboea was 120 stadia (22.2 km). Yet, as noted by Gehrke (1992, 111), Heracleides Creticus (1. 24) described the majority of the Anthedonians as ferrymen, πορθμεῖς. Such διαρμα crossings to the coast of Euboea are also implied by the episode with the fishermen from Halai at Aedepsos (Plut. Sull. 26. 1-4).

101 All sorts of data, aside from the literary evidence bearing witness to military shipping, points to the importance of this route in antiquity, including perhaps the transportation of goods during the Late Roman period at least, as suggested by the discoveries of copies of the Price Edict of Diocletian dated to A.D. 301 in many of the cities comprising this chain of communications, Elateia, Opous, Aedepsos and Histiaea, among others. On the edict, see Laffuer 1971. See also the discovery of a Late Roman counterpoise weight, an object used in commercial transactions, decorated with a splendid bronze bust of Athena/Minerva found on the Palaiopyrgos hill near Livanates. Pantos 1994, 327-331, who published the find, noticed alphabetic numerals, N = 400 nomismata and Y = 800 nomismata, along the lower edge of the bust closely corresponding to the actual weight of the object, 1,385 g.
Finally, one needs to admit the possibility for the existence of small craft vis-à-vis fishermen’s boats and rafts. The small sailing boats must have been a daily sight year round. Herclides Creticus (1. 24), for instance, describes the importance of fishing, as well as purple shells and sponges, for the people of the small community of third century Anthedon, which echoes the story of the fishermen from Halai who were offering their fish to Sulla at Aedepsos shortly after 85 BC (Plut. Sull. 26. 1-4). Fishing was a daily activity for many coastal communities in the Medieval period as well (Koder and Hild 1976, 103-104). The existence of small craft, which could operate even during the winter season for voyages lasting no more than a day (Karmon 1985, 5), must at all times have been available. As we shall see later (Ch. 2, section 2.1.7), at least on one occasion, when sailing in the North Euboean Gulf, the Macedonians were able to take advantage of improvised boats or rafts.

2.1.4.3: An example

Finally, we need to factor in the direction of the voyage (Map 1.5). If a sailing vessel embarks on a journey from the Euripus bound to the Malian Gulf, it will cover a distance of 18.5 km before reaching the next port of call at Anthedon, where there was a harbor, λίμην, called Anthedonion by Dionysius, the son of Calliphon (Description of Greece 91-92). The distance from Anthedon to Larymna is the same, i.e. 18.5 km. The journey from Larymna to Halai, on the other hand, is almost twice as long (31.4 km), because it entailed a circumnavigation of the Aetolyma peninsula. Upon leaving Halai, our vessel, at first, had a choice; to hug closely to the coast, around the islands of Gaidaros and Atalante (18.5 km), or to follow more or less a straight line.

102 Hom. Od. 5. 244-257 with Casson 1971, 217-219. The simplest form of a raft consisted of tree trunks tied together, while the seaworthiness increased if they were supported with goatskins stuffed with hay or empty amphorae, Rouge 1981, 27-30; Casson 1994a, 3-8. Alexander transported his army over the Danube and the Oxus using the soldiers’ leather tent covers stuffed with hay, cf. Arrian. Anab. 1. 3. 6, 3. 29. 6.

103 The harbor is well attested in the literary sources: Ps. Skylax Periplus 59 calls it τεῖχος; Strabo 9. 2. 13: “...πόλις ἐμένα ἐγερθεσα”; Ps.-Skymnos 500: “...παράλος ἐστὶν Ἀνθεδον οῆς”; Steph. Byz. s. v. Anthedon.
The distance to the next port of call at Alope is the shortest, 12.9 km, and it is interesting to note that Strabo (9. 4. 3) places the next harbor, λίμην, at Daphnous, not at Alope. If the journey ends at Larissa Cremaste, for example, the vessel had to travel for another 31.5 km before the voyage was complete. From the figures above it follows that a coastal voyage of a vessel leaving from Chalcis and bound to Larissa Cremaste was 131.3 km, 71 nautical miles or 710 stadia long. Assuming that the sailing took place under unfavorable wind with speed of 3 knots, and that a sailing day lasted 10 hours, the vessel would need nearly 2 ½ days to complete the journey.
(Tables 1.5, 1.6). It is important to elaborate on two further points here. At the rate suggested above, the crew of our vessel had to make a stop at a Lokrian harbor, most probably Halai, before continuing any further. Night sailing under any circumstances would have seemed like an unattractive possibility. It must be admitted that Larymna is a likely choice as well, especially if, upon leaving Chalcis, the crew decided to linger at Anthedon longer, for food, water or simply to rest. In such a situation, the crew would then need to spend the second night at Kynos or Alope, but it was perhaps not until the noon on the third day, they would be able to put ashore at Larissa Cremaste. To give an extreme example, if triremes had to complete the same voyage within a single day they would have needed a speed of 7 knots to do that. The feat is not unheard of. Suffice it to mention the amazing flight of Aemilius Paulus who in 167 BC managed to reach the record-speed of 8 knots on his crossing from Brindisi to Corcyra. Yet, as Casson (1951, 146-147, n. 45) points out, war galleys were unlikely to keep the men on the oars continuously, once outside the harbors, let alone maintaining a speed of 8 knots throughout. Even with a speed of 4 knots for a fleet in a hurry (Tarn 1910, 184-186), they would need at least two days in order to reach the final destination at Larissa Cremaste.

2.1.5: Trade routes and chemins militaires

It is often claimed that the exposure to the sea played a major role in the history of Opountian Lokris, bringing a certain amount of “unity” not only to the communities on the coast but also to those of other neighboring regions (Fossey 1990, 7; Morgan 2003, 28; Kramer-Hajós 2005; Crielaard 2006, 273). This state of affairs has been attributed to the harbors of Opountian Lokris, it is argued, which played an

104 Livy 45. 41. 3: “profectus ex Italia classem a Brundisio sole orto solvi; nona diei hora cum omnibus meis navibus Corcyram tenui.”
105 Under variable wind conditions and with a speed of 1.3 knots, the Persian fleet needed three days to reach Phaleron from the Euripus (Hdt. 8. 66), a distance of 177 km, Casson 1971, 294.
Table 1.5: Coastal distances between major ports of call from Chalcis to Larissa Cremaste in stadia, nautical miles and kilometers

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Distance</th>
<th>Stadia</th>
<th>Nautical miles</th>
<th>Kilometers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chalcis</td>
<td>Anthedon</td>
<td>100</td>
<td>10</td>
<td>18.5</td>
<td></td>
</tr>
<tr>
<td>Anthedon</td>
<td>Larymna</td>
<td>100</td>
<td>10</td>
<td>18.5</td>
<td></td>
</tr>
<tr>
<td>Larymna</td>
<td>Halai</td>
<td>170</td>
<td>17</td>
<td>31.4</td>
<td></td>
</tr>
<tr>
<td>Halai</td>
<td>Kynos</td>
<td>100</td>
<td>10</td>
<td>18.5</td>
<td></td>
</tr>
<tr>
<td>Kynos</td>
<td>Alope</td>
<td>70</td>
<td>7</td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td>Alope</td>
<td>Larissa Cremaste</td>
<td>170</td>
<td>17</td>
<td>31.5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Chalcis</td>
<td>710</td>
<td>71</td>
<td>131.3</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.6: Time of travel between Chalcis and Larissa Cremaste according to wind, speed and type of vessel; 1 knot is a unit of speed equal to 1 nautical mile per hour

<table>
<thead>
<tr>
<th>Boat</th>
<th>Direction</th>
<th>Time</th>
<th>Trireme</th>
<th>Direction</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfavorable Wind Speed of 3 knots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chalcis-Anthedon</td>
<td>3,20</td>
<td></td>
<td></td>
<td>Larissa Cremaste-Alope</td>
<td>2,25</td>
</tr>
<tr>
<td>Anthedon-Larymna</td>
<td>3,20</td>
<td></td>
<td></td>
<td>Alope-Kynos</td>
<td>1</td>
</tr>
<tr>
<td>Larymna-Halai</td>
<td>5,40</td>
<td></td>
<td></td>
<td>Kynos-Halai</td>
<td>1,25</td>
</tr>
<tr>
<td>Halai-Kynos</td>
<td>3,20</td>
<td></td>
<td></td>
<td>Halai-Larymna</td>
<td>2,25</td>
</tr>
<tr>
<td>Kynos-Alope</td>
<td>2,30</td>
<td></td>
<td></td>
<td>Larymna-Anthedon</td>
<td>1,25</td>
</tr>
<tr>
<td>Alope-Larissa Cremaste</td>
<td>5,40</td>
<td></td>
<td></td>
<td>Anthedon-Chalcis</td>
<td>1,25</td>
</tr>
<tr>
<td>Total</td>
<td>22h,45m</td>
<td></td>
<td>Total</td>
<td>Larissa Cremaste-Chalcis</td>
<td>9h,25m</td>
</tr>
</tbody>
</table>

important role for the maritime communications along a major sea route connecting the northern and southern Aegean (Map 1.6).

Map 1.6: Sea routes in the Aegean discussed in the text

To a certain extent, this rests on the belief that, to quote Agouridis (1997, 9), “the most preferable route from the north to Attica, Cyclades and back would likely have been via the Euboean Gulf.” On closer scrutiny, however, things are not quite simple. When it comes to long-distance trade routes, for example, the Euboean Gulf merits no discussion (Rouge 1966, 88-89; Casson 1994b, 521). In particular, Coleman (1999, 310; cf. Haas 1998, 25) has remarked that Halai was thriving in the Hellenistic period probably because “it was a regular stopping point for Macedonian military shipping”

106 The same statement is made by Picard 1979, 212: “Il semble bien que tout bateau venant de Cyclades, du Péloponnèse ou de l’Attique et se dirigeant vers la Thessalie, la Chalcidique ou la Thrace, utilisait normalement le canal eubéen.” See also Tozer 1873, 237; Semple 1932, 601 and Cary 1949, 73.
connecting Demetrias, Chalcis and Corinth, what Polybius (18. 11. 4-7) knew as the “Fetters of Greece.” Although from a military perspective this seems reasonable, it is surprisingly difficult to demonstrate in what ways, and to what extent, other types of shipping may have also affected the Lokrian coast. To complicate matters further, a study of the sea-route in terms of Lokrian coastal topography has rarely been pursued in detail.

2.1.5.1: Commercial ports

In his two-volume work Les Phениciens et l’Odyssee, Bérard (1902, 69) put forward the theory that Thebes was the meeting point of several trade-routes thanks to what he called the law of isthmuses. According to the latter, ancient trade preferred overland roads, while shying away from the sea as much as possible (Bérard 1902, 224-226). His views were heavily criticized and ultimately rejected by Gomme (1911/1912) in a seminal article devoted to the topography of Boeotia.107 Other scholars have since followed suit (Michell 1957, 247-249; Wickersham 1993, 124-132). Reliant on the information contained in the Mediterranean Pilot, Gomme was also the first to describe in some detail the conditions for sailing provided by the coast of Opountian Lokris. Ancient testimonia and inscriptions with relevance to the study of seaborne trade and piratical activity are conveniently collected by Ziebarth (1929, 100-140). Essential background for reconstructing the sea-route can be found in the excellent geological and geo-morphological description of the Euboean Gulf provided by Philippson and Kirsten (1951, 551-560). Useful information pertaining to the Byzantine period, much of which is relevant to earlier times, can be obtained from the important study of Koder and Hild (1976, 101-104). In his monograph on the history of Chalcis and the Euboean League, Picard (1979, 212-218) attempted to demonstrate

107 The article was later reprinted, in Gomme’s Essays in Greek History and Literature, Oxford, 1937, 17-41.
the importance of the Gulf for maritime communications based on a critical analysis of some literary sources. A more comprehensive approach was adopted by Gehrke (1992, 98-117) and Reinders (2003, 10-30), who focused on the ports of call located on either side of the Euboean Gulf, in addition to presenting further historical information testifying to the use of the sea-route in antiquity.

A starting point in all these studies is the much-quoted passage of Ephorus (FGrH 70 F 119), repeated by Strabo (9. 2. 2.) and slightly modified by Ps.-Skymnos (485-500) and Stephanus of Byzantium (s.v. Boeotia). According to Ephoros, Boeotia was superior with respect to other regions on account of her great number of harbors and geographical location on three seas. Those on the Corinthian Gulf received merchandise from Italy, Sicily and Libya; those on the South Euboean Gulf, Aulis and Tanagra, had relations with Egypt, Cyprus and the Aegean islands; those on the North Euboean Gulf, Salganeus and Anthedon, connected with Macedonia, Propontis and the Hellespont (Marcotte 2000, CXXVIII-CXXIX). It is interesting to point out, however, that Ps.-Skymnos and Stephanus of Byzantium leave out the Propontis and the Hellespont from their accounts, while including Thessaly together with Macedonia. For our purposes, it is important to ask, to what extent, the North Euboean Gulf in fact served as a sea-route connecting the northern Aegean with central Greece. And more importantly by whom and for what purpose.

Stählin et al. (1934, 5), for example, have argued that the Thessalian grain destined for Athens travelled along the Euboean Gulf.\footnote{For a brief discussion on the import of Thessalian grain, see Michell 1957, 260, nn. 3-4. IG II² 654-655 mentions the import of Macedonian grain, which probably was transported by way of the Euboean Gulf as well. The same may be suspected for the transport of Macedonian timber and pitch exported to Athens for most of the Classical period, cf. Meiggs 1982, 123-125; Borza 1987, 41-47; Reed 2003, 19-20 with lit. With the exception of the Hellenistic shipwreck found off the coast at Artemision, no other Classical and Hellenistic wrecks have been recovered from the waters of the Euboean Gulf, cf. Gibbins 2001, 297-304.} Indirect evidence supporting such an idea may be sought in the fact that, as pointed out earlier, pirates frequently
used the opposite sides of Euboea as hide-outs (Ormerod 1924, 23): the tiny island of Myonnesos, off the coast between Larissa Cremaste and Antron, and the famous Cape Geraestus on the southern tip of Euboea (Dem. Philip. IV; Aeschin. Ambass. 72). In light of the differences between commercial and military shipping noted above, one can easily see why such voyages had no effect on the coastal communities. It is therefore unlikely that a Thessalian ship was expected to put in a Lokrian harbor *en route* to Piraeus.

That the sea-traffic between Euboea and Attica was a matter of concern is evident from an Athenian inscription of 446/5 BC (*IG* I² 41, ll. 67-76, cf. McGregor 1982, 110) regulating the interactions with the newly-founded *clerouchy* of Histiaea (Ziebarth 1929, 123; McGregor 1982, 105). The document specifies, among other things, the going rates for ferrying passengers along major sea-routes in the Euboean Gulf: Chalcis-Oropos, Oropos-Histiaea and Chalcis-Histiaea (McGregor 1982, 111). Furthermore, Moreno (2007, 116) has recently suggested that the specifications about those engaged in sea-traffic are likely to involve the shipments of grain.

The case with the Athenian wheat from Crimaea,¹⁰⁹ on the other hand, is instructive because of the claim that it was transported by way of Histiaea. Grundy (1948, 79, 96), who first expressed this opinion, thought that once unloaded at the port of Histiaea, the grain was then carried in carts by land all the way down to Eretria whence it was shipped over to Oropos and taken to Athens through Dekeleia. While Westlake (1948, 3, n. 3) promptly refuted Grundy’s suggestion, Michell (1957, 261) alternatively argued that “Pontic wheat was freighted round the north of Euboea, via Histiaea,” at least after 413 BC when the Spartans captured Dekeleia.¹¹⁰ To support his

¹⁰⁹ The literature on the subject of Athenian grain imports from Crimaea is vast, see most recently Noonan 1973, 231-242; Garnsey 1988, 119-133, 150-154; Tsetskhladze 1998, 52-73; Whitby 1998, 102-128; Keen 2000, 63-71; Oliver 2007, 252-255.

¹¹⁰ Transportation by sea along the North Euboean Gulf is also preferred by Sackett et. al. 1967, 39-41, n. 30.
claim, he pointed to the Athenian fortification of Sounion in 412 BC, so that “their wheat-ships may have a safe passage round (Michell 1957, 261).” To begin with, Thucydides’ use of the word *periplous* is hardly conclusive evidence for the opinion that in order to sail around Sounion corn ships bound to Piraeus must venture into the Euboean Gulf. Furthermore, Xenophon, for example, says that in 376 BC the grain ships from Crimaea were forced to wait a couple of days at Cape Geraestus because the route to Piraeus was guarded by the Spartans who managed to occupy Keos, Aegina and Andros in advance (Ziebarth 1929, 69; Stroud 1998, 119).\(^{111}\) The episode illustrates the fact that before reaching Cape Geraestus the ships employed what is usually referred to as “the direct sea-route,” i.e. from the Hellespont via Skyros, east of Euboea, and through the Doro channel between Euboea and Andros (Gehrke 1992, 101, 105). But what is also noteworthy is that had the Spartans not seized these places, the ships would have still sailed around cape Sounion. Similarly, the establishment of Athenian *clerouchies* on Lemnos, Imbros and Skyros for most of the Classical period reflects the importance of these islands in the transport of grain from the Black Sea (Rutishauser 2007, 466). In addition, we know that the route was protected by fleets of warships, which sometimes provided escort (*στυλομπίσμα*) to grain-ships (Michell 1957, 267-268). By contrast, in 431 BC the Athenians fortified Atalante island because the Lokrians were ravaging Euboea, an ally of Athens during the Peloponnesian War, and not because they feared that the Lokrians might endanger the convoys of ships carrying corn from Crimaea (Ch. 2, section 2.1.2).\(^{112}\) The inference is that instead of the Euboean Gulf the corn ships apparently preferred to utilize the

\(^{111}\) Xen. *Hell.* 5. 4. 61: “…τὰ γὰρ σπαραγωγὰ αὐτῶς πλοῖα ἐπὶ μὲν τὸν Ἐραστόν ἀφίκετο, ἐκεῖθεν δὲ οὐκέτα ἦθελε παραπλεῖν, τὸν ναυτικὸν ὄντος τὸν Ἀκεδαμασιάν περὶ τὴν Ἀγινον καὶ Κέω καὶ Ἀνδρον.”

\(^{112}\) This stands in stark contrast with the Athenian decision to fortify Sounion in 412 BC. According to Thucydides 8. 4., the effort was made in order to secure the safety of the grain ships sailing around the cape: “…Σούνιον τεχίσαντες, ὡς αὐτοῖς ἀσφάλεια ταῖς σπαραγωγοῖς νιώσιν ἐπὶ τοῦ περιπλοῦ.”
A direct north-south sea-route via Skyros (Map 1.6).

Although Opountian Lokris, very much like Boeotia, was certainly blessed with good harbors, it is doubtful if they ever served as transshipment points for goods in transit to the interior, in accordance with the law of isthmuses postulated by Bérard (1902, 69). If this was the case, it may be expected that the authorities in the harbors in question were in a position to levy custom dues and taxes (Purcell 2005, 208). In this context, a third century decree of harbor regulations from Thasos (IG XII. Suppl. 348) may be of interest (Austin 1981, no. 108; Arnaoutoglou 1998, no. 42).

The document postulates that special officials, called ἀπόλογοι, shall see under the supervision of ἐπίσταται that the specifications about merchant ships allowed to moor at the harbor are maintained. Although the question with the exact duties of the ἀπόλογοι is unclear, it has been argued that they were responsible for settling commercial disputes in the context of trading operations by sea, as well as overseeing the harbors (Salviat 1958, 204-206; Velissaropoulou 1980, 260-263). Using the case of Thasos as an example, and given the maritime location of Halai, I wonder if the ἀπόλογοι listed in the fragmentary list of officials from Halai dated to 208/7 BC may have performed the same duties. It is interesting that Goldman (1915, 449, n. 3), who first studied the inscription also thought that the ἀπόλογοι were judges but on the basis of another late fourth century Thasian decree (IG XII. 8. 265; Arnaoutoglou 1998, no. 48) devoted to matters on leasing public property, in which they are mentioned as collectors of fines in the sanctuary of Asclepius. That we are dealing with a public aspect of the Haliote economy, as I suggest, which by that time was already part of the

113 On the levying of dues from ships sailing into the Black Sea imposed by the city of Byzantium ca. 220 BC, see Polybius 4. 46. 5-47. 6 in Austin 1981, no. 94. The legendary greed of custom collectors at the harbor of Oropos is well described by Heracleides Creticus, 1. 7. Livy 29. 24. 1-4 says that in 185 BC Philip V managed to increase the revenues of Macedonia, partly from the payments of harbor dues, cf. Austin 1981, no. 73. See also the decision of Amphissa to impose harbor dues on those arriving at the port of Kirrha en route to Delphi, Aeschin. In Ctes. 113.
Boeotian League, may be gleaned from Feyel’s observation (1942, 270, n. 1), who noted that the names of the three ἀπόλογοι, among others, are not typically Boeotian.\(^{114}\) The evidence that it has to do with maritime trade is inconclusive, but a more detailed consideration may bring further insights, especially in light of the harbor regulations from Thasos.

The model of “triangles,” as formulated by Davies (1993, 224), to return to the question of trade, may furnish another opportunity for gauging the impact of trans-regional trade on the economy of Opountian Lokris. In this scenario, ships from Athens en route to the Black Sea would buy wines from the North Aegean coast, e.g. Thasos, Acanthos and Mende (Garlan 1999, 131-140), the Northern Sporades, e.g. Peparethos, Skiathos and Ikos (Rutishauser 2007, 470-473), exchange it for grain, which was then brought back directly to Athens.\(^{115}\) Given the celebrated importance of wine as advertised on the silver and bronze coinage of Lokris,\(^{116}\) it may not be implausible to imagine that Lokrian wine was marketed abroad as well. Of this, however, no evidence has come down to us. The preparation of a long-overdue corpus of Lokrian coins, the silver issues of which have been constantly down-dated, by J. Morineau Humphris (Picard 1984, 288; Wartenberg 1997, 181) may shed further light on the connection of coinage with trade operations.\(^{117}\) From the literary accounts it is

\(^{114}\) Subsequent studies on the inscription approved of Goldman’s interpretation of the ἀπόλογοι, cf. Buck 1916, 212, while others made no comments on the issue, Roesch 1965, 66; Fossey 1990, 43; Sherk 1990, 244. In a recent study devoted to the civic magistrates in Greek cities, Fröhlich 2004, 193-201 repeats Feyel’s 1937, 46-47, n. 2 suggestion that ἀπόλογοι may be identified with the Boeotian κυρόστατα.

\(^{115}\) A glimpse of this practice may be seen in the Alonnesos wreck dated to 420-400 BC. According to Hadjidaki 1996, 591, the stratigraphy of the cargo suggests that the ship left Athens laden with pottery, made stops at Peparethos and Mende to buy wine before sinking off the coast of Ikos.

\(^{116}\) Obol, o.: amphora crowned with grapes and ivy leaf, OPON/r.:16-ray star, SNG Cop.; bronce, o.: helmented Athena/r.: grapes, ΛΟΚΡΩΝ, SNG Cop. 65-71; o.: Hermes with petasos/r.: grapes, ΛΟΚΡΩΝ; o.: Apollo laurate/r.: grapes, Λ-O, Picard 1984, no. 32-34, o.: Hermes with petasos/r.: grapes, Λ-A, Oldfather 1908, 470 and Nielsen 2004, 669.

\(^{117}\) The standard books on Lokrian coinage are still the British Museum Catalogue and Head’s Historia Numorum 1911. 336-337, supplemented by the collections published by McDonald 1901, Babelon 1914, David 1925 and SNG Copenhagen. The date of the stater is still disputed, e.g. 369-338 BC [Head 1911, 336-337], 380-340 BC [Kraay 1976, 122-123], 356-338 BC [Wartenberg 1997, 180-
clear, however, that at least in early Roman period only Kynos was designated with the terms, *emporium* and ἐπίνευον,118 implying some importance in the traffic of goods (Rouge 1966, 108-110; Blackman 1982, 193; Freitag 2000, 311-313). An ἐπίνευον is normally translated as a seaport, a roadstead and a landing point or *statio* (Frank 1967, 328). It differs from λίμην (Rouge 1966, 115-117) in that it is politically and economically dependent on the center settlement of a *polis* or ethnos, situated at a distance from the coast. Due to the nomenclature used, Kynos must be considered on a par with harbors such as Piraeus (Athens), Nisaia (Megara), Lechaion and Cenchreai (Corinth), Cyllene (Elis), Siphai and Creusis (Thespiai). It is therefore no coincidence that precisely Opous provides the only recorded example of possessing an ἐπίνευον on the territory of Opountian Lokris, since no other coastal site, e.g. Alope, Halai and Larymna, would have been in a position to be controlled from a Lokrian settlement in the interior.119 Architectural features that can be expected of ἐπίνευα, as singled out by Freitag (2000, 313), are warehouses, storehouses, temples securing the safety of harbor users and a fortification system for the protection of the coastal region.120

118 According to Hesychius ἐπίνευον consisted of a small λίμην surrounded on the sides by stoas. Although the term can be found in Herodotus (6. 116), Thucydides (1. 30. 2) and Aristotle (*Politics*, 1327a), it was more frequently used by later authors like Diodorus Siculus, Strabo, Pausanias, Appian and Dion Cassius. In Suda lexicon ἐπίνευον is defined as a παραθαλάσσιον χώριον.

119 Ulrichs 1840, 230 suggests, not without a reason based on the location, that Larymna may have been the ἐπίνευον of Pazaraki, ancient Anchoe.

120 The aspect of fortification is emphasized by Appian *Foreign Wars*, 14. 100, who talks about an ἐπίνευον φρούριον.
Larymna may be another candidate due to the existence of deep harbor and an ancient road leading to the Kopaic basin (Tables 1.2, 1.3). Yet the literary evidence bears witness to importance for military not commercial shipping (Polyb. 20. 5. 7; Plut. Sull. 26. 1-4). In contrast, the surplus generated from the hinterland was hardly in quantities needing exportation on a scale larger than the capacity of private producers of grain and wine, for example. Some scholars attribute this state of affairs to the existence of a self-sufficient economy as much as to the absence of rich hinterland from which to draw on (Gomme 1911/1912, 205; Cary 1949, 67-68; Forrest 1982, 300). Moreover, in times of shortage Lokris was forced to even import staples. The city of Opous, for instance, was among the recipients of 10, 000 medimnoi of grain, as specified in a decree from Cyrene of ca. 330-326 BC (SEG 9. 2; Rhodes and Osborne 2003, 488-493). The grain was probably shipped to the ἐπίνειον of Opous, at Kynos, thence it was transported to the metropolis overland. We also know that in Opous there was a magistrate, κριθόλογος, who was responsible for the supply of barley in religious ceremonies (Plut. Quaest. Graecae 293b11; cf. Oldfather 1926, 1276-1277; Nielsen 2004, 670). The lack of navigable rivers, on the other hand, prevented the formation of natural arteries of trade culminating and originating in the seacoast (Karmon 1985, 2).

121 Paus. 9.23. 7: “…λαμὴν δὲ σφισὶν ἐστὶν ἄγχιθαι.” The word makes singular appearance in Pausanias, while in the context of harbors it is seldom used by Greek authors, e. g. Polyb. 4. 41. 6 and Strabo 5. 2. 5, 17. 1. 6.
122 The farmers of Thasos transported their produce to the market in boats weighing less than 2, 300 talents (60 tons), cf. IG XII, Suppl. 348 with Austin 1981, no. 108; Arnaoutoglou 1998, no. 42. The natural conditions provided by the harbor of Larymna, 20 fathoms deep (Mediterranean Pilot IV, 143), would have most certainly accommodated such vessels. The importance of grain should not be overstated, though, especially in light of the account about the maritime economy of Anthedon described by Heraclides Creticus 1. 23. Despite modern soil conditions where much wheat is grown around Loukisia, the land of ancient Anthedon was little cultivated but well suited for viticulture.
123 According to Bresson 2000, 278, n. 66, the carrying capacity of a ship loaded with grain is 3, 000 medimnoi. At 40 kg a medimnos of wheat, the whole shipment of grain from Cyrene to Opous amounts to 400 tons.
124 The contact between the interior and the sea was more easily facilitated through the major rivers of Dipotamos and Kephissos, located along the borders with Phokis and Boeotia. It is natural that precisely those areas would become a bone of contention. Opountian Lokris was, for the most part,
2.1.5.2: Military harbors

The existence of military harbors in Opountian Lokris is a question of long standing, which normally comes up in relation to the naval program of Epameinondas. According to Oldfather (1916a, 51-52), followed by Lehmann-Hartleben (1923, 91, n. 1) Halai and Larymna were among the naval bases used for the construction of 100 triremes and equal number of dockyards under the auspices of Thebes in 366 BC. Other candidates credited as naval bases are the harbors of Creusis and Siphai (Schwandner 1977, 550; Roesch 1980, 123-130), the sheltered bay of Skroponeri (Fossey 1979, 9-13; 1992, 117-120; contra Oldfather 1916a, 52, n. 3) and the harbor of Anthedon (Schläger et al. 1968, 90; Blackman 1969, 11-18). Buckler (2008, 187, 197-198) has dismissed the harbor of Anthedon, as well as those of Halai and Larymna, as unlikely candidates on account of their small size and the inclement weather creating difficult sailing conditions in the North Euboean Gulf. Concluding that Aulis fulfilled all criteria needed to serve as a principal naval base (Fig. 1.13), Buckler (2008, 198) nonetheless admits of the possibility that, “the construction of some ships and the training of some crews may have taken place within their [Anthedon, Larymna and Halai] facilities.” That the harbors of these sites

mountainous country marked by the presence of rivulets cutting steep ravines on the uplands of Kolaka and Aetolyma. None of these seasonal torrents, as Oldfather 1916c, 348 observed, seems to have reached the status of becoming a trade artery for the mountain villages in the Lokrian interior. Naturally, they had no impact on the shaping of the political geography of the region, nor were they in a position to generate substantial surplus needing international distribution on a grand scale through the harbors on the coast.

126 Diod. Sic. 15. 79. 1: “εὖθεσις οὖν ὁ ἐν κτήμας ἐνηργοῦσα τριήμερος μὲν ἐκατόν ναυπηγεῖα, νεώρα δὲ ταύταις ἵνα τὸν ἀριθμὸν, Ὀριεῖσι δὲ καὶ Χίους καὶ Βυζαντίους προτρέπεσθαι βοηθήσατο τις ἐπιβολάς, αὐτὸς δὲ μετὰ δυνάμεως ἐκπεμβής επὶ τὰς εἰρημένας πόλεις Λάρχητα μὲν τὸν Ἀθηναῖον στρατηγόν, ἔχοντα στόλον ἀξιώλογον καὶ δικολύδιον τοῖς Θηβαίοις ἀπεσταλμένον, καταπληξίμους καὶ ἀποπλεύσαι ταυναγκάσας, ἱδίας τὰς πόλεις τοῖς Θηβαίοις ἐποίησεν.” For commentary on the passage, see Stylianou 1998, 494-497.

127 Curiously, he omits the statement of Heraclides Creticus (1. 24) that the majority of the inhabitants of Anthedon are shipbuilders. A Hellenistic epitaph from the necropolis, for instance, preserves the name of a certain Poseidonax, a shipbuilder, see Fossey 2005, no. 295.
possessed some importance in military operations and shipping may be gleaned from Figure 1.13: Boeotian harbors associated with the naval program of Epameinondas (after Buckler 2008, fig. 8)

Polybius (20. 5. 7), Plutarch (Sull. 26. 1-4) and Diodorus Siculus (19. 35. 2-3). These passages are treated in extenso in Chapter 2.

Picard (1979, 213) has argued that Aulis was chosen as the point of assembly for the allied fleets of the Greeks because it betrays intent to reach Troy by employing the North Euboean Gulf. Written history, however, shows that war fleets preferred the direct west-east route via the Cyclades to Asia Minor (Map 1.6), as described by Ps.-Skylax (Periplus 113), who says that a sea voyage along this route included the Euripus, Geraistos, Andros, Tenos, Rhenania, Mykonos, Melantian rocks, Ikaros, Samos and Mykale (Gehrke 1992, 101). In 395 BC, after sacrificing at Aulis, for example, Agesilaus embarked on his journey to Ephesos after collecting his forces

at Cape Geraistus.129 The Greek ships, including the fleet of the Lesser Ajax (Hom. \textit{Od}. 499-510), returned from Troy through the Cyclades and thereby avoided the North Euboean Gulf (Picard 1979, 213). The return journey of Jason and the Argonauts, however, led them, after setting sail from the island of Aegina, through the Euboean Gulf, precisely between the cities of Opountian Lokris and Euboea.130

\textbf{2.1.6: Summary}

From the discussion so far it follows that there were at least three types of sea traffic accommodated by the Euboean Gulf: (1) commercial, (2) military and (3) local (Table 1.7).

Table 1.7: Typology of sea travel in the Euboean Gulf

<table>
<thead>
<tr>
<th>TYPE</th>
<th>VESSEL</th>
<th>CHARACTERISTICS</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textbf{COMERCIAL}</td>
<td>\textit{olkades}</td>
<td>predetermined routes, open-sea sailing</td>
<td>transport of cargo and merchandise</td>
</tr>
<tr>
<td>\textbf{MILITARY}</td>
<td>triremes, boats, rafts</td>
<td>coastal sailing, frequent stops, food and lodging</td>
<td>transport to a battle site or to avoid confrontation on land</td>
</tr>
<tr>
<td>\textbf{LOCAL}</td>
<td>boats</td>
<td>perennial journey</td>
<td>fishing</td>
</tr>
</tbody>
</table>

Commercial or long-distance shipping, reserved for merchant vessels that usually had a predetermined route, preferred open-sea sailing, away from the dangers

129 Xen. \textit{Hell}. 3. 4. 4: “… ἀναβὰς ἐπὶ τὴν τριήρη άπέπλει. ἀφικύμενος δὲ ἐπὶ Γεραστόν, καὶ συλλέξας ἐκεῖ ὅσον ἔδύνατο τοῦ στρατεύματος πλέστων, εἰς Ἐφεσον τὸν στόλον ἐποιεῖτο.” For a commentary on the passage, see Krentz 1995, 184.

130 Ap. Rhod. \textit{Argon}. 4. 1779-1781: “παρά τ’ Ἀὐλίδα μετρήσαντες/Εὐβοίᾳς ἐντούθεν Ὀπούντια τ’ ἁστα Λοκρῶν/Ἀπασίοις ἀκτάς Παγασημίδας εἰσαπέβητε.” Cf. also Apollod. 1. 9. 26, who repeats it: “ἐκεῖθεν δὲ διὰ τῆς Εὐβοίας καὶ τῆς Λοκρίδος πλεύσαντες εἰς Ἰολκὸν ἠλθον.” On the Apollonius’ passage, see the commentary in Green 1997, 360, who says that the voyage probably took place in early December. The part, however, dealing with the cities of Opountian Lokris is often omitted from scrutiny. See, for example, Clare 2002, 165, who in a section devoted to the homeward voyage of Argo stops her discussion at 4. 1778. See also the voyage of Tim Severin 1985, who completed the Argo’s outward voyage from Volos to Colchis. But naturally this trip did not involve sailing through the North Euboean Gulf.
offered by coastal voyages. Their main goal was to bring the cargo loaded from a large port to another large port possessing harbor facilities, where it could be unloaded. Military shipping on soldier ships, στρατιώτες (Diod. Sic. 20. 47. 1-2) or ὀπλιτάγωγος (Thuc. 6. 43), on the other hand, involved the transport of soldiers to a given location for battle in the process of which the speed was of essence (Coates 1993, 78-81, cf. Wallinga 2005, 99-103). Since the character of such enterprises was energy-consuming, frequent stops were a must. Obviously securing a friendly coast, and one that is sympathetic and willing to collaborate, would be more advantageous. Another subcategory includes the large-scale, ad hoc transportation of a field army en route to a distant country. Such maneuvers required unconventional means such as the employment of small sailing boats or rafts, while their duration is difficult to determine. Finally, local traffic operated on a regional level, very much as a result of the daily routine, fulfilling private needs of the people living in coastal communities around the Euboean Gulf. Sea voyages of this kind were done with small sailing boats. The coast had to be within an easy reach, not further than the distance of one’s day journey (Karmon 1985, 5). Hesiod’s crossing from Aulis to Chalcis (Works and Days, 720-725) and Theophrastus’ round trip from Oropos to Chalcis (On Winds, 29) may serve as good examples. Along these lines, it is interesting to note that sea voyages to a distant country undertaken by private individuals are also recorded.

An ex-voto inscription of a Roman date, for example, found in the coastal town of Aenona in Dalmatia documents the sea journey of a certain Lucius Cincius Trophimus, a traveler, who, upon his successful return home from Halai, paid homage to Neptune and Diana (Veyne 1987, 381-383).131

A remarkable inscription found in the Serapieion at Thessalonike is also of

\[131\text{ CIL III 2970: Neptuno, Dia(nae) prop(er) maj(estatem) L(ucius) Cincius Trophim(us) ex viso p(osuit) quod ALIS vidit. Although the word ALIS has caused much puzzlement among scholars, Veyne 1987, 383 has suggested that it refers to Lokrian Halai.}\]
interest (IG X 2. 1. 255). The text, an early Roman copy of the original stele of late third-early second century BC, details the experience of certain Xenainetos from Opous, a member of an embassy in Thessalonike, who while sleeping in the sanctuary of Serapis, was instructed to return to Lokris and urged to establish the cult of the Egyptian gods at Opous. The document has been studied for the information it provides with regard to the dissemination of the cults of Serapis and Isis by worshippers (Bricault 1997, 116-122), but it may also be treated as a document testifying to the importance of maritime communications between Opountian Lokris and Macedonia (Table 1.4, Map 1.4). In this connection, it is perhaps significant to mention that in the Antonine Itinerary (327) Opous is listed as the only Lokrian port of call for a journey from Demetrias to Oropos (Miller 1916, 576; Dilke 1985, 125-128). More importantly, Isis and Serapis were also among the divinities closely associated with seafaring, especially in Hellenistic and Roman periods (Rouge 1981, 197-198).

In conclusion, the kind of sea-traffic in the North Euboean Gulf most likely to affect Hellenistic communities on the Lokrian coast was military. This is not to deny the existence of commercial shipping altogether, but to focus on the maritime activity, which for its success had to rely exclusively upon a friendly coast. It is only natural to suspect that Opountian Lokris was to play a major role in seaborne military operations either as a land of passage (Cary 1949, 68), or as a region trying to benefit from them (Forrest 1982, 300).

132 For a detailed discussion, see Ch. 2, section 2.4.3.
133 In fact, the route lists ports of call and distances in Roman miles from Larissa to Athens. From Larissa to Demetrias by land (44); from Demetrias to Opous by sea (14, emended to 44, cf. Cramer 1828, 117 and 80, cf. Miller 1916, 576); from Opous to Chalcis by sea (48); from Chalcis to Oropos by sea (15); from Oropos to Thebes by land (44); from Oropos to Athens by land (44).
Chapter 2: Towards the military history of a *terra incognita*

“Le monde hellénistique est, pour une bonne part, demeuré un monde militaire”

The aim of this chapter is to gain a new understanding of the military history of Opountian Lokris during the Hellenistic period. This is a daunting task but one that has long been needed (Fossey 1990, 2-3). No modern treatment of the subject as a whole exists. The approach adopted here is diachronic despite the abundant data pertaining to the Hellenistic period proper. Apart from the long-admitted paucity of literary accounts relevant to the Opountian lands, constructing a diachronic framework against which the material evidence is set is not only a necessity but also an important prerequisite leading towards more balanced conclusions. In addition, it permits us to observe the development of certain trends through time, thereby recognizing the fact that political and economical relationships are constantly changing phenomena as opposed to permanently fixed reality.

2.1: Fighting at home and abroad

In order to provide a fuller picture of the military history of a region that is often described as a “backwater,” “back country,” or “country with no history,” (e.g. Kirk 1985, 203; Redfield 2003, 132; Van de Moortel 2007, 243) I draw on two types of data: (1) literary testimonia and (2) inscriptions. The selection is heavily weighted towards their relevance to military matters. Another crucial distinction, which I attempt to follow throughout the presentation and subsequent analysis of the data, has

134 Cf. Fossey 1990, 3 who writes, “I am not, in fact, sure how much it is possible to write anything more than a very sketchy political history of Eastern Lokris as a whole, let alone just the Opountian part, and in particular with reference to events before the Hellenistic period.”

135 Cf. Shipley’s 1993, 135 critical remarks in his review of Fossey 1990. “It is also, perhaps, rather bold of F. to try to reconstruct inter-site relationships without attempting a diachronic account of political and military history…but when both sources and archaeology are so thin it seems unwise to discard an important body of information.”
to do with the geography of the events described. In other words, due consideration has been given to both military activities taking place within and outside Opountian territory. In the latter case, once the participation of Lokrian soldiers is established beyond reasonable doubt, the evidence enters the database and is thus subject to further scrutiny. Another line of inquiry attempts to understand the Lokrian lines of communications, by land and by sea, with respect to neighboring regions, i.e. Epiknemidian Lokris, Phokis and Boeotia. More importantly, as will become evident from the frequent references attested in our sources, the transportation of troops by sea had a profound impact on the politics of Opountian Lokris. Yet studies particularly devoted to this essential aspect of the regional history are surprisingly rare (Larsen 1965, 117-128).

2.1.1: The Persian Wars

Before the arrival of the Persians the Lokrians were among those who agreed to pay tribute (Hdt. 7. 132. 1), but on the eve of the battle at Thermopylae in 480 BC they decided to join forces with the rest of the Greeks. The following passages describe the event:

Hdt. (7. 203. 1-2)

[1] “In addition, the Opuntian Locrians in full force and one thousand Phocians came at the summons. The Hellenes had called upon them through messengers who told them that this was only the advance guard, that the rest of the allies were expected any day now, and that the sea was being watched, with the Athenians and Aeginetans and all those enrolled in the fleet on guard. There was nothing for them to be afraid of. [2] The invader of Hellas was not a god but a human being, and there was not, and never would be, any mortal on whom some amount of evil was not bestowed at birth, with the greatest men receiving the largest share. The one marching against them was certain to fall from pride, since he was a mortal. When they heard this, the Locrians and Phocians marched to Trachis to help.”

Diod. Sic. (11. 4. 7)

“And there gathered at Thermopylae also a thousand Locrians, an equal
number of Melians, and almost a thousand Phocians, as well as some four hundred Thebans of the other party; for the inhabitants of Thebes were divided against each other with respect to the alliance with the Persians. Now the Greeks who were drawn up with Leonidas for battle, being as many in number as we have set forth, tarried in Thermopylae, awaiting the arrival of the Persians.”

Paus. (10. 20. 2)

“Herodotus does not give the number of the Locrians under Mount Cnemis, but he does say that each of their cities sent a contingent. It is possible, however, to make an estimate of these also that comes very near to the truth. For not more than nine thousand Athenians marched to Marathon, even if we include those who were too old for active service and slaves; so the number of Locrian fighting men who marched to Thermopylae cannot have exceeded six thousand. So the whole army would amount to eleven thousand two hundred. But it is well known that not even these remained all the time guarding the pass; for if we except the Lacedaemonians, Thespians and Mycenaeans, the rest left the field before the conclusion of the fighting.”

The accounts provide no indication as to what sort of military units the Lokrians dispatched but according to the opinio communis these were most probably infantry soldiers (Nielsen 2000, 114). Some uncertainly remains concerning the actual meaning of the word παλζηξαηη that Herodotus used in order to signal the arrival of the Lokrian contingent. According to How and Wells (1928, 222) it denotes a military force summoned on a short notice, while Szemler (1991, 111) translates the word as “all their men.” The number 1000 given by Diodorus is normally accepted as the most realistic (Nielsen 2000, 114; How and Wells 1928, 222), whereas Pausanias’ total of at least 6000 soldiers is usually dismissed as a mistake (Larsen 1968, 53, n. 4).

Although the mention of roads is omitted it is reasonable to assume that in order to arrive at Thermopylai the Lokrians marched along the coastal road. It is interesting to speculate whether the Phokians advanced through the passes over Mt.Kallidromon, or through the εοθεία ὀδὸς Orchomenos-Opous joining the coastal road between Livanates and Atalandi. Be that as it may, it is significant that when the
Peloponnesians suggested engaging the Persians at the isthmus, both Lokrians and Phokians were extremely reluctant to withdraw from the position at Thermopylai:

Hdt. (7. 207. 1)

“This is what they intended, but the Hellenes at Thermopylae, when the Persians drew near the pass, fearfully took counsel whether to depart. The rest of the Peloponnesians were for returning to the Peloponnes and guarding the isthmus, but the Phocians and Locrians were greatly angered by this counsel. Leonidas voted to remain where they were and send messengers to the cities bidding them to send help, since they were too few to ward off the army of the Medes”.

Apart from the understandable dissatisfaction on the part of Phokis and Lokris, what this episode also shows is how strategic they were for an invading army from the north. Should the pass were left unguarded or were it to fall in the hands of an enemy, the advance of a land army required marching across the territories of Phokis, whereas the accompanying fleet was to sail along the seaboard of East Lokris. These are the earliest literary references bearing witness to the realization that the lands southeast of Thermopylai were to play a major role in military crossings by land and by sea. What is also significant is that in this case the realization is attributed to the Phokians and Lokrians themselves.

At the same time, it is important to observe that the sea crossings via the North Euboean Gulf were more likely to affect Opountian Lokris rather than Phokis, whose coast was open towards the Corinthian Gulf. This concern is reflected in the fact that the Opountian Lokrians added seven penteconters to the total number of Greek ships assembled before the naval battle off Artemision in 480 BC.

Hdt. (8. 1. 1)

“The Greeks appointed to serve in the fleet were these: the Athenians furnished a hundred and twenty-seven ships; the Plataeans manned these ships with the Athenians, not that they had any knowledge of seamanship, but because of mere valor and zeal. The Corinthians furnished forty ships and the Megarians twenty; [2] the Chalcidians manned twenty, the Athenians furnishing the ships;
the Aeginetans eighteen, the Sicyonians twelve, the Lacedaemonians ten, the Epidaurians eight, the Eretrians seven, the Troezenians five, the Styrians two, and the Ceans two, and two fifty-oared barks; the Opuntian Locrians brought seven fifty-oared barks to their aid.”

By way of comparison, the contingent mustered by the Lokrians was clearly no match for the powerful trireme fleets assembled by established sea powers as Athens, Corinth, Megara, Chalcis and Aegina. The contribution of seven “old-fashioned” penteconters was thus modest yet significant. Albeit difficult to maneuver and not particularly seaworthy, the fairly long fifty-oared ships, ca. 27-30 m (Casson 1959, 37; Carpenter 1948, 7), were still expensive to build (Casson 1991, 77; Morton 2001, 276-279).

The fate of the Lokrian contingent in the aftermath of the clashes at Thermopylae and Artemision, however, is unknown. When Strabo visited the pass at Thermopylae, however, he saw an inscription erected in honor of the fallen Lokrians who had been sent by the city of Opous (Molyneux 1992, 182-183; Baladié 1996, 137, n. 1):

Strabo 9. 4. 2.

[2] “Opus is the metropolis, as is clearly indicated by the inscription on the first of the five pillars in the neighborhood of Thermopylae, near the Polyandrium:

“Opôeis, metropolis of the Locrians of righteous laws, mourns for these who perished in defense of Greece against the Medes.”

Three days after the battle of Thermopylae, the Persian fleet set sail along the Euboean Gulf thus providing testimony to its use for strictly military purposes.

Hdt. (8. 66. 1-2)

[1] “When those stationed with Xerxes' fleet had been to see the Laconian disaster at Thermopylae, they crossed over from Trachis to Histiaeae, waited three days, and then sailed through the Eupirus, and in three more days they were at Phalerum, the port of Athens. I think no less a number invaded Athens by land and sea than came to Sepias and Thermopylae. [2] Those killed by the
storm, at Thermopylae, and in the naval battles at Artemisium, I offset with those who did not yet follow the king: the Melians and Dorians and Locrians and the whole force of Boeotia except the Thespians and Plataeans; and the Carystians and Andrians and Teneans and all the rest of the islanders, except the five cities whose names I previously mentioned. The farther into Hellas the Persian advanced, the more nations followed him.”

If the account of Herodotus is taken at face value, the sea voyage was very quick, leaving little or no time for coast landings. In fact, the fleet acted as no supply line for the land army of the Persians, since the latter was advancing through the Kephissos valley, and not along the coastal road in East Lokris. The objective was thus to reach Attica by sea as quickly as possible in order to rejoin with Xerxes at Athens (Wallinga 2005, 32-46).

Finally, an unknown number of Lokrian infantry fought on the Persian side in the battle at Plateia in 479 BC.

Hdt. (9. 31. 5)

“…next to the Sacae, and opposite the Athenians, Plataeans, Megarians, the Boeotians, Locrians, Malians, Thessalians, and the thousand that came from Phocis; for not all the Phocians took the Persian side, but some of them gave their aid to the Greek cause; these had been besieged on Parnassus, and issued out from there to harry Mardonius' army and the Greeks who were with him. Beside these, he arrayed the Macedonians also and those who lived in the area of Thessaly opposite the Athenians.”

To summarize: the emerging picture from the infrequent references to Opountian Lokris in the writings of Herodotus is definitely one of concern for securing the approaches by land and by sea from the north. For everyone was clear, especially the Phokians and Lokrians, that the keys to the gates of central Greece were in the hands of those who managed to advance through and/or sail along the narrow pass at Thermopylae. Albeit on a much smaller scale, it is nonetheless significant that

136 Intermittent stops of the fleet in order to obtain provisions and drinking water are reasonable to suspect, even though the evidence for this is circumstantial. To imagine Persian reprisals on harbor villages such as Halai, however, is to push it too far, cf. Wren 1996, 27-35.
Opountian Lokris was equally prepared to offset both threats by means of infantry and ships that were sent in a timely manner before the battles at Thermopylai and Artemision. The Lokrian fear of being overrun by the Persian army would have materialized, had the Thessalians not led Xerxes through Doris and thence along the Kephissos Valley (Hdt. 8. 32). The Persian advance into central Greece was thus of no consequence to the territory of Opountian Lokris, which it completely bypassed. Although the extent to which the coast was affected as a result of the sailing of the Persian fleet along the Euboean Gulf is impossible to gauge, it shows for the first time its importance as a zone of passage for military shipping.

2.1.2: The Peloponnesian Wars

The level of involvement of Opountian Lokris in the chain of events leading to the outbreak of the Peloponnesian War (431-404 BC) is obscure. In 457 BC Sparta defeated the Athenians in the battle of Tanagra (Thuc. 1. 108. 1). Two months later, Athens took the offensive by sending Myronides, who managed to defeat the Boeotians in the battle of Oinophyta. Boeotia, Phokis and, apparently, Opountian Lokris too were subdued, since after dismantling the walls of Tanagra Myronides took one hundred of the richest men of the Opountians and returned to Athens (Thuc. 1. 108. 2-3). In 447 BC, exiles from Boeotia, Opountian Lokris, Orchomenos and Euboea defeated the Athenians in the battle of Coronea (Thuc. 1. 113. 2-3). In accordance with the treaty, the Boeotian exiles returned to their country, and along with the rest, gained independence from Athens (Thuc. 1. 113. 4)

Based on the account of Thucydides, it is assumed that Athens exercised some kind of control in the internal affairs of Opountian Lokris during 457-447 BC (Walker 1927, 82-83; Meiggs 1972, 520; Badian 1990, 364-369), but it remains impossible to reconstruct the extent of their involvement. Ross (1851, 97), followed by Oldfather (1926, 1138) and Lawrence (1979, 443, n. 7) has tentatively suggested that the
building of the “Long Walls” at Opous (if the identification with Kokkinovrachos is accepted) should be attributed to the presence of the Athenians following the battle of Oinophyta (Ch. 1, Route 1). The tenuous Athenian connection has been called into question (Fossey 1990, 51, n. 1), as well as complicated by the fact that the walls near Anderas pass have disappeared, let alone the current identification of Opous with modern Atalandi (Fossey 1990, 71-74).

Opountian Lokris joined the Peloponnesian league under the leadership of Sparta during the Second Peloponnesian War. The passage describing the Lacedaemonian allies is important because it also supplies the first reference to Lokrian cavalry.

Thuc. (2. 9. 2-3)
[2] “These were the allies of Lacedaemon: all the Peloponnesians within the Isthmus except the Argives and Achaeans, who were neutral; Pellene being the only Achaean city that first joined in the war, though her example was afterwards followed by the rest. Outside the Peloponnesus the Megarians, Locrians, Boeotians, Phocians, Ambraciots, Leucadians, and Anactorians. [3] Of these, ships were furnished by the Corinthians, Megarians, Sicyonians, Pellenians, Eleans, Ambraciots, and Leucadians; and cavalry by the Boeotians, Phocians, and Locrians. The other states sent infantry. This was the Lacedaemonian confederacy.”

In 424 BC Boeotian and Lokrian cavalry is mentioned again in the battle of Delion.

Thuc. (4. 96. 7-8)
[7] “Some made for Delium and the sea, some for Oropus, others for Mount Parnes, or wherever they had hopes of safety, [8] pursued and cut down by the Boeotians, and in particular by the cavalry, composed partly of Boeotians and partly of Locrians, who had come up just as the rout began. Night however coming on to interrupt the pursuit, the mass of the fugitives escaped more easily than they would otherwise have done.”

The identity of the Lokrians in these passages is unspecified but Nielsen (2000, 96, n. 40) has shown convincingly that the reference made is to the East rather than the
West Lokrians. The likelihood finds further support in a passage from Xenophon’s *Hellenica* (4. 2. 17), in which he mentions 50 horsemen of Opountian Lokris.

A much-quoted passage concerns the planting of an Athenian garrison on the island of Atalante in 431 BC. The Athenian intervention, however, belongs to a larger series of events spanning the five years between the battle of Alope in 431 BC and the raid of Nikias in 426 BC. These are cited below.

Thuc. 2. 26. 1
[1] “About the same time the Athenians sent thirty ships to cruise round Locris and also to guard Euboea; Cleopompus, son of Clinias, being in command. [2] Making descents from the fleet he ravaged certain places on the sea-coast, and captured Thronium and took hostages from it. He also defeated at Alope the Locrians that had assembled to resist him.”

Thuc. 2. 32. 1
[1] “Atalanta also, the desert island off the Opuntian coast, was towards the end of this summer converted into a fortified post by the Athenians, in order to prevent privateers issuing from Opus and the rest of Locris and plundering Euboea. Such were the events of this summer after the return of the Peloponnesians from Attica.”

Diod. Sic. 12. 44. 1
“After these events the Athenians chose Cleopompus general and sent him to sea with thirty ships under orders both to keep careful guard over Euboea and to make war upon the Locrians. He, sailing forth, ravaged the coast of Locris and reduced by siege the city of Thronium, and the Locrians who opposed him he met in battle and defeated near the city of Alope. Following this he made the island known as Atalante, which lies off Locris, into a fortress on the border of Locris for his operations against the inhabitants of that country.”

Thuc. 3. 89. 3
[3] “A similar inundation also occurred at Atalanta, the island off the Opuntian-Locrian coast, carrying away part of the Athenian fort and wrecking one of two ships which were drawn up on the beach.”

Thuc. 3. 96. 6
[6] “Nicias with his sixty ships coasted along shore and ravaged the Locrian seaboard, and so returned home.”

The events described by Thucydides and Diodorus show the implementation of

137 On the cavalry tactics employed in the battle, as a force harassing escaping hoplites, see Hanson 1989, 183 and Worley 1994, 96.
the Athenian foreign policy during the first phase of the Peloponnesian War. It is apparent that the primary objective was to ensure the security of Euboea, which was accomplished by sea raids along the North Euboean Gulf carried out by Kleopompos in 431 and Nikias in 426 BC. In the course of these events, the Athenian generals succeeded in (1) ravaging the Lokrian coast twice, (2) taking hostages from Thronium, and (3) establishing a permanent φρούριον on Atalante Island (Mattingly 1968, 477). The earthquake of 426 BC (Thuc. 3. 89. 3; Diod. Sic. 12. 59. 2; Strabo 1. 3. 20) severely damaged the garrison and its fleet of two triremes, but it was not until the Peace of Nikias in 421 BC that the Athenians were forced to completely abandon it (Thuc. 5. 18. 7).

The alleged reason for leaving a garrison across the Lokrian coast, as told by Thucydides, had to do with preventing ληστῶν sailing from Opous and several other unspecified Lokrian places, who were in the habit of plundering Euboea.¹³⁸ This passage has taken up tremendous importance for the scholars who are inclined to interpret it as evidence for the practice of piracy among the Opountian Lokrians.¹³⁹ Since this is the single literary reference linking the latter with acts of piracy, it deserves a careful consideration, and especially because the wording of the passage defies such narrowly defined translation of ληστής as a pirate and/or privateer.

¹³⁸ According to Lewis 1992, 395, one can infer from the passage that, “The Euboean channel was vulnerable to Lokrian pirates,” while Grundy 1948, 344, commenting on Thuc. 2. 26. 1, maintained that, “privateering was common during the war”. According to Hornblower 1991, 291, Thuc. 2. 32. 1 represents the first mention of piracy in the text. McLeod 1960, 323 went on to claim that, “two triremes were deemed adequate to suppress the piracy of Opountian Lokrians.” Piratical activity was apparently a problem in the North Euboean Gulf by the mid fifth century BC, as attested in IG II² 617, l. 24, where ληστῶν is mentioned; cf. McGregor 1982, 111, n. 13.

¹³⁹ In an attempt to explain the lack of natural defenses on the acropolis of Halai, Goldman 1940, 382 writes, “…the formidable reputation of the Lokrian pirates probably proved the best defense towards the water.” In the brief entry of PECS, Winter 1976, 373 says that, “The sheltered deepwater harbor would have been an excellent pirate’s nest.” In reconstructing the ancient economy of Opountian Lokris, Fossey 1990, 162-163, n. 1 argued that it was “…supplemented by the proceeds of piracy for which the area had a certain renown.” Finally, Katsonopoulou 1990, 11 has reached the conclusion that the Lokrians were “skilled pirates and brigands,” even though most of her evidence concerns the West Lokrians.
The Greek vocabulary had only one word that meant a pirate in the modern sense, i.e. καταποντιστής, attested as early as the beginning of the fourth century BC. The word had a close association with the sea, since the noun was a derivative of the verb καταποντίζω, literally ‘to throw into the sea’ (de Souza 1999, 9). At the same time, Homer and the fifth century Greek writers talk exclusively and only about ληστής, with the meaning of an armed robber or plunderer (de Souza 1999, 3); a word deriving from the root “λης,” connoting booty or plunder. Finally, the word πειρατής appears for the first time in the middle of the third century BC, and was employed simultaneously with ληστής of the earlier periods, for which it also became a synonym (de Souza 1999, 3, 5). The use of ληστεία, ληστής and ληςομαι, amply attested in the writings of Thucydides, refers to acts that can be qualified as armed robbery, plunder and piracy. Hence ληστής may or may not denote a piratical activity, since πειρατής and καταποντιστής had no currency at Thucydides’ lifetime, and each case needs to be treated in its own right.

Given the ambiguous terminology for pirates (pace Pritchett 1991, 315-318), it is surprising that in the case of Opountian Lokris, little scrutiny has been applied to the actual meaning of the words in Thucydides’ statement. The Lokrians were sailing across the North Euboean channel in order to plunder the coasts of Euboea (Lazenby 2004, 37; Westlake 1945, 75-76, n. 1) but what is often overlooked is the fact that their activity takes place on the land rather than in the sea. Were it to be otherwise, i.e. to intercept merchant ships sailing along the Euboean Gulf, Thucydides would have most certainly said so, just as he did on the occasion of the Peloponnesian λησται who were attacking the ships sailing from Phaselis and Phoinike into the Aegean (Thuc. 2. 69). Since, the ravaging acts of the Lokrians are qualified as ληστεία, they were no different than the numerous occasions of ληστεία which Athenians and Spartans were in the habit of performing to each other throughout the Peloponnesian War.
Kleopompos and Nikias, as we have seen, ravaged the Lokrian coast on two occasions (Diod. Sic. 12. 44. 1; Thuc. 4. 96. 6). Our analysis suggests what McDonald (1984, 84) has already shown, namely that the military raids of the Lokrians should be perceived as a form of guerilla warfare, a testimony of what Gabrielsen (2001, 223-228) calls “raid mentality,” rather than as an act of piracy. Thus the theory that the practice of piracy was a way of life in Opountian Lokris becomes untenable because it is based on a single reference to Lokrian ληστεῖα, which is better translatable as an ordinary wartime raid on allied territory, i.e. Euboea.

Another point to consider is that the Athenians fortified the uninhabited island of Atalandi, while maintaining a military presence there from 431 until 421 BC. Thucydides’ statement (ἐπετείχσμα) clearly indicates that the garrison constructed fortification walls as soon as it arrived on the spot.¹⁴⁰ Along similar lines Diodorus (12. 44. 1) calls it ἐπετείχσμα. In terms of Athenian foreign policy, planting garrisons along the coast or on an island near the coast became a regular practice that aimed at containing the enemy within their home territory (Adcock 1957, 69). Thucydides refers to this device as ἐπετείχσμός. The latter was a particularly effective strategy, especially when the garrison was established on an island off the coast not only because the supply line was facilitated by sea, but because it also furnished a secure way of retreat in case of danger (Adcock 1947, 6). Nevertheless, ἐπετείχσμός by φρούρια (Pritchett 1971, 69, n. 1) remained an expensive enterprise since in the long run it entailed a continuing outlay of money and manpower.

Opountian Lokris witnessed no fighting on its territory until the end of the Peloponnesian War. On two occasions, in the battle of Mantinea in 418 BC and in 413 BC, their participation was requested as an ally of the Peloponnesian League.

¹⁴⁰ The term φρούριον, as used by the fifth century Greek historians, implies the existence of built structures, e.g. walls, towers, and is often accompanied by verbs as ἐπετείχσμεν and τείχοντο. For further examples of Athenian φρούρια built during the Peloponnesian War, see Nielsen 2002, 52-53.
Thuc. (5. 64. 4)
[4] “Meanwhile they sent to Corinth, to the Boeotians, the Phocians, and Locrians, with orders to come up as quickly as possible to Mantinea. These had but short notice; and it was not easy except all together, and after waiting for each other, to pass through the enemy's country, which lay right across and blocked up the line of communication. Nevertheless they made what haste they could.”

Thuc. (8. 3. 2)
[2] “The Lacedaemonians now issued a requisition to the cities for building a hundred ships, fixing their own quota and that of the Boeotians at twenty-five each; that of the Phocians and Locrians together at fifteen; that of the Corinthians at fifteen; that of the Arcadians, Pellenians, and Sicyonians together at ten; and that of the Megarians, Troezenians, Epidaurians, and Hermionians together at ten also; and meanwhile made every other preparation for commencing hostilities by the spring.”

The first passage hints at the importance of communication lines for a land army crossing over long distance. The knowledge of the road system to the extent it existed in the fifth century BC, however, was among the things Thucydides assumed his audience would have been familiar with, so he makes no reference to the particular roads used by Boeotians, Phokians and Lokrians before they reached Mantinea. The allied contingent probably consisted of hoplites; there is no mention of cavalry.

The Phokians probably proceeded along the Kephissos valley before entering Boeotia, and quite possibly so did the Lokrians. It is difficult to imagine that they would have ventured through the mountainous road east of Mt. Chlomon, given the opportunity to negotiate the much easier Opous-Orchomenos road via Hyampolis and Abai (Map 1.2). The road through Kopai and the bay of Akraiphia must have been an unlikely choice because of the difficulties of passage through Lake Kopais. Thus it seems reasonable to suggest that both Phokians and Lokrians marched across the Kephissos and Asopos valley until reaching Thebes. After leaving Thebes via Plateia they could have advanced through the Megarid by making use of the carriage-road across Geraneia (Thuc. 1. 108. 2), between Mt. Cithaeron and Mt. Pateras (Hammond
1954, 105-107, fig. 1). The coastal road along the Corinthian Gulf between Creusis and Aegosthena was quite possibly avoided since it was the longest and very difficult (Hammond 1954, 103).

The second passage shows that two generations after Artemision, when Opountian Lokris dispatched seven penteconters (Hdt. 8. 1. 1), the region was still in the position to build, maintain and man ships for military purposes. Interestingly, the quota fixed by the Spartans, i.e. fifteen ships from Phokians and Lokrians together, shows that the ship capacity of Opountian Lokris in 413 BC would have been the same as it was in 480 BC. It is unclear, though, whether or not new ships had to be built in order to fulfill the Spartan request. At any rate, the Lokrians must have possessed vessels as late as 431 BC, since the military raids on Euboea (Thuc. 2. 26. 1) were seaborne. There is no evidence that the Athenians destroyed the Lokrian fleet during their ten-year stay on Atalante island.

Theogenes from Lokris took part in the march of the Ten Thousand in 400-399 BC serving as military commander, a λοχαγός. He was wounded by a javelin during the night attack of the Thynians.\(^{141}\) It remains uncertain, however, whether he is to be associated with Opountian Lokris (Nielsen 2000, 95-96; Lee 2007, 64, n. 138).

2.1.3: The Corinthian War

During the Corinthian War (395-387 BC), Opountian Lokris fought against Sparta, as is evident from the references to their participation in the battles of the Nemea River and Coronea in 394 BC (Xen. *Hell.* 4. 2. 17; 4. 3. 15). They are also listed among the allies of Epameinondas in the course of his preparations for the invasions of Laconia in 370-369 BC (Xen. *Hell.* 6. 5. 23; Plut. *Ages.* 2. 24; Diod. Sic.:

\(^{141}\) Xen. *Anab.* 7. 4. 18: “τῶν δὲ Θυνῶν ὑποστραφέντας τινὲς ἐν τῷ σκότει τῶν παρατρέχοντας παρ’ οἰκίαι καιμένην ἡκόντιζον εἰς τὸ φῶς ἐκ τοῦ σκότους: καὶ ἔτρισαν Ἱερώνυμον τε Ἵκαι Ἐιδοδέας λοχαγόν καὶ Θεσσαλίας Λοκρῶν λοχαγόν…”
Xen. *Hell.* (4. 2. 17)

“This was the number of the hoplites; but as for horsemen, there were of the Boeotians (since the Orchomenians were not present) about eight hundred, of the Athenians about six hundred, of the Chalcidians from Euboea about one hundred, and of the Opuntian Locrians about fifty.”

This is the third reference to Lokrian cavalry. In 431 BC, Opountian Lokris was able to supply cavalry for the services of the Peloponnesian League (Thuc. 2. 9. 3), while in 424 BC unspecified number of Lokrian horsemen took part in the rout of the Athenians (Thuc. 4. 96. 8), having arrived in the last moments before the battle of Delion. Although on a small scale, it is noteworthy that Opountian Lokris managed to establish a good reputation for its cavalry, quite possibly an offshoot of the land-based aristocracy at Opous. Although it may not be favorably compared with the long-established renown of Thessalian (Michell 1957, 63-64) and Boeotian horsemen (Roesch 1979, 243-251), yet should a need arise the Lokrian cavalry was a power to be relied on.

Some confusion, however, exists with respect to the involvement of Opountian Lokris that led to the start of the Corinthian War, as shown by the following passage:

Xen. *Hell.* (3. 5. 1)

“But the leading men in Thebes, being aware that unless someone began war the Lacedaemonians would not break the peace with their allies, persuaded the Opuntian Locrians to levy money from the territory which was in dispute between the Phocians and themselves, for they thought that if this was done the Phocians would invade Locris. And they were not disappointed, for the Phocians did at once invade Locris and seize property many times as valuable. Then Androcleidas and his followers speedily persuaded the Thebans to aid the Locrians, on the ground that the Phocians had invaded, not the disputed territory, but Locris, which was admitted to be a friendly and allied country.

143 Scholarly treatment of the literary sources mentioning Lokrian cavalry is predominantly sketchy. No systematic attempt has been made towards a better understanding of this aspect of the military development of Opountian Lokris, cf. Spence 1993, 17-19; Worley 1994, 85-96 and Gaebel 2002.
And when the Thebans made a counter-invasion into Phocis and laid waste the land, the Phocians straightway sent ambassadors to Lacedaemon and asked the Lacedaemonians to aid them, setting forth that they had not begun war, but had gone against the Locrians in self-defence.”

The disputed territory referred to in the beginning has long been assumed to be the region around Daphnous on the North Euboean Gulf (Lerat 1952b, 43). Aided by the valley road of the Dipotamos river that emptied into the sea near Daphnous, the Phokians were naturally drawn to this strip of coastal land. The passage has also been taken to indicate the existence of friendly relations between Boeotia and Opountian Lokris (Fossey 1990, 162, n. 1, 167; McInerney 1999, 195). Despite the Theban expectations for a military raid upon the disputed territory, the prompt Phokian invasion seems to have taken place not near Daphnous, but in Ozolian Lokris, since according to the Oxyrhynchos Historian (Hell. Oxy. 21. 3), the disputed land was the grazing grounds of Mt. Parnassos (McKay 1953, 6-7; Larsen 1968, 158, n. 3; McKechnie and Kern 1988, 91, 93, 167-169). How are we to explain this inconsistency? His statement, as it stands, clearly contradicts Xenophon’s account according to which Opountian Lokris was the one persuaded to launch an attack. On the other hand, by virtue of sharing a common border with Phokis, only Ozolian Lokris would have been in a position to dispute an area near Mt. Parnassos (Szemler 1991, 119-120; 1996, 95-104). The difficulty is bound to remain unexplainable, unless one assumes that Xenophon mistakenly had written Opountian Lokris, when he actually meant Ozolian Lokris.144

2.1.4: The Battle of Tegyra

The battle of Tegyra took place on the border between Boeotia and Opountian Lokris in 375 BC (Diod. Sic. 15. 37). Although the account provided by Plutarch in his Life of Pelopidas is fairly straightforward, the exact location of the battle has been

144 Most recently, Buckler 2004, 404 has suggested that the disputed territory was located on the upper reaches of the valley between Kalapodi and Kephissos. This, however, contradicts Pausanias 3. 9. 9, who speaks of Lokrian Amphissa in the context of these events.
much debated. Only the passages involving the role of Lokris in the events leading to
the battle are cited.

Plut. Pel. 16.1-2
“Against the city of Orchomenos, which had chosen the side of the Spartans
and received two divisions of them for its protection, he [Pelopidas] was ever
laying plans and watching his opportunity, and when he heard that its garrison
had made an expedition into Lokris, he hoped to find the city without
defenders, and marched against it, having with him the sacred band and a few
horsemen.”

Plut. Pel. 17. 1
“So, then, as the Thebans entered the district of Tegyra on their way back from
Orchomenus, the Lacedaemonians entered it at the same time, returning in the
opposite direction from Lokris, and met them. As soon as they were seen
marching through the narrow pass, someone ran up to Pelopidas and said:”

There can be no doubt that the force of at least 500 Spartans (Stylianou 1998,
318-319; Plut. Pel. 17. 2) advanced due north of Orchomenos into the neighboring
Opountian Lokris. In terms of roads, the possibilities they had were the following: (1)
the εὐζεία ὁδὸς to Opous via the Phokian Abai and Hyampolis (Paus. 10. 35. 1), or (2)
the mountain road east of Mt. Chlomon via Kolaka. Normally scholarly attention
focuses on the episode before the clash between Spartans and Thebans, and especially
on the moment when the former appeared over the mountain and exited through what
Plutarch calls “τὰ Στειβὰ.” Etienne and Knoepfler (1976, 237) put forward the opinion
that the narrow pass is to be placed at the foot of Mt. Chlomon near the village of
Pyrgos, which they identify as Tegyra. As discussed earlier (Ch. 1, Route 3), the
topography of this area closely corresponds with their suggestion. Pritchett (1982,
104-109; 2003, 322-332), on the other hand, dissociates Tegyra with modern Pyrgos
by placing it in the village of Polygyra, a candidate preferred by an older generation of
scholars. As a result, he argued (so Buckler 1995; 2003, 241) that the Spartans were
returning from Lokris via the Opous-Orchomenos road as opposed to the mountain
road as argued by Etienne and Knoepfler. Pritchett’s argument is less plausible
because it fails to account for the presence of a narrow pass in the vicinity of Polygyra (Pritchett 1982, 113-115). Another problem stems from the fact that in order to reach Opous via Abai and Hyampolis the Spartans had to march across Phokian territory, whereas the mountain road via Kolaka led directly into Opountian Lokris. Plutarch, after all, talks about a Spartan “στρατεία εἰς τὴν Λοκρίδα” thereby suggesting that no other region was likely to be affected.

Regardless of which one of the two roads the Spartans took, Plutarch makes no reference to the names of the Lokrian cities and villages that they eventually reached. His account focuses on the battle itself, whereas the circumstances preceding the event are of little relevance to the story. Diodorus (15. 37), mentioning the year of the battle, 376/5 BC, and Xenophon (Hell. 6. 4. 10) knew of the Spartan defeat at Tegyra but supplied no further details (Pritchett 1982, 121-122; Sprawski 2004, 13-14).

If the Spartans took the mountain road via Kolaka, however, they must have ended up in the plain of Atalandi and thence marched to Opous. It is difficult to imagine that they would have stopped their advance once they had reached the mountain villages of Kyrtones and Korseia. This is an intriguing point. If these κόματι were already Boeotian by 375 BC, as they were in the time of Pausanias (9. 24. 5), then the Spartans must have continued beyond, since in such a case they would technically be marching across Boeotia, whereas the ultimate objective, as Plutarch says, was to reach Opountian Lokris. If not, i.e. the κόματι were still Lokrian, the uncertainty remains. Be that as it may, the elevated position afforded by the Kolaka uplands provided the Spartans with the advantage of overseeing the entire Lokrian territory long before they decided, if at all, to descend any further. This element of surprise, however, would have been totally lost if they had approached Opous from

145 Pritchett 1982, 109 resolved the obvious difficulty by stating: “The Phokians, who hated their Boiotian neighbors, were staunch allies of the Lakedaimonians.” He cites no literary evidence in support of his statement.
Phokis via Hyampolis. At any rate, the Spartan march over Mt. Chlomon would have been the first recorded use of the mountain road for military purposes. It is also important to point out that the soldiers in fact belonged to the garrison that the Spartans had previously established at Orchomenos (Wickersham 2007).

2.1.5: The Sacred Wars

The Macedonian offensive, from the time of Philip II until the battle of Chaironeia in 338 BC, had no direct impact on the territory of Opountian Lokris. In addition, much of the fighting during the Third Sacred War (355-346 BC) took place along the coast of Epiknemidian Lokris, south of Thermopylai (Buckler 1989, 33-34; Szemler 1991, 122-123; Jehne 1994, 116-137; Typaldou-Fakiris 2004, 288-289). The Phokian general Onomarchos managed to capture Thronion in 353 BC (Diod. Sic. 16. 33. 3), while his brother Phayllos, succeeded in subduing the rest of the coastal cities of Epiknemidian Lokris in 352 BC: Alponos, Nikaia, Skarpheia and Naryx (Diod. Sic. 16. 38. 3). The goal was to secure the mountain passes south of Thermopylai leading to Phokis (McInerney 1999, 211). When in 347/6 BC Philip II advanced from Thessaly and approached the pass from the north, Phailakos had already garrisoned the Lokrian strongholds with his mercenaries. Upon the arrival of Philip II, however, Phailakos relinquished the defense of Thermopylai without a fight (Dem. 19. 57-61).

No literary source mentions participation of Opountian Lokris in the Fourth Sacred War (340-338 BC) and the events leading to the battle of Chaironeia in 338 BC (Londey 1990, 239-260). At any rate, Philip’s advance into Boeotia was through the Kephissos valley (Szemler, 1991, 123-125) preceded by the capturing of the Phokian Elateia in 338 BC (Dem. 18. 169). No fleet accompanied him and it seems that he had no reason to make a detour via Opountian Lokris before engaging the Thebans and the

146 Despite the lack of evidence, it has been repeatedly speculated that Opountian Lokris began striking her silver staters as a way of financing the participation in the Third Sacred War, cf. Kraay 1976, 123; Lorber 1990, 44, 49; Ziesmann 2005, 97; cf. Martin 1985, 47-48.
Athenians in the decisive clash at Chaironeia. He managed, however, to garrison Thebes, Ambrakia, Corinth and probably Chalcis (Roebuck 1948, 73-92; Jehne 1994, 144-145, n. 50).

2.1.6: Alexander’s campaign and the Lamian War

During Alexander’s III military campaign against the Persian empire, his army comprised a significant contingent supplied by the Greek cities through the administration of the League of Corinth (Arrian Anab. 1. 1. 2; Diod. Sic. 17. 4. 9). Opountian Lokris was apparently a member of the League, as is also confirmed by the fact that a Lokrian unit is mentioned among Alexander’s cavalry forces that fought in the battle of Arbela in 331/0 BC (Bosworth 1988, 190).

Diod. Sic. (17. 57. 3)

“Philip the son of Balacrus held the next command and, after him, Craterus. As for the cavalry, the line of the squadrons which I have mentioned was continued with the combined Peloponnesian and Achaean horse, then cavalry from Phthiotis and Malis, then Locrians and Phocians, all under the command of Erigyius of Mitylene. [4] Next were posted the Thessalians who had Philip as commander; they were far superior to the rest in their fighting qualities and in their horsemanship. And next to these he stationed the Cretan archers and the mercenaries from Achaia.”

An abbreviated version of Diodorus’ account appears in the writings of Quintus Curtius (4. 23. 9), but we hear no more of the Lokrian cavalry until the end of the Asian campaign. Although Diodorus omits to specify which Lokrians he is referring to in this passage there can be little doubt, especially in view of earlier references to cavalry supplied by Opountian Lokris, that this was the region he had in mind. In addition, no literary source mentions Ozolian Lokris as a horse breeding country, nor do we hear of Ozolian cavalry as such. The obvious conclusion is that, in addition to the infantry and a small fleet, Opountian Lokris was able to breed horses and sustain a cavalry force as late as the last third of the fourth century BC.

147 IG II ² 236, l. 8 specifies that Lokris contributed 300 soldiers to the Corinthian League. For further details on the League, see Jehne 1994, 152-165, 188, n. 125, 190.
The role played by Opountian Lokris in the affairs of central Greece during the years of Alexander’s absence, is difficult to demonstrate mainly on account of insufficient evidence. With hindsight it is reasonable to imagine that it stayed loyal to the Macedonian regent Antipater, appointed by Alexander, who had to deal with only one revolt against his power in the Peloponnese in 331 BC (Badian 1967, 170-192; McQueen 1978, 40-64). That Opountian Lokris was under Macedonian influence in the years prior to Alexander’s death becomes obvious from the fact that she readily joined the Greek alliance against Antipater in the conflict known by modern scholars as the Lamian War (322-321 BC).\(^{148}\) What remains unclear, though, is whether it dispatched military force (Diod. Sic. 18. 9. 5; 18. 11. 1; Paus. 1. 25. 4), or suffered any consequences for her decision to oppose the Macedonians (Badian 1961, 36-41; Mitchel 1964, 13-17; Schmitt 1992, 95; Jehne 1994, 262-263).\(^{149}\)

2.1.7: In the shadow of the Successors

A most interesting episode occurred in the Euboean channel in 316 BC. Cassander was besieging the city of Tegea in the Peloponnese, when he decided to abandon the siege and march back home because of the troubles in Macedonia caused by the return of Olympias, Alexander’s mother.\(^{150}\) What Cassander did shortly thereafter was not only an efficient strategic move that no one had witnessed before, but also the beginning of a new era of warfare (Tarn 1930, 46). For avoiding direct confrontation for the sake of gaining an element of surprise was to become one of the hallmarks of Macedonian generalship in the years to follow.

Diod. Sic. (19. 35. 2-3)
““The Aetolians, who wished to please Olympias and Polyperchon, had

\(^{148}\) IG II\(^2\) 505, l. 17, however, refers to the war as Hellenic.

\(^{149}\) During excavations on the North Slope of the Acropolis at Athens, Broneer 1933, no. 17, 397-398 found a small fragment of what he interpreted as a decree recording the alliance between Athens and Lokris on the eve of the Lamian War.

occupied the Thermopylai and barred Cassander from the passage. Cassander decided against forcing his way through this region, which was difficult to attack, but he secured boats and barges from Euboea and Lokris and transported his army to Thessaly.”

The presence of Cassander in the Peloponnese was not accidental. After Antipater’s death in 319 BC, he was appointed a χιλιαρχος, which he deeply resented because his own father rejected him in favor of Polyperchon to be a guardian of the Macedonian kings (Diod. Sic. 18. 48. 4; Plut. Phok. 31. 1). As a result, Cassander spent the next two decades trying to secure his position in Macedonia as well as his control over central Greece and the Peloponnese (Adams 1983, 19-30; Errington 1990, 130-150). In his dealings with the Greek cities he continued his father’s policy of stationing garrisons and appointing commanders on the spot, while at the same time establishing oligarchies receptive of his policy (Diod. Sic. 18. 64. 6). In reality, he was very often on the move, followed by a sizable army, and constantly trying to improve his position in the face of his enemies (Touratsoglou 1996, 177-179).

Although Diodorus has no doubt abbreviated many of the details (Simpson 1959; Smith 1961), to return to the incidents from 316 BC, one needs to assume the existence of at least friendly relations between Cassander, Euboea and Opountian Lokris, provided his maneuver was to be successful. Obviously he had no fleet at his disposal; in addition, the emergency of the situation required unconventional methods of dealing with it. The solution was to prepare (παρασκευασμένος), rather than secure, boats (πλοία) and barges (σχεδία) from, most probably, several coastal

151 On the office of χιλιαρχος in the age of Alexander and the Diadochoi, see Collins 2001, 259-283.
152 Based on Diodorus’ account about Cassander’s crossing, Gauger 2005, 657 asserts that, “…gehörte sicher Ost-Lokris zum Herrschaftsbereich des Kassanders.”
153 In 318 BC Cassander received from Antigonus the One-Eyed 35 warships and 4,000 soldiers (Diod. Sic. 18. 68. 1). Later in that year, however, he disposed of the entire fleet entrusting it to the commander of the Macedonian garrison at Mounychia, Nicanor, before the naval battle near Byzantium where he was defeated by Cleitus (Diod. Sic. 18. 72. 3)
villages of Euboea and Opountian Lokris.154 The Euboean port of call was almost certainly Chalcis (Picard 1979, 257, n. 6), while Larymna, Halai, Kynos and Alope remain the primary candidates for the Lokrian points of departure. The avoidance of the Boeotian harbors may be significant, but not necessarily the result of political planning (Gullath 1982, 146, n. 3).155 It was probably due to the conditions of sailing, as much as it was due to the fact that Opountian Lokris, offering good anchorage, provisions and drinking water, was the natural stopping point for ships sailing from Lamia to Chalcis and vice versa. In fact, as Adams (1974, 93, n. 1; 1984, 87) has already pointed out, Cassander was using for the first time what later would be called “the fetters of Greece” (Polyb. 18. 11. 4-7).

Another consideration is the fact that Boeotia was a land of passage for the communication lines between Thessaly and the Peloponnese, especially when the pass at Thermopylae was negotiable. The following passage, describing the march of Cassander from Macedonia to the Peloponnese in 316 BC, demonstrates this clearly:

\begin{quote}
Diod. Sic. (19. 53. 1)

“Cassander crossed Thessaly without loss, but when he found the pass at Thermopylae guarded by Aetolians, he with difficulty dislodged them and entered Boeotia.”
\end{quote}

Although Diodorus makes no reference to other regions except Boeotia, south of Thermopylae, it is an unavoidable fact that before reaching Boeotia by land, \begin{quote}
154 This method of transportation was obviously chosen on account of the speed allowed by the movement of goods by sea. Cf. Diod. Sic. 14. 42. 4 who reports that Dionysius I of Syracuse decided to transport timber on barges and boats by sea from Italy to Syracuse: “…τούς δ’ ἡμίσεις εἰς τὴν Ἑταλίαν ἀποστεῖλας παρεσκευάσατο ἡμιγή μὲν τὰ πρὸς τὴν θάλατταν κατακομμοῦντα, πλοῖα δὲ καὶ τὸν ὑπηρέτας πρὸς τὸ τὰς σκευὰς ἀπαγορεύει κατὰ τάχος εἰς τὰς Συρακούσας.” See also Polyb. 4. 65. 4, who says that Philip V floated on barges timbers and tiles of the houses which he destroyed in Paianion, along the Achelous river down to Oeniadae: “…τὰς δ’ οἰκήσεις διαλύουν τὰ ξύλα καὶ τὸν κάραμον εἰς σκευὰς καθήρμοζε καὶ συνενεχός κατήγειν αὐτὰς τῷ ποταμῷ μετὰ πολλῆς φιλοτημίας εἰς τοὺς Οἰνιάδας.” On this passage, see Mulliez 1982, 112-113. Cf. also Aenaeus Tacticus Poliorketika 16. 13, who recommends, “If boats are available, the best way of keeping your soldiers fresh is to make the pursuit by sea. This will ensure, amongst other things necessary for success, that provided your voyage goes unobserved by the enemy you will arrive before they do.” Trans. Whitehead 2002, 63.
\end{quote}

\begin{quote}
155 In the IX Book of his Histories, Dyllos of Athens, Athen. 4. 155c, FGrH 73 F 1, says that before returning to Macedonia, Cassander came back from Boeotia.
\end{quote}
Cassander had to pass through Epiknemidian Lokris, Phokis or Opountian Lokris. Having passed through Thermopylai, Cassander had several choices: (1) the Asopos gorge leading to Doris and thence via the Kephissos valley into Boeotia, (2) the mountain passes over Mt. Kallidromon (Kleisoura, Fontana and Basilika) leading to the Kephissos valley and Phokis, and (3) the coastal road through East Lokris, which via the Opous-Hyampolis-Abai-Orchomenos road provided access to the Kephissos valley. Even though the omission of East Lokris and Phokis is likely to reduce our attempt to reconstruct the marching route of his army to mere guesswork, the presence of war elephants furnishes important clues. What is also clear is the fact that the elephants set out from Macedonia, thereby accompanying Cassander’s forces throughout the Peloponnesian campaign, as is evident from the episode that occurred before the crossing of the Isthmus:

Diod. Sic. (19. 54. 3)

“To return to Cassander, he set out with his army for the Peloponnese, but on finding that Alexander, son of Polyperchon, had blocked the Isthmus with guards, he turned aside to Megara. There he constructed barges upon which he transported the elephants to Epidaurus, taking the rest of his army in boats.”

Given this presence of war elephants, it can be established beyond any doubt that they took part in the forcing of the Thermopylai as well (Diod. 19. 53. 1). What this suggests, of course, is that they must have continued marching along with the entire army before getting transported by sea from Megara over to the Peloponnese. It is therefore reasonable to assume that Cassander decided to avoid mountain crossings as much as possible. If so, he was left with but one option: the coastal road south of Thermopylai. The advantages of the latter come from the fact that it was flat and suitable for wheeled traffic and baggage trains. It also meant passing through

156 In 318 BC Polyperchon had 65 elephants (Diod. 18. 68. 3), which he deployed during his unsuccessful siege of Megalopolis (Diod. Sic. 18. 70-71). An unspecified number of these was later taken back to Macedonia by Polyperchon, where they died from lack of nourishment during Cassander’s siege at Pydna in 317 BC (Diod. Sic. 19. 49. 3). Cassander was able, however, to take possession of some of Polyperchon’s elephants before the beginning of the siege (Diod. Sic. 19. 35. 7).
Opountian Lokris with which Cassander was otherwise on friendly terms (Diod. Sic. 19. 35. 2-3).

Cassander’s maneuver at Megara is a mirror image of what he did in Euboea and Opountian Lokris one year earlier (Diod. Sic. 19. 35. 2-3). In each case, he was deterred from land crossings, at the Isthmus and Thermopylai, and in both situations he avoided confrontation by adopting the seaways. The important difference, however, is this. In Megara he himself constructed (κατασκευάσας) the rafts (σχηδίας), unlike the boats (πλοία), which presumably were negotiated from the Megarians. In the case of Euboea and Lokris, however, the verb (παρασκευάζειμενος) implies that these were already available and all he needed to do was simply to get them ready. In the case of Megara, Diodorus clearly made the distinction between the elephants, which were transported upon the rafts,157 and the soldiers that were taken over in the boats. Despite the fact that Diodorus did not explicitly say so, one wonders if the situation was the same, when Cassander sailed along the North Euboean Gulf in 316 BC.158

In the next few years, Opountian Lokris became one of the key targets in the foreign policy of Cassander and Antigonus the One-Eyed, the possession of which turned out to be crucial for their ability to maintain supremacy in central Greece.

In 313 BC, Antigonus’ general Ptolemaeus received 150 ships, 5,000 infantry and 500 cavalry charged with the mission to set free the Greek cities already occupied by Cassander’s garrisons (Diod. Sic. 19. 77. 2-3).159 Upon his arrival at Aulis, he was joined by a significant number of infantry and cavalry sent from the Boeotian League (Diod. Sic. 19. 77. 4). Ptolemaeus was extremely successful in fulfilling his task, as is

157 According to Kistler 2006, 56, “Cassander may have been the first westerner to design elephant-transport craft.” Both episodes, however, merited no discussion in Scullard 1974, who is usually cited as the basic work on elephants in Greek and Roman warfare.

158 Unfortunately, no details are available concerning the events preceding the siege at Tegea in 316 BC (Diod. Sic. 19. 11. 9; 19. 35. 1). The roads and the nature of the military force taken by Cassander for this Peloponnesian campaign remain unknown.

159 The campaign is treated in considerable detail by Bakhuizen 1970, 112-130 and Gullath 1982, 159-166.
evident from the prompt expulsion of the garrisons at Chalcis, Oropos and Thebes (Diod. Sic. 19. 78. 2-5). He continued his march into Phokis where he also managed to overcome the garrisons of Cassander. The next passage concerns the fate of Opountian Lokris:

Diod. Sic. (19. 78. 5)

“He also marched against Lokris; and, since the Opountians belonged to the party of Cassander, he began a siege and made continuous attack.”

Unfortunately, no further details about the siege are recorded, which probably continued until 312 BC (Errington 1977, 498-499), nor do we know whether Opous was taken (Bakhuizen 1970, 116, n. 33). As it stands, the passage about Opountian Lokris gives the impression of her friendly relations with Cassander, and nothing seems to imply the presence of a Macedonian garrison. It is, however, interesting to point out here that the phrase, “των Ὀπουντίων τὰ Κασσάνδρου φρονούντων,” is used by Diodorus, when he describes the condition of Megalopolis on the eve of Polyperchon’s siege in 318 BC. More importantly, he also added that the city was ruled by an oligarchy established by Cassander’s father, Antipater (Diod. Sic. 18. 68. 3). Is it possible to infer from his statement that friendship with Cassander was always conditioned by the presence of sympathetic oligarchic rule negotiated by Antipater? If yes, then one may conjecture that Opous was on friendly terms with Cassander because Antipater had already established, possibly as result of the anti-Macedonian stance of Opountian Lokris during the Lamian War, an oligarchic rule there. I return to this problem in the epigraphic section below. Be that as it may, Ptolemaeus was bent on besieging Opous, which, to judge from Diodorus’ statement “συνέχεις προσβολαῖς εποίητο,” proved a tougher nut for him to crack. Despite the initial success, Ptolemaeus’ campaigns in central Greece had no lasting effects in the long run.160

160 In 310 BC he turned against Antigonus the One-Eyed on the complaint that his success in Greece had gone unrewarded (Diod. Sic. 20. 19. 2). Shortly thereafter he made an alliance first with
In the winter of 309/8 BC, Cassander managed to lure his old enemy Polyperchon into an alliance. As a part of the agreement, Polyperchon received from Cassander 4,000 Macedonian foot soldiers and 500 Thessalian horsemen with which he attempted to advance through Boeotia into the Peloponnese.

Diod. Sic. (20. 28. 4)
“...but, when he was prevented by Boeotians and Peloponnesians, he turned aside, advanced into Lokris, and there passed the winter."

Although no indication survives as to what was the further development of this military campaign, an important observation needs to be made; Polyperchon and the army supplied by Cassander spent the whole winter in Opountian Lokris (Bakhuizen 1970, 125; Gullath 1982, 167, n. 6). The implications of this fact are noteworthy. First, his decision to stay presupposes the existence of friendly relations between presumably Cassander, since in this case Polyperchon was acting as his ally and Opountian Lokris. This is further confirmed by the fact that in accordance with the usual practice the soldiers were distributed among cities and villages, rather than left camping in the countryside.\(^\text{161}\) Second, the movement of armies through central Greece to the Peloponnese required negotiating Opountian Lokris by land.

In 304 BC, Antigonus the One-Eyed sent his son, Demetrius Poliorcetes, to Greece in order to complete the task of freeing the cities from the garrisons established by Cassander. Having disembarked at Aulis, he delivered Chalcis from the hands of the garrison manned by the Boeotians, who had an alliance with Cassander (Diod. Sic. 20. 100. 5-6). He then continued his march into the Peloponnese, where he was able to take possession of Sikyon, Corinth and a number of Achaian cities on the Corinthian Gulf (Diod. Sic. 20. 102-103). In the same year, he came to the aid of the Athenians

\(^{161}\) In 313/2 BC Antigonus the One-Eyed was forced to distribute his army among many cities for the duration of the whole winter (Diod. Sic. 19. 77. 7).
who were besieged by Cassander.

Plut. (Demetr. 23)

“So Demetrius sailed to their help with three hundred and thirty ships a great number of men-at-arms, and not only drove Cassander out of Attica, but actually pursued him in his headlong flight as far as Thermopylai, and then took Heraclea, which joined him of its own accord, and six thousand Macedonians, who also came over to him. On his return, he gave their freedom to the Greeks on this side of Thermopylai, made the Boeotians his allies, and captured Cenchreae; he also reduced Phyle and Panaktum, fortresses of Attica in which Cassander had garrisons, and gave them back to the Athenians.”

Above all, the passage contains crucial information regarding the fate of Cassander’s garrisons in central Greece, the details of which are entirely omitted by Diodorus. First, the actions of Demetrius clearly show that Cassander has succeeded in re-establishing his chain of garrisons after their expulsion by Ptolemaeus in 313 BC. In the case of Opountian Lokris, the evidence seems to suggest that this happened as early as 309/8 BC (cf. Diod. Sic. 20. 28. 4). Second, Demetrius appears to have been extremely successful in his pursuit of Cassander, judging from the long distance covered and the defection of 6,000 Macedonians who decided to join him, as Cassander’s garrisons were being expelled. Although Plutarch’s phrase “he gave their freedom to the Greeks on this side of Thermopylai” is rather vague, there can be little doubt that the reference was intended to include Epiknemidian, Opountian Lokris and Phokis. The geographical order is implied not only through the next sentence in which Plutarch says that Demetrius “made the Boeotians his allies and captured Cenchreae”, but also because Demetrius did so on his way back from Thermopylai. While it remains unclear whether Demetrius pursued Cassander by sea, the fact that a majority of the Lokrian cities were more easily approachable from the sea may suggest that he made use of his three hundred and thirty ships in order to reach Thermopylai.

In 302 BC, after spending some time in Athens, Demetrius departed from Piraeus and decided to assemble his entire fleet at Chalcis.
Diod. Sic. (20. 110. 2)
“...then, learning that Cassander had occupied the passes in advance, he gave up the attempt to advance into Thessaly by land, but sailed along the coast with the army into the port of Larisa.”

Demetrius disembarked at Larisa Kremaste, and after passing through Pteleon and Antrones, he finally met with Cassander near Phthiotic Thebes and Pherai. If one takes Diodorus’ figures at face value, the army of Demetrius was remarkably large, comprising 1,500 horsemen and 56,000 foot soldiers (Diod. Sic. 20. 110. 4). Be that as it may, the episode brings out the importance of the Euboean Gulf as a sea-route, when the pass at Thermopylai was seized in advance. Apparently Demetrius was left with no choice but to perform Cassander’s maneuver from 317 BC. The differences between the two sailings arise from the fact that Demetrius had a large fleet of warships with which to transport his army, whereas Cassander did not. Perhaps Demetrius needed a few stops on the Lokrian coast before reaching the Malian Gulf. This fact may be taken to indicate that Cassander no longer maintained military forces south of Thermopylai. Whatever the case, Demetrius knew that Cassander guarded Thermopylai and in order to get an advantage by sailing around him, he had to do it as fast as he was able. At any rate, intermediate stoppings along the way would have meant more time for Cassander to regroup his forces.

It has often been maintained that Demetrius managed to include Opountian Lokris into his sphere of influence by the late 290s BC (Tarn 1964, 81). The evidence for this, however, is circumstantial. What Plutarch (Demetr. 39. 1) in fact says is that Demetrius won over Macedonia, Thessaly, most of the Peloponnese, the Megarid and Attica, with the exception of Boeotia. Demetrius dealt with this problem by establishing garrisons in many Boeotian cities immediately after Thebes was forced to surrender into his hands in 293 BC (Plut. Demetr. 39. 2). Despite these measures, the Boeotians continued to create problems for Demetrius, who saw himself compelled to
lay siege to Thebes again. That lasted for almost a year (Plut. Demetr. 39. 3; 40. 1-4). After securing Thessaly, Pyrrhus (contesting Demetrius’ power at Macedonia), who was also able to penetrate as far south as Thermopylai, interrupted his actions in Boeotia. That Opountian Lokris served as a land of passage for Demetrius’ pursuit of Pyrrhus at Thermopylai is plausible yet unsubstantiated possibility (Plut. Demetr. 40. 1).

Towards the end of his short reign as the king of Macedonia, Demetrius began full-scale preparations for reclaiming the domain of his father, Antigonus the One-Eyed (Will 1984, 107-109; Errington 1990, 151-152). To achieve this purpose, he undertook the building of 500 new warships that were stationed in Pella, Chalcis, Corinth and Piraeus (Plut. Demetr. 43. 2-3). Although the concerted efforts of Seleucus I, Ptolemy I and Lysimachus prevented him from succeeding in this enterprise, the omission of the Lokrian harbors is hardly surprising. Of course, it may be explained through their comparatively lesser significance (Buckler 2008, 197-198), but in all likelihood it had something to do with the fact that Demetrius never showed particular interest in securing Opountian Lokris for himself.

2.1.8: The Gallic invasion

In 279 BC, a huge Gallic army led by Brennus penetrated into Greece, but an alliance of Greek cities was able to temporarily hinder their advance at the pass of Thermopylai (Flacelière 1937, 93-104; Nachtergaele 1977, 126-205; Gullath 1982, 207-211; Szemler 1991, 126-127). Among the allied forces, Pausanias mentions the presence of a small contingent sent by Opountian Lokris:162

Paus. (10. 20. 4)
“The Lokrians over against the island of Atalanda were under the command of Meidias; they numbered seven hundred and no cavalry was with them.”

162 Diod. Sic. 22. 9 and Justin 24. 6-8 are the other two ancient sources describing the Gallic invasion. The Lokrians, however, are omitted from their versions of the story.
The passage shows that the Lokrians were able to send only infantry, whereas the cavalry was supplied by Boeotia, Phokis, Aetolia and Athens. The Athenians, who were holding the chief command, also brought “all their seaworthy triremes” (Paus. 10. 20. 5). While no details concerning the logistics of the allied Greek armies have survived, certain observations are nonetheless possible.

First, the Athenian triremes must have sailed along the Euboean Gulf in order to reach Thermopylae. In the aftermath of the battle, they also provided a way of escape for the Greeks (Paus. 10. 22. 11-12). Second, the movement of the Boeotian, Phokian and Lokrian contingents anticipates the use of communication lines by land before assembling at the pass. Thus there can be little doubt that the Lokrians marched along the coastal road followed by Boeotians and Phokians, who most probably advanced along the Hyampolis-Opous road. Third, after the Ainianes and the Heracleans led the Gauls along a mountain path, Brennus advanced south across the Kephissos valley until reaching Delphi. As a result, the rest of central Greece, including Opountian Lokris, suffered no consequences from Brennus’ march.

2.1.9: The Carian expedition of Antigonus III Doson

In 227 BC, Antigonus III Doson was on his way to Caria with his fleet (Walbank 1940, 12-13), when the following incident occurred in the North Euboean Gulf:

Polyb. (20. 5. 7)

“Antigonus (Doson), who, after the death of Demetrius, was Philip’s guardian, happened to be sailing on some business along the coast of Boeotia; when off Larymna he was surprised by a sudden ebb of the tide, and his ships were left high and dry. Now just at that time a rumour had been spread that Antigonus meant to make a raid upon the country; and therefore Neon, who was Hipparch at the time, was patrolling the country at the head of all the Boeotian cavalry to protect it, and came upon Antigonus in this helpless and embarrassed position: and having it thus in his power to inflict a serious blow upon the Macedonians, much to their surprise he resolved to spare them. His conduct in so doing was approved by the other Boeotians, but was not at all pleasing to the Thebans. Antigonus, however, when the tide flowed again and his ships floated,
proceeded to complete the voyage to Asia on which he was bound, with deep gratitude to Neon for having abstained from attacking him in his awkward position.”

The passage has been treated *in extenso* by many scholars (Feyel 1942, 116-121; Ehrhardt 1975, 257-259; Walbank 1979, 69-70; Will 1979, 364, 366, 368; Bousquet 1988, 42-43; Le Bohec 1993, 190-194). In terms of Lokrian history, the discussion usually revolves around attempting to establish the date when Larymna joined the Boeotian League (e.g. Walker and Goldman 1915, 422; Oldfather 1916a, 52. n. 3; Etienne and Knoepfler 1976, 334-337; Marcotte 1990, 151-152; Scholten 2000, 260). From a military viewpoint, however, it is equally important because it provides a unique opportunity to glimpse into the role played by the Lokrian harbors in facilitating the military shipping of Macedonian kings.

The change of the sea level caused by the low tide described by Polybius must have occurred only *after* the fleet had already been moored at Larymna. Otherwise it would not have been possible for the ships to be left “high and dry”. Whether the landing was planned in advance, however, is difficult to ascertain. It is conceivable that Antigonus III intended to give his fleet a few days’ rest before embarking on the open sea, and that the well-sheltered bay of Larmes had been chosen as a temporary stop on account of its deep waters (Paus. 9. 23. 7). In so doing, the Macedonian king provided the army with an opportunity to replenish their provisions and stores of drinking water.

Unless the incident can be attributed to natural causes, the earthquake of 228-224 BC, in particular (Will 1979, 368; Bousquet 1988, 42, n. 58; Guidoboni et al. 1994, 139-140; Daverio Rocchi 1998, 321), the episode seems to imply that the Macedonian fleet was unprepared for such an event, as is also indicated to a certain extent by the subsequent situation with the Boeotians. An important clarification is needed, though. To begin with, the chain of events that unfolded after the incident at
the bay of Larmes demonstrates that the Boeotians were completely unaware of what was happening. It was not until an informer created the wrong impression that the Macedonians were about to attack inland that Neon decided to deal with the situation on the spot. In other words, it is incorrect to think that the Boeotian cavalry happened to be patrolling around Larymna, as is often tacitly assumed, because Polybius gives no information as to the whereabouts of the Boeotians upon their finding out about the arrival of Antigonus III.

Despite the uncertainties (Oldfather 1916a, 52; Walbank 1940, 12, n. 6), the fact that Antigonus III did make a stop at Larymna before sailing through the Euripus and embarking on the open sea remains. It appears that either (1) this was an emergency stopping caused by unforeseen circumstances, i.e. seismic sea-wave or tsunami as a result of the earthquake at Cytinium in 228 BC (Guidoboni et al. 1994, 139-140), or (2) Larymna, in fact, was a regular port-of-call for military ships sailing along the Euboean Gulf. I think, however, that the latter is true regardless of the incident. Attributing the disaster to an earthquake makes it easy to explain why Antigonus III was caught unprepared, which, as it happened, almost got him into serious trouble with the Boeotians. That he was “surprised” by the occurrence, therefore, need not betray Macedonian lack of knowledge about the physical conditions of the Lokrian harbor. What is more, it seems safe to assume that Larymna was chosen to serve as a regular stopping station, and the ships were apparently, if not moored, at least already inside the bay of Larmes, when the tsunami struck. Were it to be otherwise, it is hard to imagine that the fleet would be dragged ashore at Larymna while in mid-sail, away from the harbor, let alone being able to continue the voyage as soon as the sea-wave subsided. In short, the landing at Larymna leaves the impression

163 In the entry on Larymna in Der neue Pauly, Daverio Rocchi simply states that the harbor at Larymna was struck by tsunami in 229-227 BC.
of being a calculated move based on the advantages for military shipping offered by its harbor.

Another passage from Polybius, describing events taking place in 224 BC, seems to suggest that, at least on one other occasion, Antigonus III resorted to the opportunities for sea transport afforded by the North Euboean Gulf (Larsen 1965, 117; Walbank 1989, 188; Hatzopoulos 2001, 32; contra Picard 1979, 212-218, 257; Le Bohec 1993, 369-370, carte 6a). The following event doubtless indicates that a Lokrian harbor was used as a point of disembarkation by the Macedonian army after having sailed from a port of Euboea:

Polyb. (2. 52. 8)
“... and [Antigonus] marched to the Isthmus with his army by way of Euboea. He took this route because the Aetolians, after trying other expedients for preventing Antigonus from bringing this aid, now forbade his marching south of Thermopylae with an army, threatening that, if he did, they would offer armed opposition to his passage.”

2.1.10: The Garrisons of Philip V

The lack of a line of communication by land between northern Euboea and Chalcis meant that an army crossing from Thessaly via north Euboea was bound to enter central Greece through a Lokrian harbor on the North Euboean Gulf (Larsen 1965, 116-117; cf. Picard 1979, 258). It is important to bear in mind, though, that the prerequisite of the decision to transport one’s army by sea derived from the fact that because of the Aetolians the pass at Thermopylae afforded no passage. Adopted by Macedonian kings when on campaigns in central and southern Greece, the practice of bypassing the Thermopylae via the sea became a full-fledged strategic device by the time of Philip V.

Polyb. (4. 67. 7)
“But the winter being now considerably advanced, and all idea of the king coming being given up owing to the time of the year, Philip suddenly started from Larisa with an army of three thousand hoplites armed with brass shields, two thousand light-armed, three hundred Cretans, and four hundred horse of
the royal guard; and having transported them into Euboea and thence to Cynos he came through Boeotia and the Megarid to Corinth, about the time of the winter solstice; having conducted his arrival with such promptitude and secrecy, that not a single Peloponnesian suspected it.”

The details supplied by Polybius about the crossing of Philip V in 219 BC not only demonstrate the actual sea route, but they also make it likely (so Larsen 1965, 117; Walbank 1957, 522-523) that it coincides with the one taken by Antigonus III five years earlier (Polyb. 2. 52. 8). Furthermore, since the army was bound for the Peloponnese, the incident brings out the importance of Opountian Lokris as a land of passage for a marching army headed south. What is also significant is the fact that the region invited a sea crossing facilitated by her harbor at Kynos, as well as a land crossing thanks to its line of communications with Phokis and Boeotia to the south. Given the fact that the point of disembarkation was at Kynos, all scholars have agreed that in order to use it as a point of entry, the troops must have boarded at Aedepsos on the Euboean coast (Larsen 1965, 127). Afterwards, the most likely land route taken by the Macedonian army was the Opous-Orchomenos road via Hyampolis. Some scholars have tried to argue that Philip V advanced southwards by crossing Phokis and thence via the Corinthian gulf to the Isthmus (Larsen 1965, 121). The main objection to this conjecture comes from Polybius, who seems to suggest that Philip’s land route required passing through Boeotia and the Megarid, rather than Phokis, before reaching the final destination at Corinth. It is true, as Larsen (1965, 121) has already observed, that in order to reach Boeotia from Opous, one needed to cross East Phokis first by entering through the Hyampolis-Abai road and thence the Kephissos valley. Beyond Abai, however, the road already traverses Boeotian territory and it is more plausible that Philip V proceeded thence along the Kephissos valley and after crossing through Geraneia in the Megarid he reached the Isthmus.

The importance of the alternative crossing by sea came into play a decade later, when Philip V was facing the combined effort of Rome and its Pergamene ally,
Attalus I, who tried to offset his influence in the affairs of central Greece (Walbank 1940, 94-95). In 208 BC, unlike Chalcis which was able to resist the enemy attack, Oreus and Opous fell into their hands. Before setting sail to Oreus, the Roman general Sulpicius disembarked at Kynos with his 23 quinqueremes (Livy 28. 5. 5; 6. 12). He left Attalus there, who shortly thereafter captured and plundered Opous (Livy 28. 7. 4). On receiving the news, Philip V marched south from Scotoussa and managed to force his way through Thermopylai in spite of the fact that the Aetolians had arrived at the pass before him. Eventually, he was able to reach Elateia in the same day, after marching a total of sixty miles.

Once again the episode points to the existence of two basic lines of communication for the Macedonian kings when they were marching south via Thessaly. Since this time the Romans succeeded in capturing Oreus, Kynos and Opous, in reality they denied Philip the opportunity to use this route, as he did in 219 BC. Once the sea route was cut off, Philip V was left with the only choice to advance through Thermopylai, which he successfully did, after dislodging the Aetolians (Larsen 1965, 128). Control of Opountian Lokris was vital because it afforded another point of entry to central Greece and the Peloponnese, especially when the Thermopylai and Epiknemidian Lokris were occupied by the Aetolians (Walbank 1940, 95; Picard 1979, 258).

A corollary of Philip’s desire to check the movement of the enemy, as well as to secure the availability of the sea route is the establishment of a communication system by fire signals. In 208 BC, he sent troops to the island of Peparethos, Chalcis,

\[164\] From Elateia Philip V advanced into Lokris and eventually reached Opous by the road via Hyampolis, cf. Pritchett and Camp 1996, 140.

\[165\] The importance of Thermopylai as a gateway to Greece was realized by the Boeotians and “interiores Graeci populi,” among which it is reasonable to suspect were those of Opountian Lokris, who told Philip V that the Aetolians had fortified the pass thereby preventing them from sending reinforcements to his allies in 208 BC (Livy 28. 5. 8). Cf. also Livy 31. 23. 12: “…nam ut terra Thermopylarium angustiae Graeciam, ita mari fretum Euripi claudit.”
Phokis and Boeotia, while he returned to Demetrias.

Polyb. (10. 42. 6)
“To secure that he should be kept perfectly acquainted with all their movements, he sent messengers to the Peparethii, and to his troops in Phokis and Euboea, and ordered them to telegraph to him everything which happened by means of fire signals directed to Mount Tisaeum, which is a mountain of Thessaly conveniently situated for commanding a view of those places.”

In the context of these preparations Polybius makes no reference to Opountian Lokris but there can be little doubt that it played a major role within the network of communications. Simple logic dictates that relaying stations were established along the Lokrian coast, for it is difficult to imagine that direct communication between Mt. Tisaeum (694 masl), located on a promontory near the Pagasitic Gulf, and Chalcis was actually possible. Further indication is supplied by the fact that, in addition to Phokis and Boeotia, Philip V also maintained garrisons in Opous and Kynos (Polyb. 18. 10. 4-5; Livy 32. 36. 9, 32. 32. 1-5). The key role of Lokris in the Greek schemes of Philip V comes out from Flamininus’ speech delivered before the senate at Rome in 196 BC (Holleaux 1943, 235-246):

Polyb. (18. 11. 4-7)
“That so long as Chalcis, Corinth and Demetrias were subject to Macedonia, it was impossible for the Greeks to think of liberty; for Philip himself had spoken the exact truth when he called these places ‘the fetters of Greece’. For neither could the Peloponnese breathe while a royal garrison was stationed in Corinth, nor the Locrians, Boeotians and Phocians feel any confidence while Philip was in occupation of Chalcis and the rest of Euboea; nor indeed the Thessalians and Magnesians raise a spark of liberty while Philip and the Macedonians held Demetrias.”

The intermediary role of Opountian Lokris, Boeotia and Phokis for the communication line between Thessaly and the Peloponnese via Euboea is clearly stated. The phrase “and the rest of Euboea” most certainly designates the land corridor between Oreos and Aedepsos, which had been used repeatedly by Antigonus III and Philip V, when the Macedonians were denied an easy passage through Thermopylae.
The prominent position of Chalcis, on the other hand, emphasizes the fact that military shipping was passing through the North Euboean Gulf, as is also indicated by the incident of 227 BC, when Antigonus III was stranded at Larymna. That Opous occupied a key position within the line of communications with Boeotia, Phokis and the Peloponnese can hardly be doubted. When in 197 BC Flamininus managed to capture Elateia, the Opountians invited him to deliver the city from the *regium praesidium* occupying the acropolis.\(^{166}\) On learning the news, Philip immediately sent a herald asking to come to terms with Flamininus. (Livy 32. 32. 1-6; Plut. *Flam.* 5. 4). At the conference at Nikaia held immediately afterwards (Larsen 1938, 271; Walbank 1940, 150; Holleaux 1957, 29-79), Philip V promised to withdraw all his garrisons from Phokis and Lokris, as well as to leave the cities to the Romans (Polyb. 18. 10. 4; Livy 32. 36. 9). Eventually Philip succeeded in re-establishing his garrison in Opous until the Macedonian domination of Greece was put to an end in the summer of 196 BC, when Flamininus announced the liberation of the Greek cities during the Isthmian games:

> Polyb. (18. 46)
> “The Roman senate and T. Quinctius the proconsul, having conquered King Philip and the Macedonians, leave free, without garrisons, liable to no tribute and subject to the laws of their countries, the Corinthians, Phocians, Locrians, Euboeans, Phthiotic Achaeans, Magnesians, Thessalians, and Perrhaebians.”

2.1.11: The Expedition of Herodoros to the Atalante island

Discontented with the arrangement promulgated by Flamininus (Walsh 1996, 344-363), the Aetolians appealed to Antiochus III the Great urging him to intervene in the Greek affairs. Before his arrival, however, they decided to strike at Demetrias, Sparta and Chalcis in the summer of 192 BC. Their offensive was successful at Demetrias, offering the port as a main base for Antiochus’ further operations, while,

\(^{166}\) *Praesidium* may be equated with the Greek θρούριον, cf. Bakhuizen 1970, 136, n. 4. Livy is probably referring to a Macedonian garrison occupying the *arx* of Opous established by Philip V.
after the murder of the tyrant Nabis, Sparta was promptly occupied by the Achaean League to the detriment of the Aetolians. The plan to capture Chalcis failed despite the complicated scheme devised by Thoas, the newly-appointed στρατηγὸς of the Aetolian League. Euthymidas was approaching Chalcis by land from Thebes towards Salganeus, while Herodorus, a wealthy merchant of Kios and a resident of Chalcis, was lying in wait at Thronium. I include the events immediately preceding the attack on Chalcis because the bay of Atalandi, in particular, played important role in the Aetolian logistics.

Livy (35. 37. 7-8)

“At a small distance, on the Malian Gulf, Thoas had 2,000 foot, 200 horse, with 30 light transport ships. With these vessels, carrying 600 footmen [foot soldiers], Herodoros was ordered to sail to the island of Atalanta, that, as soon as he should perceive the land forces approaching Aulis and the Euripus, he might pass over to Chalcis; to which place Thoas himself led the rest of his forces, marching mostly by night, with all possible expedition.”

With the failure of Euthymidas and Thoas to capture Salganeus, however, Herodoros never received instruction to leave the Atalante island.

Livy (35. 38. 14)

“Herodorus, after waiting several days at Atalanta, attentively watching for the concerted signal in vain, sent a spy-boat to learn the cause of the delay; and, understanding that the enterprise was abandoned by his associates, returned to Thronium.”

Despite the ultimate failure of the Aetolian assault on Chalcis, Herodoros’ role in the campaign was considerable, yet it has been largely overlooked by modern historians. The fact that the bay of Atalandi served as a springboard for a seaborne

The accounts of the Aetolian campaigns on Chalcis in the Cambridge Ancient History are devoid of details, while the episode with the ships of Herodoros, along with his round-trip from Thronium to Atalante island, is simply omitted, cf. Holleaux 1930, 207;Errington 1989, 281; Larsen 1968, 413. Even Oldfather 1926, 1229 failed to include the episode in his survey of Lokrian history. Largely paraphrasing Livy’s account, Deininger 1971, 81-82, n. 11; Gehrke 1986, 90, as well as two recent monographs on the Aetolians by Grainger 1999, 439; Grainger 2002, 183 have discussed the episode in some detail but without further elaboration on the expedition of Herodoros.
assault on Chalcis is hardly surprising. Apart from being uninhabited, the island also offered a good anchorage for warships on campaign. It would be equally interesting to know what the reaction of Opous might have been, but unfortunately, no details are provided by Livy, who is our only surviving source for the events. Kleopompos’ raid on Thronium, arriving with 30 ships in 426 BC (Thuc. 2. 26. 1), adds a useful parallel to the expedition of Herodoros. It is perhaps no coincidence that, upon his return to Athens, precisely Atalante island was chosen as the main Athenian base designed to keep watch on Lokrian incursions on Euboea. A final intriguing point concerns the extent to which Herodoros’ soldiers utilized the fortification facilities and triremes’ installations built by the Athenian garrison in 431 BC. Whether or not he built a temporary camp for his forces remains unknown.

2.1.12: The Third Macedonian War

Scholarly discussions devoted to the Third Macedonian War (172-168 BC), which are exclusively based on the available literary sources, traditionally exclude Opountian Lokris from the picture (Larsen 1938, 290-302; Hammond and Walbank 1988, 505-531). The reason is not far to seek; Livy makes no reference to Lokrians siding with either Macedon or Rome. Numismatic evidence, however, has been recently adduced, most notably by Richard Ashton, who has produced a number of articles on the identification and circulation of pseudo-Rhodian drachms in mainland Greece, in favor of the conjecture, which he calls “speculative”, that Larymna, in particular, may have been somehow involved in the war. In brief, Ashton (1995, 4, nos. 57-78, 18) has tried to demonstrate that a number of issues with the name Eubios, including the letters L-A, were probably minted at Larymna. He further suggests

168 According to Larsen 1938, 281, Phokis and Lokris were probably controlled by the Aetolians and Antiochus III during 192-184 BC.
169 For a full list of Ashton’s articles on the subject, see Psoma 2007, 87, n. 75.
170 Ashton 1995, 18 rejected Larissa, Larissa Creamste and Lamia in favor of Larymna. He pointed to SGDI 2593, a Delphic grant of proxeny to Eubios, son of Alupos, a Lokrian from Larymna.
that the monogram la, which appears together with a dolphin applied on two coins of Nikostratos (Ashton 1995, 6, nos. 100, 103, 18), may also be attributed to the mint of Larymna. To support his suggestion further, Ashton (1995, 18) pointed out to the attribution of the issue of Diokles to another Boeotian city, Haliartos. The main problem behind Ashton’s discussion was the fact that some of these pseudo-Rhodian drachms found their way back into south-west Asia Minor.

Ashton’s attribution were immediately subjected to a vigorous attack from Knoepfler (1999b, 197-206), who argued that they should be assigned to the central mint of the Boeotian League before the outbreak of the Third Macedonian War.171 My intention here is not as much to evaluate the plausibility of each claim, as it is to point out several logistical aspects, which remained unaddressed by Ashton and Knoepfler. What is more, both authors were apparently unaware of the existence of an important antecedent: a Lokrian hemiobol with the letters L-A dated to the fourth century BC, as first pointed out by Oldfather (1908, 470; 1926, 1286). Finally, if Ashton’s attribution to Larymna is correct, it would constitute the first instance of anti-Macedonian stance of Opountian Lokris, or at least Larymna,172 since the Lamian War in 322 BC.

Let us deal with the numismatic evidence first. One of the main objections raised by Knoepfler (1999b, 204, n. 49) in response to Ashton’s claims was that Larymna never minted her own coins. This is, however, not true. In his dissertation Lokrika, Oldfather (1908, 469-470) drew attention to two unpublished hemiobols, which appeared in a German auction catalogue in Munich (Hirsch 1905, nos. 1628 and

\footnotesize{171 In a follow-up article, Ashton 2000, 93 continued to insist on his attribution to Larymna, while acknowledging that,”...it cannot on present evidence be disproved and it is difficult to suggest a more plausible alternative.”

\footnotesize{172 Larymna was a member of the Boeotian League during the Third Macedonian War, although this fact alone hardly proves, as Knoepfler 1999b, 204 claims, that, “...ne saurait avoir joue un bien role imortant lors de la guerre contre le Persee”. Cf., however, CIG II 1936, a proxeny list of unknown provenance, which mentions the city-ethnic as Larumnaios. On the date of 134-130 BC, see Habicht 1972, 121-122; attribution to Oreus, see IG XII Suppl. 1187.}
1629, Taf. XXI). Both coins have on the obverse a bearded male head with a petasos, identified as Hermes, and grapes on the reverse. On the reverse no. 1628 has a legend KR, which Nielsen (2004, 669) plausibly restores as [ΛΟ]ΚΡ[ΩΝ], whereas no. 1629 has the letters L-A. Oldfather (1908, 470) used no. 1628, which he dated to the fourth century BC, as evidence for the existence of cult of Hermes among the Lokrians, but more importantly, Nielsen (2004, 669) suggested that no. 1629 was not only contemporary with no. 1628 but also that L-A was an abbreviation of Larymna.\footnote{In his entry on Larymna, Nielsen 2004, 669, however, omits Ashton’s articles on the pseudo-Rhodian drachms with the letters L-A.} In light of this overlooked piece of evidence, it is obvious that the attribution of Eubios issues of pseudo-Rhodian drachms to Larymna, as suggested by Ashton, should be perceived neither as hypothetical nor speculative an idea. In fact, it increases the likelihood that Larymna may have attracted the eye of Eumenes II and his brothers not only because of the opportunity to mint coins but because of her sheltered harbor, as well as her good links with the interior of Boeotia. A careful look at the available literary evidence is, therefore, necessary.

In an attempt to explain their circulation in south-west Asia Minor, as well as the possible participation of Larymna in the war, Ashton (1995, 18) also turned to the events described by Livy. In 171 BC Eumenes II and his two brothers, Attalos and Athenaeus, sailed to Chalcis with 6,000 infantry and 1,000 cavalry to support the Romans against the Macedonian king Perseus. Eumenes II and Attalos accompanied by 4,000 infantry and the cavalry, went to join the Roman consul in Thessaly, while Athenaeus was ordered to stay at Chalcis with the remaining 2,000 infantry. Later in that year, Attalos was dispatched to Boeotia, where he assisted the Roman siege of Haliartos, which together with Koroneia and Thisbe sided with Perseus (Livy 42. 55.
7-8; 42. 56. 5). Chalcis, however, remained the main naval base of the Romans, to which all allies sent their contributions of soldiers and ships. After capturing Phthiotic Alope and Larissa Cremaste, Quintus Marcius also joined the allied fleet at Chalcis (Livy 42. 55. 7). Ashton (1995, 18) concluded that the soldiers of Eumenes II brought back home some of the pseudo-Rhodian drachms because they were dismissed by the Romans at the end of 171 BC (Livy 42. 67. 7-8). Aside from purely numismatic arguments, however, a question might be asked; how did Larymna fit the logistics of the armies sent by Eumenes II in 171 BC? We know from Livy (42. 55. 7), for example, that since no naval engagement was planned, the Romans sent back all allied ships gathered at Chalcis, which excludes the possibility of her serving as a subsidiary naval base. Since, on the other hand, Larymna was linked by a natural road with the Kopaic basin, it is reasonable to assume that it was potentially important for the transfer of the soldiers led by Athenaeus towards Haliartos. If the route was actually employed, passing through Akraiphia, let alone the marshes of the Kopaic Lake, would not have posed an obstacle, since the city remained loyal to the Romans during the war.\footnote{176}

\footnote{174 For their pro-Macedonian orientation these Boeotian cities were severely punished by the Romans in 171 BC. For a convenient summary of the literary sources pertaining to their participation in the war, see Fossey 1979, 563-572 and Larsen 1968, 464-466. On several proxeny decrees from Haliartos dated immediately before the outbreak of the Third Macedonian War, see Fossey 1994, 49-56. One of these, IG VII 2849, honors certain Xenokratios, a Macedonian philosopher resident in the city, who was involved with the teaching and training of ephebes in the gymnasion. For further commentary on this inscription, see Fossey 1994, 52-56 and, most recently, Haake 2007, 171-174. On rebuilding the city walls of Thisbe and Koroneia immediately after the Roman destruction, see Maier 1959, 126-131, nos. 28-29.}

\footnote{175 The other major base was Oreus on Euboea, where in 170 BC Perseus managed to deliver a devastating blow on the Roman fleet, including the destruction of 20 merchant ships loaded with grain that were supposed to re-supply the Roman army in Thessaly, cf. Plut. Aem. Paul. 8. 2 with Roth 1999, 194 and Gaebel 2002, 256-257.}

\footnote{176 The citizens of Akraiphia erected a bronze statue of Cornelius Lentulus, an officer in the Roman army against Perseus, in 171 or 167 BC, according to Feyel 1955, 421-422, who published the honorific inscription on the marble base. On Lentulus, see Livy 42. 47. 12; 42. 49. 9; 42. 56. 3-4; 45. 4. 7. On a possible association of a destruction layer on the acropolis of Akraiphia with events from the Third Macedonian War, see Garlan 1974b, 112.}
2.1.13: The Achaean War

Some literary sources suggest that Lokris became involved in what is known as the Fourth Macedonian War or the Achaean War in 146 BC. The main problem in this case, as indeed in many others, comes from the uncertainty arising from not specifying which part of Lokris is meant, i.e. East or West (Polyb. 38. 8. 3). Although most scholars agree that Polybius refers to East Lokris (Oldfather 1927, 1232; Larsen 1938, 305; 1968, 495), there is no definitive, independent evidence pointing to Opountian Lokris. Judging from the geography of the conflict, i.e. a siege at Heraclea Trachis, followed by the battle at Scarphea, it seems more reasonable to conclude that under the general label “Lokris” the Epiknemidian should emerge as the more likely candidate. In the aftermath, Mummius had the walls of all Greek cities that took a stand against Rome, including those of Thebes and Chalcis, dismantled (Paus. 7. 16. 7-9; Polyb. 39. 2; Livy Epit. 52). Whether or not any Lokrian city, Epiknemidian or Opountian, suffered the same fate remains, however, a moot point.

For the next fifty years the foreign affairs of Greece were dominated by the rising power of Rome, which sought to establish her power in the Aegean. Among the wars which had profound impact on the history of Boeotia and, by extension, Opountian Lokris, is the First Mithridatic War (88-85 BC).

2.1.14: The First Mithridatic War

The king of Pontus, Mithridates VI Eupator (120-63 BC), was trying to offset the Roman expansion to the east and the depredations of the publicani by establishing an alliance in mainland Greece. To this end, in 87 BC, he sent his general Archelaus to Greece with a large army and fleet who managed to secure the allegiance of Athens,
Sparta and all of Boeotia except Thespiae (App. *Mithrid. 29*). Thessaly and Euboea, however, refused to join him and were promptly punished by another general of Mithridates, Methrophanes. At the same time, Lucius Cornelius Sulla quickly arrived in Greece via Epirus, followed by five legions, five cohorts and some cavalry. His disadvantage, however, stemmed from the fact that he, unlike Archelaus who transported his entire army by sea, had no ships. Thessaly and Aetolia sided with Sulla, whereupon Boeotia switched sides by defecting to the Romans. At the same time, Sulla was marching against Attica, where he laid siege to Athens (App. *Mithrid. 30*). After a prolonged siege and heavy fighting on the walls of Athens, Piraeus and Eleusis, Sulla proved victorious over Archelaus, in spite of the fact that the latter was constantly being supplied with reinforcements from the sea (App. *Mithrid. 30-40*).

After the fall of Athens, Archelaus assembled his entire army at Thermopylai, where he joined with other reinforcements sent by Mithridates. Despite his having ships available, he made no use of them because he advanced, as did Sulla, into Thessaly by land via Boeotia. What is also clear is the fact that both armies bypassed Opountian Lokris before taking their positions near Chaeroneia, since Sulla stumbled upon the army of Archelaus just as they were crossing from Thermopylai into Phokis (App. *Mithrid. 41*). Archelaus thus must have taken his forces via the mountain passes from Epiknemidian Lokris, if not by negotiating the Asopus gorge south of Thermopylai (Ormerod 1932, 249).

Archelaus lost the ensuing battle of Chaeroneia (86 BC) suffering great losses (10,000 out of 120,000 survived), while the soldiers who escaped the battlefield assembled in Chalcis.\(^{179}\) Lacking a fleet, Sulla organized a futile chase by land but achieved nothing, since Archelaus was able to put out to sea from Chalcis, where his

\(^{179}\) For a detailed analysis of the battle, see Kromayer 1907, 351-397 and Hammond 1938, 188-201. On the recently found trophy erected after the battle, see Camp *et al.* 1992, 443-451.
ships were waiting for him (App. *Mithrid.* 45).

Before the battle of Orchomenos in 85 BC, Mithridates sent more reinforcements to Archelaus (80,000), led by his general Dorylaus. The army joined with the remaining 10,000 soldiers of Archelaus at Chalcis, which again served as the main point of entry into Boeotia. Before the beginning of the battle, Sulla took precautions by setting up watchmen around the entire plain, fearing that Archelaus might escape unpunished to Chalcis again. Despite Sulla’s measures and his decisive victory, Archelaus, for a second time, succeeded in his flight to Chalcis.

App. (*Mithrid.* 50)

“Archelaus hid in the marsh, and found a small boat by which he reached Chalcis. Here he hastily summoned any detachments of Mithridates’ army which were stationed in various places.”

In the aftermath of the battle, Sulla punished the Boeotians on account of their shifting allegiance and then moved to Thessaly with his army where he spent the winter (App. *Mithrid.* 51). In addition, Plutarch (Sull. 22. 3) mentions a meeting on the Boeotian seacoast near Delion, where Sulla conversed with a merchant from Delos who was sent to negotiate with him on behalf of Mithridates. In the context of the punitive raids delivered upon Boeotia following the battle of Orchomenos, belongs the putative destruction of Anthedon, Larymna and Halai, the story of which is told only by Plutarch (Sull. 26. 4):

“For when he was pursuing the enemy after his victory at Orchomenos, he had destroyed three cities of Boeotia together, Anthedon, Larymna and Halae.”

The passage has been used to substantiate the claim that, before the battle of Orchomenos, the army of Mithridates “used these ports to land their troops in northern Boeotia”, while their subsequent destruction aimed to deny their further use “as a base of operations” (Oldfather 1916a, 49, n. 1). The linchpin of Oldfather’s thesis

180 Kallet-Marx 1995, 278-279, for example, has used Plutarch’s passage to claim that after the First Mithridatic War Halai, Larymna and Anthedon, along with the rest of Boeotia, Athens, Euboea and perhaps Phokis were “made subject to Roman taxes”.
derives from his belief that the harbors served as disembarkation points for Archelaus’ army. Neither Plutarch’s nor Appian’s accounts, however, support this. Students of the First Mithridatic War, however, tend to treat Plut. *Sull.* 26 very casually (Holden 1886, 141-142; Keaveney 1982, 99; Kallet-Marx 1995, 62; de Callataÿ 1997, 317, n. 266), or ignore the passage completely (Greenidge and Clay 1960, 188-194; McGing 1986, 125-126). Despite this silence, Oldfather’s theory has stood the test of time and continues to persist unchallenged (e.g. Fossey 1990, 115, 154; Coleman *et al.* 1999, 310).\(^{181}\) To a great extent, I think, that this is made possible because Plutarch’s passage has been treated in isolation, and more importantly, with little or no reference to the sequence of events described by Appian in his much more detailed *Mithridatic Wars*.

Before the battle of Chaeroneia, Sulla was marching from Attica via Boeotia, whereas Archelaus crossed over into Boeotia from Phokis after leaving Thermopylae. Before the battle of Orchomenos, Archelaus led his army through Boeotia, but this time he began his march from the headquarters at Chalcis. In other words, prior to the two battles, we have no reason to think of detachments coming to join with Archelaus in Boeotia by way of her harbors. The only harbor used was Chalcis on the Euboean coast. Once the battles were over, however, Archelaus had to deal with a situation that was quite different. This is the point where, for the first time, indirect evidence may support the idea that he resorted to the assistance of some Boeotian harbors, i.e. Anthedon, Larymna and Halai. Although we are unclear about the exact route of his escape, we still know for a fact that the assembly point of the survivors was Chalcis. If

\(^{181}\) In this connection, it is perhaps interesting to note that a marble bust of the type *imago clipeata* from Atalandi, identified with Mithridates VI Eupator, has been put in the context of the First Mithridatic War. In support of his identification, Neumann 1988, 227-229, Taf. 28-30, who published the find in detail, showed that the Atalandi statue, along with another bust of Mithridates from Delos, as well as his image on Athenian coins minted during 88-87 BC, belonged to a common iconographic type. Citing the passage in Plutarch *Sull.* 26. 1-4, Neumann 1988, 229 also suggested that East Lokris and Opous, in the Gymnasion of which the statue was found, was possibly drawn into alliance with the Pontic king before the decisive battles at Chaeroneia and Orchomenos.
one accepts that 10,000 soldiers succeeded in their flight to Chalcis (App. Mithrid. 45), it is difficult to imagine that they did so by following a single route of escape. What is more, Archelaus and his soldiers must have been well aware that reaching a harbor on the Boeotian coast guaranteed their safety because Sulla had no ships. Getting to Anthedon was perhaps the most attractive option, since once they managed to reach Thebes the road to Anthedon (Herakleides Creticus 1. 23) was easy to negotiate and suited for wheeled traffic, ἁμαζήλατος (Gomme 1911-1912, 208, n. 5; Blackman 1969, 16-17). The Anthedon-Slaganeus-Chalcis road (Herakleides Creticus 1. 26), which closely followed the coast, was another possibility to consider, since it was also suitable for carts (Bakhuizen 1970, 141-144). The bay of Larmes, on the other hand, possessed certain advantages, but in order to reach it one needed to cross the Kopaic Lake at the bay of Akraiphia. Interestingly, after the battle of Orchomenos, Archelaus is said to have hidden in the marshes for two days, before he managed to escape by finding a boat (σκόφος) to Chalcis. The passage provides important clues, yet modern scholarship has clearly failed to realize its potential. Normally the scholarly treatment of this episode circumscribes the discussion to paraphrasing Appian’s account (e.g. Ormerod 1932, 251), but what needs to be established is this. Did Archelaus actually cross the Kopaic Lake by his boat, or did he get hold of it after reaching a Boeotian harbor on the seacoast? The Greek says (ἐς Χαλκίδα διέπλευσεν), which means that he sailed across to Chalcis perhaps implying that he had embarked on his journey from Larymna, since the latter was the closest harbor to the Kopaic Lake. If this is what happened, Larymna clearly served as no base for his

182 Sulla’s attempt to catch Archelaus getting to Chalcis by land with light-armed troops failed. One needs to remember, of course, that he started his pursuit after he had given the soldiers some rest (App. Mithrid. 45).

183 Cf. Hesiod Works and Days 651-655 who crossed over to Chalcis having sailed from Aulis.

184 This, however, is a bit problematic because in order to reach Larymna, he must have first passed through Akraiphia, which remained pro-Roman during the war and was spared by Sulla, who was proclaimed a savior and benefactor of the city, cf. de Callataý 1997, 317, n. 267.
army. Were it to be otherwise, Archelaus would have set sail not in a small boat, but with one of his own ships waiting for him to embark on. The story, as it stands, describes an impromptu situation whereby a defeated general is trying to save his life by hiring a fishing boat from the closest harbor he had finally happened to reach.

In disentangling the chain of events leading to the destruction of the Boeotian harbors, the following details are noteworthy. Not immediately after the battle of Orchomenos, but on the next day did Sulla started plundering (δισπάζει) Boeotia (App. Mithrid. 51). In the same vein, Plutarch (Sull. 21. 4) mentions no Roman pursuit after the battle. Finally, Sulla’s meeting with Mithridates’ protégé near Delion certainly betrays his Boeotian whereabouts in the days following his victory at Orchomenos (Plut. Sull. 22. 2-3). The main point, though, is that Sulla punished Boeotia on account of its constantly changing sides (App. Mithrid. 51); a statement that is all too general to imply that Boeotian harbors were necessarily used as bases of operations by Archelaus. As I tried to demonstrate above, some may have provided an alternative sea route of escape by lending small craft to Archelaus from their harbors. And this is what Appian’s account seems to suggest. Plutarch (Sull. 26. 4), on the other hand, gives no explanation for the havoc wrought upon Anthedon, Larymna and Halai. Ormerod (1932, 255) has argued that Sulla did so because he wanted to “prevent them being used by the enemy still in Euboea.” The fact that Archelaus could have resorted to their help in the future, let alone in the recent past, does not automatically mean that he actually did.

In short, I suggest that the reprisals on the Boeotian harbors were carried out as a part of the overall punishment that Boeotia seemed to have deserved because of her shifting allegiance. To a lesser extent it is also conceivable that the destruction of

185 The degree, to which the harbors were destroyed, however, remains unclear. Knoepfler 1992, no. 125, for example, has argued that Sulla’s destruction of Anthedon, in particular, probably did not prevent its quick revival, because Anthedon, along with Thebes, Koronea and Oropos, recognized
the harbors, in particular, resulted from their providing escape route by sea,186 rather than from their serving as disembarkation points for the army of Archelaus leading to the decisive battles on Boeotian territory.

2.1.15: The Romans

Of the history of Opountian Lokris, after the First Mithridatic War and before the capture of Egypt by the Romans in 31 BC, we know relatively little. A passage in Cicero (\textit{In Pisonem} 96. 14), describing destruction of Greek regions by L. Calpurnius Piso, the proconsul of Macedonia in 56 BC, has been taken by Fossey (1990, 114, n. 1) to refer to Opountian Lokris.187 Oldfather (1926, 1233), however, thought that the phrase “Lokri exusti” describes events from West Lokris. Finally, in 34/33 BC Marcus Iunius Silvanus was voted honors at Athens by the \textit{koinon} of the Boeotians and other communities of central Greece, among which was that of the Lokrians (Oldfather 1926, 1234; Kajava 1990, 88).188

2.2: Observations

Before proceeding any further, I would like to reiterate the main points arising from the overview of the literary sources. Although the emerging picture of Lokrian military developments is bound to be incomplete, it is still possible to outline several phenomena. To begin with, I prefer to distinguish two historical periods of Lokrian warfare: (1) Classical and (2) Hellenistic. The distinction intended is not only

186 Oldfather 1916a, 49. n. 1 was first to suggest this possibility but he saw it as conditional that Archelaus’ troops disembarked at Anthedon, Larymna and Halai. In his view, after the battles the soldiers were naturally returning to their original point of departure.

187 “Achaia exusta, Thessalia vexata, laceratae Athenae, Dyrrachium et Apollonia exinanita, Ambracia direpta, Parthini et Bulidentes inlusi, Epirus excisa, Locri, Phocii, Boeotii exusti, Acarnania, Amphiliochia, Perraebia, Athamanumque gens vendita, Macedonia condonata barbaris, Aetolia amissa, Dolopes finitimique montani oppidis atque agris exterminate.”

188 IG II2 4114: τὸ κοίνον Βοιωτῶν[ν]/Εὔβοιαον Λοκρῶν[ν]/Φοικίων Δωριέων/Μάρκων Ἰούνιων/Μάρκου/οὐδὲν Δέκμου/οὐδὲν Σελάνων./ἀνττημαν, σοτῆρα καὶ εὐεργήτην/γενόμενον θεός
chronological, but derives in part from difference in substance.

In the Classical period, almost all references analyzed had to do with providing detachments of ships, infantry and cavalry for military campaigns taking place outside the territory of Opountian Lokris. In these cases, the Lokrians appear as allies who are sending reinforcements according to a preliminary agreement. Although we lack information about the ways in which the contingents were actually recruited, the leading role of Opous may be safely assumed. With the exception of the battle of Artemision, where a part of the Lokrian force arrived on ships, the movements of soldiers were otherwise facilitated by land.

Only on three occasions did Opountian Lokris witness foreign military incursions on her territory: the Athenian taking of Opountian hostages after the battle of Oinophyta in 457 BC, the Archidamian War (431-421 BC) and the Spartan raid before the battle of Tegyra (375 BC). The establishment of an Athenian garrison on Atalante island shows that the Athenians relied on the North Euboean Gulf as a main line of communication, whereas the Spartans penetrated into Opountian Lokris by way of Boeotia through the mountain road east of Mt. Chlomon. With the exception of the infantry battle at Alope in 431 BC, the Athenian involvement in Lokrian affairs was on the whole pre-emptive, with the objective to deter Lokrian ships sailing across to Euboea. In reality, it is hard to say how effective this strategy was.

Apart from the infantry, the literary evidence permits us to assume the existence of a Lokrian fleet. Opountian Lokris sent only seven penteconters to Artemision, and in 413 BC the Spartans requisitioned from her the building of seven ships. During the Archidamian War, the Lokrian incursions on Euboea were also seaborne. Although Opountian Lokris was clearly in a position to maintain her own fleet, she never reached the scale of the established sea powers that were capable of manning triremes.
Occasional references confirm the existence of Lokrian cavalry as well. To a certain extent this is surprising, for when one thinks of Greek cavalry the long established reputation of Thessaly and Boeotia, as horse-breeding and horse-riding countries, is what normally leaps to mind. As a matter of fact, Opountian Lokris was able to sustain a constant supply of horses, as well as cavalrymen, which doubtless were centered in the plain of Atalandi and administered by the main city of Opous. In addition to several campaigns from the fifth century BC, Lokrian cavalry also fought on Alexander’s side during his Asian expedition.

With the arrival of the Hellenistic period, however, the situation drastically changed, with uncertainty becoming one of the main themes of foreign affairs. The untimely death of Alexander created a vacuum, which was filled with the constant struggle among his Successors for legitimizing their authority over the vast territories of his conquests. This was the time when many Greek states were forced to come to terms with the powerful presence of large armies fielded by the Macedonian generals.\footnote{189 Cf. the recent assessment of Reger 2007, 478: “These wars [of the Successors] mobilized hundreds of thousands of troops and entailed logistical nightmares in moving and supplying the armies.”} And this was also the time when regions such as Opountian Lokris took on, strictly speaking, strategic importance. After the Lamian War was over, the Macedonians ever so slowly turned into the most influential player in international politics. From early on, the Antipatrid dynasty of Macedonia devised a powerful tool in dealings with the Greek cities, namely creating sympathetic oligarchies and establishing permanent garrisons.

To a considerable degree, however, one needs to bear in mind that the efficiency of this policy depended on the ability to maintain a viable line of communications with these garrisons. The Macedonian interests in the Peloponnese, for instance, demanded frequent crossing through the pass of Thermopylai, which was
quickly realized not only by the Macedonians themselves, but also by their enemies. But here is a major difference, by way of comparison with the Classical period. Since the primary goal was to continue one’s march further south at all costs, rather than confront the enemy in a pitched battle, the Macedonians came up with the strategic device of avoiding Thermopylai by sailing around it. The armies then had to disembark at some point further down the North Euboean Gulf before continuing their march to the Peloponnese. This is the reason why so much care was taken by Cassander and Philip V, among others, to secure the alliance of Euboea, Opountian Lokris and Phokis in advance. For, if they were denied a free passage at Thermopylai, the success of their campaigns depended on two things: (1) securing the logistics needed for the sea transportation of troops and (2) providing for the smooth continuation of the march through central Greece. As a result, Oreos and Aedepsos on Euboea, Kynos, Opous and Larymna in Lokris, as well as Anthedon in Boeotia acquired a new importance by essentially serving as links of a chain facilitating the Macedonian military shipping, not only when the pass at Thermopylai was non-negotiable. Only when the enemy was able to seize these salient points, a decision was made to force Thermopylai, with Opountian Lokris immediately losing its importance for securing the land communications with the Peloponnese.

In short, the military dynamism of the Hellenistic period demanded new strategies for social adaptation whereby small communities often had to put up with immediate military presence as well as witness frequent army crossings on a much larger scale. While in the Classical period the Lokrians were, for the most part, accustomed to fighting abroad, their Hellenistic descendents were subject to power schemes of greater magnitude that required utilizing the geographical potential of their country for strictly strategic purposes.
2.3: Lokrian epigraphy: a brief overview

The main body of Lokrian inscriptions was published by Dittenberger in 1897, in the first part of the ninth volume of *Inscriptiones Graecae* (IX. 1. 234-307).\(^{190}\) After the appearance of the corpus, Jarde and Laurent (1902, 331-337) published several others from Opous, Halai and Thronion. As a spin-off of his topographical journey in East Lokris, Oldfather (1915, 320-339) presented a study of several new inscriptions, as well as suggesting improved readings of already published ones. At the same time, a significant contribution was made by Goldman (1915, 438-453) who published a small sample of the epigraphical material unearthed during her excavations at Halai.\(^{191}\) The accumulative stage of Lokrian epigraphy ended with the thematically arranged treatment of all available inscriptions presented by Oldfather (1926, 1181-1237) in his *RE* article on Lokris. Thanks to the effort of Knoepfler (1978, 375-381; 1986, 616-617, nn. 86-87; 1992, no. 183-185; 1999a, 249-251; 2000, 362, nn. 70-71; 2006, 1-34), who frequently comments on publications dealing with regional inscriptions, the epigraphy of Opountian Lokris is a dynamic and constantly changing field.

The first attempt of studying the political history of East Lokris from inscriptions was undertaken by Klaffenbach (1926, 68-88).\(^{192}\) Heavily reliant on epigraphy, Klaffenbach’s seminal article drew attention to the political divisions of East Lokris during the Hellenistic period, thereby establishing a long lasting tradition of strictly historical inquiry.\(^{193}\) A new area was covered by Fossey (1990, 151-157) who produced a brief analysis on the history of Lokrian cults based exclusively on epigraphical sources. In a separate study, he also attempted to reconstruct the religious

\(^{190}\) Dr. Daniela Summa is currently preparing a new edition of the Lokrian inscriptions as part of the *IG* series.

\(^{191}\) The grave *stelai* mentioned by Goldman 1915, 438 are still unpublished.

\(^{192}\) See also Beloch 1927, 429-433.

cults by discussing the evidence provided by theophoric names (Fossey 2001, 139-146). In the meantime, the few Opountian epitaphs of Archaic date (IG IX. 1. 291-195) were included in the catalogue published by Jeffery (1961, 108, nos. 12-16; cf. Sourvinou-Inwood 1995, 161). Two Hellenistic manumission decrees of Opountians are known from Delphi, and one of a Larymnian from Koroneia (Albrecht 1978, 48-49, 82, 98). A boundary arbitration between Boumeliteia and Halai (FD III. 1. 362), recorded on the Theban treasury at Delphi ca. 167 BC, provides the only Opountian Lokrian instance of what was otherwise a widely attested Hellenistic practice. Although many details remain unclear, the document underscores the importance of the Boeotian League in settling the boundary dispute among two insignificant Lokrian towns.

Two recently published inscriptions deserve special emphasis. A casualty list or a military catalogue dated to 500-475 BC, containing the names of 50 Lokrians, was found as a spolium in a Late Roman building near Alope (Bouyia 2006a, 83-102). In a decree dated to the middle of third century BC, the citizens of Lamia voted honors for three Opountian judges, whose names are otherwise unknown (Bouyia 2003, 143-155).

2.4: Macedonian garrisons in Opountian Lokris

By contrast, the potential of the documents containing references to military events, e.g. FD III. 4. 463, IG X. 2. 255, IG IX. 1. 270, IG IX. 1. 290, along with the recent discovery of a copy of the military diagramma of Philip V at Kynos

195 The epigram for the Boeotian archon Nikasichoros from Opous is now dated to the reign of Demetrius II, 237-228 BC. Cf. Knoepfler 1999, 250, no. 114, who rejects the earlier date, 265-245 BC, proposed by Moretti 1975, no. 84. For a date of ca. 230 BC, see LGPN IIIB, s. v. Νικασίχορος (1).

196 Ἀρχία νύσσ δὴ ἐστὶν Ἀλκαίνετος, ὁς δορι σῶζ[ον] / πατρίδος ἀκράσην τέρμ' ἐλαβεν βιότοι. Cf. Fossey 1990, 146, n. 3 and Bouyia 2000b, 56, who both link the inscription with Ptolemaeus’ siege of Opous in 313 BC (Diod. Sic. 19. 78. 5). Cf. also the fourth century date listed with a question mark in LGPN IIIB, s. v. Αλκαίνετος (1).
(Hatzopoulos 1996, 36. no. 13; Knoepfler 1999, 250; Hatzopoulos 2001, 29-32, no. 1 II), remains to be fully explored, whereas the writing of the military history of Opountian Lokris, as a separate subject based on epigraphy, has yet to appear. The need is pressing, and it is still customary for the most revealing inscriptions to escape close scrutiny, especially when scholars focus exclusively on regional data (e.g. Fossey 1990). My discussion begins with the Delphian epigram of Peisis, which constitutes the most striking example of this paradox.

2.4.1: A Boeotian dedication in honor of Peisis from Delphi

Marble base, broken into three fragments. Delphi museum. Inv. No. 846+2327+7098. Dimensions: Height, 0.315, Width, 0.90, Thickness, 0.22, Height of Letters, 0.012 (Fig. 2.1).

![Figure 2.1: Marble base for a bronze statue inscribed with an epigram dedicated by the Boeotians in honor of Peisis, 312 BC. Delphi museum. Inv. No. 846+2327+7098 (after Marcadé 1953, 122)](image)

Editio princeps: Ulrichs 1840, 38, 43, n. 5

Bergk 1850, 173; Weil 1874, 141; Homolle 1900, 170-178; Preuner 1920-24,
Text:
312 BC.
Πείσιος ἔξενέπω [.] ΑΙΝΩΣΑ[—— ————]
Ἠλλάδος ἐμ μεγάλοις αστε[σ]ι [—— ———]
δάμος ὁ Βοιωτῶν [τοῦ]δε μεθ’ [ἀγεμόνο]ς
ῥυσομένους Ὀπό[ε]ντα, βαρ[ῶν δ’ ἀπὸ δεσ]μόν ἐλ[όντες]
φρουράς, Λοκρό[ῖσιν] [τεῦ]ξαν ἐ[λευθερίαν].
[—— ——— ——— ——— ἐποίησε.

Translation:
“...of Peisis, proclaim [--------] in the great cities of Greece [--------] the foot soldiers and the horsemen dedicated this gift, after having been sent by the people of Boeotia with this commander to defend Opous. Having released the city from the heavy shackles of the garrison, they secured the freedom of the Lokrians.
[—— ——— ——— ——— made it.”

In the earlier publications, the text appeared without the first two lines (Ulrichs 1840, 43, n. 5; Bergk 1850, 173; Weil 1874, 140; Homolle 1900, 170). Preuner (1922, 103) has argued that Ion, a sculptor active in the time of Lysippos, made the bronze statue of Peisis supported by the marble base inscribed with the epigram.

The current opinio communis dates the epigram in 312 BC on the basis of Diod. Sic. 19. 78. 5, where Ptolemaeus’ siege at Opous in 313 BC is mentioned in brief.197 If the inscription commemorates this event, as all scholars agree (cf.

197 First suggested by Bergk 1850, 173 but since the first two lines were unavailable to him, he assumed that the honorand was Ptolemaeus himself. Homolle 1900, 172-174 further developed his suggestion.
Flacelière 1937, 71-72, n. 1; Bakhuisen 1970, 116, n. 33; Gullath 1982, 159, n. 2; Hammond and Walbank 1988, 219; Vöttéro 2001, 92), it brings forward two essential points, which Diodorus failed to include in his account: (1) Opous fell to Ptolemaeus, (2) Cassander held a garrison in the city.

That Boeotians were fighting on the side of Ptolemaeus is evident from Diodorus (19. 77. 4), who says that upon his disembarkation at Bathys Limen near Aulis, Ptolemaeus received considerable reinforcements from the Boeotian League: 2, 200 infantry and 1, 300 cavalry. The help was agreed upon before the arrival of Ptolemaeus, when the Boeotians and Aetolians sent embassies to Antigonus the One-Eyed in order to make an alliance with him (Diod. Sic. 19. 75. 6). Apparently these divisions accompanied Ptolemaeus throughout his campaign in central Greece.

From the Peisis epigram it follows that the general in charge of the Boeotian contingent must have been Peisis from Thespiae, but Diodorus does not tell us this. In Plurach’s *Life of Demetrius*, however, we hear of Peisis the Thespian who organized the preparations against Demetrius’ siege at Thebes in 293 BC. After the surrender of Thebes, Demetrius treated Peisis with great respect, and in recognition of his highly praised abilities, he appointed him a military commander of Thespiae (Plut. *Demetr.* 39. 2-3). In his treatment of the Peisis inscription, Homolle (1900, 177-178) has argued that another dedication to Peisis, son of Charias, by the people of Oropos should also be interpreted in the context of Ptolemaeus’ invasion. He concluded that the bronze statue of Peisis in the sanctuary of Amphiareus (Petrakos 1997, no. 366)

198 It is remarkable that even in terms of Cassander’s career, the siege of Opous is normally treated in brief without discussing the importance of the Peisis epigram, cf. Fortina 1965, 75; Adams 1974, 131; Billows 1990, 124; Landucci-Gattinoni 2003, 117.

199 Tarn 1913, 39, however, was the first to point out that Cassander held a garrison in Opous based only on the information of the siege preserved in Diod. Sic. 19. 78. 5.

200 An inscription from Nemea, dated to 312-311 BC, lists soldiers from various Aegean islands that, according to Geagan 1968, 381-385, were recruited by Antigonus the One-Eyed and employed by his nephew, Ptolemaeus for his campaigns in Greece.

201 The patronymic is attested only in this inscription, cf. *IG* VII 427 = Petrakos 1997, no. 366.
was put up as a result of his assisting Ptolemaeus in his attempt to expel the garrison in Oropos installed by Cassander (Diod. Sic. 19. 77. 6). In fact, Ptolemaeus gave the city back to the Boeotians after capturing the soldiers left by Cassander (Diod. Sic. 19. 78. 3). In a similar vein, I would like to point to another prominent military commander who received honors on account of his service to his country. In 304 BC, Xanthippos of Elateia expelled the garrison of Cassander from his native town, for which he was commemorated with a bronze statue at Delphi and a verse inscription. Like Peisis in Boeotia, Xanthippos, holding the office of Phokian tagos between 304 and 285 BC, was highly respected by his compatriots. Both men took a stand against the Macedonian domination in their countries, and both men received public recognition of the highest rank for their services.

In short, the evidence presented above seems to suggest a similar scenario in the case of Opous: Ptolemaeus, assisted by the Boeotians who were under the command of Peisis, began a siege at Opous not only because the Opountians were on the side of Cassander (τῶν Ὀπουντίων τὰ Κασσάνδρος φρουρών), as Diodorus (19. 78. 5) claims, but because the friendship between Cassander and Opous was apparently secured through the installation of a Macedonian garrison in the city (Tarn 1913, 39). If this is accepted, two problems need further consideration: (1) What prompted the need of stationing garrison(s) in Opountian Lokris and was this negotiated, and (2) did the Opountians pay due respect to Peisis in a dedication of their own?

202 The inscription Syll², 361B says: “The Phokians dedicated to Apollo this statue of Xanthippos, son of Ampharetos, the Phokian who liberated Elateia.”

203 Syll², 361C. See also Paus. 1. 26. 3; 10. 34. 3, who says that the Athenian general Olympiodoros assisted Elateia during her struggle against Cassander in 301 BC, for which he was honored with a bronze statue at Delphi. In the course of Cassander’s siege, the Phokians also sent to the sanctuary a bronze lion, cf. Paus. 10. 18. 7.

204 It is interesting to point out that Bergk 1850, 174 and Niese 1893, 290, n. 5 argued that the phrase intended by Diodorus must have read “Κασσάνδρος φρουρων ἐχοντων” instead of “τῶν Ὀπουντίων τὰ Κασσάνδρος φρουρων.”
Apart from the Peisis epigram, the evidence pointing to the establishment of Cassander’s garrisons in Opountian Lokris is circumstantial. The inscription confirms the existence of a garrison at Opous, but the establishment of at least several others, especially along the coast, may be safely presumed. In fact, the plural form (Lokroisin) in line 6 could refer to granting freedom to the rest of the Lokrians, where conceivably Macedonian garrisons were also stationed, in addition to the Opountians who occupied the most prominent position in the region.

Literary references to Cassander’s activities in the region (Diod. Sic. 19. 53. 2-3), on the other hand, create a compelling circumstantial case, which stipulates that he needed permanent positions in order to secure an alternative way of reaching the Peloponnese from Macedonia and vice versa. How this was achieved in reality and how Cassander approached the Lokrians is, regrettably, not known. It is nonetheless important to be aware, as Chaniotis (2002, 100) has already pointed out, of the various ways in which a community can be subjected to foreign military presence. The opportunities range from (1) capitulation, (2) negotiation, and (3) defeat in a war to even (4) invitation by the community or a particular group (Chaniotis 2002, 101).

Were the Lokrians then forced by Antipater, Cassander’s father, to accept Macedonian garrisons as a punishment for their support of the Greek alliance in the aftermath of the Lamian war? Or did Cassander a couple of years later after peaceful negotiations reach an agreement with them, the clauses of which stipulated that he could install military detachments in Lokrian cities in return for providing security and protection against outside threats? On account of comparanda from other campaigns of Cassander, I argue that the latter is more likely.

The closest one could get in terms of Cassander’s negotiating the installation

205 In 322 BC, on the orders of Antipater, Athens received a Macedonian garrison in order to prevent further revolts, cf. Diod. Sic. 18. 18. 3.
of a Macedonian garrison is through the description of the situation at Acarnania in 314 BC (Murray 1982, 319-325; Berktold 1996, 117-123; Dany 1999, 42-53).

(Diod. Sic. 19. 67. 3-5):
“When he had summoned the Acarnanians to a common assembly and had related to them how they had been engaged in border warfare from ancient days, he advised them to move from their villages, which were small and unfortified, into a few cities, so that they would no longer, because their homes were scattered, be powerless to aid each other and find difficulty in assembling to meet the unexpected raids of their enemies. The Acarnanians were persuaded, and most of them came to live together in Stratus, since this was their strongest and largest city; but the Oeniadae and some others gathered at Sauria, and the Derians and the rest settled at Agrinium. Cassander left Lyciscus in command with adequate troops, ordering him to aid the Acarnanians.”

The move of Cassander was directed against the Aetolians who, after becoming an ally of Antigonus the One-Eyed, launched several incursions into neighboring Acarnania. Three important details, however, need further emphasis: Cassander (1) summoned the Acarnanians to a common assembly (κοινὴ ἐκκλήσια) that eventually led to (2) forging a συμμαχία, guaranteed by the appointment of a στρατηγός and consignment of Macedonian troops (Diod. Sic. 19. 88. 2). While it is unlikely that the motives behind Cassander’s policy were the same throughout Greece, the model of negotiating the establishment of garrisons by means of mutual agreement is clearly a recurring feature of his diplomacy. For example, in 313 BC Cassander was able to make an alliance (συμμαχία) with the Thebans soon after Ptolemaeus had arrived with his fleet and army at Aulis (Diod. Sic. 19. 77. 6). Shortly thereafter, Ptolemaeus managed to “liberate” Thebes by driving out her garrison (Diod. Sic. 19. 78. 5). The episode undisputedly reveals the fact that the συμμαχία, as in the case of Acarnania, was again secured through the installment of a garrison under the command of a general appointed by Cassander. It is noteworthy that both cases are devoid of the usual resentment associated with foreign military presence, which I think was also the case with Opountian Lokris. In all probability Cassander formed an
alliance with them shortly before his return to Macedonia via the North Euboean Gulf in 317 BC. In doing so, he secured the line of communications by land and by sea, and in this he was aided by his garrisons which were to become the target of Ptolemaeus’ invasion, as the siege of Opous in 313 BC clearly demonstrates.

When one thinks of Hellenistic garrisons, another aspect worth considering is the wintering of troops (Ma 2002, 118-119). As the campaign from 309/8 BC (Diod. Sic. 20. 28) clearly shows, Cassander was able to quickly re-establish his garrisons in Opountian Lokris, since the large army led by Polyperchon spent the entire winter in the region. In addition to securing the access to regional lines of communications, the garrisons must have been instrumental in negotiating with the local communities the opportunity to quarter marching troops. On a general note, one needs to bear in mind, as literary and epigraphical sources attest, that the Greeks unanimously were inclined to perceive foreign garrisons as a tool of subordination, a practice infringing on the freedom and autonomy of the polis (Chaniotis 2002, 101-102). For instance, the Tyrian decree announced by Antigonus the One-Eyed in 315 BC (Diod. Sic. 19. 61. 3) made it abundantly clear that the state of being ἐιεύζεξαν and ἀὐηνόκνο depended on being ἀθξύξηνο. The Macedonian kings, on the other hand, were quick to point to the aspect of protection (φυλακή) provided by their garrisons that was to the advantage of the entire community (Polyb. 18. 4. 6). In spite of this apparent contradiction of ideologies (Ma 2002, 116), the reality decreed the existence of many Macedonian garrisons and military presences in many Greek cities.

To return to the second problem posed by the Peisis inscription: did the Opountians, aside from the Thespians, also decide to honor Peisis? After all, the Boeotian soldiers, who wanted to pay respect to their military commander, and not the Opountians, made the dedication at Delphi. Furthermore, the cited example recording the Phokian gratitude to Xanthippos, expressed by their multiple dedications at Delphi
similarly bears witness to what seemed to have been a customary Greek practice. Why should Opontian Lokris be an exception? To answer, unfortunately, requires arguing from silence because no separate dedication testifying to the Opontian gratitude has turned up. If for the sake of argument one assumes that no such decision was ever actually taken, the implications for the political affiliations of Opous are obvious. Can we infer from the Opontian “unwillingness” to honor Peisis that (1) Opontian Lokris had already joined the Boeotian League by 313 BC, and (2) was this the reason why the Lokrians were exempted from the necessity to join the Aetolian-Boeotian embassy to Antigonus the One-Eyed before the arrival of Ptolemaeus?

The exact date of the Lokrian affiliation with the Boeotian League is a question of long standing. Much discussion has focused on the epigraphical data from the third century BC, and to a great extent, this is due to the abundance of inscriptions from the later periods (e.g. *IG IX*. 1. 267-276), as compared with the relative scarcity of earlier documents. On the strength of this, however, the glaring omission of the Peisis epigram from scholarly discussions dealing with this problem is even more striking.

206 An inscription found at Thermon (*IG IX*. 1². 72 = *Syll.*³. 597 B), dated to the late second century BC (Klaßenbach 1926, 88, cf. Grainger 2000, 16, s. v. Lykos [7]), speaks of bestowing honors on an Aetolian στρατέγος by the Opontian Lokrians who were probably performing military service when he was in office.

207 Two contemporary inscriptions from Delphi, however, may testify to some Opontian activity in the sanctuary shortly after 312 BC. The first is a part of a statue base under which only the city ethnic ᾗπνηηηνο is preserved. Pomtow 1917, no. 95, 66-67, who first published the fragment, interpreted the inscription as part of a lost epigram, honoring a distinguished Opontian, which he compared to that bestowed to Peisis by the Thespians. He further suggested that the proxeny decree, voted during the archonship of Eubolida (318-306 BC), to Damokles, son of Antidoros of Opous, *FD III*. 1. 92, may somehow be related to the events of 312 BC. That in the latter decades of the fourth century BC the Opontians seem to have been rather active in terms of their external contacts is evident from another proxeny decree voted by the people of Eretria to Diopethes, son of Timaios, dated to 320-300 BC, *IG XII*. 204 with Knoepfler 2001b, 89-96. Of the particular historical circumstances, as well as of the two Delphian inscriptions of the unknown Opountians mentioned above, almost nothing can be said with certainty. Cf. also the remark of Knoepfler 2001b, 94, who described the otherwise unattested Diopethes as “une Opontiene introuvable”. The story told by Plutarch *Moralia* 401 F, on the other hand, about the Opontian dedication of a hydria at Delphi in order to replace an earlier offering made either of gold or silver, which disappeared on account of the Phokians who melted statues of gold and silver in the sanctuary to mint coins, concerns events from the Third Sacred War (355-346 BC).

208 Klaßenbach 1926; Flacelère 1937; Feyel 1942, 172, n. 2; Etienne and Knoepfler 1976, 331-337; Scholten 2000, 259-260.
Alternatively, much preference is given to the often-quoted passage of Pausanias (9. 23. 7), in which he states that Larymna of old belonged to Opous, but when Thebes rose to great power, it went over to the Boeotians.209 At the same time, very few scholars have tried to see the implications of the fact that the Boeotians under the command of Peisis had assisted in the driving out of the Macedonian garrison from Opous in 313 BC. Citing the inscription as published in Weil (1874, 141), Goldman was the first to draw attention to the possible friendly relations between Boeotia and Opountian Lokris but she did not pursue the question further, limiting her discussion to citing the available text in a footnote (Walker and Goldman 1915, 421, n. 2). In his \textit{RE} article, Oldfather (1926, 1217) presented in great detail the expressed opinions related to the important question of dating the inscription but supplied no further comments on the point raised by Goldman. In an earlier article, Oldfather (1916a, 51) had already endorsed the opinion of Körte (1879, 271, n. 2), among others, that the event related by Pausanias (9. 23. 7) should be ascribed to the time of Epameinondas. The rebuilding of Thebes by Cassander in 316 BC, however, has been readily dismissed by both Körte (1879, 271, n. 2) and Oldfather (1916a, 52) as an unlikely historical date for the Boeotian affiliation of Larymna on account of there being “no evidence.” It must be stressed, however, that their criticism was directed against Ulrichs’ assertion (1840, 229), according to whom Larymna became Boeotian precisely after the rebuilding of Thebes.210 The political situation of the late fourth century BC, however, provides a plausible context for this change of allegiance, especially when several seemingly unrelated events are considered together and put in a broader perspective.

209Paus. 9. 23. 7: “καὶ συνετέλει δὲ ἐς Ὀποῦντα ἡ Λάρυμνα τὸ Ἄρχαιον: Θηβαίοι δὲ ἐπὶ μέγα ἱσχύος προελθόντων, τηνικαῖτα ἐκουσίας μετετάξαντο ἐς Βοιωτοῖς.”

210Ulrichs’ claim is reflected in Kiepert \textit{Formae Orbis Antiqui}, XIV, where Larymna is depicted as part of Boeotia.
To begin with, in 316 BC Cassander decided to rebuild the great city of Thebes211 that had been violently destroyed by Alexander in 335 BC on the eve of his Asian campaign (Gullath 1982, 86-89, 97-107; Bearzot 1997; Miller 1998, 91-101; Knoepfler 2001, 11-13). Apart from the international impact of Cassander’s act,212 what the new synoicism also meant was the fact that other Boeotians had to relinquish their rights to settlement on Theban territory (Gullath 1989, 163-168), which they acquired after Alexander’s destruction twenty years earlier (Diod. Sic. 18. 11. 3-4). The Boeotian enmity towards Cassander thus had its roots in the rebuilding of Thebes, rather than in their intolerance for his policy of stationing garrisons in Greek cities. The Aetolians, on the other hand, felt threatened by the fact that Cassander synoicized their old enemy, Acarnania, through military help provided by his garrisons (Diod. Sic. 19. 67. 3-5). As argued above, I suggest that similar policy had been carried out in Opountian Lokris that was in part directed against the Aetolians who often denied a free passage for Cassander’s army at the pass of Thermopylai. Against this political background, the Aetolians and Boeotians decided to request the military help of Antigonus the One-Eyed who was more than eager to respond by sending Ptolemaeus in 313 BC. The fact that the Lokrians sent no envoys to Antigonus, however, does not automatically point to the conclusion that Larymna, and Opountian Lokris by extension, was necessarily under the administration of the Boeotian League (so Ulrichs 1840, 229; Busolt/Swoboda 1926, 1458; \textit{contra} Beloch 1927, 430). Another thing to consider is the fact that Thebes became member of the League in 287 BC (Gullath 1982, 107-113; Knoepfler 2001, 18), and not in 309, as formerly believed (Roesch 1982, 469; Corsten 1999, 38-43). The fact that in 309/8 BC Boeotia refused

211 Ancient sources: Diod. Sic. 19. 53. 2; 19. 54. 1-3; Paus. 4. 27. 10; 9. 3. 6; 7. 1. 4; \textit{Marmor Parium, FGrH}, vol. II B, no. 239, F B, 14, 1003.

212 The contributions of various Greek cities and donations by some of the Diadochoi, are preserved in a fragmentary inscription found in Thebes, \textit{IG} VII 2419, cf. Holleaux 1938, 1-40; Gullath 1982, 89-97.
the entry of Cassander’s army led by Polyperchon, who had to spend the winter in Opountian Lokris, shows that the latter was not part of Boeotia (Beloch 1927, 430; Gullath 1982, 167). Finally, the statement of Pausanias concerns only Larymna, and even if she did join the Boeotian League of its own accord, that may not necessarily have affected the status of other Lokrian cities.

In short, the evidence provided by the Peisis epigram is insufficient to establish with certainty the political affiliation of Opous with respect to the Boeotian League during the last decade of the fourth century BC. The fact that the Boeotians supplied reinforcements for Ptolemaeus’ army was based on their decision to make an alliance with Antigonus the One-Eyed, whose policy was directed exclusively towards “liberating” the cities garrisoned by Cassander. Thus the Boeotians had to follow Ptolemaeus in Attica, Phokis and Opountian Lokris in accordance with the preliminary agreement, rather than because they were concerned, at least in the case of Opountian Lokris, with the “liberation” of a region that was already under her jurisdiction. On the contrary, the Lokrians, as demonstrated by the events of 317 BC, were apparently in a position to negotiate their own interests with Cassander independently. Although on account of their allegiance they had to suffer the consequences of a military invasion, the συμμαχία with Cassander proved more advantageous in the long run, since he was able to re-establish and continue to maintain his garrisons in the region until the arrival of Demetrius Poliorcetes in 304 BC.

2.4.2: The diagramma for a garrison of Philip V from Kynos

Stele of white marble, broken at top and bottom; backside roughly picked. Found in 1985 on the acropolis of Pyrgos Livanates, ancient Kynos, now in the Archaeological museum at Lamia. Inv. No. 183. Dimensions: Height, 0.29, Width, 0.35, Thickness, 0.09, Height of Letters, 0.01 (Fig. 2.2).
Figure 2.2: The lower part from the diagramma for the service of a garrison of Philip V from Kynos, 219-196 BC. Lamia museum. Inv. No. 183 (after Hatzopoulos 2001, Pl. VIII)

Editio princeps: Gounaropoulou (in preparation); Hatzopoulos 2001, no. 1 II, pl. VIII

Hatzopoulos 1996, 396, 399, 423; Knoepfler 1999, 250; 2001b, 296, n. 175 (brief notes); Hatzopoulos 2001, 29-32 (= SEG 51. 640bis); Ma 2002, 117

Text:

219-196 BC.

[ἐνοχοὶ ἔσονται, ὅπο ὁ βασιλεὺς] αὐτ[ὸν καταγγέλει. ὁ τί]
[δ' ἀμ ἡ ποιήσωσιν οἱ οἰκονόμοι] τῶν γεγραμμέ[νων ἐν]
[τούτωι τῷ διαγράμματι, γραφέτω τῷ βασι[λεί παραχρή]-

137
[μα ό] φρούραρχος ὁ τεταγμένος, ἐν ὅι τὸ τόπω[1 ἢ τὸ ὅλι]-
ωρούμενον, ὅπως ὁ βασιλεὺς διαγγέλῃ περὶ τοῦ [ὁλίω]-
ρήσαςτος, τίνος ἄξιος ἐστὶν ἐπιτιμήσεως. ἡ[ν δὲ]
μὴ ἐπιπεδήλη, ἀλλὰ πρῶτον ὁ βασιλεὺς παρ’ ἐτέ-
ρου πύθηται, πραξῆσεται ζημίαν δραχμὰς ἐξα-
κισχεῖ. Τὸ δὲ διάγραμμα τοῦτο ἐκαστὸς τῷ-
ν οἰκονόμον ἀναγράφας εἰς στήλην στησάτω
ἐν τῷ ἐπιφανεστάτῳ τόπῳ τοῦ φρουρίου καὶ
αὐτός, ὅταν ἢ μετάγηται ἐφ᾽ ἐτερον τόπον ἢ ἀφι-
ήται ἀπὸ τῆς χρείας, παραδιδότω τῷ ἐπικα-
θισταμένῳ μετὰ τῶν λοιπῶν τῶν ἐκ τῆς οἰκ-
νομίας καὶ τὸ διάγραμμα τοῦτο.

Translation (Garlan 1975, 139-140 with additions):
“…they shall be liable to the punishment prescribed by the king. If the oikonomi fail to execute any of the prescriptions contained in this order the garrison commander in charge of the place where the negligence has occurred shall write immediately to the king so that the king shall decide what punishment the author of this negligence merits. If he does not send a letter before the king is informed about it by someone else, he shall pay a fine of six thousand drachmas.

Each of the oikonomi shall have this order transcribed on a stele and erected in the spot most visible from the garrison, and he himself shall undertake personally when he is transferred to another post or discharged from the service, to hand over also this diagramma to his successor at the same time as everything else which is connected with his function as oikonomus.”

The Kynos fragment contains the last 17 lines of a diagramma from Chalcis (Kougeas 1934, 177-208; Welles 1934, 251-254; Bikerman 1938, 295; IG XII, Suppl. 644; Garlan 1975, 139-140; Picard 1979, 276, n. 2; Hatzopoulos 1996, 36-38, no. 13; Hatzopoulos 2001, no. 1 I), which has been dated to the reign of Philip V (221-179 BC) on the basis of paleographic features (Fig. 2.3).
Figure 2.3: The diagramma for the service of a garrison of Philip V from Chalcis, 221-179 BC (after Hatzopoulos 2001, Pl. I.1)

Chalcis text (*IG* XII, Suppl. 644):

ca. 200 BC.

οἱ οἰκονόμοι ἐπιμελεῖσθωσαν, ὡς τὰ

diataxhēnta ὑπὸ τοῦ βασιλέως eis tās

diathēseis diathērētai ἀφθαρτα· καὶ ὁσα

μὲν ἢδη παράκειται, ὃν μέτρον ἑστίν, ἀνα-

μετρησάτωσαν παρόντων τῶν φρουράρχων,

όν δὲ σταθμός, ἀναστησάτωσαν, ὡς καὶ

ὁι φρούραρχοι παρακολουθῶσιν ὡσα ὑπάρχει.

καὶ τὰς μὲν κλείδας τῶν ἀποθηκῶν ἐχέ-

τωσαν οἱ διὰ τῶν οἰκονόμων χειρισταί,
σφραγιζόμεθαν δὲ τὰ οἰκήματα οἱ φρού
ραρχοι καὶ φροντιζότωσαν, ὅπως μηθέν ἐ-
κ τής παραθέσεως ἀφαιρήται ἕκα μή τι-
να παλαιούμενα δοκή ἀχρειοῦσθαι. ταῦ-
τα δὲ αἱρέσθω ὅταν τὸ ἱσον πλῆθος προα-
ναχθῇ. καὶ τὸ μὲν σῖτων ἀναγέτωσαν ἀ-
πὸ τῆς νέας προσόδου ἄβροχον καὶ εὐθέ-
ως συντασσότωσαν διαπάσσευτ ἡ γῆ
τῇ Χαλκιδικῇ, τὸν δὲ ὅινον καὶ τὰ ξύλα ἐ-
γνεούτωσαν διὰ πέντε ἑτῶν καὶ φροντι-
ζέτωσαν, ὅπως ὁ ὅινος ἀγηται ἐφέτειος ἡ-
δός βεβασανισμόν. ἐπισκοπεῖτοσαν δὲ
καὶ τὰ στομολεῖα τῆς μὲν θερινῆς ἐξαμήνου,
καθ᾽ ὅν ἄν καιρόν ὀμβρός γένηται, τῆς δὲ χειμε-
ρινῆς κατὰ δεχήμερον· καὶ ἐὰν τὶ ῥέωμα γε-
γονὸς ἦ εἰς τὸν σῖτον, ἐπισκευαζότω-
σαν παραχρήμα. ἐὰν δὲ τινες τῶν οἰκονό-
μων ἦ τῶν διὰ τῶν οἰκονόμων ἢ τὰς σφραγί-
δας ἀφέλωσιν ἀνευ τῶν φρουράρχων ἢ ἐ-
ξενέγκωσιν τῖνα πρὸ τοῦ ἔτερα ἀναγα-
γεῖν ἦ διὰ τὸ μὴ ἐπισκοπεῖν κατὰ τοὺς γε-
γραμμένους χρόνους ἐάσωσίν τινα ἀ-
χρειοθήναι, ἐλεγχόντες παθέτωσαν, ὅτι
ἄν αὐτῶν ὁ βασιλεὺς καταγνώσοι. οἱ δὲ φρού-
ραρχοι ἐάν τε ὀλιουργίως τῆς φυλακῆς
τὸ μ παρακειμένων, ἐάν τε ἐκόντες προδόν-
The Kynos fragment still awaits final publication. In the meantime, some preliminary observations, a transcribed text and a good photograph of the stone were made available by Hatzopoulos (2001, no. 1 I). The text provides extremely useful insights not only about Macedonian military organization, but also about the major

213 The discovery of the Kynos fragment was originally made public by Lucretia Gounaropoulou during the Fifth symposium on Ancient Macedonia, held in Thessaloniki in 1989 (Hatzopoulos 1996, 36). Her paper, however, was not published in the proceedings. In his most recent book, Hatzopoulos 2001, 153 cited a work in progress (Gounaropoulou, TEKMIRIA 6 [2001], in preparation), which has the task of publishing the inscription for the first time. As of today, however, no such study has yet appeared.
role played by Kynos, and Opountian Lokris by extension, in the communication network of garrisons maintained by Philip V (Hatzopoulos 2001, 29). Before I proceed with the particularities of the text, the following observations are required.

First, the fact that the Kynos fragment exactly matches the last third of the *diagramma* from Chalcis strongly suggests that we are dealing with two copies of a single document (*diagramma*) issued by the king of Macedonia. Well before the discovery of the Kynos copy, Welles (1934, 252) had ingeniously deduced from the recurring plural forms of φρούραργοι and οἰκονόμοι that the Chalcis *diagramma* was in fact intended for circulation thereby challenging Kougeas’ opinion (1934, 207) that the document was dealing with matters pertaining only to Chalcis. With the Kynos fragment now discovered, Welles’ theory has been confirmed. Along these lines, Hatzopoulos (2001, 30-31) has surmised that copies of the *diagramma* were possibly erected in other cities held by his garrisons, e.g. Eretria, Acrocorinth, Amphipolis, Thessalonike, Cassandreia.

Second, the subject matter of the two documents was almost identical, both in essence and wording. Once this premise has been accepted, there can be no methodological difficulty with the already established practice of supplying lines from the Chalcis *diagramma*, when this is necessary, in discussing the Kynos copy (cf. Hatzopoulos 2001, 29, 31-32).

One important point needing further comment has to do with establishing the status of the garrisons mentioned several times in the inscription. It has already been shown that the *diagramma* was a sort of an “army code” (Welles 1934, 252; Hatzopoulos 2001, 31; Bencivenni, 2003, 31), which became a subject of dissemination in the regions where Macedonian military presence was normally maintained. But what calls for more particular attention is the question: Was this code intended for circulation among garrisons established permanently throughout Greece,
or was it issued on the spur of the moment with respect to temporary stationing of a military force in the context of a specific campaign (Bikerman 1938, 53; Robert and Robert 1954, 301, n. 3)? The relative wealth of literary evidence describing events of the Social War and the Macedonian Wars (220-197 BC), several of which took place on the territory of Opountian Lokris, furnishes important clues.

As discussed in the section dealing with the literary testimonia, Philip V marched through Kynos and Opous on three occasions, in 219, 208 and 197 BC. In addition, Polybius mentions that he maintained garrisons in Opountian Lokris, whereby the plural form φρουροί points to the fact that there was more than one garrison. Livy (32. 32. 1-4), on the other hand, specifically talks about a regium praesidium on the arx of Opous that was present as late as 197 BC. Finally, in 196 BC Opountian Lokris was among the regions mentioned in the proclamation of Flamininus from which Philip V had to withdraw his garrisons. The implication of these scattered references is clear; the Macedonian king demanded the establishment of permanent garrisons as a way of representing his interests in the Lokrian cities. Philip’s design therefore had a much more lasting effect upon the political landscape of the Greek states, one that in every way transcended the fleeting moments of a single military campaign.214

Apart from the literary sources, the policy of ensuring permanent military presence is also reflected in the specifications laid out in the diagramma itself. For example, the granaries (σποβολεία, ll. 21-24) were to be inspected each time it rained during the six months of summer, and every ten days during the winter (Kougeas 1934, 189-191). Granaries (σποβολεία), being restored by a στρατεγός in the fortified area of the garrison at Sounion, are mentioned in an inscription of roughly the same

214 Cf., for example, the Attalid garrison, which was installed in Lilaia for a short period of time during the First Macedonian War in 208 BC, Launey 1949, 654-655; Ma 2002, 117.
date, 229-203 BC (*IG II²* 1281, l. 4). That they were under the immediate protection of the king is evident from Livy (31. 23), who says that the *horrea regia* and the *armamentarium* were set on fire by the army of Flamininus during the attack on Philip’s garrison at Chalcis in 200 BC. Furthermore, the οἰκονόμοι were responsible for checking the quality of the available wine (οἶνος) and wood (ξύλα) every *five* years (ll. 18-20). Finally, the fact that the office of οἰκονόμος was held by multiple individuals over time, for as long as the garrison existed, points to the permanent nature of the military establishment (ll. 12-14 in the Kynos code).

Regrettably, essential aspects of this foreign presence, such as the interaction with the local community, are entirely omitted from the *diagramma*, or rather taken for granted. It is established beyond doubt, however, that the garrisons normally occupied the acropolis (e.g. the *arx* of Opous or of Kynos), and this apparently was the main *locus* of the soldiers’ life. To this effect is the stipulation according to which the οἰκονόμοι were to set up the *diagramma* on the spot most visible (ἐπιφανεστάτω) from the garrison (ll. 9-11). The findspot of the Kynos code also suggest that the hillock of Pyrgos Livanates was the usual domain of the Macedonian garrison, i.e. the acropolis of ancient Kynos. The number of soldiers remains unknown, but given the relatively small area of the site, it hardly could have been in the region of 2,000.215 What may not be doubted, however, is that part of the garrison’s duties included the defense of the fortification walls,216 which were already built during the early Hellenistic period. Furthermore, it is reasonable to assume that the ἀποθήκαι and the οἰκήματα (ll. 8, 10) represented a structural part of the architectural layout of the space occupied by the garrison (Kougeas 1934, 184-185), but it would be equally interesting

215 Livy 32. 15 says that in 198 BC Flamininus attacked a Macedonian garrison of 2,000 soldiers left by Philip V in the Thessalian city of Phaloria

216 When in 200 BC the Romans delivered their devastating attack on one of the Philip’s fetters, at Chalcis, Livy 31. 23 reports that the citizens did not rush to defend the city walls because on matters of security they relied on the Macedonian garrison.
to know whether these were erected from scratch, and specifically used for the purpose intended.217 In addition, it seems likely that the garrison was also responsible for the maintenance and readiness of a sizable fleet of boats and rafts, as Kynos was frequently used as a disembarkation point for the sea transport of royal troops.218

A little-discussed aspect of garrisons’ life is the maintenance of watchdogs. Both epigraphic and literary sources, however, mention such a practice. After Aratus of Sikyon seized Acrocorinth from Antigonus II Gonatas in 243 BC, he manned the fortress with 400 hoplites, including 50 dogs and 50 dog-keepers (Plut. \textit{Arat}. 24. 1). In his \textit{Poliorketika}, Aeneas Tacticus (22. 14) repeatedly emphasizes the importance of watchdogs in matters of security and organization of city defense.219 During the Chremonedian War, for example, the Athenian στρατεγὸς Epichares, while in office at the garrison of Rhamnous, was praised, among other things, for providing watchdogs in addition to already existing ones (\textit{SEG} 24. 154, ll. 14-15; Petrakos 1999, no. 3), while the citizens of Teos purchased watchdogs to be delivered to the φρούραρχος of Kyrbissos (\textit{SEG} 26. 1306, ll. 19-20).

The Roman attack on Philip’s garrison at Chalcis in 200 BC reveals essential details about what constitutes and defines a major Macedonian \textit{praesidium} (Livy 31. 23. 1-11). Apart from attending to the city defense, the soldiers were furnished with granaries (\textit{regia horrea}), an arsenal (\textit{armamentarium}), as well as what Livy calls a

217 The Chalcis copy, for example, was found in a rock-cut cistern (4-5 m deep), consisting of two conical chambers, 3, 20 m and 2, 20 m in diameter. Cf. Kougeas 1934, 177, 190-191 and Welles 1934, 253, who suggest that these may have been the \textit{οἰκῆματα} comprising the ἀποθήκαι. Cf. also the σταυροβολίον mentioned in an inscription from Souinion, \textit{IG II²} 1281, l. 4, that was initially, and wrongly, identified with the “grosser Turm” (Maier 1959, 117) or, as it is now called, Bastion D, cf. Goette 2003, 155-157, figs. 1-2.

218 In discussing Philip V’s ferrying of troops from Euboea to Kynos in 219 BC and before the discovery of the Kynos \textit{diagramma}, Larsen 1965, 127 surmised, quite logically, that, “…boats were always kept in readiness at Kynos…”

219 For other references to dogs in the treatise, see the commentary in Whitehead 2002, 156-157.
carcer,220 normally translated as prison (Ducrey 1968, 217-218). We learn that Philip V held in custody captives there. The φρούραρχος, Sopatros from Acarnania, who also perished during the onslaught, however, was not Macedonian. Finally, the Romans apparently destroyed several statues of Philip V himself, which were probably set up on the agora.221 The question with the statues invites further attention. For example, were they set up by the Chalcidians to honor Philip V upon the installation of the Macedonian garrison? And how certain can we be in surmising that this was a unavoidable step (expected) to be made by city officials in the process of negotiating foreign military presence? And finally, should we look for statue bases waiting to be found in all Greek cities where Philip V maintained garrisons and Kynos, in particular?222

A decade ago Olga Palagia (1998, 15-26) published an article on a marble statue found in Piraeus, which she identified as Cassander. In examining the piece, Palagia pointed to a nearly identical marble statue from Chalcis on the basis of which she concluded (Palagia 1998, 21-22) that “they were echoes of a bronze prototype or two related ones, presumably standing in Macedonia,” possibly made by Lysippos (Fig. 2.4).

220 This is the only occasion on which Livy 31. 23. 9 mentions a prison in the context of a Macedonian garrison. For another example referring to the treatment of prisoners and captives in Rome, see Livy 32. 26. 18.
221 Livy 31. 23. 10: “…statuis inde regis deiectis truncatisque.”
222 Interestingly, Goldman 1915, 452-453 published a fragmentary inscription from the acropolis of Halai, which she interpreted as a statue base of some “benefactor of the town erected at the end of IV or beginning of III century.” Uninscribed parts of the base are still findable on the acropolis. In the absence of other chronological criteria the date is based on the letter style. From the text transcribed by Jarde and Laurent 1902, 332, however, who first published the inscription, it is obvious that A has a broken bar, which may suggest a later date. In addition, Goldman’s observations on the stone led to the conclusion that it must have supported an equestrian figure or a group. Thus the identity of the honorand may be tentatively assigned either to Cassander, if Goldman’s date is accepted, or Philip V.
She further hypothesized that the statues were images of Cassander, clad in Macedonian chiton and chlamys, who wanted to “advertise” himself in Piraeus and Chalcis, i.e. the places where he maintained garrisons between 317-307 BC and 317-313 BC, respectively (Palagia 1998, 19, n. 34, 21). I can not help but point out the obvious similarity between Palagia’s scenario and the statues of Philip V destroyed by the Romans at Chalcis; two Macedonia kings, both in the habit of maintaining garrisons throughout Greece, and more importantly, both found it necessary to resort to ideological means, to put it in modern terms.²²³ This is why I think that perhaps we are dealing with something more than simple advertisement, as Palagia puts it. It is not inconceivable that setting up of royal statues signaled the acceptance of the Macedonian garrisons through the concept of benefaction (Gauthier 1985, 39-53; Billows 1995, 71-80; Shipley 2000, 83-86), whereupon their presence was portrayed

²²³ Perhaps it is no coincidence that Philip V was the first Macedonian king after Cassander to use the title “βασιλεύς Μακεδόνων;” cf. discussion in Walbank 1940, 264.
as advantageous for the protection and safety of the community.224

Another intriguing point has to do with establishing the ways in which the
supply of the commodities for feeding the soldiers who served in the garrison was
organized. In fact, the main emphasis of the diagramma more than anything else falls
upon ensuring the economic well-being of the garrisons, as is also demonstrated by the
frequent mention of the οἰκονόμοι and their assistants, the χειροτοναί. For instance, was
the grain reserve subject to a centralized supply system maintained by the royal
administration, or was it acquired through authorized purchase from the local
merchants (Garlan 1975, 141)? Several inscriptions from garrisons in Attica (\textit{IG II}2
1281, Sounion, 229-203 BC; Petrakos 1997, no. 49, Rhamnous, 207/206 BC; \textit{IG II}2
1304, Eleusis, 211/210 BC), for example, demonstrate that generals purchased the
grain on behalf of their soldiers (Daly 2001, 375). What about the apparent importance
of wine,225 as well as the fact that the οἰκονόμοι were required to ensure the
availability of freshly made wine every year (ὁ οἶνος ἀγηται ἐφέτειος)? Again, was
this imported from elsewhere, as in the case with the Ptolemaic fort at Koroni
(Vanderpool et al. 1962, 58), or was it negotiated for a price on the local market?226 To
find a definitive answer to these important questions is difficult, not only because the
diagramma provides insufficient information about it, but also because Greek
historians were much more concerned with the political rather than the economic facet
of the Macedonian practice of stationing garrisons. Everything in the writings of
Polybius, for example, revolved around the question of preserving the \textit{freedom} and
\textit{autonomy} of the polis, which the Greeks were extremely sensitive about, and even

224 Philip V explains how his soldiers at Lysimacheia were not a hostile garrison but were left
there to provide protection, Polyb. 18. 4. 6: “…τοὺς στρατιωτας διὰ τοὺτον τὸν πόλεμον, οὓς τοὺς
φρουροῦντας αυτῆς, ὡς σὺ φῆς, ἢλλα τοὺς παραφυλάττοντας”.

225 On the importance of wine in Greek armies, see Hanson 1989, 126-131.

226 It is also possible to assume that locally grown wine was brought to the garrison in
more so, when these were called into question by their having to put up with military power imposed from outside.

In summary, one can be fairly confident in concluding that Philip V possessed at least two permanent garrisons on the territory of Opountian Lokris, at Opous and Kynos. They were maintained for at least twelve years, i.e. 208-196 BC, but the upper margin may be extended as far back as 219 BC, regardless of the fact that the evidence is only circumstantial (Hatzopoulos 2001, 32). Along similar lines, Knoepfler (1999a, 250; 2001b, 296, n. 175) points to the Kynos copy of the diagramma as important evidence bearing witness to the Macedonian occupation of Opous and her territory vis-à-vis Kynos, even as early as the early years of Antigonus III Doson’s reign (Le Bohec 1993, 162-163). On a larger scale, not only does the diagramma demonstrate the immense importance of the North Euboean Gulf for the military shipping of the Macedonian kings, but, more importantly, it presupposes the existence of other ports-of-call comprising a much longer line of sea communications connected with the garrison at Chalcis. Apart from Kynos, and in the context of securing intermediary harbor points for warships sailing between Demetrias and Chalcis, it would be hardly surprising if small communities such as Halai and Larymna (Antigonus III Doson stranded in the harbor in 227 BC) seized, or were forced to accept, the opportunity for interaction provided by the strategic importance assigned by Philip V to the hinterland and the coastline of Opountian Lokris. As a preliminary working hypothesis, it is conceivable that, along with Opous and Kynos,

227 We do not know if Macedonian garrisons were actually present at Kynos and Opous before the attack of Sulpicius and Attalus in 208 BC. It is clear, however, that Sulpicius was targeting places already occupied by Philip’s garrisons, e.g. Oreus and Chalcis (Livy 28. 7. 2). Thus it seems reasonable to suspect that Philip V controlled Kynos, especially since after giving up an assault on Chalcis, Sulpicius decided to sail back directly to Kynos (Livy 28. 6. 12). That the Opountians, on the other hand, were under some sort of Macedonian control may be surmised from the anger with which Philip V reproached them for not putting up a fight with Attalus (Livy 28. 7. 9). It also remains unclear whether after the attack of 208 BC Livy’s phrase “compositis circa Opuntem rebus” may be inclusive of Philip’s decision to install garrisons in Opountian Lokris (Livy 28. 7. 9).
they also witnessed the installment of Macedonian garrisons on their territory. The conjecture, however, would require further substantiation, the discussion of which has been reserved for the next two chapters.

2.4.3: The Transfer of Sarapis and Isis from Thessalonike to Opous

Marble stele, with heading missing, lower right angle broken but continuous. Found in 1920 in the Serapeion of Thessalonike, now in the Archaeological museum at Thessalonike. Inv. No. 825. Dimensions: Height, 0.41, Width, 0.32, Thickness, 0.08, Height of Letters, 0.012, Intervals ca. 0.005 (Fig. 2.5).

Figure 2.5: The Transfer of Sarapis and Isis in Opous from the Sarapeion at Thessalonike, first century AD. Thessaloniki museum. Inv. No. 825 (after Bricault 2005, pl. XXVI)

Editio princeps: IG X 2. 1. 255

Merkelbach 1973; 49-54 (lines 3-17); Sokolowski 1974, 441-442 (improved readings, lines 1-23); Habicht 1974, 490-491 (brief note); Fraikin 1974; Sellew 1980;
Text:

Ca. first century AD

1 [— ΙΔΙϹ[...]
2 [— ΖΑѯCA[...]]
3 [— κατά τάν πρεσβείαν]
4 [— —]κρυμίζεσθαι εν οίκον ἐδοξε καθ' ὅποιον ἐπιστάντα
5 [ν παρ’ αὐτόν] Ἀγαραπιν ἐπιτάξει ὅπως παραγενόμενος ἐν Ὀποῦντα
6 [ν] ἀναγιῆ| Εὐρυνόμῳ τῷ Μειμασθέον ὑποδέξασθαι αὐτόν τε καὶ
7 [ν] τάν ἀδελφάν αὐτοῦ Ἑίσιν, τάν τε ἐπιστολάν τάν ὑμῖν ὑπὸ τοῦ ποτὲ
8 [ν] κεφαλαίῳ ἀναδὸ αὐτῷ. τόν δὲ ἐγερθέντα, θαυμάζει τε τόν
9 [ν] δὲ νειρον καὶ διαπορεύν τί ποιητέον ἐστίν διά τό ὑπάρχειν αὐτῷ ἄντιπρο-
10 [ν] ν λειτείαν ποτὲ Εὐρύνομον. καθυπνώσας δὲ πάλιν καὶ τά αὐτά ἵδιν
11 [ν] καὶ ἐπεργεθείς τάν τε ἐπιστολάν εὑρέ ὑπὸ τό ποτικεφαλαίῳ
12 [ν] καθὼς αὐτῷ ἐτεκμάρθη. ἐπανελθὼν δὲ ἀνέδωκε τάν ἐπιστολάν
13 [ν] Εὐρυνόμωι καὶ ἀνήγειλε τά ὑπὸ τοῦ θεοῦ ἐπιταχθέντα. Εὐρύνομος δὲ
14 [ν] τάν ἐπιστολάν λαβὼν καὶ ἀκοῦσας τά ὑπὸ Ξενανέτον λεγόμενα
15 [ν] παρ’ αὐτόν μὲν τόν καὶ, ἀπόρως εἶχε διὰ τό καθός ἐπάνω
16 [ν] διας]αφείται εἴμεν αὐτοῖς ἀντιπολείτειαν ποτ’ αὐσωτοῦς, ἀναγνοῦς δὲ
17 [ν] τάν ἐπιστ]ολάν καὶ ἰδίων τά γεγραμένα σύμφωνα τοῖς
18 [ν] ὑπὸ Ξενανέτ]οι εἰρήμενοι ὑπεδέξατο τόν Σάραπιν καὶ τόν Εἰσιν
19 [— —]ΟΝ ἐν τάί ρικία τάι Σωσινείκας ἐν τοὺς ΟΙΚ[...]
20 [— —]ἐβδο Σωσινείκα τάς θυσίας ΧΡΟΝ[.....]
21 [— Εὐν]όστα; α Σωσιβίου θυγατριδ[............]
22 [— —]θεῶν ἐν τοὺς κ[ατ]αμετό[χ]ους

Totti 1985, no. 14; Mora 1990, nos. 456, 463, 874, 1113; Bricault 1997, 118; Bricault 2005, no. 113/0535, pl. XXVI (photograph)
Translation:
“[Xenainetos]…while on embassy… to come into the shrine, it appeared that in his sleep Sarapis was standing behind him and instructing him, upon arrival at Opous to report to Eurynomos, the son of Timasitheos, that he should receive him [i.e. the god] and his sister Isis; and to give to Eurynomos the letter which was under his pillow. Waking up he [Xenainetos] was amazed at his vision and perplexed at what he should do because of the political hostility which he had towards Eurynomos. But falling asleep again he had the same dream, and when he awoke he discovered the letter under his pillow, just as was indicated to him. When he returned home he gave the letter to Eurynomos and reported the god’s instructions. Eurynomos took the letter and after hearing what Xenainetos said he was perplexed…because of the political hostility between them…but when he read the letter and saw its contents were consistent with what had been said beforehand by Xenainetos, he accepted Sarapis and Isis. …in the house of Sosinike, …performed sacrifices……Eunosta, the grand-daughter of Sosibios,……of the gods among those who were also non-participants in the rites.”

The inscription preserves 23 lines of an early Roman copy of an original stele dated to the late third century BC, written in central Greek (Lokrian) dialect. Following the primary publication by Edson in 1972 (IG X 2. 1. 255), the document, which Sokolowski (1974, 441) described as “a curious piece of ancient religious propaganda”, has been appreciated for the opportunity to study the establishment of the cult of the Egyptian gods at Opous.228 Quite justifiably, most scholars refer to it as solid evidence illustrating the private dissemination of the cult by worshippers (Dunand 1973, 43; Bricault 1997, 118; Chaniotis 2002b, 70, n. 13), a typical example of what is known as “Himmelsbriefe”, or letters sent from heaven (Merkelbach 1973,

228 It is a curious coincidence that until the appearance of Oldfather’s RE article on Lokris, well before the discovery of IG X 2. 1. 255, it was thought that the cult of the Egyptian gods at Opous was well established on the basis of a pierre errante, first thought to have come from Opous by Wachsmuth 1872, 612-614 and Girard 1881, 52. The provenance of the stone remains unknown, however, but autopsy confirmed (March 2007) that it is still built into the church of Ayios Georgios at the village of Exarch near Abai in Phokis. The inscription was plausibly attributed to Hyampolis by Dittenberger, IG IX. 1 89: “Κρινόλαος Ξευπετθεος ιεροτεσσας το πρόσυλον και τάς στοις και τους οίκος Σαράπει, Εύστα, Ανοίξει χαριστήριον,” correcting the mistake of Collitz who listed it twice in SGDI, no. 1506 (Opous) and no. 1535 (Hyampolis). Thanks to the keen eye of Oldfather 1926, 1279, however, the claim, based on the pierre errante, that the cult of the Egyptian gods existed in Opous has since been disproved.
53; Sokolowski 1974, 442-443). In the context of Lokrian history, however, the
document has attracted little attention, although it is commonly agreed that the original
document was set up in the late third century BC.\footnote{The question of date is closely related with the chronology of the Serapeion of
Thessalonike. Dunand 1973, 44, however, followed by Fossey 1990, 156, assumes that the episode with
Xenainetos may not be earlier than 200 BC on the grounds that the sanctuary was
built in the late third century BC. The authority behind the claim is Pelekidis 1921, 540-541, and later Makaronas 1940, 464-
465, who both excavated at the sanctuary in the 1910s and 1930s. Pelekidis 1921, 541, attributes the
construction date of the Hellenistic phase generally to the third century BC, and so did other scholars,
e.g. Frazer 1960, 38, n. 4; Edson 1948, 181; Brocke 2001, 38-39. On present evidence, further precision
may not be obtained.}

Fossey (1990, 156, n. 2), for example, has attempted to explain the
introduction of the cult of the Egyptian gods as a result of commercial activity at
Opous. Others have considered the Opountian case as puzzling (Dunand 1973, 42, 44;
Bricault 1997, 118), especially since no remains of a temple of Isis and Sarapis were
ever found at Opous.\footnote{Archaeological excavations at Opous, however, may prove the skeptics wrong because of a
recently discovered terracotta (of Isis?) dated to late Hellenistic/early Roman periods (Whitley 2004,
49, fig. 81). The fragmentary figurine shows the lower part of a female draped figure, with partially
preserved hand holding a \textit{sistrum}, the unmistakable attribute of Isis.}

In view of these uncertainties, one may still wonder why a
document dealing with religious matters should merit a discussion here. For the
purposes of the dissertation, I focus on the main characters in an attempt to lift the veil
of secrecy behind the political events that led to the decision of sending an Opountian
embassy to Thessalonike.

Of the individuals mentioned in the text, Sosinika, Eunosta and Sosibios are
attested in other inscriptions (Sokolowski 1974, 442, n. 4). Eurynomos and
Xenainetos, however, remain unknown. What is often forgotten is that, arguably, they
were both figures of political import. In a little-cited but important review article,
Habicht (1974, 490-491) has suggested that the latter should be identified with a
certain Xenainetos, a \textit{στρατευός}, mentioned by Plutarch in his \textit{Moria}.\footnote{Plut. \textit{Moria} 803 E: ‘χάρισαν δὲ καὶ τὸ Ἑξαιαινέτου πρὸς τοὺς πολίτας κοινωνίας αὐτοῦ
ὅτι στρατηγός ἦν πέφρους μεθ’ ὑμῶν γ’, ὃς φίλης κεφαλάλι.’ “Witty too was Xenaenetus’ rejoinder to the
citizens who reviled him for running away when he was general, “Yes, to keep you company, my
dears.” Loeb translation, Fowler 1936, 185, 187.} Although
many details of the story remain unknown, it is clear that when Xenainetos was
general (στρατηγὸς), he had to flee the city on account of some quarrel between the
citizens and himself. Habicht (1974, 491) further suggested that they probably
belonged to the circle of his adversary Eurynomos. At the same time, Bricault (1997,
118) surmised, without citing Habicht’s article,232 though, that Eurynomos was “sans
doute un magistrat influent d’Oponte.” Plutarch does not tell us in which city
Xenainetos was a magistrate. Based on the identification proposed by Habicht,
however, one may surmise he meant Opous. Focused on the religious content,
subsequent studies have understandably failed to realize the political implications of
Habicht’s suggestion, but if accepted, one has to entertain the possibility that in the
late third century BC the Opountians had a military magistrate, the existence of which
is otherwise unattested.233

Another closely related issue, which I intend to examine in some detail, has to
do with the occurrence of the words πρεσβεία (l. 4) and ἀντιπολιτεία (ll. 9-10, 16). It
is interesting to note that both are found together, at least in the writings of a
contemporary historian such as Polybius,234 to describe events not of internal crisis but
of political turmoil caused by the necessity for Greek cities to side with an outside
party, as was often the case in this period, i.e. Macedonia, Rome and Aetolia.235 Based
on the assumption that some of this political vocabulary was used in epigraphic
documents, I turn to the Polybian passages in question. Of the few occasions, in fact

232 References to the identification put forward by Habicht are surprisingly rare, e.g. Chaniotis
1988, 68.
233 Sherk 1990, 243-245, who devoted two articles on the eponymous officials of Greek cities,
makes no reference to the existence of an office of στρατηγὸς at Opous. The inscription from
Thessalonike is also omitted from the entry on Opous in Nielsen 2004, 670-671.
234 For a comprehensive treatment on πρεσβεία, see the entry in RE Suppl. XIII by Kienast
1973, 499-627 and, most recently, Russell 1999, 63-67, who deals mainly with the Classical period. On
the use of the word ἀντιπολιτεία in Polybius, see Levy 1990, 18.
235 Although Sokolowski 1974, 442 notes the appearance of ἀντιπολιτεία in the text, he
understood it to mean, “opposition on the score of ideas or policy”. In the footnote attached to this
claim, he adduces Arist. Pol. 20. 5. 5; 23. 10. 14; 28. 14. 1 and Plut. Cæs. 11. According to Levy 1990,
18, the term “…evoque une opposition politique, soit generale, soit a un homme, ou une tendance.”
only five, on which Polybius uses the word ἀντιπολιτεία,236 one describes the crisis at Rhodes on the eve of the Third Macedonian War, as a result of which a decision was made to support Perseus (Polyb. 28. 16. 1).237 Another tells of the pro-Macedonian orientation of Ascondas and Neon, who staunchly supported Demetrius II upon his Boeotian invasion in 236 BC (Hammond and Walbank 1988, 326-329).238 It is noteworthy that in the case of Rhodes, the decision to support the Macedonian king was immediately followed by the dispatch of ambassadors to the interested parties, Rome and Perseus. Thus it appears that in the turbulent world of late third century Greece an ἀντιπολιτεία was a social condition that may be induced by exogenous factors, which normally ended with the dispatch of ambassadors to the parties causing the polarization among the city magistrates.

The picture sketched on the basis of Polybius, however, becomes particularized, when treated in conjunction with Livy’s use of seditio. The word describes a situation of military turmoil, which at least on two occasions is directly associated with the presence of Macedonian garrisons installed by Philip V. In 198 BC the combined effort of the Romans and Attalus I of Pergamon to induce resistance among the Corinthians to the regium praesidium on Acrocorinth proved futile.239 Shortly thereafter, however, upon the arrival of Flamininus in Phokis and Lokris a similar situation occurred at Opous, which at this point was also held by a royal garrison. This time, however, the citizens quickly split in factions, one sided with the

236 The other passages include Polyb. 11. 25. 5 dealing with a revolt in Spain, and Polyb. 22. 10. 14 referring to events in Achaia.

237 Polyb. 29. 10. 1-3: Ὑπὸ προτεθείης χειροτονίας τοῖς Ῥώδιοῖς, ἑνίκων αἰ ἡρεσκε πέμπει τοὺς πρεσβευτὰς ὑπὲρ τῶν διαλύσεων, καὶ τὴν μὲν Ῥώδιων ἀντιπολιτείαν τούτον τὸν τρόπον [ὡς ἐν τῷ περὶ δημηγορίας τέθειται] διέκρινε τὸ διαβουλέως, ἐν ὁ πλεῖον ἐφάνησαν ἑιγόντες οἱ τῷ Περσέως αιροῦμενοι τῶν σώζειν σπουδαίζοντον τὴν πατρίδα καὶ τοὺς γόμους.

238 Polyb. 20. 5. 5: „διὸ καὶ μεγάλην ἀντιπολιτείαν εἶναι συνέβαινε τοῦτος πρὸς τοὺς περὶ τὸν Ἀσκόνεαν καὶ Νέονα, τοὺς Βραχύλου προγόνους, οὗτοι γὰρ ἠστὶν οἱ μάλιστα τότε μακεδονίζοντες.”

239 Livy 32. 23. 4: “Romani in Cenchreas versam partem urbis, Attalus traducto per Isthmum exercitu ab Lechaeo, alterius maris portu, oppugnabant, primo segnius, sperantes seditiem intus fore inter oppidanos ac regium praesidium.”
Aetolians, while the other sent envoys to the Romans.²⁴⁰

Is it possible to correlate the Opountian *seditio* of 198 BC with the flight of Xenainetos, when he was a στρατευός of Opous, as told by Plutarch, as well as with his acting as ambassador and suppliant in the sanctuary of Sarapis at Thessalonike? I think the answer is negative. For one, the public opinion at this point was torn between Rome and Aetolia, and it is difficult to see what good his departure to Macedonia would have done for settling the question, let alone spending the night in the sanctuary of a foreign god. Instead it seems likelier to suggest that the Opountian embassy led by Xenainetos was sent to Macedonia as a result of ἀντιπολιτεία of the sort described by Polybius. One may further hypothesize that we are dealing with an earlier moment of Opountian political history, the moment of deciding whether or not to collaborate with the Macedonians, perhaps somewhere between 219 and 208. Thus, one assumes, the quarrel he had was probably with the anti-Macedonian faction represented by Eurynomos. Although a direct link may not be established, it is not inconceivable that the introduction of Sarapis and Isis in some way anticipates the arrival of the Macedonian garrison at Opous, which was withdrawn by Philip V in 196 BC. The possibility is an attractive one. First, Philip V ferried his troops via Kynos and Phokis to the Peloponnese by way of Opous in the winter of 219 BC (Polyb. 4. 67. 7). Philip obviously needed to secure the overland road passing through the territory of Opous just as his predecessors, Demetrius II and Antigonus III Doson did a few years earlier. Secondly, although Livy (28. 7. 4) does not mention the presence of a Macedonian garrison during the capture of Opous by Attalus in 208, the moment marks another possible terminus for its installation. Finally, epigraphic evidence shows the existence

²⁴⁰ Livy 32. 32. 1-2: “...cum T. Quinctius capta Elatia in Phocide ac Locride hiberna disposita haberet, Opunte seditio orta est. factio una Aetolos, qui propiores erant, altera Romanos acceperat.” Scholarly treatment of this passage includes: Flacelière 1937, 344, n. 4; Feyel 1942, 172, n. 2; Walbank 1940, 159; Hammond and Walbank 1988, 428; Garinger 1999, 386-387.
of a link between Philip V and the Egyptian gods, in addition to the otherwise attested popularity of Sarapis among military establishments.241 This link, however, should not be understood in strictly religious terms but rather as a way of negotiating power relations.

In June of 187 BC, for example, Philip V issued a royal diagramma regulating the revenues of the sanctuary where the inscription was found, i.e. the Sarapeion at Thessalonike (Welles 1934, 249-251; Frazer 1960, 38-39, Hatzopoulos 1996, no. 15), while a separate dedication of a Macedonian from Amphipolis combines the names of Sarapis and Isis with that of Philip V (Hatzopoulos 1996, no. 75). Although Walbank (1940, 267, n. 4) warns that, “it would be dangerous to conclude that Philip V had a particular leaning towards these cults” it is obvious that they generate a pattern revealing, if not the king’s personal link with the Egyptian gods, at least a royal concern towards the fiscal aspect of religious practices (Errington 1990, 232). Lastly, the nature of the diagramma normally included publication in multiple copies, and as Welles (1934, 251, n. 3; cf. Frazer 1960, 39, n. 1) has already suggested, that from Thessalonike may pertain to “Macedonian sanctuaries, or the cult of Serapis in general”. To these examples one may add the situation which occurred after the capture of Opous by Attalus in 208 BC, and it is perhaps notable that before reprimanding the Opountians Philip V accused the gods first.242 One may also recall the peculiar way by which Philip V managed to install his garrison on the acropolis of Larissa at Argos. The Argives had a custom according to which on the first day of the assembly they pronounced aloud the names of Zeus, Apollo and Heracles. In order to generate sympathy for the Macedonians among the townsfolk, the magistrates passed

241 The transfer of the Egyptian gods on Thera, and especially that of Sarapis promoted by Ptolemy I, has been attributed to the presence of the Ptolemaic garrisons on the island during the third century BC, cf. Frazer 1960, 24-25; Chaniotis 2005, 152.

242 Livy 28. 7. 8: “inde Opuntem rediit, deos hominesque accusans quod tantae rei fortunam ex oculis prope raptam amisisset.”
a law that required the addition of Philip’s name.243 The ensuing result was that instead of opposing the Macedonians, the Argives themselves invited Philocles, the general of Philip, to occupy the citadel of Larissa. The episode also shows, among other things, as Edson (1933, 325) has already remarked, that religious matters often intertwined with political, and so did the introduction of foreign gods.

Although the association of the introduction of the Egyptian gods with the arrival of the Macedonian garrison of Philip V at Opous put forward here seems plausible, many questions must remain unanswered. Was Thessalonike, for example, the final point of destination for the Opountian embassy? Who was Xenainetos supposed to meet there, Philip V himself, or one of his ἐπίσταται?244 In what capacity did he pay a visit to the Sarapeion, as an ambassador, a στρατεγὸς, or as an individual who was seeking cure from a disease?245 We simply do not know.

\textbf{2.5: Lokrians abroad}

As mentioned earlier, the prosopography of Opountian Lokris is still an ongoing project, and one that we can anticipate with great interest (Fossey 2003, xiv; 2005, xiii).246 In the interim, some preliminary observations may prove fruitful. Increasing bodies of epigraphic evidence such as mercenary lists point to a widespread practice of soldier hire throughout the Hellenistic world and, perhaps somewhat unexpectedly, one finds, among traditionally established recruiting grounds like Arcadia, Achaea and Crete, a good number of mercenaries supplied by Lokris.247 A major difficulty in evaluating the data, however, derives from the fact that rarely do

\footnotesize
\begin{itemize}
\item Livy 32. 25. 2: “mos erat comitiorum die primo velut ominis causa praetores pronuntiare Iovem Apollinemque et Herculem; additum lege erat, ut his Philippus rex adiceretur.”
\item For a critical discussion of the scholarship devoted to the problem of Macedonian ἐπίσταται, see Hatzopoulos 1996, 372-396.
\item According to Sokolowski 1974, 442, Xenainetos went to Thessalonike “…to obtain advice on some problem, probably a matter of health.”
\item The study will appear as volume III in the series \textit{Prosopographiae Graecae Minores}.
\item On mercenaries, see Parke 1933, Griffith 1935, Pritchett 1974, 59-116, and most recently, Chaniotis 2004, 485-488.
\end{itemize}
the names, apart from the ethnic ‘Lokros,’ appear accompanied by a city ethnic, which in turn makes it impossible to deduce whether East or West Lokris is meant. In his seminal study on the Hellenistic armies, Launey (1949, 167) was among the first to draw attention to this. The earlier two-volume work of Lerat (1952) on the history and topography of West Lokris, while recognizing the nature of the problem, treated, quite justifiably, the epigraphic sources containing the ethnic ‘Lokros’ under his heading of “uncertain” cases (Lerat 1952, xiii). In the following discussion I try (1) to show that, at least in some cases, more precision is still obtainable, especially when the data is carefully scrutinized, and (2) to examine the broader significance of mercenary service with respect to the history of Opountian Lokris during the Hellenistic period.

2.5.1: Military lists

Among the most frequently discussed mercenary lists in the literature are the two military catalogues from Athens, *IG II²* 1956 and *IG II²* 1957 (e.g. Griffith 1935, 240-241; Launey 1949; Frazer 1993). I begin the discussion with the first one.

The text, inscribed on a marble stele, contains 151 personal names, arranged in three columns with a plural form of the city ethnic, or simply the ethnic, as a heading (Launey 1949, 67-69). As in several other groups of names, the Lokrians listed under the heading ‘Lokroi’ appear twice on the stone (ll. 167-171; ll. 198-204). Thus we have a total of ten personal names divided into two separate groups under an identical heading, ‘Lokroi’. In addition, they are also among the largest group of names recorded, second only to the strikingly high number of the Thracians (48). Unfortunately, the stone is undated but some important clues are provided by the appearance of the city of Cassandreia and the existence of two separate headings for the Boeotians and the Thebans.248

248 Since Cassandreia was founded in 316 BC (Diod. Sic. 19. 52. 2; Strabo 7, frag. 25; Livy 44. 11. 2), it provides a firm terminus post quem. For a long time, the lower margin was determined on the assumption that Thebes joined the Boeotian League in 309 BC (Roesch 1982, 469). Thus, the date of
While everyone has agreed that IG II² 1956 represents a list of mercenary soldiers (Griffith 1935, 240; Habicht 1997, 84), it has been extremely difficult to interpret its meaning in terms of the political and social history of Athens. Since the stone was found on the acropolis, it seemed natural to imagine that the inscription was a testimony to the fact that the Athenian government was already in the habit of hiring soldiers for its own defense during the last quarter of the fourth century BC (so Frazer 1993). Launey (1949, 69), on the other hand, has wisely observed that it is next to impossible to differentiate between “les causes fortuites” and “l’effet des causes permanents,” when trying to determine what was the principle guiding the selection of the cities whence soldiers had been recruited (e.g. Thrace, Macedonia, central Greece, Ionia, Caria, Lycia, Pamphylia, Egypt, etc.). Faced with the difficulty to explain why we have people from so many distant corners of the ancient Mediterranean, he plausibly suggested that this was a direct result of a recruitment process conducted by xenologoi or condottieri, with a special reference to the relative preponderance of the Lokrians and the Lesbians (Launey 1949, 69). Although this is certainly possible, a closer look at the political situation at Athens during the last quarter of the fourth century BC may be instructive.

In the aftermath of the Lamian War, Antipater decisively interfered in the internal affairs of Athens, and as a measure against further upheavals, he decided to install a permanent garrison under the command of Menyllos (Diod. Sic. 18. 18. 4-6). In the spring of 317 BC, Antipater’s son, Cassander, re-established the Macedonian
garrison, which took as its living quarters the hill of Mounychia, by appointing a commander, Nicanor, directly responsible for his actions to him (Diod. Sic. 18. 64. 6). In addition, he also installed Demetrius of Phaleron as ἐπιμελητὴς of Athens (Ferguson 1911, 38-94; Habicht 1997, 53-65; Dreyer 1999, 180-184), who “ruled the city peacefully and with good will towards its citizens” (Diod. Sic. 18. 74. 2-3). The garrison at Mounychia and Demetrius’ rule were to play a major role in the politics of Athens until the summer of 307 BC, when Demetrius Poliorcetes managed to expel the garrison and deliver the Athenians from the considerable influence that had been exercised by Cassander over their city for the previous ten years (Diod. Sic. 45. 5-7; Plut. Demetr. 8-9).

Now, in view of the Macedonian control on the politics of Athens during 317-309 BC, it is plausible to suspect that IG II² 1956 commemorates a list of mercenaries that were on duty in the garrison at Mounychia. In fact, Launey (1949, 642, n. 1) suggested in a brief footnote that the soldiers inscribed on the stone may in fact belong to the Macedonian garrison that was at the disposal of Demetrius of Phaleron. If we agree that these soldiers were serving in the Macedonian garrison at Mounychia, I would argue that the chances of the Lokrians being recruited from Opountian Lokris, as opposed to West Lokris, increase significantly for the following reasons. As discussed earlier, Cassander established garrisons in Opountian Lokris definitely before 313 BC, which he quickly managed to restore again from 309 until 304 BC. His contacts with the Opountian Lokrians were thus mediated through his garrisons, and more importantly, we have no reason to think that the Macedonian military presence was frowned upon by the local communities. Given these circumstances, two scenarios can be envisaged accounting for the presence of the ten Lokrians attested in

250 According to Eickstedt 1991, 46, the hill was fortified by the Macedonian garrison, but in 307 BC was unable to repel the siege imposed by Demetrius Poliorcetes, who also decided to dismantle the fortification walls (Diod. Sic. 20. 46. 1; Plut. Demetr. 10. 1).
IG II² 1956. They were either recruited from xenologoi sent by Cassander, or enrolled through a clause in a treaty concluded between Opountian Lokris and the Macedonian king. The attested Hellenistic practice of recruiting mercenaries required that the xenologoi, receiving large amounts of money by the interested party (a king or a general), would be dispatched within regions where they were expecting to find potential candidates for military service, or, alternatively, the soldiers were likely to enroll for service in a foreign army as a result of a treaty concluded between their country and the potential employer (Chaniotis 2004, 494-495; 2005, 82-83).

While both scenarios rely on meager historical information, the circumstantial case for Cassander’s agency, which they seem to support, becomes even more compelling, especially when one takes into account the details furnished by the second military catalogue (IG II² 1957).

The stone is broken at the top and at the bottom containing a partially preserved list of 21 personal names arranged into one column. Unlike IG II² 1956, where the names are preceded by a heading with the plural form of the ethnic, here each name is accompanied by an ethnic or a city-ethnic. The inscription is undated, but according to the opinio communis, which adduces the paleography as a criterion, it dates to the first decade of the third century BC (Launey 1949, 69).

The list contains the names of five Lokrians ([Mnasal]kas, […].eon, […].on, [P]yrros, [.].atrinos, ll. 5-7, 11, 16), and one Opountian (Damon, l. 10). Launey (1949, 167, n. 2) has argued that […].on in line 7 may be identified with Timon from IG II² 1956, l. 169, while [.].yrros in line 11 appears to be the same Pyrros inscribed in IG II² 1956, l. 202. If the restorations put forward by Launey are accepted, IG II² 1957 can hardly be much later than 290 BC, unless Pyrros was in his late 20s or early 30s when IG II² 1956 was put up. In fact, a terminus post quem may be safely deduced from the presence of two persons from Lysimacheia (l. 8 and l. 19), which we know was
founded by Lysimachus in 309 BC (Cohen 1995, 82-83).

Another interesting observation has to do with the fact that this time the Lokrians are in fact the most numerous within the list of preserved names. Although this may reflect the incomplete state of preservation of the stone (Launey 1949, 70), their relatively high number seems to imply a continuous recruitment of soldiers from Opountian Lokris, the beginning of which is signaled by IG II² 1956. The novelty, however, comes from the fact that Damon (l. 10) distinguished himself from the rest of the Lokrians by using his city-ethnic *Opountios* instead. Should we assume that he decided to emphasize his East Lokrian origins because he wanted to be differentiated from the rest of the Lokrians who were thus from West Lokris (cf. Launey 1949, 166)? Or, was the distinction meant to signify the prominent role of the city of Opous within presumably the East Lokrian affiliation of the other five Lokrians? Let us look at some examples.

In the *naopic* accounts from Delphi, the city-ethnic *Opountios* is used in opposition to a regional ethnic, e.g. *Hesperios*, or a city-ethnic, e.g. *Amphilissus* (*CID* II 32. 41-46; *CID* II 43. 14-23). In both cases the nomenclature aims to emphasize the existing differentiation between Opountian and West Lokris. In other words, had the other five Lokrians listed in *IG* II² 1956 belonged to West Lokris, they would have noted this by adding a city-ethnic to their names, primarily because Damon *Opountios* did so. In short, the fact that they stuck to the regional ethnic *Lokros* in all probability points to their East Lokrian affiliation, within which the leading position of Opous had been widely recognized. In such case, the appearance of the city-ethnic *Opountios* in *IG* II² 1957 could signal the fact that not only the other five Lokrians came from East Lokris but also that no Opontian should be sought within the list preserved in *IG* II² 1956.

Within the partially preserved list of mercenaries (*xenoi*) from the garrisons at
Eleusis, Panakton and Phyle who, along with some citizens, contributed to the erection of a statue of an Athenian στρατευός, we find the name of another Opountian, Alexon Opountios \((IG\ II^2\ 1299,\ l.\ 114) \). The incomplete list of soldiers, containing 23 personal names accompanied by regional or city-ethnic, dates to little before 234 BC (Clinton 2005, no. 196). Of some importance is the proportionately high number of the Macedonians (3), which may be indicative of the military presence that Antigonus Gonatas and Demetrius II continued to maintain in central Greece (Launey 1949, 71).

Two Lokrians are to be found among the lengthy list of mercenaries belonging to the garrison sent by Attalos I to Lilaia in 208 BC. The inscription is in fact a dedication, which the Phokians made on their behalf at Delphi, in recognition of the garrison’s service rendered for the sake of the city during the First Macedonian War \((FD\ II\ 224,\ ll.\ 13,\ 19) \).

2.5.2: Tombstones

In addition to the list of mercenaries discussed above, a few Hellenistic tombstones bearing Lokrian names, set up away from their homeland, may be interpreted within a military context as well. All examples represent simple grave stelai, with little or no decoration, with the name of the deceased inscribed. In some cases, the personal name is followed by a patronymic plus the regional ethnic Lokros, or a double ethnic, with the city-ethnic added after the regional.

The most compelling example comes from a fourth-century stele commemorating a certain Apollodoros Lokros, who, after having served in the garrison (Petarakos 1999, no. 223), was buried in Rhamnous. The same may be said of Lysias, son of Kratinos, Lokros, and Kallilochos Lokros who died in Alexandreia in Egypt and Patrai respectively, sometime during the third century BC (Pagenstecher 1919, 61, no. 82; Rizakis 1998, no. 60).

The next two examples deserve special consideration because they are the only
instances where a double ethnic has been added to the name of the deceased. The first stele records the name of certain Damarchos Lokros Boumeliteios who was buried in a cemetery in Skotoussa (SEG 47. 489), and the second that of Exelaos Lokros Opountios who died in Atrax (SEG 32. 587). Given the nature of the epitaphs, it is impossible to establish with certainty what status the Lokrians actually had in the Thessalian communities before they died. That they were greatly aware of their foreign origins can hardly be doubted since both apparently insisted on being remembered by their presumably native Lokrian towns. 251 Thus one can only speculate about the possibility that they could have been recruited to serve in the Macedonian garrisons, which Philip V maintained in Thessaly as late as 196 BC (Habicht 2006, 59-73, 134-147).

2.6: Summary

The inscriptions discussed in the previous section delineated several phenomena, the most striking of which is that of Macedonian military presence in Opountian Lokris (Table 2.1).

The Peisis epigram and the Kynos diagramma validated not only the spotty literary evidence supplied by Diodorus, Polybius and Livy, but they also proved beyond doubt the existence of what seems to have been a recurring strategy employed by Cassander, Philip V, and to lesser degree Antigonus III Doson, to maintain strongholds on Opountian territory. The primary objective of this policy was to secure alternative lines of communications, since it became clear, as early as the reign of Cassander, that when Thermopylai and Epiknemidian Lokris were controlled by the Aetolians, Macedonian communications with the Peloponnese depended entirely on the availability of free passage by land and sea afforded by Opountian Lokris. To this effect the Macedonian kings took the effort to secure it in advance by negotiating the

251 Cf. also Chaniotis 2004, 494, who warns that ethnic designation does not necessarily indicate contacts with the place of origin.
Table 2.1: Synoptic view of major military events in Hellenistic Opountian Lokris; all dates B.C.

<table>
<thead>
<tr>
<th>Year</th>
<th>Literary</th>
<th>Epigraphic</th>
<th>Numismatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>316</td>
<td>Cassander uses Lokrian harbors to ferry troops to Thessaly and installs a garrison at Opous</td>
<td>Ptolemaeus besieges the garrison of Cassander at Opous</td>
<td>-</td>
</tr>
<tr>
<td>313/2</td>
<td>Demetrius II marches to Opous via Kynos</td>
<td>Doson stranded at Larymna on his way to Caria</td>
<td>-</td>
</tr>
<tr>
<td>236</td>
<td>Philip V marches to Phokis by ferrying troops via Aedeopsos and Kynos</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>227</td>
<td>Attalus and Sulpicius attack Opous via Kynos after sailing from Chalcis</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>224</td>
<td>Eumenes II uses Larymna as an entry point to Boeotia</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>219</td>
<td>Flamininus attacks the garrison of Philip V at Opous</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>208</td>
<td>Archelaus uses Halai, Larymna and Anthedon as exit points to Chalcis</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>198</td>
<td>-</td>
<td>-</td>
<td>Eumenes II mints pseudo-Rhodian drachms at Larymna</td>
</tr>
<tr>
<td>171</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>85</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

installation of permanent garrisons, consisting mainly of mercenaries (Griffith 1935, 46), at the most salient points. It is crucial to emphasize, however, that the Macedonian interest in Opountian Lokris was fostered by treaties, at least in the case of Cassander, rather than through forceful submission as a result of a defeat in battle. This in part may be the reason why the Macedonian garrisons lasted as long as they did.

Greek historians, on the other hand, resolutely downplayed the significance of the Macedonian practice of stationing garrisons by consciously emphasizing the negative effects it had on the Greek civic life. Thus, the presence of foreign military power was seen as necessarily infringing on the freedom and autonomy of the poleis, and was thus justifiably depicted as an object of disdain. In part this is...
independently supported by the epigraphic sources from which it is obvious that as soon as opportunity presented itself, the Greeks were often quick to dispense with the garrisons imposed on them. Yet in the majority of these cases the poleis were aided by an array of powerful Macedonian generals, as was the case with Ptolemaeus and Demetrius Poliorcetes, rather than carrying out the expulsion themselves. To the dismay of the Greeks, however, subsequent developments revealed that the slogan of “liberation of the Greeks” was taken seriously as long as it had provided the justification to interfere in Greek affairs. For in no time, many cities had to witness the radical transformation of Demetrius Poliorcetes who all too quickly came to realize the advantages of stationing garrisons. Even the Athenians were not spared (Oliver 2007, 54).

To think that all Greek poleis shared the same intolerance towards the Macedonian garrisons is unjustified. What is more, the diagramma from Kynos brings a fresh look by revealing the economic facet of this military presence, which is otherwise completely overlooked by the literary sources. Ensuring constant availability of grain and wine was a matter of serious concern for the royal administration, the importance of which is gleaned from the existence of a hierarchy of officials directly dependent on the king (Table 2.2). Feeding the military units, stationed in a number of places, therefore must have had immediate impact on the local economy, since the readiness of the staples must have been secured by means of

the ant-tyrannical attitude of Polybius as a Greek historian, see Walbank 2002, 217. See also Pausanias 1. 4. 1, who on the eve of the Gallic invasion of Greece briefly comments on the negative effects Antipater and Cassander had on the foreign policy of many Greek cities. Cf., however, Strabo 9. 1. 20, who asserts that when the Athenians were governed by Cassander’s protégé, Demetrius of Phaleron during 317-307 BC, the city witnessed the best times of democratic rule.

254 The garrison installed by Ptolemaeus in Chalcis was expelled during the Four Years’ War, 307-304 BC, cf. IG II² 469; Bakhuizen 1970, 128-129.

255 In 287 BC the Athenians attacked the garrisons of Demetrius stationed on the Mouseion Hill (IG II² 666-7; Paus. 1. 26. 1-2, 1. 29. 13) and Piraeus, cf. Paus. 1. 29. 10; Polyaeus, Strat. 5. 17.
the regional markets, if not imported from abroad.

How the garrison fit into the fabric of the city is another important question. Frequent literary references testify to the fact that the local acropolis usually served as the main living quarters for the military detachment. Given the Greek tendency to reserve the highest part of the city for this, it is questionable to what extent in their daily routine the local population was forced to interact directly with the garrison,

Table 2.2: Flowchart showing lines of communication between Macedonian kings, royal garrisons and Greek cities

which in most of the cases was positioned on the heights, thus being physically removed from the daily life in the lower town. At the same time, the continuous occupation of the acropolises, which sometimes lasted ten to fifteen years, was
doubtless bound to leave more permanent traces as opposed to the fleeting impact of temporary forts built hurriedly in the course of a military campaign. The real question then is: how complex was the living space assigned to the garrison? Although several hints exist, as is evident from the mentioning of the granaries in the diagramma from Kynos and Chalcis, every case must be treated individually in order to avoid unwarranted generalization.

As noted above in the closing section of the discussion of the literary sources, the dynamism and mobility of life during the Hellenistic period was immeasurably higher than that of the self-contained Classical poleis. The increased supply of soldiers who made their living from war is but one illustration of this. The epigraphic data, which in our case is surprisingly abundant, shows with a fair degree of certainty that Opountian Lokris had become a regular supplier of mercenary soldiers in a market that was looming large throughout the Hellenistic period (Griffith 1935, 241). Macedonian generals, who very often suffered from shortage of manpower, presumably initiated the recruitment, while the regions where they maintained military forces continuously are likely to have been among the primary targets of the recruitment officers dispatched by them.

The days of the citizen-soldier were long gone…
Chapter 3: A Gazetteer of sites

In this chapter I present a catalogue of 17 sites from Opountian Lokris, all of which are known from topographical studies and archaeological excavation. Most have produced sufficient amounts of material remains, including fortifications. These form the basis of my study.

The order of sites adopted here follows the geographical description of Opountian Lokris presented in Chapter 1. I begin with Alope in the north-west part and end with Anchoe by moving sequentially in a south-east direction (Map 3.1).
At this point I decided not to arrange the material typologically, although it will be evident that several sites are in fact extra-urban establishments located some distance away from the major cities (Table 3.1).

Table 3.1: Synoptic view of the sites and some essential features discussed in the text

<table>
<thead>
<tr>
<th>SITE</th>
<th>AREA (ha)</th>
<th>MASONRY</th>
<th>MATERIAL</th>
<th>CURTAINS</th>
<th>TOWERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alope/Ayia Aikaterini</td>
<td>-</td>
<td>ashlar</td>
<td>conglomerate</td>
<td>abbreviated</td>
<td>-</td>
</tr>
<tr>
<td>Palaiokastra Villovo</td>
<td>-</td>
<td>ashlar</td>
<td>conglomerate</td>
<td>abbreviated</td>
<td>1</td>
</tr>
<tr>
<td>Kynos/Livanates</td>
<td>1,4</td>
<td>ashlar</td>
<td>sandstone</td>
<td>abbreviated</td>
<td>-</td>
</tr>
<tr>
<td>Opous/Atalandi</td>
<td>-</td>
<td>ashlar</td>
<td>sandstone</td>
<td>abbreviated</td>
<td>5</td>
</tr>
<tr>
<td>Megaplatanos</td>
<td>1,2</td>
<td>rubble</td>
<td>limestone</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kokkinovrachos</td>
<td>2,1</td>
<td>polygonal</td>
<td>limestone</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Kastraki</td>
<td>6</td>
<td>ashlar</td>
<td>conglomerate</td>
<td>compartment</td>
<td>-</td>
</tr>
<tr>
<td>Korseia/Neochori</td>
<td>1,3</td>
<td>ashlar</td>
<td>breccia</td>
<td>compartment</td>
<td>3</td>
</tr>
<tr>
<td>Proskynas</td>
<td>3,7</td>
<td>polygonal</td>
<td>limestone</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Boumeliteia/Chiliadou</td>
<td>-</td>
<td>ashlar</td>
<td>conglomerate</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Larymna, Kastri</td>
<td>6,4</td>
<td>ashlar</td>
<td>conglomerate</td>
<td>compartment</td>
<td>27</td>
</tr>
<tr>
<td>Anchoe/Pazaraki</td>
<td>0,3</td>
<td>polygonal</td>
<td>limestone</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Halai/Theologos</td>
<td>12</td>
<td>ashlar</td>
<td>conglomerate</td>
<td>abbreviated</td>
<td>5</td>
</tr>
<tr>
<td>Palaiopyrgos, Kolaka</td>
<td>-</td>
<td>ashlar</td>
<td>breccia</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Megaplatanos</td>
<td>-</td>
<td>ashlar</td>
<td>conglomerate</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Mikrovivos</td>
<td>-</td>
<td>ashlar</td>
<td>conglomerate</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Mikrovivos II</td>
<td>-</td>
<td>ashlar</td>
<td>conglomerate</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Chiliadou</td>
<td>-</td>
<td>ashlar</td>
<td>limestone</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

In the same way, I found it more beneficial to reserve the synthesis of the material, arranged thematically in sections, for the next two chapters.

Each entry consists of two names; the ancient, especially if scholarly
agreement has been reached, and the modern appellation findable on maps. I have found a reason to disagree with the already proposed identifications in only one case, that of the θξνύξην Oion, which I identify with the Athenian garrison on the Atalante island (see 3.1.6 and Table 3.2).

Table 3.2: Proposed identifications of ancient sites attested in the literary sources with those discussed in the text

<table>
<thead>
<tr>
<th>Modern name</th>
<th>Oldfather</th>
<th>Fossey</th>
<th>Dakoronia</th>
<th>Coleman</th>
<th>Nankov</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayia Aikaterini</td>
<td>-</td>
<td>Alope</td>
<td>-</td>
<td>-</td>
<td>Alope</td>
</tr>
<tr>
<td>Palaiokastra, Villovo</td>
<td>-</td>
<td>Phaloria</td>
<td>Kynos</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pyrgos, Livanates Atalanti</td>
<td>-</td>
<td>Kynos</td>
<td>-</td>
<td>-</td>
<td>Kynos</td>
</tr>
<tr>
<td>Atalante island Kokkinovrachos</td>
<td>-</td>
<td>Opous</td>
<td>-</td>
<td>-</td>
<td>Opous</td>
</tr>
<tr>
<td>Kastraki Neochori Kolaka</td>
<td>Opous</td>
<td>Anastasis</td>
<td>-</td>
<td>Korseia</td>
<td>-</td>
</tr>
<tr>
<td>Proskynas</td>
<td>Korseia</td>
<td>Boumeliteia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chiliadou Kastri, Larmes Pazaraki Theologos Martino</td>
<td>Korseia</td>
<td>Boumeliteia</td>
<td>-</td>
<td>-</td>
<td>Boumeliteia</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Larymna</td>
<td>-</td>
<td>-</td>
<td>Larymna</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Anchoe</td>
<td>-</td>
<td>-</td>
<td>Anchoe</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Halai</td>
<td>-</td>
<td>-</td>
<td>Halai</td>
</tr>
</tbody>
</table>

Of the sites described in the chapter, I have been unable to personally inspect the remains of the isolated towers at Megaplatanos, Mikrovivos II and the Atalante island. In all other cases autopsy supplements the information obtained from secondary sources, most notably Fossey (1990). As will become clear, a good deal of
the data available derives from the brief annual reports of intermittent excavations conducted by the Ephoreia of Lamia, which have appeared in the *Archaiologikon Deltion*.

For easier reference, I list all available ancient sources, most of which derive from the *RE* article on Lokris by Oldfather (1926), including individual site entries published in other years. On several occasions, however, as I came to realize in the process of research, important literary sources, such as Strabo’s passage concerning the sea crossing between Kynos and Aedepos, are often omitted from scrutiny either because they are unavailable through the abbreviated version compiled by Fossey (1990), or because even Oldfather (1926, 1229) himself missed it, as in the case of Herodoro’s expedition to the Atalante island.

The list of modern sources, on the other hand, is meant to reflect the current state of research, with special reference to the fortifications. A substantial part is accordingly devoted to the first-hand descriptions left by the 19th century European travelers, such as Vaudoncourt, Pouqueville, Gell, Koutorga, Lolling, Leake, Dodwell, Ross, Ulrichs and Frazer. Important details may also be found in an almost forgotten dissertation, entitled *De Locris Opountiis*, written by Paul Girard in 1881. It goes without saying that the writings of these early enthusiasts contain not only valuable information but at times they remain our only source of evidence for architectural features now extinct.

3.1: The Sites

3.1.1: Alope/Ayia Aikaterini

Ancient: Thuc. 2. 26. 2, 3. 91. 6; Ps.-Skylax 60; Strabo 1. 3. 20, 9. 4. 3, 9. 4. 9; Diod. 12. 44. 1; Pliny, *HN*, 4. 7. 27; Pomponius Mela 2. 3. 45; Steph. Byz. s.v. Alope;

Modern: Gell 1819, 233-234; Pouqueville 1826, 156; Oldfather 1918a, 83-84; Lolling 1989, 307; Philipsson and Kirsten 1951, 347; Lerat 1952, 13-15; Kahrstedt
The site of Alope is identified with the ancient settlement located just east of the small village of Ayia Aikaterini. A small hill (80 masl) juts out towards the sea, the foot of which is traversed by the National Road Thessalonike-Athens. Here the distance between the mountain and the sea narrows. The hill (80 masl) is steep on all sides, except on the south, where it is connected to the ridge by a saddle. It affords extensive views over the plain of Longos to the northwest and the promontory of Arkitsa to the northeast (Fig. 3.1).

Figure 3.1: View of the acropolis at Alope looking southwest; late Roman basilica in the foreground; note also the lower, flat-topped hillock marked with arrow

The flat-topped hill (165 x 70 m) is commonly identified with the acropolis of ancient Alope on the basis of Strabo (9. 4. 3). Gell (1819, 233), Pouqueville (1826, 156) and Lolling (1899, 307) visited the site and first suggested the identification with
Alope, which is now commonly accepted.256 Field observations have confirmed the presence of material remains on the surface, e.g. traces of the circuit wall with stretches of polygonal and ashlar masonry, and a scatter of many sherds and tiles, suggesting continuous habitation from the early Bronze Age until late Roman period (Fossey 1990, 92). At several places deep trenches have recently been opened up illicitly. These have exposed what appears to be an architectural structure within the circuit, now reduced to a pile of rubble. No systematic excavation has been carried out at the site, which presently is cultivated year round.257

During 1995-1997, in the course of construction of an asphalt road on the south side of the National Road, and approximately 500 m northwest of the acropolis proper, the Greek Archaeological Service exposed a good portion of what is thought to have been the lower city. The salvage excavation revealed the presence of a residential quarter enclosed by the northeast corner of its newly built ashlar fortifications dated to the early Hellenistic period (Bouyia 2000a, 51-53; 2002, 29-32). 84, 20 m. of the north and 17 m. of the east fortification walls were exposed. A city gate (3 m. wide) interrupts the north wall at its westernmost end. In addition, 500 m northeast of the acropolis, 27 graves were excavated dating from the Archaic to late Hellenistic-early Roman period (Bouyia 2002, 32-34; 2006, 83-102; Dakoronia 2003, 437-440). At the same location, during the Late Roman period a building, possibly a villa, was erected, which is arguably associated with the early Christian basilica situated ca. 30 m. to the northeast. Furthermore, Bouyia (2002, 30) reported several late Roman graves and a built tomb located on top of, and next to, the north fortification wall, a clear indication that by this time the lower city had been abandoned. The ample use of \textit{spolia}, i.e.

257 At present, the site is owned by Giorgos Michalopoulos, who showed me around and repeatedly complained about the trouble caused by the numerous attempts of treasure hunters to dig out antiquities, usually under cover of night.
conglomerate blocks probably taken from the Hellenistic fortification walls, for the construction of the basilica and its associated building further supports this.

Archaeological excavation, accompanied by an architectural analysis of the walls, provides the key to a better understanding of their historical significance. Laying strong emphasis upon the extant material remains is therefore indispensable. I begin with the acropolis.

The search of the circuit wall on the acropolis is especially unrewarding on account of the heavy vegetation covering the remains (Fig. 3.2).

![Figure 3.2: Plan of the acropolis of Alope (after Fossey 1990, fig. 17)](image)

At certain places along the edge of the hill, a few small stretches of polygonal and ashlar walling mark the course of what most certainly was a fortified enclosure. Upon his visit to the site, Lolling was able to observe only the latter, since he concluded that the entire circuit was constructed of ashlar masonry. He most certainly saw the stretches located on the south and the southeast side of the circuit, as did indeed
Fossey (1990, 91). This stretch is built on a slope, with the earth exerting considerable pressure upon its inner face. In addition to exposure to the elements, this is also a contributing factor for the current dilapidation of this section of the circuit. Because of these conditions, the thickness of the wall cannot be determined. The preserved height nears 0.70-0.80 m. The wall was built with ashlar blocks of reddish conglomerate of varying dimensions. The surface treatment of the blocks reveals traces of tooled work, whereas the joints show no attempt towards producing beveled edges and drafted margins (Fig. 3.3). The level surface on top gives the appearance of a stone socle that probably served to support mudbrick superstructure.

Figure 3.3: Ashlar masonry from the acropolis of Alope

Closer inspection of the remains also shows the preservation of at least two other stretches. These, however, differ from the previously discussed in terms of material and masonry. They are built with middle-sized blocks of hard gray limestone, while the masonry is polygonal, consisting of two courses (Fig. 3.4). The preserved

258 In the time of my visit (March 2007), these were in fact still visible.
259 Fossey 1990, 91, n. 2 reported the following dimensions of a fallen conglomerate ashlar block: 1.35 x 0.65 x 0.25 m.
height is 0.50-0.70 m. At present, it is impossible to determine the chronological relationship between these stretches, since they do not interact with each other at the places of exposure.

The polygonal circuit walls on the acropolis have been largely ignored by students of Greek fortifications. Based on the late Helladic pottery, Hope Simpson (1965, 130) tentatively associated the polygonal wall with Mycenaean presence but this is unlikely. It was not until the mid 1990s, when Bouyia (2000b, 70-71, fig. 35; 2002, 31) discovered a new stretch of polygonal wall and provided an impetus for reconsidering the significance of the fortified acropolis. This section was composed of polygonal masonry “of tightly joined stones,” located directly in front of the outer face of the north fortification wall of the Hellenistic extension, to east and west of the gate. Bouyia argued for a late Archaic date for the construction of the polygonal walls (on

260 Scranton 1941; Winter 1971; Garlan 1974a; Lawrence 1979; Adam 1982; Wokalek 1973; Lang 1996.
the acropolis and down in the plain), thereby implying that these fortifications must have been in existence during the Athenian raids on Alope in 431 BC and 424 BC (Thuc. 2. 26. 1; 3. 91. 6). On stylistic grounds she also suggested (Bouyia 2002, 32) that the polygonal wall on the acropolis was in fact a “part of the city’s fortification during the [sic] Archaic and Hellenistic times.”

There are several problems with these claims. First, the thickness of the newly found polygonal wall is unreported but if measured from the only published state plan (Bouyia 2000a, fig. 3) it would appear as rather unsubstantial, 0.63-0.65 m (Fig. 3.5, 3.6).

Figure 3.5: The north wall of Alope exposed through salvage excavation looking east; note the acropolis in the upper right corner (Bouyia 2002, fig. 34)

Figure 3.6: Sate plan of the north wall of Alope (Bouyia 2000a, plan 1)
Bouyia (2002, 31) tacitly expressed her doubts by saying “…if not a substantial outer wall of houses- [the polygonal wall] is an indication for an earlier fortification enclosure.” Even if one agrees with the tempting conjecture, as Bouyia (2002, 31) does, that the Hellenistic wall closely followed and essentially reinforced the pre-existing Archaic polygonal wall, as is the case at Halai and Larymna (see below), it remains to be explained why a flimsy fortification wall such as this was built in an open, vulnerable and prone for attack area. The place is essentially unprotected by nature; located on a flat terrain, trapped between high mountains and a major road facilitating trans-regional traffic.

That the newly found polygonal wall defended the lower city, of which the acropolis was an integral part, is an attractive possibility but it works on the assumption that the acropolis and the lower town were physically connected, forming the fabric of late Archaic/early Classical Alope. Although thick vegetation obscures the visibility on the acropolis, no traces of “long walls” stretching down the very steep slope and reaching to the sea have yet been found. Furthermore, the newly-exposed polygonal wall is located ca. 500 m due west of the fortified acropolis and it is difficult to imagine that it belonged to the lower city of that same acropolis, although the presence of superimposed stone socles of houses from the Archaic and Hellenistic periods (Bouyia 2002, 30-31) points to some continuity of life in this area. Nevertheless, its physical relationship with the acropolis to the south-southeast remains problematic and is not so readily acceptable. Although further indication for the dynamism of life during the late Archaic period may be seen from the excavated necropolis, the archaic graves can be equally associated with both the fortified acropolis and the settlement in the plain. Obviously, the final publication of the associated material along with plans and drawings of walls may resolve this issue.

Since the construction of the early Hellenistic fortifications is of crucial
significance to this problem, it is to their description that I now turn.

The salvage excavations of 1995-1997 exposed a total of four interconnected stretches of ashlar masonry preserved to a height of two courses. The north wall runs for 43.25 m. in east-west direction until it makes a 90-degree turn to the north for 5.30 m. At the west end of the north wall, an axial gate was found (ca. 3 m. wide), along with traces of wheel-ruts, 1.38-1.45 m wide (Fig. 3.6). After the jog, the north wall changes its course slightly to NE-SW and continues for another 34.25 m until it joins with the east wall at 95-degree angle. Throughout its course the wall exhibits the same building technique; successive courses of stretchers supported at intervals of 3-3.20 m. from the inner side by a single header abutting or penetrating the main wall. They lay on a single course of tightly fitted headers at foundation level. The stretchers are laid in such a way as to ensure an offset created by the protruding headers below. The majority of the employed ashlar blocks measure: 1.20 x 0.60 x 0.45 m. The blocks have beveled edges and are composed of conglomerate.

Since the asphalt road running parallel to the National Road covers the exposed remains, further observation is currently impossible. During my visit to the site, however, I noticed the presence of many conglomerate blocks used as building material in the late Roma villa and basilica (Fig. 3.7, 3.8).

Because of the close proximity of the fortification walls to these buildings and identical block dimensions with the ones uncovered by Bouyia (2000a, 52), it is likely that some of the conglomerate blocks have been taken from the Hellenistic

261 I noted the re-use of conglomerate blocks measuring 1.20 x 0.60 x 045 m at the following places inside the Late Roman basilica: 1) three steps at the entrance from the exomarathex to the peristyle court, 2) two upright blocks framing the door towards the baptisterion, 3) door frames for the two entrances between peristyle and narthex, 4) door frames for the entrances connecting narthex, nave and aisles, 5) a row of foundation course supporting the colonnades of the aisles, 6) two blocks placed at the feet of apse. Late Roman villa: 1) door frames for entrances, 2) steps, 3) built in walls.
fortification walls. This would accord nicely with the evidence that during the late Roman period the area around the walls was used as a burial ground.

Figure 3.7: Reused ashlars from the Hellenistic wall as door jambs in the late Roman basilica

Figure 3.8: Reused ashlar from the Hellenistic wall in the late Roman basilica; note the drafted margin on the right

In view of the level terrain upon which the Hellenistic walls were constructed, the absence of additional feature such as towers is striking. Military writers usually advise against the curtains meeting at right angles, since in thus way they provide
more advantage to the attacker (Vitr. *De Arch.*). Another puzzling aspect is the position and the vulnerability of the gate. Unless one restores a tower-gate, for which we have some evidence (see Fig. 5.41), the absence of adjoining towers guarding the approach is even more perplexing, especially in view of the wheeled traffic passing through this point of the fortifications.

Reconstructing the spatial layout and the extent of Hellenistic Alope encounters difficulties. At present, the relationship between the fortification walls on the plain and those on the acropolis is unclear. The evidence for such provides the position of the east wall, the turn of which makes it clear that it continues further up in southeast direction, thereby excluding the possibility of joining with the circuit of the acropolis. Here I would like to point out the existence of a lower, more gently sloping hill (50 masl), located right at the west side of the former. Marked on the 50 000 map with the name “Louros,” it is currently an olive grove regularly plowed (Fig. 3.1). Walking among the trees reveals the presence of many sherds and broken tiles strewn on the surface. I was also informed of the existence of a tower there, which I was unable to find. Thus it may be speculated that the settlement of Alope expanded during the Hellenistic period, making use of the lower hill “Louros” west of the acropolis, the northern boundary of which is marked by the fortification walls near the sea.

3.1.2: Palaiokastra Livanaton, Villovo

Modern: Dodwell 1819, 59; Gell 1819, 232; Pouqueville 1826, 155; Leake 1835, 175; Lolling 1989, 308, 310; Philippson and Kirsten 1951, 348, 673; Fossey 1990, 85-86; Dakoronia 1993a, 125-126; Dakoronia 1998, 207-208; Bouyia 2000a, 57-58

The site of Palaiokastra is situated approximately 2 km west of modern Livanates, ancient Kynos (Fig. 3.9). It is reached via a dirt road, passing through olive groves, that gradually ascends upon a low ridge belonging to the Xerovouni mass.
Here an extensive, gently sloping hill marks the site of an ancient settlement, commanding good views over the plain of Livanates and the North Euboean Gulf to

Figure 3.9: Exposed wall from Palaiokastra, Vilovo looking north; note Palaiopyrgos hill (Kynos) marked with arrow

the northwest and northeast.

The early travelers who visited the site provided the first descriptions. Based on the ovoid shape of the settlement, Gell (1819, 232) identified it with the θξνύξην Oion mentioned by Strabo (1. 3. 20), while Pouqueville (1926, 155) thought that the site was that of Kynos. Lolling (1989, 308, 310), on the other hand, suggested a connection with the near-by Kynos/Pyrgos, Livanates on the basis of their proximity and clear line of sight but identified it with Homeric Kalliaros (Il. 2. 531). Leake (1835, 174) described the site as a “Hellenic fortress” built to protect Kynos from incursions coming from Elateia. In fact, the road flanking the site from the north continues westwards until reaching Golemi (Fossey 1990, 180-182), where it intersects with an important north-south artery originating from the plain of Longos and ending at Elateia in Phokis (Lolling 1989, 310).
The site had been relatively unknown to modern scholarship up until the excavation of several cemeteries in its vicinity by the Greek Archaeological Service during the 1980s (Dakoronia 1986b, 56, n. 3). Two Mycenaean chamber tombs have been found (Dakoronia 1993a, 126, n. 30) in addition to numerous graves dated to the Classical and Hellenistic periods (Onassoglou 1988; 1994).

The site appeared in the gazetteer of Fossey (1990, 85) under the name Villovo, Palaiochora but the sketchy site’s description, heavily reliant on previous accounts, along with the lack of a plan and photographs leave the impression of him not visiting the site. He, however, proposed identification with certain Phaloria (Fossey 1990, 168) based on a passage from Lykophron’s *Alexandra* (1147). Most recently, Dakoronia (1993a, 126) has revived the observation made by Pouqueville, and identified Palaiokastra with the main settlement of Kynos.

During the 1990s the Greek Archaeological Service began regular excavation on the site. The efforts were directed towards establishing its boundaries, greatly assisted by the partly exposed stretches of good ashlar masonry along the northern side of the settlement. So far ca. 70 m of the N and ca. 10 m of the E fortification walls have been exposed and a brief account of the results was promptly published (Dakoronia 1999, 207). They were later incorporated in the synthetic study of the Lokrian fortifications prepared by Bouyia (2000a, 57-58).

The dirt road closely follows in almost a straight line the outline of the site from north for a good 100 m. In fact, the settlement is gently sloping down in a northwest-southeast direction, rising ca. 5-6 m above the level of the road. At present, the north fortification wall is the most conspicuous feature on the site, preserved up to five courses of masonry (Fig. 3.10).

262 At the time of my visit to the site (March 2007), vegetation has already started to claim back the exposed architectural remains and made field observations difficult.
It is largely overgrown by thick bushes but can be clearly followed for as long as 70 m. At certain places the wall is tilting over to the north probably on account of land subsidence caused by seismic activity for which the region is well known. Structurally, it appears as though the wall was built in order to encircle the slightly rising hill, thus serving also as a retaining wall. It is built on the bedrock (Bouyia 2000a, 58) of conglomerate blocks of fine workmanship. The ashlar blocks, measuring 1.20 x 0.60 x 0.45, are laid in successive courses of stretchers resting on a single layer of protruding headers. The joints have beveled edges on all sides indicated by the presence of angled chisel marks still discernible on some of the blocks. The upper surface is rusticated, as is amply attested by the four tilted rows of chevron marks clearly visible throughout.

Two small walls extend outwards from the main curtain to the north, marking the position of a rectangular tower, 4, 85 x 4, 25 m. These do not bond with the wall and are rested on a foundation course of tightly fitted headers (Fig. 3.10). The outer wall of the tower is entirely missing, along with significant part of its sidewalls, the outermost blocks of which are now badly broken. A strong possibility exists of

Figure 3.10: A partially preserved tower from Palaioakastra, Villovo looking south; note the tilting of the wall possibly caused by an earthquake, left; state plan, right (Bouyia 2000a, plan 4)
modern intervention causing the destruction and subsequent disappearance of half of the tower. Mechanical widening of the near-by dirt road can also account for the existing condition of the architectural remains.

Recently, further excavation (Bouyia 2000a, 58, n. 71) revealed the existence of the east fortification wall at the eastern end of the north wall where they meet at a 90-degree angle. A single row of stretchers was exposed (ca.10 m long) strengthened on the inside by crosswalls at regular intervals (3.30 m). Similar arrangement for a length of ca. 10 m may be observed along the course of the north fortification wall, immediately before both curtains reach the corner (Fig. 3.11).

![Figure 3.11: Abbreviated wall at Palaiokastra, Villovo looking northwest](image)

It is unclear, though, primarily on account of thick vegetation, whether the north fortification wall consists of a single course of stretchers supported by headers at regular intervals throughout. Given the nature of the hill it is conceivable that the builders aimed to encase and consolidate its outer face by employing an abbreviated wall at the expense of a full-blown version of the compartmental wall.
The meeting point of the two walls at a right angle, however, is yet another example of what appears to be a purposeful creation of a salient angle, as already observed at Alope, regardless of its apparent disadvantage for the defenders in case of an attack. Moreover, ca. 3 m west of the corner there seems to be evidence for a small opening (1.80 m. wide), probably a postern, contributing further to the vulnerability of the northeast corner of the fortifications (Fig. 3.12).

Figure 3.12: Axial gate (?) at Palaiokastra, Villovo looking northeast

Palaiokastra emerges as an extensive settlement fortified during the early Hellenistic period. The full extent of the walls is currently unknown and appreciation of their significance is bound to be largely conjectural. No further excavation has taken place since the campaigns of the late 1990s and a complete publication of the associated archaeological finds has yet to appear.

3.1.3: Kynos/Pyrgos, Livanates

Ancient: Hom. Il. 2. 531; Hecat. Fr. 131; Lykoph. Alexandra, 1147; Ps.-Skylax 60; Polyb. 4. 67. 7; Livy 28. 6. 12; Strabo 1. 3. 20, 9. 4. 2, 9. 4. 3, 10. 1. 5, 13. 1. 68;
At the northern edge of Atalandi plain, 2 km northeast of the village of Livanates, a prominent, steep-sided hill (25 masl) rises by the seacoast. It marks the location of a long noted ancient settlement known by the name of Pyrgos or Palaiopyrgos. It is easily approachable via the roads emanating from Livanates but the real importance of the site derives from its (ca. 30-40 m.) proximity to the sea.

The hill has a roughly pentagonal shape (200 x 70 m), with fairly steep slopes on all but the northeast side (Fig. 3.13).

Figure 3.13: Palaiopyrgos hill identified with Kynos looking east

Here the edge of the hill is flat and falls more gently towards the sea, which it almost touches. On account of its elevated position, the site also affords spectacular views in all directions but the strong northerly winds and heavy currents of the North Euboean Gulf have denied the formation of a natural harbor. Although the sandy beaches to north and south have been pointed out as likely candidates for accommodating harbor
facilities, no traces of such have survived (Fossey 1990, 82; Haas 1998, 109).

The early travelers first noted the ruins on the hill (Gell 1819, 231-232; Dodwell 1819, 59-60; Pouqueville 1826, 156; Leake 1835, 175; Ross 1851, 95; Lolling 1989, 308-310), of which before the age of excavation the remains of a medieval tower were the most conspicuous (Fig. 3.14).

Figure 3.14: Reused ashlars from the Hellenistic wall in a medieval tower at Kynos, *left*; restored plan, *right* (after Fossey 1990, fig. 13)

The site of Pyrgos is almost unanimously identified with Kynos (*contra* Pouqueville 1826, 155-156; Dakoronia 1993a, 125) on the strength of Strabo’s account (9. 4. 2.). The appearance of its name in the Homeric *Catalogue of Ships* (*Il.* 2. 531), on the other hand, has sparked a considerable interest in the archaeological remains from the Mycenaean period. Initially this suspicion was confirmed through regular sherding on the site (Hope Simpson and Lazenby 1970, 47; Hope Simpson and Dickinson 1979, 263; Hope Simpson 1981, 80-81). More recently, on the northeast side of the hill, systematic excavations conducted by the Ephorate of Lamia have revealed a large complex consisting of storerooms with *pithoi* and kilns dated to the LH III period (Dakoronia 1993a, 125). Furthermore, salvage excavations uncovered

263 Currently, Petros Kounouklas from the Ephorate of Lamia has undertaken a study in search of the exact location of the harbor. The results, likely to solve a long-standing puzzle, are forthcoming.

264 In addition to tiles and mortar, it makes ample use of ashlar blocks taken from the Hellenistic circuit (Dodwell 1819, 60; Ross 1851, 95; Fossey 1990, pl. 56).
two MH cist graves lying immediately underneath the remains of Mycenaean buildings (Dakoronia 1985, 187). Before reaching the prehistoric levels, however, the Greek archaeologists encountered numerous architectural remains (mostly residential) of Byzantine, Roman and Hellenistic date, clearly testifying to a continuing habitation of the settlement in historic times.265

To date the Hellenistic fortification walls have been traced sparingly upon the edges of the Pyrgos hill. The Ephorate of Lamia has exposed three unrelated continuous sections of the fortification wall but none has yielded conclusive evidence for the presence of gates and towers. These campaigns enriched our knowledge about the extent of the site by bringing to light three stretches of good ashlar masonry along the west, south and east edges of the hill, which otherwise were tantalizingly protruding amidst a thick cover of bushes. Before the new excavations, our understanding of the fortification walls was reliant on Oldfather (1926, 29-32) who was the first to produce a sketch-map of the site, with a heavily reconstructed course of the fortification walls (Fig. 3.15). His sketch-map, however, first appeared in Pritchett (1985, fig. 6), and with some modifications in Fossey (1990, fig. 15). Fossey’s field observation, combined with the results from the excavation by the Ephorate of Lamia (Dakoronia 1985, 187), furnished grounds for restoring four towers and one gate, thereby correcting the Oldfather’s sketch-map. The recent publication of the first state plan of the Hellenistic walls (Bouyia 2000a, fig. 3) has called these restorations into question.

The longest section is located on the northwest side, exposed for ca. 70 m. It consists of two separate curtain walls preserved from two to five courses in height and connected by a small jog (Fig. 3.16).

265To date, though, I know of no scholarly publication of the excavated post-Mycenaean material besides the very brief accounts that have appeared in \textit{Archaiologikon Deltion}.
Figure 3.15: Oldfather’s sketch, top left, plan of architectural remains, top right, and state plan of Hellenistic walls at Kynos, bottom (after Pritchett 1985, fig. 6; Fossey 1990, fig. 15; Bouyia 2000a, plan 3)
Figure 3.16: Jog on the Hellenistic wall at Kynos

The longer wall (ca. 50 m) is slightly curving outwards, for it does not follow closely the slope of the hill at its northwest end, while continuing downhill at a slight angle (Fig. 3.17). After the stretch reaches the end of its course, two perpendicular blocks indicate the formation of an angle, yet it remains difficult to ascertain the character of

Figure 3.17: Hellenistic wall at Kynos
this corner feature. Three short strap walls, consisting of one or two blocks, abut the inner face of the curtain at regular intervals (ca. 5 m). This, however, is not carried out consistently throughout. The smaller curtain wall (20 m) is devoid of such strap walls, with a straighter course and slightly different orientation (northwest-north) in comparison with the preceding. Both walls are built with rectangular blocks (1.20 x 0.60 x 0.45 m) of yellowish sandstone with drafted margins and beveled edges. They are laid in isodomic courses of stretchers in a way so that each course is set slightly inwards, thereby rendering a step-like appearance of the masonry. The wall is founded on a single layer of protruding headers resting directly on top of pre-existing architectural remains of Mycenaean buildings that reportedly were destroyed in order to make way for the Hellenistic wall (Dakoronia 1997a, 209).

On the southeast side of the hill, which at this point falls within the boundaries of a private plot, another section ca. 65 m long was revealed. Here the course of the wall does not follow the edge of the hill but it encircles its steep slope at a lower level. The wall is preserved up to five courses of ashlars of yellowish limestone resting on a foundation layer of protruding headers. Given the standardized dimensions of the blocks, it is unclear, though, what the excavator meant by stating that the wall was built in pseudo-isodomic masonry (Dakoronia 1985, 187).266 On the westernmost end of the wall, a rectangular platform (ca. 4 x 3 m.) consisting of one preserved course of three tightly fitted headers project beyond its outer face. While the feature has invariably been dubbed as a tower since the time of Oldfather (Pritchett 1985, fig. 6),267 the new excavation provided no conclusive evidence to the identification as such.268 Even more nebulous is the situation with the roughly triangular structure at

266 Fossey 1990, 82 repeats it. It remains uncertain, however, whether he is speaking from personal observation or simply citing the excavator’s statement.
267 This is Fossey’s tower 2, Fossey 1990, 82, fig. 15.
268 Dakoronia 1985, 187 calls it “a tower-like structure” without suggesting anything further.
the opposite, eastern end of the wall. It certainly was meant to articulate the oblong shape of the corner at this point but it requires a big leap of faith in order to call this a square tower. It is marked as a gate (?) on the Oldfather’s sketch map, whereas Fossey (1990, 82) states that it is “a large projecting square tower.” It appears, though, that the southeast arm of the triangular feature lines up perfectly with the curtain wall running northwards along the eastern edge of the hill. Of the surviving stretch of this wall, located ca. 40 away from the southeast corner, only ca. 20 m. have been exposed. Oldfather and Fossey envisaged another tower in this area but the apparent recent excavations failed to confirm their claim. It consists of successive courses of stretchers supported by three or four crosswalls at regular intervals on the inner face. None of these seem to touch the curtain wall but they most certainly resemble the arrangement observed in the northwest wall.

In sum, regular excavations on the Pyrgos hill have yielded substantial evidence for residential buildings dating to the Mycenaean period. The absence of archaic fortification walls is odd, a fact still unexplained (Bouyia 2000a, 57). The results from the recent excavations have been recently summarized by Bouyia (2000a). The attention naturally focuses on the walls where they overlie earlier habitation strata, as observed at the northwest and southeast sides of the circuit. Small finds retrieved from foundation trenches and abutting fills have not been published. In this way the advantages provided by a controlled stratigraphic excavation are for the most part unexercised. Determination of date is left to stylistic features of the masonry.

3.1.4: Prophitis Elias, Megaplatanos

Modern: Philippson and Kirsten 1951, 347; Dakoronia 1989b, 175-176; Fossey 1990, 76-78, fig. 14; Dakoronia 2002, 66

269 I was unable to find a report with the results of this excavation.
The small village of Megaplatanos lies ca. 3 km north of Atalandi and ca. 5 km southwest of Livanates, as the crow flies. About 2 km northeast of Megaplatanos an extensive summit (280 masl) occupies a prominent position on the plain. It is known by the name of Prophitis Elias, derived from the church of the same name built on the highest point. Geographically, the latter belongs to the Xerovouni mass to which it is connected by a gently sloping saddle from the northwest. The hill surface is rather flat and rocky. Despite the presence of low bushes all around the slopes, of which the ones to the east, south and southeast are rather steep, the summit has a somewhat barren appearance. The dirt road leading to the church and the near-by military radar-antenna had been recently covered with asphalt. On the whole, Prophitis Elias represents the most conspicuous landscape feature on the entire plain of Atalandi, being noticeable from many points within the latter (Fig. 3.18).

The site was first described by Fossey (1990, 76-78, fig. 14) who was able to trace two circuits of rubble masonry (1.60-1.80 m thick) around the top of the summit (Fig. 3.19). Although the sherds he collected from the surface were non-diagnostic, he proposed a Classical/Hellenistic date for the occupation on the strength of a single fragment from a black-glazed tile.

Figure 3.18: Prophitis Elias hill near Megaplatanos looking northeast; Atalante island, Skala Atalandis and plain of Atalandi in the middle ground
Based on the meager architectural remains, he also concluded that the site must have been temporary and one of military nature. To strengthen his theory further, Fossey (1990, 148) pointed to its intervisibility with many other sites in the area by calling it “the veritable hub of the communications network.”

In the late 1980s the Ephorate of Lamia conducted a rescue excavation in the immediate periphery of the Prophitis Elias. The excavations took place within the boundaries of a private agricultural land, located ca. 500 west of the military radar, on the right side of the main road Livanates-Megaplatanos. Since no topographical plan accompanies the brief report, it remains very difficult to pinpoint the exact position of the excavated site (Dakoronia 1989b, 175-176).

The remains consist of a rectangular structure (9.80 x 7.20 m) built of ashlar

270 I visited the site in July 2003 and March 2007. The rubble walls are in poor condition and their trace is difficult to follow. I found no surface sherds and ancient material is very scarce indeed.

271 The site was backfilled after excavation ended and is currently inaccessible.
blocks founded on the bedrock (Fig. 3.20).

The walls, preserved to the height of four courses (2 m), were of pseudo-isodomic masonry. Mention is also made of other remains, very close to, and north of, the rectangular building, but these remained unexcavated. They were tentatively associated with the former on the basis of their proximity. The excavations yielded a lot of pottery among which there were household, unglazed cooking vessels and several fragments of black-glazed fine ware (e.g. moldmade ‘Megarian’ bowls). The complex was dated to the third-second century BC.

No distinction was made between occupational strata and fills extracted from foundation trenches. Since no material earlier than third century BC is reported, it is plausible that the building was erected not very long before the date suggested by the movable finds associated with it. Dakoronia pointed out to the visual prominence of Prophitis Elias in relation to (1) other fortified sites in the region, (2) the North Euboean Gulf and (3) the island of Euboea. All of this, combined with the building’s
mode of construction, led her to suggest that it could have served as a watchtower, i.e. “φροκτώριον” (Dakoronia 1989b, 176; 2002, 66). She made no reference to the rubble circuit surrounding the flat-topped Prophitis Elias, as later described by Fossey. As a result, it remains impossible to determine the spatial and temporal relationship between the rubble circuit and the tower unearthed by the Ephorate of Lamia.272 Their close proximity, however, is more than suggestive and has hardly resulted from mere coincidence. Thus it is very likely that purely strategic concern has conditioned the decision to occupy Prophitis Elias, since the lack of substantial remains doubtless betrays a reluctance to settle down more permanently.

3.1.5: Opous/Atalandi

Ancient: Hom. *ll.* 2. 531; Pind. *Ol.* 9. 14; Thuc. 2. 32. 1; Xen. *Hell.* 4. 2. 17; 4. 3. 15; Arist. *Pol.* 3. 11. 1-2; Ar. Av. 152, 1294; Ps.-Skylax 60; Pliny, *HN,* 4. 7. 27; Pomponius Mela 2. 3. 45; Strabo 1. 3. 20, 9. 2. 42; 9. 3. 1; 9. 4. 1; 9. 4. 2; 9. 4. 3; Livy 32. 32. 1-5; Ptolemy, *Geography,* 3. 15. 19; Diod. 19. 78. 5; Paus. 9. 23. 7; Plut. *De Pyth. Or.* 401 F; Plut. *Quaest. Graecae* 293b11; Plut. *Moralia* 483 E; Steph. Byz. *s.v.* Opous; Hesychios, *Lexikon,* *s.v.* Opous; Hierokles, *Synekdemos* 643, 6-645, 7; *Notitia Episcopatum* 737-744

272 The results of these excavations were unavailable to Fossey at the time of writing of his book.
At the southwest corner of the roughly triangular plain of Atalandi, nestled in the foot of Mt. Chlomon, lies the sprawling town of Atalandi. It occupies the slightly rising ground immediately adjacent to the formidable shelter provided by the mountain, which terminates to the south in a chain of three steep-sided hills (Fig. 3.21). The following geographical features underlie the importance of the town from antiquity up to the present; the fertility of the large plain, providing the opportunity to sustain a considerable population, and the proximity to an important road to Phokis.

The question of the ancient name of the town is vexed. The crux of the argument has always been dependent on the existence of an acropolis (Livy 32. 32. 1-5), which the early travelers were unable to locate at Atalandi (Dodwell 1819, 59; Lolling 1989, 310). For this reason, a majority of scholars have long preferred the stout fortified circuit on the top of Kokkinovrachos hill (300 masl), located southeast of the small village of Kyparissi, as a better candidate.

The many inscriptions discovered at Atalandi, however, disproved this claim because they showed unequivocally that the ancient name of the town is Opous (Koumanoudis

Figure 3.21: The town of Atalandi; a general view from Prophitis Elias, Megaplatanos, looking south

The many inscriptions discovered at Atalandi, however, disproved this claim because they showed unequivocally that the ancient name of the town is Opous (Koumanoudis
1873, 485; Girard 1881, 44; Klaffenbach 1935, 706). Furthermore, based on the proximity of the εὐζεῖα ὁδὸς mentioned by Pausanias (10. 1. 35) leading from Orchomenos to Opous, Klaffenbach (1935, 706) has shrewdly observed that Opous should be located at Atalandi. Fossey (1990, 68-74) re-discovered the acropolis of Opous by pointing to the remains of a medieval tower perched on the easternmost hill south of Atalandi. Thus he convincingly argued for placing Opous at Atalandi273 and his suggestion has now met general approval.274

The archaeology of Opous is an ongoing development, with multiple excavations taking place at various locations in and outside Atalandi. Since the ancient remains mostly lie underneath the modern town much of the excavation is rescue and piecemeal. An overwhelming majority of the published material is rarely accompanied by state plans or even photographs. Adding to the difficulty in assessing the value of this constant outpouring of new data is the lack of an up-to-date topographic map plotting the exact location of each excavated plot. This is especially pertinent to the growing body of evidence showing the existence of an extensive fortification wall in the plain, north of Atalandi. An overview of the current state of investigations illustrates the point.

In 1911 Blegen (1926, 404) sank a few test trenches in the town and became the first to stumble upon two well-preserved sections of the city wall. One of the stretches was located near the school, while the other stood higher up on the hill to the southeast. Unfortunately, he published no plans or drawings and the important findings remained unmapped.275 The wall (2.65 m thick), preserved up to two courses,
consisted of two parallel rows of ashlar blocks of “a very friable poros” tied together by crosswalls; the chambers were filled with packed earth and stones. The blocks had beveled edges and measured 0.60-0.65 thick by 0.42-0.47 m high. Blegen made no mention of their length, though. He reported no small finds associated with the exposed stretches and the grounds of his dating the wall “from the fourth or the third century B.C.” remain unstated. It is reasonable to assume, however, that Blegen’s judgment was derived from observation as much as it was based on a comparison with the city walls of Halai (Blegen 1926, 404), which at this time Hetty Goldman and Alice Walker were excavating.

During the 1980s and early 1990s the Ephorate of Lamia conducted a series of salvage excavations in a locality called “Makedonika”, situated in the northeastern part of Atalanti. They were able to trace the remains of the city wall uninterruptedly for a length of 350 m (Fig. 3.22, 3.23).

Figure 3.22: The acropolis of Atalanti with sections from the Hellenistic walls of Opous exposed through excavation (after Dakoronia 1993a, fig. 4)

contree”. The attempts of later generations of archaeologists to locate the places where Blegen dug proved unsurprisingly futile, cf. Pritchett 1985, 185.
Figure 3.23: State plan of the north Hellenistic wall at the locality “Makedonika”, Opous; note the jog at Tower 2 (after Bouyia 2000a, plan 2)

The wall follows an east-west direction on a flat terrain, which is currently an olive grove. At two points it makes slight turns, thereby creating jogs, but throughout its course it maintains an almost straight line. It has been observed that beyond the exposed 350 m the curtain continues in both directions, so that the east-west extent of the fortified area is undefined.

The building technique of the wall is identical with the one described by Blegen; two rows of ashlers (of yellowish sandstone) bound by crosswalls at irregular intervals (Fig. 3.24).

Figure 3.24: A detail of Fig. 3.23; note the absence of inner wall in the curtain west of the projecting tower (after Dakoronia 1993a, fig. 3)

\[276\] In the summer of 2003 I visited the site accompanied by Filitsa Tileli from the Archaeological museum at Atalandi, who was able to show me a small section of the curtain. Although the top courses of the wall were still visible, observation was impeded by the subsequent backfilling. On account of this as well as the shortness of our visit, I was unable to take photographs. To the best of my knowledge, the only photograph documenting the remains at “Makedonika” still remains the one published by Bouyia 2000a, fig. 7.
The novelty is the conspicuous presence of five projecting towers (6.20 x 5.30 m), set at irregular intervals along the curtain. All are solidly based with a fill of packed earth and stones partitioned by two crosswalls intersecting at right angle. Both wall and towers are laid on a course of protruding headers founded on a stratum of alluvium. Up to seven courses in height are preserved (3.60 m), consisting of successive layers of stretchers. The crosswalls (1.30-1.40 m long) penetrate the curtain on every other course of stretchers adhering to the principles of empletion masonry. The facings of the wall and the crosswalls create compartments of two different sizes: 3-3.20 m and 4.40-4.90 m.

That the fortification wall in “Makedonika” and the two stretches found by Blegen in 1911 belong to the same circuit can hardly be doubted. There is much to be desired, though, in the way of elucidating the matter of their spatial relationship. In addition, at least two other smaller sections of what appears to be a fortification wall of identical design strengthen further the case for the existence of a continuous Hellenistic circuit embracing even the hill to the south, crowned by the medieval tower on top noted by Fossey (1990, 68, 70, fig. 13). One of the stretches was found on the southeast and the other on the west side of the modern city. These are believed to have joined with the northern section revealed at “Makedonika.” Plotting the location of each section exposed to date shows the substantial extent of the fortified area, now called Kastro (Fig. 3.22). The impression gained is one of large-scale extension of the city down in the plain, away from the acropolis. The findings of graves outside the city wall, along with many traces of habitation revealed within the fortified area, bear witness to the dynamism of the settlement life during the Hellenistic period. The city has already shrunk by the Roman period, as is suggested by the discovery of Roman graves placed on top of the fortification wall.

In this analysis a great weight should be attached to yet another short stretch of
city wall, excavated briefly by the Ephorate of Lamia for the building of a house in a private property near the road “Metaxa” (Kiriakopoulou plot) at Atalandi (Dakoronia 1993b, 222, fig. 124a). The wall running for 8.30 m in north-east/south-west direction is 1.50 m thick and preserved up to 1 m in height. It consists of two facings of polygonal stones in dry masonry, with a fill of smaller stones, earth and fragments of tiles in-between. On the northeast edge of the curtain are the remains of a partially preserved tower (3 x 2.90 m), abutting its outer face. The wall is founded on a sterile soil at a depth of 4.90 m from the modern ground level (Fig. 3.25).

Figure 3.25: A section from a polygonal wall and a tower excavated in Kiriakopoulou plot, Opous (after Dakoronia 2002, fig. 42)

Although Dakoronia mentions the presence of disturbed layers throughout the excavated area, it remains unclear whether the foundation trenches had been reached. The associated finds consist of many fragments of pottery, loomweights, lamps, figurine head, iron needles and bronze coins pointing to a date spanning the third and second century BC. Since she refrained from assigning a date to the wall, it must be
assumed that the movable finds came from a habitation fill rather than a foundation trench, thus postdating the original construction of the wall.

This reading of the excavation report may be correct, since Bouyia (2000b, 70, fig. 34) has since argued for a late Archaic date of the wall in the Kiriakopoulou plot. Her argument, however, builds upon observation of the masonry and comparanda from other sites in Opountian Lokris, most notably Halai, Larymna, Palaiokastra and Alope (Bouyia 2000b, 70). In addition, that this wall continued up towards the hill south of Atalandi has been put forward only as a conjecture, with no conclusive evidence to support it. Furthermore, its position in relation to the known Hellenistic sections of the circuit remains unknown. Future discoveries will doubtless help evaluate its full significance.

Most recently, the Ephorate of Lamia has excavated two short stretches of wall, preserved up to two courses, consisting of a single row of ashlars (Dakoronia 2004, 389, fig. 5; Dakoronia and Zachou 2005, 359-360). Unfortunately no further details are given but it has been argued that these sections form an integral part of the Hellenistic city wall as well. In fact, they are considered to be a section of the city “diateichisma”. Again, the lack of a general plan showing the location spots of every stretch precludes further inquiry, and the implications arising from such an interpretation remains a subject for future debate.

3.1.6: Oion/Atalante island

Ancient: Thuc. 2. 32. 1, 3. 89. 3; Diod. Sic. 12. 44. 1, 59. 2; Demetrius of Callatis FGrH 85 F6 (Strabo 1. 3. 20); Ptolemy Geography 3. 15. 23; Seneca Nat. Quaes. 6. 24. 6; Pliny HN 2. 90. 204, 4. 12. 71; Paus. 10. 20. 4; Orosius 7. 12. 5; Livy 35. 37. 8-9; 35. 38. 14

Modern: Lolling 1876, 253-255; Oberhummer 1896, 1889; Mitsopoulos 1894; Skouphos 1894; Oldfather 1918b, 174; Kahle 1926, 31-32, n. 6; Lauffer 1989, 648;
The island of Atalante, which was uninhabited throughout antiquity, has been a subject of interest for ancient writers on account of damages caused by earthquakes and intermittent military presence (Fig. 3.26).

Most prominent was that of the Athenians who fortified the island and installed a garrison there during the first phase of the Peloponnesian War (Thuc. 2. 32. 1). The second authority providing information about the event is Diodorus (12. 44. 1), who says that the Athenian garrison “ἐπηείρησα τῆς Λοκρίδος κατεσκεύασε”. This event should be treated in conjunction with the establishment of several other Athenian φρούρια, most notably those of Boudoron on Salamis and Minoa off Megara (McLeod 1960, 316-323; Lohmann 2007, 249-278), Pylos (Wilson 1979, 47-84) and Delphinium on Chios (Boardman 1956, 41-49). As evident from the excavation on the wall at Delphinium (Boardman 1956, 47), all forts were probably fortified with walls of polygonal masonry, of which no trace has survived on Atalante island. The number
of soldiers stationed at Delphinium was 500, and it may be assumed that other
φρούρια had similar, if not identical, distribution of manpower. In addition to the
fortification walls, delimiting the living space of the garrison, each fort was supplied
with two to five ships.

The second occasion on which the island was used as a military base involved
the mooring of 30 ships under the command of Herodoros, as a part of the Aetolian
attack on Chalcis in 192 BC (Livy 35. 37. 8-9). Since the attack ultimately failed, the
fleet never made a journey to the Euripus, and after lying in wait for several days,
Herodoros was eventually forced to sail back to his point of departure, at Thronium
(Livy 35. 38. 14). 277

Atalante was rounded from the northwest by ships stopping on the mainland
coast opposite, at Skala Atalandis, during the Medieval period (Kretschmer 1909, 513;
Delatte 1947, 226), while the Turkish portolan of 1521 recognizes the potential of the
island as a harbor (Kahle 1926, 31-32, Karte 20, no. 18). 278 During the Greek War of
Independence Atalante was frequently used as a place of refuge for the inhabitants of
the town of Atalandi (Lauffer 1989, 648; Historia tou Hellenikou ethnous 1975, 158,
185).

By contrast, much attention has been devoted to the study of the island
geomorphology, mainly by modern seismologists, especially in light of several ancient
testimonia describing the havoc wrought by the earthquake of 426 BC. 279

What I would like to focus on here is the well-documented yet often-forgotten

277 With the exception of the brief notice by Lauffer 1989, 648, however, the latter event has
been largely overlooked by scholars dealing with the island’s history, even by Oldfather 1926, 1229.
278 The translation is that of Kahle 1926, 32: “der Hafen von Talandia Schiffe können liegen.”
279 Unlike Diodorus 12. 59. 2, who thought that Atalante was detached from the mainland as a
result of the earthquake, “κατὰ τὴν Λοκρίδα χερσονήσου καθεστώτης ῥῆξει μὲν τὸν ἵθμον, ποιήσαι
δὲ νῆσον τὴν ἐνομαζομένην Ἀταλάντην,” Pliny HN 2. 90. 204 is the only ancient authority claiming
that the island was separated from Euboea. Engaged in etymological readings, several scholars have
even attempted to link the event with Plato’s story of Atlantis, e.g. Cameron 1983, 89; Vasunia 2001,
234; Collins and Rohl 2002, 38-39.
fact that when the earthquake of 426 BC struck, the Athenian garrison was already occupying the island. Unlike Diodorus, who was more concerned with the changing morphology of Atalante, Thucydides and Demetrius of Callatis describe in various level of detail the amount of damage inflicted on the Athenian fort, a fact that has been taken to indicate that they both refer to the earthquake of 426 BC (Fossey 1990, 184). In a very short but important article, Lolling (1876, 253) was the first to point to the evidence, as preserved in the account of Demetrius of Callatis, of fortification wall (τείχος) and shipsheds (νεώρημα), built by the Athenian garrison. The statement of Thucydides, on the other hand, is less detailed; all he says is that a part of the Athenian φρούριον was destroyed and one of the triremes drawn on the beach was crushed to pieces, when overturned by the tsunami. It is interesting to note, however, that he does not mention the existence of shipsheds. Lolling (1876, 255) concluded that the wall and the shipsheds were submerged as a result of the creation of a ship-canal, which he identified with area between the small islet of Ayios Nikolaos and the northern tip of Atalante (Fig. 3.26).

Understanding the chain of events that unfolded during the earthquake of 426 BC requires a critical analysis of our main sources, Thucydides, Demetrius of Callatis and Diodorus. As has been recently argued by Daverio Rocchi (1998, 326-327), Thucydides was probably drawing on first-hand information supplied by the Athenian garrisons and clerouchies stationed at Atalante, Orobiai and Peparethos. Demetrius of Callatis, who was writing a treatise on major earthquakes in late third century BC (Pritchett 2002, 83-85), was able to collect additional details, as is evident from the inclusion of many cities around the Malian Gulf, including the Sporades (Daverio

Contrast with the ἐπίθετα used by Diodorus 12. 44. 1.

Of the exact location of the Athenian shipsheds on Atalante island, Blackman 2001, 85 says that, “the exact site is not yet located, though we have looked.”

Seneca 6. 24. 6 and Orosius 7. 12. 5, which largely repeat Thucydides, are of little value for our discussion.
Rocchi 1998, 326). In the same context, Demetrius of Callatis informs us of damage inflicted on four Lokrian communities: Alope, Kynos, Opous and Oion, το ὑπεξεκείμενον φρούριον. Important questions arise from his statement. What is the source of information about the damage suffered by Alope, Opous, Kynos and Oion, provided that Thucydides made no mention of them in the context of the earthquake? And, since Demetrius of Callatis is describing the aftermath of 426 earthquake may we assert that Kynos and Oion belonged to Opous as early as late fifth century BC, or are they both later interpolations bearing witness to reality of late third century BC, which would coincide, at least in the case of Kynos, with the earliest historical reference to the site, i.e. 219 BC (Polyb. 4. 67. 7)? The latter scenario may seemingly find support in an important inscription, the so-called theorodokoi decree, from Delphi dated to 230-220 BC. The document consists of a list of personal names followed by the preposition en with the name of each city in dative. What is unusual in the case of Opountian Lokris, however, is not the fact that the representatives of Opous and Oion are later additions, as indeed many others are, but that Opous was inserted among the Thessalian theorodokoi, and Oion among those sent by Macedonia (Plassart 1921, col. III, l. 31, l. 67). The case of Oion is further complicated because no city of that name has ever been attested in Macedonia. To complicate matters even more, no scholar on Macedonian prosopography has explored the potential afforded by the existence of Lokrian Oion, despite the early notice by Oldfather (1939, 2284; cf. Philipppson and Kirsten 1951, 355, 724, n. 83) and later by Fossey (1990, 67). The restoration

283 Some scholars, however, accept the idea that Demetrius of Callatis described a later earthquake, probably one from the third century BC, Beloch 1927, 55, n. 2; Schober 1924, 27, nn.127-128; Béquignon 1937, 70-73, or particularly that of 228-224 BC, which struck Cytinium, the chief city of Doris, Bousquet 1988. Guidoboni et al. 1994, 139-140, followed by Daverio Rocchi 1996, 320 link this earthquake with the grounding of Antigonus III Doson’s fleet at Larymna mentioned by Polybius 20. 5. 7.

284 On the institution of theorodokia in Greece, see Perlman 1995, 115-117; Perlman 2000.
proposed by Tataki (1998, 28, 128), if accepted, entails that Oion ends up with no corresponding *theorodokos*, while Pilhofer (2000, 769, 773) remained non-committal on the issue despite acknowledging the difficulty with the identification of Oion. What amounts to conclusive evidence supporting our initial premise, however, is solely the fact that a city named Oion, regardless of its identification, was epigraphically attested as early as 225 BC.

Opportunities for further analysis multiply if it is assumed that Demetrius of Callatis was using fifth century sources to describe the conditions along the Lokrian coast as a result of the earthquake of 426 BC. That this is the case has not been readily apparent, as I will try to demonstrate, mainly because the ὑπερκείμενον φρούριον Oion and the Athenian φρούριον on Atalante island are normally treated in isolation. Moreover, close reading of the text of Demetrius of Callatis, as preserved in Strabo (1. 3. 20), may even support the idea that Oion was not an Opountian φρούριον, as is commonly thought, but rather it was the Athenian φρούριον situated beyond Opous, i.e. on Atalante island.

The main confusion with Oion derives from a long-standing tradition of attempting to locate it immediately near and/or above Opous. Apart from suggesting proximity in the sense of being situated on higher ground, the verb ὑπερκείμαι can also mean, to be situated beyond on a horizontal plain, in relation to a certain point. Although Oion stands in opposition to Opous which is mentioned immediately before the ὑπερκείμενον φρούριον, I argue that a reference to Atalante island is also implied.

285 Gell 1819, 232 initiated the debate by suggesting that Oion must be identified with Palaeokastra Livanon, Vilovo. For a summary of other opinions, see Oldfather 1939, 2283-2284; Phillipson and Kirtsen 1951, 355 and most recently Fossey 1990, 66-67, who revived the idea of Blegen 1926, 402 according to whom Oion may be identified with the settlement at Kastraki, near Kyparissi. Editors of Strabo’s Geography either accept without question Oldfather’s article on Oion in *RE*, e.g. Radt 2006, 169, or simply omit the φρούριον from discussion, e.g. Aujac 1969, 169, n. 3.

286 Polybius 4. 29. 1 uses it in the same sense when describing the actions of Philip V: “Φίλιππος δὲ παραχιμάζων ἐν Μακεδονία κατέγραφε τὰς δυνάμεις πρὸς τὴν μέλλουσαν χρείαν ἐπικέλως, ἀμα δὲ τούτος ἐσφαλέστηκε τὰ πρὸς τούς ὑπερκείμενους ής Μακεδονίας βαρβάρους [my italics],” literally against the barbarians living beyond Macedonia.
This is evident from Strabo, who in order to describe the location of the island, introduces Opous as a physical point of orientation. Another little-cited passage of crucial importance (Strabo 10. 1. 5) points to the existence of a sea-crossing between Aedepsos and Kynos, ὑπερκείμενον τοῦ ἐπὶ Κῦνον πορθμοῦ. Again, the participle is meant to convey the idea of ordering along a horizontal plain, and not one of being situated on higher ground or above something lying near-by.

Another crucial point that needs to be made here has to do with the verb describing the level of destruction suffered by Oion. The standard treatment of the passage offers unanimously a translation where the idea conveyed is one of thorough destruction or utter ruin. What has eluded attention, though, is the fact that the verb ἀλάηξεπσ, especially when used in passive sense, is used to describe a calamity involving seawater. The resulting action is thus narrowed down to an object that experiences the state of ‘being overthrown’ through the agency of water; in other words, the meaning of destruction, or laying in utter ruin, is secondary. It is therefore no surprise that Aristotle (HA 600a 4) used the same verb to describe the behavior of certain fish in a stormy sea. That things are literally ‘overthrown’ when in close contact with water is also evident from a passage by Dio Chrysostom (34. 32), in which he is talking about a ship about to sink. Finally, of all cities destroyed by the earthquake of 426 BC, only Phalara, the port of Lamia, aside from Oion, was

287 4. 9. 2: “…καὶ ἡ Ἀταλάντη δὲ νήσος κατὰ Ὑπούντα ἱδρύται”. Contrast this with the statement of Diodorus 12. 44. 2: “…τὴν προκειμένην τῆς Λυκρίδος νῆσον, ὄνομαζομένην Ἀταλάντην”.

288 On three other occasions in his Geography Strabo combines the verb ὑπερκείμαι or its participle to describe the position of a fortified place, a φρούριον. Strabo 14. 2. 3: “ἐχει δ’ ἡ πόλις νεορία καὶ λιμένα κλειστόν: ὑπέρκειται δὲ τῆς πόλεως ἐν ὑψεὶ φρούριον Ἦμβρος,” near Caunos, for a description of the site, see Labarre 2004, 225, n. 19, Strabo 8. 7. 5: “ἐστι δ’ ἡ Πελλήνη στάδια ἑξήκοντα τῆς θαλάσσης ὑπερκείμενη, φρούριον ἔριμον” here it simply says that it stood 60 stadia away from the sea, Strabo 14. 2. 4: “ἐίχα Λόρμηα παράλια τραχεία, καὶ ὄρος ὑψηλότατον τῶν ταύτη (“ἐπ᾽ ἄκροι δὲ φρούριον ὁμοίωμον τῷ ὀρεί”) Φούνις,” note the absence of the verb here. In the last example I give, Strabo 12. 3. 41, ὑπερκείμαι is used, i.e. the one lying at the foot of a mountain: “ἡ δὲ τῆς καὶ Κμιαστήνη, ἐν ἡ τὰ Κμίαστα, φρούριον ἔριμον, ὑποκείμενον τῇ τοῦ Ὀλυμπίου ὀρέινη.”

289 Phalara is identified with Styidia located ca. 15 km. east of Lamia, cf, Strabo 9. 5. 13; Baladie 1996, 225; Lauffer 1989, 533; Dakoronia 1991, 75-88.
overthrown. More importantly, most damage was caused by the ensuing tsunami, not earthquake shocks, engulfing many coastal settlements in the Malian Gulf (Fig. 3.27). Similar scenario may be envisaged for Oion only if the φρούριον was located by the sea. This is why I propose to equate it with the Athenian fort on Atalante island, which not only was inhabited by a garrison during the earthquake but it also suffered material damage, including one of the triremes, as documented in the contemporary account of Thucydides.

Figure 3.27: Sites affected by the earthquake of 426 BC according to Thucydides, Diodorus Siculus and Strabo (after Guidoboni et al. 1994, 119)

If Oion was in fact the Athenian φρούριον on Atalante island, as I argued above, a certain discrepancy between the account of Thucydides (3. 89. 3) and that of Demetrius of Callatis must be recognized. While the former says that of the fort only a part was taken away, “τοῦ τε φρούρίου τῶν Ἀθηναίων παρεῖλε,” the latter claims that everything was overthrown, πᾶν ἀνατραπῆναι. I think that the solution lies, as Daverio

290 In fact, of all communities mentioned by Demetrius of Callatis, the only inland city that underwent destruction is that of Elateia. For a useful map of all cities that suffered destruction from the earthquake, see Guidoboni et al. 1994, 119.
Rocchi (1998, 326-327) has pointed out, in focusing on whose version of the story they were drawing on. What is clear is that, in addition to Thucydides, Demetrius of Callatis was also using other, possibly Lokrian, eye-witness accounts. If so, it is logical to imagine that the amount of damage on the fort was more adequately assessed by the Athenian soldiers, who inhabited the island, as opposed to the Lokrians living farther away. Things, however, are further complicated by the fact that at a later point in time Demetrius’ account was further epitomized by Strabo. His version thus appears to be conflated, containing references to two different versions of the same event. What Strabo failed to realize, however, is that in the process of collating them he also created the misleading impression of Oion, ὑπεξθέκελνθξν ὕξηνλ, and the Athenian ὕξηνλ on Atalante island being two separate entities.291

3.1.7: Kokkinovrachos/Kyparissi

Modern: Girard 1881, 41; Lolling 1989, 315-316; Blegen 1926, 401-404; Oldfather 1926, 1138; Oldfather 1939, 813-815; Pritchett 1985, 182-185; Fossey 1990, 62-64; Bouyia 2000a, 71-72

The SE end of Atalante plain is dominated by an imposing hill (302 masl), lying ca. 1.5 km southeast of the village of Kyparissi. Today the hill is known by the name of Kokkionvrachos owing to the distinct red color of its soil (Fig. 3.28). The top of the hill (240 x 90 m W-E) is ringed with well-preserved traces of fortification walls, identified as the acropolis or the citadel (Blegen 1926, 404) of an ancient settlement. Stone foundations of a rectangular building, possibly a stoa, excavated by the Ephorate of Lamia (Dakoronia 1993a, 117, fig. 2 wit lit.), as well as other remains,

291 Strabo’s scissors-and-paste technique, to give another example, led him to mistakenly place the “Baths of Heracles” of Aedepsos in the Lelantine plain near Chalcis, cf. Strabo 10. 1. 9 with Lasserre 1971, 119.
mainly pottery sherds of LH IIIB and Geometric date (Hope Simpson and Dickinson 1979, 262, G70), have been found further down, at the foot of the hill, where several test trenches were also sunk by Blegen (1926, 403-404). All of these finds led to the conclusion that there existed a lower town of which the acropolis constitutes an integral part (Lolling 1989, 316).

Figure 3.28: Kokkinovrachos hill looking south; circuit marked with arrows

The remains on Kokkinovrachos hill were first noted by Girard (1881, 41). Lolling (1989, 315-316) provides a brief description of the walls on the hill, as well as the area immediately northwest of the acropolis, near the chapel of Ayios Ioannes. Although Oldfather (1926, 1939) visited the site during his topographic tour in 1914, his observations appeared much later in RE. The sketch he produced, however, was first published by Pritchett (Fig. 3.29). The only excavations inside the fortified area were made during a brief campaign conducted by Blegen in 1911. Although belated and unaccompanied by plans or photographs, Blegen’s study (1926, 402-403) offered the first detailed description of the fortification walls. Oldfather’s sketch which closely
corresponds with Blegen’s description, is now supplemented with a new plan made available after the visits of Fossey (Fig. 3.29).

Figure 3.29: Plan of the polygonal circuit at Kokkinovrachos hill, left, and Oldfather’s sketch, right (after Fossey 1990, fig. 12; Pritchett 1985, fig. 7)

The walls are approximately 3.00 m thick, preserved up to 2.50 m in height (Fig. 3.30). Blegen reports the existence of three gates, all of which indicated on the Oldfather’s sketch (Fossey 1990, 63).

Figure 3.30: Polygonal wall at Kokkinovrachos hill looking south

The main gate was on the northwest side preceded by another “fortified gateway in
The walls and the towers were built with polygonal blocks of hard gray limestone. Blegen (1926, 402) remarked that the fortifications were “solidly built but with no attempt at nicety of construction”, distinguishing two separate wall facings bound by rubble in-between. Bouyia (2000b, 71, n. 21) has suggested that the walls consisted of stonework throughout. Fossey (1990, 63) noticed small triangular stones inserted into the interstices. The lowest courses of blocks are noticeably large as documented by Fossey (1990, 62-63), who attributes them, very tentatively, to an earlier “cyclopean” phase of the circuit. Be that as it may, their presence would be consistent with the claim that the stone was quarried locally, possibly from the acropolis itself (Blegen 1926, 402).

Aside from a circular cistern inside the fortified area, which was first noticed by Oldfather, no remains of other architecture have come to light. Blegen’s soundings yielded only pottery sherds, “prevailingy Greek”. In line with Blegen’s results, Fossey (1990, 63) was able to find tile fragments, including black-painted ones, a conical loomweight and black glazed pottery sherds “in the field below the North wall”.

At the base of the acropolis proper, on a low terrace, Blegen found the foundations of a rectangular building of unknown character (17 x 25 m), including a precinct wall, cornice blocks and a column drum. Further down in the plain to the
north, stone foundation, 25 m long, belonging to a colonnade with rooms at the back, was also uncovered.292 It is notable that the rectangular building and the precinct wall were built of “soft limestone” in good ashlar masonry, since Blegen (1926, 402-403) compared the beveling on the ashlars of both structures to that of the fortifications walls at Halai and Atalanti.

The chronology of the fortification walls on Kokkinovrachos remains unclear. In the absence of stratigraphic material, the dating relies on the masonry style. Most scholars agree that the polygonal masonry should be enough to suggest an Archaic date for the circuit (Wokalek 1973, 97-98; Bouyia 2000b, 71; Coleman forthcoming). Surprisingly, the walls went unnoticed by Scranton (1941). Sporadic references appear in Lawrence (1979, 378) who briefly commented on the oval tower (Fossey 1990, 63, n. 3). Fossey (1990, 140-141, 161), followed by Bouyia (2000b, 72), suggested that the appearance of polygonal masonry in Opountian Lokris was a result of fortification programme carried out in the sixth century BC. Recently Bouyia has tried to isolate a group of Lokrian sites based on walls of polygonal masonry, thereby arguing that the region was responding to a common trend of fortification taking place during the sixth century BC across Greece, South Italy, Sicily and Asia Minor.

Some uncertainties, however, remain. For instance, all discussions on the polygonal walls of Kokkinovrachos ignore the estimate of Blegen (1926, 402), who thought that, despite the presence of polygonal masonry, they may be assigned “probably to the fourth or third century BC”. Lack of architecture, the presence of a cistern, as well as the thinness of the traces of habitation may suggest either a refuge (Wokalek 1973, 97-98) or, in my view, a military establishment. The site visually commands the entire plain of Atalanti, as well as any land or sea traffic crossing the

292 For an unpublished photograph of this building from the Blegen archive, see Stiros and Dakoronia 1989, 423, fig. 191.
Euboean Gulf (Fig. 3.31). The polygonal masonry may thus be explained in terms of

Figure 3.31: Bird view from Kokkinovrachos hill looking northwest; Atalante island on the right with the National Road Thessaloniki-Athens traversing the plain of Atalanti below

the locality, whereby the rocky outcrop on which the walls were built provided a natural resource for building material. Finally, the movable finds associated with the walled area all point to a later date, i.e. Classical and Hellenistic.

3.1.8: Kastraki/Kyparissi

Modern: Lolling 1989, 313; Blegen 1926, 402-404; Fossey 1990, 66-67; Coleman forthcoming

The site of Kastri or Kastraki lies on a rounded peak (209 masl) east of the Atalanti-Kolaka-Pyrgos road (Fig. 3.32). The place received brief notice by the early travelers. Dodwell (1819, 59) mentions “the remains of another city, with traces and foundations occupying a considerable extent,” while Lolling described the site as “hohen Hugel” known by the name of Kastraki. In 1911 Blegen (1926, 403) excavated the stylobate and architectural fragments of a Doric peristyle temple, 10.89 x 29.26 m,
built of “fine-grained poros” dated to ca. 450 BC (cf. Coleman forthcoming).

Figure 3.32: The oval-shaped hill of Kastraki flanked by the road Atalandi-Kolaka; village of Livanates and ancient Kynos in the middle ground, Aedepsos on Euboea in the upper left corner

The remains can still be seen today on the highest part of the hill, largely overgrown by vegetation. Blegen also uncovered traces of a “large store-house of late Greek or early Roman construction”, constructed of “good poros blocks”, which he thought were recycled from “an earlier structure”. Although Fossey (1990, 66) provided the most detailed description of the remains, a plan of the site is still unavailable. In addition to several blocks of Blegen’s temple, Fossey was able to trace the hidden remains of what he described as “circuit wall” running along the edge of the hill. During my visits to the site, I also noticed several blocks of good ashlar masonry exposed along the north edge of the hill (Fig. 3.33). Many others have tumbled down in the olive grove surrounding the hill. Although the wall cannot be traced continuously on account of vegetation, it is likely that it was indeed fortification wall, as Fossey (1990, 66) has suggested.

293 Coleman forthcoming, n. 39, however, has suggested that this wall may be “terrace walling” which served as a platform underlying the temple on top of the hill.
is quite possible that the blocks reused in the store-house excavated by Blegen originally belonged to this circuit as well. An exposed stretch of the wall consists of three courses of ashlar masonry, with the lowest one comprised of tightly fitted headers protruding outwards. On top there are two courses of stretchers.

Figure 3.33: Overgrown remains of the fortification wall at Kastraki; note the lowest course of headers

On account of the egg-shape form of the hill, Blegen (1926, 402) has suggested that Kastraki may be identified with Oion, ὑπεξθείκελνλ ὄξηνλ near Opous, mentioned by Strabo (1. 3. 20). The identification was doubted on linguistic grounds by Oldfather (1937, 2283-2284), but it was revived again by Fossey (1990, 67). Some problems, however, remain unresolved. For example, if Oion was a φρούριον throughout its history, it may be difficult to explain the existence of a temple inside the fortified area. Judging from the masonry and the stone used, the fortification wall was apparently built in the early Hellenistic period, while no traces of earlier circuit
have so far been documented. Thus if the destruction of Oion occurred as a result of the earthquake of 426 BC, as is commonly agreed, it follows that during that period it was still unfortified.

3.1.9: Korseia/Neochori

Ancient: Paus. 9. 24. 4; Steph. Byz. 398. 9

Modern: Leake 1835, 174; Girard 1881, 40; Lolling 1989, 313; Oldfather 1926, 1138; Philipsson and Kirsten 1951, 355; Etienne and Knoepfler 1976, 32-41, figs. 6-8; Papahatzis 1981, 166-167; Fossey 1990, 58-61, fig. 11; Katsonopoulou 1990, 86-89; Pantos 1993, 226-228; Bouyia 2000b, 71, fig. 36; Hansen 2004, 434-435; Coleman, forthcoming

On the eastern end of the upland plateau near the modern village of Kolaka, a spur of Mt. Chlomon projects northwards over the plain of Atalandi. The position of the site is very conspicuous and can be easily spotted from the plain below thanks to the well-preserved remains of a Hellenistic tower perched on the ridge (Fig. 3.34).

Figure 3.34: Kolaka uplands from the plain of Atalandi looking south; Hellenistic tower at Korseia, top, and Gradinitza castle marked with arrows, bottom

To reach the site from the plain, one needs to negotiate either the mountain road crossing over the Kolaka uplands, east of Mt. Chlomon, or the more difficult dirt road north of Kyparissi.
The site, known by the name of Neochori, is located ca. 4 km northeast of the village of Kolaka. The modern name derives from a now deserted 19th century village of Neochori located south of the site. The identification with an ancient name, on the other hand, has caused the spilling of much ink since the site has received no attention from literary tradition, with the notable exception of Pausanias (9. 24. 5). His account, however, mentions in passing the names of two small villages on the upland plateau, Kyrtones and Korseia, supplying no further clues. Despite the attempts of modern scholarship to permanently settle the problem of their identification, no one has succeeded in providing conclusive evidence in support of one over the other.

The early travelers seem to have avoided the place consistently. Thus the earliest hand description accompanied by three photographs appeared in Etienne and Knoepfler (1976, 32-41). The ruins of the site are marked on la Carte Française from 1852, and Girard (1881, tab. 1) recognized the existence of notable remains by designating the spot as “Turris Graeca” on his map. Leake (1835, 174) says that “on the ridge above Gardinitza stands a single tower, partly Hellenic” built to command the traffic along the road over the Kolaka uplands between Lokris and Boeotia. His statement was later repeated by Bursian (1862, 191) and Lolling (1989, 313, 315). That Leake, Bursian and Lolling were describing another site, and not the Turris Graeca labeled on Girard’s map, however, is evident from Lolling’s account: “sehen wir aus dem frankischen Thurm von Gardinitza dessen unterer Theil aus hellenischer Zeit herrürt” (cf. also Oldfather 1916b, 165, n. 5; Philippson and Kirsten 1951, 355). In fact, the travelers are referring to the remains of a castle-like complex, consisting of a large tower and two rooms attached to it, perched on a cragged spine of dolomitic limestone, located ca. 2 km north of Neochori (Fig. 3.34, 3.35). It is to be regretted that the indefatigable Oldfather (1926, col. 1138) apparently never visited Neochori, since he provides a very short description of it in his RE article (Etienne and Knoepfler.
1976, 35, n. 126). Fossey (1990, 58-61, fig. 11) has produced the only site plan in addition to providing a more detailed description from personal observation (Fig. 3.36). Most recently, Bouyia (2000b, 71, fig. 36) has briefly dealt with the remains of the polygonal circuit, whereas, oddly enough, she omits completely (Bouyia 2000a) the Hellenistic additions noted by Fossey.

Figure 3.35: The medieval castle at Gardinitza looking north; Aetolyma peninsula in the background

Figure 3.36: Plan of the circuit at Korseia (after Fossey 1990, fig. 11)
No excavations have ever been carried out on the site. In an attempt to discourage illicit digging in the area, the Ephorate of Lamia has exposed an extensive Mycenaean cemetery, as well as a burial ground of Classical and Hellenistic date (see section 4.4.5). Today the remains are for the most part overgrown by the ubiquitous thorn bushes and observation is limited.

The site is approachable via a dirt road, after branching off the modern road leading to Kolaka. At first it meanders across the small rolling hills of the plateau until reaching the relatively level ground around the chapel of Ayios Nikolaos. Today much of this land is used for the growing of wheat. After one kilometer or so the road begins to circle a small hill, at the foot of which, right next to the road, a small saddle provides the only easy access point to the site from the southwest. Fairly steep slopes, especially on the northern side, surround a flat-topped hill with an oblong shape (ca. 200 x 80 m), thus creating a naturally defensible position. To the south and southeast, the slope is gentler leading down to a deep ravine, the bottom of which is cut by a torrent. The immediate vicinity of the site is well watered, as attested by the presence of two natural springs. There is a noticeable rise of the ground to the northeast, at which point the sites gradually narrows down until reaching its highest point (499 masl). The still visible remains of formidable fortification wall, closely hugging the contours of the hill, mark the boundaries of the site.

The circuit can be traced almost completely except for a distance of ca. 40 m on the east side. It must be kept in mind, though, that the tracing of the fortification walls very much depend on the thickness of vegetation covering the remains. Since the circuit is to a great extent left to the elements, I was fortunate to make my first

294 I owe enormous debt of gratitude to the director of the Cornel Halai and East Lokris Project, Prof. John E. Coleman, for pointing out the exact location of the site and facilitating my first visit there in the summer of 2003. Since then I have had the occasion to visit it in the summers of 2004, 2005, 2006, 2008 and the spring of 2007.
observations at a time when recent fires had consumed a considerable amount of the prickly bushes, thus exposing areas with poor visibility. This may account for the number of architectural features, the documentation of which I discovered to be either non-existent or in a need of slight modification. I begin with the northeast corner, which is also the highest point of the fortified area.

This is without a doubt the most conspicuous spot on the entire site, providing the best point for surveillance over the plain of Atalandi and the North Euboean Gulf (Fig. 3.37).

Figure 3.37: Bird view from the Hellenistic tower at Korseia over the plain of Atalandi and the North Euboean Gulf; Atalante island and Gardinitza castle marked with arrows

The still formidable remains of a square tower (6.50 x 6.50 m) of good ashlar masonry
occupy the summit (Fig. 3.38). The west and south walls of the tower stand to a considerable height, the highest point of which is at the southwest corner where the two sidewalls still interlock up to the 23rd course. The other half has toppled down in a very irregular fashion, thus giving a somewhat rugged appearance of the tower.

Figure 3.38: Hellenistic tower at Korseia looking east; note the sparing traces of the polygonal circuit in the foreground

Many ashlar blocks are to be found around the tower bearing witness to the inevitable process of slow disintegration. The tower is solid based, with a fill of packed earth and stones partitioned by crosswalls intersecting at a right angle. These are particularly visible from the north and west side. The access to the first floor was via a rectangular door piercing the west sidewall. Observation was possible through two splaying loopholes to the west and south. A row of rectangular cuttings on the inner side of the west sidewall provides the evidence for a second floor (Fig. 3.39). A square cutting on

295 My measurement disagrees with the figure (6 m) given by Fossey 1990, 58.
296 Fossey's plan 1990, fig. 11 incorrectly shows a T-shaped arrangement of crosswalls at the ground level of the tower.
top of a threshold block at the bottom of the door and another rectangular one cut into a block above it further support this. They may have served to support a wooden ladder giving access to the second floor.

![Image of Hellenistic tower at Korseia; cuttings for joists of the second floor](image)

Figure 3.39: Hellenistic tower at Korseia; cuttings for joists of the second floor

The building material consists of breccia, with middle to large sized inclusions. It is of much rougher appearance when compared to the conglomerate and the sandstone used for the building of the coastal fortifications. No ancient quarries have yet been located. For the most part the blocks measure 1.20 x 0.60 x 0.45 m, laid in successive courses of stretchers only. Headers, forming the crosswalls, can be seen on the outer faces of the standing sidewalls. The better-preserved one is on the west side. These in fact belong to the crosswalls of the solid base that bonded to all sidewalls of the tower.

The interface with the adjoining curtain walls has never been closely examined (Fig. 3.40). Observation is more rewarding at the point where the east curtain meets

297 The identification of the stone was done by Christopher Andronicos, a Professor of Geology at Cornell University.
the south sidewall of the tower. It would appear that here the pre-existing polygonal circuit was cut in order to create a workable space for the addition of the Hellenistic tower. The evidence for this is provided by two superimposed blocks of the former that clearly abut the latter (Fig. 3.41). After the tower was inserted the curtain was then strengthened with breccia blocks, a few of which still remain in place, placed on top of the polygonal wall. The latter was built of very hard, light limestone procured from an unknown local source (Bouyia 2000b, 71).

Figure 3.40: Polygonal wall of limestone and Hellenistic tower of breccia

Figure 3.41: The joint between the east wall of limestone and the tower of breccia; note the breccia ashlar below abutting the tower indicating that blocks from the wall were removed to make way for the tower
The builders employed middle to large-sized boulders in order to construct a sturdy curtain wall of exceptional quality. Although no surface sherds antedating the Classical period have ever been found on the site, this wall is usually dated on stylistic grounds to the Archaic period (Fossey 1990, 60; Bouyia 2000b, 71).298

Starting from the square tower on the summit the polygonal wall continues in south direction for about 80 m, at which point it slightly turns to the west for another 60 m before it reaches another projecting tower of conglomerate masonry (Fig. 3.42).

![Figure 3.42: Ashlar masonry from Tower 2](image)

At some places the curtain is preserved up to 1 m in height, while at others it is simply lost to the bushes. The tower (4 x 4 m according to Fossey [1990, 58]) is heavily overgrown and exact measurements are currently unobtainable. So is its interface with the polygonal curtain. Remains of a third tower are clearly discernible ca. 30 m to the southwest. It is preserved up to four courses in height but again heavy vegetation stands in the way of determining the relationship with the curtain (Fig. 3.43).

At this point it is noteworthy that after the polygonal wall reaches the second

298 For Neolithic material from the area around Neochori, see Dakoronia 2002, 26, n. 23.
tower it vanishes and appears to have been replaced by a continuous curtain of ashlar masonry. Fossey (1990, 58, fig. 11) seems to be unaware of its existence, since he maintained that the polygonal wall could be traced throughout the whole circuit, except for a small stretch to the east. This is further borne out by his plan. I was unable to confirm his observation. Instead I noticed that at least two small sections of ashlar blocks, preserved up to three courses in height, extended outwards at a 90-degree angle from the hillside (Fig. 3.44). No trace of the curtain is to be found, however, but the aforementioned crosswalls may well testify to the presence of a curtain of the compartmental type, thus suggesting Hellenistic refurbishment. It is conceivable that majority of the blocks belonging to the outer curtain wall, supported by the straps mentioned above, have tumbled down, while others may lie deeply hidden underneath the thick carpet of bushes. Moreover, immediately next to these crosswalls I also noted high concentration of fieldstones that seem to be too small to have come from the polygonal wall. Since they resemble the size and consistency of the fills observed in
the other Hellenistic towers they may have originated from the fill of a compartment curtain.

Figure 3.44: Ashlar masonry from the south wall

To continue the description of the circuit, after the last tower the trace of the circuit continues due west for another 60 m. Following the contour of the terrain it then turns to the north until after another 50 m it is interrupted by an axial gate (c. 2.30 m wide). None of these sections of the southwest corner of the circuit are accessible with the exception of the area immediately adjacent to the gate. Here the polygonal masonry of the curtains flanking the gate appears amidst the bushes. The walls on either side of the gate are standing to 1-1.50 m in height, creating an entrance area, which is c. 6.20 m deep (Fig. 3.45). It is reasonable to suggest (so Fossey 1990, 58) that these were thickened deliberately in order to attain features of a bastion or a tower. This, however, needs further proof. The curtains are built with fairly large and carefully fitted limestone blocks, especially on the south face of the flanking curtain. At the edge of this corner I noticed a block bearing the unmistakable traces of drafting (see Fig. 5.14).²⁹⁹

²⁹⁹ To the best of my knowledge, this is the only instance of such surface treatment reported from the site so far. Fossey 1990, 58, 60 and Bouyia 2000b 71 made no mention of it. The search of other examples of drafting along the wall corners on either side of the gate yielded no positive results.
After the gate the trace of the circuit continues along the edge of the hill in a NE direction. The north curtain is the best preserved, still visible on many places. The most formidable stretch stands to 2.50 m in height and could be easily spotted, even when approaching the site from afar. Another less-well preserved section, in fact, provides some evidence of irregular coursing. A previously unnoticed feature of the polygonal circuit is that it stands to 1.1.20 m in height and the second and third course of fairly large blocks clearly betrays an attempt at achieving more regular appearance and leveling of the different courses of masonry. Another notable feature here is the absence of ashlar masonry, probably on account of the steeper slope of the hill, which rendered the Hellenistic refurbishment along this curtain unnecessary.

The most intriguing part of the whole circuit, however, is the area surrounding the square tower on the summit to the north and west; specifically, the interface between the north curtain, which at this point is reduced to a scatter of small polygonal stones and the still standing west sidewall of the tower. Fossey noticed nothing unusual about this area and his plan shows the fairly logical solution of having a straight curtain joining with the tower at a slightly less than 90-degree angle. But is the
situation so clear-cut?

As noted above, for a good 20-25 m or so the preserved remains of this stretch are rather meager, with the bulk of the masonry gone. In fact if one descends down the steep slope, he would uncover better-preserved stretches of polygonal masonry enclosing a roughly rectangular space (ca. 20 x 30 m). The northwestern corner of this extension stands to 1-1.50 m in height (Fig. 3.46).

Figure 3.46: Korseia; rectangular enclosure of polygonal masonry looking east

That this rectangular enclosure belongs to the fortified circuit can hardly be doubted. Thus it appears that the north curtain abutted the square tower from the north rather than the west. At this point it is difficult to establish whether the reconfiguration of this area was part of the original design of the circuit. At any rate, it seems to accommodate and favor the presence of the Hellenistic tower. One could argue that originally the polygonal wall simply followed the edge of the steep slope before reaching the summit and joining with the east curtain. In the course of the construction of the Hellenistic tower, however, it was dismantled and its course changed. Creating a rectangular extension on the slope restored the entirety of the circuit. The reason for
doing so, however, remains unknown.

3.1.10: Palaiopyrgos/Kolaka

Just before the last of the sharp turns of the road from the plain of Atalandi to Kolaka, about 2 km north of modern Kolaka, it attains a straighter course a small flat-topped hillock juts out noticeably from the plateau (Fig. 3.47). The asphalt road outflanks it from north and east. On these sides the slope of the hill is steeper and gradually reaches the road level, whereas the south and west sides are flatter and less well defined. Currently the land is cultivated.

![Figure 3.47: The site of Palaiopyrgos framed by the trees and flanked by the road Atalandi-Kolaka on the right looking east](image)

That this is a site of ancient settlement is suggested by the fact that it is marked on the 50 000 map with the name Palaiopyrgos. Its location lends further credibility to such a claim, commanding extensive views over the plain of Atalandi to northwest, north and northeast. This should be combined with the site’s immediate proximity to the mountain road connecting Opountian Lokris with Boeotia. All of this presupposes an importance, which I would like to examine further.

As far as I am aware, Palaiopyrgos has gone unnoticed by modern scholarship. Fossey (1990, 52-54, figs. 9, 10) has described, however, the remains of two closely related sites, situated immediately southwest of Palaiopyrgos, Kastron Kolaka and Karaouli. The reason for this is the very poor condition of what remains to be seen on the ground, apart from the inference gained from the toponym. Walking showed signs
of no sherds except a few scattered and badly preserved ashlar blocks of breccia (Fig. 3.48).

Figure 3.48: Palaiopyrgos; broken ashlar block

At several places regular plowing has exposed natural outcroppings of hard grayish limestone. In addition the edges of the hill near the road are covered with fieldstones of varying dimensions testifying to the continuous cultivation of the land within. Since the ashlar blocks closely resemble those employed at Neochori, it is conceivable that they may have belonged, as the toponym seems to suggest, to a solitary Hellenistic tower that has since disappeared.

The event of its destruction may be tentatively connected with the erection of the near-by chapel of Ayios Nikolaos in 1808. The latter is located by the dirt road leading to Neochori, ca. 2 km away to the northeast. Although no modern testimony recording the event has survived, the following circumstantial evidence is nonetheless suggestive.

The old chapel shows signs of heavy use of breccia ashlar blocks as building material. In front of its entrance there is a continuous p-shaped row of freestanding
blocks, now used as a bench underneath the cover of a recently installed roof (Fig. 3.49). The foundations of the south wall of the chapel consist of two courses of the same blocks. The interstices are filled with broken tiles set in mortar (Fig. 3.50).

Figure 3.49: Church of Ayios Nikolaos, note the reused ashlars of breccia as a bench in the porch

Figure 3.50: Church of Ayios Nikolaos; note the reused ashlars of breccia in the south wall

Immediately behind the chapel a few other broken breccia blocks lie scattered in the
field. Fossey (1990, 60) was the first to notice these remains but he conjectured that the *spolia* blocks, “unless they have been brought from Neochori,” indicate the presence of a “small rural shrine.” It is apparent from his suggestions, though, that he is clinging more towards the hypothesis of the blocks being recycled rather than the one of them being *in situ*. To this I would add the observation that the chapel is approximately equidistant from Neochori and Palaiopyrgos, so that either is a potential place of origin for the ashlar blocks. I believe that Palaiopyrgos may have been a more convenient source on account of its proximity to the main road, less so Neochori, which is more isolated and farther away from it.

In sum, it may be argued that Palaiopyrgos marks the spot of an extinct ancient tower the construction of which was determined on good visibility and convenient location. The ashlar blocks of breccia are the only hard evidence pointing to a Hellenistic date. The line of sight with Neochori must have been of essence since it would have assisted the latter, in a way no other site does, in keeping a close check on the traffic along what at all times had been a border zone between Boeotia and Opountian Lokris (Fig. 3.51).

Figure 3.51: View from Palaiopyrgos to Korseia looking northeast, Euboea in the background; Hellenistic tower marked with black arrow
3.1.11. Palaiokastro/Proskynas

Modern: Girard 1881, 38-39; Oldfather 1916b, 166, n. 1; Fossey 1990, 46-48

The village of Proskynas lies at the southeast end of Vivos valley, immediately southeast of which there is a low, steep-sided hill (130 masl) known by the name of Palaiokastro (Fig. 3.52). The current state of the remains is poor indeed, with much of the area being heavily overgrown by prickly bushes. Girard and Oldfather (1916b, 166, n.1) first visited the site and noted the existence of circuit wall of “rough polygonal masonry”. Fossey (1990, 46) estimated the extent of the site to be 250 m north-south by 150 m east-west (Fig. 3.52).

Figure 3.52: Plan of the circuit at Proskynas (after Fossey 1990, fig. 8)
The most accessible part of the circuit wall is on the east side, where several stretches of the wall are revealed. Girard (1881, 38) was able to trace a straight line of walling for 175 m, but Fossey’s plan does more justice to the actual situation by showing several bends of the wall course. The wall is built of polygonal blocks of hard gray limestone, which was probably quarried locally. Several larger blocks can be distinguished from the prevailing number of smaller polygonal stones, which Fossey (1990, 46) quite justifiably described as rubble. I also noticed a megalithic block, ca. 2 x 1 m, with angled cuttings on either side, which obviously served to receive the blocks of the course above it. At the bottom of the boulder, there was a roughly-cut rectangular opening that probably served as a drain channel leading the rain runoff away from the fortified area (Fig. 3.53).

![Figure 3.53: A megalithic block from the curtain at Proskynas; note the angled cuttings for the missing bocks on each side and the drain below](image)

Girard calls the acropolis of Proskynas ἓξνύξηνλ, and to a certain extent, this seems justified. Despite the regular plowing in the area which is now an olive grove, I was unable to find sherds or tiles inside the walled area. Oldfather (1916b, 166, n. 1) notes that pottery sherds are “comparatively rare,” while Fossey (1990, 46) found “many unpainted tile fragments and sherds of late antiquity”. On the basis of the
movable finds, Fossey identified Proskynas with Boumelitea mentioned by Hierokles *Synekdemos* 643, 6-645 and in the *Notitia Episcopatum* 737-744. He also pointed to the construction of the walls as further indication that the acropolis served as a refuge. Some of the blocks in the circuit, however, reveal traces of cuttings, which betray care and laborious treatment. This observation contradicts Fossey’s assessment (1990, 48) according to which the walls of Proskynas may serve as “another example of rapid, simple construction of a fortification of [late Roman] period”. Oldfather (1916b, 166, n. 1), on the other hand, opted for an earlier date of construction, judging from the lack of “hewn stones,” and the fact that in comparison with Halai the site was not “as well fortified.”

3.1.12: Boumeliteia/Chiliadou

Ancient: Hierokles, *Synekdemos* 643, 6-645, 7; *Notitia Episcopatum* 737-744

Modern: Lolling 1989, 185-186; Oldfather 1916b, 166, n. 2; Etienne and Knoepfler 1976, 41-44; Dakoronia 1982, 141; Katsonopoulou 1990, 93, pls. 10-11; Fossey 1990, 44-45

About ca. 2 km southeast of the small village of Proskynas, the Proskynas-Martino road makes a ¾ circle around a low hill known by the name of Chiliadou (Fig. 3.54). The latter is regularly covered with agricultural produce cultivated year round by the private owner of the land. Various antiquities are still visible on the surface. Lolling, Oldfather and Fossey have noted the presence of architectural members (columns drums, worked blocks) and many sherds, but the evidence for internal buildings is scarce. Of the possible circuit wall, of which I was able to observe only a single ashlar block (1.20 x 0.60 x 0.45 m) of reddish conglomerate, almost nothing has survived (Fig. 3.55). No plan of the site has ever been produced.
The hill occupies a prominent position in addition to being situated along a major land road leading to Boeotia. Regrettably illicit digging in search of antiquities has long plagued the area. A frequent target has been the extensive necropolis located at the foot of the site to the west (Oldfather 1916, 166, n. 1; Girard 1879, 220-221).
The Ephorate of Lamia has recently exposed 110 graves of various types dating from the late Geometric to the early Roman periods (Dakoronia 2002, 15-25). The ancient name of the site is unattested and scholars have attempted to identify it with Korseia (Lolling 1989, 185) and Boumeliteia (Fossey 1990, 44-45) on the basis of Pausanias (9. 24. 4). Neither has gained priority over the years and recent studies have argued for other alternatives (Etienne and Knoepfler 1976; 41-44; Katsonopoulou 1990, 90-96; Coleman, forthcoming).

South of Chiliadou hill a dirt road branches off from the asphalt road to northwest, descending gradually into a ravine cut by a torrent. In 1978, on the southwest side of the ravine the Ephorate of Lamia investigated a partially exposed rectangular building (Dakoronia 1982, 141). The southwest part was missing, possibly on account of the once rushing waters of the torrent and illicit digging.

The building (7.10 x [pr. length] 5.10 m), oriented on a northeast-southwest axis, was founded on the bedrock. The northeast corner was preserved to a height of ca. 2.10 m. The walls were constructed of ashlar blocks 0.50 m thick. The other dimensions were left unreported. A partition wall of small and large stones set in mortar was added at a later time. It was built on a higher ground level within the building and clearly associated with a different stratum of material. On the basis of type of construction and the small amount of pottery found the building was dated to the middle of fourth century BC.

Some scholars (Katsonopoulou 1990, 93; Dakoronia 2002, 15) have since interpreted it as a small temple but without stating their reasons, while others prefer to suspend judgment due to the insufficient data available (Fossey 1990, 45, pl. 21; Coleman forthcoming). It is to be regretted that no plan or excavation photographs have ever been published. In the late 1980s, however, the building was still visible which allowed Katsonopoulou to take photographs during her visit to the site, two of
which appeared in her dissertation (Katsonopoulou 1990, pls. 10-11). In the summer of 2007, I was able to take additional photographs of the largely overgrown remains thanks to the assistance of John Coleman.

An unpublished photograph shows that all blocks are laid as orthostates (Fig. 3.56). At least three courses of masonry are visible. One of the blocks may be inscribed with a mason’s mark (Fig. 3.57).

Figure 3.56: Fortified complex at Chiliadou looking north; note that the ashlars are placed as orthostates, including the header underneath the satchel (courtesy CHELP)
When coupled with the fact that we know the preserved height (2.10 m), they give us the height of the ashlar, i.e. 0.70 m. The level top surface of the last course is flat and may be taken as an indication of the presence of mudbrick superstructure. The lack of evidence for rooftiles, however, runs against such a conjecture. Given the non-specific nature of the brief excavation report, especially with regard to small finds, it should be regarded as a plausible possibility until a more detailed publication is made available.

The question of function is vexed. At first sight, the building appears to be isolated from the main settlement on the hill but this may be a deficiency of the archaeological evidence as we have it. It is true, though, that the location alone is inconspicuous, albeit well watered by the near-by springs and torrent. Falling between higher ground and the sheer mountain cliffs to the south, the site is deprived of the opportunity to visually command the surrounding area. Although it is located by the main road, it is unlikely that strategic concern played any role in choosing the location.

That the blocks are laid as orthostates, however, as also attested at the Mouseion fort at Athens (Thompson and Scranton 1943, 337), may encourage further
attempts to ascribe a military function to the building (Fig. 3.58). Another feature pointing to a specimen of military architecture is the practice of masons to mark the stones with letters (Fig. 3.59). Despite the lack of visual prominence, the mode of construction may thus support the possibility of recognizing a fortified post or an isolated tower.

Figure 3.58: Ashlar masonry from a Hellenistic tower in the Macedonian fort on Mouseion hill at Athens; note that the blocks are laid as orthostates, including the headers marked with arrows, see Fig. 3.56

Figure 3.59: Ashlar masonry from the Hellenistic city wall at Corinth with Acrocorinth in the upper left corner; note the masons’ marks marked with arrows, see Fig. 3.57
3.1.13: Mikrovivos

Modern: Dakoronia 2002, 64; Dakoronia and Zachou 2006, 370-371, fig. 25; Coleman, forthcoming

The tiny bay of Mikrovivos (500 x 100 m) is situated on the eastern side of the bay of Atalandi between two hills, with slopes falling steeply into the sea. The bay area is the lowest ground of a mountain mass rising around it that separates the plain of Tragana, south of it, from the sea. The area of Mikrovivos lies approximately between the bay of Vivos, ca 1.5 km to the east, and the outlet of Revenikos river to the west. A mountain dirt road, originating from the west side of Vivos bay, provides access to the small bay from the southeast.

For a long time, this part of Opountian Lokris has been outside scholarly scrutiny but informal walks under the auspices of CHELP have recently opened up an avenue for further inquiries. Several discoveries on the field have shown the existence of two unrelated architectural complexes around the bay of Mikrovivos.

In the spring of 1998, Coleman stumbled upon traces of several walls in conjunction with abundant presence of pottery and tile fragments. The site is located on the west side of the bay, on a small hillock overlooking the sea (Fig. 3.60, 3.61). Alerted by his discovery, the Ephorate of Lamia conducted a brief excavation campaign in the summer of the same year but their results have only recently appeared in print (Dakoronia and Zachou 2006, 370-371, fig. 25).

The excavations exposed a rectangular complex consisting of at least five rooms (Fig. 3.62). Unfortunately, the southeast corner of the building is lost to agricultural activity. Generally the level of preservation is very poor, with only two courses of masonry still visible, directly founded on the bedrock. Small finds were recovered from the disturbed strata associated with the building. They comprised
Figure 3.60: Fortified complex at Mikrovivos looking northwest; Atalante island in the background

Figure 3.61: Watchtower at Mikrovivos looking west; Gaidaros island in the middle ground, Mt. Chlomon and Atalandi town marked with arrows
primarily unglazed pottery of every day use such as pitchers, amphorae, etc. Small quantities of fine ware were also collected among which the incidence of black glazed plates is the most conspicuous. The pottery dated the occupation of the building to the second half of fourth century BC.

One of the so-called “rooms” is of special interest. It occupies noticeably higher ground within the enclosure and it is better preserved, thus allowing a more extensive treatment (Fig. 3.61). Two courses of the southeast and northeast walls

300 I am grateful to John Coleman who drew my attention to the site. I have visited the remains several times (July 2003, March 2007 and July 2008) and much of what follows is based on personal observation.
survive, in addition to only two stones belonging to the northwest wall. Currently the southeast wall is still visible, the others being consumed by vegetation. The wall is built of ashlar blocks (1.20 x 0.60 x 0.45 m) of reddish conglomerate. The second course is set inwards in order to create a ca. 0.30 m wide offset between the foundation course and the upper wall. The blocks forming the second course are badly degraded and appear to have been more irregular. The foundation course consists of six ashlars laid in the following sequence: stretcher, header, header, header, header and stretcher. The preservation of the southeast and the northeast walls indicates that the building was a square measuring 4.30 x 4.30 m. The conglomerate ashlar blocks, mode of construction and prominent position combined seem to suggest that this was a tower (Fig. 3.62). The state of preservation, though, makes it impossible to determine how it interacted with the rest of the complex. The importance attached to the tower may be gleaned from the fact that it is the only part of the complex associated with the use of good ashlar masonry.

The connections with the adjacent hinterland played a role as well, as is indicated by the discovery of yet another fortified outpost along the inland road linking Mikrovivos with the Vivos bay.

3.1.14: Mikrovivos II

Modern: Coleman (pers. com.)

The site is located on a flat-topped spur of Koromilia, ca. 600 m southeast of Mikrovios, as the crow flies. It was observed and photographed by Coleman in 1990 but has not been studied since (Fig. 3.63). His photograph remains the only available documentation for the existence of what he calls “a small rectangular tower.” Unfortunately, the remains are no longer visible. Until excavation provides more definitive evidence our current knowledge is heavily dependent on what could be said
on the basis of a single photograph and personal communication.301

The photograph shows three interconnected stretches of good ashlar masonry, preserved to at least three, possibly four, courses in height (Fig. 3.63).

![Figure 3.63: Watchtower at Mikrovivos II looking north, 1990 (courtesy J. Coleman)](image)

The level of preservation indicates the presence of a hollow rectangular or square space delimited by the walls. Their lengths are unobtainable but they give the impression of belonging to a small-sized tower, quite possibly comparable to the tower at Mikrovivos. The stone used betrays the traits of reddish conglomerate cut in rectangular blocks and undoubtedly adhering to the frequently recorded module of 1.20 x 0.60 x 0.45 m. The ground floor was apparently hollow, as is suggested by the deep depression observable in the interior of the tower.

The validity of these observations may not be confirmed on account of the current inability to collect more objective data. Several fragments of black painted

301 I learned about the existence of the site from John Coleman, who has also provided me with a copy of his photograph. I was able to personally visit the location in the summer of 2008.
tiles (Fig. 3.64), however, perhaps testify to an establishment similar to, and contemporaneous with, that at Mikrovivos. It is conceivable that we are dealing with another watchtower from the Hellenistic period.

Figure 3.64: Watchtower at Mikrovivos II, black painted tiles, summer 2008

3.1.15: Halai/Ayios Ioannis Theologos

Ancient: Strabo 9. 4. 2, 9. 2. 13; Paus. 9. 24. 5; Plut. *Sull.* 26. 3-4; Steph. Byz. s.v. Halai

Modern: Meletios 1728, 345; Leake 1835, 183-184, 288; Ross 1851, 98; Bursian 1862, 192; Koutorga 1860, 392-394; Girard 1881, 39-40; Lolling 1898, 183-184; Frazer 1913, 134; Walker and Goldman 1915, 418-437; Lehmann-Hartleben 1923, 255; Goldman 1931, 239; Goldman 1940, 381-514; Scranton 1941, 161, 179-180, 184, 186; Philippson and Kirsten 1951, 357, 692; Winter 1971a; Winter 1971b, 413, 423; Wokalek 1973, 64-65; Garlan 1974a; Maier 1958, n. 12; Winter 1976; Lawrence 1979, 366; Wallace 1979, 59-60; Papahatzis 1981, 167-168; Hadjidaki 1988, 474; Fossey 1990, 36-43; Karlsson 1992; Karlsson 1996, Argoud 1997, 255-
The long promontory of the Aetolyma peninsula juts out in a northwesterly direction forming the eastern boundary of the bay of Atalandi, creating a deep, angular bay, which is well sheltered from the northerly winds. Today the coastal strip is densely occupied by small summer houses, completely deserted over the winter. The original settlement was a rather small, fishing community, maintaining close ties with the inland town of Malesina (formerly Melenitsa) to the east. The community as a whole was known by the name of Ledezes, while the area around the today’s church of Ayios Ioannis Theologos was called Karya choria (Koutorga 1860, 393). It was subsequently renamed Theologos, taking the name of the church’s patron. On the whole, the area around Theologos, however, lacks natural water springs, and although it is somewhat isolated from the interior, it does possess cultivable land and a natural harbor. A flat-topped hill, located by the seashore northwest of the church, marks the location of the ancient settlement known as Palaiokastro (Fig. 3.65).

An array of early travelers visited the site, drawn by a simple reference from Strabo (9. 4. 2) and Pausanias (9. 24. 5). Meletios (1728, 345) and later Leake (1835, 288) were the first to independently identify the ruins at Theologos with ancient Halai. 302 This was subsequently corroborated through inscriptive evidence uncovered by the American excavations (Goldman 1915, 443).

The regular excavation campaigns (1911-1935) conducted by Hetty Goldman and Alice Walker-Kosmopoulos focused on the acropolis and immediate surroundings to the north and the east. Theirs was a pioneering undertaking, but one on a grand scale and of immense importance (Mellink and Quinn 2006, 298-350). Despite the

302 For a fuller list of travelers’ accounts mentioning Halai, see Katsonopoulou 1990, 43, n. 14.
criticism permeating the assessment of their methodology, they have left the legacy of an excavated Lokrian site, the material of which has, for the most part, a high degree of usefulness. The *locus classicus* for the study of the fortifications is the final report published by Goldman (1940, 381-540). Important observations are available in the preliminary report as well, which she co-authored with Walker (Goldman and Walker 1915), as well as the article dealing with the inscriptions, where scanty references to the city wall do occasionally appear (Goldman 1915). Over the last twenty years, an interdisciplinary project (Cornell Halai and East Lokris Project) directed by John E. Coleman has taken the lead by splitting the efforts between a surface survey (Coleman 1992) and several excavation campaigns on the acropolis (Coleman 1992; Coleman et al. 1999). Although no further excavation of the fortifications has taken place, the project instigated the appearance of particular studies (Haas 1998; McFadden 2001) relying on personal observation of the remains. In general studies on military architecture, the fortifications of Halai are treated piecemeal; in most cases specific
facets (e.g. masonry, gates, jogs) are being contextualized in order to trace the historical development of a certain feature. Occasional references appear as comparanda in studies of other fortifications. Two essential articles provide an understanding of the fortification phenomenon on a regional level of which the city walls of Halai constitutes an important part (Bouyia 2000a; Bouyia 2000b).

The architecturally defined extent of the site follows the contour of a low hill (ca. 5 masl), or “une terrasse de la hauteur d’un homme”, as Koutorga (1860, 393) put it (Fig. 3.66). In fact, the latter is rather flat, bounded by the presence of higher ground to the northeast, which gradually slopes down towards the sea. The greatest difference in elevation is to be observed along the shore, where the sloping ground abruptly ends before reaching the water. This is invariably thought of as being the “acropolis” of the site (Fossey 1990, 42).

The fortifications (Fig. 3.66), delimiting a relatively small area (133 x 65 m [Argoud 1997, 259], 160 x 70 m [Coleman 1992, 270]), have always been visible, as is evident from their first description by Koutorga (1860, 392-394) and Lolling (1989, 183-184). Although Koutorga’s brief account lacks many details, as does that of Lolling (1989, 184), they were struck by the good state of preservation of the walls on the north and west sides. It is unclear, however, to what extent “the perfect network of Byzantine walls that everywhere covered the more ancient constructions” (Goldman 1915, 439) concealed the earlier walls and obstructed his vision. The ashlar masonry of Goldman’s “System II” must have been sufficiently accessible for inspection, since Koutorga (1860, 393) pointed out its similarity to the walls at Larymna and even Messene. He was primarily interested, however, in reconstructing

305 Frazer’s 1913, 134 account is brief and devoid of details.
the relationship between the fortified area and the seashore rather than embarking upon a careful description of the fortification walls proper. More importantly, he has left a most interesting yet controversial account according to which the small community of Halai maintained two separate harbors: a commercial to the northwest and a military to the south. Modern scholarship, however, has dismissed his conjecture as pure fancy on account of either the lack of comparanda for the harbor installations he was describing (Lehmann-Hartleben 1923, 78, n. 1), or on the assumption that “he had taken the orientation wrong” (Katsonopoulou 1990, 41). A detailed presentation of Koutorga’s observations is therefore necessary.

Koutorga begins his description by stating explicitly that the south wall (or the sea wall) was constructed of ashlar blocks, either end of which featured round towers. This is the point where, according to some scholars (e.g. Katsonopoulou 1990, 41), he has confused the sea wall with the arrangement observable at the west wall. His next sentence, however, provides a fairly accurate description of the sea wall, where he noticed a round tower joining with the west wall at an angle. The crux of his account lies in the next statement, the implications of which, I think, have been largely overlooked. As he puts it, “celle de droite,” that is the tower on the east side, joins with a square tower, which makes another angle with the east wall of the acropolis. It is obvious that his orientation of the wall features is correct, but a problem occurs: there is no a round tower at the southeast angle. The wording of his sentence ‘celle de droite se joint a une tour carree,” however, implies that there were, in fact, two towers, the round one of which was connected with the square tower at the corner. The fact that there must have been a round tower there becomes more obvious when Koutorga describes the nature of the seashore and the sea wall next. He noticed the remains of

306 Koutorga provides the earliest first-hand description of the ruins resulting from personal observation, since the majority of the early travelers paid no visit to the area, cf. Wheler 1682; Dodwell 1819, 57-58; Leake 1835, 288; Girard 1881, 39.
two small jetties, “assez élevées,” extending from the round tower on the west and the
square tower on the east towards the sea, constructed of stone and covered with
“dalles” on top. His physical points of reference demarcating the space between the
jetties, however, are the following: (1) the sea wall and (2) the round tower on the east
side. Koutorga (1860, 393) further states that a continuous line of “grandes pierres
plates” covered this area. Whether or not a stone-pavement of such sort actually
existed is irrelevant (see infra), but since scholarly attention usually focuses on
disproving Koutorga’s claim according to which this was where the ships were
dragged ashore, the presence of the round tower at the southeast corner of the
acropolis has gone unnoticed. If the tower existed in Koutorga’s time, however, it is
still unclear how distant it was from the square tower, with which it seems to have
joined. Close inspection of the area has revealed no trace of it. The remains may very
well be underwater, further out at sea, but if this was the case it is surprising that
Koutorga does not say so. Furthermore, the American excavations (Goldman and
Walker 1915; Goldman 1940) and the underwater survey carried out by Murray and
Coleman (unpublished report) failed to confirm any remains of the harbor installations
described by the French author. 307 The living memory at Theologos, however,
furnishes vital clues, since some fishermen have been long aware of the existence of
“another circular harbor-tower,” away from the shore and submerged by the sea
(Hadjidaki 1988, 474, n. 34). Is it possible that this is Koutorga’s “le rond tour de
l’est” (Fig. 3.67, P)?

To summarize, while it seems likely that Koutorga erroneously took parts of
the sea wall as evidence for stone pavement covering the seabed, I suggest that his
account clearly deals with features of the sea wall rather than those of the west wall, as

307 In the summer of 2006, I swam across the seashore with a mask and snorkel. The inspection
showed that the seabed is covered by an amorphous mass of heavy sedimentation obstructing the
visibility.
is usually maintained (Katsonopoulou 1990, 41). Although unclear on topographic details, one needs to take the statement, concerning the existence of a round tower on the east side, at face value, rather than throw the baby out with the bathwater.

Koutorga was able to trace for 100 m or so another continuous line of “dallage” along the shore northwest of the acropolis. Goldman (1940, 397) treated the problem posed by the presence of this continuous line of ashlar masonry very briefly by suggesting that they were what remained of Halai’s shipsheds. Her assertion, however, has been shown to be untenable by subsequent studies (Murray and Coleman). These submerged stones, still visible today, are in fact the foundation blocks belonging to the outer fortification wall, which was recognized as such for the first time by Murray and Coleman (Fig. 3.66B, 3.67).

![Figure 3.66: Topographic plan of the acropolis and lower town of Halai (after Coleman 1992, fig. 2)](image)

258
Coleman’s interpretation carries weight not only because it demonstrates the division between an acropolis and a lower town, but also because it dispells the mystery of the stone paved seabed observed by Koutorga south of the sea wall. It is far more likely that he took the foundation courses of the dilapidated sea wall to be evidence for harbor installation of a very peculiar nature. The information about the round tower on the east side, though, is sound and, as I have demonstrated above, may deserve further consideration.

The fortification walls are generally ascribed to two main building periods.
The first features three curtain walls of polygonal masonry, enclosing a roughly rectangular area on the acropolis. The walls are of varying level of preservation of their height: from 1.40-2.60 to 3.60 m. They are built of polygonal stones (0.80-0.90 m greatest height) of light-colored and very hard limestone, resting on a protruding socle (0.16 m). On the faces of the north wall (3.10 m thick) a tendency towards regular coursing can be seen. Some of the stones have on the horizontal surface slightly curving joints, betraying a sign of “Lesbian influences” (Scranton 1941, 186). The regularity of straight courses, however, is not consistently maintained, whereas occasional smaller stones fill in the gaps between the larger stones. Strictly speaking, the wall consists of two facings filled with “fairly flat stones closely packed with smaller stones” (Goldman 1940, 382). The west wall is much more irregular and of no fixed width, featuring several retreating angles, jogs or indented trace, as argued by Winter (1971b, 423, 426). The wall ends on either side with round towers. The exact nature of these features is, however, inconsistently described and by and large remains unclear. Goldman interchangeably used “round” and “horseshoe-shaped” in order to describe their appearance. Lawrence (1979, 34), on the other hand, labels them “rounded salients”, while cautiously suggesting that they might have been used for defense (Lauter-Bufe 1979, 189, n. 53). Most recently, McAlister (2005, 33, n. 48) refers to them as “curvilinear”. The one at the northwestern corner is preserved to three courses (1.25 m), with a maximum diameter of 6.20 m (Goldman 1940, 384). The one at the southwestern corner was discovered in a similar state of preservation of two-three courses. It was built of “wedge-shaped” blocks with “convex faces,” thereby attaining a rounded profile (Goldman 1940, 386). During the second building phase it was replaced with a square tower of ashlar masonry.

A most interesting arrangement exists in the area surrounding the north gate. To the east of the entrance (1. 70 m wide) the thickness of the wall increases to 3.54
m, whereas the wall to the west is 2.85 m (Fig. 3.68). The wall is preserved to three courses (1. 40 m average). As a result of the different thickness, the stretch on the east projects beyond the face of the one to the west. Usual practice demanded that in the case of axial gates, a single tower was positioned on the left side in order to allow an opportunity to threaten the unshielded right side of the would-be attacker. Goldman (1940, 384), however, was overly pessimistic when describing the limited possibilities for defense along the gate. The key idea, I think, lies in the nature of the interface between the stretch west of the gate (extending for ca. 6 m) and the adjacent piece of polygonal walling attached to it. In fact, the smaller thickness of the west stretch (2.85 m) created a recess in depth, which also resulted in the construction of a jog at the point where it abuts the adjoining wall to the west. Such an arrangement provided not only the opportunity for an enfilade along the approach leading to the gate, but also it was positioned on the left hand side, thereby exposing the unshielded right side of the

Figure 3.68: Halai; the North Gate looking south (photo: author)
attacking forces. Goldman (1940, 384) was unwilling to assign a later date for the refurbishment of the north gate area, even though, as she observed, “the gate unit is not integrally tied into the adjoining walls.” Thus, her argument that there was no perceptible difference of style and building material would seem to imply that the refurbishment of the north gate was an afterthought, which nonetheless took place during the initial construction of the circuit. I would like to point out, though, that only around the gate area does the north wall consist of two facings, packed with smaller stones in between. Taken in conjunction with the observation that both faces, east and west of the gate, abut the adjoining walls, this seems to suggest that the gate had been added at a later point in time, “in späterer zeit wurde es zugemauert” (Wokalek 1973, 64; Lang 1996, 281).

The main gate, allowing the only point of entry for wheeled vehicles into the acropolis, lies to the northeast. Here the sequence of different walls is fairly complex but one of great importance in establishing the relative chronology of the entire circuit. Goldman distinguished two phases of the wall construction at the northeast gate, IA and IB. The earliest features consist of a stretch of polygonal masonry (17.60 m long, 1.20 high, 1.70 m thick) running in northeasterly direction, which terminated at an “approximately pear-shaped projection”, called tower 3-IA. Later rebuilding destroyed a large part of the tower, which was preserved to a single course in height at the time of excavation (Goldman 1940, 390). These two features, though, seem to be contemporary, creating “a pocket” with ample opportunity to attack an opposing force (Goldman 1940, 391). At a later point in time, a stretch of polygonal masonry enclosed IA and the pear-shaped tower, thereby forming a triangular, hollowed space. Goldman (1940, 391) reported a solid fill of heavy stones including “broken tubs and seats”, which were thrown inside it. The wall IB encircles tower 3-IA completely but its course is untraceable beyond this point. The stones for the gateposts were found in
The gate was 2 m wide. Here an important detail should be noted. The north block of the gate is attached to IB, while the south one is connected structurally to an angled extension from another polygonal wall, which Goldman left unlabeled. The latter is of rather substantial construction (3.40 m thick), preserved to seven courses (2.25 m), and in fact represents the end of the diagonal curtain wall of the acropolis running in northeast-southwest direction. It is important to emphasize that Goldman compared its “technical treatment” to that of the north gate (Goldman 1940, 388). Since the structural integrity of the gate depended on the presence of two flanking walls, it must be assumed that the latter was contemporary with IB, even though Goldman left the question open. Once this is realized, however, it becomes obvious that the exact location of the entrance going with the earliest sequence of structures, i.e. wall IA and the pear-shaped tower 3-IA, has to be sought elsewhere. In fact, Goldman (1940, 392) found a broken block with cutting for a gatepost, not in situ, stuck between IA and a later lining of ashlar blocks attached to the latter. Although she suggested that this was the location of the first gate to the acropolis, the argument is inconclusive, especially because the relationship with the northeast curtain wall remains unexplored.

At any rate, it appears that a later refurbishment consisting of thicker curtains renovated the northeast gate, which may also be related to the restructuring of the north gate. Whether this strengthening occurred simultaneously is difficult to prove beyond doubt but it certainly finds support when the wall masonry is closely examined. For instance, (1) all newly added stretches are much thicker, consisting of two separate wall facings, packed with a fill of smaller stones in-between; (2) the refurbishment focuses exclusively on previously defined points of entry, i.e. north gate and northeast gate, which may be derived either from changing attitudes of defense or from the attempt to deal with the damage caused by an earthquake. The possibilities
for assigning absolute dates, however, are severely hampered by the lack of dateable finds retrieved from the foundation trenches. Goldman (1940, 430) suggested a single date, early sixth century BC, for the whole circuit on the basis of pottery from the temple area. On stylistic grounds, Scranton (1941, 161, 184) distinguished two varieties of masonry, “walls showing lesbian influences” and “walls of dry rubble” but relied on Goldman’s date. Later studies conform to this early dating (e. g. Krentz 1997, 61; Hall 2007, 72-73; but see Nichols 1958-1959, 115, n. 195), while recognizing the fact that the circuit had been remodeled at a later time (Wokalek 1973, 64-65). Fossey (1990, fig. 7) went further by distinguishing three phases (I-A1 – ca. 600 BC; I-A2 – ca. 500 BC; I-B – ca. 420 BC) but without stating the grounds for doing so. Lang (1996, 281-282) postulated a late archaic date based on the appearance of indented trace and the “Bastion I” along the west wall.

The second building period (Goldman’s System II) represents an extension of the earlier circuit as a result of which the acropolis acquired an almost rectangular plan. The walls were built in the *emplekton* technique throughout employing two different types of stone: “reddish ‘poros’ stone” and “crumbly golden limestone” (Goldman and Walker 1915, 432; Goldman 1940, 392).

The south wall (2.70 m average thickness) runs for ca. 45 m in an easterly direction until it joins with the square tower 1. The wall (1.85 m high) consists of two facings (inner wall preserved to six courses; outer wall to four courses) tied together by crosswalls at irregular intervals varying between 2.70 and 3.50 m (Fig. 3.70). They create rectangular chambers (1.30-1.40 m wide) filled with “loose rubble of the same limestone” (Goldman 1940, 392). Today only the inner wall can be seen (Fig. 3.71). The foundation course extends beyond the outer face of the wall by 0.30-0.40 m and it was probably constructed with headers (Fig. 3.69). The superstructure of the wall consists of successive courses of stretchers, whereby the crosswalls penetrate the
Figure 3.69: Halai; outer wall from the south wall looking west, inner wall marked with arrow, unpublished photograph from Goldman archives (courtesy CHELP)

Figure 3.70: Halai; south wall during Goldman excavations, unpublished photographs (courtesy CHELP)
facings every other course. Most blocks adhere to a predetermined module of 1.20-1.25 x 0.60-0.70 x 0.45 m. Variations occurred at the places where the crosswalls joined with the inner facing of the curtain by means of shorter blocks, 0.90-0.95 m long (Fig. 3.70). Depending on their position the blocks received different treatment on the surface and along the joints. Drafted margins on all but the upper side appear on blocks employed in the towers, whereas beveled edges were “frequently” applied only to the blocks of the curtains (Goldman 1940, 392). The block surface was carefully smoothed to give the effect of “tooled faces” (Scranton 1941, 179-180), a feature consistently maintained throughout the newly built extension walls.

The uncovered stretch of the south wall was found in a very good state of preservation (Fig. 3.70). In the preliminary report Goldman and Walker (1915, 432, n. 1) thought that this was because “at an early period [the wall] had been covered to a certain depth by the soil” to protect the wall from erosion by the sea. In the final report Goldman (1940, 392-393) suggested another solution by arguing succinctly for a
galleried curtain with a roof.

While the south wall ties structurally with the square tower 1-II (6.30 x 6.30 m), preserved to four courses (1.56 m) on the west side, it abutted with the adjoining southeast curtain (20.50 m long). This stretch, preserved to two courses (0.90 m), consists of an outer wall supported by crosswalls (1.95 m long) at regular intervals. On account of the slight rise of the ground, Goldman (1940, 393) surmised that this arrangement acted as “a terrace support”. Along similar lines, Lawrence (1979, 366) has suggested that the crosswalls held the outer facing together against the outward thrust caused by the embankment. Karlsson (1992, 82; 1996, 91, fig. 61) calls this an “abbreviated” compartment wall, whereby the crosswalls served to support a walkway of wooden planks spanning a distance, which very often was within the range of 3.00-3.20 m. At the eastern end of the southeast wall, there is another rectangular tower, 2-II (5.70 x 6.20 m), but it avoids the angle formed by the curtain walls through the use of an angled block. Tower 2-II is otherwise badly preserved, while the east and a part of the north sides were not found at all. It was a solid base tower, partitioned by crosswalls intersecting at a 90-degree angle and filled with packed earth and stones.

The east wall, preserved to five courses (ca. 2.55 m) runs for a length of 37.50 m until it joins with the circular tower 3-II. It rests on a foundation course, quite possibly of headers, protruding from the main wall. The wall consists of an outer facing, which is supported on the inside by four crosswalls (1.92-1.95 m long). The arrangement is similar to the one observed in the south wall, but here the distance between the crosswalls is twice as long (ca. 6.50-7.00 m). The circular tower (diam. 6.53 m) abuts the east wall but it is structurally tied into the curving wall behind it. It rests on two foundation courses, the upper one of which consists of headers and it is possible to assume that a similar arrangement was followed in the foundation level of the east wall, even though Goldman (1940, 394) does not explicitly say so. The tower
was solid based, partitioned by crosswalls intersecting at a 90-degree angle and filled with packed earth and stones. Directly across from tower 3-II, another square tower (6.30 x 6.30 m) was attached by means of two splaying spurs to the outer face of IB that enclosed the pear-shaped tower of IA. The tower 4-II, preserved to one course, in addition to the socle, on the south side, has suffered the most destruction, especially after it was built over during the late Roman period. It has a hollow ground floor and is asymmetrically positioned, quite possibly in an attempt to match the defensive potential of the circular tower. The idea was to create an “open-fronted, semicircular court” (Winter 1971a, 225), which was gated only at the back (Goldman 1940, 395).

It is often maintained that the ashlar phase represents an extension of the polygonal circuit to the southeast but this is not entirely true. A massive “tower-like structure”, which Goldman called “Bastion II”, was added to the west wall featuring one of the most complex sequences of wall construction on the acropolis (Fig. 3.72, 3.73, 3.74).

Figure 3.72: Halai; a balloon photograph of Bastion II; note the remains of Bastion I marked with arrow (courtesy CHELP)
Figure 3.73: Halai; Bastion II looking northeast

Figure 3.74: Halai; the crosswalls inside Bastion II looking north; note the crosswall on the left, arrow points to the wall from Bastion I onto the block with inscribed letters KE
Our knowledge of “Bastion II” lacks many details since Goldman provided no proper description of the remains. Her attention was focused on the preceding “Bastion I”, which she believed served to support the foundation of the Classical temple dedicated to Athena (Goldman 1940, 432-434). Thus to a great extent one needs to supplement the published account with personal observation, which is dependable on the current state of preservation of Bastion I and II.

Bastion I was built up of ashlar blocks of oolithic limestone, which created a rectangular platform (11.10 m long) inserted through the preexisting west wall. In fact, the latter was literally “removed” in order for the platform to be built (Goldman 1940, 430). If the conjecture proposed by Goldman that its primary purpose was to support a temple building is correct, it still remains unclear on the strength of what evidence she decided to identify the platform as a bastion. Once the temple was put in, though, one needs to realize the fact that the integrity of the fortification wall was disrupted considerably. In other words, improved defensive strategy played no part in deciding to tamper with the west wall of the acropolis. Other examples of civic buildings encroaching on structures of military architecture are known from elsewhere. For example, the arrangement at Halai is remotely reminiscent of the situation attested at Stratos in Acarnania (Picard and Courby 1924, 21), but there the sequence was reversed because the city wall was built later than the temple of Zeus, a half of which was incorporated within the fortified area. At New Pleuron in Aetolia, a part of the Hellenistic city wall was adapted to serve as skene for a newly built theater (Winter 1959, 169, n. 19). Despite the attempts to remodel the original layout, however, the primary function of the circuits at both cities was retained, testifying to the economy of effort, which is frequently observed in Greek building practices. Precisely the opposite seems to be the case at Halai, where the architects took pains to destroy a preexisting fortification wall in order to make room for a new public building.
decision to remove a section of the city wall was therefore motivated by reasons other than willingness to improve the acropolis defenses. If this is true then, and we have no reason to doubt Goldman’s observations, one realizes that the use of the term “bastion” is unjustified.

In interpreting this confused area of the acropolis defenses, Goldman was very much influenced by the imposing remains of the later added “Bastion II”. It is preserved to 3.60 m to the south and 2.40 m to the north, built of ashlar blocks of reddish conglomerate throughout. The outer faces of the blocks have drafted margins on all but the upper side. The square structure (ca. 6.50 x 6.50 m) was founded directly on the soil. Now it consists of six courses of headers superimposed by three preserved courses of stretchers (Fig. 3.73). It overlaps with the preexisting polygonal wall on the north side, while the projecting sidewalls cut directly through the superstructure of “Bastion I” down to the foundation course. A small section of “Bastion I” remained buried in the interior of “Bastion II”, as is clearly indicated on the overall plan and visible on the published photograph (Goldman 1940, Pl. III, fig. 84). In spite of the buried stretch of “Bastion I” (Fig. 3.72), Goldman (1940, 432) nonetheless stated that “Bastion II” “formed a hollow rectangle filled with earth and stone”. What is even more intriguing is a peculiarity observed for the first time by McFadden (2001, 29-30). On the basis of unpublished excavation photographs, he was able to demonstrate the existence of yet another stretch of wall inside “Bastion II”, which was parallel to the stretch belonging to “Bastion I” (Fig. 3.74). At closer look, one can catch a glimpse of it by looking at the lower left corner of the only published photograph showing the interior of the “Bastion II” (Goldman 1940, fig. 84). The wall

308 Goldman never reported the dimensions of “Bastion II”. The measured drawing of the acropolis plan and the cross section of the building available through fig. 82 (cf. Goldman 1940, 431) suggest that it was approximately square in plan, ca. 6.50 x 6.50 m. Cf. also Karlsson 1992, 64, n. 196 who assumes a projection of 6.30 m.
(ca. 2.5 m long) is preserved to two courses in height, one of which appears to be a foundation course (McFadden 2001, 30, fig. 21). The stone employed in the building of the wall is oolithic limestone (McFadden 2001, 30). The wall was not removed in the course of the excavations, and it is still findable today (Fig. 3.74). One of the blocks is inscribed with the letters K and E (Fig. 3.75, 3.76, 3.77).

Figure 3.75: Halai; the inscribed block, note the position of the letters KE marked with arrow

Figure 3.76: Halai; inscribed letters, kappa and epsilon (KE), possibly indicating assemblage markings on the alphabetic system, i.e. the 15th block in a sequence

Although little can be said with certainty about the purpose of this “mysterious” wall, its existence is an undeniable fact. Yet it remains a mystery as to
why Goldman left the situation without a comment when trying to disentangle the jumble of superimposed walls in this difficult area. Goldman’s avoidance suggests that she was unable to fit it in a sequence, nor suggest a probable function. I would like to demonstrate, however, that its existence has important bearings on the understanding of how “Bastion II” was originally designed.

Unlike the other ashlar towers, “Bastion II” projects entirely beyond the curtain. Goldman’s statement with regard to the arrangement of the ground floor is ambiguous, as her observation that the bastion “was not solidly built” is somewhat misleading. The distinction to be made is this: a hollow ground floor, which was accessible from the inside versus a solidly built one, which was not. Since Goldman (1940, 432) noted the presence of a fill consisting of earth and stones inside, I argue that “Bastion II” is no different than towers 2-II and 3-II, therefore it was solidly built and, by extension, inaccessible from the outside at the ground level. In support of this reconstruction, I point to the presence of the two parallel longitudinal crosswalls: (1) the first belonging to the “Bastion I” indicates a reuse of a preexisting structure, whereas the second (2), i.e. the undocumented stretch noted by McFadden, was
probably built together with “Bastion II”. Based on comparanda from elsewhere, I surmise that the walls served to partition the fill by providing an extra strength to the solid base of the bastion. A single header protruding on either side from the first course of stretchers along the back wall of the bastion may also be mentioned here. Since it is positioned exactly in the center, it is not inconceivable that originally it belonged to the upper courses of the crosswall, now lost.

Architectural remains standing directly on top of the euthynteria of the Classical temple and immediately behind “Bastion II”, clearly indicated on both the preliminary and the final plan (Walker and Goldman 1915, fig. 6; Goldman 1940, Pl. III), are also relevant. The current state of preservation, however, is poor, which makes the reconstruction of the original sequence of walls difficult. In the preliminary report, the plan shows five parallel crosswalls of varying length extending back from the back wall of the bastion. The final plan and a photograph (Goldman 1940, fig. 85), on the other hand, seem to indicate the presence of only one crosswall in the middle, preserved to three courses. The obvious inference would be that the others had been removed in the course of the excavations. The only reference that Goldman made, however, in connection with these crosswalls appeared in the context of her attempt to restore the superstructure of the temple erected in the fourth century BC, of which “little remains except a few straps of stone, which were in part above ground before the excavation began.” On the strength of this evidence and the findings of a few architectural terracottas, she suggested a temple in antis approximately 7.00 x 10.00 m, but without discussing the crucial question of the spatial relationship between the building and “Bastion II” (Goldman 1940, 456). If one accepts the fact that “Bastion II” was a fully functioning defensive unit as a part of the ashlar extension of the acropolis, imagining a temple attached at its back, as Goldman seems to suggest, is simply unthinkable, just because a close inspection, and this is still verifiable today,
shows that the surviving crosswall in fact ties into the back wall of the bastion. Furthermore, in order for a solid based bastion or a tower to properly function, it needed a point of entry, which would have been possible only from the wallwalk level of the adjoining curtain. Thus I suggest that the crosswalls supported a wooden platform the purpose of which was twofold: (1) to facilitate the traffic along the adjoining curtain, and (2) to provide access to the first floor through the back wall. If this is true, the location of the latest temple should be sought elsewhere, since only in this way one could keep the integrity of “Bastion II” intact, while retaining the possibility, as the architectural terracottas seem to suggest, of a fourth century temple.

I thus conclude that “Bastion II” was an integral part of the building program for the improvement of the acropolis defenses. Nothing in its layout would justify the use of the term bastion. Although appearing more substantial in comparison with the other towers, its dimensions (6.50 x 6.50 m), in fact identical with those of the tower at Neochori, are not large enough to constitute a bastion per se (Krause 1972, 78; Bakhuizen 1992). The advantage of the design lies more in the projection rather than in the sturdy foundation, consisting of six superimposed courses of headers. Still the presence of these features is not critical when a distinction between a bastion and a regular tower must be made.

In conclusion, when interpreting the complex sequence of structures along the west wall, Goldman was influenced by the dimensions (11.10 m) of the supporting platform of the first and second temples, to which she applied the label “Bastion I”. In terms of its function, as I demonstrated above, the latter had no defensive value. Conversely, the overlying remains of “Bastion II” acquired the label automatically without independent examination of the design, which would have otherwise suggested that “Bastion II” was nothing more than a projecting tower.

No stratigraphic evidence from the site has corroborated a late fourth century
date. Goldman (1940, 395-396) found a single sherd of “Gnathia” ware inside tower 3-II and a terracotta figurine “from the sea wall”, on the strength of which, she proposed a date between the middle of the fourth century BC and not later than 325 BC. Scranton (1941, 131-132, 179-180) favored the lower date (ca. 325 BC). To return to the movable finds uncovered by Goldman, it is unclear, as stated, whether they were retrieved from a fill inside the tower and the wall, or from a foundation trench. In light of subsequent developments, one may be reasonably certain in assuming that the latter was the case, as was first suggested by Fossey (1990, 41).

Finally, the established sequence of walls needs to be reconciled with the available data supplied by the different pavements of the northeast road, which at all times seems to have been the main line of communication facilitating traffic on the acropolis. The excavations distinguished nine strata, but they were assigned to three chronological periods. The dating was based on pottery and coins. Goldman (1940, 396) believed that the first two phases of road use corresponded to the building of the fortification walls of System I and System II, but it became apparent that there was no sign of refurbishing or newly constructed walls with which to connect the third phase, which was otherwise the most securely dated one, late third-early second century BC. In addition, Goldman was able to document a significant rise of the road level (ca. 0.50 m), which marked the beginning of the third period of use. McFadden (2001, 63, fig. 39b) has suggested, however, that (1) the lining of stones in front of tower 3-II, and (2) the curved bench of stones flanking the eastern side of the semicircular court at the northeast gate should be assigned to the same period. Be that as it may, it is fairly certain that the acropolis was occupied during that time, as is also evident from the rebuilding of the North Gate buildings, where the same rising of the ground level accompanied by pottery and coins from the third-early second second century BC had been recorded (Goldman 1940, 479-480).
3.1.16: Larymna/Kastri, Larmes

Ancient: Ps.-Skylax *Periplous* 60; Lykoph. *Alexandra*, 1146; Polyb. 20. 5. 7; Pliny, *HN*, 4. 7. 12; Strabo 9. 2. 13, 9. 2. 18; Paus. 9. 23. 7; Plut. *Sull.* 26. 3-4; Pomponius Mela 2. 3. 45

The village of Kastri or Larymna lies on the west side of a small bay, well sheltered from the northerly winds descending from the mountains of Euboea (Fig. 3.78). A flat peninsula (190 x 90 m) on a northeast-southwest axis marks the boundaries of the ancient settlement. The most noticeable feature on the site is the fortification walls, which continuously dot the peninsula all around the shore. The modern village has gradually encroached upon the ruins, however, and, as a result, a significant portion of the lower town has now disappeared. Over the last few decades, the immediate surroundings of modern Larymna have been drastically changed, with the construction of an extraction and nickel smelting plant LARKO on the eastern side of the bay.
The identification of the site with the town of Larymna mentioned in the ancient sources has been established beyond any doubt (Oldfather 1916a, 32-61). It was originally reported by ancient sources as a part of Lokris (Ps.-Skylax *Periplous* 60; Lykoph. *Alexandra*, 1146). The fact that it was the only natural outlet of the North Kopaic region to the sea anticipates close links with Boeotia, and by the time of Strabo (9. 2. 13) and Pausanias (9. 23. 7) it is already described as part of Boeotia. The Mycenaean center at Orchomenos might well have been the first to use it as a harbor (Oldfather 1916a, 40-46). Larymna was praised for the excellent conditions of the bay (Paus. 9. 23. 7), facilitating military shipping (Polyb. 20. 5. 7; Plut. *Sulla* 26. 3-4).

The early travelers’ descriptions of Larymna naturally focus on the well-preserved fortification walls (Leake 1835; Ulrichs 1840; Lolling 1989; Frazer 1913). These accounts abound with valuable observations, which today can be checked to a lesser extent, because much of what they saw has since been lost to modern development. The first sketch plan of the site, however, appeared in Leake (1835, 287) briefly referred to by Noack (1894, 449, n. 3) and Lehmann-Hartleben (1923, 91, n. 1). The extent of the city walls on his sketch (Fig. 3.79), were later put on a scaled plan by Georgiades (Fig. 3.80), which became the basic ground for later studies, such as the
Figure 3.79: Leake’s sketch of Larymna. Key: 1) a small port, anciently closed in the manner here described, 2) town wall traceable all around; 3) another wall along the sea, likewise traceable, 4) a mole in the sea, 5) various ancient foundations in the town and acropolis, 6) a Sorus, 7) Glyphonero, or Salt Source, 8) an oblong foundation of ancient building (after Leake 1835, 287)

Figure 3.80: Georgiades’ plan of Larymna; note the large number of towers and the two gates (after Georgiades 1907, Taf. 5)
underwater survey conducted by Blackman et al. (unpublished but quoted in Schäfer 1967) and the only detailed treatment of the walls accompanied by scaled drawings and plans of the towers published by Schäfer (Fig. 3.81).

Figure 3.81: Georgiades’ plan of Larymna adapted by the German survey (after Schäfer 1967, Abb. 1)

Since then the fortifications have received little or no attention. Style and technical details of the masonry are singled out in order to establish the relative chronology of the walls. Since archaeological excavations were never conducted at Larymna, the chronology assigned to the phases singled out on stylistic grounds may not be verified.

Our knowledge about the extent of the site derives from the trace of the fortification walls. The better-preserved stretches encircle the shore on the north and the east, whereas the remains of the southern and western walls lie underneath the modern village. During Frazer’s visit (1913, 107), the towers inland had almost

280
disappeared. On the strength of this evidence, an “acropolis” and a lower town are readily distinguished. Leake and Georgiades have conclusively demonstrated the existence of a lower town stretching immediately to the southwest of the projecting peninsula, which served as a sort of an “acropolis” (Fig. 3.82).

Figure 3.82: Acropolis of Larymna (after Fossey 1990, fig. 4)

Georgiades’ plan shows traces of curtains, many towers and a gate, thus revealing the
extent of the lower town, which has been estimated to have an area of ca. 6.5 ha (Fig. 3.80). Leake (1835, 287) reported that the circumference of the circuit walls is less than a mile. In contrast, the estimated area of the acropolis is only 1 ha (Nielsen 2004, 669).

The fortification walls exhibit three different masonry styles: (1) cyclopean, (2) polygonal and (3) ashlar.

The cyclopean stretch (ca. 100 m long, 4. 50 m thick, 2.40 m high), constructed with larger polygonal blocks, hugs the western part of the peninsula (Ulrichs 1840, 231; Noack 1894, 450; Schäfer 1967, 530, Abb. 2-3; Fossey 1990, pls. 4-5). A shorter stretch, originating from the southern end, continues to the east at a 90-degree angle for 15 m or so (Fig. 3.82). It is assumed that the cyclopean walls belonged to the earliest circuit, which concentrated upon defending the acropolis proper (Schäfer 1967, 530; Fossey 1990, 23). Stylistic analysis of the masonry, together with the presence of LH IIIB sherds observed among the stones, has furnished inconclusive evidence for assigning a Mycenaean date to the cyclopean stretch (Hope Simpson and Dickinson 1979, 243-244; Fossey 1990, 139; Loader 1998, 24, 39, 163; Bouyia 2000b, 69). The date is far from certain and, as Hope Simpson and Dickinson (1979, 244) have already correctly pointed out, these sherds can only indicate a *terminus post quem* (Hope Simpson and Hagel 2006, 82).

The polygonal wall consists of a stretch, ca. 30 m long, and a semicircular tower attached to it (Schäfer 1967, 531-532, Abb. 4-6); it is located on the eastern side of the acropolis (Fig. 3.82). By comparison with the cyclopean stretch, here the stones are smaller in dimensions and there is a noticeable tendency to more regular coursing (Fig. 3.83). The curving joints convinced Scranton (1941, 160) that the wall should be included in the list of polygonal walls defined as “Lesbian, tooled work.” A square tower of ashlar masonry later encased the semicircular tower (Oldfather 1916a, 37-40;
Fossey 1990, 22), but not vice versa, as Frazer (1913, 108) and Lawrence (1979, 379) have argued. Although the polygonal stretch has been dated to the late sixth century BC (Schäfer 1967, 542; cf. Bouyia 2000b, 69), the earliest pottery on the site noted by Noack (1894, 450) was from the seventh century BC. On the strength of this observation, Shafer (1967, 542) has suggested that the cyclopean and the polygonal sections of the circuit may be contemporaneous, in spite of the differences in masonry style.

Figure 3.83: Larymna; round tower and polygonal curtain encased by ashlar tower and wall; note the protruding course of headers

Of the fortification walls, the preserved sections of ashlar masonry are the most extensive. They follow the contour of the flat peninsula along the shore, as well as the boundaries of the lower town further inland. The walls are in a different state of preservation, at some parts reaching up to ca. 3 m in height. They are built up of reddish conglomerate blocks measuring: 1.23-1.29 x 0.60-066 x 0.42-0.50 m (Schäfer
The foundation course consists of tightly fitted headers, protruding from the outer face of the curtain. The latter alternates courses of stretchers with bonding headers at regular intervals, thus creating rectangular compartments ca. 3.00-3.20 m long. They are variously adapted to the nature of the terrain with the result that two distinctly different arrangements occur: (1) two single block facings tied with crosswalls, with inner fill of packed earth and stones; (2) only outer facing supported at intervals by crosswalls (Fig. 3.84).

![Figure 3.84: Larymna; abbreviated wall and Towers A and B, see Fig. 3.81](image)

The use of abbreviated compartment walls is attested between towers A and B as well as towers I, K and L (Fig. 3.81). In the study of these stretches, however, Schäfer believed that the crosswalls extended further behind, thereby forming a continuous chain of tower-like, rectangular compartments with larger dimensions. As a result, he went on to show that, when fully restored, the thickness of the curtain would reach the unlikely figure of 5.80 and 6.10 m (Schäfer 1967, 535, 537, 544, Abb. 8, 13). At
Larymnna no surviving evidence supports this, and the parallel with the harbor walls of Anthedon does not inspire further confidence (Schäfer 1967, Abb. 14). In addition, the abbreviated compartment wall was a preferred mode of construction, a cheaper and quicker version of a full-blown compartmental curtain throughout Opountian Lokris, as is demonstrated by the instances at Alope, Kynos, Palaiokastra and Halai. Assuming an arrangement other than the abbreviated type is therefore unlikely.

Rectangular towers of differing sizes enhance the defensive capacity of the circuit (Fig. 3.80). They were placed at regular distances (36-42 m) along the wall, with which they bond (Schäfer 1967, 530). The large number of towers, including those defending the lower town, is impressive. At the northwest corner, a gate flanked by two towers was also visible in Georgiades’ time, probably suited for wheeled traffic. Only nine towers, though, are now preserved to a degree allowing closer study. The following dimensions were recorded by Schäfer (1967, Abb. 11, 12): tower A (6.15 x 5.00 m), tower C (6.85 x 8.90 m), tower D (front face 13.80 m), tower E (front face 9.30 m), tower F (front face 8.40 m), tower G (front face 7.65 m), tower H (front face 8.69 m), tower K (front face 6.00 m), tower L (front face 5.90 m). Towers A, C and E (Schäfer 1967, Abb. 1) or 9, 8 and 6 (Fossey 1990, fig. 4) are solid based, with a fill of packed earth and stones partitioned by crosswalls intersecting at a right angle. Close inspection revealed that tower B1 and B2 the presence of which was first recognized by Schäfer (1967, Abb. 8) might have been built in the same manner. Of these only a single course, currently underwater, survives. Tower K and L or 1 and 2 have a hollow ground floor, as is suggested by the lack of crosswalls and the presence of opening (0.95 m wide) for a door at the back. All towers, located along the edge of a sloping ground towards the sea, had to negotiate a slight gradient. As a result, their foundation courses consist of headers receding slightly inwards, thereby creating a step-like appearance. This is best illustrated in the arrangement adopted at tower C,
where four receding courses of headers are placed one on top of the other in order to cope with the steeper slope near the shore (Fig. 3.85).

Figure 3.85: Larymna; step-like base of Tower C, see Fig. 3.81

Determining the exact course of the ashlar walls along the shore has always had bearings on the question of where the “deep” harbor of Larymna was located (Paus. 9. 23. 7). Prior to the underwater survey conducted by Blackman et al. and the on-site study by Schäfer, scholars erroneously have assumed that it lay west of the bay of Larmes. The view has persisted, despite some weak points. One is the shallowness of the semicircular bay that otherwise gave the impression of being protected on either side with piers and towers of ashlar masonry (Fig. 3.79, 1). From these a boom could have been suspended in times of an attack (Oldfather 1916a, 58).311

A second problem has to do with the fact that between towers B1 and B2 there is a continuous line of two parallel courses of blocks, now lying ca. 0.50 m underwater

311 Oldfather 1916a, 58 also thought that this was the “war harbor.” The initial suggestion, however, was that these piers supported a bridge, cf. Ulrichs 1840, 231.
Thus the compartmental wall marked the beginning of the inland extension of the earlier circuit on the acropolis to the northwest (Fig. 3.82). It started from the northern end of the cyclopean stretch, which, as a result, was rendered useless, since it was completely encircled by the ashlar extension. To explain the existing condition of the submerged remains, Shafer concluded that the sea has gradually encroached upon the fortification wall and artificially created the semblance of a small harbor. In search of another location for the harbor, Shafer drew the attention to the existence of a mole, still visible today, constructed of ashlar blocks near tower H (Fig. 3.80, 4, 3.81, 3.82). He observed that, at a later time, most probably during the late Roman period, the blocks were strengthened with mortar (Schäfer 1967, 542; cf. Koder and Hild 1976, 199; Lauffer 1989, 370). To support his argument further, he pointed out to the suggestion first put forward by Lehmann-Hartleben (1923, 92, n. 1) that during the Roman period the harbor must have been located east of the acropolis, i.e. at the deeper bay of Larmes.\(^{312}\) Despite Shafer’s sound argument, however, many studies

\(^{312}\) For Oldfather 1916a, 59 there was no doubt that the commercial harbor was located there, too.
(except Haas 1998, 106-107) continue to place the harbor to the west. \(^{313}\)

In the absence of chronological control provided by excavation, the precise date of construction of the ashlar fortification walls has always been difficult to pinpoint. Oldfather (1916a, 51-52; 59; 1916c, 346), followed by Lehmann-Hartleben (1923, 91, n. 1), believed that the building program was conducted under the auspices of Epameinondas (Buckler 2008, 197-198). Haas (1998, 107), however, has shrewdly observed that if Larymna was a harbor controlled by Orchomenos, as Oldfather (1916a, 38) argues, a Theban initiative to strengthen the city defenses is unlikely. Fossey (1990, 141) opted for a later date in the fourth century BC (346 BC) arguing that Phokis interfered in the affairs of Lokris during the Third Sacred War (355-346 BC). Most recently, in the context of all available evidence from Opountian Lokris, Bouyia (2002, 30) has suggested a possible involvement of Demetrius Poliorcetes, but in this line of argument the fortifications at Larymna are treated in general terms, still escaping a detailed treatment (Bouyia 2000a).

3.1.17: Anchoe/Pazaraki

Ancient: Strabo 9. 2. 18

Modern: Ulrichs 1840, 227-228; Lolling 1989, 176-177; Frazer 1913, 109-110; Oldfather 1916, 33-37, 48-50; Philipsson and Kirsten 1951, 359; Simpson and Dickinson 1979, 243; Pritchett 1989, 114-115; Fossey 1990, 27-32

The modern road Larymna-Ayios Ioannis leads south from Larymna following the valley of the Rhevma, i.e. Kephissos. It gradually reaches a higher ground, at which point the road is surrounded by several mountain spurs to the west and the east. On the east side of the road a low hillock (77 masl), known by the name of Pazaraki or Pazaraki, dominates a fairly well watered, upland plain. The flat-topped peak has a

\(^{313}\) Lawrence 1979, 472; Buckler 1985; Papahatzis 1981, 156, fig. 198; Fossey 1990, fig. 4; Lang 1996, 283, Abb. 141.
line of sight with Larymna and the potential to control passing traffic (Fig. 3.87).

Figure 3.87: View from Pazaraki towards the bay of Larmes in the background; note the road leading to Larymna and the church Ayios Nikolaos in the upper right corner.

Since the site was never excavated, our knowledge derives from a long-standing tradition of personal observation and sherding dependent on the level of visibility permitted by vegetation. Frazer (1913, 109) reported, “ruined walls” and “broken stones” at the foot of the hill, near the road. His statement probably refers to what today is a linear pile of large boulders flanking the road. Close inspection also reveals other bits of walling at various places along the lower terrace of the hill. Ulrichs (1840, 228) and Lolling (1989, 176), for instance, talk about “terrace walls” of polygonal work around this area. I was able to locate a section of what appears to be a lower fortification wall on the south side, the stones of which, however, would merit
the designation ‘megalithic’, thereby creating the appearance of cyclopean masonry (Fig. 3.88). It is unclear, though, whether it delimited the extent of a lower town because the continuation of its course elsewhere is largely untraceable. To the best of my knowledge, the traces of such a “cyclopean” circuit have gone unnoticed by modern scholarship (Loader 1998; Hope Simpson and Hagel 2006) but it certainly deserves more careful consideration, especially in light of the presence of LH IIIA-B pottery (Simpson and Dickinson 1979, 243).

![Figure 3.88: Cyclopean wall at Pazaraki](image)

The attention of early travelers and modern archaeologists was understandably captured by the more conspicuous remains of the fortification walls on the summit. Still, one comes across conflicting accounts when attempts have been made to describe them.314

The circuit encloses a small area (ca. 50 x 70 m) of roughly oblong shape. The

314 The only available plan has appeared in Fossey 1990, fig. 5.
northern part is the highest, whereas the hilltop gently slopes down to the south and southwest. On the south side the approach is the easiest but the evidence for a gate is wanting (Fig. 3.89).

Figure 3.89: Plan of the acropolis at Pazaraki (after Fossey 1990, fig. 5)

On the southeast side, though, an opening in the wall clearly marks the location of a gate protected by a single tower (4 x 4 m). Lolling (1989, 176) saw one other square tower at the southwest corner, but today this is unverifiable. He further stated that the entire circuit was of ashlar masonry, ca. 10 feet thick. This remotely corresponds with Frazer (1913, 110), who noticed a wall built of “rather small stones, roughly squared, that may be followed for good many yards”, on the east side. Oldfather (1916a, 37, n. 3), who visited the site in 1914, wrote, “The city walls are all of squared stone, sometimes only roughly hewn, but as such only evidence of careless work, not of antiquity.” During my visit I discovered precisely the opposite to be the case, as
revealed by a freshly exposed section of the circuit wall on the southeast side of the hill (Fig. 3.90). It is built of mid-size to large polygonal blocks of gray limestone, with carefully fitted joints. A slight attempt towards regular coursing is noticeable, albeit not consistently maintained. The stretch is composed of four courses and reaches ca. 1.70 m in height. The topmost course is perfectly leveled, thus creating a stone socle with a flat surface, probably serving to support a mudbrick superstructure.

Figure 3.90: Polygonal wall on the acropolis at Pazaraki looking west; note the level upper surface indicating mudbrick superstructure

From the discussion above it becomes clear that the term ashlar masonry, rather loosely applied in all available descriptions, should be abandoned. New observations seem to suggest the existence of a well built polygonal circuit, thus contradicting the view (Fossey 1990, 27) that there was refurbishment of ashlar masonry replacing “an earlier, purely rubble circuit.” Fossey’s plate 7 illustrates a less well-preserved stretch, which, I think, belongs to the same circuit as the newly

315 The trench was of a very recent date but remains unclear whether it was dug up for the purposes of archaeological excavation.
exposed polygonal stretch described above. This is further supported by his reluctance to attach the term ashlar to it, which he substituted with the more vague “squared masonry“ (Fossey 1990, 27). Furthermore, it also becomes apparent that if Oldfather (1916a, 34, n. 1) was describing the circuit on the summit, he was most certainly wrong in maintaining that, “The foundation and the lower courses of the walls….are of less than ordinary strength, and the workmanship is inferior.” On the contrary, it is clear that the polygonal wall was very carefully built and of considerable strength. In addition, based on the sherds and tiles of Classical date reported from the site, a fifth century date may be suggested with caution.

The importance of Pazaraki is further underlined by the discovery of a section from an ancient road, ca. 300 m long, situated to the west, at the foot of the hill (Fig. 3.91).

Figure 3.91: Wheel-rut at Pazaraki; note the deep cutting in the bedrock

316 But of course the main idea was to demonstrate that Pazaraki was founded during the Roman period in order to support his identification with Upper Larymna mentioned by Strabo 9. 2. 18.
317 To a certain extent this would support Simpson and Dickinson’s 1979, 243 view that Pazaraki was a “guard-post” during the Classical period.
Albeit briefly noted by Lolling (1889, 186), it was Oldfather (1916a, 41-42, fig. 3) who first described it in more detail. The trace of the road can be reconstructed on the basis of two parallel wheel-ruts (axial measurement of 1.55 m), deeply cut into the bedrock. Today it ends abruptly at the edge of the cliff overlooking the road, since construction work on the road destroyed a large part of it (Pritchett 1989, 114-115). Oldfather (1916a, 40-41) suggested that the road was first constructed during the Mycenaean period, when it facilitated a commercial traffic originating from Orchomenos and leading to the harbor at Laryrna. Although the presence of LH III A-B sherds, together with the cyclopean wall at Pazaraki, is consistent with his argument, it was recently challenged. 318

318 Jansen 2002, 20, for example, has argued that the width of the wheel-ruts suggests an axle span that was more commonly attested for carts used in the Classical period, whereas Simpson and Hagel 2006, 82, 162-163 left the question of date open.
Chapter 4: Mapping urban *phouria*

“To the generality of Greeks *phourion* did not connote a fort within a city”
A. Lawrence *Greek Aims in Fortifications* Oxford, 1979, p. 137

I begin the chapter with a peculiar paradox which with the notable exception of Lawrence as quoted above normally escapes scholarly attention; Greeks had no separate term designed to reflect the Hellenistic practice of installing foreign garrisons in their cities. For the fifth century Greeks *φρούρια* as built structures belonged to the world outside the city proper, either serving to protect its *χώρα*, or housing a detachment of troops dispatched by a foreign country. The pages of Thucydides and Xenophon, for example, abound with such examples. In addition, epigraphic evidence from the Hellenistic period shows that extra-urban *φρούρια* were designed to protect the city’s agricultural lands, pastures and roads. Yet anyone reading Diodorus Siculus, who is our only source providing a continuous account of the years 323-301 BC, would encounter the frequent mention of foreign *garrisons* imposed on many Greek cities from Asia Minor to Sicily. Of course, what Diodorus refers to in such cases is not the structure itself as the actual physical presence of troops. Not surprisingly, little scholarly effort has been applied to quantifying the impact the presence of these people was bound to have on the cityscape. For one, during the last

319 The reviewers of Lawrence’s *magnum opus* welcomed his attempt to produce a typology of Greek fortifications, pointing out the crucial distinction he made, with special reference to the Hellenistic period, between the acropolis as a refuge for inhabitants and the urban fort occupied by a foreign garrison, cf. Coulton 1983, 258 and Ober 1983, 567. The distinction is made also by Adkins and Adkins 1997, 114, who note that “fortified towns with garrisons were also sometimes called *phouria*.” By contrast, Winter 1971a, 42-46 addresses the issue under a heading entitled “military strongholds” but without attempting to link the extant fortifications with the available ancient terminology.

321 See the list of Athenian *φρούρια* compiled by Nielsen 2002, 52. For the usage in Xenophon, see *Cyr.* 1. 4. 16; 3. 2. 1.

quarter of the fourth century BC, in Athens, for example, and elsewhere, they did not linger for more than a decade,323 while modern development, as in the case of Eleusis, has contributed to the unfortunate destruction of archaeological remains associated with the Macedonian military presence.324 More importantly, the Athenian case, as Lawrence (1979, 137) observed, showed an opportunity, which was never taken, to devise a new term capturing the Macedonian presence for most of the Hellenistic period at Athens, Piraeus and the Long Walls, while keeping intact the extra-urban sense of the fifth century φρούριον. Since this did not take place, Hellenistic historians consistently employed the old term, φρούριον or praesidium in Latin in order to signal the presence of foreign garrisons in Greek cities.325

Despite the problem of terminology, that urban φρούρια established by Macedonian kings, nonetheless, introduced a separate issue deserving special scrutiny, has been first recognized by Scranton (1941, 132), who associated the emergence of fortifications throughout mainland Greece built in isodomic masonry with drafted margins and beveled edges with the garrisons of Alexander’s Successors. Shortly thereafter, Launey (1949, 633-675) approached the problem of foreign military presence in Greek cities based on analysis of information provided by Hellenistic writers, most notably Diodorus and Polybius, as well as by the abundant epigraphic sources. Recently, Chaniotis (2002, 99-113; 2005, 88-93) has taken up the theme further by examining the various ways of interaction and social adaption of the communities subjected to foreign troops.326 Several studies have already provided

323 On the Macedonian garrisons at Athens, see Habicht 1997, 36-172; Taylor 1997, 1998; Dreyer 1999; Oliver 2007.
324 The fortress near Eleusis, believed to have housed the Macedonian garrison of Demetrius Poliorcetes, was demolished during construction works for a cement factory. A good plan of the architectural remains no longer extant may be found in Mylonas 1961, 152-153, figs. 32, 53, cf. Lawrence 1979, 138. On a re-assessment of the impact the presence of the garrison might have had on the mysteries at Eleusis, see Clinton 2003, 77.
325 On the equation between φρούριον and praesidium, a term used by Livy, see Bakhuizen 1970, 136, n. 4.
326 See also the response article by Ma 2002, 115-122.
comprehensive treatment of the most well documented cases concerning the Ptolemaic
garrisons in Asia Minor, Thrace, Thera and Crete (Bagnall 1976, 220-224), and the
Macedonian garrisons in Athens, Corinth, Chalcis and Eretria (Hatzopoulos 2001, 29-32). For the purposes of this debate, however, the potential of archaeological evidence
has yet to be explored, let alone understanding the role of little-known regions such as
Opountian Lokris.

The examination of the literary and epigraphic sources in Chapter 2, which
documents the existence of Macedonian garrisons in Hellenistic Opountian Lokris, in
conjunction with the loci of possible interaction presented in Chapter 3, opens up an
opportunity to trace how, and if, these phenomena translated into the archaeological
record that is normally deployed for the study of settlement history.

4.1: Occupation

Before proceeding with the architectural analysis of the Hellenistic
fortifications in Chapter 5, I examine the available evidence pertaining to the
occupation of the area enclosed by the fortification walls. From the data presented in
Chapter 3 it seems that distinction between urban and country fortifications, i.e. of the
polis or the ἀστυ and of its χώρα may be justified. Obviously, the distinction is
important to make not only because it reflects an ancient understanding of the
difference between urban and rural (Martin 1956, 30) but also because the
fortifications are likely to display different structural and functional characteristics
(Rousset 1999; Pimouguet-Pédarros 2000, 101). The first category comprises the
defenses of major cities and smaller villages, while the second consists of isolated
fortified structures sited in proximity to major roads. In our case, however, as I will
try to demonstrate, a discourse organized in accordance with this often-employed
dichotomy produces limited results.

For example, the Hellenistic fortifications of Opountian Lokris are often
perceived as a homogenous group based on common features, such as building material, masonry style and date (Fossey 1990, 139-150; 1992, 126, 128; Bouyia 2000a). In this type of analysis the driving factor behind building fortifications is often equated with either the city as a self-governing entity or the regional koinon as a supra-local authority. The role of exogenous factors is normally downplayed. This approach, however, creates static models of explanation, conjuring up images of forced externalization. In other words, walls are detached from the social dynamic that produced them. It is thus not surprising that no attempt has been made to put forward a typology based on evidence for occupation. By contrast, the contextual approach, adopted here, moves away from simply establishing the type of masonry and date of construction in order to take into account the evidence for occupation associated with the fortifications. In fact, the mapping of urban ἐρυθεία compels us to embrace a methodology that is normally reserved for the study of military camps and border forts, one that aims to address the totality of the military presence rather than focus on a singular aspect such as the construction of fortification walls. Comparative data may be obtained from large-scale excavations of urban settlements, thereby providing further opportunities for contextual analysis. In brief, I opt for a more individualistic treatment, where in addition to the particularities of wall construction a special

327 Except the study of McNicoll 1997, 75-105 devoting a separate chapter to the Hellenistic fortifications in Asia Minor which he argued were built under the auspices of the Successors.
328 Studies on Lokrian fortifications are consistent with the treatment offered in many regional studies, whereby purely architectural analysis underscored by military perspective is a major concern, e.g. Säflund 1935; Fossey 1988, 491-495; 1992, 112-122; Tillard 1910/1911; Fossey 1986, 135-141; 1992, 122-123; McInerney 1999, 340-347; Typaldou-Fakiris 2004, 276-284; Karlsson 1992; 1994; McNicoll 1997.
emphasis is laid on the important subject of occupation. The ultimate goal is to evaluate the extent to which and/or whether the Macedonian garrisons impacted the urban and country landscape of Opountian Lokris.

The chapter aims to investigate the following questions:

- In how many cases do we have evidence for topographic and chronological continuity?
- If there was a shift of location, how can we explain it?
- If not, did the life continue uninterrupted inside the fortifications once they had been built?
- What sort of activities can we reconstruct based on the available data?
- In what ways can we explain the emergence of isolated tower complexes scattered in the countryside?

For clarity of presentation the discussion is divided as follows: (a) buildings within the fortifications and (b) burial practices. The principle types of evidence discussed are archeological, epigraphical and literary. The usefulness of the data supplied by archaeology is severely limited either because most of the sites are still unexcavated, or because they are inadequately published. The available data is unevenly distributed between the sites under consideration. Welcome exceptions in this regard are the sites of Opous and Halai.

4.2: Internal buildings

The following discussion profits the most from the available archaeological data of Halai, Opous and, to a lesser extent, that of Alope, which is not yet fully published. I include buildings of which we know beyond any doubt were located inside the fortification walls constructed in the early Hellenistic period. Although the function of internal buildings is little discussed, the type of excavated material such as storage vessels, cooking and fineware points generally to domestic environment which
seems to be mixed with some evidence, most notably loomweights, for household or industrial activity. I begin with a presentation of the archaeological data from Halai.

4.2.1: Halai

The first complex of internal buildings is situated in very close proximity to, and on an axis with, the North gate. Thus the name North Gate Buildings, conceived by the principal excavator (Goldman 1940, 478) has persisted (Coleman et al. 1999, 310).

It consists of two rectangular structures (18.50 m long and 5.00 m wide), which Goldman called “the West and the East building”, with a façade facing towards the narrow street (1.90 m wide) leading to the gate (Fig. 4.1).

Figure 4.2: The North Gate Buildings on the acropolis of Halai; note the ashlars blocking off the gate (after Goldman 1940, Pl. III)
The end walls of both buildings are only 0.50 m away from the north fortification wall, while on the other end they border on the main west-east thoroughfare of the acropolis. The buildings are subdivided by east-west crosswalls into five separate rooms. With the exception of Room E, the dimensions of the other rooms from the East building are obtainable: Room A, 2.70 x 3.65; Room B, 3.50 x 4.10, Room C, 3.10 x 4.25, Room D, 3.10 x 4.20.331 The arrangement of rooms in the West building is less clear because of the lower level of preservation, while subsequent rebuilding has altered the original layout. For instance, a much larger Room F was constructed (10.40 x 4.20), with a floor of tiles added in the Roman or Byzantine periods. Goldman has demonstrated, however, that the primary set up of a series of five rooms was replicated in the West building as well. All rooms are accessed from the street via a small, centered door, 0.67 m wide, but it remains unclear whether each room communicated with the adjacent rooms independently from the exterior. The foundations of the buildings consisted of gray limestone blocks supporting “heavy orthostates”, measuring on average 0.63 m in height and 0.35 m in width. Goldman stated that the upper walls were of unbaked mudbrick but she supplied no evidence for this.332

Based on pottery and coins Goldman distinguished two periods of use within the buildings: (1) late fourth century and (2) late third-early second century BC. Underneath the foundations, there was a mixed layer, containing pottery dating from the middle sixth until the third quarter of the fifth century BC, while the other two layers corresponded to the two periods of use mentioned above. By and large, the pottery was more abundant in the East building, and less so in the West building.

The late fourth century pottery consisted of fineware, e.g. echinus bowl, two

331 I retain terminology and numbers assigned by Goldman in order to avoid confusion.
332 This observation is recorded in the excavation fieldbooks, but is does not seem to have been based on actual traces of mudbrick found in the course of the excavations, cf. Goldman 1923-31, 29.
fishplates, a spool saltcellar (Fig. 4.2), 333 oinochoe, two small hydriai and an unguentarium (Goldman 1940, 483-485), as well as 14 unstratified fragments of black-glazed bowls, pitchers and skyphoi, some inscribed (Goldman 1940, 496, nos. 31-45, fig. 240).

Figure 4.2: Black glazed spool saltcellar, 325-295 BC (after Goldman 1940, fig. 194)

A black glazed kantharos, unfortunately with no good context, deserves special emphasis because of its early Hellenistic date (Fig. 4.3).334

Figure 4.3: Black glazed kantharos, 310-300 BC (after Goldman 1940, fig. 140)

333 Goldman 1940, 483, no. 4, fig. 194 wrongly identified the vessel as pyxis. Morphology suggests, however, that one is dealing with a spool saltcellar, cf. Rotroff 1997, 166, cat. #1069, dated to 325-295 BC.

334 Goldman’s broad date, late fifth-early third century BC is out of date. According to the current typology of Athenian kantharoi, our specimen is closely comparable to Rotroff 1997, 84, cat. #11, pl. 1, dated to 310-300 BC.
An one-handled *kantharos* accounts for a pottery shape common in Macedonia, as observed by Goldman (Fig. 4.4).

Figure 4.4: One-handled kantharoi, late fourth century BC (after Goldman 1940, figs. 201, 238)

In Room B of the East building, a *pithos* base was found *in situ* (Goldman 1940, 478). The later pottery is poorly published, with the exception of a single plate (Goldman 1940, 487, no. 18, fig. 197), even though the incidence of this material was much higher. Furthermore, it came from a layer which was extremely well dated by the frequent occurrence of Boeotian coins assigned to 220-197 BC (Head 1881, 262; cf. Kroll 1993, no. 595). To this period belonged moldmade bowls (Fig. 4.5), 15 fragments of which were included in the final publication (Goldman 1940, 496, no. 46-54, fig. 241). Although all are unstratified, it is likely that some came from the second period of use of the North Gate buildings. The same holds true for the 16 examples of lamps assigned by Goldman to Broneer Type XV dated to the late third-early second century BC (Goldman 1940, 505, no. 13-15, figs. 248, 6; 247, 1, 2). All of these were found in Hellenistic layers, and some together with the type of Boeotian coins mentioned above (Goldman 1940, 507).

335 A similar specimen comes from the agora of the late fourth century BC Thessalonike, cf. Tasia et al. 1998, 208, pl. 13.

336 In the preliminary report, Walker and Goldman 1915, 434 mentioned that “remains of figs and peas” were also unearthed but they did not specify the type of vessels they had been stored in.
In addition to the pottery, a large number of loomweights was also brought to light. On the basis of shape, they were divided by Goldman into two basic categories: pyramidal (Type I A-B) and circular (Type II A-B). Unfortunately, the pyramidal loomweights, which chronologically are earlier than the circular, are for the most part unstratified. Apart from the few found near the “temple area”, it remains unclear whether any of them had been discovered in the North Gate buildings at all (Goldman 1940, 509). The circular type, on the other hand, is more profusely attested. The highest concentration came from the Room F in the West building, where 22 examples of Type II-A were found. They were intermingled, however, with many other unstamped loomweights. Type II-B, on the other hand, occurs exclusively in strata dated to the late third-early second century BC based on the Boeotian coins. Although the findspot of the latter is not reported (Goldman 1940, 509), it is reasonable to assume that they were found in the North Gate buildings as well.

The excavation fieldbooks provide information about the findings of many other objects which were left unpublished. Some were from rooms in the North Gate buildings. For example, among fragments of black glazed pottery, nondescript bronze items, and a strigil, four bronze arrowheads are also reported (Fig. 4.6), two of which
were found in Room A and Room E of the East building, and two in Room E of the West building (Goldman 1913, 21; Goldman 1923-31, 22, 36).

Figure 4.6: Bronze arrowheads from the acropolis of Halai; unpublished photograph from Goldman excavations, left; bronze arrowheads from Olynthos at Polygyra museum, right (courtesy ASCSA archives)

In 1990-1992, CHELP conducted new archaeological excavations on the acropolis (Coleman 1992; Coleman et al. 1999). Many trenches were sunk in areas undisturbed by the primary campaigns. Areas C and H yielded a corner of a Late Roman residential building, a thick deposit of fill with a mixture of Hellenistic, Early and Late Roman pottery, traces of Early Roman buildings, and two habitation layers from the Hellenistic period (Fig. 4.7). The upper Hellenistic layer, containing a few Early Roman fragments, was sealed on top with broken tiles in situ, while the lowest consisted exclusively of Hellenistic pottery. The excavators tentatively associated the upper layer with the destruction wrought by Sulla in 85 BC. Based on partial examination of the pottery from all excavated layers, Haas (1998, 60-91) has

337 It is possible that some of these items may have been reported in the final publication, although they appeared under the heading describing unstratified material outside “the temple area” cf. Goldman 1940, 502, c, d, and g.
suggested an alternative attribution.

Figure 4.7: Areas C and H with exposed remains from Hellenistic and late Roman buildings (after Haas 1998, fig. 13)

According to his analysis, the lowest Hellenistic layer should be identified with the Sullan destruction, while the upper layer, within which he identified several Early Roman vessels, he assigned to a later disaster, not necessarily caused by human action (Haas 1998, 64-65). The chronological issues may be settled when the further study of the excavated material has taken place. Meanwhile, the following preliminary observations are possible.

By and large, the new excavations brought to light the same types of Hellenistic artifacts which the primary campaigns unearthed; loomweights, lamps, and fineware. The majority of this material, however, dates to the second period of Hellenistic habitation as defined by Goldman, i.e. late third-early second century BC and later. Thus movable finds and architecture assignable to the early Hellenistic
period, i.e. the first period of habitation, are conspicuously missing. Although the bulk of this newly excavated material comes from what the excavators have called “habitation layers,” it is not yet clear without further study whether it was found in its original context, or it was re-deposited there at a later point in time. Since the walls of the early Roman buildings include reused ashlar blocks, this seems to suggest that they were recycling an earlier, presumably Hellenistic, structure.\(^{338}\)

The North Gate buildings should probably be interpreted in conjunction with another complex of internal buildings lying underneath the foundations of what Goldman has designated as the Northeast Gate shops of Roman date (Fig. 4.8). One wall of the shops rested on a preexisting wall, consisting of a socle and orthostates of gray limestone, which is identical with the mode of construction observed in the North Gate buildings. Thus Goldman (1940, 487) naturally concluded that there was a Hellenistic predecessor to the Northeast Gate shops immediately next to the main gate of the acropolis.

Since the Northeast Gate shops, and by extension, their Hellenistic predecessor, were built outside the archaic circuit, Goldman (1940, 481) argued that the construction of the latter “must postdate the wall” erected in the early Hellenistic period. The downdating of much Hellenistic pottery from the Athenian Agora, as discussed earlier, requires some corrections in the chronology proposed by Goldman in 1940. Second, since no pottery from the first period of use found in the North Gate buildings predates the last quarter of the fourth century, it is conceivable that the

\(^{338}\) Although Coleman 1992, 276 plausibly asserted that, “in some instances the lower parts of Hellenistic walls probably served as foundations for Roman buildings,” the premise of his statement is undermined by the recorded absence of undisturbed Hellenistic floor levels associated with the buildings. In addition, the preliminary reports left the question open without identifying which sections of the buildings might have been truly Hellenistic. Finally, if the attribution of the lowest layer to the sack by Sulla is correct, cf. Haas 1998, 64, the likelihood for existence of Hellenistic residential architecture decreases even more.
construction of this complex, along with the Hellenistic predecessor of the Northeast Gate shops, were in fact conceived together with the Hellenistic enlargement of the acropolis. The close similarities between the two complexes derives not only from their identical mode of construction, stone socle topped by mudbrick, but also from their positioning in close proximity to the points of entry to the acropolis. Finally, and more importantly, the construction of the Hellenistic walls and the Hellenistic complex of buildings mark the beginning of re-occupation of the acropolis, much of it devoted to Hellenistic use. Interestingly, similar development also occurred during the late third-early second century BC. The reasons for these profound changes were
never actually pursued, since most attention focused on the still unexplained lack of Classical remains, in sharp contrast with the more profusely attested period of habitation dated to the Archaic period (Coleman 1992, 274-275; Coleman et al. 1999, 298-309). The acropolis was re-occupied for living purposes at the very beginning of the Hellenistic period. On present evidence, however, we are unable to determine whether the first period of use, as defined by the archaeological data recovered from the North Gate buildings, gradually led to the second period of intensive habitation dated to the late third-early second century BC. Generally the impression is one of two unrelated, brief phases of habitation, rather than of a linear progression of occupation that continued uninterrupted throughout the Hellenistic period.

Let us turn into the issue of function. If the North Gate and the Northeast Gate buildings are contemporary with the Hellenistic enlargement of the acropolis, we still need to ask what they were used for. Goldman (1940, 478) stated that, “it is quite impossible to determine either by their shape or content what purpose they served,” and assumed, without arguing the point, that they were probably “dwellings or shops.” I think, however, that Goldman was overly pessimistic and hope to show that pursuing the question further is well worth the effort.

First and foremost, one must look at the evidence. In fact, we have only the stratified material from inside the North Gate buildings at our disposal, since no Hellenistic finds have been reported in association with the predecessor of the Northeast Gate shops (Goldman 1940, 487-490). In addition, the unstratified movable finds, which in their preponderance are truly Hellenistic, and especially in light of the fact that all had been discovered outside “the temple area” (Goldman 1940, 491-514), can be used as supplementary evidence bearing witness to the habitation on the acropolis. What of the spatial organization of the two complexes?

As noted above, it is important to acknowledge the fact that both are occupying
conspicuous positions proximate to the main gates. Furthermore, in the case of the North Gate building, it is obvious that it was easily accessible on either side, i.e. from the exterior via the North gate and from the inside via the narrow street separating the East and West units of the building, which in turn fronted on the main west-east thoroughfare. In terms of the overall topography of Halai, where thanks to the surface survey conducted by CHELP in 1988-1989 (Coleman 1992, 268, fig. 2) we are already able to distinguish the acropolis from the lower town, this arrangement is hardly coincidental. Since the North Gate was already in existence when the buildings were put up339 the proximity to the gate must have been deliberately conceived. In other words, a possible clue is supplied by the fact that ensuring independent access to the lower town was apparently essential for whatever purpose the buildings served. It must be kept in mind, though, that because of its small dimensions the North gate was unsuitable for wheeled traffic, and that at all times, the carts were admitted through the Northeast gate.

Second, based on the evidence for grain storage, food consumption and wine drinking found inside the buildings and throughout the acropolis it is plausible to argue that the supply of these commodities, if not entirely, at least in part was secured through communication with the population living in the lower town. Were it to be otherwise, it immediately becomes difficult to explain why the buildings necessarily needed an axial alignment with a small gate providing access to the lower town. Conversely, if the inhabitants of the North Gate buildings were entirely independent from the local community, it also makes little or no sense to settle in such close proximity to the fortification wall.

339 The gate was blocked off perhaps during the Late Roman reorganization of the acropolis, cf. Goldman 1940, 384, fig. 7. Goldman discovered “very late tiles” in the fill accumulated atop the street between the North Gate buildings. Eventually, Goldman 1940, fig. 7 decided to remove the three courses of ashlar blocks that were reused for blocking up the entrance (Fig. 4.1). Haas 1998, 52, fig. 11 has opted for Late Hellenistic/Early Roman date but his assertion remains unsubstantiated.
Third, the substantial number of lamps, of which 42 are Hellenistic (Goldman 1940, 502-507; Coleman 1992, 282, nos. 2-5; Coleman et al. 1999, no. 28), confirm the conjecture that the acropolis was in fact inhabited during the Hellenistic period (Table 4.1). Of the Hellenistic lamps, almost 50% belong to Broneer Type XV, of which Goldman (1940, 505) said that all “were found in Hellenistic context, some together with the Boeotian coin which Head dates to 220-197 BC.” Unlike some of the Late Roman lamps that had sepulchral use (Coleman et al. 1999, 317-320), it is also very clear that the Hellenistic specimens are either associated with residential premises, or come from re-deposited material scattered throughout the acropolis. The evidence, as we have it, however, poses certain limitations because Goldman provided no details about their exact findspots.\footnote{Plotting them on a map would have shown not only the pattern of distribution, but also how many of them were actually found in the North Gate buildings.}

Fourth, the presence of clay loomweights – a fairly sizable body of primary data – is quite important. The statistics show that by far we have a grand total of 17 of the pyramidal type and 55 examples of the circular type of loomweights recovered from excavation (Goldman 1940, 509-513; Coleman 1992, 282, n. 1; Coleman et al. 1999, 312, nos. 24-27). As far as their spatial distribution, what was said about the lamps holds true for the loomweights. With the exception of the concentration found in Room F in the West building, the rest originate from unstratified contexts and layers containing mixed material. In spite of the uncertainty of many of the archaeological contexts, the high incidence of weaving implements is indicative of the existence of an industrial activity. That some of this activity, at least during the second period of use, took place inside the North Gate buildings is also beyond doubt.
Table 4.1: Excavated lamps from the acropolis of Halai by type and year of publication

<table>
<thead>
<tr>
<th>LAMPS</th>
<th>SITE</th>
<th>TYPE</th>
<th>BRONEER</th>
<th>GOLDMAN 1940</th>
<th>COLEMAN 1992</th>
<th>COLEMAN 1999</th>
<th>SUBTOTAL</th>
<th>PERIOD</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HALAI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>II</td>
<td></td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV</td>
<td></td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VI</td>
<td></td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VII</td>
<td></td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IX</td>
<td></td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>XII</td>
<td></td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>XV</td>
<td></td>
<td>16</td>
<td>3</td>
<td>1</td>
<td>20</td>
<td>HELLENISTIC</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XVI</td>
<td></td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>XVIII</td>
<td></td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>XXI</td>
<td></td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>XXVII</td>
<td></td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>XXVIIIa</td>
<td></td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>XXXI</td>
<td></td>
<td>5</td>
<td>2</td>
<td>-</td>
<td>7</td>
<td>ROMAN</td>
<td>12</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>9</td>
<td>1</td>
<td>54</td>
<td></td>
<td>54</td>
</tr>
</tbody>
</table>

Finally, one needs to consider the significance of the numismatic data. The coins from Goldman expedition were never published in detail. Apart from the scattered references to several specimens of Hellenistic date (cf. *infra*) in her final report, Goldman mentioned *en passant* the presence of coins on the acropolis only on two other occasions. In the rooms of the Northeast Gate shops, she found an unspecified number of coins “of the Antonine emperors and Hadrian” (Goldman 1940, 312).
487), and in one of the rooms of the Late Roman complex west of the Northeast gate (Goldman 1940, 490; cf. Quinn 1996) “a small hoard of copper coins” containing issues of the emperors Arcadius, Honorius and Constantius I. Many coins, however, are reported in Goldman’s and Walker’s fieldbooks. The CHELP expeditions yielded coins, though no mention of them was made in the preliminary reports (Haas 1998, 66).

Throughout the final excavation report in Hesperia, Goldman (1940, 479, n. 163, 481, 487, n. 180, 509, n. 231) repeatedly refers to discoveries of bronze coins minted by the Boeotian League during 220-197 BC. It would appear that this type gained considerable popularity in the community of Halai for reasons, which have yet to be studied. Furthermore, in the fieldbooks references to other issues are common, in many cases in immediate association with the fortification walls. For instance, Goldman (1911, 10) reported a cluster of three coins containing issues of Chalcis (369-338 BC), Boeotia (220-197 or 196-146 BC) and Justinian (527-565 AD) that were found “near the S wall”. Elsewhere (Goldman 1911, 7), she mentioned the finding of two Boeotian coins (220-197 BC) “under 0.60 m near inner face of S wall.” Finally, Walker (1913, 74) retrieved a Lokrian bronze coin (338-300 BC) from inside “Tower III” at a depth of 0.45 m.341

Invaluable in this respect, found among the documentation of the primary excavations, is a photograph containing 32 coins, arranged into two groups based on the year of discovery, 1912 and 1914 (Fig. 4.9). The coins, however, were never published and their location is currently unknown.342 Quinn (1996) was the first to

341 Since Goldman and Walker used different designations for the towers in their fieldbooks, it is sometimes difficult to determine to which one a specific reference is made. In this case, I was able to conclude from the context that Walker was excavating within the tower with the hollow ground floor, which Goldman 1940, 393, fig. 13, pl. III designated as Tower I-II.

342 My attempt to locate them in the Archaeological museum at Thebes was of no avail (May, 2007).
draw attention to their existence by identifying two of the coins (Byzantine date).

Figure 4.9: Unpublished coins from Goldman excavations (courtesy J. Coleman)

On the basis of the photograph[343] I have identified the rest, of which 9 are of Hellenistic and 21 of Roman date. Among the Hellenistic examples (Figs. 4.10-4.14) are 4 bronzes of the Boeotian League ([197-146 BC] \textit{SNG} Cop 179-181), 2 of Thebes ([146-27 BC] \textit{SNG} Cop 394), 1 of Sikyon ([323-251 BC] \textit{SNG} Cop 91), 1 of Cassander ([315-311 BC] \textit{SNG} Cop. 1142-1153) or Antigonus Gonatas ([279-239 BC] \textit{SNG} Cop 1203-1213) and 1 of Antigonus Gonatas ([279-239 BC] \textit{SNG} Cop 1214-1221). It is also conceivable, very likely indeed, that some of the Roman coins depicted in the photograph are identical with the ones found on the acropolis (Goldman 1940, 487, 490). To a lesser extent, this may be true for some of the Hellenistic specimens, especially in the case of the Boeotian coins.

Evaluating the full significance of the numismatic evidence is hampered by the

343 My thanks go to Prof. Coleman who supplied me with a high-resolution digital copy of the original photograph allowing identification.
lack of distribution map of all the coins found on the acropolis. It is nonetheless

Figure 4.10: Boeotia, bronze, 197-146 BC (*SNG Cop.* 179-181)
Figure 4.11: Thebes, bronze, 146-27 BC (SNG Cop. 394)

Figure 4.12: Sikyon, silver, 323-251 BC (SNG Cop. 91)

Figure 4.13: Antigonus Gonatas or Cassander, Macedonia, 277-239; 315-311 BC (SNG Cop. 1203-1213; SNG Cop. 1142-1153)
Figure 4.14: Antigonus Gonatas, Macedonia, 277-239 BC. Note the countermark and the Macedonian helmet on the reverse (SNG Cop. 1214-1221)

possible to conclude that we are dealing with a coin circulation that in all probability reflects small-scale transactions. This is also suggested by the exclusive presence of bronze coinage. Similarly, the reported coins from the Roman period are all bronze issues. Although Goldman (1940, 487) proposed her identification without specifically arguing for it, she seemed to have assigned a greater weight to the coins she found inside the Northeast Gate buildings, when stating with confidence that they were “clearly used for shops,” rather than to the objects retrieved from the rooms. Thus a pattern of reuse of certain premises on the acropolis emerges. First we have the evidence for recycled building material taken from the Hellenistic predecessor of the Northeast Gate shops. Then we need to consider the thin Roman phase of the North Gate buildings as well, which Goldman (1940, 479, figs. 189-190) suggested on the basis of a fragmentary cover-tile and a single terracotta antefix from the roof construction. No objects of Roman date, however, have been reported in association with the buildings.

Based on the analysis of the available data, the following sequence of occupation can be reconstructed.

I. During the early Hellenistic period, the whole city was reorganized, as a result of which, new fortification walls surrounding the acropolis and the lower town
were erected, together with the construction from scratch of two architectural complexes situated near the main gates. No Hellenistic finds were recovered from the Northeast Gate shops. The objects from the North Gate buildings, on the other hand, point to occupation of the premises until, some time during the early third century BC, when they were destroyed by fire (Walker and Goldman 1915, 434). The type of artifacts discovered within the buildings and scattered throughout the acropolis suggest (1) storage of grain and other products, (2) food and wine consumption, (3) weaving and (4) military activity. In addition, the chance finds of bronze coins scattered throughout the acropolis indicate small-scale transactions. It is difficult to say, however, whether the North Gate buildings were in fact the locus of this activity.

II. After a hiatus of several decades, the North Gate buildings were reoccupied. This second phase is extremely well dated because of the numerous findings of the Boeotian coins assigned to 220-197 BC. An interesting point needs to be made here. In two different contexts Goldman has made strikingly similar statements with regard to seemingly unrelated facts, which I think should be treated in conjunction. First, the floor level of the North Gate buildings “was raised the full height of the orthostates”, (Goldman 1940, 479) and the second, when talking about the stratigraphy of the west-east road bisecting the acropolis, Goldman (1940, 396) stated that: “By the beginning of the second century the roadbed had risen about fifty centimeters.” Since, as reported, the height of the orthostates is 0.63 m we can see a remarkable correlation between the rising of the ground level inside the North Gate buildings, on one hand, and the main thoroughfare of the acropolis, on the other. This is hardly fortuitous. What seems rather likely is that ca. 220 BC a massive landscaping of the acropolis was undertaken, involving leveling of the ground, as well as conducting small-scale refurbishment works on preexisting architecture, namely the North Gate buildings.\(^\text{344}\)

\(^{344}\) A similar process occurred before the acropolis was reoccupied in the Late Roman period,
Perhaps in this period Room F was constructed anew, while several modifications took place inside the West building (Goldman 1940, 479). Apart from the circular loomweights, no other objects dateable to this second phase have been retrieved from the buildings proper. In contrast, remarkable quantities of drinking vessels and bronze coins turned up from other, unstratified deposits on the acropolis, which in turn suggest that the occupation was rather extensive. At the same time, it is difficult to establish with absolute certainty how long the second phase of occupation continued. Based on the new observations made possible by the CHELP excavations in the areas C and H, it is safe to assume that the habitation on the acropolis persisted uninterrupted for much longer period (Coleman et al. 1999, 311) before the havoc wrought by Sulla in 85 BC.

III. Some time during the reign of the emperor Hadrian, the North Gate buildings and the Northeast Gate shops assumed their prior significance for one last time. The highest concentration of objects and coins was recorded in the Northeast Gate shops, the construction of which caused the dismantling and recycling the building material of the Hellenistic predecessor, already lying in ruins by this time. In fact, this third phase appears to have been centered exclusively on the newly erected shops, since no other material from the acropolis can be chronologically associated with them. As noted above, the extent to which the North Gate buildings were actually, if at all, occupied is uncertain. The last grand-scale reorganization of the acropolis took place in the beginning of the Late Roman period, by which time, however, both complexes have already gone out of use.345

345 The blocking up of the North gate is but one illustration of this, cf. Goldman 1940, 384.

when a substantial clean up led to the redeposition of debris from the earlier periods along the entire acropolis, cf. Haas 1998, 61-62.
4.2.2: Opous

For the past few decades, short-term salvage excavations conducted by the Ephorate of Lamia has become increasingly important for our understanding of the archaeology of Opous. To a great extent, this is still an ongoing process. Since the modern town of Atalandi lies on top of the ancient remains of Opous it has been particularly difficult to obtain material as a result of an open-area excavation. For the most part, the structures revealed are unrelated and out of necessity the study of the city’s fabric relies on piecemeal data. Normal practice requires that vast majority of the excavations receive a short notice in the *Archaiologikon Deltion*, while fuller studies of the material are by and large rare (the only exception is Raselli-Nydegger 1996, 237-296). All of that naturally limits the usefulness of what most certainly has become an archaeological goldmine. Despite the imperfections of scholarly publication, new evidence calls into question some of our longstanding preconceptions about the history of Opous, the *metropolis* (Strabo 9. 4. 2) of the Opountian Lokrians.

The urban excavations have yielded tremendous amounts of small finds, pottery and coins, which are for the most part associated with residential buildings ranging in date from the Hellenistic until the Late Roman period (Raselli-Nydegger 1996, 239-346). In addition to the artifacts, the layers of habitation adjoin freestanding architecture, which is always partially exposed. In most cases, these are sections of walls belonging to houses, less often public buildings. On one occasion two pottery kilns were brought to light, which were probably a part of an industrial quarter, rather than associated with a private plot. Based on the numerous fragments of pottery, the excavator dated the establishment to the late fourth-early third century BC (Lampropoulou 1983, 74-79).

A typical example of what is continually being found underneath the modern town is the discovery of the house debris in the Xousiada plot, the material of which
was assigned to the Hellenistic and Roman periods (Dakoronia 2001, 318-319). It remains unclear whether the architectural remains are to be associated with private dwelling or a public building. Among many fragments of rooftiles, we hear of chytres, amphorae, lekanes, lopades, plates, kantharoi, cups, moldmade bowls, circular loomweights, lamps, three bronze coins and a stone ball (catapult shot?). What is striking about the loomweights, for instance, is the fact that five out of the eight specimens retrieved bear a circular stamp with a 8-ray star (Dakoronia 2001, fig. 85c), which are identical with the 22 examples found by Goldman (1940, 511, cat. no. 18, fig. 256, 6) at Halai (Fig. 4.15).

Figure 4.15: Circular loomweights stamped with Nike holding a wreath and 8-ray star from Opous and the name EΤΥΧΟΥ from Halai, late third-early second century BC (after Dakoronia 2002, fig. 64; Dakoronia 2001, fig. 85g; Goldman 1940, fig. 257, no.5)

A similar situation has been documented in the Kolomtsa plot, where a series of walls marked the spot of what is interpreted as a stoa (Dakoronia 1988a, 233). The associated material contained finds dating to the Hellenistic and Late Roman period. Among the objects retrieved from the Hellenistic layer, the following artifacts were reported: pyramidal and circular loomweights, iron needles, two bronze coins and eight lamps. Interestingly, one of the circular loomweights was stamped with a
rectangular stamp bearing the name Εὐτυχος. At Halai, Goldman (1940, 512, cat. no. 37, fig. 257, 5) discovered four examples of the same circular type (diam. 0.115 m) with the stamp, one of which bearing the same name surrounded by a rectangular frame (Fig. 4.15).

Finally, Dakoronia (2002, 77, fig. 64) reported the findings of two circular loomweights, one of which was stamped and contained the image of a winged figure advancing to right. Again, the stamped loomweight is identical with the two specimens found at Halai (Goldman 1940, 512, cat. nos. 23-24, figs. 259-260). The image was that of Nike walking to right and holding a branch in either hand, with a tree in the foreground (Fig. 4.15).

Although the archaeological setting of the loomweights discovered at Opous is disturbed and therefore hardly possible to reconstruct the original context of use, it is nonetheless intriguing for one to register such wide distribution of the circular type of loomweights, as the findings at Opous and Halai clearly demonstrate. Since the specimens from both sites belong to a common class (Goldman’s Type II-B), there can be little doubt that they were made and in use during the same time period. Goldman (1940, 509-513) found the majority of her Type II-B in strata containing Boeotian coins dated to late third-early second century BC, which in turn suggests that the production and distribution of the loomweights stamped with the name Εὐτυχος took place within the same decades.

As noted above, the diameters of these loomweights adhere to the common range of 0.10 and 0.12 m. This would place them on the top of the list of attested sizes for Hellenistic loomweights known from other sites, such as Ilion, Corinth, Eretria,

346 Since the find was reported as coming from a Late Roman building, cf. SEG 38. 422, it was also assigned an imperial date with a question mark in LGPN III B, s. v. Εὐτυχος (32). There can be no doubt, however, that the stratum with the stamped loomweight contained Hellenistic material antedating the construction of the Late Roman building, cf. Dakoronia 1988a, 233.
Olynthos and Halos, for example (Wallroth 2002, 179-196; Davidson 1952, cat. nos. 1205-1206; Stillwell 1952, cat. nos. 47-48; Metzger 1978; Wilson 1930; Burnier and Hijmans 2003, 121). What is also significant, however, is their weight, which nowadays, in addition to their diameter and thickness, has been increasingly recorded (Shamir 1994, 265-282; Reinders 2003, 298-302). It is rather fortunate therefore that the CHELP excavations on the acropolis of Halai were able to retrieve more examples of Goldman’s Type II-B, since Goldman did not record the weights of the specimens she found during her excavations. Of the grand total of 55 examples found (Goldman 1940, 509-513; Coleman 1992, 282, no. 1; Coleman et al. 1999, 312, nos. 24-27), only four have been published with information about their weights (Coleman et al. 1999, 312, nos. 24-27). These are as follows: 310 g, 375 g, 350 g, and 570 g. It is thus reasonable that the specimens listed in the Goldman’s catalogue can be expected to have similar weights, since all of their diameters average 0.11 m (Goldman 1940, 511-513). By extension, one has to assume that the specimens reported from Opous belong to the same heavy class of stamped loomweights as well.

By way of comparison with specimens from other sites, to return to the weights, it immediately becomes obvious that the loomweights from Halai and Opous are exceptionally large. For instance, the loomweights at Ilion range between 50-100 g, at Olynthus between 106-127 g and 156-177 g, at Halos between 35-175 g (Wallroth 2002, 182; Wilson 1930, 121; Burnier and Hijmans 2003, 121). Heavier range of weights, i.e. over 300 g, is attested for only six out of the ninety-two published examples from the excavations at Masada (Shamir 1994, 270). The standard explanation for the difference in weight points out to the possibility that the heavier loomweights were used to weave heavy and dense fabrics with thicker threads (Barber 1991, 104). Still, the heaviness that is meant in these cases rarely does exceed 200 g, to say nothing of our specimens which are almost twice as heavy. This naturally raises
the question of their function.

On the analogy of the Athena cult in Athens and that of Hera in Olympia, Goldman (1915, 448; 1940, 511) put forward the attractive theory that some may have been used to weave the peplos of Athena Poliouchos,347 which was brought out during the annual celebration of the religious festival dedicated to the goddess. To support her argument, she referred to the mention of certain πεταμνοφάντεραι (line 12) in a fragmentary inscription dated to 206/205 BC found on the acropolis (Goldman 1915, no. 3; Buck 1916, 211-213; cf. Roesch 1965, 66-67). By translating πεταμνοφάντεραι as “the weavers of the cloth,” Goldman (1940, 479, 511) saw no difficulty to associate the cluster of twenty-two circular loomweights discovered in Room F of the North Gate buildings with them. Thus the latter were tentatively interpreted as “official buildings connected with the activities of the temple and priests,” a part of which (Room F) accommodated the ritual weaving of the peplos (Goldman 1940, 511). Goldman’s theory has stood the test of time, and it is still adduced to illustrate claims, as in the case of Late Classical Ilion, where the evidence for weaving (loomweights) is seen as connected to the cult of Athena (Wallrodt 2002, 187). Several objections, however, can be raised.

Since the vast majority of loomweights in Greece are usually discovered in domestic contexts, i.e. houses, it is perhaps significant that those from Halai and Opous are not. The mixed layer of small finds at Opous was associated with the Hellenistic phase of a public building, while at Halai the situation with the North Gate buildings also points to a public establishment of some sort. Furthermore, it is unclear what the original purpose of the buildings was, since Room F was not a part of the primary design, being added at a later period. In addition, most of the loomweights, 347 The epithet is first attested on a dedication dated to the sixth century BC, cf. Goldman 1915, no. 1, 439-442. For the meaning of the epithet, see Hansen 1995, 32-33
except the cluster from Room F, in fact are either unstratified, or with no good stratigraphy.

Second, while the stamping of loomweights with designs from gems, bezel rings or even coins (Tsouvara-Souli 1996, 498) is fairly common, the practice of stamping personal names, as in the case of Εὐτυχος, deserves further emphasis. Whether this certifies origins of production through the name of a manufacturer, or records the name of a magistrate is, of course, a question. It is evident, however, that it supports the inference that some loomweights were subject to a centralized production and a wide distribution, which in itself is a departure from the observation that loomweights were, for the most part, locally produced (Burnier and Hijmans 2003, 119).

Finally, one needs to take into account the question of quantity. The standardized production of heavy loomweights suggests that it transcended the boundaries of a single community, quite possibly because it served to meet a specific need. At this point, though, lack of comparanda prevents us from imagining what this need might have been.348 It is also not uncommon for loomweights to appear in military establishments, a fact that is often difficult to explain.349 On technical grounds, nevertheless, it is highly questionable whether the circular loomweights were actually employed for the weaving of a peplos, not least because it was customary to

348 It is perhaps significant that, aside from Opous, most of the sites where loomweights were found are located on the coast. With this in mind, it may be interesting to point to the close connection between weaving and sailing. In the Odyssey, for example, the piece of web woven by Penelope is called σταϊτρον, Hom. Od. 2. 102, as is the sail of a makeshift boat made by Odysseus, Hom. Od. 5. 318. Tiboni 2005, 127-130 has recently argued that during the Late Bronze age a change in weaving technology affected sailing practices.

349 During the excavations of the Athenian fort at Phyle, Wrede 1924, 212 found several pyramidal loomweights, along with a couple of spindle whorls, both of which he left without a comment. Bean 1955, who excavated a military fort at Adatepe near Smyrna, explained the findings of loomweights by attributing them to “wives or mothers of the garrison-commanders”. Cf. also Ma 2000a, 344, n. 24. According to Betlyon 1991, 43, who studied the material culture of military establishments in Hellenistic Judea, loomweights, spindle whorls and bone tool may be associated with “spinning and weaving activity for the repair of uniforms.”
do so with the use of loomweights of much smaller size (Wallrodt 2002, 191-196).

Despite the late third century BC inscription referring to the πεηακλπθάληεηξαη, it is also difficult to say to what extent the acropolis of Halai was used as a sanctuary dedicated to Athena during the Hellenistic period. As noted above, all dedicatory inscriptions found are of Late Archaic and Classical date (Goldman 1915, nos. 1-2; Goldman 1940, 428-430), while at this point the opinion for the existence of a Hellenistic successor of the earlier temples has not been confirmed by architectural remains (Goldman 1940, 456; Haas 1998).

In short, much needs to be done with the constant outpour of newly excavated material at Opous. On present evidence, it is becoming apparent that Opous was densely inhabited within the boundaries set by the early Hellenistic fortification walls. The rescue excavations are scattered throughout the modern town of Atalandi, while relatively little data has been obtained from the area immediately adjacent to the northern limits of the city. The earliest occupation can be dated to the late fourth century BC (Raselli-Nydegger 1996, 263). In addition, a certain amount of stray material seems to suggest that life persisted and continued in the Hellenistic period as late as late third-early second century BC. Finally, as in a number of other Lokrian sites, the most profusely attested remains date to the Roman and Late Roman periods.

4.2.3: Kynos

The steep sided hill of Palaiopyrgos near Livanates, now identified with ancient Kynos, has been a subject of regular archaeological excavations under the auspices of the Ephorate of Lamia. So far Greek archaeologists have exposed a large complex consisting of storerooms with pithoi and kilns dated to the LH III period on the NE side of the hill (Dakoronia 1993a, 125). Furthermore, on the SE slope salvage excavations uncovered two cists MH graves immediately underneath the remains of Mycenaean buildings (Dakoronia 1985, 187). On top of the prehistoric strata
numerous architectural remains (mostly residential), as well as small finds, of Roman, Byzantine and Hellenistic date, clearly bear witness to a renewed occupation of the hill in historic times. At the same time, it is clear from the excavation reports that the Hellenistic period on the hill is the least well represented. Among the small finds that in all probability are of Hellenistic date, the following objects have been reported: (1) pyramidal and circular loomweights, some of which stamped, (2) fragmentary terracotta figurines, (3) sling bullets, (4) large quantity of rooftiles, (5) fragments of large *pithoi* with stamped decoration (Dakoronia 1985, 187). The architectural remains of late Byzantine and Roman buildings, on the other hand, are more conspicuous indicating that the settlement continued to be a residential ground on a larger scale during later times. Mention is also made of Roman graves scattered in the vicinity of the hill (Dakoronia 1993a, 125). The upsurge of life during the Late Roman period is attested through the discovery of what has been interpreted as a warehouse further down the coast (Fossey 1990, 82).

The picture of settlement history painted by archaeology conforms to what we know about Kynos from the literary sources. To judge from the substantial MH and LH remains on the hill, it seems that during that period Kynos was more than just the seaport (ἐπίλεηνλ) of Opous, as was known to Strabo (9. 4. 2) and Pausanias (10. 1. 2) in Roman times. This new role is reflected in the fact that Opous, and by extension its

350 Ca. 5 km south of Livanates and ca. 400 m east of the National Road architectural remains of an extensive Late Roman and Byzantine settlement have been exposed. A rectangular building was uncovered there through a brief excavation campaign conducted by the Ephorate of Lamia. The results were promptly announced in a very brief report accompanied by two photographs, cf. Dakoronia 1974, 240. Inside the building there were four *pithoi* sunk into the ground, and one of which contained a coin hoard of 1,000 bronzes of Late Roman date. In addition, a Doric capital, 284 other bronze coins and numerous fragments of pottery scattered around the *pithoi* confirmed that the building was in use in the Late Roman period. The excavator concluded that the building was a magazine (*apothiki*) constructed in order to protect the *pithoi* laid inside. Further to the south, remains of a house were also excavated. The establishment contained a circular basin for collecting a liquid product (olive oil?), which was later stored in the *pithoi* protected by the magazine. The proximity to the sea ensured that the product was traded on the spot to merchants frequenting the coast. The result of this mercantile activity may be deduced from the concealment of the coin hoard in one of the *pithoi*.

327
seaport Kynos, was a port of call along the sea route between Demetrias and Chalcis by the second century AD (Antonine Itinerary, 327). Although the entire region of Opountian Lokris was subsequently excluded from the official line of communications used by the postal service (so-called *cursus publicus*) as recorded in the *Tabula Peuntingeriana* (Pritchett 1980, 197-237), the settlement witnessed a further development as a seaport during the Late Roman and Byzantine period, as is profusely attested by the extensive remains of residential buildings on the hill and the new establishments along the coast.

In contrast to the later periods of settlement, the image of Archaic and Classical Kynos is still out of focus and difficult to fathom. The lack of reliable literary accounts prior to Polybius and Livy poses an almost insurmountable impediment for scholarly inquiries.\(^{351}\)

To return to the absence of Archaic and Classical remains on the hill, not only is this striking, but it is also a venue of research still to be undertaken, a question to be asked. Furthermore, things seemed to have changed drastically in the early Hellenistic period when the hill was fortified for the first time in its history. In addition to archaeology, one is fortunate to have the accounts of Polybius and Livy, as well as the potential (still to be fully explored) provided by the *diagramma* of Philip V (Ch. 2, section 2.4.2), which constitutes the most solid piece of evidence for reconstructing the settlement’s history during the later phase of the Hellenistic period.

Taken together, the literary and epigraphical sources present us with a new situation where Hellenistic Kynos assumes special importance for Macedonian military shipping across and along the North Euboean Gulf. Now there can be no

\(^{351}\) The best illustration of this is the garbled passage in the *Periplus* of Ps-Skylax, where *Kynosouros* has been shrewdly emended to read *Opous* and *Kynos* (Müller 1861, 48; cf. Fossey 1990, 167).
doubt that this was secured through the planting of a royal garrison, about the existence of which we learn from the *diagramma* uncovered on the hill. It is difficult to gauge the degree to which this changed the usual way of things established before the arrival of the garrison. And as in the case of Halai, we are uncertain about the fact whether the hill was continuously inhabited since the construction of the fortification walls in the early Hellenistic period. Be that as it may, the reported small finds found during excavation show strikingly similar types of objects, e.g. loomweights, *pithoi*, weapons, etc. Since some of these objects are contemporary with the date of the *diagramma*, it is conceivable that they should testify to the Macedonian occupation of the hill. Future excavations are also likely to yield more evidence to the architectural extent of this military presence.

4.2.4: Alope

Much of what we know about the archaeology of Alope is still fragmentary and lacking in detail. The prominent steep sided hill rising south of the National Road near the village of Ayia Aikaterini has turned up a wide variety of small finds, ranging from the Late Bronze Age until the Late Roman period (Fossey 1990, 92). In addition, several salvage campaigns (1995-1997) conducted by the Ephorate of Lamia exposed what is believed to have been the lower town of Alope, ca. 500 m west of the acropolis. The Greek archaeologists have uncovered the architectural remains of a residential quarter enclosed by the northeast corner of the fortification walls erected in the early Hellenistic period (Bouyia 2000a, 51-53; 2002, 29-32). Several graves and a built tomb of Roman date built directly on top of the earlier layers of habitation indicate that the lower town was already abandoned by the Late Roman period (Bouyia 2002, 30). In addition, at the northeast foot of the acropolis the construction of a Late Roman villa and an Early Christian basilica (Orlandos 1929, 207-228; Dakoronia 2002, 117-118) recycled a great deal of the ashlar blocks with which the
Hellenistic fortifications had been built. This is yet another indication, as was demonstrated in the case of Halai, Kynos and now Alope, of the resumed importance of Opountian Lokris during the Late Roman period.

For the purposes of our discussion establishing the extent of the Hellenistic habitation of the fortified area is of utmost relevance. The excavator has provided a tantalizing clue pointing to the existence of Archaic houses upon which the Hellenistic ones were constructed, with a slightly different orientation. From the published state plan (Bouyia 2000a fig. 2), it is obvious that the architectural remains from the Archaic period are indeed considerable. What is unclear, though, is the extent to which the Hellenistic houses were following the plan of the preexisting structures. Bouyia (2002, 30) talks about “three adjoining rooms of a building,” when describing the findspot of three separate coin hoards found in each of the rooms. The hoards contained 22 bronze issues of Opountian Lokris ([338-300 BC] SNG Cop 65-71), 25 of Chalcis (Picard 1979), and 8 silver, of which three tetradrachms, minted under the name of Alexander the Great ([after 332 BC] Price 1991, no. 1-4, 66-67). In addition, the vibrant life of the local community is attested by the multitude of objects such as plain and painted pottery, “abundance” of loomweights, grinding stones, pestles, fishing hooks, tools, nails, jewellery, etc (Bouyia 2002, 30). Of all the artifacts, only three loomweights and a spool have been illustrated (Bouyia 2002, fig. 37).

Another fundamental question has to do with pinpointing the exact sequence of strata containing the objects mentioned above. For instance, Bouyia (2000a, 54) dated the construction of the Hellenistic fortifications to the late fourth-early third century BC based on the small finds associated with them. At the same time, she also stated that a destruction layer assigned to the second half of the fourth century BC was adjoining the foundations. Fixing the date of the material from this stratum is therefore critical for establishing whether the construction of the Hellenistic walls occurred after
this event of destruction, possibly linked with the attack on the city by Ptolemaeus in 313 BC (Bouyia 2000a, 56).

In sum, the available archaeological data sheds more light on the Hellenistic phase of the settlement rather than the Archaic and Classical periods for which we possess the account of Thucydides (2. 26. 2, 3. 91. 6) describing the events of 431 and 425 BC. It is conceivable that during the Hellenistic period Alope resumed its importance as a center of intensive occupation on account of the ability to exert control upon the passing traffic by land and by sea. Apparently, the absence of a natural harbor was no obstacle to this. The fact that it served as a potential port of call along the North Euboean Gulf comes from the *Periplous* of Ps.-Skylax (60). The reliance on the sea may be gleaned from the decision to shift some of the population from the acropolis down in the plain and near the coast, where they were settled in a more permanent fashion attested by the construction of new fortification walls and residential buildings. On present stage of knowledge, however, it is impossible to determine either the extent or the duration of this occupation during the Hellenistic period.

4.2.5: Towers in the countryside

The following section combines the available evidence for the extra-urban fortified complexes included in Chapter 3, i.e. Chiliadou, Megaplatanos and Mikrovivos, including the unexcavated tower near Koromilia, Mikrovivos II. The extinct site of Palaiopyrgos, which I have included in the gazetteer, may also be considered. Here the primary objective is to focus on the archaeological data pointing to the nature of occupation.

Firstly, the assemblages retrieved from Megaplatanos and Mikrovivos show remarkable similarity in terms of their contents; unglazed cooking vessels (*chytrae*), black-glazed fineware (plates), vessels for transportation (*amphorae*) and drinking of
wine (moldmade bowls). To what extent, this applies to the complex at Chiliadou, however, remains unclear. Nowhere, though, evidence of industrial activity has been reported. Secondly, another common feature is the presence of a fortifying element vis-à-vis a tower within a larger complex of buildings (Table 4.2).

Table 4.2: Towers in the countryside by type and size; in meters

<table>
<thead>
<tr>
<th>SITE</th>
<th>TYPE</th>
<th>NUMBER</th>
<th>DIMENSIONS</th>
<th>AREA</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Megaplatanos</td>
<td>part of a complex</td>
<td>1</td>
<td>9,80 x 7,20</td>
<td>51,6</td>
<td>3rd-2nd</td>
</tr>
<tr>
<td>Mikrovivos</td>
<td>part of a complex</td>
<td>1</td>
<td>4,30 x 4,30</td>
<td>9,6</td>
<td>4th-3rd</td>
</tr>
<tr>
<td>Chiliadou</td>
<td>single tower</td>
<td>1</td>
<td>7,10 x 5,10</td>
<td>32,6</td>
<td>mid 4th</td>
</tr>
<tr>
<td>Mikrovivos II</td>
<td>single tower</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>4th-3rd</td>
</tr>
<tr>
<td>Palaiopyrgos</td>
<td>possible</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>4th-3rd</td>
</tr>
</tbody>
</table>

At Megaplatanos, architectural remains of several adjacent structures show that they, along with the tower, existed as a single unit (Dakoronia 1989b, 176). At Mikrovivos, on the other hand, the tower appears as the focal point of the site, around which the entire complex was organized (Dakoronia and Zachou 2006, 370). The unexcavated tower near Mikrovivos II remains a puzzle, although a fortified complex and a solitary tower are equally possible. It is unfortunate that on present evidence it is impossible to know the spatial distribution of the associated small finds. For instance, do they all originate from the adjacent structures and/or adjoining rooms? Or, was some of the pottery actually found inside the towers? Thirdly, the material remains indicate that both sites were occupied for a short period of time, perhaps implying that they were born out of specific circumstances, while lasting for no more than these required. Based on the pottery, the occupation of the complex at Mikrovivos has been dated to
the late fourth century BC, the one at Megaplatanos to the late third-early second century BC.

Finally, the range of activities deduced from artifact analysis is limited exclusively to food consumption and wine drinking. Despite the relative isolation of these complexes, being away from known poleis or other villages, it is still obvious that they were well connected with the external world. The best illustration of this is the incidence of imported fineware and amphorae among the pottery. Perhaps it is no coincidence that the guiding principle behind the siting of these establishments took into account the proximity of major lines of inter-regional communication. This is reflected in the tendency to occupy elevated positions, at least in the case of the complexes at Mikrovivos, allowing extensive views over greater distances. The role of the tower at Chiliadou is more difficult to assess, in part because it is ill-positioned for visual surveillance of the surrounding territory. Agricultural function or checkpoint for controlling the movement between the territories of Halai and Chiladou (Coleman forthcoming) are equally possible. While the complex at Megaplatanos was located at the foot of Prophitis Elias, the occupants could have easily taken advantage of the prominent position of the latter, which Fossey (1990, 148) described as “the veritable hub of the communications network.” While Mikrovivos was oriented with respect to keeping an eye on the sea traffic in the North Euboean Gulf, it is possible to assume that Megaplatanos served as a checkpoint along the overland Route 1 and 2.

The conclusion drawn above may find further support in the recent discovery of another checkpoint belonging to the branch of Route 1 on the territory of Phokis. The Ephorate of Lamia conducted a small-scale excavation on a hill located near the village of Sphaka, at the 19th kilometer on the modern Atalandi-Elateia road, where the architectural remains of a building with a square plan (9 x 9 m) were uncovered. The interior was divided in two rooms by a wall, with the smaller of the rooms roofed,
as the numerous finds of rooftiles found inside demonstrate. The building was enclosed by a larger structure, a corner of which was discovered to the southeast (Fig. 4.16). Among the small finds associated with the building vessels for household use like *chytrae* and amphorae were found. The complex was dated to the last third-early second century BC (Dakoronia 2000c, 341-343).

![Figure 4.16: Fortified complex near Sphaka in Phokis, late third-early second century BC (after Dakoronia 2000c, plan 4)](image)

Based on Pausanias (10. 35. 1-5), who mentions the εὐθεία ὀδὸς between Hyampolis and Orchomenos, Dakoronia (2000c, 342) surmised that the building at Sphaka served as a defensive post along the road. Close inspection of the topography, however, reveals the Sphaka controlled the location where the section between Kalapodi and Parapotamoi branched off towards Elateia. Thus the site must have been chosen on account of its proximity to this important intersection of Phokian roads,
rather than to the section near Hyampolis and Abai leading to Orchomenos. Apart from being interpreted in purely defensive terms, the function of the Sphaka complex remained unaddressed in the excavation report. When the results from the excavations at Mikrovivos appeared in print, however, Dakoronia and Zachou (2006, 370, n. 76) pointed out to the fortified complexes at Megaplatanos and Sphaka as further comparanda for the complex at Mikrovivos. What remained unstated, though, was that the square building at Sphaka was tacitly interpreted as a signal-tower, by way of comparison with the ones at Megaplatanos (9.80 x 7.20) and Mikrovivos (4.30 x 4.30).

To summarize, there seems to be general agreement that we are dealing with isolated fortified posts sited with respect to important land and sea communications. The strategic location conditioned the current interpretation of most as signal-towers or φρυκτόρια (Dakoronia 1989, 176b; Dakoronia and Zachou 2006, 370). Short-term occupation, dated to the late fourth century BC (Mikrovivos, Mikrovivos II, Chiliadou) and the late third-early second century BC (Megaplatanos, Sphaka), points to the fleeting presence of a small number of people with the possible goal to check the traffic on inter-regional lines of communications. The latter point, however, is not argued in the available literature. The evidence suggesting subsistence reliant on imported commodities supports this further. The conspicuous consumption of food and wine, and more importantly, the lack of evidence for industrial activity or installations for processing agricultural produce also speak for a social behavior, which is unproductive in strictly economic terms. Thus considering the defensive role assigned to these establishments, it is very likely that the inhabitants of the towers were in fact soldiers. It remains to be seen, however, whether these detachments were dispatched by civic authorities from Lokrian poleis, or planted by an outside power in a more permanent attempt to facilitate large-scale military movements along Routes 1 and 2.
How does the current picture showing the existence of isolated towers in the Lokrian countryside fit into the much-debated purpose of Greek towers in general? Modern scholarship on this issue has a long history of difference in opinion with regard to their function, with the themes that usually gain prominence being military and agricultural.352 The military paradigm envisages that majority of the towers served as look-outs, watch-towers or fire-stations, designed to protect territory, roads or harbors, while the “rural” school, in turn, sees in them a way of exploiting the natural resources of the countryside, such as arable land, vines and mines, e.g. *Turmhaüser, Turmgehöft*.353 As is often remarked, though, an all-embracing explanation can hardly account for the obvious diversity of these physical structures (Osborne 1986; 1996, 60; Whitely 2001, 394). It is thus advisable that each case be treated in its own right based on the bigger picture instead of testing the plausibility of theoretical models worked out on material from elsewhere.

A recent study, for example, has argued that many isolated towers of mainland Greece, as well as on the Cyclades, were designed as a way to control dependent labor, even used to physically confine the movement of slaves (Morris and Papadopoulos 2005). Our evidence, however, can hardly support such an idea, not least because of the lack of traces testifying to agricultural or other industrial activities. One thing is clear, though, most structures seem to betray, to the extent that one can tell, the common traits, which were long ago singled out by Young (1956, 138; cf. Pecírka 1973, 123-128) based on the example of south Attica: πύργος, αὐλή and ὀικία – tower, courtyard and house. The presence of a fortified unit, which for the lack of a better term one may call a tower, can hardly be denied, at least in the case of Mikroviños, Mikroviños II, Megapalatanos and Sphaka. While the traces of external

352 For a brief review of the debate, including a list of bibliography, see Morris and Papadopoulos 2005, 157-167.

walling may be interpreted as the boundaries of an οἶκια, on current evidence the locus and/or the presence of the αὕλη remains problematic (Fig. 3.62).

In the attempt to acquire understanding for the primary function of these structures, it is, of course, beyond argument that the morphology appears as a unifying factor. I think, however, that the key lies in the location, as is also recognized by the excavators, who assigned strategic role, the tower at Chliadou excluded, for all complexes in question. In fact, they attempt to explain the purpose of the most conspicuous unit, i.e. the tower, normally enclosed by other rooms, by suggesting it functioned as a signal-tower, more specifically φυκτόριον. The latter designates a tower equipped with fire-installation on the uppermost floor. The word, however, is attested only in the Onomastikon of Pollux (9. 14) and the Suda. More frequently employed terminology is πυρσούριον or πυρσούρος, from πυρσός “torch” or “firebrand,” usually translated as beacon-tower. Another form is πυρσουρίς, literally “one who watches on a height to make fire-signal” (Bakhuizen 1985, 24). Two entities should be distinguished, though; a person who performs fire-signaling and physical structure specifically built for the purpose. Several examples may illustrate the difference. The passage in the Suda, for example, tells of the Macedonian king Perseus who constructed in all Macedonia πυρσουρίδας so that he may be informed of all events happening throughout the country. It is obvious that in this case the second is meant. On another occasion, we are told that in 315 BC Antigonus I the One-Eyed established a system of fire-signals (πυρσοίς) and dispatch-carriers (βιβλιοθόροι) across all of Asia (Diod. Sic. 19. 57. 5). A similar system was set up by Philip V in 208 BC, who was in constant contact with his στρατευοί in Peparethos, Euboea, Phokis and Boeotia by a beacon on Mt. Tisaion transmitting through “πυρσός”

information to his headquarters at Demetrias (Polyb. 10. 42. 6). An earlier example is that of the Persian king who was aware of what was happening throughout the empire by employing a system of ἄρακτος that submitted fire-signals to one another (Aristotle, De Mundo 398b 30-35).

Military decisions were based on information and one way to stay on alert, say, about the movements of your enemy was to send messages by means of beacons (Russell 1999, 145-149). Normally, the latter occupy natural eminences, but in order to transmit the signal further very often they had to rely on relay-stations that were planted in-between (Fig. 4.17).^355

The archaeological signature of such temporary establishments need not conform to a fixed architectural scheme. In many cases, especially if made of perishable materials, they are likely to have left no trace. Isolated towers of stone masonry occupying prominent hilltops, combined with small forts of rubble masonry, are often interpreted as evidence for the existence of military networks of communication.^356

The prevailing view, however, invariably seeks to envisage the existence of territorial networks for strictly regional defense maintained by the civic authorities therein. In my view, the function of rubble forts and isolated towers must be carefully examined, especially in those cases when a variety of evidence points to the

^355 Transmitting information by fire-signals goes back to legendary times, an often-cited example being Aeschylus’ play Agamemnon 281-311. See also Hom. Il. 18. 207-214. In the opening scene of Agamemnon, the news of the fall of Troy was sent to Argos by a chain of intervisible sites. See discussion in Quincey 1963, 118-132 and Tracy 1986, 257-260. The practice apparently tickled the interest of both military writers and historians, as is evident from the writings of Aeneas Tacticus (Poliorketika 6. 7. 15. 1. 16. 16) and Polybius (10. 43. 7. 45), who even claimed to have perfected an old, less efficient system of transferring messages over long distances. For a commentary on the passages in Aeneas, see Whitehead 2002, 111-113.

^356 Bakhuizen 1985, 144-148, for instance, have interpreted the remains of the Dhrokospito tower (418 masl), overlooking Chalcis and Atalanti channel, as a signal station, pyrsourion that functioned as a link in the chain of fire-signals communicating with the main beacon on Mt. Tisaeum established by Philip V.
establishment of foreign military presence in a given region for a known period of time. With this in mind, I hope to demonstrate that the construction of the Hellenistic tower at Korseia and Palaiopyrgos, both situated on a projecting ridge of Mt. Chlomon (500 masl), was guided by strategic factors vis-à-vis (1) facilitating military shipping along the Lokrian coast and (2) participating in the trans-regional communication
network of fire-signals.

Undoubtedly, the foremost advantage, which both sites possessed, was their potential to overlook the entire plain of Atalandi, as well as the coastal strip along the bay of Atalandi, from Cape Arkitsa to Cape Kerata. What this means is that the availability of natural heights provided unique opportunity (1) to acquire information in advance and (2) to transfer it to other points unable to get it by their own means. These features alone are enough to justify a decision to plant a small detachment of troops on the spot, since it was the only way of ensuring that such information can be received and transmitted. A by-product of the military presence is the construction of defensive architecture, i.e. towers, located on the most conspicuous points. The reason is not far to seek. The archaic circuit at Korseia was unsuited to serve the new need because it lacked towers. There are good grounds to think that the single tower at Palaiopyrgos was built as a way of remedying the inability of Korseia to obtain visual contact with the bay of Theologos and Halai, for example. Furthermore, the close proximity to the mountain road, east of Mt. Chlomon, furnished Palaiopyrgos with opportunity to check the traffic originating from the plain of Atalandi, as well as from the immediate vicinity near Opous, an opportunity Korseia did not possess.

One advantage of the argument about the existence of communication networks set up by a foreign military power comes from the ability to identify the authority that can benefit from it. In the case of Opountian Lokris literary and epigraphic evidence point to two Macedonian kings, Cassander and Philip V, who are known to have maintained permanent garrisons in the region. As we saw in the preceding chapters, they took personal interest in the region chiefly on account of being forced to secure an alternative means for the movement of their armies. We can be fairly confident in concluding that the creation of several fortified strongholds along the Lokrian coast doubtless stemmed precisely from serving that need, i.e. to
secure sea-route along the North Euboean Gulf. In conjunction with this, occupying
the outlying ridges of Mt. Chlomon became essential, since they were able to facilitate
better communication between the harbors situated along the midpoint between the
Euripus and the Malian Gulf, i.e. the bay of Atalandi. In addition to the military
harbors, the bay provided several isolated places for safe anchorage, e.g. Lekouna,
Vivos and Mikrovivos.

Introducing the thorny subject of the φυλακή τῆς χώρας, Coleman
(forthcoming) has recently suggested that the towers at Mikrovivos might have been
involved in the defense of the territories of Halai and Kokkinovrachos. The idea is
reasonable but it rests on the assumption that city territories were strictly controlled
throughout history. A confirmation of such practices during the Hellenistic period may
be obtained from the boundary dispute between Halai and Boumeliteia, dated to 167
BC, which was settled upon their request by judges appointed from the Boeotian
League. Despite recent claims to the contrary, no surviving evidence has shown that
Opountian Lokrians maintained tight control on matters of border security. We only
have two late third century inscriptions from Halai from which it is clear that the city
had a board of 3 πολέμαρχοι fashioned on the basis of the scheme introduced by the
Boeotian League (Roesch 1965, 161). Despite the apparent link to matters of war
which may be assumed based on etymology, the idea that this was a strictly military
office has in fact been questioned by Feyel (1942, 199; cf. Roesch 1965, 162-176).

357 Coleman identifies Korseia, mentioned by Pausanias 9, 24, 4, with the citadel on
Kokkinovrachos hill southeast of Kyparissi. The border shared by the latter and Halai passes along the
hills west of Mikrovivos, with the tower at Mikrovivos II serving as a check-point on the Haliote side
and that west of Mikrovivos bay belonging to Korseia.
358 Daverio Rocchi 1999, 418 on fortifications in East and West Lokris: “Towers erected in the
vicinity of coastal urban centers and to protect some mountain passes must have fulfilled some
protective function for economic activities, possibly including the control of the collection of road tolls,
even before they were incorporated into defensive military system of the particular territories.”
359 It is normally assumed that the πολέμαρχοι served as military commanders on local level in
contrast to the boeotarchs who were the leaders of the federal armies, cf. Feyel 1942, 198-199.
360 See, for example, IG VII 4263, ll. 7, 27, dated to 225-200 BC, in which the πολέμαρχοι,
together with the τευχοτοι, are charged to handle the funds appointed for the refurbishment of the city
Moreover, no Hellenistic evidence is available to show that Opountian Lokris sustained the institution of *ephebeia*, as in the case of Athens and other regions in Greece, an aspect of which was the dispatch of *ephebes* or θξύπηνη to border forts or περιπόλια in order to protect the ἔσχαται (Hatzopoulos 2004, 91-96; Chaniotis 2008, 103-145).

On close inspection, though, it is apparent that the tower near Koromila has no line of sight with the acropolis of Halai, even though it was clearly positioned on a northeast-southwest axis. It is conceivably true that it could have checked the traffic between Mikrovivos and Vivos bay by land, which had proximity to cultivable land and was well watered, but if such contacts in fact existed they had been easily negotiable by sea. Instead, I would like to point out to the possible contemporaneity of the two towers suggesting the execution of a single-handed operation designed with the purpose to secure an alternative water supply for military shipping in the bay of Atalandi. This in turn conforms to the idea of the complex at Mikrovivos serving as a signal-tower, as originally suggested by Dakoronia (2006, 370). Isolated, clear of habitation areas were chosen in the vicinity of the water source at Vivos bay. The high inaccessible hills surrounding the latter, however, proved unsuitable for planting the outposts there, with the well-sheltered bay of Mikrovivos providing an attractive alternative.

walls at Oropos. They were also responsible for inscribing the decree on a *stele*. To give another example, the πολέμαρχοι of Kynaitha, as told by Polybius 4. 18. 2, were charged to lock the city gates, carry the keys when they remain unlocked and be on guard at the city gates during the day. See also the definition of their duties in Aristotle *Pol.* 6. 1322a 35.

361 On the institution of κρύπτοι, see Knoepfler 1993, 329-335; Couvenhes 2007, 23.
4.3: Summary

The major difficulty with the available archaeological data is its incompleteness, chiefly because in some cases, as at Palaiokastra Livanaton, Larymna and Korseia, no excavations have been carried out. In the case of Korseia and Larymna, the lack of archaeological excavations limits our knowledge of the internal arrangement of the fortified area. At Palaiokastra Livanaton, on the other hand, most of the effort went into revealing the extent of the fortification wall, while future campaigns will hopefully shed light on the nature of occupation inside the walls. On the other end of the spectrum one has at his disposal the data from the excavated sites, most notably, Halai, Kynos and Alope. How representative the sample is, for example, is a question. The following regional trends may be distinguished.

First, the occupation of many sites was invariably preceded by refurbishment of preexisting and/or construction of new fortification walls during the Early Hellenistic period. In some of the cases examined, most notably Halai, the decision entailed a reorganization of what most certainly was a public space that in the past was reserved for strictly religious purposes. This is inferred from that fact that new buildings of commercial character (?) were for the first time put up on the acropolis, inside the Archaic and Classical sanctuary of Athena. Scattered material also seems to suggest that from this point on in addition to frequented by worshippers the acropolis was intermittently inhabited.

Second, all sites grew in size by incorporating vast amounts of level ground, immediately adjacent to the more elevated position of their Archaic acropolises. This is particularly obvious in the new layouts of Alope, Opous, Halai and Larymna. While seemingly this may have been the product of a common design, notable differences exist. For instance, at Alope life seems to have continued uninterrupted from the Late Archaic until the Late Roman period, despite the fact that in the Early Hellenistic
period the settlement moved away from the naturally defensible hill down into the plain and near the seacoast. At Opous, on the other hand, the acropolis, as identified by Fossey (1990, 68), has yielded no remains from the Archaic and Classical periods, while the archaeological evidence for the occupation of the lower city postdates the building of the extensive city walls dated to the Early Hellenistic period. At Halai, the acropolis that served as a sacred ground throughout the Late Archaic and Classical periods became, as noted above, essentially secularized, starting with the Hellenistic period. It is significant that the change coincided not only with the early Hellenistic enlargement of the acropolis defenses, but also with the fortification of what undoubtedly functioned as a lower town. It is also of interest that most of the pottery retrieved by the CHELP surface survey carried out around the acropolis was of a late date, i.e. Hellenistic and Early Roman. This supports, in my view, the opinion that, at least in the case of Halai, we may have identified the archaeological signature of *synoicism or metoikesis.* \(^{364}\) To what extent this may be derivative from, and somehow connected with, the epigraphically attested presence of Macedonian garrisons in the region during the early Hellenistic period is at this point uncertain. Royal arbitration in such practices is not uncommon. \(^{365}\)

Third, archaeological excavations at Halai and Opous helped delineate the extent of what I have termed as a second period of occupation on the premises established during the Early Hellenistic period. As discussed above, the available material from both sites demonstrates remarkable consistency in terms of contents and date, which in the case of Halai, is fixed by the frequent findings of Boeotian coins dated to 220-197 BC. It is perhaps significant that this was the time when the

\(^{364}\) Demand 1990, 9 defines *metoikesis* as “the relocation of either single or multiple communities.”

community of Halai had to exercise its civic authority over matters that remain unknown to us (Goldman 1915, nos. 3-4). Accidentally, these are also the only inscriptions found on the acropolis (Goldman 1915, no. 3 [206/205 BC]; no. 4 [208/207 BC]) bearing witness to the fact that Halai joined the Boeotian League (Feyel 1942, 187, n. 2, 265 n. 3). On a regional scale, most of what was happening in Opountian Lokris during the last two decades of the third century BC was most certainly connected with activities of Philip V, as the frequent references of Polybius and Livy, as well as the *diagramma* from Kynos demonstrate. His long-term interest in the region had to do with securing lines of communications by land and by sea for his army, and this was maintained through the installment of permanent garrisons in Opous and Kynos. The full impact of his policy in terms of Lokrian history, however, has yet to be evaluated but as a preliminary hypothesis I would like to suggest that the role played by Halai be examined through the paradigm of foreign military presence as well. Thus the late third-early second century traces of occupation on the acropolis might be seen as evidence for the planting of yet another royal garrison.

Fourth, the appearance of isolated fortified complexes, e.g. Megaplatanos, Mikrovivos and Sphaka in Phokis, deserves special consideration. The primary reason for including them in our analysis is the fact that they revealed traces of permanent occupation. Another significant point comes from the observation that their period of use coincides with the chronology of habitation established in the major regional *poleis*, i.e. late fourth and late third-early second century BC. This in turn correlates with the epigraphic (Peisis epigram and Kynos *diagramma*) and literary evidence (Diodorus, Polybius and Livy) pointing to the practice of stationing garrisons by Cassander and Philip V, who had to march through the territory of Opountian Lokris with their armies on a number of occasions. It must be stressed that, to a great extent, the efficiency of their military agenda depended on the availability of good
communications, and in this, the role played by the fortified outposts – a byproduct of the urban φρούρια – was crucial.

For instance, we know that in 208 BC Philip V established a network of fire-signals transmitting information from the areas where he maintained garrisons, e.g. Phokis, Boeotia, Chalcis, Peparethos, to his headquarters at Demetrias via Mt. Tisaeum (Polyb. 10. 42. 6). Simple geographic logic dictates that Opountian Lokris must have played an essential part in maintaining the system to work. Not only was this possible on account of the existence of Macedonian garrisons at Kynos, Opous and possibly Halai, but also on account of the intermediary position of the region. In short, there are two lines of inter-regional communications that could have been instrumental in transmitting the signals back to Demetrias on the Pagasitic Gulf: (1) the land corridor connecting Thessaly, Euboea, Opountian Lokris, Phokis and Boeotia; Oreos-Aedepsos-Kynos-Megaplatanos-Opous-Sphaka-Elateia, or via Hyampolis-Abai to Orchomenos, and (2) the sea route along the Euboean Gulf; Echinos-Phalara-Thronium-Alope-Kynos-(Mikrovivos)-Halai-Larymna-Anthedon-Chalcis. If this is accepted, the fortified posts at Megaplatanos (280 masl) and Sphaka (220 masl) may be seen as relaying stations along Route 1. Although, on present evidence, it is difficult to say if this was the only purpose they served, it accords well with archaeological, literary and epigraphic data pointing to the frequent use of the road by Macedonian armies.

On the other hand, the proximity to the sea ensured that Mikrovivos (25 masl) had the potential of serving as another port of call along the North Euboean Gulf. It is unlikely, though, that it was used as a relaying station in a network of fire-signals, as the one set up by Philip V in 208 BC, not least because the archaeological material

associated with the complex points to an early Hellenistic date. What is clear, however, is that the towers at Mikrovivos and Mikrovivos II were constructed at the same time, as is evident from their similarity in design, masonry and building material.

4.4: Burial practices

As stated at the outset, adducing evidence from the necropolises associated with the major centers of settlement in Hellenistic Opountian Lokris is indispensable. The study of grave goods provides vital clues for the existing connections with other regions, while burials alone may be taken as evidence for the extent and nature of occupation.

In the case of Opountian Lokris, dealing with the ever-increasing body of primary data is particularly important. Recently, salvage excavations conducted exclusively by the Ephorate of Lamia has continued to expose large numbers of new graves belonging to both previously known and newly discovered necropolises. Of 115 excavated graves from the necropolis of Halai, the contents of only two have been a subject of detailed discussion (Dakoronia 2000a, 453-460). The excavation report on the graves from Triandaphyllia near Livanates is particularly detailed (Onassoglou 1986, 181-187; 1994, 56-70).

4.4.1: Halai

The necropolis of Halai is the most thoroughly excavated necropolis in Opountian Lokris to date. It was Goldman and Walker who in 1911 and 1912 conducted the first excavations, as part of their campaigns on the acropolis; they opened 280 graves (Walker and Goldman 1915, 424). The precise location of the graves they excavated, however, remains unknown. General indication was provided in the preliminary reports from which it is apparent that there were “two separate and well-defined areas” (Walker and Goldman 1915; 424-432; Goldman and Jones 1942, 365). One lay to the east of the acropolis, while the other was situated on low hills to
the north. Regrettably, a comprehensive account of the finds from the necropolis excavated by Goldman and Walker never materialized. The pottery from the graves, on the other hand, was a subject of Walker’s dissertation submitted to the University of California in 1916, which has been, and still is, an indispensable source of primary information. So is Goldman’s (1916) dissertation on the graves. Since they were never published it is unfortunate that their pioneering studies continue to be inaccessible to a wider audience. The chronological scheme of the pottery adopted in both dissertations is an essential starting point for further studies (Walker 1916, 7-8). Finally, a very short overview of the excavated graves, accompanied by several photographs, appeared in a separate article devoted to the stylistic development of the terracottas found in the necropolis (Goldman and Jones 1942, 365-370, figs. 1-6; cf. Thompson and Rotroff 1987, 118-119).

The next stage began with the results from the intermittent salvage campaigns conducted by the Ephorate of Lamia during the 1990s. Greek archaeologists excavated a total of 115 graves concentrating in the area east of the acropolis (Dakoronia 1992a, 228-231; Dakoronia 1995, 178-183; Dakoronia 2000b, 333-335), as defined by the Goldman and Walker excavations. For the first time, the spatial organization of the graves became known through the publication of two state plans (Fig. 4.18). In addition, a group of 29 graves were reported to be situated 300 m (Dakoronia 1992a, 228), while another cluster of 26 graves only 190 m east of the acropolis (Dakoronia 2000b, 333). For obvious reasons, the new stage of affairs was partially reflected in the new topographical plan of Halai and its immediate surroundings.
Figure 4.18: Hellenistic graves from the necropolis at Halai (after Dakoronia 1995, fig. 5; Dakoronia 1992a, fig. 5)

published with the results of the renewed excavations on the acropolis conducted by CHELP in 1990-1991 (Coleman 1992, 267, fig. 2G). The most recent excavations, however, clearly demonstrated that the location of the 26 graves, located only 190 m east of the acropolis, had infringed on the area with the greatest concentration of sherds found during the CHELP surface survey. The discovery of these 26 graves thus calls into question the current perception of what are believed to be the boundaries of the lower town.

The use of the necropolis continued from the Late Archaic until the Early Roman period. Before I turn to the graves of Hellenistic date, it may be important to note that (1) the earliest graves are dated to 550 BC, while (2) the quantity of Red-Figured pottery is surprisingly small (Walker 1916, 7, 66). The earliest graves, Walker’s Group A (ca. 550-520 BC), were later assigned to the Group A, dated to 550-525 BC (Goldman and Jones 1942, 374-375). When it comes to establishing the foundation date of Halai, however, this important body of evidence is completely ignored from discussion. But provided one agrees that Halai was founded in the late
seventh-early sixth century BC (Goldman 1940, 430; Coleman et al. 1999, 298), and unless the earliest graves were located somewhere else, it remains extremely difficult to explain the consistent absence of graves dating earlier than the middle of the sixth century BC.

Although the funerary practices show considerable variety, four main types of burial have been distinguished both by the American and Greek excavations (Goldman and Jones 1942, 366; Dakoronia 1992a; 1995; 2000b; cf. Hagg and Fossey 1980, 121-122): (1) monolithic sarcophagi made of gray limestone,367 (2) sarcophagi constructed of four separate slabs, (3) pithoi, and (4) earth-cut rectangular pits covered by slabs. Neither of these is chronologically significant, although type 4 seems to have been in use only during the Hellenistic period. Type 3 is the most common way of burial not only at Halai, but also in other sites of Opountian Lokris. From the emerging pattern, however, there are several exceptions deserving special emphasis.

First, Goldman and Jones (1942, 366) reported two clusters of “crowded Hellenistic graves” surrounded on three sides by what seems to have been a peribolos wall. Second, all the graves assigned to Group D1, D2 and D3 (330 BC-Christian era) by Walker (1916, 2) contained burials in which the deceased were “laid flat on their back, with legs outstretched and arms close to the side.” In addition, this new Hellenistic practice entirely ousted the preceding tradition where the body was placed on its side, with knees drawn upwards. Although this change has been repeatedly acknowledged in the literature, the prevailing opinion prefers to explain it within a larger framework of reference. Dakoronia (2002, 21-22), for example, has recently

367 The nature of the stone pointed as a source the quarry located to the north of the acropolis, cf. Goldman and Jones 1942, 365. The location is designated as Quarry #3 (see Fig. 5.3) by recent investigations on the geology surrounding the site, cf. Murray and Coleman, unpublished report. It is puzzling, though, that the Goldman’s reference to the sarcophagi of “poros stone” as being made from the limestone supplied from what we now know as Quarry #3 has eluded attention, cf. Haas 1998, 57. Most of the sarcophagi date to the Late Archaic period, cf. Goldman and Jones 1942, 366, and so do the material remains reported from the quarry itself.
suggested that the introduction of the extended supine position of the body “may reflect an influence from Macedonia or was a result of the contacts with other countries.”

Among the graves, a “large chamber tomb” was also found, which was dated to the end of the third century BC on the basis of a coin. Unfortunately, many details are lacking with regard to this exceptional discovery, partly because it was reused as a “charnel house” during the Ottoman period, as the many bones and a Turkish seal found inside testify (Goldman and Jones 1942, 366, 368). Although Goldman and Jones (1942, 366) supplied no information about the architecture of the tomb, they refer to a couple of interesting features allowing a tentative reconstruction.

There was a door that was blocked up with a stone, while inside the tomb they found three “benches” arranged along the other three sides. It is also apparent that a vaulted roof was covering the tomb, which was probably removed in modern times (Goldman and Jones 1942, 366, 368). Neither Goldman (Goldman and Jones 1942) nor Walker (1916), however, returned to a further discussion of what appears to be the single example of a built tomb in the entire necropolis. To a certain extent, this is justified because, apart from the coin found, the tomb had subsequently been robbed and partially dismantled, thus considerably reducing the chances of evaluating its full significance. That said it was extremely exciting to discover that Goldman’s fieldbook from 1912, nonetheless, contained invaluable information about the tomb, which was left out from the preliminary reports. Most notably, several sketch plans and an

368 Along with the change of body position, it is interesting to note Walker’s observation, 1916, 78-79, n. 36, that the pottery deposited in the Hellenistic graves was comparable to wares from centers not only in Greece, but also in Asia Minor and Egypt. Walker 1916, 85 concluded that the change “can be attributed to only one fact, the establishment of Alexander’s empire”.

369 Walker 1916, 69-70 provides no details but in view of the predominance of the Boeotian bronze coins dated to 220-197 BC, many of which turned up in other burials, it is indeed very likely that the coin found in the tomb is of the same type. Goldman 1916, 20, on the other hand, mentions six coins, none of which identifiable.

370 The Greek excavations around the acropolis have produced no evidence for other such tombs, cf. Dakoronia 1992a; 1993; 2001.
elevation drawing of the façade permit a closer look at what I hope to show was a built tomb belonging to the so-called “Macedonian type.”

From the scaled drawing of the façade (Goldman 1912, 65), it is obvious that the door was 1.30 m high, 0.74 m wide at the bottom, and 0.60 wide at the top (Fig. 4.19). A large block, 1.16 m long, spanned the doorframe. In addition, on the ground there seems to be a threshold block, the height of which is unreported. It is also

Figure 4.19: The south façade and door of a Hellenistic built chamber tomb (Macedonian?) from the necropolis of Halai, a pencil sketch from Goldman fieldbooks (courtesy ASCSA archives)

unclear what the structure of the adjoining jambs was. Four smaller stones seem to be placed on top of the west jamb, whereas the other jamb consists of two larger blocks. The total height of the tomb must have been close to 2 m, when one accounts for the missing stones from the vault.

Although it is difficult to ascertain the precise number of “benches”, their arrangement can be reconstructed from two separate ground plans (Fig. 4.20). With fair degree of certainty, four or five may be assumed. Furthermore, there can be little
doubt that what Goldman has labeled as benches is in fact *klinai*. What is also apparent is that the tomb was oriented on a north-south axis, i.e. with the entrance facing south.

Based on the brief description published by Goldman and Jones (1942, 366, 368) and the sketch plans from Goldman’s fieldbook, we can now conclude with confidence that we are dealing with a family tomb of “Macedonian type”. The reason for assuming a continuous use comes from the presence of more than one *kline*, combined with the fact that after the last burial was performed the entrance was sealed off. The critical features inviting such identification, on the other hand, are (1) the barrel vault and (2) the *klinai*, for these traits are among the essential aspects of Macedonian sepulchral architecture established as early as late fourth century BC (Gossel 1980, 7-54; Miller 1993, 105-118). The type persisted over time, as many later
examples demonstrate clearly, not only within Macedonia proper (Miller 1993), but in many other parts of Greece as well, e.g. Eretria (Huguenot 2001, 92-94). In fact, the tomb from Halai is closely comparable with several tombs of the same date discovered in the valley of Spercheios, at Mexiates, Lamia and Ypati (Dakoronia 1986a, 147-157). Normally the tombs were buried underground, with or without a short *dromos* providing access to the entrance (Fig. 4.21). A recent study on the territorial distribution of the Macedonian tombs revealed that many examples are to be found scattered in mainland Greece.\(^3\)

\[\text{Figure 4.21: Macedonian tombs from central Greece (after Huguenot 2006, fig. 8)}\]

In turn, this coincides with regions where the military presence of the Macedonians

\(^3\) The following list of 21 Macedonian tombs was compiled by Huguenot 2006, 899-900. Aegina: north necropolis, Meristos and Maltesos; Euboea: Eretria, Amarynthos, Koukaki and Pei; Acarnania: Stratos; Aetolia: Kalydion, Pleuron and Grammeni Oxya; Epirus: Dodone and Kassope; Phthiotis: Mexiates, Lamia and Ypati; Thessaly: Larissa, Petroporo and Azoros.
has been established on the basis of literary or epigraphical data (Fig. 4.22).

Figure 4.22: A map showing the distribution of Macedonian tombs in central Greece. Note the absence of tombs from East Lokris (after Huguenot 2006, fig. 2)

The author has thus suggested (Huguenot 2006, 907) that the appearance of Macedonian tombs must be attributed to the Macedonians living in these regions, i.e. members of the military hierarchy serving in the garrisons planted by Macedonian kings. In addition, adhering to burial practices of the Macedonian elite has become a way for the soldiers to assert their identity and “social control” within the environment created by their presence in many Greek cities (Ma 2002, 120-121). The meager yet compelling data, allowing us to recognize a Macedonian tomb at Halai, bear witness to the fact that (1) Macedonian population inhabited the city towards the end of the third
century BC, and in view of the possibility suggested above (Huguenot 2006, 907), (2) it is also likely that they belonged to the garrison maintained by Philip V. If this is accepted, then, it is conceivable that the tomb was built for a distinguished member of the military hierarchy appointed to serve as a φρούραρχος or some other official in the garrison hosted by the town, as in the case of Kynos. This is by no means an isolated example, for the hypothesis of foreign military presence is further supported by the deposition of “Macedonian” objects in several other graves of the necropolis.

Of the groupings of graves excavated by the Ephorate of Lamia, one appears to stand out spatially and chronologically. In fact, this is the closest cluster, discovered ca. 190 m east of the acropolis, consisting of 26 graves (Dakoronia 2000b, 333). The graves goods and the coins indicate that the location was used as a burial ground from the end of the third century BC until the first century AD (Dakoronia 2000b, 334). The majority of the graves, however, fall between 220 and 120 BC. The orientation of all burials is east-west.

Of 26 graves, 12 yielded a specific type of amphora belonging to the so-called “Macedonian type” (Fig. 4.23).

Two of the graves contained a pair of these vessels, which fixes a total of 14
amphorae. The contents of two graves (graves VI and XII) have been dealt with in detail by Dakoronia (2000a, 453-460). The amphorae from grave VI (Dakoronia 2000a, 457, fig. 224 e, f) belong to Type A, as defined by Drougou and Touratsoglou (1980, 117-120, fig. 14). It is a closed vessel with a narrow neck, calyx-shaped lip and two handles. Type A has a continuous profile from rim to foot, unlike Type B, which has a pronounced transition between body and neck (Drougou 1991b). The origin of the shape and production center is Macedonia. The amphorae, however, received a wide distribution not only in Macedonian burials, e.g. Pella, Vergina, Kozani, Veroia, Edessa, Florina, Thessalonike (Drougou and Touratsoglou 1980, 117-118, n. 5-6), but also in many other parts of central Greece, e.g. Demetrias, Lamia, Akraiphia, Athens (Milojcic and Theocharis 1976, 124, no. 141, fig. 44, 1; Bouyia 2006b; Andreiomenou 2006, 195, n. 18, fig. 18; Rotroff 1997, no. 1702).

Graves VI and XII also contained moldmade cups known in the literature as “Megarian”, “Homeric” or hemispherical bowls (Rotroff 1982; Rotroff 2006, 357-378). The specimens from Halai, however, belong to different variations of the hemispherical type; the one from grave VI (Dakoronia 2000a, 455-456, fig. 223a) falls into the group of hemispherical bowls with relief decoration of floral motifs, as is the one from grave XII (Dakoronia 2000a, 458-459, fig. 225c), but equipped with four shells serving as supports at the bottom. On the basis of comparanda from Boeotia, Dakoronia (2000a, 456, n. 20) suggested that the specimen from grave VI was manufactured in Boeotia. The one from grave XII, on the other hand, she attributed to a workshop in Macedonia (Dakoronia 2000a, 459), whence the other known examples of the type originate (Drougou 1990, 91).

A single “Megarian bowl” from a grave, excavated by Goldman and Walker, was compared to an example from Priene dated to the third century BC (Walker 1916, 70, n. 15). In addition, among the fragments of “Megarian” bowls discovered on the
acropolis, one bears striking resemblance, as Goldman (1940, 496, no. 50, fig. 241, 5) observed, to several bowls, the decoration of which is likened to the ornamental patterns known from Macedonian shields represented on royal coinage (Zahn 1908, 64, fig. 24; 73, fig. 32). Several examples are known from Corinth (Edwards 1975) and the Athenian agora (Rotroff 1982, no. 400-402, 410). According to one opinion, the production of these bowls began at Corinth after 150 BC (Calaghan 1978). 372

To return to the question of chronology of graves VI and XII at Halai, one must take into account the numismatic evidence. Although Dakoronia reported a total of 23 bronze coins deposited in the 26 excavated graves, only the ones found in graves VI and XII have been identified to date (Dakoronia 2000a, 460). Both belong to the ubiquitous Boeotian type dated to 220-197 BC (Head 1881, 262; cf. Kroll 1993, no. 595). This type is well attested not only in graves excavated by Goldman and Walker, but also in habitation strata on the acropolis (e.g. Goldman 1940, 481). What needs to be emphasized, though, is that fact that significant amount of the coins of this type were in fact overstruck on the extremely profuse series of bronzes of the Heracles/Horseman type attributed to Antigonus Gonatas (SNG Cop. 2114-2121) or Antigonus Doson (Head 1881, 261-263; Svoronos 1908, 230; Walker 1978, 43).

When discussing the findings of the Boeotian coins deposited in the graves assigned to Group D2 (200-100 BC), Walker (1916, 69-70) stated that some of them clearly bore signs of being “restruck on coins of Antigonus Doson”. It is a puzzle, then, why Goldman and Jones (1942, 411, n. 88) claimed exactly the opposite, i.e. that “the Halae coins show no sign of [being restruck].” At second sight, their statement

372 Arguing against Zahn, who saw the coins as a possible source for artistic inspiration, Calaghan suggested that the Corinthian potters were inspired from seeing real Macedonian shields captured by the Achaians in 150 BC. Rotroff 1982, 38 endorsed the opinion put forward by Calaghan by pointing out to the fact that his proposal agrees with the later date of the archaeological contexts of these “Megarian” bowls at Corinth and Athens.

373 In fact, only 9 graves yielded coins; some of these contained as many as 3, 4 or 6 coins, while the majority had 1 or 2, cf. Dakoronia 2000b, 334-335.
does not entirely contradict Walker’s, since she made it very clear that only *some*, but not all, of the coins were actually restruck, in which case, one has to conclude that Goldman and Jones were apparently talking about the un-restruck portion of coins.

To the best of my knowledge, the important question as to why these Boeotian coins, some of which overstruck on Macedonian royal bronzes, circulated widely in Opountian Lokris, most notably at Halai, has never been pursued. I intend to explore the problem in some depth, since the question of the Boeotian overstrikes is intertwined with another, namely why did Macedonian royal bronzes circulate in Boeotia and, by extension, in Opountian Lokris in the first place?

To begin with, whether one attributes the Heracles/Horseman type to Gonatas or Doson is insignificant, since in either case it is true that the overstriking of the Macedonian coins must have occurred in the years following their deaths (Head 1881, 261-262). In addition, he has convincingly demonstrated that the overstriking occurred at the beginning of Philip’s V reign in 220 BC. Svoronos (1908, 230-232), on the other hand, has argued that the coins entered Boeotia as a result of royal benefaction, in recognition of the military support (2,000 infantry and 200 horse), which Doson received from the Boeotians for his war against Cleomenes before the battle at Sellasia in 222 BC. He further maintained that the Macedonian royal bronzes account for the military pay that the Boeotians received from Doson after the battle (cf. the criticism of Hackens 1969, 725-728). Shortly thereafter they were overstruck with Boeotian designs in order to become legal tender in the country.

Examining a similar influx of Gonatas’ bronzes at Athens, Kroll (1993, 36, 166), following Svoronos, put forward the opinion that the coins entered the local circulation by means of overstriking after a royal donation was received from the Athenians in 255 BC (Lönquist 1997, 136-137). He believed, however, that the Macedonian coins were overstruck with a new Athenian type in 224 BC (Kroll 1993,
In addition to overstriking, Gonatas’ bronzes were allowed circulation by the application of countermarks on the obverse. As has been already demonstrated (cf. Poulios 2006, 281-286), this was practiced both by Macedonian kings and Greek cities, as in the cases of Chalcis and Eretria. Based on five coin hoards from Macedonia, the evidence of countermarking on Gonatas’ bronzes has been recently reviewed by Poulios (2006, 281-286). He concluded that the countermarking of Gonatas’ bronzes first began in the reign of Demetrius II (239-229 BC) and continued until the first years of Philip’s V reign. The royal countermarks are distinguishable from those applied outside Macedonia, being identified with the heads of Pan and Heracles, supplemented in some series by the application of the royal monograms of Demetrius II and Philip V on the reverse. The practice of countermarking Gonatas’ bronzes was then picked up by Greek cities, which endorsed the Macedonian coins by applying their own countermarks, e.g. Euboea and Boeotia (Poulios 2006, 186).

According to Poulios’ analysis, Demetrius II, Doson and Philip V continued to strike Gonatas’ bronzes, and the way to distinguish them from his is by the countermarks and the royal monograms. Thus, from 221 until 218 BC Philip V employed Gonatas’ types, and it was not until 217 BC when he began to issue bronze coinage in his own name. During the first years of his reign, two new series of the Athena/Pan-erecting-trophy with B-A type were put in circulation, which had on the reverse a Macedonian helmet in the field to left (Poulios 2006, 288). They also bore his monograms “Φ” or ligature of “Φ” and “Π”.

I engage in these details concerning the chronology of Macedonian royal bronzes of Heracles/Horseman and Athena/Pan-erecting-trophy series because two

374 The series of Heracles/Horseman and Athena/Pan-erecting-trophy show signs of small countermarks with the head of Hera identified on the coins of Chalcis, and a *boukranielion* on the coins of the Euboean League, cf. Picard 1979, 179-181.
unpublished coins belonging to these two types were discovered on the acropolis of Halai during the primary excavations (Fig. 4.13, 4.14). Although these were never published, the fact of their existence requires explanation. Unfortunately the only available photograph permits no identification of the critical features, i.e. symbols and monograms (Fig. 4.9). It is clear, however, that the Athena/Pan type has a circular countermark on the obverse, while a Macedonian helmet is definitely visible on the reverse (Fig. 4.14). The image on the countermark is impossible to read, but it does not seem to resemble the array of countermarks known from other specimens (Poulios 2006, 282-283, table 10). Is it possible that we are dealing with a Lokrian countermark? To complicate matters further, both coins are heavily worn, which makes the monograms illegible. For this reason, it is also uncertain whether the Heracles/Horseman type belongs to Gonatas or Cassander (Fig. 4.13), the coins of whom are very often confused and difficult to identify beyond doubt (Kroll 1993, nos. 500 or 509).

The dating of these coins is bound up with establishing the chronology of the Boeotian type, head of Demeter or Kore/Poseidon-standing-with-trident, tremendous amount of which were struck on the Heracles/Horseman type of Gonatas. It must be emphasized, however, that the chronological scheme of the type was worked out on the strength of the coin hoards from Kopais and Thebes (IGCH 229; IGCH 233). A recent discovery of another coin hoard in a building at Thebes has demonstrated again the popularity of the Boeotian overstrikes. Of 457 bronze coins, 427 belonged to the Demeter/Poseidon type, and all of which revealed traces of Macedonian undertypes (Vlachogianni 2000, 103-104). What can hardly be attributed to chance is furnished by the fact that the coins known to date originate from coin hoards in Boeotia and Euboea (Vlachogianni 2000, 107-108, with n. 36-44). Evidence for the circulation pattern of the Boeotian overstrikes retrieved from excavation on sites, albeit sparse, is
nonetheless attested. Notable examples are the specimens from Athens and Halai. Yet no attempt has been made to explain how they ended up away from their point of origin. I focus on the Boeotian overstrikes from Halai since the excavations revealed that they were the single most popular coin in circulation on the acropolis. Eventually, most of them were deposited in graves, too. How do we explain that?

As noted above, the prevailing opinion puts the overstriking in the reign of Philip V, while the lower margin of their circulation is given by the Flamininus’ proclamation of the Greek freedom from the Macedonian garrisons of Philip V in 196 BC (Head 1881, 261-163). If this is accepted, the obvious conclusion is that the circulation of the Boeotian type coincides with the first twenty years of Philip’s V reign, i.e. 220-197 BC. What is also noteworthy is the fact that this was the period when he was able to maintain garrisons in many parts of continental Greece, including Boeotia and Opountian Lokris. As in the case at Athens, we are faced with similar problems; first, what caused the influx of Gonatas’ coins into Boeotia, and second, when did the overstriking occur. There is general agreement that Gonatas’ bronzes first arrived in Athens via the soldiers stationed in the Macedonian garrison imposed by Gonatas in 261 BC and recalled in 255 BC. If we agree with Kroll’s opinion (1993, 52), the overstriking at Athens must have taken place thirty years later, during the reign of Doson in 224 BC. Unlike Svoronos who saw the influx of Macedonian royal bronzes in Boeotia as a result of Doson’s benefaction, I think it more likely that they should account for the presence of Macedonian garrisons maintained by Philip V instead. Determining the date of their arrival is an open question, but the Boeotian invasion of Demetrius II in 236 BC (Hammond and Walbank 1988, 326-329) seems like a reasonable possibility. In addition, the Spartan campaign of Doson in 223/222 BC also implies Macedonian military presence in Boeotia and Opountian Lokris, on account of their role in securing the lines of communications between Macedonia and
Peloponnese (Hammond and Walbank 1988, 349). Finally, that with the accession of Philip V the presence of Macedonian garrisons continued uninterrupted until 196 BC is established beyond any doubt. The beginning of his reign then is the most likely occasion during which Gonatas’ bronzes were overstruck. This is further supported by the fact, as Poulios (2006, 288) has already pointed out, that bronzes struck in the name of Gonatas continued to be minted not only during the reigns of Demetrius II and Doson, but also during that of Philip V.

To provide an answer to the second question, i.e. when they were overstruck with Boeotian designs, we must face the following dilemma. If we use the analogy supplied by the Athenian case, i.e. that the coins were overstruck by the Boeotians only after the Macedonian garrisons left the country, we either have to downdate the beginning point of their local circulation to 196 BC (Psoma-Tsangari 2003, 119, n. 54), or accept the date of 220 BC, in which case we retain the traditional chronology suggested by Head (1881, 262), i.e. 220-197 BC, with the following important clarification: the overstruck coins were put into circulation despite the fact that during the same period, according to literary and epigraphical data, Philip V maintained permanent garrisons in Boeotia and Opountian Lokris. Is it then possible that some time in the first years of his reign, most probably 217 BC (see below), Philip V and the Boeotians reached an agreement upon which Boeotia was granted the freedom to restruck the pool of the Macedonian bronzes of Gonatas brought in by the garrisons in order to ease the transactions between soldiers and locals within the cities where garrisons were already stationed? It is therefore conceivable that the Boeotian situation coincided with Philip’s V decision to start minting his own coins in 217 BC (Poulios 2006, 288, table 11), which in turn would explain his willingness to readily dispense with the considerable amount of bronzes of his predecessor to the advantage of the Boeotians. To conclude, by supplying Boeotia with enormous amount of bronze, he
not only secured her allegiance for the years to follow, but also created a new Boeotian coin that became legal tender in two regions where he had garrisons, Boeotia and Opountian Lokris.

The picture, such as it emerges from the frequency with which Demeter/Poseidon occurs at Halai, is one of intensive circulation during the first twenty years of Philip’s V reign. Although the precise number of these coins is currently unobtainable, the sheer quantity is staggering. There can be no doubt that they were overwhelmingly popular in the local community. Beyond the simple inference based on the circulation of Boeotian coins, namely that Halai had already joined the Boeotian League by the last decade of the third century BC it remains to be asked, first and foremost, what the function of this Boeotian coinage was. The bronze coin under consideration is a fraction of an obol (*dichalkon*), which was only suitable for small-scale transactions on a daily basis. Given the attested tendency of dropping small change in sanctuaries (Knapp 2005), is it possible to assume similar scenario in our case, too? In other words, if the sanctuary of Athena was still attracting worshippers by this time, may we suggest that the bronzes account for ongoing religious festivals taking place on the acropolis? The prevalence of local coins, that is Boeotian federal coinage, would seemingly support such line of thought. The analysis of the archaeological evidence combined with the previously unknown data for the presence of Macedonian royal coins on the acropolis (the bronzes of Gonatas discussed above), however, points to another direction.

First, the evidence for landscaping on the acropolis during 220s BC suggests a re-organization of the space, as I argued above, perhaps because it continued to function as a sanctuary. Furthermore, the high frequency of loomweights and lamps, most of which were found together with the Boeotian coins (Goldman 1940, 505, no. 13), clearly demonstrate a permanent occupation of the premises, most notably the
North Gate buildings (Goldman 1940, 479, 481). As a working hypothesis it seems likely to conjecture that they bear witness to small-scale exchanges between two different parties. The new social dynamic gradually translated into the introduction of new burial practices, such as the exceptional appearance of a built tomb of Macedonian type, for example. It is conceivable that the cluster of late third-early second century BC graves, situated away from the earlier burial ground (Dakoronia 2000b, 333-335), is somehow connected with what was happening in the community as a result of the changes from the 220s BC. Apart from the Boeotian coins, it is interesting that these graves contained sets of drinking vessels, including contemporary innovations such as the so-called Macedonian amphorae and the hemispherical bowls with relief decoration.

It has long been observed that bronze coinage tends not to travel far from its point of origin. While it is tempting to explain the circulation of the Boeotian bronzes as a natural consequence of Halai’s joining the League, it is surprisingly difficult to adduce other evidence to support it. To complicate matters further, one needs to take into account the large quantity (122) of the Demeter/Poseidon type, overstruck on Gonatas’ Heracles/Horseman, found in Athens as well (Kroll 1993, 205, no. 595). In light of the excavation data from Halai and Athens, it would appear that the opinion for exclusively local circulation of the type based on the coin hoards from Kopais and Thebes (Svoronos 1908, 230-232; Hackens 1969, 725-728, nos. 34-50; Grandjean 1995, 18-19; Vlachogianni 2000, 57-67; Psoma 2007, 79-80), needs re-adjustment. What is significant here is that fact that it started as a replacement of the Macedonian royal bronzes, which it essentially served to substitute on a local level. It is perhaps no coincidence that the chronology of the type ties up with the presence of Macedonian garrisons maintained by Philip V in Boeotia and Opountian Lokris.

To conclude, it is conceivable, very likely indeed, that the type was widely
distributed outside Boeotia on account of the mobility of soldiers, the intermediary role of which in transporting large quantities of bronze coinage over long distances has long been recognized (Price 1991, 66; Howgego 1995, 101). If we assume that shortly after 220 BC a small detachment of Macedonian soldiers were planted on the acropolis of Halai, just as it occurred at Opous and Kynos, much of what we know about the occupation of the acropolis begins to make more sense. In all probability, with the arrival of the garrisons, the Macedonian royal bronzes in the name of Gonatas flooded many communities in Boeotia and Opountian Lokris. This happened because of two reasons; (1) Philip V has not yet initiated his own bronze coinage, and (2) Gonatas’ bronzes were still in use, in addition to several new series minted by Philip V himself. A few years later, the Macedonian bronzes were withdrawn from circulation and it is conceivable that this was somehow connected with Philip’s V decision to start minting his own coins in 217 BC, as Poulios (2006, 288) has suggested. Instead of replacing Gonatas’ coins with his own coinage, or, which is more likely, in order to make the Macedonian coin acceptable in local environment, he conferred the right to the Boeotians who after having withdrawn the Macedonian bronzes began to overstrike them on a larger scale. The Boeotian overstrikes quickly re-entered circulation serving as legal tender for both the communities in Boeotia and Opountian Lokris and the Macedonians who had to rely, at least in part, on local supplies while serving in the garrison. Their presence would also account for the sudden appearance of personal items of foreign origin such as the Macedonian amphorae and hemispherical bowls, both of which were not normally a subject of international trade (Bilde 1993, 193). Finally, it is natural that once the garrison departed, some of these items, including the coins, eventually found their way into the burial record. The majority of the Boeotian overstrikes, especially as attested in other Boeotian cities, were also hoarded and eventually concealed during the turbulent events of the Third Macedonian War.
4.4.2: Palaiokastra Livanaton, Vilovo

The available data for reconstructing the burial practices of Palaiokastra Livanaton derives from the partial excavation of an extensive necropolis situated near the village of Tryandaphyllia, ca. 1.5 km west of Livanates. What should be stated very clearly at the outset is the high level of usefulness of the material yielded as a result of these excavations, primarily on account of the exceptional quality of publication, where all the credit goes to the primary excavator, Artemis Onassoglou. Aside from the preliminary reports published in *Archaiologikon Deltion*, (Onassoglou 1989, 181-187), she was able to produce a separate study on the pottery and the coins from the Hellenistic graves (Onassoglou 1994, 56-70), as well as an admirable article on the exceptionally well-preserved bronze mirror discovered in grave P-14 (Onassoglou 1988, 439-459). In addition, during the plowing of a field, ca. 110 m southeast of Palaiokastra Livanaton, a few Hellenistic graves were exposed (Dakoronia 1998, 207-208). To a lesser degree, the picture supplied from the necropolises at Palaiokastra Livanaton is supplemented by the discovery of several Roman and Late Roman graves scattered in the vicinity of Palaiopyrgos, ancient Kynos (Dakoronia 1989c, 189). Before proceeding to the examination of individual graves, however, few preliminary notes are in order.

First, which settlement the necropolis at Triandaphyllia should be associated with is still an open question. While the primary excavator remained non-committal (Onassoglou 1989, 181; 1988, 439; 1994, 56), Fossey (1990, 85, n. 1) has rightly

375 There can be little doubt that these graves belong to another necropolis of the site. Of these three were in *pithoi*, one was in a clay larnax and three in stone-lined cists. The grave goods demonstrate that the necropolis came into use at the beginning of second century BC and continued to exist until the first century BC. What is striking is that two of the graves were reused in Roman times, as attested by the deposition of much later pottery, cf. Dakoronia 1997b, 47-49.
pointed out that identification with Kynos is equally permissible. Dakoronia (1993a, 126), on the other hand, has opted for Palaiokastra Livanaton by laying emphasis on the presence of “rich cemeteries around it”. As an example of one of these necropolises, she referred to none other but the extremely important cemetery discovered in the Triandaphyllia (Dakoronia 1993a, 126, n. 39). For the time being, the closer location of the necropolis, situated as it is at the north foot of the hill on top of which Palaiokastra Livanaton stands (Fossey 1990, 85), together with the presence of more extensive traces of habitation associated with the latter, tips the scales in favor of Palaiokastra Livanaton.

Second, as early as the end of the 19th century many graves around Livanates, as in fact was the case with the necropolises around Halai (Girard 1881, 39), were intentionally looted in search of the much valued terracotta figurines for which the region had certain renown (Girard 1878, 588; 1879, 211). Although the extent of the damage done by the clandestine diggers is immeasurable, it provides an important clue about the existence of a flourishing community in this part of Opountian Lokris. The excavations at Triandaphyllia brought to light not only many graves dating from the Late Archaic period until the beginning of the second century BC (Onassoglou 1994, 56), but also the discovery of two Mycenaean chamber tombs (Dakoronia 1993a, 126).

At Triandaphyllia, three distinct groupings of graves were recorded: one containing the Late Archaic graves was situated to the north; a central group comprising the graves of Classical and Hellenistic date, and a southern cluster consisting predominantly of Hellenistic graves dated to the late third-early second century BC (Fig. 4.24). A total of 80 graves were excavated, of which 65 were pithos burials and 15 amphora burials (Onassoglou 1994, 57).

For the purposes of this study, I concentrate on discussing the Hellenistic graves, of which 33 were found (Onassoglou 1994, 57). There are several common
features shared by this particular group: (1) the deposition of unglazed vessels such as pitchers, *lekanides*, fruitstands, (2) black-glazed fine ware, e.g. fishplates, *kantharoi*, *skyphoi*, perfume flasks, lamps, (3) metal objects, e.g. mirrors, strigils, swords, (4) bronze coins. Rarely do terracotta figurines appear, as in the case of grave P-14, in which eight specimens attributed to the Tanagra style came to light (Onassoglou 1988, Abb. 11-12; 1989, 182).

Figure 4.24: Spatial distribution of Hellenistic graves in the necropolis at Triandaphylia, Palaiokastra Livanaton (after Onassoglou 1994, fig. 4)

Of all objects deposited in the graves, the presence of the coins is highly
significant, providing reliable clues for dating the different phases of use of the necropolis. Of 33 graves, 20 yielded a total of 120 bronze and 2 silver coins.\(^{376}\) Their numbers in graves varied between 4 and 16, while two graves contained only a single coin. In addition, the deposition of so many coins in the Hellenistic graves is in stark contrast with the Classical burials from which they are absent. Aside from suggesting that they may have to do with the myth of the Charon’s obol (Grinder-Hansen 1991, 207-218; Morris 1992, 105-106), Onassoglou (1994, 57) pointed to the fact that the coins may be perceived as coin hoards bearing witness to the existence of *nouveaux riches* in Opountian Lokris.

At the same time, when one looks at the distribution of the coins according to mints, the high number of Macedonian royal bronzes is particularly striking (Table 4. 3). Of the total of 20 bronzes, 12 belong to Cassander, 6 to Antigonus Gonatas and 2 to Philip V. This in turn puts them high in the list of foreign mints, second only to the Phokians represented with 25 coins. Naturally, the highest number of coins belongs to the output of the federal mint of the Lokrians, along with the civic coinage of Opous, a total of 42 coins (Psoma and Tsangari 2003, 117). Chronologically, all coins, inclusive of the other mints represented (Boeotia, Histiaeia, Chalcis, Corinth, Euboea, and Aetolia) are divided into two main periods: (1) late fourth-early third and (2) late third-early second century BC. The different chronology of the coins is reflected in the shifting locations of the graves over time.

\(^{376}\) Apart from the excavation report, the coins are also reported by Tselekas 1996, 254-255, nos. 41-49, 256-257, nos. 56-57, 59-60, 258, nos. 69-71.
Table 4.3: Identified coins from excavated sites by mint and findspot discussed in the text

<table>
<thead>
<tr>
<th>MINT</th>
<th>SETTLEMENT</th>
<th>NECROPOLIS</th>
<th>CIVIC</th>
<th>MACEDONIAN</th>
<th>UNIDENTIFIED</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokris</td>
<td>22</td>
<td>-</td>
<td>47</td>
<td>5</td>
<td>3</td>
<td>55</td>
</tr>
<tr>
<td>Chalcis</td>
<td>25</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexander III</td>
<td>3</td>
<td>-</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Kynos</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Lokris</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phokis</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aetolica</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boeotia</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histiaea</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>121</td>
</tr>
<tr>
<td>Chalcis</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corinth</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassander</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonatas</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philip V</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opous</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Lokris</td>
<td>-</td>
<td>2</td>
<td>9</td>
<td></td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Phokis</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boeotia</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halai</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lokris</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chalcis</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boeotia</td>
<td>8</td>
<td>4</td>
<td>15</td>
<td>2</td>
<td>21</td>
<td>38</td>
</tr>
<tr>
<td>Sikyon</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonatas</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philip V</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>64</td>
<td>131</td>
<td>169</td>
<td>26</td>
<td>32</td>
<td>227</td>
</tr>
</tbody>
</table>

During the first quarter of the third century BC, as Onassoglou observed, a new burial ground was opened, away from the central cluster, where, as noted above, the Late Classical and Early Hellenistic graves were concentrated. The new group,
situated to the south of the central cluster of graves, comprises only 8 graves (P-52, P-53, P-54, P-55, P-56 and P-58), two of which (P-6, P-7) are dated to the early Hellenistic period. The rest contains the latest coins belonging to Gonatas, Philip V and the Opountians, the issues of which, based on the legend ΟΠΟΥΝΤΙΩΝ replacing the earlier ΟΠΟΝΤΙΩΝ, is dated to 196-146 BC (Head 1911, 337).

Since Onassoglou supplied no historical scenario accounting for the appearance of the Macedonian royal bronzes at Palaiokastra Livanaton, it is my intention to investigate this question further. What is more, it is noteworthy that some of the coins, e.g. Heracles/Horseman and Athena/Pan types minted by Gonatas (grave P-58), retrieved from Triandaphyllia turned up at Halai as well (Fig. 4.13, 4.14). The main questions are: (1) how did the Macedonian royal bronzes end up so far away from their point of origin, and (2) how certain can we be that once they arrived in Opountian Lokris, they continued to circulate before being deposited in the graves?

Let us begin with the bronzes of Cassander, which are also the highest in number (SNG Cop. 1142-1153). As discussed in Chapter 2, literary and epigraphic data showed that Cassander trusted Opountian Lokris as an important base for his military communications with the Peloponnese. While we know for a fact that the success of his strategy was guaranteed through the installment of a garrison at Opous, it has also been suggested, based on circumstantial literary evidence, that Cassander may have garrisoned a number of other Lokrian towns. Not only does the discovery of his coins in the necropolis at Triandaphyllia (Graves P-1, P-4, P-6 and P-33), dated between 315 and 306 BC (SNG Cop. 1142-1153), lend further credibility to such a conjecture, but more importantly, it points to the possibility that Palaiokastra Livanaton or Kynos was in fact one of these towns hosting a garrison. While it can hardly be doubted that the coins arrived in the form of small change carried by Macedonian soldiers, it is difficult to establish whether they should be conceived as a
proof for the circulation of these foreign coins within Opountian Lokris. The absence of countermarks is not critical because, as evidence from other Greek cities demonstrates (Kroll 1993), significant quantity of Macedonian coins continued to circulate locally without being countermarked.

That the possibility for the existence of a royal garrison should be preferred is strengthened by the presence of bronzes in the name of Philip V (SNG Cop. 1264) retrieved from grave P-53. From literary sources we know that he also maintained military presence in Opous and Kynos as late as 196 BC. It is hardly surprising therefore, that another coin of Philip V (SNG Cop. 1244-1246), albeit in a secondary context, was found in the fill of an Early Roman grave situated in the locality Loutro, ca. 300 m southwest of Livanates (Lampropoulou 1989, 187-188). While more garrisons of Philip V are implied by both literary and epigraphical data, the discovery of his coins at Triandaphyllia may point to the existence of yet another, at Palaiokastra Livanaton, as in the case of Cassander.

Apart from the coins, there are certain types of objects, such as the charming bronze mirror (Onassoglou 1988, 444-459), dated to 310 BC (Fig. 4.25), (Schwarzmaier 1997, 281-282) and a perfume flask made of bronze (Fig. 4.26) from grave P-14 (Onassoglou 1988, 442, no. 12, fig. 13), which conspicuously find their closest parallels in rich tombs from Macedonia, e.g. Grave A and B at Derveni (Themelis and Touratsoglou 1997, 36, 76, figs. 43, 88) and Tomb III at Vergina (Andronikos 1984, fig. 170). That the mirror and the flask were manufactured in workshops from Macedonia is also undoubted (Onassoglou 1988, 456, n. 82-83). Despite the rarity of these objects, it is difficult to imagine that they should testify to a long-distance trade network for luxury items established between Macedonia and Opountian Lokris towards the end of the fourth century BC. That is why I am inclined to interpret the one time occurrence of these exquisite items through the framework of
gift-giving.

Figure 4.25: Bronze mirror from the necropolis at Triandaphyllia, Palaiokastra Livanaton, ca. 310 BC (after Onassoglou 1988, Abb. 15, 17)

Figure 4.26: Bronze and silver sprinklers from the necropolis at Triandaphyllia, Potideia and Tomb III at Vergina (after Onassoglou 1988, Abb. 13; Andronikos 1984, fig. 170; Themelis and Touratsoglou 1997, fig. 43)
In a stimulating study devoted to the nature of interactions between Greek cities and foreign garrisons, Chaniotis (2002, 110-112) has recently drawn the attention to the multiple examples of intermarriages of garrison soldiers with local girls and women, attested in the epigraphical sources. By pointing to a highly personal aspect of the presence of soldiers in foreign environment, one that in the writings of Greek historians is entirely neglected, I would argue that Chaniotis has also provided us, among other things, with an alternative way to explain the isolated travel of luxury items over long distances. Rather than postulating a long-distance trade of such objects, it is far more likely to assume that the mobility of soldiers contributed to their movement in time and space. It remains a possibility that the mirror and the flask can be viewed as an expression of what Chaniotis calls “crossing the boundaries,” a token of friendship, affection, engagement between a “foreign soldier” and a “native girl.” It is therefore not surprising that these instances have the tendency to multiply during the periods, such as between 220-197 BC, when independent evidence suggests the presence of Macedonian garrisons. For instance, among the objects deposited in grave P-57, we find another mirror and a black-glazed unguentarium, decorated with an ivy-leaf pattern on the body (Onassoglou 1994, 62-63, fig. 29a). The closest parallel pointed out by Onassoglou comes from a grave complex in Thessalonike (Drougou 1991a, 82, fig. 5). While this is an exception, it is hardly accidental that the other seven graves from the southern cluster of the necropolis yielded a small number of Macedonian royal bronzes, in the name of Antigonus Gonatas (P-55, P-58) and Philip V (P-53). It is easy to draw a parallel between some of the graves belonging to the central and the southern clusters, whereby the goods and coins deposited therein are better explained through the paradigm of Macedonian military presence vis-à-vis garrisons of Cassander and Philip V, rather than through commercial contacts between Macedonia and Opountian Lokris.
If we agree that Macedonian royal bronzes should be ascribed to the presence of garrisons planted by Cassander and Philip V, however, how are we to explain the occurrence of the bronzes minted by Gonatas? As noted above, a total of 6 coins came to light, all of them from graves (2 in grave P-55 and 4 in grave P-58) located in the southern cluster (Onassoglou 1994, figs. 1-2; 68-69). Taken as a whole, however, the situation with the coins recovered from grave 55 is unique, especially when compared with the numismatic data from other graves. In addition to Gonatas’ bronzes of the type Macedonian shield with the monogram ANTI in the middle/Macedonian helmet (SNG Cop. 1222-1223), the grave yielded six other coins belonging to the mints of Boeotia (2), Histiaea (2), Corinth and Lokris, all of which dated to late fourth-early third century BC (Onassoglou 1994, 69). Although it is obvious that the Greek issues are earlier than the Macedonian royal bronze, the conclusion to be drawn is that the burial took place in the second quarter of the third century BC (Onassoglou 1994, 60, 64), i.e. it is contemporary with the first half of the reign of Gonatas.

The coins from grave P-58, on the other hand, three of which belong to the Heracles/Horseman (SNG Cop. 1214-1221) and one to Athena/Pan-erecting-trophy type (SNG Cop. 1205-1213), point to similar conclusions. Since Onassoglou reported no traces of a countermark, or a Macedonian shield in the left field on the reverse on the latter and no monograms associated with Philip V on the former, it should be accepted that both were minted during the reign of Gonatas. The question of how they reached Opountian Lokris is the next step of our analysis.

If one takes Gonatas’ bronzes at face value, it must be conjectured that, just as in the case of Cassander, Gonatas relied on the Lokrian harbors for his sea crossings from Demetrias via Chalcis to the Piraeus and Corinth, in all of which he was in a position to maintain garrisons until the middle of the third century BC (Hammond and Walbank 1988, 315; Gabbert 1997, 33-40). Although direct literary evidence for
Opountian Lokris is lacking, it is conceivable that to some extent the Macedonian navy and his troops had to frequent the Lokrian coast as a natural stopping point between Demetrias and Chalcis. In addition, much of Gonatas’ military successes in the course of the Chremonidean War (268-261 BC) and later, the naval battle over Ptolemy II at Cos in 255 BC (Hammond and Walbank 1988, 280-289; 290-292), depended on the mastering of a Macedonian fleet, while the frequent crossings along the Euboean Gulf demonstrate that the latter became the essential line of communications by sea. Unlike Cassander and Philip V, however, Gonatas seemed to have avoided land crossings via Phokis, Boeotia and Opountian Lokris, relying exclusively on the potential afforded by his warships to undertake voyages by sea. To a certain extent this was conditioned by the expansion of the Aetolian League, which established control not only over Epiknemidian Lokris, but also in Phokis and Achaia Phthiotis (Hammond and Walbank 1988, 289, n. 4). In this way, the Aetolians succeeded in barring Gonatas from securing a line of communications by land via the pass at Thermopylai, thus leaving him with the only choice of transporting his army by sea.

Finally, one is reminded of the possible role played by the Lokrian harbors in crossings to Euboea by a little-discussed remark preserved in Athenaeus’ *Deipnosophistai* (3. 73b-d). Despite the implications, as we shall see, for Macedonian military presence on north-west Euboea contained in the passage, it is surprising that the episode is omitted from all major scholarly studies devoted to the reign of Gonatas (Tarn 1913, Hammond and Walbank 1988, 239-316; Errington 1990, 162-173; Gabbert 1997). In order to avoid confusion, I will cite the passage in its entirety as translated by Olson (2006, 411, 413):

377 The passage in Athenaeus is only mentioned by Ross 1851, 54-55, no. 29 and Baumeister 1864, 19. Cf., however, Davies 2001, 17, n. 29, who says that, “The story is probably worth exploring further, for there is clearly more to it than just the fell joint effects of royalty and taxation.”
“Phylarchus (*FGrH* F 65) says: Although Egyptian beans had never been planted anywhere other than Egypt, or if they were planted, did not sprout, in the time of King Alexander son of Pyrrhus some happened to grow in a swamp near the Thyamis river in Thesprotia, which is a region in Epirus. For two years, in fact, the plant somehow produced fruit vigorously and flourished. But when Alexander set a guard over it and prevented anyone who wanted from taking some or even approaching the place, the swamp dried up; after that, not only did it not produce the crop mentioned above, but it was not even apparent that there had ever been any water there. Something similar happened in Aedepsus. A small spring, unconnected with the other water-sources there, appeared not far from the sea and emitted cold water. When sick people drank from it, it helped them immensely; as a result large numbers of them came, even from far away, to drink the water. King Antigonus’ generals wanted to get as much profit as they could from the situation and therefore ordered that those who drank the water would have to pay a fee; after this, the spring dried up. Likewise in the Troad, before this time anyone who wanted to get salt at Tragaseae was free to do so. But when Lysimachus imposed a tax on it, the salt disappeared; when he was surprised and made the place free of taxation, the salt accumulated again.”

The text, among other things, is referring to a spring of fresh water, situated not far from the sea at Aedepsos. There is general agreement that the episode reported by Phylarchus took place during the reign of Antigonus Gonatas (Olson 2006, 413, n. 7). Establishing the identity of Gonatas’ στρατευόμενοι, however, is still an open question, and so is the one concerning their right to interfere in matters of importance only to the city authorities of Aedepsos. That the text is sound can hardly be doubted. Also, by no means was the episode at Aedepsos uncommon, as is borne out by the similar cases in the Troad and Epirus, involving measures of control imposed by Lysimachus and Pyrrhus’ son, Alexander. If one takes the story of Aedepsos at face value, at least two questions must be asked: (1) who were the στρατευόμενοι of Gonatas, and (2) in what capacity were they entitled to tap the natural resources of a small Greek town such as Aedepsos?

378 In the new edition of Athenaeus, Olson 2006 translates διαφορά (3. 73d) as a fee in contrast to Gulick’s tax.
379 Athenaeus is citing Phylarchus of Athens, whose work is preserved only in fragments, *FGrH* 81. This is not the only anecdote told by Phylarchus about Antigonus Gonatas, which is preserved in Athenaeus, cf. *Deipnosophistai* 2. 44c.
The complexity of the subject concerning the Macedonian στρατευοί has long been recognized (Hatzopoulos 1996). First, there are the military commanders serving in the Macedonian army who are not to be confused with the magistrates, also known as στρατευοί, appointed by the king in various Greek regions, including Macedonia. Commenting on Athenaeus (3. 73b-d), Knoepfler (2001b, 296, n. 181) has recently argued that στρατευοί at Aedepos were not military commanders, while identifying them with the so-called βασιλικοί. That there was a great regional variety in terms of their duties is also undoubted. In some cases, as is evident from a decree from Rhamnous (SEG 3. 122), the στρατευός was appointed not only by the king, but also by the people. Furthermore, in many cases the στρατευοί appointed by the king were not necessarily Macedonian. After the end of the Chremonidean war, for instance, Gonatas decided to keep the Athenian στρατευοί who were responsible for overseeing the defense of Eleusis and the coast (Hammond and Walbank 1988, 286).

From literary and epigraphical sources we know with a varying degree of certainty that Gonatas kept permanent garrisons in the following Greek cities: Corinth, Troezen, Epidaurus, Megara, Salamis, Eleusis, Sounion, Rhamnous, Athens, Piraeus, Chalcis, Eretria and Demetrias (Hammond and Walbank 1988, 269-273; Gabbert 1997, 33). By way of comparison, the situation with the Macedonian presence in Northern Euboea is, for the most part, less clear-cut. It must be stated at the outset, though, that normally the focus of scholarly discussion falls upon the well-documented cases of Chalcis and Eretria (Hammond and Walbank 1988, 270-271; Gabbert 1997, 39). In contrast, the Macedonian affiliation of Histiaeae is only briefly treated, chiefly because the information available is insufficient (Hammond and Walbank 1988, 271-272; but see Knoepfler 1995, 148-156). Since for most of its history, Aedepos was administered by the municipality of near-by Histiaeae (Gregory 1979, 257), the Macedonian influence in this part of Euboea is likely to have had
certain impact on the internal affairs of Aedepsos as well. During the reign of Perseus (179-168 BC), for example, several types of Macedonian tetrobols were even minted at Histiaea (Wallace 1962, 22). In fact, I would argue that the passage cited in Athenaeus provides us with the possibility to suggest that the Macedonian influence was more palpable than previously assumed, being instead secured through the installment of permanent garrisons in both cities. In this way establishing a fee on the spring at Aedepsos by Gonatas’ στρατεγοὶ would make more sense, for it is hard to imagine that military commanders serving in the standing army of Gonatas would have possessed the authority to carry out such measures.

In terms of Lokrian history, the hypothesis for the presence of Macedonian garrisons maintained by Gonatas at Aedepsos and Histiaea (?) is undoubtedly very significant. By way of comparison with the policy of Philip V, it may seem tempting to suggest that Gonatas ensured the availability of the Lokrian coast through the establishment of permanent garrisons as well. In the absence of explicit literary and epigraphic data, however, the numismatic evidence alone, albeit in accordance with the circumstantial case put forward for Histiaea and Aedepsos, is most certainly insufficient, and the attempt to do so, I think, must be resisted. What is undoubted, though, is that Gonatas’ bronzes entered Opountian Lokris, finding their way into the necropolis at Palaiokastrá Livanaton, as a result of the multiple stoppings at Lokrian harbors, most likely Kynos.

4.4.3: Opous

For all recent discoveries in and around Atalandi, it is perhaps surprising that we know almost nothing about the location of the Hellenistic necropolis of Opous. As a result of salvage excavations in the late 1980s (Dakoronia 1993a, 119-120, n. 20; Dakoronia 2006a, 457-459), in the southern part of Atalandi, forty-five graves dated to the Early Iron Age came to light. During the excavations of the north fortification wall
of the city, situated in the locality “Makedonika,” two Hellenistic graves were found immediately outside the wall. One was a tile-grave, which was unfortunately destroyed; only the skull of the deceased was found, together with small quantity of non-descript pottery sherds. The other grave was of the pithos type, much better preserved (Fig. 4.27).

![Figure 4.27: Pithos burial immediately outside the north fortification wall in the locality “Makedonika” at Opous (after Dakoronia 1992b, fig. 124b)](image)

It contained an unglazed pitcher, a black-glazed arybaloid lekythos, a fishplate, a lamp and twelve bronze coins. Fortunately, the contents of the grave, including the coins, were later dealt with in a separate study by Dakoronia (1997b, 45-46, figs. 28d, 28e-f, 29a-b,). Of the twelve coins, nine were identified (Dakoronia 1997b, 49): 2 Phokis (SNG Cop. 113), 6 Lokris (SNG Cop. 64-76), and 1 Boeotia (SNG Cop. 375).

Dakoronia (1997b, 45-46) dated the burial to the first half of the third century BC, but she did not pursue the implications the date had on the chronology of the Early Hellenistic fortification wall. Since the grave was outside the wall, it is safe to
conclude that the *terminus ante quem* for its construction should be assigned around 300 BC. The presence of *SNG Cop.* 375, however, presents other possibilities for analysis deserving further discussion.

The Theban coin is of a small denomination, which according to the opinion put forward by Head (1881, 80-81), was in circulation between 315 BC, when Cassander restored Thebes, and 288 BC. It was minted under the civic authority of Thebes, as attested by the legend on the reverse, ΘΕΒΑΙΩΝ (*SNG Cop.* 375). It is significant that, as Head has already shown, the type was introduced during the Macedonian occupation of Thebes by Cassander. Considering the small number of specimens known from elsewhere, it is perhaps significant that, aside from the one from Opous, there are two other examples attested in necropolises of Opountian Lokris. The first was found in the necropolis of Halai, grave 247 (Goldman and Jones 1942, 408), while the second came from the necropolis at Triandaphyllia, grave P-1 (Onassoglou 1994, 65). Noteworthy is the fact that among the other coins from grave P-1, there was also one bronze of Cassander (*SNG Cop.* 1142-1153). Although the presence of the Theban issue in Opountian Lokris has yet to be explained, the association with Cassander can hardly be denied. As a preliminary hypothesis, I would suggest that the circulation of the coins in Halai, Opous and Palaiokastra Livanaton was somehow connected with the frequent military movements of Cassander attested in the literary sources.

4.4.4: Alope

So far twenty-seven graves belonging to the necropolis of Alope have been investigated (Dakoronia 2002, 32-34), situated ca. 500 m east of the Early Hellenistic city (Bouyia 2000b, 55). By way of comparison with other Lokrian necropolises, the burials demonstrate similar variety in terms of grave types; pithoi, tile-graves, amphorae, earth-cut pits, etc. The necropolis was used uninterruptedly from the Late
Archaic period until the Late Hellenistic/Early Roman periods. The absence of graves dating after this period is explained on the unfounded assumption that Sulla destroyed Alope in the aftermath of the First Mithridatic War (Dakoronia 2002, 33). In the Late Roman period, a building, perhaps a villa or a “sacred complex” serving the near-by basilica, was erected on top of the earlier graves. Both buildings employed spolia, including a great deal of funerary monuments taken from the graves (Bouyia 2002, 32). One of these stelai turned out to be a casualty list or military catalogue, containing the names of 55 Alopeans, dated to 500-475 BC (Bouyia 2006a, 91). In addition, two graves (VIII and XII) of Late Roman date were discovered lying directly on top of the north fortification wall (Bouyia 2000b, 55). As is clear from our summary, the information obtained from the brief notices published to date is of limited use. Further details about the contents of each grave are expected to appear in a future publication.

4.4.5: Korseia

One has to deal with a similar problem when trying to evaluate the significance of the meager information available for the Hellenistic necropolis of Neochori, identified with ancient Korseia. Alerted by illicit digging of graves in the vicinity of the site, the Ephorate of Lamia conducted rescue excavations in the late 1980s (Pantos 1993, 226-228). Twenty-four graves, situated ca. 200 m west of Neochori, were exposed (Fig. 4.28). One half of these were pithos burials, while the other half were monolithic sarcophagi. Regrettably, the contents of all graves were published without supplying any comparanda. For this reason, it is hard to establish not only the chronology of each grave, but also the overall significance of the settlement at Neochori that used it as a burial ground.

Based on the presence of the monolithic sarcophagi, as they are also attested at Halai (Goldman and Jones 1942, 366), it may be assumed that the necropolis was in
use during the Late Archaic/Classical period. Frequent reference to black-glazed
kantharoi and skyphoi, decorated with painted rosettes, as well as the occasional
examples of terracotta figurines, may be attributed to both Classical and Hellenistic
periods. The only evidence for metal vessels came from grave XIII, which contained a
bronze klyix, a bronze one-handled lekane, an iron knife and several other fragments
of bronze vessels (Pantos 1993, 228). Another iron knife was retrieved from grave XI.
Taken as a whole, the presence of bronze vessels seems closely comparable with the
custom attested in several of the Hellenistic graves at Medeon, for example (cf. Vatin

Figure 4.28: Spatial distribution of Hellenistic graves in the necropolis near
Korseia/Neochori (after Pantos 1993, plan 13)

384
et al. 1976, 95-110). All of this, of course, must remain tentative, since the primary excavator suggested no date for the use of the necropolis at Neochori (Pantos 1993, 228).

4.4.6: Other necropolises

For the sake of completeness, mention should be made of several other known necropolises, which have yielded graves dated to the Classical and Hellenistic periods. Much of what we know, however, is fragmentary, being derived, for the most part, from brief excavation reports.

Recent excavations, for example, associated with the acropolis of Chliadou have brought to light 110 graves belonging to an extensive necropolis used from the Late Geometric until Late Hellenistic period (Dakoronia 2002, 17-25; Dakoronia 2006b, 372-377). The variety of grave types encountered (e.g. *pithoi*, monolithic sarcophagi, earth-cut pits, etc.) reveals remarkable similarity with examples of graves from other Lokrian settlements. As in the necropolis of Halai, a similar change in the position of the body has been observed, whereby extended supine position began to replace the older custom from the middle of the third century BC onwards (Dakoronia 2002, 27).

In addition, the Ephorate of Lamia has been able to locate the existence of several extensive necropolises associated with small settlements situated in the northwestern part of Opountian Lokris (Dakoronia 1986b, 56, n. 3). Among those discovered is the one located in the vicinity of a small acropolis called Palaiokastra or Palaiokastro, located ca. 3 km west of Megaplatanos (Fossey 1990, 79-80, 168; Dakoronia 1993a, 122, n. 28). By far over 30 graves have been exposed (Dakoronia 1989c, 188-189; 1993d, 221; 1993c, 190-191), where the contents of only one of them were studied in great detail (Dakoronia 1997b, 44-45).

Another necropolis has also appeared thanks to the excavations of a small
acropolis, known by the modern name Roustiana, situated ca. 8 km west of Livanates.380 The site may also be identical with Golemi, Kastron described in detail by Fossey (1990, 180-182).381 At the foot of the hill, nine \textit{pithoi} burials dated to the Classical period have been reported (Dakoronia 1988b, 252, fig. 108a). Interestingly, among the pottery from Grave III, there was found a fragmentary black glazed “kylix-skyphos,” inscribed with the name STRATON hALAIOS (Dakoronia 1988b, 252).382 While ongoing excavations continue to furnish new archaeological data, a comprehensive grasp of the material is left for the future.

On a final note, it is unfortunate that so little is known about the necropolis of Larymna. Fossey (1990, 24), apparently informed by the locals, reports that at least two necropolises are to be sought near Larymna; one lying to the west of the village, and the other to the north of the bay of Larmes. Girard (1879, 220-221), on the other hand, mentions the existence of tombs of Classical and Hellenistic date but without supplying further details. That he was probably right may be inferred from the large number of grave inscriptions compiled by Dittenberger (IG IX 1. 234/235, 236, 238, 242, 243, 245, 248, 249, 250, 252, 255). In addition, a number of other sepulchral inscriptions are known (Jarde and Laurent 1902, 326-331, nos. 17-21, 28, 30, 32, 25 b- c; Oldfather 1915, 321, nos. 2-4). A marble relief, now in the Chalcis museum (Inv.380 Dakoronia1993, 126 has identified the site with the Homeric Bessa (\textit{Il.} 2. 532), which did not exist in the time of Strabo 9. 4. 5.381 The possibility is noted by Nielsen 2004, 665, n. 4, while Dakoronia 1993a, 126 makes no reference to Fossey’s account. It is also puzzling that Dakoronia mentions “abundant Mycenaean pottery” on the site, of which Fossey 1990, 182, who found only pottery “almost exclusively third-fourth century A.D., except for stray sherds of earlier date [Classical and Hellenistic]”, was apparently unaware.382 The city ethnic of Halai appears in an early fifth century dedication to Athena found on the acropolis of Halai by Goldman (1915, 442-444, no. 2). To the best of my knowledge, the graffito from Roustitana represents the only example of the city ethnic preserved in singular, and with an aspirate, cf. Bouyia 2006a, 90; \textit{LGPN} IIIIB, s. v. Στράτον (26). \textit{SEG} 38, 453, however, erroneously gives the provenience of the vessel as Proerma? (area of Roustitana) with a date of ca. 400 BC. For other forms of the ethnic, see the discussion of the information preserved in the literary sources in Kramer- Hajós 2006, 86-87, who rejects the suggestion that (\textit{a-r-o}) from the Theban Linear B Tablets may be translated as ‘man from Halai.’ The graffito from Roustitana, however, is omitted from discussion, cf. Kramer-Hajós 2006, 86-87 and Nielsen 2004, 667.
No. 34), said to have come from Larymna and dated to fourth century BC, depicts a rare subject: the killing of a sacrificial animal (Fig. 4.29). A man clothed in short *chiton* and a *chlamys* bestriding a ram from behind tries to expose its head in order to slit the throat with a dagger held in his right hand.

The relief’s interpretation as votive, as well as the link with the cult of the Cabeiroi proposed by Rodenwaldt (1913, 326-328) has been questioned (van Straten 1995, 103), as is the provenience of the stone (Schachter 1984, 110, n. 1). The most recent

383 Based on the marble identified as Thespian by Rodenwald 1913, 326, as well as the lack of attested cult of the Cabeiroi at Larymna, Shachter 1984, 110, n. 1 proposed that the relief was probably transported to Chalcis museum from the sanctuary of Hermes Kriophoros at Tanagra or from the Kabeirion at Thebes. For alternative identification, see Schild-Xenidou 2005, 331, who suggests that the relief was made of hard limestone, not marble.
study on the relief, however, interprets the image as *sphagia*, a bloodletting performed before battles (Jameson 1991, 200-202), which probably adorned a funerary monument (Schild-Xenidou 2005, 335).

4.5: Summary

The archaeological data obtained from necropolises complements nicely the picture sketched by the excavations of settlements. Much of what is already available, however, is practically unsuited for a detailed analysis. In cases where publications provide better opportunities, e.g. necropolises at Halai and Palaiokastron Livaton, several common patterns emerge.

First, the custom of depositing bronze coins in graves, normally tokens of low denominational value, reveals, among other things, the existing range of coins circulating within the community. Given the wide variety of foreign coins recorded in Triandaphyllia, for example, i.e. Macedonian royal bronzes, civic issues of Boeotia, Thebes, Phokis, Aetolia, Chalcis, Histiaeia, Euboea, it is most surprising that no attempt has been made to explain why this was the case. In the available literature, the question is usually exhausted by a short reference to the Charon’s obol without focusing on the issue of the foreign origin of the coins. The opinion that they should account for the existence of *nouveaux riches* (Onassoglou 1994, 65) is interesting, although the low denominational value of bronze coinage can hardly constitute evidence for acquired wealth. At the same time, the inter-regional travel of bronze coins is very often taken to trace the movement of people, and in this the intermediary role of soldiers has long been recognized (Price 1991, 66; Howgego 1995, 101). Taken as a whole, the numismatic data from Opountian Lokris, I believe, has much to offer to the military paradigm for explanation of coin travel. For it is hardly accidental that the graves with coins of widest representation of foreign mints date precisely to the periods during which from independent sources we know that armies of Macedonian
kings frequently crossed through, and/or sail along Opountian Lokris (Table 4.4).

Table 4.4: Synoptic view of major military events in Opountian Lokris pointing to possible correlation between literary sources and archaeological record; all dates B.C.

<table>
<thead>
<tr>
<th>Date</th>
<th>Political events</th>
<th>Settlements</th>
<th>Necropoleis</th>
<th>Coins</th>
</tr>
</thead>
<tbody>
<tr>
<td>316</td>
<td>Cassander uses Lokrian harbors to ferry troops to Thessaly and installs a garrison at Opous</td>
<td>North Gate Buildings and Northeast Gate Shops at Halai</td>
<td>-</td>
<td>Bronzes of Cassander at Palaiokasta Livanaton</td>
</tr>
<tr>
<td>313/2</td>
<td>Ptolemaeus besieges the garrison of Cassander at Opous</td>
<td>New fortifications built in major Lokrian centers</td>
<td>Macedonian tomb at Halai</td>
<td>Boeotian coins circulate at Halai overstruck on Doson bronzes by Philip V</td>
</tr>
<tr>
<td>236</td>
<td>Demetrius II marches to Boeotia via Kynos and Opous</td>
<td>Watchtowers at Mikrovivos and Mikrovivos II</td>
<td>Extended supine position of the deceased becomes the norm in Opountian Lokris</td>
<td>Bronzes struck by Doson flood Boeotia and Opountian Lokris</td>
</tr>
<tr>
<td>227</td>
<td>Doson marches to Boeotia via Kynos and Opous</td>
<td>Prevention stratum at Opous</td>
<td>Boeotian coins circulate at Halai overstruck on Doson bronzes by Philip V</td>
<td>Boeotian coins circulate at Halai overstruck on Doson bronzes by Philip V</td>
</tr>
<tr>
<td>224</td>
<td></td>
<td>Statue base honoring a benefactor at Halai</td>
<td>Boeotian coins circulate at Halai overstruck on Doson bronzes by Philip V</td>
<td>Bronzes of Gonatas and Philip V at Palaiokasta Livanaton and Halai</td>
</tr>
<tr>
<td>219</td>
<td>Philip V marches to Phokis by ferrying troops via Aedepsos and Kynos</td>
<td>Watchtowers at Megaplatanatos and Sphaka</td>
<td>Boeotian coins circulate at Halai overstruck on Doson bronzes by Philip V</td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>Attalus and Sulpicius attack Opous via Kynos after sailing from Chalcis</td>
<td></td>
<td>Boeotian coins circulate at Halai overstruck on Doson bronzes by Philip V</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>Flamininus attacks the garrison of Philip V at Opous</td>
<td></td>
<td>Boeotian coins circulate at Halai overstruck on Doson bronzes by Philip V</td>
<td></td>
</tr>
<tr>
<td>86/5</td>
<td>Archelaus uses Halai, Larymna and Anhedon as exit points to Chalcis</td>
<td></td>
<td>Boeotian coins circulate at Halai overstruck on Doson bronzes by Philip V</td>
<td></td>
</tr>
</tbody>
</table>

Most notably, those fielded by Cassander and Philip V to which, as suggested by the coins from Triandaphyllia and acropolis of Halai, that of Antigonus Gonatas should also be added. The wide variety of foreign mints therefore seemed to trace the land and the sea routes taken by their armies. As a result many coins ended up far away from their point of origin, while trans-regional trade, to the extent it existed, played no part in this, contrary to what is sometimes assumed (Reinders 2003, 144).\(^{384}\) The point

\(^{384}\) Bronze is not conducive to transferring large amounts of money, and thus practically unsuited for large-scale transactions. Essentially it was a token coinage, the circulation of which was
is strengthened by the fact that issues of the Lokrian mint (SNG Cop. 65-71) traveled as far away as Amphipolis (Kosmidou 2006, no. 48) and Vitsa in Epirus (Vokotopoulou 2001, 601). Similarly, the cause for their travel to a distant region such as Macedonia has been attributed to the “Macedonian presence in central Greece,” a conjecture also borne out by a coin hoard from Amphipolis in which Lokrian staters and Macedonian tetradrachms in the name of Philip and Alexander III appear together (Lorber 1990, 44, 49).

Second, the Macedonian royal bronzes, in particular, may be taken to indicate permanent military presence at Halai and Palaiokastra Livanaton, in addition to Opous and Kynos for which we possess independent data. The appearance of certain vessels and objects for personal use of clearly Macedonian origin, which were eventually deposited in the graves, support this further. Whether or not the introduction of extended supine position of the deceased during the third century BC had anything to do with the presence of Macedonian garrisons, albeit likely, is difficult to prove beyond doubt. The solitary example of what I have interpreted as a built tomb of “Macedonian” type found by Goldman and Walker at Halai, however, deserves a special reference. For it is without a doubt the most compelling piece of evidence bearing witness to the presence of Macedonian garrison within late third-early second century community of Halai.

guaranteed, after being overvalued at a certain rate against bullion, by the issuing authority, cf. Price 1979, 351.
Chapter 5: Phrouria Lokrika: construction, chronology and function

“The main fascination of military architecture lies in its honesty. Admittedly, there are elements of facadism applied purely for their psychological impact, like the ornate decoration of fortified gates and the rusticated walls which suggest strength greater than they possess, but military architecture is essentially functional architecture; it has always had to be.”

Synthetic books on Greek fortifications often focus on technical aspects of wall building with the unfortunate result that the construction of city walls and the occupation of the area they defended are not considered together. Yet the latter constitutes an essential body of evidence providing clues for understanding the reasons why a place was deemed worthy of fortification. Much attention is instead devoted to the study of formal characteristics such as indented trace, spur walls, masonry, artillery towers, bastions, city gates. In cases where excavation material is unavailable, assignment of a date to a city wall, based on stylistic features of the masonry, is often tied to a particular historical event or figure. By contrast, large-scale excavations of urban sites, as well as better state of preservation, provide more

385 Winter 1971a; Garlan 1974a; Lawrence 1979; Adam 1982.
386 For a definition of the term, see Ginouves 1998, 26, n. 91. See also Scranton 1941, 149-157; Winter 1971b; Garlan 1974a, 245-250; Martin 1947/48, 138.
389 Marsden 1969; Ober 1987a; 1992 and Winter 1997 are concerned with fitting catapults in towers based on the calibration formula given by Philo of Byzantium. Rihll 2006; 2007, 134-139 has recently questioned the plausibility of these reconstructions.
391 Martin 1968; Krause 1972, 63-75; Adam 1992, 3-43; Dornisch 1992; Rathke 2001; Scherrer 2006, 63-78.
opportunities for a detailed documentation393 and comprehensive studies on the subject of fortification.394 As is evident from building inscriptions,395 however, the motives for building or refurbishing city walls were markedly different from those of military camps396 or border forts.397 While it is of primary importance for a date to be established, and despite the many difficulties surrounding the chronology of walls,398 it should be only the beginning, not the end of an inquiry. Far less abundant, by contrast, are the attempts to address the complexity of Greek wall building through a contextual approach, in conjunction with inquiries regarding theory of defense.399

Recent excavations on extensive sections of the city walls of Opous and Alope have shown beyond doubt that their construction must be assigned to the late fourth-early third century BC (Bouyia 2000b, 54). Although the striking similarity in terms of building material and masonry with the fortifications of Larymna and Halai seems to strengthen the case for a rebuilding program, the issue of their function has not been worked out in detail. The new discoveries, however, also call into question the opinion put forward by Oldfather (1916a, 51-52), Lehmann-Hartleben (1923, 91, n. 1) and Goldman (1940, 396, n. 16), who tried to link the fortifications of Larymna, Halai and Anthedon with the naval program of Epameinondas. The lower chronology, suggested

\begin{itemize}
\item 393 Heracleia at Latmos: Krischen 1922; Phyle: Wrede 1924; Milet: von Gerkan 1935; Gortys: Martin 1947/1948; Thisbe: Maier 1958; Samos: Kienast 1978.
\item 395 Maier 1959; 1961; Robert 1970; Missailidou-Despotidou 1993; Migeotte 1984; 1992; 2000, 147-150.
\item 396 Attic forts: Vanderpool et al. 1962; McCredie 1966; Oliver 2007, 153-159; Lauter et al. 1989; Salganeus: Bakhuizen 1970; Phlyia: Sakellaraki et al. 2002; Mt. Oeneon: Stroud 1971, 127-145; Caraher and Gregory 2006.
\item 397 Attica: Langdon 1982; Ober 1985; Munn 1993, 47-57, 97-112; Lohmann 1995; Boeotia: Camp 1991.
\item 398 Scranton 1941, 12; McNicoll 1997, 7; Camp 2000, 47.
\item 399 For a theoretical approach to the question of fortification in general, see Rowlands 1972; Humphreys 1972; Ducrey 1986, 135-142 and Gat 2002. Conceptualized treatments on regional level have been offered by McNicoll 1972; 1978, 1986; 1997 and, most recently, Pimouguet-Pédarros 2000.
\end{itemize}
by the stratigraphic observations in the walls of Alope and Opous, has initiated a new scholarly debate, whereby the need of building new city walls has been increasingly connected with the wars of the Successors, specifically those between Demetrius Poliorcetes and Cassander (e.g. Karlsson 1992, 99, 110; Bouyia 2000b, 54). This, of course, raises further questions. Why was such a large-scale rebuilding of city walls throughout Opountian Lokris necessary in the first place? Are we still justified, as Fossey (1990, 139-150; 1992, 126, 128) has argued, to talk about the existence of regional fortification networks of defense designed to keep an eye on agricultural land? If so, who stood behind this enterprise and how was it financed? Granted some of the Successors, as has been argued for Demetrius, in particular (Karlsson 1992, 99; Bouyia 2000b, 54), took interest in the region, are we in a position to substantiate this assumption with the available evidence? Or, was the rebuilding program an entirely local affair overseen by the central authority of the Lokrian League or just individual cities?

To address the complexity of fortification building in Opountian Lokris, I first analyze the construction techniques and design of the Hellenistic sites listed in Chapter 3. An attempt is also made to reconstruct the different stages of building, from the quarrying of the stone to the actual construction. I also examine questions of chronology and function, so as to reconcile the construction of the fortifications with the archaeological and historical evidence for occupation and use assembled in Chapter 4. Particular emphasis is placed on adducing comparanda from both neighboring and more distant regions. The part devoted to architecture is divided in headings as follows: (1) building materials, (2) quarries, (3) cost, (4) transport and (5) construction techniques.

5.1: Building materials

It has become increasingly evident that the Hellenistic fortifications of
Opountian Lokris reveal what may be described as conscious predilection for soft sedimentary rocks. Most sites employed three types of stone for their construction. At Larymna, Mikrovivos, Mikrovivos II, Megaplatanos, Halai, Palaiokastra Livanaton, Kynos, Opous, Kastraki, Alope, two varieties of stone are attested; conglomerate and sandstone, often described as reddish and yellowish, respectively. The stone used at Korseia and Palaeopyrgos, however, is breccia, as identified by C. Andronicos. The remaining sites, Kokkinovrachos, Proskynas, Chilia, Kokkinovrachos, Proskynas, and Pazaraki, employed harder limestones.

Despite the traces of surface treatment and careful jointing, the conglomerate, including the breccia, was a stone of poor quality. Examples from Greece, and especially Athens (Wrede 1933, 52-53; Martin 1965, 115-116; Wycherley 1974, 185), show that its use was restricted to foundations of public buildings. In fortifications, on the other hand, it is clear that the characteristic that made it attractive was not only its workability but also the capacity to withstand battering rams and artillery projectiles (Garlan 1974b, 108; Lawrence 1979, 213). Apart from being brittle, soft and widely available, especially along coastal areas, the conglomerate was very conducive to producing ashlars of standard sizes. By contrast, the harder limestone was much harder allowing less flexibility and greater diversity in terms of masonry.

Recent excavations at Alope have shown that conglomerate and sandstone were in simultaneous use (Bouyia 2000b 52). The same situation occurs in the fortifications at Halai (Walker and Goldman 1915, 432), while at Opous and Kynos predominance is given to sandstone (Dakoronia 1993a; Bouyia 2000b). Although it is customary to distinguish between the two varieties of sedimentary stones, Sandstone was essentially quartz sand cemented by clay, Forbes 1966, 167. Pers. com. (July 2008). Although Schäfer 1967, 530-531 calls the building stone of the ashlar walls at Larymna “breccia-artiger, verkitteter Hangschutt,” the matrix is consistent with conglomerate. See the opinion of Lawrence 1979, 213, who describes it as “wretched material.”
conglomerate and sandstone, one may still form the impression that all Hellenistic fortifications are of conglomerate (Fossey 1990, 141). In addition, the presence of breccia, as in the case of Korseia, is normally not acknowledged in the literature.403

The distinction between the stones in terms of color, however, is unimportant not only because they are geologically identical, but also because it leads to further problems, especially when the confusing term ‘poros’ is used.404 For instance, in the preliminary report Walker and Goldman (1915, 432) state that the walls at Halai, ascribed to their System II, were constructed of “reddish ‘poros’ stone.”405 Leaving the original statement unchanged, when describing the south fortification wall on the acropolis, Goldman (1940, 392) introduced the existence of sandstone, which she called “crumbly golden limestone.”406

Although no scientific studies have yet been carried out (cf. \textit{infra}), the source of stone supply is most certainly local. The existence of deposits of conglomerates and sandstones along the coast, combined with the fact that, with the exception of Palaiokastras Livanaton, Kastraki, Korseia and Palaiopyrgos, the rest of the study sites

403 Etienne and Kneupfler 1976, 35 make a brief note of the polygonal wall without describing the ashlar additions, while Fossey 1990, 58 uses “conglomerate ashlar masonry.” According to Bouyia 2000b, 71, the Hellenistic towers were built “aus Porosquadern.”

404 In an admirable article devoted to the ‘poros,’ Wycherley 1974, 179 stated that ‘poros’ had become a “ghost-word,” a confusing term, completely devoid of meaning, being used only by modern writers on Greek archaeology and architecture. Aside from being unknown to the ancients, the use of the word ‘poros’ contributes nothing to the clarity of presentation, and as observations from Corinth demonstrate, it is best avoided, cf. Hayward 2003, 32. See also Martin 1965, 117-124; Ginouës and Martin 1985, 40.

405 It is clear, however, that ‘poros’ was introduced by Walker and Goldman with no specific reason other than to merely designate the existence of the reddish conglomerate, which observation and new excavations on other Lokrian sites revealed to be one of the most preferred stone in the region. In order to avoid confusion, I retain reddish conglomerate at the expense of reddish poros stone. They are not to be confused with the second type of building stone, i.e. breccia.

406 Old and new photographs, however, show that it has been employed for the construction of not only the south wall, but also of the east wall. Recent excavations at Kynos and Opous identified the use of the same type of stone for the Hellenistic fortifications. The proposed identification with sandstone is in keeping with the observation of Philippson and Kirsten 1951, 347, who described several deposits of sandstone around Livanates.
are located near the sea, strengthens this suspicion. While the situation with establishing the source of the breccia is less clear, the geological signature furnishes clues. The matrix of the breccias is markedly different from that of the conglomerate; the former normally consists of large inclusions of angular rocks, whereas the latter possesses small inclusions of rounded pebbles and shells. The difference derives from the fact that the conglomerate concentrates around coastal areas, where it changes through contact with seawater, whereas the deposits of breccia are to be found further inland (Martin 1965, 114). In antiquity breccia was known by the name λίθος ἁμορφος, translated as rural or country stone, as attested in a building inscription for the fortification walls at Eleusis of 329/8 BC (Dörpfeld 1906, 148; Caskey 1911, 343; Maier 1959, no. 20, ll. 21, 48, 52; Martin 1965, 114). The employment of several types of stone should be attributed to the existence of separate quarry sites, the documentation of which is therefore worth considering.

5.2: Quarries

Given the small size of Opountian Lokris, the number of quarry sites known to date is perhaps surprisingly large. Epigraphic evidence from Athens and Eleusis shows that a quarrying site was known as τομη, with the act of quarrying described as τεμνειν. As will become apparent later, though, not all of them were used during the Hellenistic period, nor were they used for the extraction of stone for the fortifications alone (Table 5.1).

A possible ancient quarry has been located west of the village of Arkitsa, which is still being used as a quarry today (Bouyia 2000b, 51, n. 7). It has been linked to near-by Alope because the stone from this quarry resembles the conglomerate and

407 See the remark of Martin 1965, 114, who says that the stone was: “…utilisé naturellement sur place, dans la région d’extraction…”
408 On conglomerate and breccia, see Wrede 1933, 52-53; Martin 1965, 114; Orlandos 1968, 4; Ginouvès and Martin 1985, 31, 34, n. 158, 41, n. 213.
409 See discussion in Maier 1959, no. 10, ll. 48, 66; no. 20, ll. 22, 49, 53.
the sandstone employed for the construction of the city walls (Bouyia 2000b, 51)

Table 5.1: Quarries by site, type of use and date

<table>
<thead>
<tr>
<th>SITE</th>
<th>QUARRY</th>
<th>STONE</th>
<th>USE</th>
<th>DATE (B.C.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alope</td>
<td>seaside</td>
<td>conglomerate</td>
<td>city wall</td>
<td>Late 4th</td>
</tr>
<tr>
<td>Kynos</td>
<td>seaside</td>
<td>sandstone</td>
<td>city wall</td>
<td>Late 4th</td>
</tr>
<tr>
<td>Opous Kastraki</td>
<td>inland</td>
<td>sandstone</td>
<td>city wall</td>
<td>Late 4th</td>
</tr>
<tr>
<td>Halai Vivos Tou Pethamenou</td>
<td>inland</td>
<td>limestone</td>
<td>sarcophagi city wall</td>
<td>Late 6th</td>
</tr>
<tr>
<td>Lagos Vivos</td>
<td>seaside</td>
<td>conglomerate</td>
<td>city wall</td>
<td>Late 4th</td>
</tr>
<tr>
<td>Larymna</td>
<td>seaside</td>
<td>conglomerate</td>
<td>city wall</td>
<td>Late 4th</td>
</tr>
<tr>
<td>Korseia Palaiopyrgos</td>
<td>inland</td>
<td>breccia</td>
<td>city wall</td>
<td>Late 4th</td>
</tr>
<tr>
<td>Anthedon</td>
<td>seaside</td>
<td>conglomerate</td>
<td>city wall harbor works</td>
<td>Late 4th</td>
</tr>
</tbody>
</table>

The recent discovery of a substantial stretch (ca. 350 m) of the north city wall of Opous, as well as the less extensive remains of the ashlar circuits at Kynos and at Kastraki (Fossey 1990, 66) made it clear that another quarry site should be sought in the plain of Atalandi (Dakoronia 1993a, 120; Bouyia 2000b, 56-57). In all cases only yellowish sandstone has been so far documented. Although no attempt has been made to assign a specific source to the large amount of limestone that went into the building of the new city walls at Opous, Dakoronia (1993a, 119) has suggested that the Opountians obtained their limestone from the area near Kastraki, ca. 1 km northwest of the village of Kyparissi.410

410 The premise of her claim lies solely in the fact that outcroppings of limestone are situated near-by, but it is clear that only a petrographic analysis can solve the issue in a conclusive manner.
The source of the breccia, as recently identified by Andronicos, employed for the construction of the ashlar towers at Korseia and Palaiopyrgos has yet to be established (Etienne and Knoepfler 1976, 32-41; Fossey 1990, 58-61; Bouyia 2000a, 71). Their location on the Kolaka uplands, coupled with the presence of breccia, however, clearly points to the conclusion that the stone was not supplied from the seacoast. In view of what we know of ancient quarrying practices, this is also the least likely scenario (Dworakowska 1975, 94). As noted above, the matrix of the breccia used for the towers at Korseia and Palaiopyrgos is distinctly different from that of the conglomerate and the sandstone quarried from the seacoast. The presence of angular rocks indicates that the stone did not travel far from its place of formation (Higgins and Higgins 1996, 217). It is evident that in order to obtain similar type of workable stone, while being away from the sea, the next best thing was chosen, the breccia. The decision betrays intent to dispense with additional expenditure imposed by the long distance transport, as much as it shows desire to adhere to pre-established building module.

Thanks to the efforts of CHELP a more detailed picture of the ancient quarries of Halai is available. During late 1980s a team directed by William Murray and John Coleman conducted survey along the coastal areas surrounding the acropolis, which documented the existence of two seaside quarries. A third quarry situated up on the hill, directly north of the acropolis, has also been found by the Ephorate of Lamia (Dakoronia 1989a, 169, figs. 57 c-d). A number of other seaside quarries along the Aetolyma peninsula have been recently identified by the CHELP with the assistance of CHELP a more detailed picture of the ancient quarries of Halai is available. During late 1980s a team directed by William Murray and John Coleman conducted survey along the coastal areas surrounding the acropolis, which documented the existence of two seaside quarries. A third quarry situated up on the hill, directly north of the acropolis, has also been found by the Ephorate of Lamia (Dakoronia 1989a, 169, figs. 57 c-d). A number of other seaside quarries along the Aetolyma peninsula have been recently identified by the CHELP with the assistance of CHELP a more detailed picture of the ancient quarries of Halai is available. During late 1980s a team directed by William Murray and John Coleman conducted survey along the coastal areas surrounding the acropolis, which documented the existence of two seaside quarries. A third quarry situated up on the hill, directly north of the acropolis, has also been found by the Ephorate of Lamia (Dakoronia 1989a, 169, figs. 57 c-d). A number of other seaside quarries along the Aetolyma peninsula have been recently identified by the CHELP with the assistance of CHELP a more detailed picture of the ancient quarries of Halai is available. During late 1980s a team directed by William Murray and John Coleman conducted survey along the coastal areas surrounding the acropolis, which documented the existence of two seaside quarries. A third quarry situated up on the hill, directly north of the acropolis, has also been found by the Ephorate of Lamia (Dakoronia 1989a, 169, figs. 57 c-d). A number of other seaside quarries along the Aetolyma peninsula have been recently identified by the CHELP with the assistance of CHELP a more detailed picture of the ancient quarries of Halai is available. During late 1980s a team directed by William Murray and John Coleman conducted survey along the coastal areas surrounding the acropolis, which documented the existence of two seaside quarries. A third quarry situated up on the hill, directly north of the acropolis, has also been found by the Ephorate of Lamia (Dakoronia 1989a, 169, figs. 57 c-d). A number of other seaside quarries along the Aetolyma peninsula have been recently identified by the CHELP with the assistance of CHELP a more detailed picture of the ancient quarries of Halai is available. During late 1980s a team directed by William Murray and John Coleman conducted survey along the coastal areas surrounding the acropolis, which documented the existence of two seaside quarries. A third quarry situated up on the hill, directly north of the acropolis, has also been found by the Ephorate of Lamia (Dakoronia 1989a, 169, figs. 57 c-d). A number of other seaside quarries along the Aetolyma peninsula have been recently identified by the CHELP with the assistance

411 Aside from the unpublished report by Murray and Coleman, a separate study undertaken by Patricia Merkeley (1990, unpublished report) devoted to the local geology, with a special reference to the quarry sites identified by CHELP, was also produced. Her results have been in part incorporated in two theses written by student members of the team (Haas 1998, 54-58; McFadden 2001). An ongoing project, as a part of the final publication of CHELP excavations, is being carried out by Prof. Christopher Andronicos, a geologist from Cornell University.
of C. Andronicos.

On the west side of Vivos bay members of CHELP have been able to identify the remains of an ancient quarry (Quarry #1, Fig. 5.1), now submerged (Haas 1998, 57).

The deposits of conglomerate along the bay match in appearance and weathering some of the ashlar blocks employed for the construction of the city walls at Halai, specifically the south and southeast walls, the courtyard of Northeast Gate, towers II-3, II-4 and Bastion II. The source of supply of sandstone used in the remaining parts of the circuit, i.e. east wall, towers II-1 and II-2 is still unaccounted for.

The remains of another submerged quarry (Quarry #2) have been found between Cape Kerata and Cape Theologos, at a locality called Tou Pethamenou (Fig. 5.2). A black-glazed rim sherd and two Laconian tiles discovered above the quarry suggest a fourth century BC date for its use. The survey also documented a significant change of the sea level, as is evident from the discovery of a quarried rock surface 2.1 m underneath the modern water line. Merkeley has identified deposits of oolitic
limestones, including biomicrite and biosparite, both of which match in appearance the stone used for the construction of Archaic and Late Roman structures on the acropolis.

Quarry #3 is the only inland quarry situated a short distance from the acropolis (Fig. 5.3).

Figure 5.3: Halai; Quarry #3 on Aetolyma peninsula north of the acropolis of Halai (courtesy CHELP)

The evidence for the exploitation of this quarry is the most prolific. Two column shafts of Archaic date, one of which still lying in the quarry, have been documented.
In addition, the Greek archaeologists have reported the presence of work tools (Dakoronia 1989a, 169). Furthermore, this is the quarry site, which Goldman and Jones (1942, 366) identified as the source of the limestone used for the making of the monolithic sarcophagi, many of which they found in the nearby necropolis. The analysis of the stone quarried away from Quarry #3 revealed deposits of oolitic limestone (Merkeley 1990). Based on the remains of rectangular cuttings in the quarry, it has been suggested that ashlar blocks might have been quarried away as well (Haas 1998, 57, n. 188). It is conceivable that they met the demand for building stone required by the stone foundations and the orthostates of the North Gate buildings and the Northeast Gate shops. They match in appearance and weathering the oolitic limestone available in Quarry #3.

At Larymna the submerged remains of an ancient quarry have also been discovered (Negris 1915, 105), situated on the east side of the bay of Larmes, ca. 200 m southwest of the smelting factory LARKO. Negris was able to document ten drums of columns, with lifting bosses, ready to be transported to their final point of destination. Since the conglomerate used for the construction of the city walls at Larymna is identical with that of the deposits situated in the immediate vicinity of the site, it Oldfather (1916c, 347) surmised that the building stone was supplied locally.

Since no evidence survives, we know nothing about the method of extraction employed in the Lokrian quarries of the Hellenistic period. Very often, extensive quarrying of coastal rock leaves almost no recognizable traces, especially in areas subjected to constant erosion. Several of the seaside quarries documented at Aegina (Wurster 1969, Abb. 4-7), for example, bear striking similarities to what has remained of Quarry #1 at the bay of Vivos. In order to catch a glimpse of the method of extraction employed in the Lokrian quarries of the Hellenistic period. Very often, extensive quarrying of coastal rock leaves almost no recognizable traces, especially in areas subjected to constant erosion. Several of the seaside quarries documented at Aegina (Wurster 1969, Abb. 4-7), for example, bear striking similarities to what has remained of Quarry #1 at the bay of Vivos. In order to catch a glimpse of the method of extraction employed in the Lokrian quarries of the Hellenistic period. Very often, extensive quarrying of coastal rock leaves almost no recognizable traces, especially in areas subjected to constant erosion. Several of the seaside quarries documented at Aegina (Wurster 1969, Abb. 4-7), for example, bear striking similarities to what has remained of Quarry #1 at the bay of Vivos. In order to catch a glimpse of the method of extraction employed in the Lokrian quarries of the Hellenistic period.

412 As pointed out earlier, the extraction pits discovered in Quarry #2 and Quarry #3 at Halai, testifying to the exploitation of oolitic limestone deposits, were already opened by the late Archaic period and continued to be used until the late Roman period.
extraction of the conglomerate, however, we need the help of quarry sites in a better state of preservation. Fortunately, a remarkable parallel from Anthedon furnishes invaluable evidence about coastal quarrying techniques.

The quarry is situated on the seacoast, ca. 2 km northwest of the harbor. To the best of my knowledge, the site has escaped scholarly attention.413 Based on its close proximity to Anthedon, however, there can be little doubt that it was used as a source of supply for some of the conglomerate used for the construction of its harbor installations and/or acropolis walls.

A rectangular platform (6 x 4 m) with three undetached square blocks, lying on the side, is sunk into a patch of beach deposits of reddish conglomerate, just on the sea shore (Fig. 5.4).

413 Surprisingly, in the publication of the detailed study on the harbor of Anthedon conducted by the Anglo-German team, no mention is made of the quarry (Schläger et al. 1968). I first discovered the quarry during my visit to the site in the summer of 2004.
The individual blocks (1.08 x 1.08) are separated on all sides by cuttings 0.45 m deep and 0.13-0.18 m wide, with their bottom side still attached to the parent rock (Fig. 5.5).

Figure 5.5: Detail of Fig. 5.4; note the deep separation trenches

The rest have been apparently removed. That this is an ancient site is supported by the use of the same stone in Anthedon, as well as by the identical dimensions of the undetached ashlars with some of those employed in the walls. It is therefore possible to suggest that we are dealing with the remains of a Hellenistic quarry of a kind that was in all likelihood in existence throughout the coasts of Opountian Lokris.

The method of extraction described above was one of the most commonly used quarrying techniques known to ancient builders (Martin 1965, 146-150; Ward-Perkins 1971, 139; Adam 1994, 22-29). It is referred to as quarrying by separation trenches (Ward-Perkins 1971, 140), whereby a stone is being removed from the parent rock by cutting narrow trenches around it. The technique was particularly suitable for the
extraction of softer stones (Forbes 1966, 167). In the process the use of a pick was sufficient (Fig. 5.6). After the trench cutting has taken place, the complete separation of the blocks from the parent rock was undertaken.\footnote{Identical method of extraction has been documented at the Bronze age beach quarries of consolidated sand, also known as \textit{ammoudhia}, near Mallia on Crete. Waeltkens 1992, 8-9, fig. 13 reports lateral trenches 0.60-0.70 m deep and 0.17 m wide. He, however, excludes the possibility that wedges were actually used to separate the blocks from the parent rock.}

Figure 5.6: Quarrying by separation trenches using a pick, \textit{left}; tool, \textit{right} (after Adam 1994, fig. 29; Bessac 1980, fig. 1.1)

The softness of the conglomerate and the sandstone were also conducive to producing blocks of a standard size, which in our case was roughly within 1.20 x 0.60 x 0.45. This undoubtedly reduced the time needed for the extraction and the preparation of the blocks before transporting them to the site,\footnote{The study of the quarries at Aegina by Wurster 1969, 18-26, for example, revealed a slight difference between the dimensions of the extraction pits and the sizes of the finished blocks. After the initial extraction and rough prefabrication, called \textit{πελάκων}, cf. \textit{IG II}² 463, ll. 51-52 with Maier 1959, 87, the blocks were transported to the building site where they received a finer treatment.} most certainly by sea on rafts and/or in boats. The type of stone influences the amount of time needed for its extraction from the quarry; the softer the stone, the faster the process (Bessac 1986, 276). As demonstrated by the quarries at Aegina (Wurster 1969, 31, Abb. 1-2) and Piraeus (Langdon 2004, 240-241), the main advantage of seaside quarrying comes from the availability of water transport (cf. \textit{infra}).

The scientific analysis conducted on the building stone employed in the walls
of Anthedon provides an opportunity to revisit Oldfather’s (1916c, 346-347) theory that conglomerate from Larymna was transported to Halai. The results of the petrographic analysis were published by Anger (1968, 77-86). Local samples were compared against independent data obtained from the west and south walls of the acropolis of Halai (Anger 1968, 84, Abb. 83-86). The comparison revealed that the matrix of the conglomerate from the Halai samples was identical with only one of the 13 samples obtained from Anthedon (Anger 1968, 86). From all samples taken, it became clear that the stone from Sample 1 (Anthedon) and Samples 14 and 15 (Halai) furnished in fact the only incidence of carbonized conglomerate or conglomerate with lime cement at the site (Fig. 5.7, 5.8). 416

Figure 5.7: Petrographic analysis on samples taken from the harbor works at Anthedon (after Anger 1968, Abb. 63-64)

Although the different varieties of conglomerate determined on the basis of the petrographic analysis presupposes the existence of more than one source of supply, the attempt to assign a common source for the carbonized conglomerate used both at Halai and Anthedon must be resisted. That this is fortuitous is made possible on account of the availability of conglomerate, which is amply attested along the coasts in the

416 The carbonized conglomerate is also known as beach-rock; conglomerate cemented by calcite through a natural process of formation, Higgins and Higgins 1996, 14-15; Buck 2006, 72, fig. 6.7. This is sometimes referred to as calcrete surface or coating, essentially dissolved calcium carbonate coming from ground waters that evaporated during dry periods, Wenner and Herz 1992, 201.
vicinity of both sites. As stated above, preliminary assessment shows that sourcing of the conglomerate used in the city walls of Halai demonstrated that it was obtained from Quarry # 1, at the bay of Vivos. But only by comparing the results of samples obtained from different quarry sites along the Lokrian and Boeotian coasts can the problem of assuming a trans-regional travel of conglomerate be settled with any certainty.

In my opinion, the new discoveries of conglomerate quarries along the coastal areas of Opountian Lokris (e.g. Arkitsa, Vivos) obviate, among other things, the need to assume, as Oldfather (1916c, 346) did, that the conglomerate used in the city walls of Halai had been brought from the quarries at Larymna (Haas 1998, 58). Instead, I think that they lend further credibility to the claim put forward by Goldman (1940, 393) that the conglomerate had been employed independently by each city chiefly because it was (1) widely available along the coast and (2) fairly easy to work with. It is no surprise then that despite its low quality, it was much preferred by the wall
builders at coastal sites such as Alope, Mikrovivos, Halai, Larymna, Anthedon and Delion. Thus it is easy to see why it made no sense to them to export from farther away, albeit by sea, what was otherwise locally available.

The underlying idea behind Oldfather’s (1916c, 346-347) suggestion for the transportation of building material from Larymna to Halai was to find support for what he called “the outcome of general concerted policy” as far as the fortifications of these two sites were concerned. By undermining the central plank of his argument, however, I do not wish to refute completely the validity of the idea for a rebuilding program carried out by a single authority. On the contrary, I point out to the existence of a standardized module of building blocks, the use of which appears to transcend the territory not only of a single city but also of a whole region. In this connection, it is remarkable that the Hellenistic city walls and/or harbor works at Akraiphia, Haliartos, Eutresis, Delion, Oinoe, Mazi tower, Sounion, Corinth, Lechaion, Skyros, Echinos, Megara, Eretria, Odessos and Mesambria display identical choice of stone and module of ashlar blocks (Table 5.4). While there can be little doubt that it resulted from the builders’ employment of a set of fixed dimensions in the process of quarrying, as the evidence from Aegina and Anthedon suggests, it also raises the question why ashlar blocks of identical dimensions crop up in different places. This is all the more puzzling since we have already established that each settlement was likely to rely upon its own supply of building stone rather than export it from elsewhere.

How in reality was this uniformity achieved? Unfortunately, we know almost nothing about the overall organization of the building projects themselves; questions like who owned the quarries, private individuals or public property,417 how was the work overseen, who organized the logistics, was there slave labor involved, and so

417 Epigraphic data clearly shows that in Athens state and private ownership of quarries existed side by side, cf. Osborne 1985, 103-107; Langdon 2004, 244.
forth, are bound to remain unanswered. To complicate matters further, one needs to consider the fact that the construction of the walls was happening more or less at the same time. This alone, quite independent from the building module, seems to point to the existence of a centralized effort, the identification of which has been discussed in the next sections.

5.3: Transport

From the preceding section it is clear that we are dealing with at least two basic types of quarries: seaside and inland. In most cases, the quarry sites were situated in the immediate vicinity of the settlements, a common ancient practice allowing for substantial cut down on the cost of quarrying. The use of sandstone by inland sites, however, complicates the picture since the deposits are proximate to the seashore, as in the case of Livanates (Philipppson and Kirsten, 1951 347). Even if there was another source of supply around the plain of Atalandi, as has been suspected (Dakoronia 1993a), the carriage of the stone to Opous and Kastraki must have involved the employment of animal transport.

On the whole, most Lokrian settlements relied on the deposits of conglomerate that were widely available, from the seashore near Arkitsa to the bay of Larmes and beyond (e.g. Anthedon, Delion, Sounion). In the cases of Alope and Halai, the quarried blocks were perhaps transported by sea, since one of the main advantages of a seaside quarry was the availability of transport by water (Dworakowska 1975, 96). Unlike the seaside quarries at Piraeus, for example, where much has been lost to urban development (Eickstedt 1991, 134-137; Langdon 2004, 240-241, many of the Lokrian seaside quarries, e.g. Halai and Larymna, are currently submerged on account of the changes in sea level caused by earth tectonics and frequent earthquakes. The

418 The transport of stone by water, λιθομορίζει κατὰ θάλασσαν, is attested by several building inscriptions from Delphi, e.g. FD III. 5. 23, ll. 66-68; 3. 5. 19, l. 98, on which see Rothaus 1995, 294.
difficulties in obtaining the date of their use have long been recognized (Dworakowska 1975, 29-31), and our case is no exception. Helpful pointers do exist; (1) the construction date of the city walls, which created demand for building stone, has been fixed into the last quarter of the fourth century BC, (2) while archaeological excavations have yielded no architecture of conglomerate and sandstone from within those settlements. It is reasonable to conclude that all seaside quarries of conglomerate and sandstone were open in order to meet the need for the construction of the Hellenistic city walls (Table 5.2). Once the building projects had been brought to completion, they were quickly abandoned.

For the work organization, epigraphic evidence provides useful clues. A building inscription for the fortification walls at Eleusis of 329/8 BC, for example, distinguishes between τέκτονες, specialized workers and unskilled laborers. Quarrying (τομή), carriage (κομιδή), transportation (ἀγωγή) and placing (θέσις) were all paid activities assigned to different individuals (Maier 1959, 98-102; Bessac 1986, 277). Well documented building projects such as the construction of the city walls at Syracuse by Dionysius I in 401 BC furnishes other details. The division of labor described by Diodorus is broadly similar;

Diod. Sic. 14. 18. 4-6: “Wishing to complete the building of the walls rapidly, he [Dionysios] gathered the peasants from the countryside, from whom he selected some sixty thousand capable men and parcelled out to them the space to be walled. For each stade he appointed a master-builder and for each plethron a mason, and the labourers from the common people assigned to the task numbered two hundred for each plethron. Besides these, other workers, a multitude in number, quarried out the rough stone, and six thousand yoke of oxen brought it to the appointed place. And the united labour of so many workers struck the watchers with great amazement, since all were zealous to complete the task assigned them. For Dionysius, in order to excite the enthusiasm of the multitude, offered valuable gifts to such as finished first, special ones for the master-builders, and still others for the masons and in turn for the common labourers; and he in person, together with his friends, oversaw the work through all the days required, visiting every section and ever lending a hand to the toilers.” Loeb translation, Oldfather 1989.
responsible for the actual construction.

Building inscriptions also show that there was a board of magistrates specially appointed by the civic authorities, called τειχοποιοί, ἐπίσταται and ἐπιμέλεται, who oversaw the work on fortification walls, as well as the funds allotted to it, called τειχοποικῆ (Maier 1961, 42-50; Migeotte 2000, 149-150; Chaniotis 2005, 32, 43, 117). Whether the overall organization of the Lokrian fortifications took place according to such a scenario remains unknown, but as Garlan (1974b, 109) has already observed, certain standardization of the construction process is clearly in motion, evoking the image of what he calls “travail à la chaîne” supervised by a well-trained specialist for whom efficacy and economy were of primary concern.

5.4: Cost

Fortification building is expensive. Building inscriptions remain our best source to understand the economic aspects of what at all times was a large-scale enterprise affecting the entire community (Camp 2000, 41, 46-47). The pertinent epigraphic documents allowed Maier (1961, 55-66; cf. Migeotte 2000, 147-149) to distinguish between three basic categories of finances; ordinary revenues; extraordinary proceeds and donations. Projects employing ordinary revenues relied on money from surpluses or specially allotted funds handled by a specially appointed magistrate. Most of them, however, were confined to refurbishing works on already existing fortifications whose immediate historical context remains unknown (Maier 1961, 56-57). By contrast, times of crises, including natural disasters, or calamities of war called for alternative methods of acquiring money. Quite often, citizens were forced to provide (εἰσφορὰ) or contributed voluntarily (ἐπίδοσις) resources towards the completion of large-scale building projects. Several instances show that at times cities even resorted to requesting loans from richer communities which they approached by devising mythological links of Σωτηρία (Ma 2003, 9-14). Royal
donations, on the other hand, provided another substantial source of income a city could take advantage of.\(^{421}\)

Price lists for every component of wall construction are rarely available, with the notable exception of the building contract for the fortification walls at Eleusis dated to 329/8 BC. An ashlar block of breccia, for example, costs 1 drachma and 1 obol (Maier 1959, no. 20, l. 49). This is actually slightly more expensive than an ashlar of Aiginetan limestone, which is 1 drachma (Maier 1959, no. 20, l. 53). It remains unclear, however, whether these prices, apart from the labor of quarrymen (τομῆ), also include the actual price of the stone (Maier 1961, 67). The transport (ἀγωγῆ) emerges as the most expensive, with 1 drachma and 3 obols a piece, whereas the price of placing (θέσις) was only 1 drachma (Maier 1961, 66-67, n. 117). Thus at late fourth century BC Eleusis getting a finished ashlar block of breccia from the quarry to the site was in the range of 3 drachmas and 4 obols.

The breccia blocks mentioned in the inscription, however, in fact served to replace the mudbrick superstructure of an earlier wall and tower of the *peribolos* (Noack 1927). The total cost of refurbishing the tower, for example, is listed as 1,686 drachmas (Maier 1961, 66). By contrast, a new tower at Kyzikos, dated to the late fourth – early third century BC, took 440 staters or 9,200 drachmas to build (Maier 1959, no. 59). By way of comparison, Camp (1991, 201, n. 34) estimates that approximately 900 blocks of breccia were employed in the construction of the Mazi tower, consisting of 5 floors, ca. 14 m in height (Fig. 5.61). Using the prices listed for the breccia refurbishment on the fortification walls at Eleusis, the total cost would

\(^{421}\) The king of Tartessos provides money to the mother city of Phocaea to surround it with a wall. Hdt. 1. 163. 3: “τούτῳ δὴ τῇ ἁνδρὶ προσφιλέες οἱ Φοικαῖες οὗτος δὴ τι εγένοντο ὡς τὰ μὲν πρῶτα σφέας ἐκλαπόντας Ἰονίην ἐκέλευς τῆς ἑωυτοῦ χώρης οἰκήσαι ὅκου βουλόντας: μετὰ δὲ, ὡς τοῦτό γε ὡς ἔπειθε τοὺς Φοικαῖας, ὃ δὲ πυθόμενος τὸν Μήδον παρ᾽ αὐτῶν ὡς αὐξότο, ἐδίδου σφι πρόματα τεῖχος περιβάλλεσθαι τὴν πόλιν.” Konon initiated rebuilding of the walls at Athens and Piraeus in 395/4 BC because of the money he received from the Persian king, cf. Conwell 2008, 115-118, 130-131.
come down to 3,300 drachmas or slightly over than a half talent.

The amount of money needed to fund extensive projects, on the other hand, was considerably higher than the price of a single tower. While king Amynandros, for instance, donated 10 talents to Phthiotian Meliteia – a city of no great size – for the city gate and the walls (Maier 1959, no. 31), the money collected for the new walls at Colophon built during 311-306 BC was between 333,000 and 454,000 drachmas, i.e. an average of 65 talents or 6½ times more (Maier 1959, no. 69C; cf. Migeotte 2000, 148, n. 4; McNicoll 1997, 67-70, fig. 13). The amounts provided by Hellenistic kings, on the other hand, tops it all, with donations ranging between 20 and 300 talents (Maier 1961, 68, n. 122; Migeotte 2000, 149).

5.5: Construction techniques

Apart from the building stone, the most striking feature of the Lokrian fortifications is their broadly similar method of construction. What follows is an attempt to introduce the different stages of building.

5.5.1: Masonry

The large demand of softer stones was met by the opening of temporary quarries near each site. The preference was given to conglomerates and sandstones, large deposits of which were to be found along the seacoast. The extraction and prefabrication of the building blocks must have been relatively quick affair, judging from the fixed module of block size employed by the quarrymen. The predominant dimensions were in the range of 1.20-1.30 x 0.60-0.70 x 0.45-0.55, along with the less well-attested 0.95 x 0.60 x 0.45 – a byproduct of emplekton structura (Tables 5.2, 5.3, Fig. 5.9).\(^\text{422}\)

\(^{422}\) As evidence from other sites demonstrates (Table 5.3), rather than assuming that the slight variation of the basic set of block sizes was deliberate, it is far more likely that it resulted from the varying level of finish applied onto the blocks once they have arrived from the quarry.
In his study on the Hellenistic wall at Akraipha, Garlan (1974b, 94) pointed to this uniformity of block dimensions revealing the existence of a very simple proportion, height: 1, 5; width: 2; length: 4 (Table 5.3). He also showed that the basic standard of measurement was the Aiginetic foot equaling 0.317 m (Garlan 1974b, 99).

Table 5.3: Ancient and modern measurements of the ashlars

<table>
<thead>
<tr>
<th>aeginetic feet</th>
<th>meters</th>
<th>ancient nomenclature</th>
<th>modern nomenclature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3167</td>
<td>Πούζ</td>
<td>foot</td>
</tr>
<tr>
<td>1 ½</td>
<td>0.475</td>
<td>Πήχυζ</td>
<td>cubit</td>
</tr>
<tr>
<td>2</td>
<td>0.6334</td>
<td>Διπόδια</td>
<td>a measure of 2 feet</td>
</tr>
<tr>
<td>3</td>
<td>0.9501</td>
<td>Τριπόδια</td>
<td>a measure of 3 feet</td>
</tr>
<tr>
<td>4</td>
<td>1.26</td>
<td>Τετραπόδια</td>
<td>a measure of 4 feet</td>
</tr>
</tbody>
</table>

423 Caskey 1911, 343 notes that the blocks of the proportion 4 x 2 x 1 ½ feet were frequently employed in public buildings, especially in Attica, during the late fifth and throughout the fourth century BC. See also Wrede 1933, 50-51.
To illustrate the wide usage of this module, Garlan (1974b, 104, n. 12) cited as parallels the temple of Hero Ptoios at Katraki, as well as the walls of Halai and Eutresis, while on account of the employment of reddish conglomerate, he pointed to the walls of Halai, Eutresis, Haliartos, Larymna and Anhedon as further comparanda (Garlan 1974b, 108, n. 19). In addition, I established that the use of conglomerate ashlar blocks of the proportions noted above extend even beyond the borders of Boeotia. In addition to the Hellenistic walls of Corinth, the Trans-Isthmian wall, the diateichisma on the Pnyx and the Macedonian fort on the Mouseion Hill at Athens, I provide further examples, all of which I discuss in some detail below (sections 5.9.1-14): “quadrangular” fort at Oinoe, Mazi tower, Lechaion, Sounion, Megara, Eretria, Echinos, Skyros, Odessos and Mesambria (Table 5.4).

The style of masonry was invariably isodomic ashlar, with slight modifications dependent on the positions of the blocks in the enceinte. The level of preservation, however, is varied among the different sites in which the masonry has been employed. Despite the friable nature of the stone, in most cases enough courses of masonry have

424 Although Garlan 1974b, 100, 104, 108 repeatedly describes the stone used at Akraiphia as “poros”, it is clear that based on the presence of larger, angular inclusions it may be identified as breccia, cf. Lawrence 1979, 213.
425 Parsons 1936, 58; Karlsson 1992, 62-64.
427 Thompson and Scranton 1943, 303-340.
Table 5.4: Comparison between ashlars of conglomerate or breccia from towers and curtains in early Hellenistic Greece and West Black sea coast

<table>
<thead>
<tr>
<th>REGION</th>
<th>SITE</th>
<th>ASHLARS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Length</td>
</tr>
<tr>
<td>OPOUNTIAN</td>
<td>LOKRIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alope</td>
<td>1,20-1,30</td>
</tr>
<tr>
<td></td>
<td>Kynos</td>
<td>1,10-1,20</td>
</tr>
<tr>
<td></td>
<td>Palaiokastra</td>
<td>1,20-1,30</td>
</tr>
<tr>
<td></td>
<td>Opous</td>
<td>1,30-1,40</td>
</tr>
<tr>
<td></td>
<td>Kastraki</td>
<td>1,20-1,30</td>
</tr>
<tr>
<td></td>
<td>Korseia</td>
<td>1,20</td>
</tr>
<tr>
<td></td>
<td>Halai</td>
<td>1,20-1,25</td>
</tr>
<tr>
<td></td>
<td>Larymna</td>
<td>1,23-1,29</td>
</tr>
<tr>
<td></td>
<td>Anthedon</td>
<td>1,20-1,25</td>
</tr>
<tr>
<td></td>
<td>Delion</td>
<td>1,20</td>
</tr>
<tr>
<td></td>
<td>Akraiphia</td>
<td>1,22-1,26</td>
</tr>
<tr>
<td></td>
<td>Haliartos</td>
<td>1,20-1,30</td>
</tr>
<tr>
<td></td>
<td>Eutresis</td>
<td>1,20-1,30</td>
</tr>
<tr>
<td></td>
<td>Oinoe</td>
<td>1,24-1,33</td>
</tr>
<tr>
<td></td>
<td>Mazi</td>
<td>1,20-1,50</td>
</tr>
<tr>
<td></td>
<td>Sounion</td>
<td>1,23-1,30</td>
</tr>
<tr>
<td></td>
<td>Corinth</td>
<td>1,20-1,30</td>
</tr>
<tr>
<td></td>
<td>Lechaion</td>
<td>1,30</td>
</tr>
<tr>
<td></td>
<td>Megara</td>
<td>1,15-1,34</td>
</tr>
<tr>
<td></td>
<td>Eretria</td>
<td>1,30</td>
</tr>
<tr>
<td></td>
<td>Echinos</td>
<td>1,20</td>
</tr>
<tr>
<td></td>
<td>Skyros</td>
<td>1,18</td>
</tr>
<tr>
<td></td>
<td>Odessos</td>
<td>1,20-1,30</td>
</tr>
<tr>
<td></td>
<td>Mesambria</td>
<td>1,20</td>
</tr>
</tbody>
</table>
survived to substantiate the view that curtains and towers consisted of stone masonry throughout. The workability of the conglomerate, on the other hand, lends itself to procuring blocks of equal sizes. A variety of factors governed the choice of a style, of which the availability of building material was most certainly crucial. As noted earlier, however, the rich deposits of conglomerate, within an easy reach to coastal sites, played a secondary role in deciding to use it as main building material for the walls.

What is more significant comes from the observation that the same module of blocks was retained in the breccias walls of inland sites, pointing to the overriding importance of technology, a fortification technique that was much advanced, as well as “très ‘savante’” (Garlan 1974b, 107). Along similar lines, Bessac (1986, 278) has argued that the adherence to a unified scheme, as well as the conspicuous presence of regular block dimensions, betrays the work of “une hiérarchie compétente contrôle constamment la production.” Leriche (1994, 11) observes that the dominance of “construction modulaire en pierre tendre” offset the influence of local traditions in stone masonry, especially during the Hellenistic period. Finally, Paris (1915, 13) maintains that modular masonry of conglomerate “rendait la construction moin coûteuse et plus facile.”

5.5.2: Surface treatment and joints

Apart from the uniformity of block sizes, the ashlars received different level of treatment upon their surface and joints. It is important to note this, since rarely has the distinction been emphasized enough in the literature. The walls of Halai provide a good example; the blocks used in towers have drafted margins on all but the upper side (Fig. 5.10), whereas those employed in curtains show traces of beveling on each

428 The point has been made by McNicoll 1997, 3; contra Scranton 1941, 12, who says that, “material alone was not an influencing factor.”
side (Goldman 1940, 392, 394). Goldman’s observations were reflected in the scheme put forward by Scranton (1941, 179-180), in which the towers of Halai fall into the group of isodomic ashlar with tooled faces and drafted margins, while the curtains, including those at Larymna, fall into the group of isodomic ashlar with tooled faces and beveled joints.\footnote{429}

![Figure 5.10: Drafted margins on Bastion II, \textit{left}, and round tower at Halai, \textit{right}. Note the absence of drafting on the upper side (courtesy CHELP)](image)

Observation reveals that, at a number of other Lokrian sites, drafting also occurs only in blocks of towers, unlike beveling which was restricted to blocks employed in curtains (Fig. 5.11).\footnote{430}

![Figure 5.11: Beveled edges on south-east wall at Halai, \textit{left}, and south wall at Kynos, \textit{right}. Note the absence of drafted margins}

\footnote{429}{The assignment of the masonry from Halai to separate categories is based solely on the difference in the treatment of joints, and as such is not meant to introduce chronological distinction between the two. In other words, curtains and towers at Halai belong to one building phase.}

\footnote{430}{See Hellmann 2002, 116 who describes drafting as “marginally drafted masonry.”}
The consistency with which the treatment of joints follows the same pattern requires further elaboration. In fact, many studies have shown that these preferences were conditioned by aesthetics as much as by function. Let us begin with the beveled edges.

First, a distinction must be made, as noted by Scranton (1941, 23), between beveling practiced on Hellenistic walls from that used in public buildings of the Classical period (Trevor Hodge 1975, 334). In the case of temples, for instance, the bevel was smaller, almost imperceptible crevice serving to prevent the blocks from chipping during construction. By contrast, the beveled edges visible on Hellenistic walls, including those at Halai, Larymna, Palaiokastrra Livanaton, among others, are much deeper, wider bands carried out consistently on all four sides of the blocks. Essentially the edges were removed by means of strokes delivered at a forty-five degree angle to the face of the block. The effect sought, however, was purely aesthetic, serving no practical purpose (Martin 1965, 420). If the beveling achieved anything, it was in the realm of visual aesthetics, the importance of which was emphasized by Aristotle.

The function of a drafted margin, on the other hand, called by Martin (1965, 416-418) “ciselure” or πεξηβιέναι in Greek, was dictated by the military considerations imposed on towers, as a frequent target of an attack by the enemy. In order to better withstand battering rams and artillery fire, special care was taken to smooth the margins as well as to roughen the surface of the blocks employed in their construction. Drafting allowed for a central rusticated panel or a central bossing to be formed,

432 “Beveled joints” as called by Scranton 1941, 22-23.
433 Aristotle Politics 1331a: “…οὐχ ὁτι τείχη μόνον περιβλητέον, ἀλλὰ καὶ τούτων ἐπιμελητέουν, ὅπως καὶ πρὸς κόσμον ἔχη τῇ πόλει πρεπόντως καὶ πρὸς τὰς πολεμικὰς χρείας.”
434 Scranton 1941, 21 describes the feature as a “hammer face” or “hammer work.” It corresponds to λίθος ἄργουμέτωτος, see Maier 1959, no. 11, l. 40; 1961, 88, n. 101.
while the sides receded back thanks to the removal of a narrow band along the joint. Drafting was also necessity in the corners of towers (Fig. 5.14), in which they were used as a way of obtaining a right angle of the angle blocks during construction (Lawrence 1979, 242).

In our case, however, the surface of the blocks has been flattened by means of a flat chisel (Fig. 5.13),\(^{435}\) a specimen of which was found among the debris cleared from the Hellenistic tower at Akraiphia (Garlan 1974b, 105, fig. 13).\(^{436}\) The effect achieved is that of a rusticated panel or “panneau avec ciselure” (Martin 1965, 416), corresponding to the term “tooled face” as defined by Scranton (1941, 22).

Figure 5.13: Making drafted margin with a flat chisel and mallet, \textit{left}, and chevron pattern with tools, \textit{right} (after Bessac 1980, figs. 5.3, 5.4)

\(^{435}\) Scranton 1941, 22 says that “soft stone was dressed flat with a broad flat chisel.”

\(^{436}\) Garlan 1974b, 105, n. 13, quotes Martin 1965, 154, who claims that the use of the chisel as a tool for dressing ashlers is well attested in the Hellenistic walls of Saint-Blaise, on which see the admirable study of Bessac 1980, 137-158.
Some of the ashlars from the curtain at Palaiokastra Livanaton have a distinct chevron pattern of rustication consisting of four rows of slanting chisel marks (Fig. 5.12, top). Garlan (1974b, 105) noted similar treatment on several blocks at Akraiphia. As far as I am aware, the detail has gone unnoticed by Greek archaeologists (Bouyia 2000a, 57-58), but it may be significant for it is paralleled in the Hellenistic city walls at Saint Blaise (Fig. 5.12, bottom).

Figure 5.12: Tooled face with chevron pattern on the walls at Palaiokastra Livanaton and Saint Blaise (author; Bessac 1980, fig. 6)

The practice, however, had nothing to do with decoration; rather it derived from a “habitude technique” to quickly obtain a smooth surface for a crudely shaped block (Bessac 1980, 157).
I also observed rectangular cuttings on several blocks from the curtains at Halai, Kynos and Anthedon (Figs. 5.15-5.21).

Figure 5.15: Rectangular cuttings on the upper surface of an ashlar from Tower II-1 at Halai

Figure 5.16: A detail of Fig. 5.15; note the shallow depth and the angled position of the cuttings
Figure 5.17: Similar pair of cuttings on an ashlar block from Kynos; note the smaller width and greater spacing between the cuttings.

Figure 5.18: Rectangular cutting on the upper surface of an ashlar from the Northeast Gate at Halai; cutting marked with arrow.
Figure 5.19: A detail of Fig. 5.18; note the absence of a second cutting.

Figure 5.20: Rectangular cutting on the side surface of an ashlar from An hedon; cutting marked with arrow.
At Halai, for example, they are cut on the upper surface, while at Kynos near the upper edge of the header. The close and angled position of the cuttings at Halai and Kynos, however, discourages the possibility to imagine prying holes, which is the case with a block from the Northeast gate at Halai and a specimen from Anthedon. Instead they possibly served as lifting holes used during the final positioning of the block. The cutting from Kynos indicates that the block was laterally lifted by means of pincers before it was put in place.

5.5.3: Curtains

The construction of a wall, known as τεῖχος, μεταπόργιον, μεσοπόργιον from literary sources and inscriptions (Maier 1961, 80, n. 51), begins with the digging of a foundation trench, which is always wider than the thickness of the wall (Adam 1977, 44-49; Ginouvès 1992, 8-9). Invariably, including towers, it is founded on a one-stepped platform consisting of a single course of headers that protrude 0.30 m beyond the wall face. This relatively simple yet material consuming device was necessary when the bedrock could not be used as a platform. In turn, the walls were founded

Figure 5.21: Rectangular cutting near the upper edge of an ashlar placed as header from Kynos
directly on top of alluvium deposits, as in the case of Opous; this additional effort was needed in order to ensure greater stability. The protruding course of headers thus became an essential element of the foundations, the absence of which would have put the stability of the entire wall at risk.

Above the foundation course, the wall was built in the so-called *emplekton*\(^{437}\) or *diatonikon*\(^{438}\) technique. The variety employed in the Lokrian fortifications consists of headers and stretchers alternating in the same course, whereby the wall face built up in this manner naturally acquired a plaited surface. Although the original meaning of *emplekton* has been much debated,\(^{439}\) Tomlinson (1961, 137) argued that it derived from the appearance of the wall surface, resulting from the headers being ‘interwoven’or ‘woven-in’. Karlsson (1992, 68) calls this arrangement of headers being set in every other course one on top of the other, a masonry chain. The headers were also placed at regular intervals, which in turn created rectangular compartments of varying dimensions.\(^{440}\) Apart from signaling the presence of *emplekton* technique, the fact that headers or *diatonoi* were used accounts for the need of producing shorter

\(^{437}\) Vitr. De Arch. 2. 8. 7: “Altera est quam ἐμπλέκτων appellant, qua etiam nostri rustici utuntur. quorum frontes poliuntur, reliqua ita, uti sunt nata, cum materia conlocata alternis alligant coagmentis. sed nostri celeritati studentes, erecta conlocantes frontibus servient et in medio farciunt fractis separatim cum materia caementis. ita tres suscitantur in ea structura crustae, duae frontium et una media furturae. Graeci vero non ita, sed plana conlocantes et longitudines eorum alternis in crassitudinem instruentes, non media farciunt, sed e suis frontatis perpetuam et unam crassitudinem parietum consolidant. praeterea interponunt singulos crassitudine perpetua utraque parte frontatos, quos διότουοι appellant, qui maxime religando confirmant parietum soliditatem.”

\(^{440}\) The formation of this feature, most certainly a byproduct of the *emplekton* technique, has given rise to the popularity of an alternative term, i.e. ‘compartmental wall technique,’ Thompson and Scranton 1943, 301; Ginouvès and Martin 1985, 59; Ginouvès 1992, 31; 1998, 29, n. 141, or “compartmentalization,” Wright 1987, 90, which is less precise because it does not necessarily imply the existence of headers being ‘interwoven’ in the wall surfaces.
stretchers, 0.95 m long, in order to maintain the central position of the crosswall, as seen in towers with dimensions of 20 x 20 feet (Fig. 5.22, Table 5.5).

Figure 5.22: Diagram showing the outer face of the solid base of an *emplekton* tower of 20 feet based on the tower at Korseia/Neochori, *bottom*; dimensions in feet and in meters.

426
Table 5.5: Distribution of ashlars by position in the course

<table>
<thead>
<tr>
<th>Course/Position</th>
<th>Short stretcher</th>
<th>Long stretcher</th>
<th>Header</th>
<th>subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>III</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>IV</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>V</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>VI</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>total</td>
<td>6</td>
<td>30</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Tower total</td>
<td>24</td>
<td>120</td>
<td>144</td>
<td></td>
</tr>
</tbody>
</table>

This minor detail is important and must be emphasized because it proves, among other things, that the quarrymen knew in advance what building technique was to be employed.

The masonry of the Lokrian fortifications has been identified as *emplekton* by Garlan (108, n. 18), who noted identical method of construction in the walls of Akraiphia and Eutresis. Neither Karlsson (1992, 78) nor Bouyia (2000a), who both described the masonry as *emplekton*, mention Garlan’s observations. The *emplekton* wall at Akraiphia, however, deserves special attention on account of another significant detail.

The French excavations established a curious fact; the outer wall, including the *diatonoi*, was built with breccia, while the inner wall consisted of well-jointed isodomic masonry of harder limestone (Fig. 5.23). Garlan (1974b, 108; 1974a, 13), followed by Lawrence (1979, 213), explained what he called a “paradoxe” by pointing to the higher capacity of the breccia as opposed to harder types of stone to withstand

441 Martin 1965, 375, n. 11 was the first to do so. See also Maier 1961, 105-106, n. 181 describing the technique without referring, however, to *emplekton*, “…die kammerartige Aufteilung des Mauerkerns durch durchgreifende oder von zwei Seiten gegeneinanderstossende Binder.” The fortification walls of Halai, among others, are mentioned in the footnote.
Figure 5.23: *Emplekton* walls at Akraiphia, *top*, and Opous, *bottom*; note that in the first case inner wall is of harder limestone marked with darker gray (after Garlan 1974b, fig. 3; Bouyia 2000a, fig. 6)

the action of the battering ram. Sedimentary stones, such as sandstone, conglomerate and breccia, transmitted little shock upon impact by a ram or artillery projectile, and in this respect they may be perceived as a substitute of mudbrick whose properties as shock-resistant material in wall building was well-known by the ancients.\(^{442}\) It is thus clear that the dominant presence of sedimentary stones in Opountian Lokris was not

\(^{442}\) Paus. 8. 8. 8: “ἐς μὲν δὴ μηχανημάτων ἐμβολῆν ἀφελείαν ἡ πλίνθος παρέχεται μᾶλλον ἢ ὁπόσα λίθου πεποιημένα ἐστίν: οἱ μὲν γὰρ κατάγονται τε καὶ ἐκπηδοῦσιν ἐκ τῶν ἀρμονίων, ἢ δὲ πλίνθος ἐκ μηχανημάτων μὲν οὐχ ὁμοίως πονεῖ, διαλύεται δὲ ὑπὸ τῶν ὑδατός οὐχ ἦσον ἢ ὑπὸ τοῦ ἥλιου κηρός.” The same observation is made by Apollodorus in his *Poliorketika* 157. 5-158. 2.
accidental; on the contrary, it derives from good knowledge of the different rate of performance of various materials.443

In most cases, the walls were constructed of two parallel facings bound together at intervals by crosswalls of headers (\textit{diatonoi}), while the hollow space created by the compartments was filled up with earth and stones (Fig. 5.23).444 Although no evidence has survived, it is assumed that this mode of construction continued up to the level of the wallwalk. From this point on, the outer wall was carried out upwards by successive courses of stretchers, thus forming the appearance of a parapet or screenwall.445 It is often pierced by inward splaying arrow slits or rectangular windows covered by wooden shutters. The evidence as to whichever of the two was employed in the Lokrian fortifications is irretrievably lost. Indirect data, however, seem to point to the existence of roofed wallwalks, as has been suggested for the south wall at Halai, in particular (Goldman 1940, 392-393).

\textbf{5.5.4: Abbreviated curtains}

Another variety of the \textit{emplekton} technique dispensed with the inner wall facing, thus creating the appearance of what Karlsson (1992, 82; 1996) has called an “abbreviated compartment” wall. The consistency with which this mode of construction has been employed in Opountian Lokris is striking, e.g. Alope, Kynos, Opous, Palaiokastra Livanaton, Halai and Larymna (Fig. 5.24, 5.25). Scholarly opinion about its purpose is divided. Current interpretations are based on the evidence supplied by the abbreviated compartment walls of Halai and Larymna (Goldman 1940, 393-394; Schäfer 1967; Lawrence 1979, 366; Karlsson 1992, 82; 1996). Recent

\footnote{443 Describing the soft reddish or yellowish white limestone at Haliartos, Austin 1925/1926, 83-84 clearly misunderstood its purpose: “The stone is very soft and quite unsuited for a fortification wall.” See section 5.9.4.}

\footnote{444 An Athenian inscription of 337/6 BC shows that the packing of stones and earth known as \textit{λατρόπη} must be distinguished from solid packing of stones, \textit{πέραργια} (Maier 1959, no. 10, l. 82, ll. 90, 91, 109).}

\footnote{445 In building inscriptions this necessary feature of the upper wall is referred to as \textit{ἐπαξές} (Maier 1959, no. 11, ll. 54, 76, 80, 81, 86).}
discoveries, however, have increased the number of fortified sites equipped with such walls, thereby raising the question of function again (Bouyia 2000b 52-53). It is my intention to investigate the issue in some detail because it allows us to make important observations about the peculiarities of a relatively little attested version of the *emplekton* technique.

As stated above, a recurring feature of this type of wall is the absence of an inner wall. That this is a significant alteration of the primary design can hardly be
doubted, for the removal of the inner wall created at least two structural issues: (1) the fill of earth and stones can no longer be kept in place and (2) the absence of an inner wall was bound to affect the way in which the wallwalk had been constructed.

Goldman (1940, 393) attempted to solve the first problem by suggesting that the strap walls, attested on the east and southeast wall at Halai, were built in order to contain the slightly rising ground on the acropolis, thus serving “in their lower courses as a terrace support” (Fig. 5.25).446 Because of the rise in the ground noted by Goldman, Lawrence (1979, 366) suggested that an earth embankment was heaped towards the inner face of the wall up to a level “equivalent to a wall-walk’s”. In this way, the straps served to keep the masonry of the outer wall intact by countering the outward thrust caused by the earth fill. In addition, a great weight was assigned to the level of gradient against which the walls were built. Thus, according to Lawrence, the straps were likely to be spaced more closely on the spot where the gradient was steeper, i.e. southeast wall, and more sparsely where the slope is less noticeable, i.e. east wall.

While essentially endorsing Goldman’s theory for countering the pressure of an earth fill, Lawrence’s conjecture that the latter was as high as the level of the wallwalk throughout is questionable. Doubts can also be raised against the suspected role played by the gradient in deciding to build “abbreviated compartment” walls. If the gradient was such an important factor, however, how are we to explain the absence of spur walls on the south side of the acropolis, where the hill rises abruptly from the sea shore, and where the south wall consists of two facings bound together at intervals by crosswalls along the entire flight of the curtain.447 Furthermore, the discoveries of stretches belonging to the “abbreviated compartment” type situated on level ground, as

446 In fact, Goldman 1940, 393 understood them as retaining walls but without offering explanation as to what arrangements had been made for the wallwalk.
447 Neither Goldman 1940, 393 nor Lawrence 1979, 366 attempted to account for the existence of a full-blown version of the compartment wall on the spot where, according to their argument, it should be least expected.
in the cases of Alope and Opous (Bouyia 2000b 54-56), or slightly sloping as at Larymna (Schäfer 1967, 535, 537, fig. 10), undermines the importance of the gradient theory even further. To this may be added the newly found sections of the fortification walls at Palaiokastron Livanaton, in which the employment of abbreviated type has been also attested (Bouyia 2000b, 57-58).

The use of the abbreviated type seems, as new discoveries have shown, to have enjoyed a much wider popularity than hitherto believed. The fact that it appeared on flat ground shows, among other things, that its employment was not exclusively restricted to hilly locations and steep gradients. In addition, the walls belonging to this type singled out by Karlsson (1996, 80), most notably those of Gela and Naples (Fig. 5.26), are located on flat ground as well.

Figure 5.26: Abbreviated emplekton wall at Gela, Sicily; note the greater height of the crosswalls indicating that they served to support a walking platform on top, see Fig. 5.25 (after Karlsson 1992, fig. 67)

448 Marquand 1909, 367, has argued, rather unconvincingly, that the strap walls at Larymna served to resist the force of the sea waves.
It is thus conceivable that other concerns stood behind the decision to build *emplekton* walls in this manner. In areas less prone to launching a mechanized attack, the willingness to cut down on expenditure of resources by dispensing with the construction of an inner wall seems a likely explanation. To invest too much in this, however, as the case of Opous clearly shows may not be necessary.\(^449\)

5.5.5: Wallwalks

In addressing the second question, i.e. how was the wallwalk, *parodos*, affected by the change of design, I hope to demonstrate that the removal of the inner walls had little impact on the upper structure of the curtains, which continue to function on a par with the other sections of the enceinte as defensive units on its own.

Using the southeast and east walls at Halai as an example (Fig. 5.27), I offer a possible reconstruction of their superstructure, a subject that is dealt with very briefly in the literature (Karlsson 1992, 82; 1996, 80). I hope to demonstrate that, aside from being a less expensive version of the *emplekton* wall, the abbreviated compartment walls were also designed to make the city defenses more flexible. In addition, analyzing their mode of construction leads to a better understanding of the tactical concepts of defense imparted on most of the Lokrian fortifications.

In restoring the wallwalk level, as well as the screenwall above it, an often-discussed problem is the large distance between some straps, which by and large tend to show a certain variety not only in the walls of Halai, but in those of Alope (Bouyia 2000b 53) and Larymna (Schäfer 1967, 533). The distance between two straps along the southeast wall at Halai, for example, is ca. 3.50 m, while those along the east wall are

\(^{449}\) Despite that it is situated on level ground, and thus in a vulnerable location, only a small part of the exposed fortification walls has so far yielded evidence for two wall facings bound at intervals by crosswalls Although in the published reports this is left without a comment, it is clear that the rest of the curtain exposed yielded no trace of inner walls (Dakoronia 1993a, 120-121, fig. 3; Bouyia 2000b, 56, fig. 2).
twice as distant from one another, i.e. ca. 7.00 m (Fig. 5.27).\footnote{Considering the fact that a wallwalk needed to be at least 2.50 m high, it is also difficult to imagine that the minimum height had been attained by the earth fill heaped towards the face of the inner wall, as Lawrence 1979, 366 believed. He thought that the upper level of the earth fill served essentially as a wallwalk, thus dispensing with the need to make separate provisions for it. In this way, it resembled the platform formed by the compartmental structure of the wall, when the fill of earth and stone inside the chambers provided a walking surface needing no further elaboration.}

Figure 5.27: Restored plan of the east and southeast wall at Halai (adapted by author after Goldman 1940, Pl. III)

The greater distance between the straps in the east, however, wall invites an alternative solution to the problem of creating a functional walking platform. In
solving the difficulty, as well as establishing the ancient ground level, Goldman’s observations are an essential starting point.

Goldman (1940, 394) says that the east wall was “preserved to a maximum height of five courses exclusive of the socle (ca. 2.55 m).” She made no correlation between the ground and the foundation courses upon which the other five courses of the wall stood. Unpublished photographs of the Northeast Gate area, however, clearly show that the ground level cannot have been higher than the foundation course of headers exposed around Tower II-3, and the curvilinear bench of stones tucked along the east side of the courtyard. It is thus apparent that for most of its height the east wall was a freestanding piece of architecture but not a retaining wall built to encase a higher ground. That the earth fill was heaped towards the face of the inner wall seems likely, but out of necessity it possibly formed an inward sloping embankment, especially since nothing stood in its way to prevent it from sliding down. Although we have no evidence as to the original height of the straps, it must be argued from silence that they were preserved up to five courses thus corresponding to the figure reported for the outer wall. If this is correct, it is reasonable to assume that this was in fact the level of the wallwalk.\footnote{Although the argument presented above may seem laboriously constructed, it must be kept in mind that to a great extent this is due to the insufficient level of detail left by Goldman’s publication with regard to many crucial aspects of wall construction.}

In the next section I present one possible reconstruction of the way in which the builders made provisions for the \textit{parodos}.

It is conceivable that a removable platform made of wooden planks was the way of dealing with the problem. Since the distance between the straps was greater (ca. 7.00 m), intermediate supports vis-à-vis wooden uprights must have been essential. They were probably unseen for a good part of their height since they were inserted into the earth embankment behind the wall. In order to ensure greater
stability, the uprights were structurally connected to the face of the inner wall by means of crossbeams, socketed in the outer wall (Fig. 5.28).

Figure 5.28: Reconstruction of the east and southeast wall, *bottom*, at Halai with a removable wallwalk of wood

The architect had at least two choices; he could cover with wooden planks the entire
length afforded by the extent of the stone straps, i.e. 1. 92-1.95 m (Goldman 1940, 394).

The restoration proposed above aims to illustrate how an apparent problem of construction might have been solved in theory. It has already been noted by students of Greek fortifications that a greater spacing between straps presents a structural obstacle (Winter 1959, 167-168). For the lateral thrust caused by moving soldiers must be taken into consideration when spanning a distance of ca. 7.00 m was necessary, and especially because procuring wooden planks of such length is unlikely to have been feasible. Apparently, additional vertical supports were needed, and in the case of Halai, securing uprights made of wood replacing the missing straps was the solution conceived. To a certain extent, the earth embankment stabilized the wooden uprights supporting the wallwalk, as well as helped the walls to better withstand artillery fire, especially from lithoboloi.

It is obvious that the restoration proposed here draws on the potential furnished by an often-cited passage from Philo of Byzantium, who was writing in the last third of third century BC (Lawrence 1979, 71). In his Poliorketika (1. 15), he mentions a particular type of removable wallwalk, one that was put up only in case of a siege:

“Some of the curtains, in appropriate situations, are built with parapets but without wallwalks. Instead they have floors of wooden planks laid from spars fixed in the structure of the walls, so that in time of siege they may be put in place, [and] when it is necessary for our men to patrol or fight upon them, nothing may hinder them. Later, when expedient, the timbers are removed, and a reduced number of guards is left behind.” Trans. McNicoll 1997, 151.

What Philo was in fact describing has been much debated on account of suspected corruptions in the text (McNicoll 1997, 152, n. 163). Another difficulty

6 planks would have been sufficient, 1 foot wide (ca. 0.32 m), 10 feet (3.20 m) long, and at least 0.06-0.07 m thick, or put up a plank or two in case of a need. While either arrangement is possible, it is clear that the latter may have been preferred, especially since the supply of wood was scarce.

The latter must have been of essence, especially in view of the fact that the outer wall was only one block thick, i.e. 0.60 m.
arises from the attempt to identify the structural elements mentioned by Philo with extant fortifications (Stählin 1934, 58). What needs to be emphasized, though, is that Philo was describing a feature of military architecture, i.e. the removable wallwalks that actually existed in his time, meaning that one may expect to find some Hellenistic walls making use of ἰκρία.\footnote{As Holland 1950, 341, n. 11 has pointed out, the majority of circuits revealing employment of removable wallwalks belong to the later phases of the Hellenistic period, e.g. Side, Perge and Rhodes, among others, on which see also Karlsson 1996.}

The question that must be asked then is this: are we justified in looking for early Hellenistic antecedents of what Philo was recommending towards the end of the third century BC? In this scenario, then, the removable wallwalk would not be perceived as a new invention, but rather as an elaboration on preexisting practice passed on from one generation of military architects to the next (Karlsson 1996, 88).

To support his argument, he also pointed to several sites equipped with compartment walls of the abbreviated type, most notably Gela Cape Soparno, Naples and Halai (Fig. 5.24). Thus the purpose of the straps was twofold; to ―buttress‖ the curtain and ―support the wallwalk built with planks‖ (Karlsson 1996, 91).

Karlsson’s idea, however, was not new. In a closely argued article devoted to the city walls of Athens, Winter (1959, 159-209) has long ago argued that ἰκρία denoted an wooden scaffold consisting of several elements, ἰκρία, ξύλα and σανίδες (cf. also Austin 1931, 287). The ἰκρία (uprights) connected with the wall by ξύλα (tie-beams) served as vertical supports of the wallwalk made of σανίδες (planks). In his view, whether ἰκρία were of solid masonry (stone or brick) or replaced by wooden uprights was irrelevant\footnote{As Karlsson 1992, 82 admits, however, whether or not at this stage the stone straps may be identified with Philo’s ἰκρία is a moot point.} while accepting that whenever needed the wooden wallwalk could have been removed (Fig. 5.29). He also dispensed with prior attempts to

\footnote{According to McNicoll, 1997, 151, ἰκρία could have been built either from stone or wood.}
interpret it only as a widening of narrow wallwalks.457

Figure 5.29: Missing strap walls in the east wall, see Fig. 5.28, replaced by stone footing, wooden upright, joist socketed in a block from the outer wall; removable wallwalk consists of six planks, \textit{bottom right}

457 See the discussion on IG II2 463, ll. 113-115 in Winter 1959, 198. Winter (1971a, 148) concluded that the “basic idea” behind Philo’s \textit{ὄρθα} evolved over time by suggesting that the examples from late fourth-early third century BC were constructed of stone, which later came to be built in a wider variety of forms and material. As a prototype, he refers to the early Hellenistic fortification wall of Capo Soprano at Gela, whereas the full-blown version was later adopted in the walls of Side, Perge, Rhodes and the Pnyx at Athens.
In short, the use of abbreviated compartment wall afforded a less expensive way of making provisions toward more flexible urban defense. Not only did the architect dispense with the inner walls of the compartments, but also with the need of securing a permanent walking platform. Anticipating the recommendations of later authors such as Philo and Vitruvius, he resorted to the use of removable wallwalks made of wood.

5.5.6: Roofed curtains

As mentioned *en passant* earlier, unpublished archaeological data associated with the Hellenistic walls at Halai seem to suggest that in some sections they could have been roofed. The south wall, for example, was found in an excellent state of preservation (Fig. 5.30).

![Figure 5.30: Outer face of the south wall at Halai; note the pristine condition of the masonry (after Goldman 1940, fig. 19)](image)

At first, Goldman and Walker (1915, 432, n. 1) thought that this was because “at an early period [the wall] had been covered to a certain depth by the soil,” the idea being to avoid erosion caused by seawater. In the final report, though, Goldman (1940, 392-393) suggested another solution by arguing succinctly for a galleried curtain with a
roof. In addition, frequent references to findings of rooftiles intermingled with black-glazed pottery in association with all newly built fortification walls on the acropolis appear in the fieldbooks of the primary excavations (Goldman 1911, 19; 1923-1931, 11; Walker 1913, 27, 70). Despite the suggestion for a galleried curtain on the south wall, however, these received no mention in the final report. It is nonetheless apparent that they should be associated with the walls proper, rather than with remains of other buildings. If this is accepted, their function must have been (1) to cover the screenwall (Williams et al. 1997, 61-62) and/or (2) provide shelter above the wallwalk. If the first was the case, one has to conjecture a wall consisting of a stone socle topped by mudbrick, for such walls needed some sort of roofing to protect it, e.g. Stymphalos, Mantinea, the Trans-isthmian fortification wall, Thisbe. Goldman and Walker, however, did not actually come across any traces decomposed mudbrick in any of the areas near the Hellenistic walls. Although they do not appear to have reported evidence for coping stones either, the most obvious conclusion must be, as argued earlier, that there was solid stone masonry all the way up to the top of the screenwall. If this is true, there must be some other explanation compatible with the abundant presence of rooftiles, on one hand, and the conspicuous lack of mudbricks, on the other. One is left with the opportunity to suggest then that there was some sort of roofing above the wallwalk, which covered, if not the entire flight of the wall, at least certain areas, thereby (1) providing a shelter for the defenders and/or (2)

458 Williams et al. 1998, 310.
460 Wiseman 1963, 263.
461 Winter 1971, 70, fig. 52.
462 Goldman 1940, 394-5, fig. 32 reports, however, a few coping stones, not in situ, “of careless workmanship” found in the courtyard area of the Northeast gate, which she interpreted as belonging to the superstructure of the curved stretch of wall extending back from Tower II-3. Given the peculiar shape of the blocks, their interpretation as coping stones may be questioned. In fact, they belong to the stone bench inserted against the side of the courtyard at some later period. For examples of coping stones, cf. Bakhuizen 1992, 130-132 with references cited.
emplacements for arrow-shooting catapults (*oxybeleis*).\(^{463}\)

The possibility for the existence of roofed curtains at Halai gains further support when other examples of such a practice are taken into account. Several prescriptions for building roofed curtains, for instance, are preserved in an Athenian inscription dated to 307/6 BC (*IG II*\(^2\) 463, Maier 1959, no. 11), according to which only certain parts of the city walls were refurbished, most probably, as a direct response to the newly developed artillery and siegcraft.\(^{464}\) The refurbishment works affected the design of the screenwall, as well as that of the wallwalk (Winter 1959, 186). According to *IG II*\(^2\) 463, the crenellated parapet of the earlier wall was dismantled in order to be replaced by a new one equipped with windows, thus creating closed battlements, or *elpaxis*. At the same time, the wallwalk was covered with a roof (Fig. 5.31), but only in places that were prone to a mechanized siege (Winter 1959, 187-188, n. 44; Winter, 1971a, 145).

\(^{463}\) Winter 1959, 187-188. In 305 B.C. the Rhodians installed *petroboloi* and *oxybeleis* upon the curtain walls in order to defend themselves against the assaults of Demetrius Poliorcetes (Diod. 20. 96. 3). At Halai, only the S wall (2.70 m.) would have provided enough space (*ca.* 2.10 m.) on the wallwalk for placing “one-cubit” *oxybeleis*. The latter needed operational length (1.54 m.) and width (0.87 m.) plus 0.55 m. room for the artilleryman to operate behind it, cf. Winter 1997, 262, n. 49.

\(^{464}\) For the walls at Athens, see the reconstruction in Caskey 1910, 298, pl. 6, the alternative proposed by Holland 1950, 337, fig. 5, and criticized by Winter, 1959, 161, fig. 3. See also Maier 1959, 61 and Lawrence 1979, 368-369, fig. 84.
Along the same lines, Lawrence (1979, 369) observed that IG II² 463 was concerned with improving the defense situated on flat ground that were more liable to damage caused by artillery attacks, rather than with refurbishing highly elevated places.

Ongoing excavations at Eretria, for example, have exposed the remains of a *diateichisma* situated near the harbor. Constructed of ashlar blocks of poros, the wall was equipped with wooden *parodos* covered with roof of Laconian tiles, many fragments of which were uncovered during excavation (Fachard 2004, 104). Knoepfler (Michaud 1971, 1001, 1010), for example, has associated the building of this feature with the garrison installed by Ptolemaeus, the nephew of Antigonus the One-Eyed, who resided in Eretria between 313-309 BC (Diod. Sic. 19. 78. 3).

Since the archaic walls on the acropolis at Halai were probably unfit to accommodate such improvements, it was decided for new walls to be constructed, the design of which sought to counter the quickly developing siegecraft towards the end of fourth century BC. One of the main features of this design was the provision for roofed curtains, which the findings of rooftiles in association with the Hellenistic walls seem to suggest. The plausibility of this hypothesis increases even more, especially when coupled with the layout of the towers.

5.5.7: Towers

The tower, *πύργος*, forms an essential part in the design of Greek fortifications; but it was also a conspicuous landmark in the cityscape, a place of

465 Closely similar method of construction was employed for the early Hellenistic *proteichisma* at Megara, cf. Zorides 1987, 230-232, fig. 64; 1995, 45-46, fig. 9.
466 Fachard 2007, 134, n. 45 has recently suggested that the *diateichisma* built on the acropolis, including the soldiers’ barracks recently cleared inside, was built by the Macedonian garrison of Antigonus Gonatas in the course of the Chremonidean War (268/7-262/1 BC).
467 On the tower as a structural part of city walls, see the examples cited by Maier 1961, 80, n. 49.
468 Strabo 1. 3. 20, for example, tells the heart-wrenching story about the 25 girls of Alponos, who in order to obtain a better view of the celebration of the city Thesmophoria climbed up to the top of a *πύργος* ενώνυμος. Soon afterwards, however, the girls perished in the ruins of the collapsing tower as a result of the earthquake that violently shook the ground.
last refuge, as well as a structure invested with symbolic meaning.

By and large, the available data from Opountian Lokris is incomplete on account of varying levels of preservation and archaeological investigation. While at Alope recent excavations brought to light a good section of the Hellenistic walls, towers are conspicuously lacking (Bouyia 2000b, 54). While Oldfather was able to observe the remains of four ashlar towers on Palaiopyrgos hill (Fossey 1990, fig. 15), today none have left distinguishable trace (Bouyia 2000b, 57). Salvage excavations in the vicinity of Atalandi have exposed a substantial stretch of the Hellenistic city wall of Opous (Dakoronia 1993a, 120, fig. 2), along with 5 square towers identical in terms of masonry and design with several of the towers from Halai and Larymna (Bouyia 2000b, 55-56, figs. 2, 7). Further observation is currently impossible, however, since the remains were promptly backfilled after the end of the excavations. Ongoing investigation on the acropolis at Palaiokastra Livanaton documented a partially preserved tower, the defensive role of which in the enceinte has yet to be studied (Bouyia 2000b, 57-58, figs. 4, 11). As a silent sentinel, overlooking the entire plain of Atalandi, stands the best-preserved Lokrian tower, that at Korseia (Table 5.6).

469 In the course of clearing debris from a destruction layer in the Hellenistic tower at Akraiphia, Garlan 1974b, 112 stumbled upon the skeleton of a child, which was apparently trapped inside after the collapse of the upper floors. The child probably fled there in search of safety on the eve of an impending siege, perhaps the one that led to the destruction of the city.

470 For an epigram, dated to 320-306 BC, praising the city walls of Paphos by comparing them to a “crown of towers”, see Maier 1959, no. 58.

471 Although, as Fossey 1990, 58-61 has noticed, the presence of at least two other ashlar towers clearly indicates that Neochori witnessed Hellenistic refurbishment on the archaic circuit, the function of the site within the context of the rebuilding program of fortification has not been well understood. It is unclear, for example, why Bouyia 2000b has omitted the site from her detailed study on the Hellenistic fortifications of Opountian Lokris. This is not the case in her treatment of the city defenses of the Archaic period, however, where the polygonal circuit has been considered on a par with those from other Lokrian sites (Bouyia 2000a, 70).
The exceptionally good state of preservation provides a unique opportunity to restore its superstructure, as well as to serve as a point of reference to which less well-preserved towers from other Lokrian sites can be compared (Table 5.7).

Table 5.7: Urban towers with recorded sizes by site; in meters

<table>
<thead>
<tr>
<th>SITE</th>
<th>NUMBER</th>
<th>DIMENSIONS</th>
<th>AREA (of clear space)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halai</td>
<td>1</td>
<td>6,53</td>
<td>28,4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>6,50 x 6,50</td>
<td>28,1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6,30 x 6,30</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>6,20 x 5,70</td>
<td>22,5</td>
</tr>
<tr>
<td>Korseia</td>
<td>1</td>
<td>6,50 x 6,50</td>
<td>28,1</td>
</tr>
<tr>
<td>Opous</td>
<td>5</td>
<td>6,20 x 5,30</td>
<td>20,5</td>
</tr>
<tr>
<td>Larymna</td>
<td>1</td>
<td>6,15 x 5,00</td>
<td>18,8</td>
</tr>
<tr>
<td>Palaiokastra</td>
<td>1</td>
<td>4,85 x 4,25</td>
<td>11,1</td>
</tr>
</tbody>
</table>
Among the best preserved and most accessible for further study are the towers from Halai and Larymna. The towers at Halai had the advantage of having been excavated, whereas many of those at Larymna are still standing to a considerable height inviting further investigation. In fact, in the case of Larymna it is possible to reconstruct the extent of the entire Hellenistic enceinte, including that of the towers. While today remains of the circuit survive mainly along the coast, older publications reveal that much from the interior has been lost to modern development. The number of towers as represented on Georgiades’ plan (1907, pl. V) is 27 of which only 11 can be seen on the ground (Schäfer 1967, Abb.1).

Flexibility of design is a common feature of the method of tower construction. Each tower was treated on an individual basis, depending upon a variety of factors. For the most part, towers were built in the manner observed for curtains; a course or two of headers served as a foundation on which courses of stretchers stood. In some cases, (e.g. Opous, Korseia, Halai, Larymna) these alternate with courses of stretchers and headers in emplekton technique thus forming interior crosswalls that bonded into the tower walls. Such an arrangement created four rectangular compartments inside the tower that were later filled with earth and stone, in the same manner described for the curtains. As in the curtains, towers with crosswalls in turn also created demand for shorter blocks, i.e. 0.95 m. long (Table 5.5). Scholarly opinion is divided over their purpose. In my view, the search of a single explanation is likely to prove futile, and in this respect, as I will try to demonstrate, the evidence from Opountian Lokris is especially instructive.

472 Schäfer 1967, Abb. 1 points to this, while focusing on the study of the extant remains, while Fossey 1990, fig. 4 has ignored it completely by making no reference to the only existing scaled plan drawn by Georgiades in the early 20th century. It is remarkable that, with the exception of the Polis Copenhagen Center (Nielsen 2004, 668; Hansen 2007, 101, 112), scholars of Lokrian military architecture have failed to exploit the evidence supplied by Georgiades’ plan, e.g. Bouyia 2000b.
For example, whenever steep gradients needed encasement it is obvious that structural reasons guided the design; in such cases, e.g. Korseia and Larymna, the crosswalls simply served to distribute the earth fill evenly and prevent it from sliding down (Fig. 5.32).

Figure 5.32: South face of Tower C at Larymna, *top*; note the headers at the base founded on bedrock underwater, *middle*; state plan, *bottom* (author; Georgiades 1907, fig. 4; Schäfer 1967, Abb. 11C)
By contrast, building in an open terrain, such as the plain of Atalandi, exposed towers to the dangers of a mechanized attack vis-à-vis battering rams and artillery fire. At Opous, therefore, since they all lay on a flat ground (Fig. 5.35), and to a lesser extent towers II-2 and II-3 at Halai (Fig. 5.37), the interior crosswalls of the towers were meant to lessen the damage expected from bombardment.

Figure 5.35: *Emplekton* tower with projection at Opous (after Dakoronia 1993a, fig. 3)

Figure 5.37: Balloon photograph of the circular tower from the Northeast Gate at Halai (courtesy CHELP)
The solid-based towers equipped with crosswalls not only had a better chance of withstanding a mechanized attack but also the damage was localized and therefore unlikely to cause a thorough destruction of the towers (Garlan 1974b, 108).

In two cases, Larymna and Halai, successive courses of headers up to 7-9 courses in height form a sturdy platform continuing up to wallwalk level (Fig. 5.32, 5.33).

![Figure 5.33: South face of Bastion II at Halai; note the use of headers, three courses of which are visible, the other three are hidden underground](image)

In contrast with the general practice, this is clearly exceptional, for the construction method necessitated a larger expenditure of effort, time and building material. At Larymna the tower was built against a steep slope on the shore, which also accounts for the step-like appearance created by the slightly receding courses of headers. In order to counter the downward thrust of the earth additional partitioning of the fill by crosswalls was needed (Lawrence 1979, 224). Perhaps this is why the builders decided to insert crosswalls, despite the ability of headers to better sustain the pressure of the earth fill. Our analysis shows that at Halai (see section 3.1.15) the earth fill inside the so-called Bastion II was also partitioned by means of two transverse walls, serving to
relieve its outward pressure.473

In restoring the upper structure of towers we are aided by the excellent state of preservation of the tower at Korseia. It consists of three parts: (1) a solid base (6.50 x 6.50 m) with crosswalls partitioning a fill of earth and stone, (2) a chamber level with the wallwalk and (3) an upper chamber. That there was an upper chamber is evident from the cuttings on the sidewall showing the position of the joists and the planks belonging to the floor. An upper chamber, combined with the absence of coping stones, might indicate that the tower had a gable roof consisting of woodwork and tiles (Haselberger 1979, 98). Currently almost half of the tower stands to a twenty-three courses of stone, reaching a height of 10.35 m. Allowing 0.50 m for the roof plus 1.50 for the missing upper part of the upper chamber, we can be confident in restoring a total height of ca. 12 m (Fig. 5.34).474

There can be little doubt that identical arrangement, i.e. solid base and two chambers, is to be expected in several of the towers at Opous, Halai and Larymna. Since they survive up to wallwalk level at best, structural features help in calculating their original heights. For example, the towers at Opous project from the curtain (Fig. 5.35), as do Bastion II and tower II-3 at Halai (Fig. 5.33, 5.37). By virtue of this fact, the chamber that was level with the wallwalk and accessible via a door in the flank (cf. Korseia) was free of any traffic. This in turn supplied another open chamber, in addition to the upper chamber, suitable for artillery use, as I discuss below. Furthermore, Goldman and Walker reported rooftiles in several tower fills suggesting

473 This may be compared to the arrangement in a tower at Stratos, Heuzey 1860, 333, described as “compartimentage intérieur” by Courby and Picard 1924, 96.
474 The good state of preservation may validate an often-cited rule of thumb for calculating heights of little preserved towers according to which the height is twice the width of their ground floor, cf. Bakhuizen 1992, 142.
that in all probability they belonged to their roofs. Again, the lack of coping stones indicates that the presence of an open, crenellated rooftop is unlikely. Finally, when building in an open terrain obtaining the advantage of height was made possible only by increasing the height of towers (McNicoll 1986, 308; Milner 1997, 213). In these cases, therefore, it is impossible to determine what the most essential prerequisite for choosing a solid base and interior crosswalls was: the danger of bombardment or sturdier foundation for supporting an extra chamber and a gable roof.

475 Walker 1913, 27 reports “many tiles, plain pottery and a loomweight” found inside a tower, which she omitted to designate. Goldman 1911, 11 reports “very few tile fragments” found inside Bastion II.
As mentioned above, the increased height of the towers provided an advantage to the defenders, but this is only half of the story. The height was in fact the most essential element for achieving a greater shooting range for catapults operating in the upper chambers. While it is clear that the artillery aspect of Hellenistic wall building has left an imprint on the overall design, especially of towers, the extent on a regional scale has not been pursued in detail (Bouyia 2000b 56). It is my intention to assess the effectiveness of the Lokrian fortifications in that respect based on their potential to house artillery engines.

The artillery became a rapidly developing sphere of military engineering and applied mechanics since the invention of the catapult by the engineers of Dionysus I in Sicily around 399 BC (Diod. Sic. 14. 42. 1; 14. 43. 3). It was not until after the death of Alexander III in 323 BC, though, that fortification building began to respond to the new threat imposed by the use of catapults mounted on siege towers. Towards the end of the fourth century BC, curtains became thicker, built in *emplekton*, with two facings bound at intervals by crosswalls packed with a fill of earth and stones, as well as with ability to withstand bombardment from stone-throwing catapults and battering rams. This was also the time when architects began to explore the potential of different building materials for minimizing their destructive action. Towers became higher, which in most cases meant adding an extra chamber, roofed with tiles, in which catapults operated. Increasing the height as well as the need of roofing the tower were thus directly connected with intention of employing artillery engines for defensive purposes. The popularity of towers with a circular plan was another artillery-related

476 Kromayer and Veith 1928, 204-293 is still essential for the study of ancient artillery. The two volumes by Marsden 1969; 1971 are also indispensable. Although the “invention” theory put forward by Marsden 1969, 44 quickly gained currency in the literature, cf. Garlan 1974a, Keyser 1994; McNicoll 1997, 11, among others, it has been heavily criticized by Kingsley 1995, 15-18, who argued that the passage from Diodorus indicates that catapults were already in existence in 399 BC. See also Pimouguet-Pédarros 2000, 5-26 and Rihll 2007, 26-45. On the terminology pertaining to ancient artillery, see Schiefsky 2005, 253-270.
development because of the apparent advantages of the circular space in comparison to that of a square or rectangle (Fig. 5.35, 5.36).

Figure 5.36: Circular tower from the closed harbor at Phalasarna on Crete; state plan, right (after Hadjidaki 1988a, figs. 12-13)

To operate within an arc of a full circle allowed a wider field of fire, and this was especially advantageous for the defense of gates. It is thus no coincidence that the only example of a round tower, πύργος στρογγύλος in all of Opountian Lokris comes from a gate, the Northeast gate at Halai (Fig. 5.37).

In addition to towers, the employment of defensive artillery affected the design of curtains as well. Archaeological and inscriptive evidence both suggest that a crenellated parapet was replaced with continuous screenwall pierced by windows, which was sometimes covered with a roof. As has been already observed, curtains acquired the appearance of towers not only because the change of design provided a better protection for defenders, but also because they were intended to secure alternative emplacements for catapults. To this end, narrow wallwalks were widened and some curtains roofed.

477 Round tower is mentioned in Mounychia, IG II² 244, l. 83, Maier 1959, no. 10; and in Eleusis, IG II² 1672, l. 20, Maier 1959, no. 20. See also Maier 1961, 80, n. 50.
When one turns to the evidence supplied by the Lokrian fortifications, it is hardly surprising that most of the features outlined above form an integral part of their design.478 Moreover, the impression gained on the basis of architectural analysis betrays a good knowledge of military technology, which is further enhanced by supplementary data obtained from archaeology.

For example, (1) unpublished findings of rooftiles in association with towers and curtains at Halai, (2) an unpublished discovery of 4 catapult stone balls from Halai and another specimen from Alope, still awaiting publication (Fig. 5.38, 5.39).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5_38}
\caption{Stone objects on display in Atalandi museum; note the catapult stone ball on the table coming from Alope (courtesy D. Yamaguchi)}
\end{figure}

478 In his study on the fortification walls of Akraphia, Garlan 1974b, 107-109 pointed to these considerations as markers of well-developed design of fortification akin to the early Hellenistic period.
At Halai one of the balls was found inside a tower from the west wall, the second came from a fill in tower II-2, and the other two were retrieved from the fill along the inner face of the southeast wall. Interestingly, a photograph of a stone ball, allegedly from Halai, has also appeared in Elpida Hadjidaki’s dissertation cited as comparandum for the stone balls, which she found at the closed harbor at Phalasarna on Western Crete (Fig. 5.39).

Figure 5.39: Catapult stone ball from the acropolis of Halai (after Hadjidaki 1988b, fig. 42)

479 The exact findspot and depth are unknown, cf. Walker 1913, 27, but the supposition that it might have come from the fill of Bastion II is likelier.

480 This one has been described as “a round piece of stone, possibly a cannon ball”, found together with numerous fragments of rooftiles, cf. Walker 1913, 6.

481 These two were mixed with “squared stones, stones with a knob and many other curious blocks,” cf. Walker 1913, 80.

482 Unfortunately, the photograph is not to scale, Hadjidaki 1988b, 42, fig. 42, cf. Hadjidaki 1988a, 472, fig. 15. We have no way of knowing, however, whether this ball represents one of the four found by Goldman and Walker, or another specimen, which Hadjidaki accidentally came across while visiting the site.
In short, despite the deficiency of the archaeological documentation, there can be little
doubt that the stone balls are stratigraphically associated with artifacts, datable to the
last quarter of fourth century BC, found in close proximity to curtains and towers. The
evidence for the way in which they ended up on the acropolis, however, is
inconclusive. In light of the fact that one, possibly two of the balls, was retrieved from
tower debris, the possibility for the existence of defensive artillery is not unlikely.483
In Bastion D at Sounion484 and the bastion near the Eitoneia gate at Piraeus,485 for
instance, the discovery of stone balls inside the towers has led to the theory that they
belonged to the ammunition of stone-throwing catapults, which were used in the
towers. Provided we are dealing with a similar case at Halai, the relatively small
dimensions of the towers, with a clear space of ca. 26 square meters (Table 5.7),
would have permitted the use of small caliber \textit{lithoboloi} using 5-mina shot (2.2 kg).486

\textbf{5.5.8: Gates}

An opening in a curtain created a point of weakness and city gates, \textit{πυλαί} (Maier 1961, 81), are perhaps the most telling indication of this (Adam 1992, 5). In his
\textit{Poliorketika}, for example, Aeneas Tacticus (28. 1-4) devotes an entire section to the
importance of gate defense. It is hardly surprising that so much care was taken to

483 As presented in Chapter 2, the history of the site is poorly recorded in the Hellenistic
period. We know that in 313/312 BC Ptolemaeus laid siege to Opous (Diod. Sic. 19. 78. 5), and in 302
BC Demetrius Poliorcetes sailed along the North Euboean Gulf from Chalcis to Larissa Cremaste
(Diod. Sic. 20. 110. 2). Both tried to expel the garrisons maintained by Cassander in central Greece
(Diod. Sic. 19. 78. 5). Along these lines, it is at least plausible that Ptolemaeus besieged Halai as well.
On the other hand, the destruction caused by Sulla in 86 BC (Plut. \textit{Sull.} 26) might have provided the
historical occasion accounting for the presence of the catapult stone balls, had they not been found in
stratigraphic association with early Hellenistic material.

484 Goette 2003, 155, cf. Williams 1992, 181-188, who publishes a catapult bronze ratchet
wheel found together with the stone balls inside Bastion D at Sounion.

485 Lechat 1888, 346 found twelve catapult stone balls inside the bastion, cf. Kyriakopoulos
1992, 222.

486 Winter 1997, 247-292 has most recently discussed the type and size of artillery engines that
could have been used in towers and bastions of the Hellenistic period, cf. also Ober 1992. According to
calculations based on the calibration formula from Philo’s \textit{Belopoeica} (52. 5), a 5-mina \textit{lithobolos}
would measure 5.05 m. in length and 2.53 m. in width. In theory, such an engine could have only been
used in Bastion II. On the deficiencies of such an approach, see the recent critical remarks by Rihll
make them impregnable for the would-be attacker, especially when they were designed to accommodate wheeled traffic (Milner 1997, 213).

The Hellenistic fortifications of Opountian Lokris have little to add to the ever-increasing body of city gates known from other areas (Adam 1992, 5-41). For a quick look at the available evidence would reveal that only the gates at Halai (Goldman 1940, 394-395, Pl. IV), Alope (Bouyia 2000b, 53, fig. 5; 2002, 29-30, figs. 34-35) and Palaioakra Livanaton present sufficient remains that can be profitably subjected to further analysis (Table 5.6). Although Georgiades’ plan (1907, Pl. 7) shows two axial openings flanked by square towers in the circuit of Larymna, traces of which were apparently still visible in his time, today nothing of them survives. Due to incomplete level of excavation, Opous, and Kynos as of yet have yielded no remains of gates. At Korseia, the good level of preservation of the enceinte shows that the construction of a new gate, as part of the Hellenistic refurbishment works, was unnecessary, since the west gate belonging to the Archaic circuit was still in use (Fossey 1990, 58, fig. 11).

On present evidence, therefore, one is left with the gates at Halai and Alope, which provide some insights about Hellenistic gate building. The gate at Halai, however, shows typological development. While it was originally built as a tangential gate flanked with a rounded tower on the right, in the Hellenistic period it changed to a gate of axial type, with a semicircular courtyard, 18 m. deep, extending back from the mouth of the opening (Fig. 5. 40).

The gate at Alope shows a rather peculiar arrangement, where no traces of flanking towers had been found (Bouyia 2000b, 53). The wheel-ruts (1.38-1.45 m...

487 Type II after Winter 1971, a, 215-216, 222, n. 41, 196, fig. 189, 154, n. 11. See also Type A 5, (zweitürmige Tor mit Zugang von rechts) after Krause 1972, 68, fig. 12, n. 240 and Lawrence 1979, 306-307.

488 Type I after Winter 1971, 222, which developed into courtyard gates, 225 with Garlan 1974a, 196 and Lawrence 1979, 318-319. See also Type B 4, (zweitürmige, links flankierte Tor), after Krause 1972, 73, n. 295. The Halai gate was excluded from the survey on Greek gates offered by Adam 1992.
Figure 5.40: Building phases of the Northeast Gate at Halai, according to Goldman (after Winter 1971a, fig. 189)

apart) clearly demonstrates that this was a main thoroughfare leading through a gate, ca. 3.00 m wide (Bouyia 2002, 29, fig. 34). They are cut into what has been described as “a solid foundation of the gateway” (Bouyia 2002, 29, figs. 34-35), built up with a course of well-jointed ashlars (0.50 m high) creating a platform, 6.00 x 3.25 m (Bouyia 2000b, 53). Since the question of function was also left open, as a working hypothesis, I suggest that the platform may have served as the foundation of a rectangular tower-gate (Fig. 5.41). A small tower rising above the gate would not only explain the platform of well-jointed ashlars but also the peculiar absence of flanking towers. Although this type of gates was not widespread in the Hellenistic world (Winter 1971, 232-233), few instances do exist.

489 Bouyia, however, offered no explanation for the lack of additional provisions for defending the axial opening.

Another version of the simple opening is the insertion of a courtyard extending back from it. As pointed out earlier, the courtyard gates gained popularity, as an architectural type, especially during the Hellenistic period (Winter 1971a, 223-228). Normally two towers flank a large semicircular court at the front, as is indeed the case with the Northeast gate at Halai (Fig. 5.40).\footnote{It is interesting that the Hellenistic remodeling of the gate adopted an open semicircular courtyard at the expense of the tangential opening built in the late Archaic period, Winter 1971a, 192, fig. 189; cf. Lawrence 1979, 306-307.} Axial gates provided better opportunity for carts passing through it in a straight line, unlike tangential gates, through which they were forced to make awkward turns. In addition, the towers flanking the front of the court had more defensive potential, which in the case of Halai was located at the back, leaving the space between the towers open (Lawrence 1979, 319).

A noteworthy feature of the Halai gate is the presence of what Goldman (1940, 394) described as a “low exedra,” extending along the arc of the wall directly behind
Tower 3-II (Fig. 5.42). Since the later was obviously placed before the gates, Goldman (1940, 395) thought that “during times of security” the place was used as a bench, perhaps by wary travelers awaiting admittance into the acropolis.

The gate at Halai is often compared to the Elektra Gate at Thebes (Fig. 5.43). The parallel between the two, as pointed by Fossey (1990, 40), is further justified on account of the usage of ashlar blocks with drafted margins attested in the towers flanking the courtyards (Scranton 1941, 179). Based on the excavation data produced by Keramopoulos (1917, 23, 273; cf. Symeonoglou 1985, 148, pls. 19-20; Pharaklas 1998, 4-10), Lawrence (1979, 326) suggested that the construction of the

492 Haas 1998, 51 imagined a secondary use for the entire space, including the bench, by suggesting that it served as an “assembly area” and a “rough amphitheater,” a public space where even comedies might have taken place. The latter is based on the mention of “producers of comedies” in Goldman 1915, 444, no. 3, dated to 207/6 BC. The different type of stone used for the bench, including a lining of stones in front of Tower 3-II, Type D after McFadden 2001, 57, fig. 39b, may suggest a later refurbishment in the design of the early Hellenistic courtyard. Whether or not, however, this may be associated with a date of the late third century BC remains a moot point.

493 Strictly speaking, however, they share some morphological differences. The courtyard of the gate at Halai, for example, is semicircular, whereas that at Thebes forms a complete circle. The actual gate opening at Halai lies at the back of the courtyard, while at Thebes it is placed between the towers (Figs. 5.40, 5.43). See also Krause 1972, 73 who lists the Halai gate together with the south gate at Demetrias and the West gate at Eretria under his Type B 4.
Elektra Gate should be assigned to the rebuilding of Thebes undertaken by Cassander in 316 BC.

Figure 5.43: Restored plan of Elektra Gate at Thebes, 316 BC (after Winter 1971a, fig. 238)

When it came to assigning a date to the Hellenistic remodeling of the Northeast gate at Halai, though, he pointed to the much earlier (358 BC) courtyard gate at Philippi as a possible source of inspiration, while suggesting that the work at Halai was completed, “probably before Philip II’s death” (Lawrence 1979, 319). Karlsson (1992, 64) citing the gates from Philippi and Thebes, remained non-committal on the question of whichever of the two gains precedence. It is clear from his remarks about the walls at Halai (Karlsson 1992, 82, n. 334), though, that he prefers an early Hellenistic date, with the Elektra Gate at Thebes emerging as the likeliest source of inspiration.

5.6: Summary

Based on our analysis several important conclusions emerge. By and large, the uniformity of design observed in the Lokrian fortifications is rooted in the desire to
respond to the quickly developing siegcraft after the death of Alexander III. As literary evidence suggests, only *lithoboloi*, apart from the battering ram, were capable of dislodging blocks of stone masonry, while *oxybeleis* were used as anti-personnel weapons. The destructive power of the battering ram should not be underestimated, especially in view of the fact that even in the artillery age city walls were often breached as a result of their action. Military architects sought to counter the improved methods of attack by making use of (1) *emplekton* walls (2) employing stones transmitting less shock upon impact, and (3) higher towers. Provisions for the use of defensive artillery were also made, as is clear from the evidence suggesting roofed towers and roofed curtains. The entire defensive potential of the newly built walls depended upon the ability of towers, to a lesser extent of curtains, to accommodate small caliber catapults.

Apart from roofed towers and roofed curtains, meager archaeological data also point to a similar conclusion.

As much as it is based on architectural features of city walls, as well as on archaeological data, the picture sketched above is nonetheless one of theory. It is impossible to know, for instance, how often the Lokrians rushed to the city walls in order to repel an unwanted intruder armed to the teeth with state-of-the-art artillery engines. And even if they did, the outcome of the clash is rarely known.

One possible exception may be the poorly recorded siege of Opous launched by Antigonus’ general Ptolemaeus in 313/312 BC, which, in my view, proves that the Hellenistic city walls were already in existence by the time of his unremitting attacks. That he attacked other Lokrian sites subject to garrisons of Cassander may

494 McNicoll 1997, 8 observes that lack of posterns provided no chance for defenders to launch a surprise attack on the besieging army, in which case they had to rely on the destructive potential of catapults placed in towers.

495 Diodorus used the phrase “συνεχείς προσβολαῖς εποίησε,” on the following occasions. Diod. Sic. 18. 69. 1: In 318 BC Cassander besieges Salamis; Diod. Sic. 19. 65. 4: In 315 BC Agathocles besieges Messene; Diod. Sic. 19. 66. 4-5: In 314 BC the citizens of Dyme besiege their acropolis in an attempt to expel the garrison of Cassander; Diod. Sic. 19. 75. 3: In 313 BC, Antigonus I the One-Eyed besieges the acropolis of Caunos; Diod. Sic. 20. 17. 2-3: In 310 BC the Carthaginians made continuous
be inferred from the destruction strata dated to the late fourth-early third century BC uncovered by Bouyia (2000a, 56) at Alope and by Walker and Goldman (1915, 434) in the North Gate buildings at Halai. If Ptolemaeus subjected Opous to πολυρκΐα,496 as we are told, this may be the only instance in which we can reasonably suspect that the defenders employed catapults. For in the absence of sally ports and unless they possessed defensive artillery, it is difficult to imagine how the Opountians were able to resist the continuous attacks for as long as they did. In support of this argument further examples may be cited.

The closest parallel for the siege of Opous is perhaps that of Mounychia by Demetrius Poliorcetes in 307 BC (Diod. Sic. 20. 46. 5-7). Similarly, the hill was fortified after the arrival of the Macedonian garrison installed by Cassander in 317 BC.497 Although Demetrius brought into action all sorts of artillery engines, including \textit{lithoboloi}, it took him two days before he finally succeeded to force the defenders into submission. In the aftermath he even dismantled the walls (Diod. Sic. 20. 46. 1; Plut. \textit{Demetr.} 10. 1).

Shortly before besieging Opous, to give another example, Ptolemaeus drove out the garrison of Cassander at Chalcis. The verb used by Diodorus (19. 78. 2), however, is καταπλήσθε, translated as “to terrify or to strike down with amazement.” Commenting on this passage, Rihll (2007, 112) has recently put forward the

496 On siege operations during Classical and Hellenistic periods, see Garlan 1974a, 3-7. In Thucydides 2. 78, for example, πολυρκΐα means only blockade or assault. For a list of sieges mentioned by Thucydides, see Ducray 1986, 139-140. By contrast, in Hellenistic historians the term normally denotes siege accompanied by the use of siege engines and catapults, e.g. Diod. Sic. 19. 65. 4, 73. 3-5; 20. 17. 1, 98. 5. The word, however, appears with high frequency in Polybius, and some have argued that in cases such as the Roman sieges of Syracuse (8. 7. 5-6), Capua (9. 3. 2) and Carthage (10. 12. 1) it may signify an assault rather than siege. See the commentary in Walbank 1967, as well as the remarks in the review by Larsen 1969, 43.

497 This is the opinion of von Eickstedt 1991, 46, 48, fig. 24. For measured drawings and photograph of the walls, see Adam 1982, 202, figs. 117-118, pl. 242. The site is briefly noted by Lawrence 1979, 137; Karlsson 1992, 83, n. 344 and, most recently, Conwell 2008, 137, 139, n. 35. On the Macedonian garrison in Piraeus, see Garland 2001, 45-53.
interesting idea according to which the besieged were forced to surrender because of the awe caused by the catapults in Ptolemaeus’ siege train. It is plausible to suggest, therefore, that precisely because the Opountians vis-à-vis the Macedonian garrison installed by Cassander possessed defensive artillery, Ptolemaeus was forced to deliver continuous attacks, deprived of the opportunity to strike awe in the garrison at Opous, as he did in that at Chalcis.

5.7: Chronology

In 1961 Franz Maier (1961, 93) wrote that city walls can be dated by one of three methods: (1) archaeological data, (2) epigraphy and (3) literary evidence.\(^{498}\) Naturally enough, archaeology gains the priority especially in those cases when archaeologists have been able to obtain artifacts from the foundation trenches. It is hardly surprising therefore that he put the Hellenistic walls of Halai in the category of walls dated on the basis of archaeological data (Maier 1961, 93, with n. 139). Goldman (1940, 396) dated the walls of System II within 350-325 BC, while on stylistic grounds, ashlar isodomic masonry with tooled faces and beveled edges, Scranton (1941, 179-180) opted for the lower date of ca. 325 BC.

For a long time, the date proposed by Goldman remained unchallenged because of two reasons: (1) no other Lokrian site was excavated in the meantime and (2) stylistic analysis of the masonry, as well as the architectural features of the walls, are considered insufficient to establish a date within a range less than 50 years (Scranton 1941, 12). Consequently, the walls of Halai, less so those of Larymna and Opous were only mentioned *en passant* in the major books devoted to the subject of Greek fortification (Winter 1971a; Garlan 1974a; Lawrence 1979), while entirely omitted from others (Adam 1982). In line with Maier’s suggestion, students of

\(^{498}\) For an insightful summary of scholarly approaches to the thorny problem of dating Greek walls, see Camp 2000, 41-46. See also Karlsson 1994, 142, who is of the opinion that examination of historical context, masonry techniques and tower designs provide opportunity for dating a wall.
military architecture, e.g. Lawrence (1979, 309), preferred the date obtained from Goldman’s excavations, at the expense of the lower chronology put forward by Scranton, while others, without specifically arguing the point, suspected that the date of the walls should be brought down to the end of the fourth century BC (Fossey 1990, 41).

Karlsson (1992, 82, n. 334) suggested revisions in the existing chronology as part of his objective to trace the historical development of emplekton walls along with the trans-regional distribution of towers with interior crosswalls.\(^{499}\) In short, he argued that the architectural form was contrived in South Italy and Sicily whence it spread to Greece and Asia Minor. The first emplekton walls in Greece, those of Messene, Mantinea and Megalopolis, were built by the architects of Epameinondas after the battle of Leuktra in 371 BC (Karlsson 1992, 72-75).\(^{500}\) An intermediate stage followed during which the emplekton walls at Amphissa, Orchomenos, Halai and Aegosthena were constructed, probably under the supervision of Philip II and Alexander III (Karlsson 1992, 76-78). Most building projects on Hellenistic city walls in Greece involving the employment of towers with internal crosswalls were conducted under the auspices of Demetrius Poliorcetes. In order to provide a historical scenario facilitating the exchange of ideas between Sicily and Greece, he pointed to the alliance between Pyrrhus and Agathocles, the new tyrant of Syracuse (316-289 BC). Although the role of Demetrius Poliorcetes in this exchange remains unclear, Karlsson argued that the introduction of towers with interior crosswalls in Greece should be associated with him. The earliest Hellenistic walls built under the auspices of Demetrius,

\[^{499}\text{For the purposes of his study, Karlsson 1992, 64 cited the towers from Halai, i.e. tower II-2 and tower II-3.}\]
\[^{500}\text{See, however, the critical assessment on the involvement of Epameinondas with these projects by Demand 1990, 107-119.}\]
however, are those of Corinth dated to 303 BC. In addition to Corinth, Karlsson (1992, 61-65) cites as other examples towers from Epirus, New Halos, Halai and Akraiphia.

To accommodate his much lower chronology, as compared with the date proposed by Goldman, for the arrival of this new tower design at Halai, he maintained that tower II-2 and tower II-3, in conjunction with southeast and east wall, were added, and therefore, constructed later than tower II-1, tower II-4, Bastion II and the south wall (Karlsson 1992, 64, n. 196; 82, n. 334). As it stands Karlsson’s opinion runs against the one-phase theory advanced by Goldman, who saw no reason to distinguish two building periods within her System II. Is there any evidence to support such a view?

In the process of excavation, Goldman (1940, 393) observed that tower II-1 was structurally connected with the south wall, but it did not tie into the southeast wall. Because there were only two courses preserved, she surmised that it probably joined with the upper courses of the curtain. Similarly, tower II-3 was structurally built into the curvilinear wall belonging to the semicircular courtyard of the gate, but it did not tie into the east wall (Goldman 1940, 394). Now, is this enough to presume that the towers and curtains pointed by Karlsson were added “at a later time”?

Philo of Byzantium (Poliorketika 1. 62-63), for example, writing a century or so later, advised against towers that are structurally built into the curtain adjoining them. But it should be noted that he was describing a particular case not prescribing a general practice.\(^{501}\) Second, an often-missed point has to do with the construction process itself. As has been noted, the lack of structural link between towers and curtains very often was due to building them in a sequence, i.e. one after the other.

\(^{501}\) For another example, however, see Arr. Anab. 1. 20. 7, where he describes the clear fall of a tower at Myndos destroyed by the Macedonians during the siege in 334 BC. Presumably, the tower did no damage to the curtain precisely because they had no structural connection.
Building simultaneously was perhaps avoided since it required a greater precision of the effort between working gangs, let alone impeccable timing (Lawrence 1979). Since the publication of Karlsson’s monograph, new discoveries of towers with interior crosswalls, the Hellenistic wall of Opous in particular, have further undermined the plausibility of his argument for the existence of two Hellenistic building phases at Halai. The fact that none of the five towers exposed at Opous tied into the adjoining curtain, was promptly explained by the passage of Philo cited above (Bouyia 2000b, 56), and not attributed to a second building phase. In light of these considerations, I see no compelling reason to assume that the towers with interior crosswalls and the abbreviated compartment wall at Halai were constructed later.

In addition, the pottery retrieved from foundation trenches revealed that the newly discovered city walls at Alope, Kynos and Opous should be dated to the late fourth-early third century BC. This is consistent with the lower dates on some of the pottery from Halai discovered by Goldman, which I have already downdated based on the revised chronology of Attic pottery (Figs. 4.2-4.4). The outcome of all this is that hardly anyone would now disagree with the suggestion that the Lokrian fortifications must be dated to the last quarter of the fourth century BC at the earliest. But can we be more specific?

5.8: Function

Aside from inquiries concerning the chronology of the Lokrian walls, the question of their function has rarely been pursued in detail. The recurrence of the same building material, masonry, elements of fortifications were quick to suggest that we are dealing with an organized effort carried out on a regional scale rather than with unsystematic attempts to fortify. Before the final report on the early excavations at Halai appeared in print, Oldfather (1916a, 51-52), followed by Lehmann-Hartleben (1923, 77-78) were inclined to see the construction of the walls at Larymna, Halai,
Anthedon and Echinos for that matter (Oldfather 1936, 226) as evidence that the naval program of Epameinondas carried out by the Boeotian confederacy in the 360s BC in fact materialized (Cooper 2000, 174-175; Buckler 2008, 198). Despite his suspicion of a date of the walls at Halai closer to the end of the fourth century BC (Fossey 1990, 41), Fossey nonetheless argued (1990, 141; 1992, 128) that the appearance of the Lokrian initiative to strengthen their defenses should be attributed to a fear induced by the destruction of the Phokian fortifications by Philip II following the Third Sacred War in 346 BC. He was also of the opinion that the idea of city defense “never strongly developed” in contrast with the notion of territorial defense, which the Lokrians “adopted consciously” (Fossey 1990, 162; 1992, 123). Based on the employment of *emplekton* masonry, Karlsson (1992, 99, 110), followed by Bouyia (2000a, 54), have more specifically argued for the possible involvement of Demetrius Poliorcetes.

What I hope to demonstrate is that in the case of Opountian Lokris the proposed link with Demetrius is least supported by the available historical, epigraphic and numismatic evidence. Karlsson’s suggestion (1992, 83) simply rests on his belief that “the military architects of Demetrius Poliorcetes” developed the *emplekton* wall technique in Greece, as well as on the attribution of the towers with interior crosswalls at Corinth to the activities of Demetrius, as argued by Parsons (1936, 286). Based on the incidence of similar tower construction at Opountian Lokris, Karlsson (1992, 99, 110) naturally surmised that they, too, were built in the time of Demetrius. In support of Karlsson’s thesis, Bouyia pointed to two passages in Diodorus and Plutarch

502 Since this is an often-missed reference, I quote Oldfather’s statement in full: “schone Mauerbau zu Echinos identisch ist mit jenem der Befestigung von Larymna, die sicher von Epameinondas herrürt. Eine genaue Vergleichung kann das leicht beweisen”.

503 Commenting on the location of the Hellenistic towers at Neochori, Fossey 1990, 145 even suspected that, “the Opountians knew that towers should be a part of defensive fortifications…but equally as though they had not really understood their purpose.”

504 The opinion was later reaffirmed by Scranton 1941, 56-57, 85-87 and Winter 1991, 117-118.
(Demetr. 23) that describe the struggle between Demetrius and Cassander in the aftermath of the Four Year’s War (307-304 BC).

To a great extent, as I will try to demonstrate, much of Karlsson’s argument remains unsubstantiated, while paying a tribute to what I would call ‘modern obsession’ with the powerful figure of Demetrius Poliorcetes. In the absence of conclusive evidence, for example, scholars have all too often been inclined to attribute the construction of formidable towers or circuits throughout Greece and Asia Minor to the genius of his engineers. Demetrius’ love for gigantic siege engines, as described in the well-recorded siege of Rhodes in 305 BC, and which earned him the nickname ‘the Besieger’, may be seen as the main driving force behind this favoritism.

Why did Demetrius decide to re-fortify urban centers in Opountian Lokris? Apart from attributing the walls of Halai to activities of Demetrius, however, Karlsson offered no solution to the problem as to why he did so since the question fell outside the scope of his study. Bouyia’s position is harder to interpret; on one hand, she is willing to see Demetrius as the liberator of the Lokrian cities that were suffering under “the Macedonian yoke,” (Plut. Demetr. 23) as well as a builder of new fortifications in order to oppose Cassander’s attempt to maintain supremacy in central Greece (Bouyia 2000a, 54; 2006a, 931-932), while on the other, she interprets the Lokrian fortifications as evidence for the existence of political and economic unity among the

505 I provide several examples to illustrate the point: Phyle: Säflund 1935, 110; Aegosthena: Lawrence 1979, 389; Halos: Reinders 2003, 231-247; Caria: Karlsson 1994; Asine: Wells 1992, 145; Pentinen 1996, 166-167. As a matter of fact, however, the Hellensitic walls of Sykion and Demetrias present the only instances, where the association of Demetrius with the construction of their city walls has been securely established. On Sikyon, see Lolos 1998, 216-128; 2006. On Demetrias, see Marzolff 1980; Lolos 2006.

506 See, for example, Lawrence 1979, 389, who claims that “the mania for the gigantic shown in his [i.e. of Demetrius] dinosaurian siege-engines” received monumental expression in the walls of Aegosthena. In a recent study of his career, however, Pimouquet-Pédarros 2003, 371-392 warns that much of the alleged Demetrius’ contribution to the development of Hellenistic siegecraft has been overstated based on the well-documented siege of Rhodes by Diodorus and Plutarch. On the change in ritual practices at Athens signaled by the arrival of Demetrius as “liberator of Greece,” see Kuhn 2006, 265-281.
cities who built them (Bouyia 2000a, 59).

The list of sites presented below aims to update Karlsson’s study, as well as to demonstrate the limitations of his database, which led him to postulate a very tenuous link between Demetrius Poliorcetes and the emergence of most of the Hellenistic empletiaon walls and towers with internal crosswalls in mainland Greece (Table 5.8).

Table 5.8: Distribution of empletiaon towers in Hellenistic Greece by region and site

<table>
<thead>
<tr>
<th>REGION</th>
<th>SITE</th>
<th>EMPLEKTION TOWERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>THESSALY</td>
<td>Halos</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Narthakion</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Goritsa</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Pharsalos</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Phalaris</td>
<td>1</td>
</tr>
<tr>
<td>OPOUNTIAN LOKRIS</td>
<td>Opous</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Larymna</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Halai</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Korseia</td>
<td>1</td>
</tr>
<tr>
<td>BOEOTIA</td>
<td>Thsibe</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Plataia</td>
<td>1</td>
</tr>
<tr>
<td>PELOPONNESE</td>
<td>Corinth</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Lepreon</td>
<td>3</td>
</tr>
<tr>
<td>EPIRUS</td>
<td>Triakastron</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Raveni</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Klimatia</td>
<td>1</td>
</tr>
<tr>
<td>ACARNANIA</td>
<td>Stratos</td>
<td>1</td>
</tr>
<tr>
<td>AETOLIA</td>
<td>New Pleuron</td>
<td>9</td>
</tr>
<tr>
<td>EUBOESE</td>
<td>Eretra</td>
<td>1</td>
</tr>
<tr>
<td>CRETE</td>
<td>Phalasarna</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20</td>
<td>77</td>
</tr>
</tbody>
</table>

As Table 5.8 shows, the highest number of towers with internal crosswalls can be found in Halos, Narthakion and Goritsa (Fig. 5.44). Their presence, however,

507 Reinders 1988, 74, fig. 42.
508 Bouyia 2006, 930
is rather substantial in New Pleuron, Stratos, Thisbe, Plataia, Lepreon, Eretria and Phalasarna on Crete (Fig. 5.36). While the data compiled here is likely to expand in the future, the general pattern of distribution sufficiently demonstrates the prominence of Thessaly and Opountian Lokris. Remarkably, the number of towers from these regions (47) account for nearly 60% of the data assembled in Table 5.8.

Recently, the increasing number of early Hellenistic fortifications from Thessaly, which yield data for contacts with other Successors, has considerably undermined the proposed association with Demetrius Poliorcetes. For example, a vast majority of the coins from Halos clearly points to a connection with Cassander rather than Demetrius thus supporting further the alternative opinion that Cassander was responsible for its foundation (Stefanidou-Tiveriou 1999, 1071-1072; Bouyia 2006b, 932-933). Similarly, a coin minted by Cassander has also been attested at the fortress of Goritsa, which Bakhuizen (1992, 314) long ago saw as one of Cassander’s building projects. Also, recent archaeological investigations at Pharsalos.

511 Heuzey 1860, 333; Courby and Picard 1924, 96. The rebuilding of the city walls at Stratos is usually connected with Cassander’s presence in the region in 314 BC, cf. Scranton 1941, 94-96; Lawrence 1979, 153 and Adam 1992, 22, n. 1.
512 Maier 1958, 19, n. 12.
513 Aravantinos et al. 2003, fig. 7.
514 Blouet 1831, pl. 52-53; Karlsson 1992, 62-64; Lawrence 1979, 128, 130.
515 Fachard 2004, 104.
517 The Thessalian cities of Proerna and Peuma possess equally comparable fortifications employing compartment walls and towers with internal crosswalls dated to the late fourth century BC. Our knowledge of them, however, is still superficial, since neither has been studied archaeologically, cf. Stählin 1924, 157-158, 165-166, figs. 14, 18, Daux and Coste-Messelière 1924, 355-359, figs. 8-11; Lawrence 1979, 322-323, fig. 66; Wieberdink 1990, 50.
519 The coin has been identified as a posthumous issue of Alexander III struck at Amphipolis between 310 and 300 BC, cf. Bakhuizen 1992, 255.
520 Katakouta-Toufeksis 1994, 192.
Narthakion521 and Phalara522 have become increasingly important for this debate as they demonstrate Cassander’s association with the refurbishments of their Hellenistic fortifications.

Figure 5.44: \textit{Emplektion} towers from Goritsa, \textit{top}, and Halos, \textit{bottom} (after Bakhuizen 1992, fig. 56; Reinders 1988, fig. 46)

Unlike Opountian Lokris, the use of isodomic trapezoidal masonry is a prominent feature of the Thessalian fortifications, but is the different choice of

521 For an early description of the site, see Béquignon 1937, 286-292, fig. 9. On the results of ongoing Greek excavations and study on the walls, see Bouyia 2006b, 930-931.

522 Béquignon 1937, 293-299, fig. 11; Papakonstantinou-Katsouni 1989, 170, fig. 7; Bouyia 2005, 365-366.
masonry style,⁵²３ however, as Bouyia (2000b, 54; 2006b, 931) suggests, enough to suspect the existence of two separate royal commissions for the fortifications in these regions, i.e. Cassander in Thessaly and Demetrius Poliorcetes in Opountian Lokris? Or, is it more profitable to assume that the architectural similarity observable in the towers derives from a common template receiving regional interpretations in accordance with the locally available building material? The analysis of data from different sources creates the impression that the latter is more likely. Thus, if Cassander, as archaeological evidence suggests, took pains to refortify strategic points in Thessaly he also remains the most likely suspect for the ones in Opountian Lokris, as discussed in Chapters 2 and 4.

One thing that may not be denied is that emplekton walls and towers with internal crosswalls show decidedly wider distribution in mainland Greece than hitherto believed. More importantly, historical, epigraphic and archaeological evidence paint a much more complicated picture, one that may not be satisfactorily explained through the agency of a single military leader. The evidence discussed in the previous chapters is clearly in disagreement with the claim that Demetrius Poliorcetes fortified Opountian Lokris in 304 and/or 302 BC, as Karlsson (1992, 99) and Bouyia (2000, 54; 2002, 30) suggest. In view of his political and military agenda, it is also difficult to perceive in what ways erecting fortified strongholds in Opountian Lokris would have been necessary. Demetrius’ claim to power in the Peloponnese and central Greece materialized much later; at Sikyon in 303 BC (Lolos 1998, 216-218) and at Demetrias in 294 BC (Lolos 2006). Even then, and especially later, his maneuvers were geared more to preparing another Asian expedition (Plut. Demetr. 43. 2-3) rather than asserting Macedonian influence in Greek affairs on the mainland (Will 1984, 107-109; ⁵²３ The harder limestone used for the city walls of Halos and Goritsa, for instance, is less conducive to cutting ashlar blocks as opposed to the much softer limestone employed in the fortifications of Opountian Lokris.)
As is clear from the preceding sections, a strictly regional inquiry, accompanied by the unwarranted suspicion of the involvement of Demetrius Poliorcetes, does little to address the complexity of fortification building in Opountian Lokris. What is more, newly-added comparanda from neighboring Boeotia, most notably the walls at Anthedon, Delion, Akraiphia, Haliartos and Eutresis (sections 5.9.1-5), puts a serious dent on the older paradigms of explanation. The picture is further complicated by the introduction of another set of comparanda; Lechaion, Oinoe, Mazi tower, Echinos, Sounion, Megara, Eretria, Skyros, Odessos and Mesambria (sections 5.9.6-14). That all these sites employed (1) building material, (2) ashlars of identical proportions, (3) tooled faces with drafted margins and/or beveled edges and (4) walls in the emplekton technique can hardly be attributed to chance, nor may the latter explain why the features in question are so selectively distributed over such a great distance.

In the following pages I hope to show that, on present evidence, we are in a position (1) to supply a secure date for the construction of the Lokrian fortifications, (2) to offer a new explanation for their purpose, as well as (3) to account for the identical features detected in the fortifications of Opountian Lokris, Boeotia, Attica, Megaris, Euboea, Corinthia, Skyros and the West Black Sea.

In his pioneering study on the Greek walls, Scranton (1941, 131-132, 140), while attempting to explain the emergence of tooled isodomic ashlar masonry, has left us important clues the full significance of which has been rarely acknowledged.524 This is particularly evident from his discussion on the group of walls assigned to 330-

524 Note the remarks of Bakhuizen 1970, 95; Karlsson 1992, 97, n. 417 and Bouyia 2000a, 54, n. 28, who all accept Scranton’s conclusions. Karlsson, however, objected to the idea that beveling was “confined to the Macedonian areas of influence” by pointing out that it had already appeared in Sicily and Athens during the fifth century. See also Cooper 2000, 171, n. 60.
300 BC. The group, encompassing 19 sites, was singled out on the basis of the presence of ashlar masonry with tooled faces and beveled joints. He writes: “…almost all occur at sites where Macedonian rulers of the period following Alexander are known to have posted garrisons or otherwise defended themselves” (Scranton 1941, 132); and later, “Principally under the influence of the Macedonian armies, old fortifications were repaired or rebuilt, and some new walls were constructed, characterized principally by the use of tooled isodomic ashlar, with beveled joints” (Scranton 1941, 140). Among the sites listed, one finds Halai and Larymna (Scranton 1941, 180, nos. 8, 11), together with Athens, Corinth, Echinos, Eretria, Lepreon, Mazi, Oinoe, Skyros, and Sounion (Scranton 1941, 180). Most of these will be discussed in some detail bellow.

It is truly remarkable that, in terms of Lokrian history, no scholar has been able to realize the obvious implications of the military paradigm put forward by Scranton over sixty-five years ago! For there can be little doubt that what he was willing to emphasize was the desire to attribute the building projects specifically to soldiers who were living in the garrisons installed by the Macedonian generals. Scranton’s statement, of course, works under one fundamental assumption; whenever a foreign garrison is received by a Greek city, it is reasonable to expect that during their stay the soldiers are likely to improve the condition of the city defenses. In light of the scanty evidence preserved in our sources, however, it is difficult to know whether in all cases this was invariably true, but the evidence from Opountian Lokris may serve as a good starting point to reexamine the issue.

At any rate, the advantages of the military paradigm are obvious; to begin with, hierarchical structure of the army allowed for a central authority, i.e. a military

525 On another occasion, Scranton 1941, 69 asserts that “…masonry style in the 4th century was established by military engineers connected with conquering armies, and not by local preference or skill.” See also Leriche 1994, 11.
commander, στρατεγὸς or φρούραρχος (Jones 1940, 105), to enforce his actions with remarkable speed and uniformity. Secondly, the ready availability of workforce vis-à-vis soldiers quickened the pace of actual construction, from quarrying to preparatory work on the site.

Thirdly, meager literary evidence, even from the time of Philip II and Alexander III, seems to suggest that Macedonian kings followed by the Successors, in particular, surrounded themselves with an array of military architects, some of whom are justifiably credited with particular inventions and improvements in the spheres of field artillery and mechanized siegecraft (Scranton 1941, 69; Aymard 1967; Marsden 1977; Garlan 1984, 357-360; Shipley 2000, 334-341). Fourth, the military aspect of many fortifications is revealed through the good knowledge of resistant properties of sedimentary stones, mostly conglomerate, sandstone and breccia, as well as through the emergence of strictly modular masonry ousting local styles and preference (Scranton 1941, 69; Bessac 1986, 282; Leriche 1994, 11). Fifth, building, manning and maintaining of new fortifications and weapons were extremely costly enterprises in their own right affordable only to the powerful Successors striving to outdo each other on the scene of international politics. By contrast, when it came to repairing their own defenses, the Greek cities often experienced considerable difficulties with defraying the cost of such projects (Camp 2000, 46-47; Ducrey 1986, 134-135; Tréziny 2001, 367-380). Inscriptional evidence clearly shows this, as well as the magnitude of the financial burden posing an almost insurmountable obstacle before the city officials appointed to carry out the task (Maier 1961, 66-68; Migeotte 1961).

526 See the eagerness of the Macedonian soldiers with which they responded to the demand of Philip V on the eve of the Social War in 218 BC at Lechaion. Polyb. 5. 2. 4-6: “…προθύμως αὐτῶ πρὸς τὸ παραγεγελλόμενον συνυπακούντων τῶν Μακεδόνων: [5] πρὸς τε γάρ τοὺς ἐν γῇ κινδύνους ἐκ παρατάξεως γενναοῦσαι πρὸς τε τὰς κατὰ θάλασσαν ἐκ τοῦ καιροῦ χρείας ἐποιότοι, λειτουργοί γε μὴν περὶ τὰς ταφρείας καὶ χαρακτοποίας καὶ πάσαν τὴν τοιαύτην ταλαιπωρίαν φιλοπονώντοι τινες, οἶσιν Ἡσίοδος παρεισέγει τοὺς Αἰακίδας, πολέμῳ κεχαριτότας ἢτε δαίτ.” “The Macedonians answered to his instructions with ready enthusiasm; for they are in fact the most gallant soldiers on the field of battle, the promptest to undertake service at sea if need be, and the most laborious workers at digging trenches, making palisades, and all such engineering work, in the world: just such as Hesiod describes the Aeacidae to be”: “Joying in war as in a feast.” Trans. Shuckburgh 1889.
It is the completion of such projects that accounts for the rich variety of Greek masonry styles reflecting individual and regional tastes instead of the rigid uniformity of modular masonry favored by the military.

In my opinion, the military perspective advocated by Scranton, i.e. that foreign garrisons maintained by the Macedonians were responsible for the building of new or repairing pre-existing city defenses throughout Greece between 320-270 BC, calls into question another idea; to equate the appearance of the Hellenistic fortifications Opountian Lokris with the implementation of a regional network for defense of territory. Strictly speaking, this is a model seeking to explain the fact that, as has been argued by Fossey (1990, 141-145; 1992, 123, 128), many urban settlements, rubble forts and isolated towers are interconnected by lines of sight. In that sense, Opountian Lokris would be consistent with the establishment of similar defensive networks in many other regions of Greece designed and maintained by local authorities. For the region of Opountian Lokris the evidence was worked out in detail by Fossey (1992, 123, 128) who suggested that the Lokrian network of territorial defenses was created as “a reaction to aggressive Phokian policy in the mid fourth century.” The main problem with this view, as is indeed very often the case with other regional networks, is the lack of evidence to show that refortification of major urban centers is a prerequisite for its being put into practice. Fossey (1992, 129) saw the difficulty. Furthermore, if Fossey (1990, 146) is correct in assuming that, “by land Opountian Lokris relied rather on their ability to protect themselves on the battlefield than on protection behind ramparts and walls of stone [my italics],” one should have more

528 The analysis of literary and epigraphic sources presented in Chapter 2 clearly demonstrated that even if a defensive network of intervisible sites ever existed the years following the Third Sacred War furnish the least likely historical occasion for its implementation. Opountian Lokris saw no fighting on its territory.
grounds to disassociate the Hellenistic refurbishments on the urban fortifications from the existence of defensive network for the defense of territory. For it is obvious that if your strategy is to fight the enemy in a pitched battle away from inhabited areas, the expenditure on the city walls seems unwarranted and more difficult to explain. In fact, the ability to facilitate a concerted effort to defend the territory, if such mentality ever existed, is likely to have played no part in the decision to build new fortifications. In other words, I, as indeed Fossey (1992, 129), suggest that the refortification of major urban centers be considered as separate.

In contrast, the “garrison theory” allows for a much more flexible approach when interpreting the sites chosen for refortification. This is the occasion to emphasize the prime importance of securing military communications, which invariably colored the policy of Macedonia, at least from Cassander onwards, towards the region of Opountian Lokris. The majority of our sites are situated on the coast, with varying degree of harbor potential, and it is easy to see why it was deemed necessary to plant soldiers in all of them. Literary evidence clearly shows that the need to transport troops from Macedonia to Peloponnese very often demanded the alternative use of the Euboean Gulf as the only available sea route. Precisely because of the need to support military shipping, every port-of-call had to be made available, including the harbor at Anthedon.

The fortification of Oeniadae by Philip V in 219 BC is perhaps the best example illustrating a royal concern for securing a military base for the transportation of troops. Polybius is fairly explicit as to why the Macedonian king decided to fortify it; Oeniadae occupied a favorable position facilitating easy crossing from Aetolia to the Peloponnese (Freitag 1994, 212-238). More importantly, the scale of the project,
commenced after the arrival of the Macedonians, changed the whole layout of the city; the acropolis was heavily fortified, as well as supplied with towers and arched gates (Boyd 1978, 94), while the harbor was equipped with a circuit wall enclosing the rock-cut shipsheds (Sears 1904, cf. Blackman 2001, 84). Despite ongoing debate concerning the chronology of masonry styles at Oeniadae (Scranton 1941, 60-62, 96-97; Winter 1971a, 96-98; Lawrence 1979; Adam 1982, 226-227), archaeological finds of rooftiles stamped with the plural form of the name “ΦΙΛΙΠΠΩΝ” (Powell 1904, 170, fig. 18; cf. Kolonas 1996, 165) corroborate Polybius’ account\(^{530}\) that Philip V personally oversaw the construction of the city walls (Murray 1981, 209).

Despite the fact that the fortifications of the harbor sites in Opountian Lokris are all facing the sea, as if expecting a seaborne danger, plus the lack of evidence for shipsheds, it is obvious that they were designed, as in the case of Oeniadae, to serve as military harbors. This may also signal that they were built within friendly environment secured through the συμμαχία with the Macedonians. Coastal fortifications are often seen as a result of desire to contain dangers from pirate attacks (Ormerod 1924, 41-56; Ducrey 1986, 135-136). Epigraphic evidence also shows that in this matter the role of Hellenistic garrisons was crucial (Chaniotis 2002, 106). No contemporary evidence, however, suggests that Opountian Lokris ever suffered the consequences of pirate raids on her territory, and no coastal site has so far produced evidence for harbor installations, with the exception of Anthedon, Delion and Lechaion. The only documented case, as preserved in Ottoman tax-registers, dates from 1539/40 AD, when pirates from Skiathos delivered a massive attack on the coast of Lokris. The aftermath was devastating; many Muslims were slaughtered in Atalandi, while others

\(^{530}\) Polybius 4. 65. 11: “καὶ τὸ λιμένι καὶ τοῖς νεωρίοις ὁμοῦ τέχνας περιβάλλον ἐνεχείρει συνάψαι πρὸς τὴν ἀκραῖαν.”
were carried off as prisoners. As a result, “the signal system on the coast of Lokris, from Longos and Livanates to Malesina, was reorganized” (Kiel 2007, 35). It remains unclear, however, if refurbishments on coastal fortifications constituted part of these measures to reorganize the signal system. At any rate, the construction of the medieval towers at Opous, Kynos, Gardinitza, Venetika and Keratopyrgos (see Map 3.1) most certainly predates the attack of the Skiathian pirates. By contrast, evidence of occupation suggests that the Hellenistic successors served as living quarters of the Macedonian garrisons whose aim was, if not to discourage possible pirate attacks, to secure the availability of the sea route, as well as to transmit information. It is far less certain to what extent, if at all, the walls were built in order to impress, or meant to be viewed as a sign of civic identity, as is often maintained (Garlan 1974a, 244-269; Ma 2000a, 339-343; Chaniotis 2005, 26).

The “garrison theory” advocated here also demonstrates, among other things, that a network of intervisible sites embracing the whole region most likely never existed. It does not take long for one to realize that most sites, notably Alope and Larymna, are sufficiently removed from the sites located in the plain and bay of Atalandi. Consequently, the lack of visual communication between those areas precludes the existence of a single system expected to be working as a whole.\footnote{Similarly, Fossey 1990, 146, 148, 150, encountered many difficulties in the attempt to connect all Lokrian sites by lines of sight. Although he tried to solve the issue by inserting less well-attested additional sites the results achieved inspired no great confidence, cf. Shipley 1993, 135.}

Another reason why the idea of territorial defense is unconvincing is the inability to demonstrate that the Hellenistic refortification of Opountian Lokris is not strictly speaking a regional phenomenon. Nor is it comprehensive. This is an important failure because, as we have already shown, in the literature they were unjustifiably intertwined with the attempt to present them as a necessary part of a defensive network designed to protect the Lokrian territory from hostile incursions. If,
on the other hand, we assume that the urban fortifications of Opountian Lokris were constructed with the help from the Macedonian garrisons of Cassander installed between 317-313 BC and 309-304 BC, we are in a better position to explain why and how identical methods of construction and design crop up in more than one region. I hope to demonstrate that the appearance of new fortifications was a multifaceted phenomenon, with many substantial side effects.

According to a widely held definition, Greek fortifications were built in order to ensure protection from external dangers; for instance, city walls were refurbished so that they could withstand the improved techniques of siegecraft and use of field artillery; chains of intervisible forts and isolated towers defended the territory, especially along the frontiers. It must be emphasized that to a great extent the existence of “defensive mentality,” the idea of defending one’s frontiers, was contrived on the basis of the well-recorded history of Attica (Ober 1985; 1989, 294-301; cf. Harding 1988, 61-71; Munn 1993 3-33). 532 Scholars are quick to adopt this Atheno-centric model, especially in regions with less well documented past, without feeling the need to explain as to why the case of Attica should be at all applicable. By introducing the concept of “defensive mentality,” one inevitably paints a picture of impersonality, of fixed realities, with little opportunity to reconstruct the social dynamic behind the material remains. Yet ancient sources make it abundantly clear, as observed by Austin (1986, 456), that Hellenistic history was carved out by the will of strong personalities and the decisions they made. First and foremost, the untimely death of Alexander III unleashed a period of incessant wars waged by his Successors who, above all, sought to establish and maintain their prestige as military leaders. This auctoritas, to put it in the words of Julius Caesar (Bel. Gal. 16), depended on two

things: money and soldiers. Furthermore, in the context of constant wars, the practice of installing garrisons became a way of regulating relationships of power between the Macedonian generals and the Greek cities. Literary and epigraphic evidence indisputably show that these garrisons were intended as permanent measures likely to play part in local affairs for years. Kings or generals were obliged to delegate their power to a military hierarchy of officials with no freedom of independent action. Securing lines of communications was therefore a matter of prime importance. Based on these considerations it is profitable to view the Hellenistic fortifications not so much as an enterprise serving to dominate local environment, as is sometimes asserted, but rather as a way of securing favorable positions for an armed force to facilitate incursions on a trans-regional scale. In the process, the fortifications become expression of physical military presence in the foreign environment.

It is also counterproductive, as Shipley (2005b, 330) has shown in his recent reassessment of Macedonian presence in early Hellenistic Peloponnese, to imagine that Macedonian garrisons were bound to “disrupt local economy and politics.” On the contrary, Opountian Lokris clearly benefited from the ζπκκαρία with the Macedonians, possibly including royal benefactions, which doubtless boosted its economy by avoiding the fate of becoming isolated from international trade networks, as well as overrun by the armies of rivaling Successors.

533 In a seminal article devoted to this subject, Austin 1986 was the first to draw attention to these essential aspects of Hellenistic generalship, which, as he claims, were intentionally downplayed by the older generations of Hellenistic historians, Rostovtzeff, among others.
534 Archer et al. 2002, 84: “Macedonian power in Greece rested on garrisoned fortifications in the major cities along the choke points of communications. They provided immediate support to Macedonia’s allies and ensured that whenever necessary its troops could march through Greece instead of having to fight through it.”
535 Archer et al. 2002, 84: “In Greece, citadels were built [by the Macedonians] within already walled cities. Their purpose was not to defend a city but to dominate it.”
536 See also Davies 2001, 36-39, who comments on the productive side of warfare, which could lead to “redistribution of resource,” as well as stimulation of local economies “via spending by individuals, employment and contracts.”
Despite the relative abundance of examples of Macedonian garrisons stationed in Greek cities, however, few attempts have been made to examine the extent to which their presence exerted influence on the rhythm of life within those communities (Chaniotis 2002; Ma 2002). In spite of the difficulty, as observed by Lawrence (1979, 137) stemming from the lack of a term to describe a foreign garrison living in Greek urban environment there are good reasons to think that they occupied an area enclosed by the city walls. The king often left a garrison to assist the fortification works, as is evident from the episode with the synoicism at Acarnania, or even supervised the whole building enterprise, as Philip V did during his re-fortification of Oeniadæ in 219 BC. There can be no doubt that such instances of recorded Macedonian involvement formed the basis of Scranton’s suspicion (1940, 141) that vast majority of the early Hellenistic fortifications must be attributed to the building activity of their garrisons.

5.9: Comparanda

To illustrate my point I offer a representative sample of sites sharing four common elements; (1) strategic location with respect to trans-regional routes by land and by sea, (2) building material, (3) modular masonry and (4) emplekton technique (Tables 5.4, 5.9). I admit, however, that based on these features alone a discussion on the walls at Athens and Corinth is equally justified (Map 5.1). Space requirements, however, preclude me from doing so.\footnote{The modern bibliography on the walls of Athens and Corinth is so large that it would require several dissertations to address the complexity of their fortifications accordingly. A case in point is the 1992 dissertation on the Long walls of Athens by David Conwell, which only recently he published as a monograph (Conwell 2008).}

5.9.1: Anthedon

It is natural to assume that Anthedon acted as a port-of-call between Chalcis and Larymna along the Boeotian coast of the North Euboean Gulf. Although the site
lies outside the borders of Opountian Lokris, what remains of the city walls, as well as the harbor, constitutes an indispensable *comparandum* for the coastal Lokrian sites (Fig. 5.45). It is interesting to note, however, that before the results of the Anglo-German survey appeared in print (Schläger et al. 1968), the walls of Anthedon were frequently cited in conjunction with those of Larymna and Halai not least because of the famous remark about their destruction by Sulla in Plutarch (*Sull.* 26. 1-4).\(^{538}\)

Map 5.1: Sites with *emplekton* masonry of conglomerate or breccia discussed in sections 5.9.1-12; Odessos and Mesambria excluded

\[^{538}\text{See, for example, Paris 1915, 11; 1916, 33, n. 7, 36, n. 8, 47, n. 1, 49, n. 1, 53, n. 1; Oldfather 1916a, 52; Lehmann-Hartleben 1923, 105; Goldman 1940, 393; Schäfer 1967, 541-542, n. 22. The only exception, as far as I am aware, is Garlan 1974b, 108, n. 19, whose article appeared after the study of Schläger et al. 1968.}\]
Table 5.9: Distribution of sites with ashlar masonry of conglomerate or breccia in relation to routes and attested Macedonian presence

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>SITE</th>
<th>GARRISONS</th>
<th>DATE (B.C.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACK SEA</td>
<td>Odessos</td>
<td>Lysimachus</td>
<td>315-302</td>
</tr>
<tr>
<td></td>
<td>Mesambria</td>
<td>Lysimachus (?)</td>
<td>-</td>
</tr>
<tr>
<td>AEGEAN SEA</td>
<td>Skyros</td>
<td>Cassander</td>
<td>317-307</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Philip V</td>
<td>208-196</td>
</tr>
<tr>
<td>MALIAN GULF</td>
<td>Echinos</td>
<td>Philip V</td>
<td>211-196</td>
</tr>
<tr>
<td>NORTHEUBOEAN GULF</td>
<td>Alope</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Kynos</td>
<td>Philip V</td>
<td>219-196</td>
</tr>
<tr>
<td></td>
<td>Halai</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Mikroivos</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Larymnna</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Anthedon</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SOUTHEUBOEAN GULF</td>
<td>Delion</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Eretria</td>
<td>Ptolemaeus</td>
<td>313-304</td>
</tr>
<tr>
<td></td>
<td>Sounion</td>
<td>Gonatas</td>
<td>268-255</td>
</tr>
<tr>
<td>SARONIC GULF</td>
<td>Megara</td>
<td>Cassander</td>
<td>316-307</td>
</tr>
<tr>
<td>CORINTHIAN GULF</td>
<td>Corinth</td>
<td>Cassander</td>
<td>315-308</td>
</tr>
<tr>
<td></td>
<td>Lechaion</td>
<td>Philip V</td>
<td>218-196</td>
</tr>
<tr>
<td>OPOUNTIAN LOKRIS</td>
<td>Palaiokastro</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Opous</td>
<td>Cassander</td>
<td>317-313</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Philip V</td>
<td>219-196</td>
</tr>
<tr>
<td></td>
<td>Megaplatanos</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Kastraki</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Korseia</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BOEOTIA</td>
<td>Akraiphia</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Haliartos</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Eutresis</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ATTICA</td>
<td>Oinoe</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Mazi</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Athens</td>
<td>Antipater</td>
<td>322-317</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cassander</td>
<td>317-307</td>
</tr>
</tbody>
</table>

The reasons for this comparison were (1) the use of reddish conglomerate, (2) the *emplekton* technique and (3) identical dimensions (1.20 x 0.60 x 0.45) of the ashlar blocks employed in the walls of all three sites. The Anglo-German survey, however,
assigned a sixth century AD date for the building of the harbor (Fig. 5.46, 5.47), while proposing no separate dating for the walls of the acropolis (Schläger et al. 1968, 77; Blackman 1973, 124-126, figs. 14-17).\footnote{As a matter of fact, even the late Roman date has been questioned, most notably by Hood 1970, 37, n. 3, 42, n. 11, who suggested a Medieval date for the harbor, citing John Hayes’ opinion on some of the pottery found during the survey.} Although the chronology is in agreement
with the available archaeological finds associated with the harbor, the long noted similarities with the fortification walls of Larymna and Halai remain unaddressed. In light of this evidence, together with the reference in the *Periplous* of Ps-Skylax (60),
where Anthedon is mentioned as a τεῖχος, it is not unlikely that the original construction of the walls, at least on the acropolis, may be assigned to a much earlier date (Fig. 5.48). If this is accepted, the presence of mortar, traces of which have been discovered on the harbor walls, may be attributed to the remodeling phase of Justinianic date (Esposito et al. 2002, 30). In view of this, combined with the close similarity with the walls of Akraiphia, it now appears that acropolis and harbor walls are more likely to be early Hellenistic, as already suggested by Roesch (1973, 59).

Figure 5.48: Ashlar masonry from the acropolis at Anthedon looking south

5.9.2: Delion

The small site of Delion, situated on the midpoint between Oropos and Aulis, most famously known for the temple of Apollo Delios, furnishes another, perhaps the most surprising parallel. For most of its history the site, which in the time of Strabo

540 For a definition, see Robert 1970, 600-601. In general, the term designates a fortified town or urban fortifications but it may also imply the existence of an extra-urban fortified complex (Lolos 1998, 293-296; Pimouguet-Pédarros 2000, 115-116).

541 Roesch 1976, 59 says that the walls were “no doubt Hellenistic,” on which see the doubts expressed by Fossey 1988, 254, n. 8. It is perhaps no coincidence, however, that in the recently published prosopography of Anthedon, Fossey 2005, 3 observed that majority of the persons were in fact attested in inscriptions of the late Classical and Hellenistic periods. See also the most recent account by Blackman 2008, 646-647, in which he claims that the current remains belong to “…the last phase of the harbor…”
was described as a πολίχνιον, served as the major seaport of Tanagra (Roller 1974, 260; Gehrke 1992, 107, n. 56), at least after the destruction of Thebes in 335 BC (Gullath 1989, 164). With the rebuilding of Thebes by Cassander in 315 BC, however, it was restored to the Thebans to whom it originally belonged (Bakhuizen 1970, 22-23, 110).

The British excavations uncovered the remains of an ancient quay built of two parallel walls of conglomerate bound at intervals by crosswalls (Brown 1905/1906, 97-100). The currently submerged remains, oriented on a N-S axis, continued further inland underneath the modern village of Dilesi. While the site has since been frequently visited by scholars for the purpose of identifying the remains of the temple or the place of the battle (Pritchett 1969, 27-30; 1980, 295-297; cf. Wallace 1979, 27-29), ongoing Greek excavations have brought to light, apart from many scattered architectural members around the seashore, probably from a temple (Piteros 1989b, 172), more sections of the structure described by Brown in the early 20th century. Another stretch of compartment walls, for instance, was located along the seashore following E-W direction. Although the dimensions of the compartments vary, they are commonly within the range of 4, 40-4, 60 x 4, 70 and 4, 70 x 5, 70 m. (Piteros 1989a, 135-136, fig. 64e, f). What is more, the conglomerate blocks adhere to the same dimensions; 1, 20 x 0, 70 x 0, 40 m. The primary excavator, Christos Piteros (2000, 593-623), however, is currently of the opinion that these walls belong to the north stoa of the Apollo’s temple, while the compartments formed by the crosswalls, of which 14

542 In fact together with Halai and Larymna, Strabo 9. 2. 7, 2. 13. On Delion, see also Heracleides Creticus 1. 8-10.
543 The strategic importance of the area was first recognized by the Athenians during the Peloponnesian War, when Hipocrates built a wooden fort subsequently set on fire by the Boeotians in the aftermath of the battle of Delion in 424 BC (Thuc. 4. 90, 4. 100). On the battle, see Pritchett 1969, 27-30. On the siege, see Winter 1971a, 307-308, n. 56; Lawrence 1979, 161, 175.
544 Hdt. 1. 118, 2.
545 Blackman 2003, 51 recently reported that the mole has been threatened by “modern illegal harbor development”.

489
have been exposed, he identifies as rooms.546 The building was apparently refurbished in the late Roman period, as attested by the presence of mortared walls and associated small finds (Piteros 1989a, 136).

The reason why I point to Delion comes from an observation made by Fossey (1988, 63, 254), which has so far remained unaddressed by Piteros, who compared the mole uncovered by the British excavations to the quays at Anthedon.547 Based on the late material, he further conjectured that the harbor at Delion flourished, just as that at Anthedon, during the late Roman period.548

The comparison with Anthedon is significant not only because it allows us to reinforce the initial suspicion that we are dealing with harbor installations, but also because it is possible to ascertain that they were first built in the early Hellenistic period. The strategic location of Delion probably played a major role in this. Aside from providing Thebes and later Tanagra with an easy access to the sea, the harbor stood on a trans-regional route linking Boeotia with Attica via the pass protected by Phyle (Chandler 1926, 3). More importantly, Delion was lying close to the most frequently used military harbors in the South Euboean Gulf, Aulis and Bathys Limen (Bakhuizen 1970; Buckler 2008, 199). The proximity to Chalcis,549 or rather the

546 His identification has been accepted by Schachter 2004, 49, n. 13.

547 On the analogy with the compartments at Anthedon, Schäfer 1967, 533, 535, 544, Abb. 14 erroneously thought that the straps of the abbreviated curtains at Larymna extended further back, forming a rectangular compartment, 4, 60 x 5, 80 m, with the inner wall, traces of which he did not find. He ultimately admitted, however, that the restored width of the wall, 5-6 m, is unusually thick for a fortification wall. He also missed the possible parallel with the mole at Delion.

548 Lehmann-Hartleben 1923, 253, no. 78 apparently shared similar sentiment since he included Delion in his study on ancient harbors, although he provided no \textit{comparandum} for the mole uncovered by Brown, whose description he literally repeated. That Anthedon and Delion served as important ports of call in the Euboean Gulf during the Hellenistic and Roman periods, has been emphasized by Aravantinos 1988, 193, fig. 122, who published a deposit of Hellenistic finds, found just few meters off the seashore, including many amphora toes.

549 According to Herodotos 6. 118. 2, Delion was lying: “…τὸ δ’ ἐστὶ ἐπὶ θαλάσσῃ Χαλκίδος καταντίον.”
inability to use it as a base, on the other hand, often led to employing Delion as such.\footnote{In 192 BC, for example, 500 Roman soldiers forced to take refuge in the precinct of Apollo’s temple, were completely wiped out by Mennipus, a general of Antiochus III (Livy 35. 50. 6, 51. 10). Plutarch Sull. 22. 3 says that in the aftermath of the battle of Orchomenos in 85 BC, Sulla met to discuss peace treaty with a protégé of Mithridates VI at Delion.}

5.9.3: Akraiphia

A French expedition conducted by Yvon Garlan in 1965 cleaned, excavated and documented the substantial remains of the city walls on the acropolis of Akraiphia (Fig. 5.49, 5.50). The curtain, 2, 90 m, is *emplekton*, with the outer wall, including the crosswalls, built with breccia, while the inner wall consisted of well-jointed polygonal masonry of harder limestone. Several sections of *diateichisma* were also uncovered further down the hill (Fig. 5.50). A conspicuous feature in the circuit is the pentagonal tower situated on the highest point and built entirely in ashlar masonry of breccia (Fig. 5.51, 5.52). The acropolis commands extensive views over the National Road Athens-Thessalonike, the plain of the former Kopaic lake, as well as lines of sight to Haliartos and even Thebes.
Figure 5.49: Topographic map of Akraiphia and its environs; note the proximity to the National Road Thessaloniki-Athens indicated by the thick continuous line (after Müller 1995, fig. 1)

Figure 5.50: Topographic plan of the city wall at Akraiphia; pentagonal tower on the acropolis marked with arrow (after Müller 1996, fig. 4)
Although Garlan repeatedly pointed out the similar, in fact identical modular masonry, as recorded at Halai, Larymna, Anthedon, Haliartos and Eutresis, no study on the Lokrian fortifications (Fossey 1990; Bouyia 2000a) has so far attempted to re-
address the issue. It was Karlsson (1992, 65, 108, n. 461), who revived the interest in the almost forgotten walls of Akraiphia, the pentagonal tower, in particular. In fact, this state of affairs should not appear as surprising, since the site has somehow managed to escape scholarly attention from site-oriented studies, as well as from even the definitive monographs on Greek fortification. Based on the advanced architectural design, Garlan (1974b, 109) assigned the walls to the late Classical/early Hellenistic period.

5.9.4: Haliartos

Austin (1925-1926, 83) excavated several sections of the city wall on the acropolis of Haliartos (Fig. 5.53), with his wall type 4, called “Late Hellenic?” referring to repairs of isodomic ashlar masonry built of “soft reddish or yellowish white limestone, not true poros” (Austin 1925/1926, 83) with tooled faces, drafted margins and beveled edges (Scranton 1941, 181). Traces of refurbishment works were found in the foundations of a tower, of which 8 courses remain hidden underground, near the SW corner of the acropolis, as well as in a gate in the W wall (Wallace 1979, 118; Fossey 1988, 302-304, fig. 41). Roesch (1976, 374) dated this phase to the fourth century BC, while Karlsson (1992, 99, n. 438) pointed to the wall as a possible parallel for the fortifications at Halai, but without exploring the significance further.

551 In his magnum opus, Garlan 1974a, 13, 333, pl. IVA discussed very briefly the results of his 1965 excavations at Akraiphia by citing only the reports in Archaiologikon Deltion and BCH. So did understandably Winter 1971a, 196, n. 117, but also, quite surprisingly, Ogenova-Marinova 1980, 107, n. 30, Adam 1982, 60 and Karlsson 1992, 65, nn. 208-210, 108, n. 461, who could have instead consulted the much more detailed article by Garlan 1974b, 95-112. To the best of my knowledge, the only exception is Lawrence 1979, 213, 387-388 who offers several valuable comments on the circuit. Good color photographs of the walls may be found in Papahatzis 1981, 146-150, figs. 175, 177-181.

552 In the context of his detailed study on a Hellenistic inscription from Akraiphia, Ma 2005, 154, 180 has recently placed the construction of the walls in the 280s or early 270s BC, suggesting that they should be seen as evidence testifying to “Boeotian revival” in the early third century BC. I believe, however, that such a low chronology remains possible mainly because he has treated the walls in isolation. The noted similarity with the temple of Heros Ptoios (Guillon 1936, 1-10) may be of further significance, in view of the suspected involvement of Cassander with its rebuilding (Bringmann et al. 1995, 462).
5.9.5: Eutresis

During the excavations on the Late Helladic settlement at Eutresis (Fig. 5.54), Goldman (1931, 238, Plan I, trench A) stumbled upon a short stretch of a circuit wall situated “alongside the road to Thebes,” probably enclosing the Classical and Hellenistic town in the north-east area of the settlement (Fossey 1988, 152). The site belongs to the territory of Thespiai, and it was situated on the road to its ἐπίλεηνλ, Kreusis (Wallace 1979, 111-112; Papahatzis1981, 97, fig. 105), which served as a principal harbor site on the Corinthian Gulf used for communication between Boeotia and the Peloponnese (Wallace 1979, 100-101; Buck 1979, 38-39; Freitag 2000, 164, n. 871). Eutresis also controlled the shortest route by land from Thebes to the Corinthian Gulf (Heurtley 1924/1925, 38-40, 42, pl. VII).

553 Strabo 9. 2. 25.
554 Xen. Hell. 4. 5. 10; 5. 4. 60; Ages. 2. 18. For a full discussion, see Freitag 2000, 164-171.
The remains consist of the foundation courses, ca. 6, 60 m long, built of ashlar blocks of "reddish-yellow poros" (Fig. 5.55, 5.56). The wall which was obviously built in the *emplekton* technique, with two faces bound at intervals (3, 40-3, 50 m) by crosswalls, was compared by Goldman (1931, 239, figs. 301) to the walls of

555 The assessment is that of Garlan 1974b, 108, n. 18.
Larymna and Halai. The wall has generally escaped scholars’ notice, including that of Karlsson, with the exception of Garlan (1974b, 104, n. 12; 108, nn. 18-19), who

Figure 5.55: Emplekton wall from the acropolis at Eutresis (after Goldman 1931, fig. 301)

Figure 5.56: Emplekton wall from the acropolis at Eutresis (after Goldman 1931, fig. 301)
mentions it in connection with his study on the walls of Akraiphia. Goldman’s
discovery received a brief acknowledgment by Fossey (1988, 152, 493-494, n. 13),
who dated the wall to the middle of the fourth century BC.556

It is not unlikely that these Boeotian sites witnessed partial fortification
precisely because they possessed strategic value on account of their geographical
location. The observation that the acropolis of Akraiphia, Haliartos, Eutresis,
including the harbors at Anthedon and Delion, were fortified may reflect the fact that
they were occupied by Macedonian garrisons as well. As pointed out earlier, carrying
out these projects was somehow related to the rebuilding of Thebes by Cassander
(Map 5.1). His act apparently produced far-reaching consequences especially for
Boeotian cities, such as Akraiphia, Anthedon, Haliartos and Tanagra (Gullath 1989,
164, 166) that had to relinquish the Theban lands acquired after the destruction
inflicted by Alexander in 335 BC (Fig. 5. 57).557

\textbf{5.9.6: Oinoe}

The fort at Oinoe, known as a θξνύξηνλ and a ηεῖρνο (Thuc. 2. 18. 2; 8. 98. 2;
Hdt. 5. 74. 2), was situated on an important road leading from Thebes via Plateia to
Athens (Ober 1985, 117-118; Munn 1993, 7-8, n. 11). The standing remains belong to
two building periods; trapezoidal masonry form the socle of a fifth century curtain of
mudbrick fortifying the settlement in the plain (Scranton 1941, 84, 168; Camp 1991,
201), and quadrangular fort or citadel, 120 x 120 m (Fig. 5.58), built of breccia
occupying a slightly elevated ground (Chandler 1926, 8; Lauter 1992, 82).558

556 See also Buckler 1980, 22, who ascribes the walls to the “Theban hegemony.”
557 Displacement of people and reassignment of territories normally created demand for
building projects among which those of fortification assume priority. It is interesting to note that the
destruction of Thebes in 335 BC produced similar repercussions for neighboring communities; it was
decided, for example, that the fortifications of Orchomenos and Plataia should be rebuilt, cf. Arrian
\textit{Anab}. 1. 9. 10; Plut. \textit{Alex}. 34.
558 Goette 2001, 318, who identifies the material as “soft reddish sandstone,” is incorrect, since
Chandler, Wrede and Lauter unanimously describe the stone as breccia. Adam 1982, 215 also calls it
“conglomérat local.”

498
Figure 5.57: Territories lost by the Thebans after the rebuilding of their city by Cassander in 316 BC; note that all Boeotian sites discussed in the text were affected from the event (after Gullath 1989, fig. 1)

Figure 5.58: Restored and state plan of Oinoe (after Chandler 1926, fig. 4 Lauter 1992, fig. 4.1)
The ashlar masonry is *emplekton* (Fig. 5.59) employing the well-attested module of blocks; 1, 20 x 0, 60 x 0, 45 m (Wrede 1933, no. 59; Scranton 1941, 180; Edmonson 1966, 30).

![Figure 5.59: Emplekton tower of breccia from Oinoe](image)

Regularly spaced towers, the remains of at least six may be observed, enhance the defensive capability of the site (Chandler 1926, fig. 4; Edmonson 1966, pl. III; Vanderpool 1978, fig. 3; Lauter 1992, fig. 4.1). Chandler (1926, 9) notes, however, that the latter is situated on “comparatively level ground” in contrast to the practice attested in other Attic forts, while Lauter (1992, 84) simply surmised that the construction of the citadel “reflect developments in siege-craft.” Adam (1982, 215) pointed to the regularity of the rectangular plan as “la caractéristique des enceintes des pays peu accidenté.”

559 Winter 1971a, 43, n. 102, 306, n. 53 and Lawrence 1979, 173, 175 discuss the site in brief, but mainly in relation to events from the Classical period.
Situated ca. 5 km east of Eleutherai and ca. 2 km of Mazi tower, Oinoe should not be treated in isolation, since the three sites command the approaches along the border zone between Attica and Boeotia (Fig. 5.60).

The Mazi tower, 8, 95 x 7, 10 m, for example, stands on level ground, built in ashlar masonry of breccia, like Oinoe, replacing an earlier socle of trapezoidal construction (Wrede 1933, no. 58; Scranton 1941, 180; Adam 1982, 71-72, pls. 97-98, fig. 37A). The remains are particularly impressive (Fig. 5.61), with 32 courses still preserved, rising to a height of 14, 10 m (Edmonson 1966, 63-67; Ober 1987a, 589-591; Camp 1991, 201). Milchhoefer (1900, 36) reported that a crosswall divided the interior in two, which has since disappeared. The importance of the tower derives from the observation that it served as a watchtower, a φυκτόριον, securing a visual connection between Oinoe and Eleutherai, which were otherwise unconnected by line of sight (Adam 1982, 71; cf. Lawrence 1979, 189). This, in turn, is supported by Wrede’s (1933, no. 83-86) observation, quoted later by Scranton (1941, 180), that at Eleutherai there were refurbishments of reddish conglomerate seen in the south wall from the

560 Despite the trapezoidal masonry of the lowest courses, Edmonson 1966, 66-67 has argued for a single period of construction, i.e. contemporary with the breccia phase.
Figure 5.61: Reconstruction of Mazi tower with suggested solution for the flooring, top; note the lower two courses of limestone topped by ashlars of breccia, bottom (after Ober 1987, fig. 22; Edmonson 1966, fig. 79)

circuit built of harder limestone (Edmonson 1966, 53, fig. 60). Although Ober (1985, 147-148; cf. Camp 1991, 202) sees the establishment of these sites as part of an Athenian attempt to control the border with Boeotia during the third quarter of the fourth century BC, I think Chandler (1926, 11, 15) is correct in her opinion that all additions in breccia were constructed by the Macedonians.\footnote{Lawrence 1979, 448, n. 3 states that the tower was “apparently an Attic signal-post of the Hellenistic age.” See also the surface finds from Oinoie collected and published by Ober 1987b, 211-212, most of which date to the late fourth-early third century BC.} Quite possibly, it was the garrisons who carried them out in vital places along the route to Plateia and Thebes; the fifth century mudbrick walls at Oinoe, including the breccia building
housing the barracks (Lawrence 1979, 173; Lauter 1992, 82), the Mazi tower, and the older circuit at Eleutherai. The Macedonian interest in securing this road should be thus treated in conjunction with the forts at Panakton and Phyle, which were garrisoned by Cassander and Demetrius Poliorcetes during the last decade of the fourth century BC (Plut. *Demetr.* 23).562

5.9.7: Skyros

The construction of the fine fortification walls on Skyros (Fig. 5.62) may be attributed to the presence of Macedonian garrison of Cassander in the years before the island was ceded back to Athens, possibly in 307 BC (Bugh 1988, 216).563 Skyros was used by Philip V as a base against Attalos I in 209/8 BC and remained Macedonian until 196 BC (Livy 33. 30. 11). The strategic importance of Skyros lies in that it was situated on a frequently employed sea-route connecting Greece to the Black Sea.564

5.9.8: Echinos

The impressive fortifications of Echinos,565 originally attributed to Epameinondas by Oldfather (1936, 226), provides another opportunity to associate their construction with Macedonian interest in the coastal sites of Achaia Phthiotis on the Malian Gulf.566 The site commands extensive views in all directions,567 along with

563 The date of the secession is subject of debate, e.g. Fredrich 1906, 71; Ferguson 1911, 49, 65; Cargill 1995, 42-50; Oliver 2007, 69, n. 107.
564 See de Souza 1997, 189, n. 71, who claims that, “Skyros was probably a stopping-off point on the vital route to and from the Black Sea.” See also Thompson 1941, 204, who mentions the existence of another route passing through Skyros, which leads via the Sporades to Macedonia and Thrace. In 314 BC, for example, Cassander ordered Demetrius of Phaleron and his commander of the garrison at Mounychia, Dionysius, to dispatch 20 ships to Lemnos in order to offset the influence of Antigonus I the One-Eyed on the island. It is reasonable to suspect that Skyros served as a stopping point on the way to Lemnos (Diod. Sic. 19. 68. 3).
565 See the brief entry on Echinos in Lauffer 1989, 205 and Decourt et al. 2004, 710. Piecemeal excavations on the acropolis focus on buildings inside the fortified area and on the numerous graves belonging to the city’s necropolis (Papakonstantinou 1994, 231-232). For a recently found votive relief with Artemis dated to 300 BC, see Dakoronia and Gounaropoulou 1992; van Straten 1995, 82-84, fig. 88.
566 For a detailed discussion on the coastal geography of the region, including major ports of call, see Reinders 2003, 10-30.
the potential to control the movement of oncoming sea traffic along the Lokrian coast (Béquignon 1937, 303).

Figure 5.62: The city wall at Skyros (after Fredrich 1906, Abb. 3)

The walls were first described by Béquignon (1937, 299-303) and later studied by Daly (1942, 500-508), who on the question of date relied on the opinion of Oldfather cited above (Fig. 5.63). Later additions of mortar may signal extensive refurbishment works, which Daly (1942, 503) tentatively attributed to the re-fortification program of Justinian. During their study of the harbor walls at Anthedon,

567 Polyb. 9. 41. 11: “οἱ γὰρ Ἑχινοίς κεῖται μὲν ἐν τῷ Μηλιδί κόλπῳ, τετραμένοι πρὸς μεσημβρίας, καταντίπεραν τῆς τῶν Θρακιῶν χώρας.”

568 See now Dakoronia and Gounaropoulou 1992, 217, n. 1: “4th c. BC-342 BC bleibt die Stadt dem Thessalischen Bunde trau. In diese Zeit warden auch Teile der Mauern datiert.” See also the comment on the walls at Echinos by Decourt et al. 2004, 710: “a piece of isodomic circuit wall undoubtedly dates from 4th century BC.”
however, Schläger et al. (1967, 94-95), who, as far as I am aware, remain the only scholars, apart from Oldfather, to ever use the walls at Echinos as *comparandum*,\(^\text{569}\)

![Figure 5.63: Exposed sections from the city walls at Echinos (after Papakonstantinou 1994, fig. 6)](image-url)

emphasized precisely that Justinianic phase of the circuit, while, quite unjustifiably, in my view, dismissing the significance of the original, *emplektos* phase (Fig. 5.64).\(^\text{570}\)

\(^{569}\) The site is absent from Winter 1971a and Adam 1982, with a singular mention of the siege of Philip V in 211 BC by Lawrence 1979, 64.

\(^{570}\) I quote their statements in full, Schläger et al. 1967, 94, n. 137: “Daly has studied the wall at Echinos on the north shore of the Malian Gulf, and maintains that, apart from few sections of the original wall (of the 4th c. BC) most of the surviving fortifications belong to Justinianic reconstruction.” Schläger et al. 1967, 95: “We feel, however, that emplecton technique and its date are not yet sufficiently precisely defined, and we should not wish to lay too much stress on this coincidence.”
Their assessment, however, still holds today forcing other scholars to understate the reputation of Echinos as an important port of call in the Classical and Hellenistic periods.\footnote{See, for example, Reinders 2003, 17-23, figs. 1.6, 1.10-11, 13, who despite literary evidence to the contrary, cf. Béquignon 1937, 302-303, recognizes the site as a port of call only during the early Byzantine period. The same discrepancy may be observed about the reputation of Anthedon as a port of call during Classical and Hellenistic times; see, for example, Fossey 1988, 254, n. 14 and Gehrke 1992, 109, n. 64, who both rely on the late Roman date advanced by Schläger et al. 1967.}

Figure 5.64: The west tower from the acropolis at Echinos, \textit{top}, and a detail of ashlar masonry, \textit{bottom} (after Papakonstantinou 1994, fig. 7; Daly 1942, fig. 5)
One may hardly doubt, on the other hand, that frequent crossings of Macedonian armies from Thessaly en route to central Greece and the Peloponnese present the most likely occasion on the strength of which a decision was made to install a garrison there which promptly fortified the acropolis. The actions of Philip V, a century later, only confirm the tremendous importance assigned not only to the Macedonian possession of Echinos, which he subjected to a massive siege in 211 BC (Polyb. 9. 41. 1-12), and ultimately captured, but also to the entire coastal strip facing the Malian Gulf, most notably Larissa Cremaste and Pteleon (Walsh 1993, 38).

5.9.9: Megara

The city walls of Megara invite close comparison as well (Fig. 5.65). Intermittent excavations by Greek archaeologists and a synthesis on the new discoveries have recently introduced another fine specimen of Hellenistic fortification (Alexandri 1970; Zorides 1987; 1995, 45-46, fig. 9; Smith 2008, 14, 18, fig. 6), one that has been largely overlooked by the older generation of scholars. Zorides (1987, 227-228), who has worked out the chronology of the circuit, now followed by Smith (2008, 18), distinguished an early Hellenistic phase based on the following features; yellowish sandstone, emplekton technique and drafted margins (Fig. 5.66). Several sections of proteichisma, employing sandstone, were also exposed in areas on level ground least protected by nature, in proximity to the gates leading to Pagai, the

572 Philip constructed two siege towers reaching up to the level of the city towers, in addition to a mining operations taking place between the towers. They had three storeys; on the first were the battering rams, on the second water vessels for quenching fires and catapults, on the third soldiers ready to fight on the battlements. There were also three emplacements for lithoboloi, one using 1 talent (26 kg) shot, the others half a talent shot.

573 Scratch 1941, 122, 177 includes two extra-urban towers located near Megara, originally published by Tillard 1905-1906, in the group of walls of isodomic ashlar: quarry to hammer face with drafted joints. Although references to the walls of Megara are frequent in Winter 1971a and Lawrence 1979 passim, see also Scratch 1941, 86, n. 12, they are exclusively concerned with the Classical period, the Long Walls, and especially with the Peloponnesian War. A round tower from the city circuit exposed in 1969 is briefly noted by Adam 1982, 197, fig. 234. Finally, Mai 1959, no. 27, 284 lists a fragmentary decree concerning works on the city walls of unknown date, which he tentatively assigned to 334-222 BC.

574 The drafting is consistently carried out, with the exception of the upper side.
Figure 5.65: Plan of the city walls at Megara (after Zorides 1987, fig. 1)

Figure 5.66: Ashlar masonry from Megara (after Zorides 1987, fig. 64)
Megarian harbor on the Corinthian Gulf, and Athens (Zorides 1987, 230-232, fig. 7, pl. 64; 1995, 45-46, fig. 9; Smith 2008, fig. 6, #5, 9). Zorides (1987, 228) attributed this phase to after 307 BC on the strength of a destruction layer containing pottery of late fourth century BC, abutting the wall, as well as on Plutarch (Demetr. 9. 2-6) who says that Demetrius did not destroy Megara, as well as prevented, upon request of the Athenians, his soldiers from plundering the city, after his siege in 307 BC.575 Almost all the slaves, however, were carried away, which admittedly had detrimental effect on the economy of Megara in the years to follow (Legon 1981, 300). The chronology was accepted without question by Karlsson (1992, 73, n. 276), who also endorsed the identification of the emplekton technique. A close similarity of design, specifically the employment of headers in the foundations of towers from Megara, Halai and Corinth, as pointed out by Karlsson (1992, 49, n. 119, 100, n. 440), warrants particular attention. The proposed date, however, invites further comments.

Plutarch clearly states, and this is a point left unaddressed by Zorides, that the reason Demetrius went to Megara in the first place was because Cassander had a garrison there. Diodorus (20. 46. 3), who is the other source mentioning the event, simply says that Megara was garrisoned. But he also adds that it put up with a siege.576 Megara received a Macedonian garrison during the reign of Antigonus Gonatas as well.577

An issue of further significance, however, has to do with the question of when exactly Cassander install his garrison in Megara. The crossing from Megara in 316 BC, whence he ferried his troops, including the war elephants in boats and rafts, to

575 The point is made by Hammond and Walbank 1988, 171, quoting Plutarch Demetr. 9. 5.
576 On these events with a useful discussion of the relevant literary sources, see Gullath 1982, 169-171, 176.
577 Justin 26. 2. 1-6; Polyen. Strat. 4. 6. 3 with Hammond and Walbank 1988, 281-282, Lawrence 1979, 437 and Habicht 1997, 145-146, n. 86: Gonatas had to impose a siege in 267 BC on account of disgruntled Gallic mercenaries who formed a part of his garrison.
Epidauros, I believe, furnishes the most plausible terminus post quem (Diod. Sic. 19. 54. 3).578 Despite the available evidence supporting the assumption that Megara witnessed a decade of Macedonian military presence during 316-307 BC, coinciding with that of Mounychia, it is perhaps surprising that it has been never acknowledged in the literature.579 It is nonetheless more plausible to associate the refurbishment of the city walls of Megara, including the proteichismata,580 with the presence of the garrison installed by Cassander rather than with events of unknown date following the siege of 307 BC, as proposed by Zorides.

5.9.10: Lechaion

The reason I decided to include the west harbor of Corinth in my discussion comes from the careful description of the ancient remains published by Paris (1915, 5-16; 1916, 5-73) in the early 20th century. These were also described in some detail in the surveys on ancient harbors by Georgiades (1907, 4-5, pl. 1) and Lehmann-Hartleben (1923, 148-152, plan XXIII). Today the remains, however, are covered by silt (Flemming 1973, 4-5; Blackman 1973, 131), with their chronology still disputed.581

Situated ca. 3 km north of Corinth, the harbor at Lechaion consists of an outer harbor enclosed by two moles and an inner man-made harbor accessed through a

578 Stroud 1971, 142-143, n. 28 mentions Cassander’s campaign in the context of the military forts on Mt. Oneion in the Corinthia, but Megara is understandably omitted from discussion. Similar treatment is offered by Adams 1974, 101, n. 1. Legon 1981, 299, who obviously missed the episode of 316 BC, is clearly mistaken in his claim that “Cassander garrisoned Megara in 307 BC”.

579 Oliver 2007, 52-53 simply says that in 307 BC Megara was captured by Demetrius, while a statement to the same effect is also made by Hammond and Walbank 1988, 171.

580 Zorides 1987, 232 dates it to the second half of fourth century BC. He also thought that the proteichismata were built, as part of the anti-Macedonian alliance led by Athens, to offset the danger posed by Philip II in 340 BC.

channel lined with ashlar masonry (Figs. 5.67, 5.68). The walls of the channel were built of conglomerate blocks measuring 1.30 x 0.65 x 0.42, forming compartments filled with earth and stones (Paris 1915, 13; Lehmann-Hartleben 1923, 150, n. 5). What is of significance, however, is that the mode of construction was compared to the sea walls at Anthedon and Larymna, in particular (Paris 1915, 13, nn. 1-2). The link with Anthedon, as Paris (1915, 13) observed, is important for another reason; emplekton technique in modular masonry of soft stones can be employed not only in fortifications but also in harbor works. The chronology of the harbor at Lechaion,

582 A rectangular foundation of clamped blocks inside the inner harbor probably served as a statue base or a lighthouse guiding the ships into the harbor during the early Roman period (Shaw 1969, 370-372).

583 Paris 1915, 13: “Le quai est ainsi cloisonné, partagé en compartiments contigus en caissons de maçonnerie, qu’emplit un blocage de pierrailles et de moellons, mélangés de terre.”

584 Most recently, in a detailed study on the harbor works at Kyme, the comparison was repeated by Esposito et al. 2002, 29, n. 53.
however, remains a subject of constant debate. Although Rothaus (1995, 294-296) has distinguished two main building phases, one attributed to the tyrant Periander, and a second dated to the reign of Claudius, no surviving evidence supports his chronology beyond doubt.

Figure 5.68: Plan of Lechaion harbor with its features; JJ’ and P corresponds to the feature designated with “inner harbor channel” in Fig. 5.67 (after Paris 1915, fig. 1)

I agree with his assertion that other periods of construction remain permissible, although all structures in their present state of preservation belong to Roman refurbishments. In line with the similarities with Anthedon and Larymna, however, I suggest that the compartmental construction of the channel leading to the inner harbor be assigned to the early Hellenistic period. The comparanda adduced by Paris – a point which remained unaddressed by Rothaus – carries weight but it is further supported by the fact that Lechaion was used not only for maritime contacts with the western Mediterranean but with central and northwest Greece (Rothaus 1995, 294).
communication by sea from Lechaion to other ports of call in the Corinthian Gulf, for example, was widely exploited by Macedonian kings and Philip V, in particular (Lehmann-Hartleben 1923, 149), serving as a naval base for the royal fleet, as well as an embarkation point for troops bound to the Peloponnese or northwest Greece. It is therefore no coincidence that the Hellenistic refurbishments on the city walls of Corinth, which was to become one of the main “fetters” by the time of Philip V (Polyb. 4. 18. 11-17), unanimously attributed to the Macedonian presence, are carried out in the same modular masonry of conglomerate.

5.9.11: Sounion

Several sections of the fortifications of Sounion are also of interest. Thanks to the work of generations of scholars a rather complex sequence of walls has already been established, with still diverging opinions on the question of date (Fig. 5.69). I focus on the sections between Towers III and IV, as well as Towers VII and VIII, (after Mussche 1964, 425) employing ashlar blocks of conglomerate, with tooled faces and beveled edges (Fig. 5.70, 5.71), as defined by Scranton (1941, 180). These are also built in the emplekton technique, featuring an outer face supported at intervals by crosswalls (Wrede 1933, nos. 46-47; Maier 1959, 115; Mussche 1964, 428, figs. 6-7).

Although Wrede (1933, 19), followed by Mussche (1964, 431) and Goette (2000; 44-47, Abb. 91-104; 2003, 152-161) attributed these particular stretches of the

585 Polyb. 5. 2. 4: “κριθέντων δὲ τούτων, ἦθροιζε τὰς τέλων Ἀχαιών νῆς καὶ τῆς σφετέρας εἰς τὸ Λέχαιος, καὶ συνεχόστις ποιούμενος ἀναπείρας ἐγγόμνας τοὺς φαλαγγίτας καὶ συνείθθε ταῖς εἰρεσίαις.” For other references to Macedonians using Lechaion, see Polyb. 5. 17, 9, 18, 9, 24, 12, 25, 5, 26, 16, 28, 4; Livy 32. 23 and Plut. Arat. 24. 15.

586 In keeping with the garrison theory, however, it is far more likely to associate the fortifications, including the harbor works, with the Macedonian garrisons maintained by Polyperchon, Ptolemy I and Cassander between 315 and 304 BC, rather than with the “liberating” mission of Demetrius Poliorcetes in 303 BC, as is commonly accepted (Parsons 1938, 286).

587 For a useful summary of the current debate, see Karlsson 1992, 96-97; Goette 2003, 152, nn. 1-2.

588 Wrede 1933, 19 describes it as “Sandsteinartiger Konglomeratstein.” See also Maier 1959, 115: “Konglomeratsandstein.”
circuit to 413-412 BC (Thuc. 8. 4), Karlsson (1992, 73, 96-97) has recently argued based on the crosswalls, which he compared to those of Gela, that their chronology should be lowered to the second half of the fourth century BC. The chronology of the fortification walls, however, is closely related to that of the two shipsheds cut into the bedrock at the north-west corner of the circuit (Fig. 5.69). Again no agreement has been reached.

Figure 5.69: Topographic plan of Sounion; note the abbreviated walls between Tower IV and VIII (adapted from Mussche 1964, Pl. 1)

589 Kenny 1947, 193-200, pl. 31-34, who first documented the remains, followed by Garland 2001, 219, assigned them to the Hellenistic period by pointing out that the dimensions of the slip-ways
What remains certain at any rate is the fact that Sounion was frequently used by Macedonian kings, in particular, as a port of call en route to and from Piraeus throughout the Hellenistic period. It most certainly played a role in the attack on

suggest smaller craft instead of triremes, along with the fact that they stood outside the wall dated to 413-412 BC. Blackman 2001, 85, 87; Goette 2003, 157-158; Moreno 2007, 119, n. 94, among others, prefer to see them as part of the Athenian program of fortification, with the shipsheds housing the triremes used to protect the grain-ship sailing around the cape. Neither position, however, possesses conclusive evidence.

A story preserved in Polyaeus Strat. 4. 6. 3 shows the importance of the cape for any commander who sought to launch an attack on the harbors of Athens.
Attica launched by Antigonus Gonatas during the Chremonidean War (Gabbert 1983, 130). Although very little is known about its history in the last quarter of the fourth century BC, Oliver (2007, 117) has recently argued that Sounion, Eleusis and Rhamnous were perhaps recovered by the Athenians between 307 and 305/4 BC.\footnote{591} Despite the gap in our evidence, and based on the strategic location along a major sea-route to Piraeus, it is difficult to imagine that Sounion remained ungarrisoned during the rule of Demetrius of Phaleron at Athens between 317-307 BC. While the involvement of a Macedonian garrison, quite possibly one of Cassander, with the refurbishments on the circuit remains conjectural, it should be kept in mind that it would be in agreement not only with the early Hellenistic date proposed by Karlsson (1992, 73) but also with the assessment on the masonry put forward by Scranton (1941, 180).

5.9.12: Eretria

In the context of our discussion, the sturdy bastion at the West gate in Eretria deserves special attention (Fig. 5.72). Two aspects of its construction make it relevant; employment of conglomerate and ashlar blocks of fixed dimensions (1. 30 x 0. 65 x 45).\footnote{592} The structure, which in addition to the ashlar blocks made use of *spolia*, including grave *stelai*, belongs to the fourth building phase of the fortification walls, as defined by Krause (1972, 50-58), who assigned the construction to the engineers of

\footnote{591} The proposition is based on *argumentum ex silentio*, namely that Demetrius Poliorcetes did not return the demes to Athens in 304 BC. A recently found inscription from Sounion, however, confirms that the deme was in Athenian possession in 298/7 BC (Goette 1995, 175-181).

\footnote{592} Krause 1972, 52 described the material as “grobkörniger gelblicher Poros.” The dimensions were originally recorded by Krause 1972, 52, later repeated by Ducrey 2001, 117 and Fachard 2004, 107.
Figure 5.72: State plan of the bastion at the West Gate at Eretria (after Ducrey et al. 2004, 176)
Antiochus III in 192 BC.593 The bastion was equipped with a barrel-vaulted tunnel (Krause 1972, Fig. 10, Abb. 98), which served to divert the waters of the near-by stream away from the entrance (Fig. 5.73).

\textbf{Figure 5.73:} Detail of ashlar masonry, top, and barrel-vaulted channel underneath the bastion at the West Gate at Eretria, bottom

593 See the succinct description of the bastion by Lawrence 1979, 313, Pl. 47, who accepts Krause’s association with Antiochus III.
Krause’s chronology has been since contested, most recently by Ducrey (2001, 125), who proposed an earlier date of 199/8 BC. In an exhaustive overview of the earlier scholarship on the walls of Eretria, however, Fachrad (2004, 107), upgraded the chronology on the West gate bastion to the late third century BC, while reminding of the fact that the barrel vault in the tunnel betrays the employment of an architectural invention, which has been long attributed to the Macedonians.

The primary study on the walls of Eretria documented several repairs on the acropolis, with “finely worked blocks of poros stone” (Pickard 1891, 382), which were later put by Scranton (1941, 180) in the group of ashlar isodomic walls with tooled faces and beveled edges.

5.9.13: Odessos

Unexpected parallels for the Lokrian fortifications may be drawn from the Greek colonies on the West Black Sea coast. Bulgarian archaeologists, for example, have long exposed several sections of the Hellenistic city wall at Odessos, which is situated on a slightly elevated hill near the modern harbor (Hoddinott 1975, 49-56; Prechlenov 2002, 62; Minchev 2003, 240-241, Pl. 2. 8). The wall, 3. 80 m wide, consists of two parallel faces of ashlar blocks of soft limestone, 0.60 m wide, bound at intervals by crosswalls (Fig. 5.74, 5.75). The compartments are filled with earth and stones. The remains of a large tower, 10 x 10. 80 m, are also visible. The available plan of the uncovered sections shows that the walls enclosed an area of ca. 1.5 ha. Although the circuit, which is also the earliest known at Odessos, have been traditionally dated to sometime before 339 BC, the time of Philip’s II arrival (Iord.

594 The figure of 13, 5 and 16 ha, calculated by Preshlenov 2002, 64, fig. 4, takes into account the extensions constructed during the Roman and Byzantine periods. Minchev 2003, 240, pl. I. 1 describes the fortified area as “not a large one,” 150 x 100 m, which possibly was “the citadel” of the otherwise unfortified city.
Got. 10. 65), a recent study on the political history of Odessos (Damyanov 2006, 300-301) has shown that the early Hellenistic revival of the city may be in some ways related to the presence of the Macedonian garrison installed by Lysimachus, possibly in 315 BC (Lund 1992, 34). In response to the expulsion of his garrisons in 313 BC, Lysimachus promptly besieged and captured Odessos.

595 While Preshlenov 2002, 62, Minchev 2003, 240-241, Avram et al. 2004, 936 and, most recently, Damyanov 2006, 296 point to the fourth century BC as likely date of construction, it rests on the mention of gates by Iordanes Gothicus 10. 65 during the attack on Odessos by Philip II in 339 BC.

596 A major part of the argument points to the growing number of Macedonian tombs found in the city's necropolises. For another extravagant structure executed in Doric order, possibly from a Hellenistic built tomb of tholos type, see Stoyanov and Stoyanova 1997.

598 It is interesting to note, however, that Lysimachus took the city because he was able to θαηαπιή ζζεηλ, i.e. to strike awe into the defenders, which according to Rihll 2007, 118 may suggest that he possessed artillery. In fact Odessos capitulated, διά όμολογας, and did not put up a fight, possibly because it was still unfortified.
It is likely that he reinstated his troops because we know for a fact that the garrison was still residing at Odessos in 302 BC, when Cassander sent his brother, Pleistarchos, with an army of 12,000 infantry and 500 cavalry to help Lysimachus on the eve of the battle of Ipsos (Billows 1990, 180).\footnote{Diod. Sic. 20. 112. 1-4. Pleistarchos was forced to sail to Odessos because Demetrius Poliorcetes had already established his control in the area of Pontus. Shortage of transport vessels led to a decision to split the army into three, to be ferried across to Heraclea Pontica in turns.}

According to Lund (1992, 34), Lysimachus trusted the harbors along the West Black sea coast as important “naval bases” securing his sea communications to the Southern Black Sea coast and Paphlagonia. I think, however, that Lund (1992, 40) may not be correct in her estimate that “the dry-stone walls” of Odessos were apparently no match for the assault of Lysimachus in 313 BC, particularly because it is based on the unsubstantiated assumption that Odessos was ringed with walls by this
time. In fact, it seems likelier to suppose that Lysimachus decided to fortify Odessos not upon the arrival of his garrison in 315 BC but after the revolt of 313 BC. Such a scenario would account for the small extent of the fortified area, as well as for the employment of ashlar isodomic masonry built in the *emplekton* technique.

5.9.14: Mesambria

Another West Pontic “naval base” possibly garrisoned by Lysimachus may be sought in Mesambria, situated ca. 100 km south of Odessos (Hoddinott 1975, 41-49). Equipped with two well-sheltered harbors on the opposite sides of an extensively fortified peninsula, Mesambria boasts impressive fortifications belonging to several building phases, with numerous refurbishments and addition from the Roman, Byzantine and Medieval periods. Since the study on the walls took place in the 1960s and 1970s, the results received publicity too late to be considered in the synthetic works on Greek fortifications.

The earliest circuit, in which three varieties of masonry have been distinguished, protects the most vulnerable approach from the west, with several stretches enclosing the north-west side of the peninsula near the north harbor (Venedikov et al. 1969, 31-37). The latest phase features isodomic ashlar masonry of green limestone built in the *emplekton* technique; two faces bound at intervals by crosswalls, with the compartments filled with bright yellow clay and broken stones.

600 The point is also implied by Avram et al. 2004, 936, who give the πολιορκία in 313 BC as possible *terminus ante quem* for the construction of the city walls.

601 See also Minchev 2003, 241, who does not exclude the possibility that the walls may belong to a slightly later period, i.e. early Hellenistic.

602 Winter 1971a, 22-23, n. 44, for example, mentions Mesambria in the context of Greek colonization of the archaic period by citing the then available account of the city walls by Zontschew 1959, 20-36, who, before the era of excavation, relied heavily on information from literary sources, travelers’ accounts and first-hand description of the Roman and Byzantine walls. The other work cited by Winter is an article by Ogrenova-Marinova 1960, 221-232, which is devoted to the publication of material, mainly pottery, from the excavations of two Hellenistic houses. The site mentioned by Lawrence 1979, 232, 454 refers not to Mesambria Pontica but to her namesake on the North Aegean coast.

603 Preslenov 2003, 161 suggests that the limestone was brought from the limestone quarries near Aitos, located ca. 60 km west of Mesambria.
(Venedikov et al. 1969, 35). Despite many parallels pointing to the late fourth century BC, including the presence of identical bright yellow clay discovered in house walls of the fourth-third century BC, Venedikov et al. (1969, 37) assigned the *emplekton* phase to the late Hellenistic period. The picture, however, was further complicated by subsequent discoveries.

In the north-west part of the peninsula, underwater survey conducted by Bulgarian archaeologists exposed the submerged remains of three walls built in the *emplekton* technique, with conglomerate blocks of regular dimensions: 1, 30 x 0, 60 x 0, 45 m (Fig. 5.76).

![Figure 5.76: The north harbor at Mesambria with Hellenistic walls in black (after Preshlenov 2003, fig. 9)](image)

One of the walls, ca. 106 m long and 3, 60 m thick, built on indented trace with two faces, extends well into the sea, terminating in a hexagonal tower with a diameter of ca. 11 m and sides 5, 50 m long and 1, 50 thick (Fig. 5.77). Based on the blocks of “poros” with identical dimensions, i.e. 1, 30 x 0, 60 x 0, 45 m, the city wall of Corinth was adduced as *comparandum*, whereas the pentagonal tower at Akraiaphia served as

604 Ognenova-Marinova 1980, 107 refers to the ashlar blocks as “blocs rectangulaires de poros,” in comparison to those from Corinth.
the only comparison for the hexagonal tower (Ognenova-Marinova 1980, 106-107, n. 30). It was concluded that the construction of these walls was a single-handed operation designed to protect the principal gate facing the port installations of the north harbor, of which no other traces have survived. Similarly, the chronology of their construction was generally placed between 510, the foundation date of the colony, and late fourth century BC (Ognenova-Marinova 1980, 107-109).

Figure 5.77: The hexagonal tower in emplekton technique from the north harbor at Mesambria, see Fig. 5.75 (after Ognenova-Marinova 1980, fig. 5)

In light of the early Hellenistic comparanda for the emplekton technique, viz. Corinth and Akraiphia, as well as the apparent attempt to fortify the north harbor, possibly for military shipping, it may be instructive to trace in some detail the political history of Mesambria during the late fourth century BC. As in the case of Odessos, the episode with the expulsion of Lysimachus’ garrisons from several cities on the West Black sea coast is of critical value. In fact, based on a close reading of Diodorus (19.

605 The opinion was endorsed by Avram et al 2004, 935, who also dated the city walls to the fifth- fourth century BC, as well as by Preshlenov 2003, 160-161, who authored the most recent account on the archaeology and history of Mesambria.
it has been already suggested that Mesambria joined the alliance against Lysimachus formed immediately after his garrison was driven out of Callatis in 313 BC (Avram et al. 2004, 934). Interestingly, a decree voted by the demos, concerned with securing money for grain-supply (IGBulg I² 316), has also been adduced as evidence pointing to the possible involvement of Mesambria in the revolt of 313 BC (Velkov 1985, 32-33, n. 17; contra Nawotka 1997, 32, n. 116). The implications of this conjecture are obvious, for if Mesambria did take part in the event, it is reasonable to suspect that the city was subject to a garrison installed by Lysimachus as well. Furthermore, inscriptions, literary sources, including frequent references in extant periploi, account for the major role which the city played in facilitating maritime communication in the Black sea. The coastal location ensured that the city was often embroiled in politics and wars on a trans-regional scale. In the winter of 72/71 BC, for instance, Mesambria housed a Roman garrison whose commander, Gaius Calpurnius, the citizens decided to praise on account of his many services to the demos (IGBulg I² 314a; Velkov 1969, 18; Eilers 2002, 89-90, 207). Despite the gap in our evidence, it is conceivable that, as in the case of Odessos, the potential of Mesambria as a “naval base” conditioned Lysimachus’ decision to install a garrison, which, I believe, would also explain the prompt fortification of the north harbor.

606 The phrase in question, “καὶ τὰς ἄλλας πόλεις ῥήματος ἐγγίζοντάς,” is normally translated as “and the other neighboring cities,” among which Mesembria may well have been present.
607 It is clear, however, that in 313 BC on learning about the revolt, Lysimachus first attacked Odessos; similarly, in 302 BC, in deciding where to disembark the troops sent by Cassander, Pleistarchos chose Odessos, not Mesambria. See also Bosworth 2005, 271, n. 95 noting that “Pleistarchus diverged from the mouth of the Bosphorus to Odesus, apparently ignoring Messambria”.
608 Ps.-Skylax Periplus 67; Ps.-Skymnos 739; Arrian Periplus 24. On his way to Tomis in A.D. 9, Ovid Trist. 1. 10. 37 sailed along the harbors of Mesambria and Odessos: “…inde Mesembriacos portus et Odeson…”
609 Polyb. 25. 2. 13; 26. 6. 12, Livy 40. 58. 8. For a full discussion of relevant literary sources and inscriptions, see Velkov 1969, 17-19; 1985, 33-35.
610 Appian Ill. 5. 30-35.
Conclusions

My objective was an attempt to examine the interactions between the local communities of Opountian Lokris and the foreign garrisons installed by Macedonian kings. The contextual approach allowed undertaking multiple analyses united by the intent to address the totality of military presence in an urban environment. In a sense, however, I moved away from providing a singular explanation to the often-posed question: who took the initiative to re-fortify some of the major centers in Opountian Lokris during the early Hellenistic period, Lokrians or Macedonians? Instead, I hope to have shown why the construction of a walled space was necessary in negotiating power relations between the Macedonian king, the troops and the local communities.

Through the pertinent evidence presented in each chapter I examined the following questions. In what ways did Opountian Lokris benefit from the fact, as I concluded in Chapter 1, that it served as a land of passage and a port of call for Macedonian armies? How were the Macedonian garrisons, installed by Cassander and Philip V, as demonstrated in Chapter 2, received on a local level: were they accepted because they provided protection, created opportunities for employment, expenditure and contracts, or were they frowned upon because they controlled local resources, imposed on civic freedoms and disrupted local economies? In what other spheres of public life can we discern traces of the well-documented Macedonian military presence in Opountian Lokris during the Hellenistic period? Was the emergence of city walls a Lokrian response to an immediate threat from outside, a precautionary decision to be on a par with the developing siegecraft and artillery, as prescribed by Aristotle (Politics 1331a), or were they built in order to protect agricultural land, roads, city territory, frontiers, symbolize civic pride, or discourage possible pirate attacks from the sea?
Such questions, of course, invited more flexibility; hence the decision to employ a variety of sources for data, along with a methodology that is normally reserved for the study of military camps. It is my conviction, however, that no single explanation may be sufficient to address the complexity of social interaction, nor can multiple answers be necessarily mutually exclusive. Nevertheless, these questions provided the means of re-framing an old problem in terms of inquiry into the trans-local and temporal dynamic behind what has been usually understood in purely architectural terms. Building fortifications was a practical requirement, but viewed as a social phenomenon, accompanying strategy on a grand scale, it reflected new realities not only in Opountian Lokris but also in many Greek poleis in response to the new challenges brought by the warring Successors.

The years following Alexander’s death saw innumerable armed conflicts and unprecedented mobility. Political success was measured by the ability to muster big armies, but above all – the ability to act (and react) fast. It would not be a stretch to claim that the great changes occurred as a result of decisions by military leaders. In this context the role of garrisons, recruited from highly trained mercenaries, was crucial. War was no longer bound by time and space. An important effect of this new reality was the displacement of people, serving in cities away from their homes.

The military presence maintained by Macedonian kings may serve as a compelling way to explain, as I demonstrated in Chapter 5, why several unrelated sites in Boeotia, Attica, Megaris, Corinthia and the West Black sea coast are largely similar to the structural features singled of the Lokrian fortifications alone. The trans-regionalism of building and masonry techniques, illustrated by the sample of comparable sites, is sufficient to dispel the claim that the Hellenistic fortifications were the result of a strictly regional enterprise, as hitherto believed. It also showed why studies of fortifications focusing exclusively on regional data are likely to portray
the role of external factors as minimal. In short, the sites tend to occupy important lines of communication serving the needs of trans-regional traffic demanded by Macedonian kings. The preponderance of coastal sites, on the other hand, accounts for the apparent advantages of maritime communications in securing the transportation of troops. The “Lokrian case,” however, gives us a chance to acquire a better understanding for the Macedonian preference of certain sites over others.

First is the problem of scale. In Opountian Lokris, a considerable effort was made to acquire the seacoast for military shipping, with the fortified harbors tracing the frequent movement of the Macedonian navy along Opountian Lokris. The bay of Atalandi was the natural midpoint offering shelter, anchorages and supplies. As Cary (1949, 68) observed, geography alone decreed that the region was to play a major role in the strategy of any military commander bound to frequently cross it by land. The second line of fortifications located further inland, e.g. Opous, Kastraki, Palaiokastra Livanaton, was possibly used as winter quarters for Macedonian troops. In addition, the metropolis of Opous, in conjunction with the harbor of Kynos, acquired additional importance thanks to their location on a major trans-regional line of communications connecting Macedonia with the Peloponnese. The fact that Philip V, following in the footsteps of Cassander, installed royal garrisons in both of them between 219-196 BC points to the prominent position of the Opountan territory in securing the large-scale movements of Macedonian armies. Korseia and the isolated tower at Palaiopyrgos, on the other hand, served to communicate messages along those harbors on the coast since they were unable to maintain lines of sight between one another.\footnote{611 It is also conceivable that some of the ridges of Mt. Chlomon were employed as relay-stations in the chain of beacons transmitting messages by the system of fire-signals established by Philip V in 208 BC.}

The second point to consider is the selectivity of sites. The survey of the available evidence (Chapter 3) shows that not all settlements witnessed refurbishment
of their defenses, which means that they were strategically unimportant; hence no permanent military presence was necessary. The tendency noted in those sites, e.g. Proskynas and Pazaraki, to employ different masonry styles, as well as their simplicity in terms of fortification features, is likely to reflect local needs (Scranton 1941, 69; cf. Leriche 1994, 11).

The large-scale movements of Macedonian troops anticipated the installation of foreign garrisons, thereby leaving a permanent mark in the Lokrian landscape. Agreement on the terms of presence was necessarily essential, but not the only measure that was to regulate the new conditions. Another was to guarantee the garrison’s sense of identity. The latter, relied on architectural expression as much to demarcate the garrison’s commune spatially as to give it a chance of survival in case of a siege. In some cases, e.g. Kynos, foreign garrisons inhabited deserted sites, or distant areas removed from immediate and/or visual contact with the locals. Yet in others, e.g. Halai and Larymna, they assisted in reshaping the layout of entire cities by creating fortified enclosures in which a distinction between an upper and lower town was architecturally emphasized. To some extent, I think, such measures may be perceived as a corollary from “the relocation of either single or multiple communities,” metoikesis or synoicism (Demand 1990, 9), possibly instigated by Cassander, whereby inhabitants of unfortified villages gathered in new towns that were promptly ringed with walls erected and defended by the royal garrison. To a great extent, I believe that this is the reason why the Macedonian garrisons had so profound an effect on the general layout of those Lokrian cities in which they were installed. Therefore I argue against viewing the construction of the Hellenistic fortifications merely as extensions to the earlier circuits (Fossey 1990, 140). My

612 The citadel on Kokkinovrachos, however, may not be totally excluded from the picture, especially if the Hellenistic date of the fortifications suggested by Blegen 1926, 404 is valid.
analysis shows that in some cases we are dealing with something more than a simple enlargement.

The tendency to treat the Lokrian fortifications as separate from urban planning forces one to lose sight of the observed preference for orthogonal layout, an ancient practice of city planning and fortification building akin to the so-called τετράγωνον σχήμα, the application of which was particularly favored by Macedonian armies (Winter 1971a, 46; Reinders 1988, 199-200; Stefanidou-Tiveriou 1998, 221-222; Nankov 2008, 44-45). The best example built in the manner known from Opountian Lokris is the so-called “quadrangular” fort at Oinoe in Attica (section 5.9.6). The impact of these new ideas of urban planning was still felt one century after the rebuilding of Thebes by Cassander, for example, when Heraclides Creticus (1. 23), described the design of the city as modern. It is perhaps no coincidence, as Kirsten (1951, 694) once suspected, that the re-fortification of Halai, Larymna, Opous, Anthedon, and possibly Delion, should be considered a part of the same event. The different layouts of the Lokrian cities equipped with new city walls suggest that the architectural scheme brought by the military architects of Cassander was modified according to the local conditions. Further research and field discoveries will no doubt shed new light on the link between fortification and urban planning, which I only sketch out here in a preliminary manner.

At Alope, the exposed stretch of the Hellenistic city wall lies on level ground, in close proximity to the seashore and the coastal road. Since the evidence of a pre-existing archaic circuit in this area is unsound, we are hardly justified in maintaining that it was, strictly speaking, an extension or enlargement of the fortified acropolis. Excavation data also suggest that the plain was inhabited as early as the Archaic

613 Kirsten 1951, 694: “Das kulturelle Schwergewicht jedoch lag seither am Euboeische Meer, wo Halai, Larymna, Opous neu befestigt wurden und Anthedon aufblühte.”
period, and again during the Hellenistic period. Although on present evidence it is impossible to estimate the area enclosed by the Hellenistic walls, it is clear from its trace that to a great extent it may have followed the τετράγωνον σχήμα.

At Kynos, for instance, the garrison simply had to fortify anew and live in an already deserted settlement situated on the top of Palaiopyrgos hill, away from the metropolis at Opous. No remains of an Archaic circuit have been reported (Bouyia 2000a, 57). Perhaps Dakoronia (1993a, 120) is right in suggesting that Kynos was a small establishment maintaining the harbor, but never truly an independent settlement. The wall of abbreviated type and the indented trace614 were apparently chosen because of the nature of the terrain. In the places where remains have been exposed, they closely hug the contour of the hill. There can be little doubt that a century later the same place also received the garrison sent by Philip V, as the findspot of the diagramma also seems to suggest. Although the new situation was unacknowledged by Polybius (4. 67. 7) and Livy (28. 6. 12), for whom Kynos remained emporium Opuntiorum, it is perhaps significant that the acropolis of Oreus, which was closely similar in terms of location and layout, received a Macedonian garrison as well, called an arx maritima (Livy 28. 7. 2).

Less clear-cut is the situation at Opous. Undoubtedly, the Hellenistic city occupied a substantial area in the plain of Atalandi, the northern extent of which is marked by the exposed stretch of the city wall. It is reasonable to assume that the τετράγωνον σχήμα played a major part in the overall design of the city. No doubt the installment of the Macedonian garrison that, among other things, was unable to repel the attacks of Ptolemaeus in 313/312 BC also brought the need of a new city plan. But where were its living quarters?

614 The indented trace is frequently attested in Hellenistic fortifications, which Martin 1947/1948, 138 has associated with the building practice of the Macedonians.
To begin with, an inscription of unknown date from Opous contains a reference to an acropolis.615 Livy (32. 32. 1-4), on the other hand, has provided us a tantalizing piece of evidence by stating that Philip V had a \textit{regium praesidium} on the \textit{arx} of Opous in 198 BC. Fossey (1990, 72) has already pointed to this reference in order to refute the older argument according to which Atalandi (which he identified as Opous) had no acropolis. Can we presume then that the garrisons of Cassander and Philip V occupied the hill (Palaiopyrgos) situated south of Atalandi, which Fossey (1990, 68, 70) has already identified as the city citadel? The remains of a medieval tower there make his suggestion even more plausible (Fossey 1990, 68, fig. 13, pl. 49). If so, then we get another example of the division between an upper and lower town, where the Hellenistic wall in the plain must be considered as an outer fortification wall, as is also the case at Halai and Larymna. Things, however, are not that simple.

Firstly, the Latin \textit{arx}, as used by Livy, need not necessarily convey the sense of the Greek \textit{acropolis}. To complicate matters further, Lawrence (1979, 141, n. 14) has already pointed out that both terms, especially when used by Diodorus and Livy, may designate fortified cities on level ground, as well as “small strongpoints,” designed to protect “the seaward extremities” of a given city. The examples he adduces are the several acropolises of Halikarnassos (Diod. Sic. 17. 23. 4), the Euryalos fort at Syracuse616 and the \textit{arx maritima} of Oreus,617 among others.618 The situation may be complicated further by the discovery of a polygonal stretch of wall on the plain of

615 IG IX. 1. 290: Ἀρχίμη τιός ὁδός ἐστ’ Ἀλκαίντας, ὃς δορὶ σώζ[ου] / πατρίδος ἀκρόπολιν τέμπυ’ ἔλαβεν βιότου. See Fossey 1990, 146, n. 3 and Bouyia 2000b, 56, who both link the inscription with Ptolemaeus’ siege of Opous in 313 BC (Diod. Sic. 19. 78. 5). Cf. also the fourth century date listed with a question mark in \textit{LGPN} IIIB, s. v. Ἀλκαίντας (1).

616 On the fortifications, see the excellent studies by Lawrence 1946; Winter 1963, and most recently, Beste 1999, 150-159.

617 For a description of the physical remains and discussion, see Sackett et al. 1967, 39-40, Pl. 10 a, b.

618 The identification of the so-called Arx Fregellana, a Samnite fort, mentioned by Livy 9. 28. 3, 31. 13 is fraught with similar problems. The nearest hill, Rocca d’Arce, which has been proposed as a possible candidate, stands ca. 8 km away from the modern town. Some scholars, however, prefer to locate the site on the plain, e.g. Oakley 1995, 9, 132, 142; 2005, 336.
Atalandi (Kiriakopoulou plot), whose earliest habitation strata contain material of the third-early second century BC (Dakoronia 1993b, 222, fig. 124a). Although Bouyia (2000b, 70, fig. 34), followed by Dakoronia (2002, 58, fig. 42), has already assigned a late Archaic date for the wall in question, it is not necessary to rely on the polygonal masonry as a reliable chronological criterion. Due to piecemeal excavation, however, the overall plan of Hellenistic Opous is still incomplete, while the implications from the discussion offered above should remain preliminary. Albeit likely, the possibility of the existence of bipartite division, as well as that the Macedonian garrisons resided on the acropolis south of Atalandi, must therefore remain conjectural.

At Halai and Larymna, the garrisons occupied the small acropolises closer to the sea, while the area inhabited by the local population was delimited with the construction of another ring of walls. The idea of a fortified lower town thus received an architectural expression for the first time with the arrival of the Macedonian garrisons. For the lack of archaic walls associated with a lower town at Halai and Larymna, also at Kynos and possibly Opous, clearly indicates that the pre-Hellenistic settlements were for the most part unfortified. Perhaps Opountian Lokris may be perceived as yet another exception, along with Ozolian Lokris, Aetolia and Acarnania, for which Thucydides (1. 5. 3; 3. 94. 4) says that they continued to live by the old way, i.e. κατὰ κόμας ἀπειχότους, longer than any other Greek cities.619

To what extent the city fortifications were ever used as a way of implementing a Lokrian network of intervisible sites to defend the entire region is a moot point. Territorial defense has little need of stout city walls in order to properly function, not least because of the huge drainage of communal resources that they imposed. Nor is it likely to chronologically coincide with, or be a prerequisite of, refurbishing city

619 For a discussion of these passages, see Rousset 1999, 40-41.
defenses. Even if one agrees with the idea of defense on urban frontiers independently maintained by each city, its enforcement is insufficient to explain why certain sites, most notably those on the seacoast, were fortified at the expense of others. One thing is clear; small fortified posts, such as Megaplatanos, Sphaka and Chiliadou, accompanied the building of the city fortifications, most of which were sited in relation to trans-regional routes of communications. Rather than built to collect tolls on local traffic or serve as Lokrian lookouts in the countryside, I believe that they came into their own to secure the military communications of Macedonian armies at the time of the historically and epigraphically recorded installation of garrisons in Opountian Lokris by Cassander and Philip V.

Baumeister, A. 1864. Topographische Skizze der Insel Euboia. Lübeck.

Brown, A. C. B. 1905/06 “Excavations at Schimatari and Dilisi in Boeotia,” ABSA 12, 93-100.

Princeton, New Jersey.

____ forthcoming. Halai and Its Neighbors in East Lokris and Boeotia.

Courby, F and Picard, Ch. 1924. *Recherches archéologiques à Stratos d’Acarnanie.*

Oxford, 23.

aus Achinos bei Lamia,” *AM* 107, 217-227.

Dodwell, E. 1819. *A Classical and Topographical Tour through Greece during the Years 1801, 1805, and 1806*, vol. II. London.

______1995. “La muraille est-elle un element constitutif d'une cite?” in *CPCAacts* 2, 245-256.

1923/31. Halae Field Notes (typed transcript).

Heuzey, L. 1860. Le Mont Olympe et L’Acarnanie.

chronologie delphique au début de l’époque etolienne,” BCH 119, 137-159.

______2001b. Décrets érétriens de proxénie et de citoyenneté, Eretria XI.

Koumanoudis, St. 1873. “Epigraphai Lokridos kai Boiotias,” Athenaios 1, 422-503.

_____ 1894. in Baedeker, K. *Greece,* 2nd ed. Leipzig.

Mediterranean Pilot, vol. IV (1941) *Comprising the Islands of the Grecian Archipelago, with the Adjacent Coasts of Greece and Turkey from Cape Tainaron on the West to Kara Burun on the East; Including also the Island of Kriti*, 7th ed. London.

Meletios 1728. *Geographia Palaia kai Nea*.

Müller, Ch. 1995. Le Ptoion et Akraiphia (Beotie),” BCH 119, 655-660.

_____1996. Le Ptoion et Akraiphia (Beotie),” BCH 120, 853-864.

Oberhummer, W. 1896. “Atalante (1),” *RE* II, 1890.

____1926. “Lokris (1),” *RE* XIII, 1135-1288.

2000. City and Sanctuary in Ancient Greece: The Theorodokia in the
Peloponnese. Göttingen.

Scranton, R. L. 1941. Greek Walls. Cambridge, MA.

_____1950. “Greek Arts in Greek Defenses,” Archaeology 3, 4-11.

———1998. “When the Peiraius and the City are Reunited,” *ZPE* 123, 207-222.

1933. *Attische Mauern*. Athens

