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Abstract. One of the major points of contention in studying and mod-
eling �nancial returns is whether or not the variance of the returns
is �nite or in�nite (sometimes referred to as the Bachelier-Samuelson
Gaussian world versus the Mandelbrot stable world). A di�erent formu-
lation of the question asks how heavy the tails of the �nancial returns
are. The available empirical evidence can be, and has been, interpreted
in more than one way. The apparent paradox, which has puzzled many a
researcher, is that the tails appear to become less heavy for less frequent
(e.g. monthly) returns than for more frequent (e.g. daily) returns, a phe-
nomenon not easily explainable by the standard models. Inspired by the
prelimit theorems of Klebanov et al. (1999) and Klebanov et al. (2000)
we provide an explanation to this paradox. We show that, for �nancial
returns, a natural family of models are those with tempered heavy tails.
These models can generate observations that appear heavy tailed for
a wide range of aggregation levels before becoming clearly light tailed
at even larger aggregation scales. Important examples demonstrate the
existence of a natural scale associated with the model at which such an
apparent shift in the tails occurs.

1. Introduction

Do �nancial returns have a �nite variance or not? This $10, 000 question

has been made much more valuable by the ongoing � at the time of this

writing � worldwide stock market, housing market, and general �nancial cri-

sis. The question can be traced back to the pioneering paper of Mandelbrot

(1963), which suggested that in�nite variance stable models provide a better

�t for certain �nancial returns than the more classic Bachelier-Samuelson

Gaussian models. These models where further used to model stock returns

in the in�uential paper of Fama (1965). The answer to this question is not of

Key words and phrases. �nancial returns, �nite or in�nite variance, heavy tails,
Bachelier-Samuelson model, Mandelbrot model.
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purely academic interest; it crucially a�ects risk calculation, portfolio selec-

tion, and option pricing. The question can be formulated in several related,

but not equivalent, ways.

(1) Do �nancial returns have a �nite variance or not?

(2) Do �nancial returns follow a Gaussian law or an in�nite variance

stable law?

(3) In what range is the tail index of �nancial returns?

This last formulation refers to the parameter of a certain class of semi-

parametric models, which are often used to model returns. This is the class

of distributions with regularly varying tails. A random variable X (here

representing a return) is said to have a regularly varying right tail with tail

index α > 0 if

(1.1) P (X > x) = x−αL(x), x > 0 ,

where L is a slowly varying at in�nity function (see Embrechts et al. (1997)

for information on regular variation). A similar de�nition applies to the

regular variation of the left tail, which may have a di�erent tail index. The

smaller of the two tail indices (we will often refer to it simply as the tail index)

controls which �nite moments the random variable has. If the smaller tail

index is greater than 2, then the random variable has a �nite variance, when

it is between 1 and 2, the random variable has a �nite mean but an in�nite

variance, and when it is less than 1, the random variable does not have a

�nite mean.

Sometimes a more speci�c assumption of a power tail is used. Here one

assumes that P (X > x) ∼ cx−α as x → ∞ for some c > 0, and similarly

with the left tail. Many well-known probability models have power tails.

For example, an α-stable random variable with 0 < α < 2 (its tail index

is equal to the index of stability α, see Samorodnitsky and Taqqu (1994))

and a Student t-random variable (its tail index is equal to the number of its

degrees of freedom).

The α-stable distributions form a relatively narrow family of models, and

it is accepted in the literature that for most �nancial returns an exactly stable

model does not provide a good statistical �t (and an exactly Gaussian model
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does not provide a good �t either). The assumption of regular variation of

the tails is, on the other hand, not very controversial (even though certain

option pricing techniques require tails lighter than those given by (1.1)).

What is controversial is the range of the tail index of �nancial returns.

Approximate stability of the returns and in�nite variance indicate a tail

index of less than 2. In�nite variance models are advocated in Mittnik and

Rachev (2000), but other authors, going back to Blattberg and Gonedes

(1974), or Lau et al. (1990) report statistical evidence of �nite variance in

�nancial returns.

The most confusing issue of all, and this is where the apparent paradox

arises, is that the empirically measured tail index appears to be lower for

more frequent returns and higher for less frequent returns; rich evidence is in

Gencay et al. (2001). In particular, one could �nd, for example, that daily

or more frequent returns had in�nite variance, but weekly or less frequent

returns had �nite variance. Not everyone agrees that this is really impor-

tant in practice (see e.g. Taleb (2009)), but the paradoxical nature of this

phenomenon was quickly realized. Thus, Akgirav and Booth (1988), upon

reporting that the estimated index of stability increases from daily to weekly

to monthly returns, point out that this is inconsistent with a stable model

of the returns. Even more generally, it is di�cult to explain increasing tail

indices for returns with power tails, or regular varying tails. This cannot

occur if the returns are independent and identically distributed, and most

known models of dependent returns rule out this phenomenon as well (see

e.g. Mikosch and Samorodnitsky (2000)).

In this work we propose a resolution of �the tail paradox� by showing

that the empirical �ndings of the increasing tail index as the aggregation

of the returns increases is consistent with models possessing what we call

�tempered heavy tails�. A random variable with tempered heavy tails does

not, strictly speaking, have power or regular varying tails, because of the

tempering. Nevertheless, this random variable can be similar, in important

respects, to a random variable with power tails, or even to a stable random

variable.
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Recall that a random variable with regularly varying (and balanced) tails

of tail index 0 < α < 2 is in the domain of attraction of an α-stable distri-

bution. This means that the distribution of properly shifted and normalized

sums of independent and identically distributed copies of this random vari-

able converge in distribution, as the number of observations increases, to an

α-stable distribution. Informally, the sums X1 + . . . + Xn of independent

observations distributed as X will, while having the same tail index as the

original X, look more and more like an α-stable random variable as n in-

creases. Similarly, if X has a tail index α > 2 or, more generally, has a �nite

variance, then X1 + . . .+Xn will, as n increases, look more and more like a

Gaussian random variable.

A random variable with tempered heavy tails has a �nite variance. How-

ever, empirically, its tail index may appear to be less than 2. Moreover, the

distribution of the sum X1+. . .+Xn of independent observations distributed

as X may be well approximated by an in�nite variance stable distribution for

a wide range of values of n, before (necessarily) converging (after a proper

shift and scaling) to a Gaussian distribution as n becomes very large. Fur-

thermore, it is possible that in the intermediate range of n, the distribution

of the sum X1 + . . .+Xn becomes �more stable-like� as n increases. If (rela-

tively) high frequency returns have tempered heavy tails, then, empirically,

these returns and certain lower frequency (aggregated) returns will appear

to have a low tail index and may, even, appear to have an approximately

stable distribution, while even lower frequency returns will look more and

more Gaussian-like and, hence, empirically, the tail index! will appear to be

increasing. The resulting picture is in excellent correspondence with the dis-

cussed above paradoxically increasing with aggregation tail index of actual

�nancial returns.

Financial markets have built-in mechanisms designed to limit the �uctua-

tions of the prices. This means that one would not expect to see the returns

exhibit regular variation in their entire unlimited range. Models with tem-

pered heavy tails may, appropriately, exhibit power-like tail behavior in a

large part, but not the whole, of their range.
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In summary, we suggest that using models with tempered heavy tails is

an attractive option that accounts for the otherwise di�cult to explain phe-

nomenon of the tail index increasing with the aggregation of the returns and,

more generally, reconciles the otherwise irreconcilable views for and against

in�nite variance models of �nancial returns. In fact, this class of models

explains why, at certain return frequencies (but not at other return frequen-

cies) the empirical distribution of �nancial returns may look, approximately,

stable.

It is important to mention, at this point, that random variables with

tempered heavy tails retain many of the properties of random variables with

the �usual� heavy tails. In particular, risk calculations with tempered heavy

tails will have much in common with risk calculations with the �usual� heavy

tails, but they will not be identical to the latter calculations. We will address

this issue in a future work.

This paper is organized as follows. In Section 2 we introduce the general

idea of tempered heavy tails and concentrate on two speci�c models: the

truncated Pareto distribution and the smoothly truncated Lévy �ights. We

present a small empirical study of the behavior of the sums X1 + . . .+Xn of

independent identically distributed random variables generated from these

models. In Section 3 we introduce several distances between probability

distributions and state a theorem showing that, under certain conditions,

sums of many independent identically distributed random variables may have

an approximately α-stable distribution even though the random variables

are not in the domain of attraction of an α-stable distribution. The proof

of the main result is postponed until Section 5. Our presentation here is

heavily in�uenced by the work of Klebanov et al. (1999, 2000). We present

a clear and self-contained proof (this appears to be somewhat lacking in the

above references); furthermore, we extend the main result to the important

multivariate case. In Section 4 we show that the distributions of the two

families of models with tempered heavy tails that we are considering in this

paper have a natural scale associated with them. It determines when sums

X1 + . . .+Xn of independent identically distributed random variables from
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these distributions look �stable-like�, and when �Gaussian-like� behavior sets

in.

2. Distributions with tempered heavy tails

We say that the distribution of a random variable X has tempered heavy

tails if it can be obtained by modifying a random variable with power, or

regularly varying, tails, via tempering the tails of the latter. This tempering

restricts the range where the power, or regularly varying, tails, apply. De-

pending on the kind and the extent of the tempering of the tails, sums of the

type X1 + . . .+Xn of independent identically distributed random variables

with such tails can have, for a large number of terms n, a distribution that

is very close to an in�nite variance α-stable distribution even though the

random variable itself is not in the domain of attraction of an α-stable dis-

tribution. Random variables with tempered heavy tails have a �nite variance

and, hence, must be in the domain of attraction of a Gaussian distribution.

The tails of a random variable can be tempered in di�erent ways. In this

paper we consider two ways of tempering heavy tails, leading to two di�erent

families of distributions with tempered heavy tails.

The �rst example is based on the idea of tail truncation. Let Z be a ran-

dom variable, which we assume to be in the domain of normal attraction of

some α-stable distribution, 0 < α < 2. That is, the normalized partial sums

S′n = n−1/α
∑n

i=1 Zi of independent copies of Z converge in distribution, as

n → ∞, to a non-degenerate α-stable random variable. This means, that

|Z| has a power tail with exponent α, and for some 0 ≤ p ≤ 1,

lim
x→∞

P
(
Z > x

)
P
(
|Z| > x

) = p ,

see e.g. Feller (1971). For a large T > 0, consider a random variable X

obtained by �rejecting� the values of Z whose magnitude is larger than T .

Formally,the distribution of X is the conditional distribution of Z given that

|Z| ≤ T . That is, for any measurable set A ⊂ [−T, T ], P (X ∈ A) = P (Z ∈
A)/P (|Z| ≤ T ). We view X as Z with truncated tails. Clearly, X has

a �nite variance and, hence, is in the domain of attraction of a Gaussian

distribution. However, compare the sums S′n = n−1/α
∑n

i=1 Zi and Sn =
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n−1/α
∑n

i=1Xi, where X1, . . . , Xn are independent copies of X, obtained

from the sequence Z1, Z2, . . . , by retaining the �rst n entries (returns) in

that sequence of magnitude not exceeding T . It is clear that, if T is �very

large� and n is �small in comparison with T �, then, very likely, all of the

Xi will coincide with the corresponding Zi, and so the normalized sums Sn

and S′n will have have very similar distributions. This suggests that if, for

such values of n, the distribution of S′n is well approximated by an in�nite

variance α-stable law, then this law should be a good approximation for the

distribution of Sn for such values of n and T as well.

Later in this paper, we will see that the truncation level T provides, in a

formal sense, a natural time scale for the number of terms n for which the

above approximation of the distribution of Sn by an α-stable law is valid.

A simple, but illustrative, example is that of a symmetric Pareto distri-

bution. Let 0 < α < 2. For b > 0 consider a distribution with a symmetric

density given by

(2.1) f(x) =
αbα

2
|x|−1−α1|x|>b .

This distribution is in the domain of normal attraction of a symmetric α-

stable law. For a small numerical study, we choose α = 1.5, b = .5, and we

truncate this Pareto distribution at the value T = 70. Figure 1 shows plots

of the estimated densities of Sn for several values of n with the overlayed

density of a symmetric α-stable random variable; the scale of the latter that

provided the best �t (and which we used in the plots) was somewhat smaller

than the scale of the limiting distribution to which the normalized sum of

non-truncated Pareto random variables converges. The density of Sn was

calculated approximately, using kernel density estimators based on a sample

of size 100, 000.

In the �gure, we see that by the time n reaches 50 the approximation by

the stable law appears to be quite good. By the time the sample size reaches

150, we start seeing divergence both in the center and in the tails, and once

the sample size n is at 300, the approximation by the stable law is visibly

bad.
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Figure 1. Plots of the densities of sums of truncated sym-
metric Pareto random variables (solid lines) with the approx-
imating stable densities (dashed lines) overlayed.

On the other hand, suppose we use the normalization dictated by the

�nite variance of truncated Pareto random variables, i.e. we consider the

distribution of n−1/2
∑n

i=1Xi. Figure 2 gives plots of the approximated

�nite sample densities with the limiting normal distribution overlayed. We

see that the normal approximation is quite unsatisfactory at n = 100, is

improving when the sample size reaches 500, and appears to be very good

at the sample size n = 1, 000.

The tails of a random variable can be tempered in �more delicate� ways

than tail truncation. For example, the so-called tempered stable random
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Figure 2. Plots of the densities of sums of truncated sym-
metric Pareto random variables (solid lines) with the approx-
imating normal densities (dashed lines) overlayed.

variables have in�nitely divisible distributions related to the in�nite variance

α-stable distributions, where the tempering is done at the level of Lévy

measures; see Rosi«ski (2007). For our second example of distributions with

tempered heavy tails we choose the smoothly truncated Lévy �ights (STLFs),

a subclass of the tempered stable distributions; see Koponen (1995). These

models have already been successfully used in �nancial applications, see, for

example, Carr et al. (2002, 2003); Cont and Tankov (2004). The usefulness of

general tempered stable models comes from the fact that they are so similar

to the stable models that a Lévy process with tempered stable marginal

distributions behaves like a stable motion at small time scales. On the other
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Figure 3. Plots of the densities of scaled sums of iid STLFs
(solid lines) with the approximating stable density (dashed
lines) overlayed.

hand, for certain values of the parameters, a tempered stable random variable

has a �nite variance; see Rosi«ski (2007). This is the case for the smoothly

truncated Lévy �ights. Despite this, we will show that, a sum of smoothly

truncated Lévy �ights can be well approximated by an in�nite variance stable

distribution even when the sum has many terms.

For an illustrative example we consider symmetric smoothly truncated

Lévy �ights that are tempered α-stable distributions with α ∈ (0, 1). Beside

the exponent α, such distributions are characterized by a scale σ > 0 and

the level of tempering ` > 0. The characteristic function of such a smoothly
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Figure 4. Plots of the densities of scaled sums of STLFs
(solid lines) with the approximating normal densities (dashed
lines) overlayed.

truncated Lévy �ight is given by

(2.2) ϕ(λ) = exp
{
−σα`−α

[(
1 + λ2`2

)α/2 cos (α arctan(λ`))− 1
]}

,

λ ∈ R. In Section 4.1 we will see that the level of tempering ` provides, in

this model, a natural time scale for the number of terms n for which the

above approximation of the distribution of Sn by an α-stable law is valid.

For a small numerical study, we choose α = .95, σα = .1628, and ` = 100.

Figure 3 shows plots of the estimated densities of scaled sums of iid STLFs

with the density of the corresponding α-stable distribution overlayed. When

n = 1 they appear to be almost identical, and they are still very similar
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when n = 50. By n = 500, however, the densities are quite di�erent in both

the peaks and the tails. Ultimately the distribution of the normalized sum

of iid smoothly truncated Lévy �ights converges to a normal limit, but the

convergence is very slow. This slow convergence is illustrated in Figure 4.

It is interesting and important to note that in both of the numerical studies

presented above a very large sample size is needed to get normal-like behavior

of the sum. This is at odds with the common rule of thumb that convergence

in the Gaussian Central Limit Theorem is practically attained at n = 30.

We conclude this section by noting that the above discussion of tempered

heavy tails fully applies to random vectors in Rd as well. In fact, the main

quantitative result of the next section will be stated and proved in the mul-

tivariate case.

3. The Main Result

In this section we state a theorem, which shows that, under appropri-

ate conditions, the distribution of the sum of many independent identically

distributed random variables with tempered heavy tails can be well approxi-

mated by an in�nite variance α-stable distribution even though these random

variables are not in the domain of attraction of the α-stable distribution. The

presentation in this section is inspired by the work of Klebanov et al. (1999)

and Klebanov et al. (2000). Our main approximation theorem (Theorem 1

below) applies to random vectors (i.e. to entire portfolios of returns).

We begin by setting up the notation. Let X be a d-dimensional random

vector. We will denote its characteristic function by µ̂X and its probability

law and distribution function by FX . If X has a density with respect to the

d-dimensional Lebesgue measure, we will denote it by fX .

The convolution of two measurable functions f and g is de�ned by

f ∗ g(x) =
∫

Rd
g(x− y)f(y)dy

at any point x where the integral exists. If F is a (signed) measure and g is

a measurable function, then the convolution of F and g is de�ned by

F ? g(x) =
∫

Rd
g(x− y)F (dy)



FINANCIAL RETURNS: FINITE VARIANCE OR NOT? 13

at every x for which the integral exists. If we choose g = H, a cdf, then

F ? H can also be viewed as a convolution of two measures. Clearly, if F

has a density f with respect to the d-dimensional Lebesgue measure, then

F ? g = f ∗ g.
A function f on Rd is said to satisfy the Lipschitz condition with coe�cient

M if

|f(x)− f(y)| ≤M |x− y|

for every x, y ∈ Rd. We will use the notation f ∈ LipM . Note that if h is

di�erentiable and if M := supx∈Rd |∇h(x)| <∞, then h ∈ LipM .

A useful distance on the space of probability laws on Rd can be de�ned

as follows. Let c, γ ≥ 0. For d-dimensional random vectors X and Y we set

(3.1) dc,γ(X,Y )
(

= dc,γ(FX , FY )
)

= sup
|z|≥c

|µ̂X(z)− µ̂Y (z)|
|z|γ

.

Note that this measures the distance between two probability laws and not

two random variables. Thus, the notation dc,γ(FX , FY ) is more precise than

dc,γ(X,Y ). However, we will use, as is common, the latter notation. It is

well known, and easy to check, that if Y is a strictly α-stable random vector

(see Samorodnitsky and Taqqu (1994)), and X1, X2, . . . are iid copies of a

random vector X, such that d0,γ(X,Y ) < ∞ for some γ > α then X is in

the domain of normal attraction of Y . See Klebanov et al. (1999).

Let h be a probability density on Rd. We de�ne another distance on the

space of probability laws on Rd by setting, for two d-dimensional random

vectors X and Y ,

(3.2) Kh(X,Y )
(

= Kh(FX , FY )
)

= sup
x∈Rd

|FX ? h(x)− FY ? h(x)|.

It is easy to check that if h satis�es a Lipschitz condition and the corre-

sponding characteristic function does not vanish, then Kh metrizes weak

convergence on Rd.

We can now state our main theorem.

Theorem 1. Fix α ∈ (0, 2]. Let h be a probability density on Rd. Assume

that h ∈ LipMh
for some Mh > 0. Let X1, X2, . . . be iid d-dimensional

random vectors, and let Sn = n−1/α
∑n

j=1Xj. Let Y be a strictly α-stable
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d-dimensional random vector. For any γ > α, we have

Kh(FSn , FY ) ≤ inf
a,∆>0

{
d∆n−1/α,γ(X,Y )

nγ/α−1

2γ+1(a
√
d)γ+d

πd/2Γ(d/2)(γ + d)

+
2
πd

[∆ ∧ (2a)]d +Mh
12d
πa

}
.

Remark 2. Clearly, it is possible to optimize the upper bound in Theorem 1

over a > 0 for a �xed ∆ > 0. The resulting bound is di�cult to interpret, and

we do not present it here. Nonetheless, such bounds are useful in numerical

work.

Remark 3. We can think of the quantitative bounds presented in Theorem

1 in the following way. Suppose that the random vector X is such that,

for some γ > α, the distance dc,γ(X,Y ) remains �not too big� even for

certain reasonably small values of c > 0. In that case one can choose a > 0

large, ∆ > 0 small, and have the upper bound on the distance between the

distribution of Sn and that of the α-stable random vector small for fairly

large values of n.

Remark 4. How does one interpret the distance between the smoothed

densities in Theorem 1? The easiest way to interpret this distance is that,

in practice, one always performs smoothing while estimating the density by

using kernel density estimation. Therefore, the theorem simply gives an

upper bound on the distance between such smoothed densities. Technically,

the smoothing operation puts an absolute upper bound on the Lipschitz

coe�cient of the densities being compared. If one performs smoothing with

the density of a random variable that is nearly concentrated at zero, the

smoothed density will be very similar to the non-smoothed density. As an

illustration, we present, in Figure 5 the densities of the symmetric Pareto

distribution of Section 2 above smoothed with various Gaussian densities.

The case σ = 0 corresponds to absence of smoothing.
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Figure 5. Plots of a symmetric Pareto density smoothed
with a centered Gaussian density with varying standard de-
viations.

4. Natural scale of certain distributions with tempered heavy

tails

Let X1, X2, . . . be a random sample from some tempered heavy tailed

distribution, and consider sums of the form X1 + . . .+Xn. In this section we

demonstrate that certain families of distributions with tempered heavy tails

have a natural scale, which determines for what number n, such sums can

be well approximated by an in�nite variance α-stable distribution. In this

section we will only consider the one-dimensional case, speci�cally the two

examples discussed in Section 2 above: the symmetric Pareto distributions
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with truncated tails and smoothly truncated Lévy �ights. We begin with

the latter.

4.1. Natural scale for the smoothly truncated Lévy �ights. Consider

a smoothly truncated Lévy �ight with 0 < α < 1 and the characteristic

function given by (2.2). For this discussion we will denote this characteristic

function by ϕ`, to emphasize the dependence on the tempering level `. It is

elementary that, as the tempering level `→∞, for any λ ∈ R,

(4.1) ϕ`(λ)→ ϕ∞(λ) = exp
{
−σα cos

(πα
2

)
|λ|α

}
,

the characteristic function of a symmetric α-stable distribution. Note that

for every λ > 0 (say),∣∣ϕ∞(λ)− ϕ`(λ)
∣∣ ≤ min

(
1, σα`−αg(λ`)

)
,

where for x > 0,

(4.2) g(x) =
∣∣∣(1 + x2)α/2 cos(α arctanx)− 1− xα cos

(πα
2

)∣∣∣ .
Clearly, g is continuous on (0,∞), g(x) → 1 as x → ∞, and g(x) ∼
xα cos(πα/2) as x → 0 (recall that 0 < α < 1). Therefore, there is a

�nite positive constant Aα such that g(x) ≤ Aα min
(
1, xα

)
for all x > 0.

Let X be a random variable whose distribution is a smoothly truncated

Lévy �ight with the characteristic function ϕ`, and Y a symmetric α-stable

random variable with the characteristic function ϕ∞. We conclude that for

c > 0 and γ > α, the distance (3.1) satis�es

(4.3) dc,γ(X,Y ) ≤ Aασα`−αc−γ min
(
1, (c`)α

)
.

Write (a weaker version of) the bound given in Theorem 1 in the form

Kh(FSn , FY ) ≤ inf
a,∆>0

{
C1(γ)aγ+1

d∆n−1/α,γ(X,Y )

nγ/α−1
+ C2∆ + C3Mha

−1

}
(4.4) := inf

a,∆>0
Bγ(a,∆),

with

C1(γ) =
2γ+1

π(γ + 1)
, C2 =

2
π
, C3 =

12
π
.

We can use (4.3) to obtain

Bγ(a,∆) ≤ C1(γ)Aαaγ+1∆−γn`−ασα min
(

1,
(
∆n−1/α`

)α)+C2∆+C3Mha
−1.
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Consider now the range n ≤ `α. Selecting

∆̃ =
(
n`−α

)1/(γ+1)
ã, ã =

(
C3Mh(

C1(γ)Aασα + C2

)(
n`−α

)1/(γ+1)

)1/2

we obtain an upper bound on the distance between the density of the smoothed

distribution of Sn, and that of the smoothed distribution of Y , given by

(4.5) Kh(FSn , FY ) ≤ 2
(
C3Mh

)1/2(
C1(γ)Aασα + C2

)1/2(
n`−α

)1/(2(γ+1))
.

This bound (4.5) shows that, if the level of tempering ` is large and the

number of terms n in the sum X1 + . . .+Xn is such that n`−α is small, then

the distance Kh(FSn , FY ) will be small.

Therefore, for smoothly truncated Lévy �ights with 0 < α < 1 and the

characteristic function given by (2.2), `α provides the natural scale: if the

number n is much less than this natural scale, then the distribution of Sn

is well approximated by the distribution of the in�nite variance symmetric

α-stable random variable with the characteristic function given by (4.2).

4.2. Natural scale for the symmetric Pareto distributions with trun-

cated tails. Let Z come from the symmetric Pareto distribution given in

(2.1). We choose b = 1 for simplicity of notation. The characteristic function

of the distribution attained by truncating this distribution at T > 0 is given

by

(4.6) ϕT (λ) =
α

1− T−α

∫ T

1
x−(1+α) cosλx dx, λ ∈ R .

Note that independent and identically distributed random variables from the

non-truncated symmetric Pareto distribution (T =∞) satisfy

n−1/α
n∑
j=1

Zj ⇒ Y ,

where Y is a symmetric α-stable random variable with characteristic function

(4.7) ψ(λ) = e−Cα|λ|
α
, λ ∈ R

with

Cα = α

∫ ∞
0

1− cos y
y1+α

dy;
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see Feller (1971). For every λ > 0 (say),∣∣ψ(λ)−ϕT (λ)
∣∣ ≤ ∣∣∣∣ α

1− T−α

∫ T

1
x−(1+α) cosλx dx− α

∫ ∞
1

x−(1+α) cosλx dx
∣∣∣∣

+
∣∣∣∣α ∫ ∞

1
x−(1+α) cosλx dx− e−Cαλα

∣∣∣∣ := R1(λ) +R2(λ) .

We estimate each term. First of all,

R1(λ) ≤ α
(

1
1− T−α

− 1
) ∣∣∣∣∫ T

1
x−(1+α) cosλx dx

∣∣∣∣
+α

∣∣∣∣∫ ∞
T

x−(1+α) cosλx dx
∣∣∣∣ ≤ 2T−α.

Further, by the de�nition of Cα,∣∣R2(λ)
∣∣ ≤ ∣∣∣1− e−Cαλα − Cαλα∣∣∣

+
∣∣∣∣Cαλα − α ∫ ∞

1

1− cosλx
xα+1

dx

∣∣∣∣ ≤ 1
2
C2
αλ

2α +
1

2(2− α)
λ2.

Since
∣∣R2(λ)

∣∣ ≤ 2, we conclude that∣∣R2(λ)
∣∣ ≤ min

(
2, Bα max

(
λ2, λ2α

))
,

where Bα = C2
α/2 + 1/(2(2− α)). Summarizing,∣∣ψ(λ)− ϕT (λ)

∣∣ ≤ { 2T−α + 2 if |λ| > 1
2T−α +Bα max

(
λ2, λ2α

)
if |λ| ≤ 1 .

Let X be a symmetric Pareto random variable with truncated tails and

characteristic function given in (4.6), and Y a symmetric α-stable random

variable with the characteristic function given by (4.7). If we select

γ ∈
(
α,min(2, 2α)

)
, c ∈ (0, 1) ,

then

(4.8) dc,γ(X,Y ) ≤ 2T−αc−γ + max
(
2, Bα

)
.

Substituting (4.8) into (4.4), we obtain

Bγ(a,∆) ≤ 2C1(γ) aγ+1∆−γnT−α+C4(γ;α) aγ+1n−(γ/α−1)+C2∆+C3Mha
−1,

were C4(γ;α) = C1(γ) max(2, Bα) . Consider now the range n ≤ Tα. Select-
ing

∆̃ =
(
nT−α

)1/(γ+1)
ã, ã =

(
C3Mh(

2C1(γ) + C2

)(
nT−α

)1/(γ+1)

)1/2

,
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we obtain an upper bound on the distance between the density of the smoothed

distribution of Sn, and that of the smoothed distribution of Y , given by

(4.9) Kh(FSn , FY ) ≤ C5(γ)M1/2
h

(
nT−α

)1/(2(γ+1))

+C6(γ;α)M (γ+1)/2
h

(
n−1Tα

)1/2
n−(γ/α−1) ,

where C5(γ) = 2
(
C3(2C1(γ)+C2)

)1/2
and C6(γ;α) = C4(γ;α)C(γ+1)/2

3 (2C1(γ)+

C2)−(γ+1)/2.

What the bound (4.9) shows is that, if the truncation level T is large, and

the number of terms n in the sum X1 + . . .+Xn is such that

(4.10) Tαρ � n� Tα ,

where

ρ =
1

2γ/α− 1
∈ (0, 1),

then the distance Kh(FSn , FY ) will be small.

Therefore, for the symmetric Pareto random variables with truncated tails,

Tα provides the natural scale: if the number n is much less than this natural

scale, but larger than a certain fractional power of this scale, then the distri-

bution of Sn is well approximated by the distribution of the in�nite variance

symmetric α-stable random variable with the characteristic function given

in (4.7).

It is important to note that, unlike the case of the smoothly truncated Lévy

�ights, for the symmetric Pareto random variables with truncated tails, the

range of n where approximation by an α-stable distribution is good, has a

lower bound. This is because the distribution of a single symmetric Pareto

random variable is not really close to the corresponding α-stable distribution;

see Figure 1 above.

5. Proof of the main result

We start with listing, for ease of reference, several well know properties of

convolutions and Fourier transforms. To simplify the notation, we will write

Lp for Lp(Rd,B(Rd), λd), where B(Rd) is the Borel σ-algebra and λd is the

Lebesgue measure on Rd. The Fourier transform of a function f is denoted
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by f̃ . As usual, the Fourier transform of a function in L2 is de�ned by

f̃(z) = l.i.m.N→∞
∫
|x|≤N

ei〈x,z〉f(x)dx,

where l.i.m. is understood to be the limit in L2.

Theorem 5. (1) Let 1 ≤ p, q, r ≤ ∞ such that 1 + 1/r = 1/p + 1/q. If

f ∈ Lp and g ∈ Lq, then f ∗ g exists for almost all x, it is an element of Lr

and it satis�es Young's Inequality: ‖f ∗ g‖r ≤ ‖f‖p‖g‖q. If r =∞ then f ∗ g
exists for all x.

(2) Let p ≥ 1 and g ∈ Lp. If F is a �nite signed measure, then F ? g is

de�ned for Lebesgue a. e. x and F ? g ∈ Lp.
(3) Let f, g ∈ L1. Then f̃ ∗ g = f̃ g̃.

(4) Let f, g ∈ L2. Then f ∗ g(x) = (2π)−d(̃f̃ g̃)(−x) for almost all x.

(5) Let f ∈ L2. If f̃ ∈ L1∩L2 then f ∈ L∞∩L2 and ‖f‖∞ ≤ (2π)−d‖f̃‖1.

Proof. See Propositions 8.6-8.9 in Folland (1999) for Part (1). Part (2) is

in Proposition 3.9.9 in Bogachev (2007). The rest of the statements are in

Proposition 6.8.1 and Theorem 6.8.1 in Stade (2005). �

Proof of Theorem 1 Suppose that, for a > 0, Va is a measurable function

on Rd with the following properties. De�ne Ba(x) := |x|Va(x), x ∈ Rd.

Assume that Va, Ṽa, Ba ∈ L1, |Ṽa| ≤ M , Ṽa(0) = 1, and Ṽa(x) = 0 for

x /∈ [−2a, 2a]d. We will show that, under the assumptions of the theorem,

we have a bound

Kh(FSn , FY ) ≤ inf
a,∆>0

{
Md∆n−1/α,γ(X1, Y )

nγ/α−1

2γ+1(a
√
d)γ+d

πd/2Γ(d/2)(γ + d)

+
2M
πd

[∆ ∧ (2a)]d + 2Mh

∫
Rd
|t||Va(t)|dt

}
.(5.1)

The proof of the theorem will then be completed by choosing an appropriate

function Va.

Notice that for every x ∈ Rd,

|FSn ? h(x)− FY ? h(x)| ≤ |FSn ? h(x)− (FSn ? h) ∗ Va(x)|

(5.2) + |FY ? h(x)− (FY ? h) ∗ Va(x)|

+
∣∣∣((FSn ? h) ∗ Va(x)− (FSn ? h) ∗ I ∗ Va(x)

)
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−
(

(FY ? h) ∗ Va(x)− (FY ? h) ∗ I ∗ Va(x)
)∣∣∣

+
∣∣∣(FSn ? h) ∗ I ∗ Va(x)− (FY ? h) ∗ I ∗ Va(x)

)∣∣∣ :=
4∑
j=1

Tj(x) ,

where for ∆ > 0,

I(x) =
d∏
j=1

sin(∆xj)
πxj

, x = (x1, . . . , xd) ∈ Rd.

Note that I is an L2 function and its Fourier transform is given by Ĩ(z) =

1[−∆,∆]d(z) =
∏d
j=1 1[−∆,∆](zj). All the convolutions in (5.2) are well de�ned

by parts (1) and (2) of Theorem 5.

Note that
∫

Rd Va(x)dx = Ṽa(0) = 1. If G ∈ LipM then

|G(x)−G ∗ Va(x)| ≤
∫

Rd
|G(x)−G(x− t)| |Va(t)|dt

≤ M

∫
Rd
|t||Va(t)|dt.(5.3)

Since h ∈ LipMh
, so are FSn ? h and FY ? h. We conclude that

(5.4) Tj(x) ≤Mh

∫
Rd
|t||Va(t)|dt, j = 1, 2 .

Further, by part (5) of Theorem 5, Va ∈ Lp for all 1 ≤ p ≤ ∞, and, clearly,

so is the function (FSn−FY )?h. By part (1) of Theorem 5, the same is true

for the convolution [(FSn − FY ) ? h] ∗ Va. Denote by Z is a random vector

with density h, independent, where appropriate, of Sn and Y . By parts (3)

and (5) of Theorem 5 we obtain

T4(x) ≤ ‖[(FSn − FY ) ? h] ∗ Va ∗ I‖∞ ≤ (2π)−d‖[µ̂Sn+Z − µ̂Y+Z ]ṼaĨ‖1

≤ 2M
πd

[∆ ∧ (2a)]d.(5.5)

This leaves only one term to consider in (5.2). By parts (3) and (4) of

Theorem 5 we have

T3(x) = (2π)−d
∣∣∣∣∫

Rd
(1− Ĩ(z)) (µ̂Sn(z)− µ̂Y (z)) h̃(z)Ṽa(z)e−i〈z,x〉dz

∣∣∣∣ .
Note that for every z ∈ Rd and ∆ > 0 we have, by the strict stability of Y ,∣∣∣(1− Ĩ(z))µ̂Sn(z)− (1− Ĩ(z))µ̂Y (z)

∣∣∣ ≤ |z|γ sup
|t|>∆

|µ̂Sn(t)− µ̂Y (t)|
|t|γ

= |z|γd∆,γ(Sn, Y )
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≤ |z|γn sup
|z|≥∆

∣∣µ̂X(z/n1/α)− µ̂Y (z/n1/α)
∣∣

|z|γ

=
|z|γ

nγ/α−1
d∆n−1/α,γ(X,Y ).

Therefore,

T3(x) ≤ (2π)−d
∫

Rd

∣∣∣(1− Ĩ(z))[µ̂Sn(z)− µ̂Y (z)]h̃(z)Ṽa(z)
∣∣∣ dz

≤ (2π)−d

nγ/α−1
d∆n−1/α,γ(X,Y )

∫
R
|z|γ |Ṽa(z)|dz(5.6)

≤ M(2π)−d

nγ/α−1
d∆n−1/α,γ(X,Y )

∫
[−2a,2a]d

|z|γdz

≤ M(2π)−d

nγ/α−1
d∆n−1/α,γ(X,Y )

∫
|z|≤2a

√
d
|z|γdz

=
Md∆n−1/α,γ(X,Y )

nγ/α−1

21+γ(a
√
d)γ+d

πd/2Γ(d/2)(γ + d)
;

the last line follows by conversion to polar coordinates, see e.g. Section 5.2

in Stroock (1999). Now (5.1) follows from (5.2), (5.4), (5.5) and (5.6).

Let W (x) = 12 sin4(x/2)
πx4 , x ∈ R. This is called the Jackson-de la Vallée-

Poussin kernel. Its Fourier transform is given by

W̃ (x) =

 1− 3x2

2 + 3|x|3
4 |x| ≤ 1

1
4(2− |x|)3 1 ≤ |x| ≤ 2
0 |x| ≥ 2

,

see page 119 in Achieser (1992). For a > 0, let Wa(x) = aW (xa), so that

W̃a(x) = W̃ (x/a), and de�ne for x = (x1, . . . , xd) ∈ Rd,

Va(x) =
d∏
j=1

Wa(xj).

Then also

Ṽa(z) =
d∏
j=1

W̃a(zj)

for z = (z1, . . . , zd) ∈ Rd.

Let Ba(x) = |x|Va(x). Note that Ṽa(z) ≤ 1, Va, Ṽa, Ba ∈ L1, and

Ṽ (0) = 1. Therefore, the function Va satis�es the assumptions imposed
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in the beginning of the proof. Further, we have∫
Rd
|x| |Va(x)| dx =

(
12
π

)d 21−3d

a

∫
Rd
|x|

d∏
j=1

sin4(xi)
x4
i

dx ≤ 6d
πa
.(5.7)

This follows easily from the facts that |x| ≤
∑d

i=1 |xi|,
∫∞

0
sin4 x
x4 dx = π/3

(see Gradshteyn and Ryzhik (2000) 3.821), and∫ ∞
0

sin4 v

v3
dv =

∫ 1

0

sin4 v

v3
dv +

∫ ∞
1

sin4 v

v3
dv ≤

∫ 1

0
vdv +

∫ ∞
1

1
v3
dv = 1.

This completes the proof of Theorem 1. �
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