Draft Animal Power for Soil and Water Conservation in the Bolivian Valleys

Brian G Sims
International Development Group
Silsoe Research Institute
Wrest Park, Silsoe Bedford MK45 4HS, UK
BrianGSims@aol.com

Abstract The inter-Andean valley region of Bolivia presents climatic characteristics which can be described as high, dry and cool. The prolonged dry season (up to eight months) can lead to severe forage shortages which affect working animals. The traditional draft animals are pairs of oxen which may have to be sold off at the end of the working season due to lack of feed. Production of forage and the possibility of using lighter, single animals are two ways to alleviate the situation. Natural resource management projects in the region, working in very close collaboration with farm families in programs of participatory development, have developed contour-planted live-barriers of grass/legume mixtures to stabilize steep hillsides and provide abundant and nutritious dry-season forage. The development of high-lift harnesses and lightweight equipment has enabled hitherto underutilized single equines (and bovines) to undertake draft work traditionally the exclusive domain of pairs of oxen.

Keywords. Live-barriers, forage production, high-lift harness, light-weight equipment, animal traction

Introduction

The inter-Andean valley region of Bolivia lies to the East of the Andes mountain chain and is characterized by having a harsh climate and broken terrain with steep, cultivated slopes. Altitudes range from 1500 to 4000 masl; temperatures average around 12°C and rainfall 5-600 mm per year. Naturally there are wide variations in the climatic conditions with frosts and higher rainfall to be increasingly expected with increase in altitude. But, in general, the conditions can be described as high, dry and cool. The annual precipitation is not only low, but very seasonal and there can be a period of up to eight months (March to October) where rainfall is scarce if not absent.

Farmers in the region are obliged to plow steep slopes to gain their livelihoods. Whilst irrigated valley bottoms are always preferred, they are in scarce supply and slopes of 30-60% are commonly tilled by hand or with draft ox powered implements.
The situation gives rise to severe problems and needs. Soil degradation on the cropped hillsides is already severe and becoming critical. Farmers comment on falling yields which are a direct result of soil fertility loss due to soil erosion. Soil moisture becomes scarce as top soil is removed by the erosive processes of rain and wind, and so yield reliability is in jeopardy. The dramatic results of severe drought events (such as those produced by the el Niño phenomenon) serve to remind farmers that the productive potential of their hillside plots is on the decline. And they are desperately concerned. The prolonged dry season also limits the amount of forage available for livestock, including work animals. Farmers are obliged to use valuable cropping land to produce dry-season forage (usually oats) with the consequent opportunity cost of not producing cash or food crops for family subsistence.

Since 1996 a number of participatory research projects has been working with local communities jointly to overcome these constraints\(^1\) and the purpose of this paper is to describe the major outcomes of the research. Two of the principal aims of research projects were:

- To develop the concept of establishing vegetative live-barriers on hillside contours in order to stabilize the soil, reduce erosion and provide dry-season forage.
- To diversify the use of draft animals through the development of appropriate equipment for different types of animal traction (e.g. single animals and equines).

The advances achieved are the result of an intensely participatory process whereby farming communities identified their own technical problems and worked with scientists to resolve them on their own plots and under their control. The research focus was also on the farming systems as a whole, with particular attention being paid to the interactions between system components (for example the feed value of erosion control measures and the mechanization requirements of stabilized hillsides).

Forage production

Prior to the R&D work described in this paper, the universally used work-animals were pairs of oxen, or *yuntas*. These, and the traditional ard-type wooden plow, were introduced at the time of the Spanish Conquest (some 500 years ago) and have remained substantially the same ever since. Because of the difficulties of feeding the oxen through the dry season, they are frequently sold at the end of the peak work period (i.e. in the first quarter of the calendar year) and new animals are bought for the following season. Figure 1 shows the diversity of feed types used by farmers, and Figure 2 shows the metabolic energy balance for oxen through the year.

\(^1\) Projects funded by the UK Department for International Development

Figure 1. Fodder consumption by oxen. Whilst forage oats is the single most important fodder source, other sources, including weeds, are seasonally important.

Figure 2. Metabolic energy balance (MJ day\(^{-1}\)) for oxen during the year.

Figures 1 and 2 clearly show the impact of the dry season, forage is in short supply and the work animals have an energy shortfall which results in severe weight loss. Generally, however, the

work animals suffer no lasting damage and soon regain weight as the rainy season produces abundant green fodder.

The concept of hillside stabilization with live barriers planted on the contour is not new in the world, but it was a novel concept in the Bolivian inter-Andean valleys. Initial research evaluated a wide range of grass and shrub species (Sims et al., 1999) in a range of agro-ecological niches in the valleys. The outstanding winner from the points of view of adaptability and forage production, was phalaris grass (*Phalaris tuberoarundinacea*). Farm families immediately appreciated the value of this grass which can be grazed to ground level in the dry season and comes back vigorously with the onset of the rains. Women, especially, praised the practice as it afforded them close access to high quality fodder for their sheep flocks and so freed up time for them to devote to other, more productive, activities. Phalaris yields depend on a number of factors (such as available moisture, soil fertility, number of cuts per year) but most importantly altitude above sea level. Thus yields equivalent to 16 tonnes dry matter per hectare are possible at 2500 masl, this will fall to 3 tonnes per hectare at 4000 masl. The grass is, of course, grown in strips, typically 0.5 m wide, and farmers will cut them three or four times a year before leaving them to grazing livestock. The protein content is highly dependent on the stage of growth and soil fertility, but values of crude protein of 16% DM and 10% metabolizable energy (MJ/kg DM) are normal for phalaris at the pre-flowering stage (Sims et al., 2000).

The live barrier concept, and especially the use of phalaris grass is now widespread in the valley region and is being promoted via NGOs and international development projects. Since initiating the dissemination process in 1999, over 2000 farm families have benefited from training, planting stock and family nurseries. Continued feedback from farm families emphasized the value of the live barriers as high value fodder, and this seemed to be more important, at least in the short term, than the soil and water conservation aspects. And so in 2000 new participatory research was initiated to increase the feed value of the barrier fodder.

The concept of associated live-barriers involves the use of phalaris and legumes combined. Again a range of legumes was tested and again one was outstandingly successful. Woolly-pod vetch (*Vicia villosa* subspecies *dasycarpa*) was introduced to Bolivia from Iran via an associated multinational project (Keatinge et al., 1999). When it is established together with phalaris the two species produce abundant forage with a high protein content. At five months after sowing, the mixture had a crude protein level of 18% DM. The value of the associated live-barriers is very high for farm families with livestock enterprises. Not only are work and dairy cattle better fed, but other enterprises, (like keeping guinea pigs as a protein source) become viable throughout the year.

Work animals

It has previously been pointed out that the traditional work animals used for draft are pairs of oxen. And the traditional tool that they use is the steel-tipped wooden ard-type plow. Donkeys and horses were used almost exclusively for pack transport. The participatory research workshops and subsequent discussions highlighted the problems of feeding the work oxen throughout the dry season, and the fact that the equines were not used for draft work because no suitable harnesses or equipment were available. However there was a desire to use the equine population more profitably as, although they needed to be fed every day, they were not able to work to earn their keep. Consequently a joint participatory technology development program was drawn up with the following results.

High-lift harness and light implements for equines

Light-weight implements with a high angle of pull provide an effective method for reducing the draft of chain (or rope) pulled implement (Inns, 1990, 1991). The analysis shows that implement draft can be reduced by reducing the effective vertical force on the implement (due, principally, to the implement weight and soil forces) and/or by pulling it a steeper angle (Figure 3). The theoretical analysis has been validated by field experiment and used to design a harness/implement combination matched to the pull of a single donkey (Inns, 1996). The field trials reported in these papers showed that implement draft is reduced by about 50% as the angle of pull is increased from 15º to 30º without noticeable reduction of working depth. This is of fundamental importance to lighter animals (which include equines, especially donkeys) as they are only able to sustain draft forces in the range of 10-15% of a rather low body-weight. The concept was evaluated with farmers in Bolivia and proved to be a solution to the problem of how to make use of the power-producing potential of lighter animals.

Based on this principle, and in close collaboration with the commercial draft animal implement factory associated with the Project in Bolivia, we have developed a line of lightweight equipment which has answered specific problems raised by the farming community.

Moldboard plows for donkeys and horses

Several designs of moldboard plow were designed and subjected to on-farm testing in the hands of experienced farmers. One-way plows, with widths of cut of 115 mm and 150 mm and weighing 8 and 11.8 kg respectively for a single donkey and a single horse. Tests (Figure 4) proved that the plows were within the sustained draft capabilities of the animals and farm trials (Figure 5) indicated farmer acceptance.
Figure 4. The high-lift harness allows a donkey to pull a 115 mm cut moldboard plow, rather than be consigned to occasional pack transport.

Figure 5 is one of many showing horse and plow in Capinota.

With the increasing adoption of contour-planted live-barriers, the employment of *yuntas* to prepare the soil between the grass and legume strips is made a little more difficult. The use of single animals, on the other hand, is increasingly attractive. Figure 6 shows a reversible moldboard plow developed for single animal use which is particularly appropriate to alleviate maneuverability problems of work on the strips between barriers.

Figure 6. Reversible plows for single draft animals make for easier work between contour conservation strips.

Secondary tillage equipment
A wide range of light-weight equipment for equines and single bovines becomes possible once the concept of using these animals becomes established. With an innovative prototype construction team, world-wide contacts and an enthusiastic farming community, the potential for developing engineering solutions to draft animal power problems is practically limitless. Figures 7 to 10 show some of the possibilities developed by the Project.

Figure 7. There is no stigma attached to women using donkeys for field work, although there may be if they were to use the *yunta* of oxen. Here the potato crop is ridged after weeding, using a donkey-powered ridger.

Figure 8. The same tool frame can be used to attach other tools, for example this three-tined cultivator for inter-row weeding.

Figure 9. A horizontal-plate seeder attachment can be coupled behind other tools, in this case permitting the ridging and planting operations to be carried out simultaneously.

Figure 10. Similarly a tied ridger, for in situ rainwater harvesting can enable ridges to be tied on the move.

Transport

A major headache, especially when increased production, resulting from soil and water conservation, needs to be carried to market, is rural transport. Humans or pack animals can be used, but have a limited capacity. A demand was voiced for carts to carry heavy (e.g. stones) and bulky (e.g forage) goods around the community, and valuable goods (e.g crop harvest and essential inputs) to and from market. A simple cart for single equines was developed and

commercially produced, which incorporates the simple breast-band type harness and a back-strap to support the shafts (Figure 11).

![Figure 11. Single animals (bovines or equines) can have their carrying power vastly increased with the use of simple carts. This cart has pneumatic wheels for ride comfort, a braking system for hilly conditions, and a load capacity of 0.5 tonne.](image)

Conclusions and future work

Including the farm family in the participatory R&D process has led to an increased relevance of the work being undertaken and has consequently led to a greater demand for the products of the research. This is in stark contrast to previous models where scientific researchers identified and solved problems in relative isolation from the potential end users. Past disappointments have now discredited this latter approach, at least in capitalist economies.

The twin, and interrelated, challenges of fodder scarcity and under-utilized equines has led to the development of practical low-cost solutions which take fully into account the farm family economics situation. Dual purpose associated live-barriers which produce a nutritious grass / legume mixture whilst conserving soil and moisture have made it possible to feed draft (and other) animals. Whilst the high-lift harness and a range of light-weight tools make it possible to harness the energy of hitherto underutilized work animals.

An integrated infrastructure has helped immensely. Producing prototype equipment is relatively straightforward. Certainly with access to worldwide advances, the job becomes less daunting. A skilled prototype construction team, working in harmony with a commercial factory has been a good recipe to ensure that robust, low cost equipment is made which is capable of being manufactured in batches at the lowest possible cost.

However there is always the task of wider dissemination of the results and of scaling up the project outputs vertically. Whilst dissemination is underway through the conventional media of

published literature, videos, fairs and demonstrations; vertical scaling up involving the integration of influential institutions is a more difficult task. In the Bolivian situation the shifting political sands make it particularly difficult to integrate the interests of the marginalized small farmers into the national political agendas. The plethora of smoke-screen institutions established as a result of the (externally imposed) neo-liberal globalization drive towards competition and privatization, has meant that no rational decision can be made to promote the interests of hill farmers. Rather their needs must compete with those of others in “open and transparent competition” before their voices will be listened to. This ways lies increasing social polarization and increasing rural poverty.

Acknowledgement
The technologies discussed in this paper are outputs of projects funded by the Rural Livelihoods Division of the UK Government’s Department for International Development via their Crop Protection Program (Project R7579) and their Livestock Production Program (Project R6970). The views expressed are not necessarily those of DFID.

References

