Answers to three not quite straightforward questions in structural stability

A. Steinboeck, G. Hoefinger, X. Jia, and H. A. Mang

Vienna University of Technology,
Institute for Mechanics of Materials and Structures (IMWS)

6th Int. Conf. on Computation of Shell and Spatial Structures
IASS-IACM 2008: “Spanning Nano to Mega”
Ithaca, NY, USA

May 29, 2008
modification of an imperfection-sensitive structure such that it becomes imperfection-insensitive
modification of an imperfection-sensitive structure such that it becomes imperfection-insensitive
Question I

Agenda

Are linear prebuckling paths and linear stability problems mutually conditional?

Literature

Question II

Does the conversion from imperfection sensitivity into imperfection insensitivity require a symmetric postbuckling path?

Literature

Is hilltop buckling necessarily imperfection sensitive?

Literature

<table>
<thead>
<tr>
<th>Question I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation</td>
<td></td>
</tr>
<tr>
<td>Theory</td>
<td></td>
</tr>
<tr>
<td>Examples</td>
<td></td>
</tr>
<tr>
<td>Conclusions</td>
<td></td>
</tr>
</tbody>
</table>

Are linear prebuckling paths and linear stability problems mutually conditional?

- **Motivation**
Are linear prebuckling paths and linear stability problems mutually conditional?

Linear stability problem

\[
\det(\tilde{K}_T(\lambda)) = \det(K_0 + \lambda K_1) = 0
\]

- load factor small
- geometric stiffness
- displacement stiffness

- no prebuckling rotations allowed
- simplifies computation of critical load \(\lambda_C\)

Motivation

Theory

Examples

Conclusions

Literature

Linear stability problem

\[
\det(\tilde{K}_T(\lambda)) = \det(K_0 + \lambda K_1) = 0
\]

- load factor small
- geometric stiffness
- displacement
- stiffness

- no prebuckling rotations allowed
- simplifies computation of the critical load \(\lambda_C\)

\[
\tilde{u}_{\lambda} = k = \text{const.} \quad \rightarrow \quad \tilde{u}(\lambda) = u_0 + \lambda k
\]
Conditions for a linear stability problem in the prebuckling domain
- negligible change of material tangent stiffness matrix
- small displacements
- linear stress-load relation
- loads do not depend on the displacements

Sources of nonlinearity
- geometric nonlinearity
- material behavior
- boundary conditions
Are linear prebuckling paths and linear stability problems mutually conditional?

Theory

potential energy V

displacements u

out-of-balance-force G

$$G := \frac{\partial V}{\partial u} = F^I(u) - \lambda P$$

- internal forces
- reference load
- load factor

$V_{,u} = G = 0 \ldots$ equilibrium condition

$V_{,uu} = K_T \ldots$ tangent stiffness matrix
Are linear prebuckling paths and linear stability problems mutually conditional?

\[V_u = G = F^I(u) - \lambda P = 0 \quad \ldots \text{equilibrium condition} \]

\[\frac{d}{d\lambda} \text{ along primary path} \]

\[\tilde{K}_T \cdot \tilde{u},_\lambda - P = 0 \]

\[\frac{d}{d\lambda} \text{ along primary path} \]

\[\tilde{K}_T,\lambda \cdot \tilde{u},_\lambda + \tilde{K}_T \cdot \tilde{u},_{\lambda\lambda} = 0 \]

\[\tilde{u},_\lambda = k \quad \ldots \text{linear prebuckling path} \]

\[\tilde{K}_T,\lambda \cdot k = 0 \]

\[\text{not sufficient for a linear stability problem} \quad \tilde{K}_T(\lambda) = K_0 + \lambda K_1 \]
Are linear prebuckling paths and linear stability problems mutually conditional?

\[V, u = G = F^I(u) - \lambda P = 0 \quad \text{... equilibrium condition} \]

\[\frac{d}{d\lambda} \text{ along primary path} \]

\[\tilde{K}_T \cdot \tilde{u},\lambda - P = 0 \]

\[\tilde{K}_T(\lambda) = K_0 + \lambda K_1 \quad \text{... linear stability problem} \]

\[(K_0 + \lambda K_1) \cdot \tilde{u},\lambda - P = 0 \]

\textbf{not} sufficient for a linear prebuckling path \(\tilde{u}(\lambda) = u_0 + \lambda k \)
Are linear prebuckling paths and linear stability problems mutually conditional?

Example I

A linear stability problem

2 DOF, static, conservative, contour (a nonlinear spring)

\[f(x) = \frac{k_0 P}{k_1 F} \left(\frac{P}{k_1} (e^{xk_1/P} - 1) - x \right) \]
Are linear prebuckling paths and linear stability problems mutually conditional?

Example I A linear stability problem

• potential energy
 \[V = -\lambda P (u_1 + L (1 - \cos(u_2))) + F f(u_1) + \frac{k_2}{2} L^2 \sin^2(u_2) \]

• nonlinear prebuckling path, load-displacement relation
 \[\lambda = \frac{k_0}{k_1} (e^{u_1 k_1/P} - 1), \ u_2 = 0 \]

• linear stability problem, tangent stiffness matrix
 \[\tilde{K}_T = \begin{bmatrix} k_0 + k_1 \lambda & 0 \\ 0 & L(k_2 L - \lambda P) \end{bmatrix} \]
Question I

<table>
<thead>
<tr>
<th>Motivation</th>
<th>Theory</th>
<th>Examples</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

Example II

A linear prebuckling path

Are linear prebuckling paths and linear stability problems mutually conditional?

2 DOF, static, conservative
Are linear prebuckling paths and linear stability problems mutually conditional?

Example II

A linear prebuckling path

- **potential energy**
 \[
 V = -\lambda P u_1 + \frac{1}{2} c u_2^2 + \frac{1}{2} k \left(L - \frac{L - u_1}{\cos(u_2)} \right)^2
 \]

- **linear prebuckling path, load-displacement relation**
 \[
 \lambda = u_1 k/P, \quad u_2 = 0
 \]

- **nonlinear stability problem, tangent stiffness matrix**
 \[
 \tilde{K}_T = \begin{bmatrix}
 k & 0 \\
 0 & c - \lambda P (L - \lambda P/k)
 \end{bmatrix}
 \]
Example II

A linear prebuckling path

- effect is of higher order
- usually negligible
- e.g. Euler buckling cases

Are linear prebuckling paths and linear stability problems mutually conditional?

2 DOF, static, conservative
<table>
<thead>
<tr>
<th>Question I</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A linear prebuckling path is</td>
</tr>
<tr>
<td></td>
<td>• neither necessary</td>
</tr>
<tr>
<td></td>
<td>• nor sufficient</td>
</tr>
<tr>
<td></td>
<td>for a stability problem to be linear.</td>
</tr>
</tbody>
</table>

Literature

Question II

Does the conversion from imperfection sensitivity into imperfection insensitivity require a symmetric postbuckling path?
Motivation

- general research interest: conversion from imperfection sensitivity structures into imperfection insensitive structures
- What are the conditions for this conversion?
- Is symmetry required?
- *ab initio* design for imperfection insensitivity
- existence of qualitative properties which influence imperfection insensitivity
<table>
<thead>
<tr>
<th>Question II</th>
<th>Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?</th>
</tr>
</thead>
</table>
| Motivation | **Koiter’s initial postbuckling analysis**
Idea: expansion of the out-of-balance force
\[V_u' = G = F^I(u) - \lambda P \]
into a Taylor series at the bifurcation point \(C \) |
| Theory |
| Example |
| Conclusions |
| Literature |
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?

Koiter’s initial postbuckling analysis

Idea: expansion of the out-of-balance force

\[V'_u = G = F^I(u) - \lambda P \]

into a Taylor series at the bifurcation point \(C \)
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?

Koiter’s initial postbuckling analysis
Idea: expansion of the out-of-balance force
\[V_u = G = F^I(u) - \lambda P \]
into a Taylor series at the bifurcation point \(C \)

\[\lambda(\eta) = \left[1, \tilde{u}_{\lambda}(\lambda(\eta_B)) \right]^T \]

primary path

\[\nu(\eta) \]

secondary path

\[[\lambda, \lambda \tilde{u}_{\lambda}^T + \nu^T]^T \]
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?

Question II

<table>
<thead>
<tr>
<th>Motivation</th>
<th>Theory</th>
<th>Example</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

Koiter’s initial postbuckling analysis

Idea: expansion of the out-of-balance force

\[
V_u = G = F^I(u) - \lambda P
\]

into a Taylor series at the bifurcation point \(C \)

- coordinate transformation for the secondary path

\[
(v, \eta) \mapsto (u, \lambda) = (\tilde{u}(\lambda(\eta)) + v, \lambda(\eta))
\]

- series expansion of coordinates

\[
\begin{align*}
\nu(\eta) &= \nu_1 \eta + \nu_2 \eta^2 + \nu_3 \eta^3 + \ldots \\
\lambda(\eta) &= \lambda_C + \lambda_1 \eta + \lambda_2 \eta^2 + \lambda_3 \eta^3 + \ldots
\end{align*}
\]
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?

<table>
<thead>
<tr>
<th>Question II</th>
<th>Motivation</th>
<th>Theory</th>
<th>Example</th>
<th>Conclusions</th>
</tr>
</thead>
</table>
| | | • transformed out-of-balance force

\[
G(v, \eta) := G(\tilde{u}(\lambda(\eta)) + v, \lambda(\eta))
\]

• series expansion of the out-of-balance force at \(C \)

\[
G(v, \eta) = G_{0C} + G_{1C} \eta + G_{2C} \eta^2 + G_{3C} \eta^3 + \ldots = 0
\]

must hold for arbitrary values of \(\eta \)

\[
G_{nC} = 0 \quad \forall n \in \mathbb{Q}
\]

allows computation

\((\lambda_1, v_1), (\lambda_2, v_2), (\lambda_3, v_3), \ldots\)
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?

<table>
<thead>
<tr>
<th>Question II</th>
<th>Necessary and sufficient condition for imperfection insensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation</td>
<td></td>
</tr>
<tr>
<td>Theory</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
</tr>
<tr>
<td>Conclusions</td>
<td></td>
</tr>
</tbody>
</table>

\[\lambda(\eta) = \lambda_C + \lambda_1 \eta + \lambda_2 \eta^2 + \ldots + \lambda_n \eta^n + \ldots \]

- the first non-vanishing coefficient must have an even subscript and must be **positive**
- \(\lambda_1 = 0 \) … horizontal tangent is necessary

Literature
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?

Symmetric load-displacement paths

- linear mapping $\mathbf{T} : \mathbb{U}^N \rightarrow \mathbb{U}^N$ (symmetry group)

example: $\mathbf{T} = \begin{bmatrix} 1 & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot & -1 \end{bmatrix}$
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?

Symmetric load-displacement paths

- linear mapping $T : \mathbb{U}^N \rightarrow \mathbb{U}^N$ (symmetry group)
- symmetry requires $V(u, \lambda) = V(T \cdot u, \lambda)$
- mirror symmetry w.r.t. η

$$V(\tilde{u}(\lambda(\eta)) + v(\eta), \lambda(\eta)) = V(\tilde{u}(\lambda(-\eta)) + v(-\eta), \lambda(-\eta)) \quad \forall \eta \in \mathbb{U}$$

- consequences:

 uniqueness of the primary path requires

 ① $\tilde{u}(\lambda) = T \cdot \tilde{u}(\lambda) \quad \forall \lambda \in \mathbb{U}$
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?

Symmetric load-displacement paths

- linear mapping \(T : \mathbb{U}^N \rightarrow \mathbb{U}^N \) (symmetry group)
- symmetry requires \(V(u, \lambda) = V(T \cdot u, \lambda) \)
- mirror symmetry w.r.t. \(\eta \)

\[
V(\tilde{u}(\lambda(\eta)) + v(\eta), \lambda(\eta)) = V(\tilde{u}(\lambda(-\eta)) + v(-\eta), \lambda(-\eta)) \quad \forall \eta \in \mathbb{U}
\]

- consequences:
 - secondary path
 - \(2 \) \(v(\eta) = T \cdot v(-\eta) \quad \forall \eta \in \mathbb{U} \)
 - \(3 \) \(\lambda(\eta) = \lambda(-\eta) \quad \forall \eta \in \mathbb{U} \)
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?

Imperfection insensitivity

\[\lambda(\eta) = \lambda_C + \lambda_1 \eta + \lambda_2 \eta^2 + \ldots + \lambda_n \eta^n + \ldots \]

the first non-vanishing coefficient must have an even subscript and must be positive

Symmetry

1. \[\tilde{u}(\lambda) = T \cdot \tilde{u}(\lambda) \quad \forall \lambda \in \mathbb{U} \]
2. \[\nu(\eta) = T \cdot \nu(-\eta) \quad \forall \eta \in \mathbb{U} \]
3. \[\lambda(\eta) = \lambda(-\eta) \quad \forall \eta \in \mathbb{U} \quad \Rightarrow \quad \lambda_1 = \lambda_3 = \ldots = 0 \]

symmetry is not necessary for the conversion from imperfection sensitivity into insensitivity
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?

Example

2 DOF
static, conservative
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?

Example

2 DOF static, conservative

\[V(u_1, u_2, \lambda) \neq V(u_1, -u_2, \lambda) \]

non-symmetric bifurcation
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?

Example

- Design parameters

\[\gamma/\chi \text{ and } \mu \text{ are chosen such that } \lambda_1 = 0 \land \lambda_3 = 0 \]

but \(\lambda_5 \neq 0 \),

\(k \) is modified
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?

\[\kappa = 0.275 \]

\[\kappa = 0.2 \]

\[\kappa = 0.0454 \]

\[\kappa = 0 \]

\[\kappa = 0.3 \]

\[\kappa = 0.5 \]
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?

\[\kappa = 0 \]
\[\kappa = 0.0454 \]
\[\kappa = 0.2 \]
\[\kappa = 0.4 \]

region of imperfection insensitivity
Does the conversion from imperfection sensitivity into insensitivity require a symmetric postbuckling path?

Conclusions

- Conversion into *imperfection insensitivity* requires $\lambda_1 = 0$, which holds automatically for symmetric bifurcation.
- Symmetric bifurcation is not necessary.
- Conversion is possible *without* change of the prebuckling behavior and *without* change of the buckling load.
- Increasing the stiffness
 - can lead to conversion into *imperfection insensitivity*
 - may result in *qualitative* changes of the secondary path
Is hilltop buckling necessarily imperfection sensitive?

Question III

Is \textit{hilltop} buckling necessarily \textit{imperfection sensitive}?
Motivation

- divide and conquer - the category of hilltop buckling
- hilltop buckling as a starting point of sensitivity analysis
- Is hilltop buckling a “worst case“ buckling scenario?
<table>
<thead>
<tr>
<th>Question III</th>
<th>Hilltop buckling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation</td>
<td>• coincidence of a bifurcation point and a snap-through point</td>
</tr>
<tr>
<td>Theory</td>
<td>• Assertion I: Hilltop buckling requires $\lambda_1=0$.</td>
</tr>
<tr>
<td>Example</td>
<td>• Assertion II: Hilltop buckling is necessarily imperfection sensitive.</td>
</tr>
</tbody>
</table>

Literature

Is hilltop buckling necessarily imperfection sensitive?

Proof

- path parameter ξ referring to the primary path
- at the snap-through point $\rightarrow \lambda,\xi = 0 \land \lambda,\xi\xi < 0$ (local maximum of λ)
- coefficient a_1 occurs in some expressions G_{nC}

$$a_1 = -\frac{1}{2} \frac{\mathbf{v}_1^T \cdot \mathbf{\tilde{K}}_{T,\lambda\lambda} \cdot \mathbf{v}_1}{\mathbf{v}_1^T \cdot \mathbf{\tilde{K}}_{T,\lambda} \cdot \mathbf{v}_1} = -\frac{1}{2 \lambda,\xi} \left(\frac{\mathbf{v}_1^T \cdot \mathbf{\tilde{K}}_{T,\xi\xi} \cdot \mathbf{v}_1}{\mathbf{v}_1^T \cdot \mathbf{\tilde{K}}_{T,\xi} \cdot \mathbf{v}_1} - \frac{\lambda}{\lambda,\xi} \right)$$

- $\mathbf{v}_1^T \cdot \mathbf{\tilde{K}}_{T,\xi} \cdot \mathbf{v}_1 \neq 0$ is known from the consistently linearized eigenproblem

$$a_1 = \frac{1}{2} \frac{\lambda,\xi\xi}{\lambda,\xi} = -\infty \quad \text{... pole of } 2^{\text{nd}} \text{ order}$$
Is hilltop buckling necessarily imperfection sensitive?

Proof

- path parameter η referring to the secondary path
- $\lambda(\eta) = \lambda_C + \lambda_1 \eta + \lambda_2 \eta^2 + \ldots + \lambda_n \eta^n + \ldots$
- $\eta=0$ refers to the stability limit λ_C

- coefficient $a_1 = -\frac{1}{2\lambda,\eta} \left(\frac{v_1^T \tilde{K}_{T,\eta} \cdot v_1}{v_1^T \tilde{K}_{T,\eta} \cdot v_1 - \frac{\lambda,\eta}{\lambda,\eta}} \right) \bigg|_{\eta=0}$

\[
\lambda,\eta \bigg|_{\eta=0} = \lambda_1, \quad \lambda,\eta,\eta \bigg|_{\eta=0} = 2\lambda_2
\]

\[
\tilde{K}_{T,\eta} / \lambda,\eta = \tilde{K}_{T,\xi} / \lambda,\xi
\]

\[
a_1 = -\frac{1}{2\lambda_1^2} \left(\frac{v_1^T \tilde{K}_{T,\eta} \bigg|_{\eta=0} \cdot v_1}{v_1^T \tilde{K}_{T,\xi} \cdot v_1} \lambda,\xi - 2\lambda_2 \right)
\]
Is hilltop buckling necessarily imperfection sensitive?

Proof

\[a_1 = -\frac{1}{2\lambda_1^2} \left(v_1^T \tilde{K}_{T,\eta\eta} v_1 \right) \eta=0 \cdot \nu_1 \begin{vmatrix} \nu_1^T \tilde{K}_{T,\xi} \nu_1 \end{vmatrix} \lambda_{,\xi} - 2\lambda_2 \]

No hilltop buckling

\[\lambda_1 = 0, \quad \lambda_{,\xi} \neq 0 \]

\[\downarrow \]

\[a_1 \neq 0 \]

\[\downarrow \]

\[v_1^T \tilde{K}_{T,\eta\eta} v_1 \bigg|_{\eta=0} \nu_1 \begin{vmatrix} \nu_1^T \tilde{K}_{T,\xi} \nu_1 \end{vmatrix} \lambda_{,\xi} - 2\lambda_2 = 0 \]
Is hilltop buckling necessarily imperfection sensitive?

Proof

\[
a_1 = -\frac{1}{2\lambda_1^2} \left(\frac{v_1^T \cdot \tilde{K}_{T,\eta\eta}|_{\eta=0} \cdot v_1}{v_1^T \cdot \tilde{K}_{T,\xi} \cdot v_1} \lambda_{,\xi} - 2\lambda_2 \right)
\]

no hilltop buckling

\[
\lambda_1 = 0, \quad \lambda_{,\xi} \neq 0
\]

\[
downarrow
\]

\[
a_1 \neq 0
\]

\[
\left(\frac{\theta^T \cdot \tilde{K}_{T,\eta\eta}|_{\eta=0} \cdot \theta_1}{\theta^T \cdot \tilde{K}_{T,\xi} \cdot \theta_1} \lambda_{,\xi} - 2\lambda_2 \right) = 0
\]

hilltop buckling

\[
\lambda_{,\xi} = 0, \quad v_1^T \cdot \tilde{K}_{T,\xi} \cdot v_1 \neq 0
\]

\[
downarrow
\]

\[
a_1 = \frac{\lambda_2}{\lambda_1^2}
\]

\[
downarrow
\]

\[
a_1 = -\infty
\]

\[
\lambda_1 = 0, \quad -\infty < \lambda_2 < 0
\]

q.e.d.
Is hilltop buckling necessarily imperfection sensitive?

Motivation

Motivation for the question of hilltop buckling.

Theory

Proof:

\[a_1 = -\frac{1}{2\lambda_1^2} \left(\nu_1^T \cdot \tilde{K}_{T,\eta\eta} \bigg|_{\eta=0} \cdot \nu_1 \right) \lambda,_{\xi} - 2\lambda_2 \]

Example

- **no hilltop buckling**
 \[\lambda_1 = 0, \; \lambda,_{\xi} \neq 0 \]
 \[a_1 \neq 0 \]

- **hilltop buckling**
 \[\lambda,_{\xi} = 0, \; \nu_1^T \cdot \tilde{K}_{T,\xi} \cdot \nu_1 \neq 0 \]
 \[a_1 = \frac{\lambda_2}{\lambda_1^2} \]
 \[a_1 = -\infty \]

Conclusions

Hilltop buckling is necessarily imperfection sensitive.
Is hilltop buckling necessarily imperfection sensitive?

Theory (cont.)

- design parameter κ

- series expansion

\[
G(\nu, \eta) = G_{0C} + G_{1C} \eta + G_{2C} \eta^2 + \ldots = 0
\]

yields parameter-dependent equation

\[
\lambda_4(\kappa) = a_1(\kappa) \lambda_2^2(\kappa) + b_2(\kappa) \lambda_2(\kappa) + d_3(\kappa)
\]

"solution"

\[
\lambda_2(\kappa)_{1,2} = -\frac{b_2(\kappa)}{2a_1(\kappa)} \pm \sqrt{\frac{b_2^2(\kappa) - 4a_1(\kappa)(d_3(\kappa) - \lambda_4(\kappa))}{2a_1(\kappa)}}
\]

- allows differentiation between two characteristic classes of the relation $\lambda_4 = \lambda_4(\lambda_2(\kappa))$
Is hilltop buckling necessarily imperfection sensitive?

\[\lambda_{2(\kappa)}_{1,2} = -\frac{b_2(\kappa)}{2 a_1(\kappa)} \pm \frac{\sqrt{b_2^2(\kappa) - 4 a_1(\kappa)(d_3(\kappa) - \lambda_4(\kappa))}}{2 a_1(\kappa)} \]

Class ①

\[d_3(\lambda_2), \lambda_4(\lambda_2) \]

need not be negative

(qualitative plot)
Is hilltop buckling necessarily imperfection sensitive?

$$\lambda_2(\kappa)_{1,2} = -\frac{b_2(\kappa)}{2a_1(\kappa)} \pm \frac{\sqrt{b_2^2(\kappa) - 4a_1(\kappa)(d_3(\kappa) - \lambda_4(\kappa))}}{2a_1(\kappa)}$$

Class 1

- generally, $$b_2^2(\kappa) - 4a_1(\kappa)(d_3(\kappa) - \lambda_4(\kappa)) > 0$$
 - double roots are **not** possible
- at the hilltop buckling point
 - $$b_2 = +\infty \ldots$$ pole of 1\(^{\text{st}}\) order
 - $$a_1 = -\infty \ldots$$ pole of 2\(^{\text{nd}}\) order
 - $$\frac{b_2}{a_1} = 0$$
- $$\lambda_2 = 0$$ is **not** possible because it would be a double root
- $$\lambda_2 < 0 \rightarrow \lambda_2(\kappa) = -\sqrt{\lambda_4(\kappa) - d_3(\kappa)} / a_1(\kappa)$$
Is hilltop buckling necessarily imperfection sensitive?

\[
\lambda_{2}(\kappa)_{1,2} = -\frac{b_{2}(\kappa)}{2a_{1}(\kappa)} \pm \frac{\sqrt{b_{2}^{2}(\kappa) - 4a_{1}(\kappa)(d_{3}(\kappa) - \lambda_{4}(\kappa))}}{2a_{1}(\kappa)}
\]

Class ② \[d_{3}(\lambda_{2}), \lambda_{4}(\lambda_{2})\]

must be negative

(qualitative plot)
Is hilltop buckling necessarily imperfection sensitive?

$$\lambda_2(\kappa)_{1,2} = -\frac{b_2(\kappa)}{2a_1(\kappa)} \pm \frac{\sqrt{b_2^2(\kappa) - 4a_1(\kappa)(d_3(\kappa) - \lambda_4(\kappa))}}{2a_1(\kappa)}$$

Class 2

- \(b_2^2(\kappa) - 4a_1(\kappa)(d_3(\kappa) - \lambda_4(\kappa)) = 0 \quad \forall \kappa \in \mathbb{U} \)

 double root \(\lambda_2(\kappa)_{1,2} = -\frac{b_2(\kappa)}{2a_1(\kappa)} = -\frac{2(d_3(\kappa) - \lambda_4(\kappa))}{b_2(\kappa)}\)

- \(2a_1(\kappa)\lambda_2(\kappa)_{1,2} + b_2(\kappa) = 0\)

 \(\lambda_2 = 0\) corresponds to \(a_1 = 0 \quad \Rightarrow \quad b_2 = 0 \quad \land \quad d_3 - \lambda_4 = 0\)

- but hilltop buckling requires \(a_1 = -\infty, \lambda_2 < 0\)

 \(b_2 = -\infty \quad \ldots \) pole of 2\(^{nd}\) order

 \(d_3 - \lambda_4 = -\infty \quad \ldots \) pole of 2\(^{nd}\) order
Is hilltop buckling necessarily imperfection sensitive?

Example of class ①

2 DOF
static, conservative
symmetric bifurcation
Is hilltop buckling necessarily imperfection sensitive?

Example of class ①

2 DOF
static, conservative
symmetric bifurcation

Motivation

Theory

Example

Conclusions
Is hilltop buckling necessarily imperfection sensitive?

Load-displacement path - hilltop buckling

\[
\frac{\lambda P}{kL} = 0
\]

\[\kappa = 0\]

\[\lambda_2 < 0\]

imperfection sensitive
Is hilltop buckling necessarily imperfection sensitive?

Load-displacement path - zero-stiffness postbuckling

\[\lambda \frac{P}{kL} \]

\[\kappa = \frac{\mu}{4} \]

\[\lambda_2 = 0 \]

\[\lambda_4 = 0 \]

\[\vdots \]
Is hilltop buckling necessarily imperfection sensitive?

Load-displacement path - zero-stiffness postbuckling

\[
\frac{\lambda P}{kL} = \kappa = \frac{\mu}{4}
\]

\[
\lambda_2 = 0
\]

\[
\lambda_4 = 0
\]

Is zero-stiffness postbuckling predictable?

Yes, it occurs if

\[
\kappa \rightarrow \infty \quad b_2 \rightarrow -\infty \quad \text{pole of 1}\text{st order}
\]

\[
d_3 \rightarrow +\infty \quad \text{pole of 2}\text{nd order}
\]
Is hilltop buckling necessarily imperfection sensitive?

Load-displacement path - saddle point

\[\frac{\lambda P}{kL} \]

Motivation

\[\kappa = 1 - \cos(u_{10}) \]

Theory

\[\lambda_2 > 0 \]

Example

Conclusions

imperfection insensitive
Is hilltop buckling necessarily imperfection sensitive?

Question III

Motivation

Theory

Example

Conclusions

Coefficients of quadratic equation

\[a_1 \]

\[\lambda \]

\[\infty \]

\[0 \]

\[5 \]

\[-5 \]

\[-10 \]

\[a_1 \]

\[\lambda_2 \]
Is hilltop buckling necessarily imperfection sensitive?

Question III

Motivation

Theory

Example

Conclusions

Coefficients of quadratic equation

a_1, b_2

indicator for zero-stiffness postbuckling
Is hilltop buckling necessarily imperfection sensitive?

Question III

<table>
<thead>
<tr>
<th>Motivation</th>
<th>Theory</th>
<th>Example</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

Coefficients of quadratic equation:

\[a_1, b_2, d_3 - \lambda_4 \]

- \(+\infty \) indicator for zero-stiffness postbuckling
- \(-\infty \)

Graph showing the behavior of \(a_1, b_2, d_3 - \lambda_4 \) with \(\lambda_2 \).
Is hilltop buckling necessarily imperfection sensitive?

\[b_2^2(\kappa) - 4a_1(\kappa)(d_3(\kappa) - \lambda_4(\kappa)) \]
Conclusions

- two characteristic classes of hilltop buckling
- different behavior for $\kappa \rightarrow +\infty$
- Hilltop buckling is necessarily imperfection sensitive.
Further research

- FEM analysis of multiple-DOF systems
- Identification of qualitative properties pivotal for the conversion from imperfection sensitivity into insensitivity
- Investigation of the reasons for the initial postbuckling behavior according to class ① and ②, respectively
- Proof of the a priori predictability of zero-stiffness postbuckling behavior