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This work first studies the finite-sample properties of the risk of the minimum-

norm interpolating predictor in high-dimensional regression models. If the

effective rank of the covariance matrix Σ of the p regression features is much

larger than the sample size n, we show that the min-norm interpolating predictor

is not desirable, as its risk approaches the risk of trivially predicting the response

by 0. However, our detailed finite-sample analysis reveals, surprisingly, that

this behavior is not present when the regression response and the features are

jointly low-dimensional, following a widely used factor regression model. Within

this popular model class, and when the effective rank of Σ is smaller than n,

while still allowing for p ≫ n, both the bias and the variance terms of the

excess risk can be controlled, and the risk of the minimum-norm interpolating

predictor approaches optimal benchmarks. Moreover, through a detailed analysis

of the bias term, we exhibit model classes under which our upper bound on

the excess risk approaches zero, while the corresponding upper bound in the

recent work [13] diverges. Furthermore, we show that the minimum-norm

interpolating predictor analyzed under the factor regression model, despite

being model-agnostic and devoid of tuning parameters, can have similar risk to

predictors based on principal components regression and ridge regression, and

can improve over LASSO based predictors, in the high-dimensional regime.

The second part of this work extends the analysis of the minimum-norm inter-



polating predictor to a larger class of linear predictors of a response Y ∈ R. Our

primary contribution is in establishing finite sample risk bounds for prediction

with the ubiquitous Principal Component Regression (PCR) method, under the

factor regression model, with the number of principal components adaptively

selected from the data—a form of theoretical guarantee that is surprisingly lack-

ing from the PCR literature. To accomplish this, we prove a master theorem

that establishes a risk bound for a large class of predictors, including the PCR

predictor as a special case. This approach has the benefit of providing a unified

framework for the analysis of a wide range of linear prediction methods, under

the factor regression setting. In particular, we use our main theorem to recover

the risk bounds for the minimum-norm interpolating predictor, and a predic-

tion method tailored to a subclass of factor regression models with identifiable

parameters. This model-tailored method can be interpreted as prediction via

clusters with latent centers. To address the problem of selecting among a set of

candidate predictors, we analyze a simple model selection procedure based on

data-splitting, providing an oracle inequality under the factor model to prove

that the performance of the selected predictor is close to the optimal candidate.

In the third part of this work, we shift from the latent factor model to de-

veloping methodology in the context of topic models, which also rely on latent

structure. We provide a new, principled, construction of a distance between

two ensembles of independent, but not identically distributed, discrete samples,

when each ensemble follows a topic model. Our proposal is a hierarchical Wasser-

stein distance, that can be used for the comparison of corpora of documents,

or any other data sets following topic models. We define the distance by repre-

senting a corpus as a discrete measure θ over a set of clusters corresponding to

topics. To a cluster we associate its center, which is itself a discrete measure over



topics. This allows for summarizing both the relative weight of each topic in the

corpus (represented by the components of θ) and the topic heterogeneity within

the corpus in a single probabilistic representation. The distance between two

corpora then follows naturally as a hierarchical Wasserstein distance between

the probabilistic representations of the two corpora. We demonstrate that this

distance captures differences in the content of the topics between two corpora

and their relative coverage. We provide computationally tractable estimates of

the distance, as well as accompanying finite sample error bounds relative to

their population counterparts. We demonstrate the usage of the distance with an

application to the comparison of news sources.
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CHAPTER 1

INTERPOLATING PREDICTORS IN HIGH-DIMENSIONAL FACTOR

REGRESSION

1.1 Introduction

Motivated by the widely observed phenomenon that interpolating deep neural

networks generalize well despite having zero training error, there has been a

recent wave of literature showing that this is a general behaviour that can occur

for a variety of models and prediction methods [13–18,44,50,61,72,73,75,76,79,93].

One of the simplest settings is the prediction of a real-valued response y ∈ R

from vector-valued features X ∈ Rp via generalized least squares (GLS). The GLS

estimator α̂ = X+y is based on the Moore-Penrose pseudo-inverse of the n × p

data matrix X and response vector y ∈ Rn, obtained from n i.i.d. copies (Xi, yi),

i ∈ [n], of (X, y), with p > n. It coincides with the minimum-norm estimator,

which in the case that X has full rank, interpolates the data. The interpolation

property of α̂ means that Xα̂ = y. We refer to the corresponding predictor as the

minimum-norm interpolating predictor.

This paper is devoted to the finite-sample statistical analysis of predic-

tion via the generalized least squares estimator α̂. We first note that ideally,

the prediction risk R(α̂) := EX,y

[
(X⊤α̂ − y)2

]
of α̂ approaches the optimal risk

infα∈Rp EX,y

[
(X⊤α − y)2

]
. Unfortunately, this often turns out not to be the case.

Theorem 1, stated in Section 1.2, proves that the ratio R(α̂)/R(0) approaches 1

in the regime re(ΣX) ≫ n. Clearly, this is undesirable as R(0) is the non-optimal

null risk of trivially predicting via the zero weight vector, ignoring the data. The

1



effective rank re(ΣX) of the p × p covariance matrix ΣX of X is defined as the ratio

between the trace of ΣX and its operator norm, and is at most equal to its rank,

re(ΣX) ≤ p. In particular, if ΣX is well-conditioned, with re(ΣX) ≍ p, then the predic-

tion risk R(α̂) of the minimum norm interpolator approaches the trivial risk R(0),

whenever p ≫ n. This was previously observed, from a different perspective,

in [50].

This opens the question as to whether, in the high-dimensional p > n setting,

there exist underlying distributions of the data that allow R(α̂) to be close to an

optimal risk benchmark. The recent work [13] provides a positive answer to this

question, primarily focusing on sufficient conditions on the spectrum of ΣX that

can lead to consistent prediction.

In this paper we show that the joint structure of (X, y), not just the marginal

structure of X as considered in [13], is important to understanding the conditions

under which consistent prediction is possible with α̂. In particular, we provide a

detailed and novel finite-sample analysis of the prediction risk R(α̂) when the

pair (X, y) follows a linear factor regression model, y = Z⊤β+ ε, X = AZ + E, in the

regime

p ≫ n but re(ΣX) < c · n,

for an absolute constant c > 0. Here (X, y) ∈ Rp × R are observable random

features and response, Z ∈ RK is a vector of unobservable sub-Gaussian random

latent factors with K < p, A ∈ Rp×K is a loading matrix relating Z to X, and E

and ε are mean-zero sub-Gaussian noise terms independent of Z and each other.

Under this model, the observation made in inequality (1.7) of Section 1.3.1 below

shows that re(ΣX) is less than c · n as long as K < c1 · n and the signal-to-noise

ratio ξ := λK(AΣZA⊤)/∥ΣE∥ ≳ p/n ≥ c2 · re(ΣE)/n for suitable absolute constants

2



c1, c2 > 0. Here ΣZ and ΣE denote the covariance matrices of Z and E respectively,

and ξ is the ratio between the Kth eigenvalue of AΣZA⊤ and the operator norm of

ΣE. Section 1.3 is dedicated to deriving population-level properties of the factor

regression model that are relevant to the performance of the GLS α̂.

Our primary contribution is the study of R(α̂) under the factor regression

model, and in this regime. In Section 1.4 we present a detailed finite-sample study

of the risk R(α̂) of the model-agnostic interpolating predictor ŷx = X⊤α̂ in factor

regression models with p > n and K < n, but with K allowed to grow with n. Our

main result is Theorem 13 in Section 1.4.2. It provides a finite-sample bound on

the excess risk R(α̂) − σ2 of α̂ in the high-dimensional setting p > n, relative to the

natural risk benchmark E[ε2] := σ2 in the factor regression model; the excess risk

relative to the benchmark infα∈Rp EX,y

[
(X⊤α − y)2

]
is also derived in this theorem.

As a consequence, we obtain sufficient conditions under which the prediction

risk R(α̂) approaches the optimal risk, by adapting to the embedded dimension

K. The excess risk not only decreases beyond the interpolation boundary to a

non-zero value as observed in [50], but does indeed decrease to zero, as desired.

We remark that at least for Gaussian (X, y), [13] provides an alternative bound

to Theorem 13. However, Theorem 13 provides an improved rate for typical

factor regression models, and in particular provides examples when the upper

bound on the excess risk in [13] diverges, yet our results show that prediction is

consistent; see Section 1.4.3 for a detailed comparison.

Table 1.1 below offers a snap-shot of our main results. The first row is

a reminder that all results are established for p > n, while the second row

separates the regimes of re(ΣX) larger or smaller than n. The third row specifies

the assumptions on (X, y), namely sub-Gaussianity or, in addition, the factor

3



regression model. The last row gives finite-sample bounds. The risk bounds

in the bottom right panel are stated under the assumptions that the operator

norms ∥ΣZ∥ and ∥ΣE∥ are constant and re(ΣE) ≍ p. These simplifying assumptions

are made here for transparency of presentation and are not made in the body

of the paper. The bottom right panel shows that the variance term V decreases

p > n

re(ΣX) > C · n re(ΣX) < c · n, K < n

(X, y) sub-Gaussian
(X, y) sub-Gaussian

y = β⊤Z + ε
X = AZ + E

∣∣∣∣R(α̂)
R(0) − 1

∣∣∣∣ ≲ √n/re(ΣX)
R(α̂) − σ2 ≲ BZ + V
BZ = ∥β∥

2 · p/(n · ξ)
V = {(n/p) + (K/n)} log n

Table 1.1: Behavior of risk R(α̂). Here C > 1, c > 0 are absolute
constants with C > c. (i) R(α̂) approaches null risk R(0) for well-
conditioned matrices ΣX when p ≫ n (left panel); (ii) Variance term
vanishes when p ≫ n log n and K log n ≪ n; Bias term vanishes for
ξ := λK(AΣZA⊤)/∥ΣE∥ ≫ ∥β∥

2 p/n (right panel).

if p ≫ n log n and K log n ≪ n and that the bias term BZ decreases provided that

the signal-to-noise ratio ξ := λK(AΣZA⊤)/∥ΣE∥ is large enough. Specifically, we

need that ξ ≫ ∥β∥2 p/n, which for ∥β∥2 ≲ K amounts to ξ ≫ p · K/n. For instance,

as explained in Section 1.3.1, a common, natural situation is ξ ≍ p and the bias

is small for K ≪ n. In clustering problems where the p coordinates of X can be

clustered in K groups of approximately eqal size m ≈ p/K as discussed in Section

1.3.1, we find ξ ≍ p/K. In that case, BZ vanishes if n ≫ K2.

We emphasize that a condition on the effective rank of ΣX alone is not enough

to guarantee that R(α̂) is close to the optimal risk σ2. As argued in Section 1.3.4,

if we assume the model X = AZ + E, but instead of assuming that y is also a

function of Z, as in this work, we have a standard linear model y = X⊤θ + η,

4



with θ ∈ Rp, then the bias term cannot be ignored, unless ∥θ∥ → 0, which is

typically not the case in high dimensions. In Section 1.3.3 we show that the best

linear predictor α∗ = Σ+XΣXY , that minimizes the risk EX,y

[
(X⊤α − y)2

]
, does in fact

satisfy ∥α∗∥ → 0 under the factor regression model y = Z⊤β + ε and thus that

this is a natural setting for studying when the GLS generalizes well. From this

perspective, this work illustrates the critical role played in the risk analysis by a

modeling assumption in which (X, y) are jointly low-dimensional.

Finally, we remark that prediction under factor regression models has been

well studied, starting with classical factor analysis that can be traced back to

the 1940s [57–60, 69–71], including the pertinent work [4]. A number of works

ranging from purely Bayesian [1, 19, 35, 49] to variational Bayes [30] to frequen-

tist [25, 40–43, 55, 56, 86–88] show that this class of models can be a useful frame-

work for constructing and analyzing predictors of y from high-dimensional and

correlated data. The literature on finite-sample prediction bounds under factor

regression models is relatively limited, with instances provided by [25, 40–43],

and most existing results established for K fixed. Relevant for the work presented

here, the (non-Bayesian) prediction schemes that have been studied in generic

factor regression models are often variations of principal component regression

in K < n fixed dimensions, and therefore typically do not interpolate the data.

From this perspective, the results of this paper complement this existing litera-

ture, by studying the behavior of interpolating predictors in factor regression.

Furthermore, in Section 1.4.4 we derive an upper bound on the excess risk of

prediction based on principal components, under the factor regression model,

and find that it is comparable to the excess risk bound of the interpolating pre-

dictor, in the regime p ≫ n, provided that the covariance matrix ΣE of the noise is

well conditioned. This provides further motivation for the use of α̂ in the setting
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discussed here.

The rest of the paper is organized as follows.

Section 1.2 derives sufficient conditions on ΣX and σ2
y B E[y2] under which

R(α̂) approaches the trivial risk R(0). This section motivates the remainder of the

paper, in which we study the risk behaviour when these conditions are violated.

Section 1.3 introduces the factor regression model (1.5) and derives

population-level properties that are relevant to the performance of the GLS

α̂. Bounds on the effective rank and spectrum of ΣX under (1.5) are given in

Section 1.3.1, and reveal what key quantities to control in order to obtain non-

trivial prediction risk bounds associated with the GLS estimate α̂. Target risk

benchmarks then are introduced in Section 1.3.2.

Section 1.3.3 investigates at the population level the properties of the best lin-

ear predictor α∗ = Σ+XΣXY , under the factor regression model. We demonstrate the

interesting phenomenon that under model (1.5), ∥α∗∥ → 0 and yet R(α∗)/R(0) ̸→ 1.

We argue that this is in contrast to the behaviour of the best linear predictor θ

in a standard linear regression model in which E[y|X] = X⊤θ and typically ∥θ∥ is

fixed or growing with p. We give a comparison between factor regression and

standard linear regression in Section 1.3.4, commenting on assumptions on the

operator norm of ΣX, and on implications for prediction with the GLS.

The remainder of the paper, Section 1.4, contains our analysis of the GLS α̂

and its prediction risk, under the factor regression model. Section 1.4.1 gives a

preview of our main findings. In the noiseless case ΣE = 0, we have that ∥α̂∥ → 0

(just like ∥α∗∥ → 0), but R(α̂) − R(α∗) achieves the parametric rate K/n, up to a
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log(n) factor. In fact, we establish X⊤α̂ = Z⊤β̂ for the least squares estimate β̂

based on observed (Z, y).

Section 1.4.2 contains our main results in the more realistic setting ΣE , 0.

It establishes when α̂ interpolates, and shows that typically ∥α̂∥ → 0, as in the

noiseless case. Furthermore, in agreement with the findings in Section 1.4.1,

R(α̂)/R(0) does not approach 1. Instead, the finite-sample risk bound in Theorem

13 shows that under appropriate conditions on re(ΣE) and the signal-to-noise

ratio ξ, the excess risk R(α̂) − R(α∗) converges to zero.

Section 1.4.3 presents a comparison with recent related work. In particular, we

give a detailed comparison with [13], which provides risk bounds for ŷx = X⊤α̂,

for sub-Gaussian data (X, y), and offers sufficient conditions on ΣX for optimal risk

behavior, with emphasis on the optimality of the variance component of the risk.

We present simplified versions of the generic bias and variance bounds obtained

in [13] under the factor regression model, which are derived in Appendix A.3.4.

Table 1.2 of Section 1.4.3 summarizes our findings that the bound on the excess

risk in [13] is often larger in order of magnitude than the bound given in Theorem

13 of Section 1.4.2. In particular, we exhibit instances of the factor regression

model class under which the excess risk upper bound in [13] diverges, yet our

upper bound approaches zero. We also compare our work to [75], which gives

an asymptotic analysis of the ridge regression estimator with arbitrarily small

(but non-zero) regularization for a type of factor regression model.

Section 1.4.4 is devoted to a comparison with prediction via principal compo-

nent regression and ℓ1 and ℓ2 penalized least squares, under the factor regression

model.
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All proofs and ancillary results are deferred to the Appendix. In particular,

Theorem 37 in the Appendix complements Theorem 13 by showing the risk

behavior of α̂ for n > c · p for an absolute constant c > 0, and is included for

completeness.

1.1.1 Notation

Throughout the paper, for a vector v ∈ Rd, ∥v∥ denotes the Euclidean norm of v.

For any matrix A ∈ Rn×m, ∥A∥ denotes the operator norm and A+ the Moore-

Penrose pseudo-inverse. See Appendix A.5 for a definition of the pseudo-inverse

and a summary of its properties used in this paper.

For a positive semi-definite matrix Q ∈ Rp×p, and vector v ∈ Rp, we define

∥v∥2Q B v⊤Qv, let λ1(Q) ≥ λ2(Q) ≥ · · · ≥ λp(Q) be its ordered eigenvalues, κ(Q) :=

λ1(Q)/λp(Q) its condition number, and re(Q) := tr(Q)/∥Q∥ its effective rank.

The identity matrix in dimension m is denoted Im.

The set {1, 2, . . . ,m} is denoted [m].

Letters c, c′, c1, C, etc., are used to denote absolute constants, and may change

from line to line.

1.2 Interpolation and the Null Risk

Given i.i.d. observations (X1, y1), . . . , (Xn, yn), distributed as (X, y) ∈ Rp × R,

let X ∈ Rn×p be the corresponding data matrix with rows X1, . . . Xn, and let

y B (y1, . . . , yn)⊤ ∈ Rn. For the rest of the paper, unless specified otherwise,

we make the blanket assumption that p > n.
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We are interested in studying the prediction risk associated with the minimum

ℓ2-norm estimator α̂ defined as

α̂ B arg min
{
∥α∥ : ∥Xα − y∥ = min

u
∥Xu − y∥

}
. (1.1)

We define the prediction risk for any α ∈ Rp as

R(α) B EX,y[(X⊤α − y)2]. (1.2)

The expectation is over the new data point (X, y), independent of the ob-

served data (X, y). In particular, since α̂ is independent of (X, y), we have

R(α̂) = EX,y

[
(X⊤α̂ − y)2 | X, y

]
= EX,y

[
(X⊤α̂ − y)2

]
. If the data matrix X has full

rank of n < p, then minu∈Rp ∥Xu − y∥ = 0 and

α̂ B arg min
α: Xα=y

∥α∥. (1.3)

Regardless of the rank of X, Equation (1.1) always has the closed form solution

α̂ = X+y, where X+ is the Moore-Penrose pseudo-inverse of X; we prove this fact

in section A.4.1 for completeness. We begin our consideration of the minimum-

norm estimator α̂ = X+y by showing that its risk R(α̂) approaches the null risk

R(0) whenever the effective rank re(ΣX) grows at a rate faster than n. Proofs for

this section are contained in Appendix A.1. We make the following distributional

assumption.

Assumption 1. X = Σ1/2
X X̃ and y = σyỹ, where X̃ ∈ Rp has independent entries, and

both X̃ and ỹ have zero mean, unit variance, and sub-Gaussian constants bounded by an

absolute constant.

Theorem 1. Suppose Assumption 1 holds and re(ΣX) > C · n for some absolute constant

C > 1 large enough. Then, with probability at least 1 − ce−c′n for absolute constants
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c, c′ > 0, ∣∣∣∣∣∣R(α̂)
R(0)

− 1

∣∣∣∣∣∣ ≲
√

n
re(ΣX)

. (1.4)

As a consequence, α̂ is not a useful estimator in the regime re(ΣX) ≫ n, as

trivially predicting with the null vector 0 ∈ Rp will give asymptotically equivalent

results. This occurs, for instance, when ΣX is well conditioned and p/n → ∞.

Figure 2 in [50] depicts an example of this behavior: it plots E[∥α̂ − α∥2|X] as a

function of the ratio γ = p/n, where (X, y) follows the linear model y = α⊤X + ε

with ΣX = Ip.

This motivates the study of R(α̂) when the condition re(ΣX) > C ·n of Theorem 1

fails. The recent work [13] developed bounds for the excess risk R(α̂)− infα∈Rp R(α)

under the linearity assumption E[y|X] = X⊤θ (for some θ ∈ Rp), and used this

to show that the excess risk goes to zero for a certain class of benign covariance

matrices that in particular satisfy re(ΣX)/n→ 0 and ∥ΣX∥ = 1.

In this work we are interested in obtaining risk bounds for R(α̂) under a

different model, the factor regression model (1.5) given below. In this model,

while re(ΣX)/n remains bounded, ∥ΣX∥ typically grows with p (see Lemma 3

below), in contrast to the assumption ∥ΣX∥ = 1 of the definition of benign matrices

in [13]. Furthermore, the results in [13] only apply to model (1.5) when (X, y) are

assumed to be jointly Gaussian. In this case, their bound offers an alternative

result, which we compare to our main result in Section 1.4.3 below. We find that

in this common regime, we obtain a tighter bound.
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1.3 Factor Regression Models

In this paper, we consider the factor regression model (FRM). This is a latent

factor model in which we single out one variable, y ∈ R, to emphasize its role as

the response relative to input covariates X ∈ Rp, while both X and y are directly

connected to a lower dimensional, unobserved, random vector Z ∈ RK , with

mean zero and K < n. Specifically, the factor regression model postulates that

X = AZ + E, y = Z⊤β + ε, (1.5)

where β ∈ RK is the latent variable regression vector, A ∈ Rp×K is a unknown

loading matrix, and ε ∈ R and E ∈ Rp are mean zero additive noise terms

independent of one another and of Z. We let ΣE B Cov(E), ΣZ B Cov(Z) and

σ2 B Var(ε). For the remainder of the paper we will assume that the data consist

of n i.i.d. pairs (Xi, yi) satisfying (1.5), in that

Xi = AZi + Ei, yi = Z⊤i β + εi ∀i ∈ [n], (1.6)

where the latent factors Z1, . . . ,Zn ∈ RK are i.i.d. copies of Z, and the error terms

Ei ∈ Rp and εi ∈ R for i = 1, . . . , n are i.i.d. copies of E and ε, respectively. We

recall that X ∈ Rn×p is the matrix with rows X1, . . . , Xn and y ∈ Rn is the vector with

entries y1, . . . , yn. We similarly let Z ∈ Rn×K be the matrix with rows Z1, . . . ,Zn.

The remainder of this section is dedicated to deriving population-level prop-

erties of the factor regression model that are relevant to the performance of the

GLS α̂. In particular, we will (1) bound the effective rank of ΣX, (2) bound the

eigenvalues of ΣX, (3) define two natural risk benchmarks and show when they

are asymptotically equivalent, (4) show that the weight vector of the best linear

predictor has vanishing norm, and (5) prove that, nonetheless, the null risk R(0)

is clearly sub-optimal. The first two properties reflect the low-rank structure of
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the covariance matrix ΣX and are presented in Section 1.3.1. The risk benchmarks

are introduced and analyzed in Section 1.3.2. Section 1.3.3 investigates the prop-

erties of the best linear predictor α∗ = Σ+XΣXY at the population level, showing

properties (4) and (5). The fourth property in particular is a consequence of

the joint low-dimensional structure of (X, y) via the vector of covariances ΣXY .

It is a distinct property of the factor regression model that sets it apart from

the classical regression model where the response y is linearly related to X via

E[y|X] = θ⊤X. We present a comparison between factor regression and classical

linear regression in Section 1.3.4.

1.3.1 Effective Rank and Spectrum of ΣX in the FRM

Theorem 1 and its discussion above imply that in order for the generalized least

squares estimator α̂ to have asymptotically better prediction performance than

the trivial estimator 0 ∈ Rp, the ratio re(ΣX)/n must remain bounded as n and p

grow, as a first requirement.

Using that ΣX = AΣZA⊤ + ΣE under (1.5), we find

re(ΣX) =
tr(ΣX)
∥ΣX∥

≤
tr(AΣZA⊤) + tr(ΣE)

∥AΣZA⊤∥
(since ∥ΣX∥ ≥ ∥AΣZA⊤∥)

≤ K +
tr(ΣE)
∥AΣZA⊤∥

(since tr(AΣZA⊤) ≤ K∥AΣZA⊤∥)

≤ K +
∥ΣE∥

λK(AΣZA⊤)
·

tr(ΣE)
∥ΣE∥

, (since ∥AΣZA⊤∥ ≥ λK(AΣZA⊤))

where we use the convention that tr(ΣE)/∥ΣE∥ = re(ΣE) = 1 if ΣE = 0. We thus

have
re(ΣX)

n
≤

K
n
+

1
ξ

re(ΣE)
n

, (1.7)
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where

ξ B λK(AΣZA⊤)/∥ΣE∥, (1.8)

can be viewed as a signal-to-noise ratio since ΣX = AΣZA⊤ + ΣE, and we use

the convention that ξ = ∞ and re(ΣE)/ξ = 0 when ΣE = 0. In standard factor

regression models [4], ΣE = Ip, in which case re(ΣE) = p, but in our analysis we

allow for a general ΣE, with possibly smaller re(ΣE). The following simple result

follows directly from (1.7).

Lemma 2. Under model (1.5), we have re(ΣX)/n ≤ c3 whenever

K
n
≤ c1 and ξ ≥ c2

re(ΣE)
n

, (1.9)

for positive absolute constants c1, c2, c3.

Remark 1. We remark on conditions under which (1.9) holds. Suppose that

the eigenvalues of ΣZ and ΣE are constant, that is, c1 ≤ λK(ΣZ) ≤ ∥ΣZ∥ ≤ C1

and c2 < λp(ΣE) ≤ ∥ΣE∥ < C2, for some c1, c2,C1,C2 ∈ (0,∞), both standard

assumptions in factor models. Then,

re(ΣE) ≍ p, and ξ =
λK(AΣZA⊤)
∥ΣE∥

≍ λK(A⊤A), (1.10)

so the condition (1.9) reduces to K/n ≤ c1 and

λK(A⊤A) ≳
p
n
. (1.11)

We give a few examples of A that imply (1.11):

1. For a well-conditioned matrix A ∈ Rp×K with entries taking values in a

bounded interval, λK(A⊤A) ≍ p, and (1.11) holds.

2. Treating A as a realization of a random matrix with i.i.d. entries and p ≫ K,

then by standard concentration arguments (see [91], for example) we once

again have λK(A⊤A) ≳ p, with high probability, and (1.11) holds.
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3. In other situations, (1.11) is an assumption. It is a very natural, and mild,

requirement in factor regression models, and if A is structured and sparse,

(1.11) can be given further interpretation. For instance, the model X = AZ+E

has been used and analyzed in [32] for clustering the p components of X

around the latent Z-coordinates, via an assignment matrix A ∈ {0, 1}p×K , and

when ΣE is an approximately diagonal matrix. Denoting the size of the

smallest of the K non-overlapping clusters by m, for some integer 2 ≤ m ≤ p,

it is immediate to see (Lemma 38 in Appendix A.4.4) that λK(A⊤A) ≥ m.

Furthermore, when these K clusters are approximately balanced, then

m ≈ p/K and (1.11) holds, provided K ≲ n.

The positive repercussion of Lemma 2 is that under condition (1.9) and for

small enough constant c3, Theorem 1 no longer applies. This in turn opens

up the possibility of showing that, under the data generating model (1.5) with

restrictions (1.9), the risk R(α̂) will approach optimal risk benchmarks. We define

the benchmark risks in terms of the best linear predictors of y from X and Z,

respectively, in Section 1.3.2, and show that R(α̂) can indeed approach these

benchmarks in Sections 1.4.1 and 1.4.2.

For completeness, we offer the following result characterizing the spectrum

of ΣX under the factor regression model. In particular, as announced in Section

1.2, we find that the operator norm ∥ΣX∥ diverges with p under mild conditions.

The proof can be found in Appendix A.2.1.

Lemma 3. Suppose that for some c1, c2,C1,C2 ∈ (0,∞),

c1 ≤ λK(ΣZ) ≤ ∥ΣZ∥ ≤ C1 and c2 < λp(ΣE) ≤ ∥ΣE∥ < C2. (1.12)

The spectrum of ΣX can then be characterized as follows:

14



1. λi(ΣX) ≥ c2 > 0 for all i ∈ [p], i.e., the entire spectrum of ΣX is bounded below;

2. λK(ΣX) ≥ c1λK(A⊤A), so the first K eigenvalues of ΣX diverge if λK(A⊤A)→ ∞ as

p→ ∞;

3. c2 ≤ λi(ΣX) ≤ C2 for i > K, i.e., the last p−K eigenvalues of ΣX are bounded above

and below.

After introducing the risk benchmarks below, we investigate the behaviour

of the best linear prediction vector α∗ = Σ+XΣXY of y from X under the factor

regression model in Section 1.3.3, and use this in Section 1.3.4 to clarify the

importance of the factor regression model, in which (X, y) jointly have a low-

dimensional structure, in contrast to the classical linear model y = X⊤θ + η with

low-dimensional structure on X alone.

1.3.2 Risk Benchmarks

We introduce here two natural benchmarks for R(α̂) under the factor regression

model, and characterize their relationship. Under model (1.5), if Z ∈ RK were

observed, the optimal risk of a linear oracle with access to Z is

min
v∈RK

E
[
(Z⊤v − y)2

]
= E[ε2] = σ2, (1.13)

which we henceforth refer to as the oracle risk. Another natural benchmark to

compare the risk R(α̂) to is the minimum risk possible for any linear predictor

α⊤X, namely R(α∗), where

α∗ ∈ arg min
α∈Rp

R(α). (1.14)

Lemma 34 in Appendix A.4 shows that for arbitrary zero-mean (X, y) with finite

second moments, α∗ = Σ+XΣXY is a minimizer of R(α), where ΣXy B E[Xy] ∈ Rp is
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the vector of component-wise covariances.

We can characterize the difference between these two benchmarks, σ2 and

R(α∗), as follows. See Appendix A.2.2 for the proof of this result.

Lemma 4 (Comparison of risk benchmarks). Suppose model (1.5) holds and let ξ be

the signal-to-noise ratio defined in (1.8). We have

1. R(α∗) − σ2 ≥ 0 with equality if ΣE = 0.

2. Provided the matrices ΣZ, ΣE, and A are full rank,

ξ

1 + ξ
β⊤(A⊤Σ−1

E A)−1β ≤ R(α∗) − σ2 ≤ β⊤(A⊤Σ−1
E A)−1β,

where

β⊤(A⊤Σ−1
E A)−1β ≤

1
ξ
∥β∥2ΣZ

.

In particular, ∥β∥2
ΣZ
/ξ → 0 implies R(α∗) − σ2 → 0, as p→ ∞.

Although the optimal risk R(α∗) is always greater than the oracle risk σ2 (part

1 of Lemma 4), the bound ∥β∥2
ΣZ
/ξ on the difference R(α∗) − σ2 in part 2 of Lemma

4 is not a leading term in the excess risk bound given in Theorem 13. From

this perspective, we can view these benchmarks as asymptotically equivalent,

but with different interpretations. Interestingly, the condition limp→∞ ∥β∥
2
ΣZ
/ξ = 0

forces ∥α∗∥ → 0, see Corollary 7 in the next section. This is an important feature

of the FRM, and its repercussions are discussed in Section 1.3.4.
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1.3.3 Best Linear Prediction in Factor Regression Models (Popu-

lation Level)

In this section we investigate the properties of the population-level predictor α∗,

defined in (1.14), under the factor regression model (1.5). In particular, we prove

that ∥α∗∥ → 0 and yet R(0) − R(α∗) > 0 under the conditions

lim
p→∞
∥β∥2ΣZ

/λK(AΣZA⊤) = 0 and lim inf
p→∞

∥β∥ΣZ > 0. (1.15)

The property ∥α∗∥ → 0 in particular is a consequence of the joint low-dimensional

structure of (X, y) via the covariance ΣXY = AΣZβ, which the vector α∗ = Σ+XΣXY

depends on. Proofs for this section can be found in Appendix A.2.3. We first

characterize the norms ∥α∗∥ and ∥α∗∥ΣX ; the latter norm is of interest via the

identity

R(0) − R(α∗) = ∥α∗∥2ΣX
. (1.16)

It is instructive to first consider the simple case of noiseless features, X = AZ,

with E = 0. In this case, the best linear predictor of y from X is α∗⊤X = (A⊤α∗)⊤Z.

The following lemma states that α∗ = A+⊤β, which by the identity A⊤A+⊤ = IK

when A is full rank gives

α∗⊤X = (A⊤A+⊤β)⊤Z = β⊤Z, (1.17)

showing that the best linear predictor from X reduces to the best linear predictor

from Z. The lemma then uses this to derive explicit expressions for the norms of

α∗.

Lemma 5. Suppose model (1.5) holds, that ΣE = 0, and that ΣZ and A are full rank.

Then, α∗ = A+⊤β, and

∥α∗∥2ΣX
= ∥β∥2ΣZ

and ∥α∗∥2 = β⊤(A⊤A)−1β.
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We next find that in the more realistic case, when ΣE , 0, even though identity

(1.17) no longer holds, we can recover the same identities for ∥α∗∥ΣX and ∥α∗∥, up

to constants, when the noise matrix ΣE is well-conditioned.

Lemma 6. Suppose model (1.5) holds and that A, ΣZ, ΣE are all full rank. Then, when

ξ = λK(AΣZA⊤)/∥ΣE∥ > c > 1 and κ(ΣE) < C < ∞,

∥α∗∥2ΣX
≍ ∥β∥2ΣZ

and ∥α∗∥2 ≍ β⊤(A⊤A)−1β.

Remark 2. We illustrate our findings in Lemmas 5 and 6 with the following

example (that we will use in our simulations in Section 1.4.4), where ΣZ = σ
2
Z IK ,

ΣE = σ
2
EIp, and A⊤A = a2IK . It can be verified that in this case,

α∗ =
σ2

Z

σ2
E + a2σ2

Z

Aβ (1.18)

∥α∗∥2 =
a2σ2

Z

(σ2
E + a2σ2

Z)2
∥β∥2ΣZ

(1.19)

∥α∗∥2ΣX
=

a2σ2
Z

σ2
E + a2σ2

Z

∥β∥2ΣZ
. (1.20)

Since λK(AΣZA⊤) = a2σ2
Z and ξ = a2σ2

Z/σ
2
E, it confirms that ∥β∥2

ΣZ
/λK(AΣZA⊤) → 0

forces ∥α∗∥ → 0, while at the same time ∥α∗∥2
ΣX
≍ ∥β∥2

ΣZ
when ξ is bounded below

(in fact, ∥α∗∥2
ΣX
/∥β∥2

ΣZ
→ 1 when ξ → ∞ in this example).

We note that while ∥α∗∥ → 0, there is no reason to assume α∗ to be sparse. In

this example, we can see from the explicit formula (1.18) that α∗i = 0⇐⇒ A⊤i qβ = 0,

whence row-sparsity of the matrix A induces sparsity of the vector α∗. For a more

general A, this isn’t the case and α∗ isn’t necessarily sparse or even approximately

sparse. This observation is corroborated in our simulations in Section 1.4.4.

Identity (1.16), Lemma 5 and Lemma 6 imply the following conclusion.
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Corollary 7. Suppose model (1.5) holds with A, ΣZ, ΣE all full rank, let ξ =

λK(AΣZA⊤)/∥ΣE∥ > c > 1, and suppose κ(ΣE) < C < ∞. Alternatively, suppose

that under model (1.5), ΣE = 0 and A, ΣZ are full rank. Then, in either case, condition

(1.15) implies

lim
p→∞
∥α∗∥ = 0, while lim inf

p→∞
{R(0) − R(α∗)} ≳ lim inf

p→∞
∥β∥2ΣZ

> 0.

This result shows that while the norm of α∗ converges to zero in the factor

regression model, its risk is separated from the risk of the null predictor 0 by a

constant times ∥β∥2
ΣZ

. In fact, as β is an arbitrary vector in RK , the gap R(0) − R(α∗)

will typically grow as K increases.

The behaviour ∥α∗∥ → 0 is a feature of the factor regression model that

arises from the joint low-dimensional structure of the model, as encoded in

the covariance ΣXY . This is in stark contrast to the behaviour of the best linear

prediction vector θ in a linear model y = X⊤θ+η, as we do not expect ∥θ∥ to vanish

as p grows. We discuss the important roles played by these quantities in the risk

bound analysis in the next section.

1.3.4 Prediction Under Linear Regression with Conditions on

the Design Versus Prediction Under Latent Factor Regres-

sion

The model (1.5) can be said to have joint low-dimensional structure, in that both

the features X and response y are (noisy) functions of the low-dimensional latent

vector Z. We would like to argue that this structure plays an important role in
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the behaviour of the GLS α̂, which we will study in the next section. In particular,

to understand the implications of this joint-low dimensional structure, we could

compare model (1.5) to a model in which X continues to follow a factor model,

but y is connected to X via a linear model:

X = AZ + E, y = X⊤θ + η, (1.21)

where θ ∈ Rp is a generic p-dimensional regression vector, and η is zero-mean

noise independent of X. Model (1.21) captures the setting in which there is

low-dimensional structure in the features alone.

When (X, y) ∈ Rp × R are jointly Gaussian, Lemma 36 in Appendix A.4.2

shows the simple fact that if the factor regression model (1.5) holds, then (1.21)

holds, with regression coefficients θ = α∗ and error η B y − X⊤α∗, independent of

X. Here α∗ is the best linear predictor under the factor regression model (1.5), which

we studied the properties of in Section 1.3.3 above.

We can thus compare model (1.5) and (1.21) directly in the Gaussian case. We

stress that we do not assume Gaussianity elsewhere in our paper, but use it here

to facilitate this comparison.

In Section 1.3.3 we found that ∥α∗∥ → 0, provided (1.15) holds. Thus, when

the factor regression model (1.5) is viewed as a particular case of (1.21), we have

∥α∗∥ = ∥θ∥ → 0. This behavior is in sharp contrast with the typical behavior of

a generic linear model y = X⊤θ + η as in (1.21), in which ∥θ∥ is usually fixed or

growing with p. We argue that this difference has important implications for the

performance of the GLS predictor α̂.

One way this can be seen is by considering the bound from the recent work

[13] on the excess risk R(α̂) − R(θ), proved under model E(y|X) = XTθ for sub-
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Gaussian (X, y). In particular, the bound of [13] contains a bias term given by

∥θ∥2∥ΣX∥max


√

re(ΣX)
n

,
re(ΣX)

n

 . (1.22)

We examine this bound assuming further that model (1.21) holds. Since

∥ΣX∥max


√

re(ΣX)
n

,
re(ΣX)

n

 = max


√
∥ΣX∥tr(ΣX)

n
,

tr(ΣX)
n

 ≥ tr(ΣX)
n

(1.23)

and
tr(ΣX)

n
=

tr(ΣE)
n
+

tr(AΣZA⊤)
n

→ ∞

under model (1.21) with mild assumptions on either ΣE (e.g., ΣE ≍ Ip) or A (see

Remark 1), the bias term (1.22) will only converge to zero if ∥θ∥ → 0.

As noted above, ∥θ∥ → 0 is rather unnatural in a generic model (1.21). How-

ever, we also noted that when (X, y) are Gaussian and the factor regression model

(1.5) holds, then (1.21) holds with ∥θ∥ = ∥α∗∥ → 0, which means that the bias term

(1.22) can converge to zero when the data is generated by model (1.5). We take

this as indication that the bias in prediction with α̂ can be significantly lower in

the factor regression model (1.5) compared to a generic model (1.21) as a result

of the joint low-dimensional structure of model (1.5).

We note that this discussion is only based on an upper bound (1.22) on the

bias term of the prediction risk. It nevertheless motivates a full investigation of

an alternative upper bound to (1.22), directly derived under model (1.5). This is

the subject of Section 1.4 below, with our main result presented in Theorem 13.

Remark 3. The authors of [13] take a different route, complementary to ours, in

their analysis of the bound (1.22). Although they derived it with no assumptions

on ∥ΣX∥, the desired convergence to zero is established under the assumption
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that ΣX belongs to what is called in [13] a class of benign covariance matrices, that

in particular satisfy ∥ΣX∥ = 1.

This assumption allows the authors to avoid making the unpleasant assump-

tion that a generic θ would have ℓ2-norm converging to zero with p. To see why,

note that when ∥ΣX∥ is bounded, working in the regime re(ΣX)/n→ 0 immediately

implies

∥ΣX∥max


√

re(ΣX)
n

,
re(ΣX)

n

→ 0,

which in turn means that under the assumption ∥ΣX∥ = 1, their bias term (1.22)

can converge to zero even when ∥θ∥ ̸→ 0, for a generic θ.

However, as we have shown in Lemma 3 above, this class does not cover

covariance matrices ΣX associated with a random vector that obeys a factor model

X = AZ + E, as ∥ΣX∥ → ∞with p in this case. Since in factor regression we argued

that ∥θ∥ = ∥α∗∥ → 0, one can still expect that (1.22) will vanish, in the regime

re(ΣX)/n → 0, even though ∥ΣX∥ → ∞. The results of Section 1.4 can thus be

viewed as complementary to those in [13].

1.4 Minimum ℓ2-norm Prediction in Factor Regression

In this section we analyze the GLS α̂, and present our main contribution, namely,

novel finite-sample bounds on the prediction risk R(α̂) relative to the benchmarks

laid out in Section 1.3.2.
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1.4.1 Exact Adaptation in Factor Regression Models with Noise-

less Features

We begin our analysis by considering an extreme case of model (1.5), in which

E = 0 almost surely, and thus ΣX is degenerate, with re(ΣX) ≤ rank(ΣX) = K.

Proofs for this section are contained in Appendix A.3.1. We make the follow-

ing assumptions.

Assumption 2. The p × K matrix A and K × K matrix ΣZ both have full rank equal to

K.

Assumption 3. E = Σ1/2
E Ẽ, where Ẽ ∈ Rp has independent entries with zero mean, unit

variance, and sub-Gaussian constants bounded by an absolute constant.

Furthermore, Z = Σ1/2
Z Z̃ and ε = σε̃, where Z̃ ∈ RK and ε̃ ∈ R have zero mean and

sub-Gaussian constants bounded by an absolute constant.

We first analyze the norm of α̂. In Lemma 5 above, we showed that

∥α∗∥2 = β⊤(A⊤A)−1β when ΣE = 0, and as a result, Corollary 7 states that ∥α∗∥ → 0,

provided ∥β∥2
ΣZ
/λK(AΣZA⊤) → 0 as p → ∞. We now show that α̂ mimics this be-

havior under the additional condition that (σ2 log n)/λK(AΣZA⊤)→ 0 as n→ ∞.

Lemma 8. Under model (1.5) with ΣE = 0, suppose that Assumptions 2 and 3 hold, and

that n > C · K for some large enough absolute constant C > 0. Then, with probability at

least 1 − c/n for some absolute constant c > 0,

∥α̂∥2 ≲
1

λK(AΣZA⊤)

(
∥β∥2ΣZ

+ σ2 K log n
n

)
. (1.24)

The fact that α̂ vanishes does not imply that R(α̂)/R(0) → 1, just like

R(α∗)/R(0) ̸→ 1 in Corollary 7. We will now show that in fact the risk R(α̂)
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approaches the optimal risk R(α∗) by adapting to the low-dimensional struc-

ture of the factor regression model. Let ŷz B Z⊤β̂ be the predictor based on the

least-squares regression coefficients β̂ B Z+y of y onto Z; this is the classical

least-squares prediction of y under model (1.5) that an oracle would use if it had

access to the unobserved data matrix Z, and the new, but unobservable, data

point Z. In contrast, let ŷx = X⊤α̂ be the least-squares predictor of y from X based

on (X, y) only. Theorem 9.1 below shows that the realizable prediction ŷx equals

the oracle prediction ŷz. The second part of the theorem gives lower and upper

bounds on the risk that hold with high probability over the training data.

Theorem 9 (Factor regression with noiseless features). Under model (1.5) with

ΣE = 0, suppose that Assumption 2 holds.

1. Then, on the event that the matrix Z has full rank K, we have, ŷx = ŷz and

R(α̂) = E(X,y)[(X⊤α̂ − y)2] = E(Z,y)[(Z⊤β̂ − y)2].

2. Suppose that Assumption 3 also holds and that n > C · K for some large enough

absolute constant C > 0. Then, with probability at least 1 − c/n for some absolute

constant c > 0, Z has full rank K and

R(α̂) − σ2 ≲ σ2 K log n
n

and Eε[R(α̂)] − σ2 ≳ σ2 K
n
. (1.25)

The risk bounds (1.25) are the same as the standard risk bounds for prediction

in linear regression in K dimensions with observable design, despite A not being

known under model (1.5). We note that, since rank(X) = K < n, y may not

lie in the range of X and so α̂ may not interpolate. Nonetheless, under model

(1.5), with E , 0 and in the interpolating regime, we expect that the prediction

performance of ŷx will still approximately mimic that of ŷz as long as the signal,

as measured by λK(A⊤ΣZA), is strong relative to the noise, as measured by ∥ΣE∥.

The next section is devoted to the detailed study of this fact.
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Finally, another explanation of the perhaps surprisingly good performance

of the GLS is that it coincides with Principal Component Regression (PCR),

see, e.g., [86], in the case when ΣE = 0. Indeed, this is a natural and practical

prediction method when the covariance matrix ΣX has an approximately low

rank. If ΣE = 0, then ΣX = AΣZA⊤ has rank of at most K and so is exactly low

rank. In PCR, the response y is regressed onto the first K principal components

of the data matrix X to estimate a vector of coefficients (XÛK)+y. Here ÛK ∈ Rp×K

has columns equal to the first K eigenvectors of the sample covariance matrix

X⊤X/n. A new response y is then predicted by α̂⊤PCRX, where α̂PCR B ÛK(XÛK)+y

and X is the new feature vector. The following lemma states that the PCR and

GLS predictors coincide when ΣE = 0.

Lemma 10. Define α̂PCR B ÛK(XÛK)+y. On the event {rank(X) = K}, α̂ = α̂PCR. In

particular, when ΣE = 0, K > C · n, and Assumptions 2 & 3 hold, α̂ = α̂PCR with

probability at least 1 − c/n for some absolute constant c > 0.

Thus, the prediction α̂⊤PCRX of y based on PCR is exactly equal to the prediction

α̂⊤X based on the GLS, in the case when ΣE = 0. Given that PCR is a natural

and widely used prediction method in this setting, this further explains the

performance of the GLS, at least when ΣE = 0.

1.4.2 Approximate Adaptation of Interpolating Predictors in

Factor Regression

In this section we present our main results on the excess risk of prediction with α̂,

relative to the two benchmarks in Section 1.3.2 above, under the factor regression

model (1.5) with E , 0.
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Our main result, Theorem 13 below, shows that despite the fact that α̂ in-

terpolates, in that Xα̂ = y (Proposition 11), and that ∥α̂∥ → 0 (Lemma 12), the

excess risks can vanish as a result of approximate adaptation to the embedded

low-dimensional structure of (1.5). The estimator α̂ is guaranteed to interpolate

the data whenever rank(X) = n, or equivalently, the smallest singular value

σn(X) > 0. The next proposition shows that the following set of conditions in

terms of n, K and re(ΣE) guarantee this. Proofs for this section are contained in

Appendix A.3.2.

Proposition 11. Under model (1.5), suppose that Assumptions 2 and 3 hold, and that

re(ΣE) > C · n for some C > 0 large enough. Then, with probability at least 1 − c/n, for

some c > 0,

σ2
n(X) ≳ tr(ΣE) > 0,

and thus, in particular, α̂ interpolates: Xα̂ = y.

General existing bounds of the type σn(X) ≳ (
√

p −
√

n) are by now well

established in random matrix theory [85]. When p > C · n for some C > 1

and the entries of X are i.i.d. sub-Gaussian with zero mean and unit variance,

Theorem 1.1 in [85] implies that σ2
n(X) ≳ p with high probability. By comparison,

Proposition 11 holds for X with i.i.d. sub-Gaussian rows with covariance matrix

ΣX = AΣZA⊤ + ΣE.

The following result shows that as in the noiseless case ΣE = 0 of Lemma 8,

∥α̂∥ → 0, mimicking the behavior of the best linear predictor α∗. We proved in

Lemma 6 and Corollary 7 that ∥α∗∥ → 0 when λK(AΣZA⊤) grows faster than ∥β∥2
ΣZ

as p→ ∞; we will need here the additional assumption that n log n/re(ΣE)→ 0 to

guarantee ∥α̂∥ → 0 as n→ ∞. The proof uses Proposition 11, which requires that

the effective rank re(ΣE) is larger than a constant times n.
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Lemma 12. Under model (1.5), suppose that Assumptions 2 and 3 hold and n > C · K

and re(ΣE) > C · n hold, for some C > 0. Then, with probability exceeding 1 − c/n, for

some c > 0,

∥α̂∥2 ≲
1

λK(AΣZA⊤)
∥β∥2ΣZ

+ σ2 n log n
re(ΣE)

. (1.26)

Despite the fact that ∥α̂∥ → 0 under the conditions stated, we now show that

α̂ can outperform the null predictor 0. If λK(AΣZA⊤) grows faster than tr(ΣE)/n

and K/n→ 0, then Lemma 2 states that re(ΣX)/n remains bounded, and Theorem

1 allows for the possibility that α̂ has asymptotically lower risk than 0. Theorem

9 above showed that R(α̂) − σ2 can in fact approach 0 under certain conditions

when E = 0. The following result demonstrates that this can continue to hold

even when E , 0.

Theorem 13 (Main result: Risk bound for factor regression). Under model (1.5),

suppose that Assumptions 2 and 3 hold and n > C · K and re(ΣE) > C · n hold, for some

C > 0. Then, with probability exceeding 1 − c/n, for some c > 0,

R(α̂) − R(α∗) ≤ R(α̂) − σ2 ≲
∥β∥2
ΣZ

ξ
·

re(ΣE)
n
+ σ2 n log n

re(ΣE)
+ σ2 K log n

n
. (1.27)

Recall ξ B λK(AΣZA⊤)/∥ΣE∥ is the signal-to-noise ratio.

Remark 4. Suppose n ≫ σ2K log n and re(ΣE) ≫ σ2n log n. We then find that α̂ inter-

polates by Proposition 11, and the behavior of α̂ is determined by the eigenvalue

λK(AΣZA⊤) or, equivalently, the signal-to-noise ratio ξ = λK(AΣZA⊤))/∥ΣE∥.

(a) If λK(AΣZA⊤) ≫ tr(ΣE)/n, then Lemma 2 implies that R(α̂) need no longer

approach the trivial null risk R(0).

(b) If λK(AΣZA⊤) ≫ ∥β∥2
ΣZ

, then Lemma 12 implies ∥α̂∥ → 0.
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(c) If λK(AΣZA⊤) ≫ ∥β∥2
ΣZ

tr(ΣE)/n, then R(α̂) − σ2 → 0. Indeed, this assumption,

together with n ≫ σ2K log n and re(ΣE) ≫ σ2n log n, ensures that the right-

hand side of the inequality (1.27) in Theorem 13 is asymptotically negligible.

The first inequality in (1.27) is an immediate consequence of the first part of

Lemma 4 above. We now discuss the three terms appearing in the upper bound

(1.27) of Theorem 13. A comparison with the risk bound in Theorem 9 above,

where the feature noise E is equal to zero, reveals that the term σ2K log(n)/n in

(1.27) is equal to the risk of the oracle predictor ŷz up to the multiplicative log n

factor, and is small when K ≪ n. The first two terms can be viewed as bias

and variance components, respectively, that capture the impact of non-zero ΣE.

The first term (bias) is proportional to the effective rank re(ΣE), while the second

term (variance) is inversely proportional to re(ΣE). As such, the variance term is

implicitly regularized by the feature noise E, while for the bias to be small, we

need the signal-to-noise ratio ξ to be sufficiently large. For example, suppose

that the eigenvalues of ΣZ and ΣE are constant, that is, c1 ≤ λK(ΣZ) ≤ ∥ΣZ∥ ≤ C1

and c2 < λp(ΣE) ≤ ∥ΣE∥ < C2, for some c1, c2,C1,C2 ∈ (0,∞), both standard

assumptions in factor models. Then,

re(ΣE) ≍ p, and ξ =
λK(AΣZA⊤)
∥ΣE∥

≳ λK(A⊤A). (1.28)

Provided β has uniformly bounded entries |βi| ≤ C, ∥β∥2
ΣZ
≤ C1 · C2 · K, and the

bias term in (1.27) can be bounded as

BZ B
∥β∥2
ΣZ

ξ
·

re(ΣE)
n

≲
K p

n · λK(A⊤A)
; (1.29)

it thus approaches zero whenever

λK(A⊤A) ≫
K p
n
. (1.30)
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We mention that the examples of A in Remark 1 of Section 1.3.1 all imply (1.30),

provided K ≪ n in cases 1 and 2 (since there λK(A⊤A) ≳ p), and K2 ≪ n in case 3

(since there λK(A⊤A) ≳ p/K).

We summarize this discussion in Corollary 14 below.

Corollary 14. Under the same conditions as in Theorem 13, suppose, in particular, that

λK(ΣZ) and ∥ΣE∥ are constant, re(ΣE) ≍ p, and ∥β∥2
ΣZ

≲ K. Then, with probability at

least 1 − c/n, for some absolute constant c > 0,

R(α̂) − R(α∗) ≤ R(α̂) − σ2 ≲
K

λK(A⊤A)
×

p
n
+ σ2

(
n
p
+

K
n

)
log n. (1.31)

In particular, if λK(A⊤A) ≳ p/K, and with probability at least 1 − c/n, for some absolute

constant c > 0,

R(α̂) − R(α∗) ≤ R(α̂) − σ2 ≲
K2

n
+ σ2

(
n
p
+

K
n

)
log n. (1.32)

Figure 1.1 illustrates the risk behavior proved in Theorem 13. Note the descent

towards zero in the regime γ B p/n > 1. For completeness, we also provide a

bound on the risk R(α̂) for the low-dimensional case p ≪ n, under model (1.5), in

Appendix A.4.3.

1.4.3 Comparison to Existing Results

The recent paper [13] gives a bias-variance type bound on the excess prediction

risk of the minimum-norm predictor ŷx = X⊤α̂ considered in this work. In

contrast to our study, [13] does not consider model (1.5), and in fact assumes

E[y|X] = X⊤θ for some θ ∈ Rp, which is typically not satisfied under (1.5) when

(X, y) are sub-Gaussian, but not Gaussian.
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Figure 1.1: Excess prediction risk R(α̂) − σ2 of the minimum-norm
predictor under the factor regression model as a function of γ = p/n.
Here K increases linearly from 16 to 64, n = ⌊K1.5⌋ and thus increases
from 64 to 512, and p increases from 33 to 4066. Further, ΣE = Ip,
ΣZ = IK , β = (1, . . . , 1)⊤, and A =

√
p · VK , where VK is generated by

taking the first K rows of a randomly generated p× p orthogonal matrix
V .

When the data are jointly Gaussian this assumption is, however, satisfied

under model (1.5). For this common case, Table 1.2 compares the respective

bounds on the bias and variance terms corresponding to our Theorem 13 and

Theorem 4 of [13], respectively. Again, we emphasize that the results from [13]

do not hold in general for our modeling setup, but can be used to obtain the

bounds in Table 1.2 in the Gaussian case. The entries in the second column of

Table 1.2 correspond to the bias in [13] under model (1.5), simplified in this table
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Regime Bias in Theorem 13
Bias in Theorem 4 of

[13] Common variance

p ≥ n · ξ ∥β∥2
ΣZ
· p/(n · ξ) ∥β∥2

ΣZ
· p/(n · ξ)

σ2 log n {(n/p) + (K/n)}

p ≪ n · ξ ∥β∥2
ΣZ
· p/(n · ξ) ∥β∥2

ΣZ
·
√

p/(n · ξ)

ξ ≈ p, ∥β∥2
ΣZ
≈ K K/n K/

√
n

ξ ≈ p, ∥β∥2
ΣZ
≈ K,

K ≈ n3/4 n−1/4 n1/4

Table 1.2: Comparison of risk bounds for Gaussian data.

for ease of comparison.1

In the setting of this comparison, the variance terms in our Theorem 13 and the

bound in [13] have the same rate, which we display in the third column of Table

1.2. From the first row of Table 1.2 we see that when p ≥ n ·ξ, the bias terms match

as well. However, this is not an interesting regime, as p ≪ n · ξ is a necessary

condition for either bound to converge to zero (assuming ∥β∥2
ΣZ

is bounded

below). In this case, the second row of Table 1.2 shows that the bias in [13]

becomes ∥β∥2
ΣZ

√
p/(n · ξ), which is larger than our bias bound in Theorem 13 by

a factor of
√

n · ξ/p. From the second row we see that indeed, the upper bound

on the excess risk in [13] can diverge while our bound in Theorem 13 vanishes.

For instance, if β is a non-sparse vector in RK with ∥β∥2
ΣZ
≈ K, this phenomenon

occurs if the signal-to-noise ratio ξ lies in the range K p/n ≲ ξ ≲ K2 p/n. This

illustrates that the general bound provided in [13] is not always tight.

The third row of Table 1.2 compares the bias rates in the simplified case when

∥β∥2
ΣZ
≈ K and ξ ≈ p. The fourth row gives the rates under the further assumption

that K ≈ n3/4, a concrete example of when our rate converges and that of [13]

1For simplicity, we assume for this comparison that the matrices ΣX and ΣE are invertible
and that the condition numbers κ(ΣE) and κ(AΣZ A⊤) are bounded above by an absolute constant.
Consequently, the effective rank re(ΣE) satisfies c · p ≤ re(ΣE) ≤ p, for some c ∈ (0, 1).
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diverges. Further details and discussion on the comparison of these two results

are deferred to Appendix A.3.4.

A latent factor regression model similar to (1.5) has also been studied in

Section 7 of [75] for the ridge regression estimator that minimizes the fit ∥y −

Xa∥2 + λ∥a∥2 for any λ > 0 (strict). Their model is a particular case of our model

(1.5), with ΣE = σ2
EIp, ΣZ = σ2

Z IK , up to an offset on X so that in their case,

|E[X]| > 0. Clearly, our estimator α̂ can be viewed as the limiting case λ = 0 of

ridge regression. Our results are difficult to compare directly since the analysis

in [75] is asymptotic with p/K → ψ1 and n/K → ψ2 for two absolute constants

ψ1, ψ2 ∈ (0,∞). Nevertheless, Theorem 7 and Figure 9 of [75] also show that the

excess risk R(α̂) − σ2
ε is small in the large ψ1/ψ2 (corresponding to a large p/n)

regime, in line with our assessment.

1.4.4 Comparison to Other Predictors

In Lemma 10 of Section 1.4.1 above we showed that in the case of noiseless

features, when ΣE = 0, the regression vector α̂PCR obtained by PCR is exactly

equal to the GLS regression vector α̂ on the event {rank(Z) = K}, which holds with

probability at least 1 − c/n for some universal constant c > 0. In this section we

show that when ΣE , 0, the minimum-norm estimator α̂ is competitive even with

the stylized version α̃PCR B UK(XUK)+y of PCR under the factor regression model

setting (1.5) and in the high-dimensional regime p ≫ n. This is a toy estimator

as it uses the unknown dimension K and unknown matrix UK , composed of the

first K eigenvectors of the population covariance matrix ΣX, in place of estimates
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K̂ and ÛK̂ , respectively. We provide a simple proof, found in Appendix A.3.3, of

the following risk bound for R(α̃PCR). For a detailed comparison of PCR and the

GLS, see [20], which analyzes the PCR predictor with the empirical matrix ÛK̂ ,

for a new, data adaptive, estimator K̂ of K.

Theorem 15. Under model (1.5), suppose that (X, y) are jointly Gaussian and that

Assumption 2 holds. Then, if n > C · K log n for some C > 0 large enough, with

probability at least 1 − c/n,

R(α̃PCR) − σ2 ≲ ∥ΣE∥ · ∥α
∗∥2

p
n
+ R(α∗)

K log(n)
n

(1.33)

In particular, if ΣE = 0, we obtain

R(α̃PCR) − σ2 ≲ σ2
ε

K log(n)
n

(1.34)

while, if λp(ΣE) > 0,

R(α̃PCR) − σ2 ≲ κ(ΣE)
∥β∥2
ΣZ

ξ

p
n
+ σ2 K log n

n
, (1.35)

where κ(ΣE) := λ1(ΣE)/λp(ΣE) is the condition number of the matrix ΣE.

Provided κ(ΣE) is bounded above by an absolute constant, the upper bounds

for the minimum-norm and PCR predictors are comparable. Indeed, when

κ(ΣE) < C < ∞, the risk bound of Theorem 13 for the GLS α̂ takes the form

R(α̂) − σ2 ≲
∥β∥2
ΣZ

ξ

p
n
+ σ2 log n

(
K
n
+

n
p

)
. (1.36)

The additional term σ2n log n/p in this bound is absent in the PCR prediction

bound (1.35) above, but in the regime p ≫ n it can become negligible. It is perhaps

surprising that under the factor regression model, the interpolator α̂ can not only

provide consistent prediction, but can in fact have excess risk comparable to

a genuine K-dimensional predictor widely used in practice and tailored to the
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Figure 1.2: Excess prediction risk of GLS, PCR, LASSO, Ridge regres-
sion, and the null predictor as a function of γ = p/n. Here K increases
linearly from 12 to 69, n = ⌊K1.5⌋ and thus increases from 41 to 573, and
p increases from 16 to 7215. Further, ΣE = Ip, ΣZ = IK , β = (1, . . . , 1)⊤,
and A is generated by sampling each entry iid from N(0, 1/

√
K).

problem setting. This is despite the fact that the GLS interpolates the data (when

rank(X) = n) and requires no tuning parameters or knowledge of the underlying

dimension K. We emphasize that we do not claim that the GLS is necessarily

a superior predictor to PCR in this setting. Rather, we observe the perhaps

surprising fact that these two methods are comparable under the conditions

stated.

Figure 1.2 plots the excess prediction risk of the GLS and PCR predictors.

We also include the excess prediction risks of the LASSO, Ridge regression, and

the null estimator 0 in this figure for comparison. The tuning parameters for

LASSO and Ridge regression were chosen by cross-validation. We see that the

peak in the GLS risk at γ = p/n = 1 is not present in the PCR, LASSO and Ridge
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Figure 1.3: A scatter plot of the components of α∗, from the point in
the simulation of Figure 1.2 with the largest value of γ. Here p = 7215,
K = 69, ΣE = Ip, ΣZ = IK , and A is generated by sampling each entry iid
from N(0, 1/

√
K).

risks. This is due to the fact that these methods are regularized at this point,

and in particular do not interpolate the training data. As γ increases, and thus

p ≫ n, the GLS risk approaches the PCR risk, as indicated by the discussion

above. The plot shows how the Ridge risk also approaches the common value of

the PCR and GLS risks. Recalling that GLS is a limiting case of Ridge regression

with regularization parameter λ→ 0, this suggests that for p ≫ n, in our setting,

the optimal choice of regularization parameter for ridge regression approaches

zero [50, 75].

We plot the coefficients of α∗ in Figure 1.3 for the case p = 7215 and K = 69.

We can see that α∗ is clearly non-sparse, which explains the inferior performance

of the LASSO in this setting.

For completeness, we contrast the above simulation setting in which α∗ is
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non-sparse with special case in which α∗ is in fact K-sparse. In this case, we take

the matrix A with columns equal to the canonical basis vectors e1, . . . , eK ∈ Rp,

multiplied by
√

p, and we set β = (1, . . . , 1)⊤, ΣZ = IK and ΣE = Ip. Then A⊤A = pIK

and α∗ is K-sparse since, by (1.18) of Remark 2,

α∗i =


√

p/(p + 1) for i = 1, . . . ,K

0 for i = K + 1, . . . , p
.

Figure 1.4 plots the excess risk of the GLS and other predictors for these model

settings. We see that in this sparse setting the LASSO performs well, as expected,

with its excess risk approximately equal to that of PCR for p ≫ n, both of which

do slightly better than GLS and Ridge. While LASSO and PCR outperform GLS in

this case, we note that the excess risk of the GLS still decreases towards zero, and

performs perhaps surprisingly well relative to the LASSO, given that the LASSO

is specifically tailored to this exactly sparse setting. Moreover, we emphasize that

for more generic choices of model parameters, α∗ will not necessarily be sparse

or even approximately sparse, and we should expect the GLS to outperform the

LASSO (see Remark 2 for further comment).

The take-home message is that for γ = p/n large enough, the GLS is a surpris-

ingly competitive predictor, given its interpolating property, and in fact performs

as well in the generic setting of Figure 1.2 as the PCR predictor chosen with the

unknown, optimal number of components K, in addition to Ridge regression

with tuning parameter chosen by cross-validation. Even when the model pa-

rameters are carefully chosen so that the best linear predictor α∗ is K-sparse, the

GLS performs not much worse than the LASSO, which is tailored to this setting,

provided that p is very large.
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Figure 1.4: Excess prediction risk of GLS, PCR, LASSO, Ridge regres-
sion, and the null predictor as a function of γ = p/n. Null risk is not
visible on plot since it is larger than the maximum plotted value. Here
K increases linearly from 12 to 69, n = ⌊K1.5⌋ and thus increases from
41 to 573, and p increases from 16 to 7215. Further, ΣE = Ip, ΣZ = IK ,
β = (1, . . . , 1)⊤, and A has columns equal to the canonical basis vectors
e1, . . . , eK ∈ Rp, multiplied by

√
p.
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CHAPTER 2

PREDICTION UNDER LATENT FACTOR REGRESSION: ADAPTIVE PCR,

INTERPOLATING PREDICTORS AND BEYOND

2.1 Introduction

This work is devoted to the derivation and analysis of finite sample prediction

risk bounds for a class of linear predictors of a random response Y ∈ R from a

high-dimensional, and possibly highly correlated random vector X ∈ Rp, when

the vector (X,Y) follows a latent factor regression model, generated by a latent

vector of dimension lower than p. We assume that there exist a random, unob-

servable, latent vector Z ∈ RK , a deterministic matrix A ∈ Rp×K , and a coefficient

vector β ∈ RK such that

Y = Z⊤β + ε,

X = AZ +W,
(2.1)

with some unknown K < p. The random noise ε ∈ R and W ∈ Rp have mean zero

and second moments σ2 B E[ε2] and ΣW B E[WW⊤], respectively. The random

variable ε and random vectors W and Z are mutually independent. Throughout

the paper, both ΣZ := E[ZZ⊤] and A have rank equal to K.

Independently of this model formulation, but based on the belief that Y

depends chiefly on a lower-dimensional approximation of X, prediction of Y

via principal components (PCR) is perhaps the most utilized scheme, with a

history dating back many decades [53, 64]. Given the data X = (X1, . . . , Xn)⊤ and

Y = (Y1, . . . ,Yn) consisting of n independent copies of (X,Y) ∈ Rp × R, PCR-k
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predicts Y∗ ∈ R after observing a new data point X∗ ∈ Rp by

Ŷ∗Uk
= X⊤∗ Uk

[
U⊤k X⊤XUk

]+U⊤k X⊤Y

= X⊤∗ Uk [XUk]+ Y, (2.2)

where Uk is the p × k matrix of the top eigenvectors of the sample covariance

matrix X⊤X/n, relative to the largest k eigenvalues, where k is ideally determined

in a data-dependent fashion and M+ denotes the Moore-Penrose inverse of a

matrix M.

Model (2.1) provides a natural context for the theoretical analysis of PCR-k

prediction. It is perhaps surprising that its theoretical study so far is limited to

asymptotic analyses of the out-of-sample prediction risk for PCR-K as p, n→ ∞

[10, 86], and finite sample / asymptotic risk bounds on the in-sample prediction

accuracy of PCR-K [8, 12, 42, 43, 63] in identifiable factor models with known and

fixed K.

To the best of our knowledge, finite sample prediction risk bounds for Ŷ∗Uk
,

corresponding to data-dependent choices of k, are lacking in the literature, and

their study under factor models of unknown K, possibly varying with n, provides

motivation for this work.

To obtain risk bounds for PCR, we prove a master theorem, Theorem 17,

that establishes a finite sample prediction risk bound for linear predictors of the

general form

Ŷ∗
B̂
= X⊤∗ B̂

(
B̂⊤X⊤XB̂

)+
B̂⊤X⊤Y, (2.3)

where B̂ ∈ Rp×q is an appropriate matrix that may be deterministic or depend on

the data X, with dimension q allowed to be random.

This approach has the benefit of not only covering the special case of PCR,
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corresponding to choice B̂ = Uk, but of offering a unifying analysis of other

prediction schemes of the form (2.3). One important example corresponds to B̂ =

Ip, which leads to another model agnostic predictor, the generalized least squares

estimator (also known as the minimum norm interpolating predictor), which has

enjoyed revamped popularity in the last two years [13–18, 33, 44, 51, 72, 77–79].

Using the full data matrix X for prediction—instead of just the first k principal

components as in PCR—leads to additional bias compared to PCR prediction.

However, in the high-dimensional regime p ≫ n, this bias can become small and

choosing B̂ = Ip can become a viable alternative to PCR that requires no tuning

parameters.

In addition to these two model-agnostic prediction methods, Theorem 17 can

be used to analyze predictors directly tailored to model (2.1), which are shown

formally to be of type (2.3) in Section 2.4.2. We give a particular expression of

B̂, as well as the corresponding prediction analysis, under further modelling

restrictions that render parameters K, A and β identifiable. The model specifica-

tions given in Section 2.4.2 allow us to view A as a cluster membership matrix,

making it possible to address a third, understudied, class of examples pertaining

to prediction from low-dimensional feature representation, that of prediction of

Y via latent cluster centers, for features that exhibit an overlapping clustering

structure corresponding to A.
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2.1.1 Our Contributions and Organization of the Paper

Our main theoretical goal is to offer sufficient conditions on B̂ under which the

prediction risk R(B̂), defined as

R(B̂) B E[(Y∗ − Ŷ∗
B̂
)2], (2.4)

provably approaches an optimal risk benchmark, as n and p grow, with particular

attention given to the case p > n. The expectation in (2.4) is taken with respect

to the new data point (X∗,Y∗). Our main applications will be to the finite sam-

ple risk bounds of the three classes of predictors discussed in the previous section.

1. General finite sample risk bounds for linear predictors, under factor

regression models. To meet our main theoretical goal, in Section 2.2, we state the

risk benchmark in Lemma 16 and prove a master theorem, and our main theoret-

ical result, Theorem 17. It provides a finite sample bound on R(B̂), for generic

B̂, when (X,Y) follow a factor regression model (2.1) that is fully introduced in

Section 2.2.1.

The risk bound (2.14) of Theorem 17 depends on random quantities r̂ =

rank(XPB̂), η̂ = n−1σ2
r̂ (XPB̂), and ψ̂ = n−1σ2

1(XP⊥
B̂
), where we use σk(M) to denote

the kth largest singular value for any matrix M. To interpret these, note that

Ŷ∗
B̂
= Ŷ∗PB̂

(see Lemma 40 in Appendix B.2 for the proof), where PB̂ is the projection

onto the range of B̂. We then see that r̂ is the rank of the projected data matrix

XPB̂ used for constructing Ŷ∗
B̂
, η̂ captures the size of the signal that is retained

in X after projection onto the range of B̂, and ψ̂ captures the bias introduced by

using only the component of X in the range of B̂ for prediction.

The utility of Theorem 17, as a general result, is in reducing the difficult task
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of bounding R(B̂) to the relatively easier one of controlling r̂, η̂, and ψ̂ correspond-

ing to any matrix B̂ of interest.

2. Finite sample risk bounds for PCR-̂s, with data-adaptive ŝ principal

components. We use Theorem 17 to analyze the prediction risk of PCR-̂s un-

der the factor regression model, for two choices of the number of principal

components ŝ. We first consider the theoretical elbow method, which selects ŝ

corresponding to the smallest eigenvalue of X⊤X/n above the noise level of order

δW B c(∥ΣW∥op + tr(ΣW)/n), for an absolute constant c > 0. Corollary 19 provides

the rate

R(Uŝ) − σ2 ≲ (K + log n)
σ2

n
+ δWβ

⊤(A⊤A)−1β. (2.5)

The first term on the right hand side is the standard variance term of linear

regression in K dimensions. The second term is a bias term that arises from the

fact that we predict using X instead of Z; we show that such a term is unavoidable

in Lemma 16 of Section 2.2.2 below.

We termed this procedure theoretical as δW depends on unknown quantities

of the data distribution. We address this by introducing a novel method in Sec-

tion 2.3.1, which we show in Corollary 21 achieves the same rate as PCR with

the theoretical elbow method, under mild additional assumptions, and is fully

data-adaptive, only requiring the choice of one scale-free tuning parameter.

3. Minimum-norm interpolating predictors. In Section 2.4.1 we use the

master theorem to recover risk bounds for the Generalized Least Squares pre-

dictor (GLS), independently derived in [33]. This predictor is also known as the

minimum-norm interpolating predictor when p > n.
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4. Prediction under identifiable factor regression models: Essential re-

gression. In Section 2.4.2 we consider a particular identifiable factor regression

model, the Essential Regression model introduced in [22]. The identifiability

assumptions employ a type of errors-in-variables parametrization of A, described

in Section 2.4.2, that allows the components of Z to be respectively matched with

distinct groups of components of X. The latter property, combined with a further

sparsity assumption on A, can be used to define overlapping clusters of X with

latent centers Zk, 1 ≤ k ≤ K [26]. Thus, of independent interest, prediction in

Essential Regression is prediction via latent cluster centers. We show formally

in Section 2.4.2 that this model specification leads to predictors of type (2.3),

with B̂ = Â, for an appropriate estimator Â of A. We provide a finite sample

prediction bound in Theorem 24, as an application of Theorem 17. We use the

derived bound as an example that illustrates the possible benefits of sparsity in

the predictor’s coefficient matrix, as our matrix Â is allowed to be sparse.

5. Data-splitting under factor regression models. To allow for model selec-

tion among the diverse set of prediction methods in this setting, we offer a simple

model selection approach in Section 2.5 based on data splitting. We provide an

oracle inequality showing that the selected predictor performs nearly as well as

the predictor with the lowest risk.

A preview of the results in Sections 2.3—2.4 is given in Table 2.1 below,

which focuses on the high-dimensional regime where p > Cn for a large enough

constant C > 0, and is stated under the simplifying assumptions λK(A⊤A) ≳ p/K
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and re(ΣW) ≍ p, where re(ΣW) B tr(ΣW)/∥ΣW∥op is the reduced effective rank of ΣW ,

the covariance matrix of W from model (2.1). The bound for Essential Regression

contains the quantity ∥AJ∥0, which is the sparsity level of the sub-matrix AJ of A

corresponding to non-pure variables in the Essential Regression model, namely

the variables associated with more than one latent factor Zk (see Section 2.4.2

for a formal definition). The full set of conditions under which these bounds

hold, as well as their general form is given, respectively, in each of the sections in

which these methods are analyzed. For now we mention that we do not make

specific distributional assumption on the data, but we do derive the rates given

in the table below under the assumption that ε ∈ R, Z ∈ RK , and W ∈ Rp are

sub-Gaussian.

The term σ2K/n is common to all three risk bounds, and shows that all

methods have the potential to adapt to the unknown, latent, K-dimensional

model structure, provided that the remaining terms are small. Relative to PCR

and ER, the GLS method has an additional variance term σ2n/p, that arises from

the fact that GLS uses the full data matrix X, as opposed to a lower-dimensional

projection of it; this demonstrates that GLS has competitive performance only

when p ≫ n. The relative performance of the PCR and ER methods depends on

the sparsity of the matrix AJ: when ∥AJ∥0 = o(p), for example, the ER method can

outperform PCR.

We further discuss the relative merits of these predictors, in terms of their

respective risk bounds and assumptions under which they hold, in Section 2.4.3.

We conclude the paper with Section 2.6, in which we present a detailed

simulation study of the PCR-type predictors, the minimum-norm interpolating

predictor, and predictors under Essential Regression, as well as the proposed
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Prediction Method B̂ Excess risk bound

PCR UK
K
nσ

2 + K
p ∥ΣW∥op∥β∥

2 + K
n ∥ΣW∥op∥β∥

2

GLS Ip
K
nσ

2 + n
pσ

2 + K
n ∥ΣW∥op∥β∥

2

ER Â K
nσ

2 + K
p ∥ΣW∥op∥β∥

2 + ∥AJ∥0
p ×

K
n ∥ΣW∥op∥β∥

2

Table 2.1: Summary of bounds on R(B̂) − σ2, where R(B̂) is defined in
(2.4), for Principal Component Regression (PCR), Generalized Least
Squares (GLS), and Essential Regression (ER), stated under simplifying
assumptions described in Section 2.4.3. The second column gives the
choice of B̂ corresponding to each method. All three bounds follow
from the main Theorem 17.

model selection method. All proofs are deferred to the Appendix.

Notation: We use the following notation throughout the paper. For any vector

v, we use ∥v∥q denote its ℓq norm for 0 ≤ q ≤ ∞. We write ∥v∥ = ∥v∥2. For an

arbitrary real-valued matrix M ∈ Rr×q, we use M+ to denote the Moore-Penrose

inverse of M, and σ1(M) ≥ σ2(M) ≥ · · · ≥ σmin(r,q)(M) to denote the singular values

of M in non-increasing order. We define the operator norm ∥M∥op = σ1(M), the

Frobenius norm ∥M∥2F =
∑

i, j M2
i j, the elementwise sup-norm ∥M∥∞ = maxi, j |Mi j|

and the cardinality of non-zero entries ∥M∥0 =
∑

i, j 1Mi j,0. For a symmetric positive

semi-definite matrix Q ∈ Rp×p, we use λ1(Q) ≥ λ2(Q) ≥ · · · ≥ λp(Q) to denote the

eigenvalues of Q in non-increasing order, and κ(Q) = λ1(Q)/λp(Q) to denote its

condition number.

For any two sequences an and bn, we write an ≲ bn if there exists some constant

C such that an ≤ Cbn. The notation an ≍ bn stands for an ≲ bn and bn ≲ an.

We use Id to denote the d × d identity matrix. For m ≥ 1, we let [m] =

{1, 2, . . . ,m}. Lastly, we use c, c′,C,C′ to denote positive and finite absolute con-
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stants that unless otherwise indicated can change from line to line.

2.2 Bounding the Risk R(B̂)

In this section we derive and discuss bounds on the risk R(B̂) defined in (2.4),

corresponding to the predictor Ŷ∗
B̂
. Our results are valid for any B̂ ∈ Rp×q that

can be either random depending on X or fixed, where q ≤ p but is allowed to be

random.

2.2.1 Preliminaries

As the risk R(B̂) is defined relative to the first two moments of (X,Y), which are

further linked to quantities (A, β,ΣZ,ΣW , σ
2) under model (2.1), our risk bounds

are written in terms of the components of θ := (K, β, A,ΣZ,ΣW , σ
2). We thus start

by formally defining model (2.1) with respect to θ.

[(Sub-Gaussian) Factor Regression Model] We say the pair (X,Y) follows the

model FRM(θ) with θ = (K, β, A,ΣZ,ΣW , σ
2), and write (X,Y) ∼ Pθ or (X,Y) ∼

FRM(θ), when

(1) Equation (2.1) holds with matrix A ∈ Rp×K , vector β ∈ RK , and random

quantities (Z,W, ε) ∈ (RK ,Rp,R) that are mutually independent;

(2) W and ε are mean zero with Eθ[WW⊤] = ΣW and Eθ[ε2] = σ2, and Z is also

mean zero without loss of generality, with Eθ[ZZ⊤] = ΣZ.

(3) Both A and ΣZ have rank equal to K.
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We further say (X,Y) ∼ sG-FRM(θ) if the following holds in addition to (1)—(3)

(4) There exist finite, absolute positive constants γε, γw and γz such that

(a) ε is σγε sub-Gaussian;1

(b) Z = Σ1/2
Z Z̃ where Z̃ is γz sub-Gaussian with Eθ[Z̃Z̃⊤] = IK ;2

(c) W = Σ1/2
W W̃ where W̃ is γw sub-Gaussian with Eθ[W̃W̃⊤] = Ip.

Since there exist multiple parameters θ for which (X,Y) has the same joint distri-

bution, the model is not identifiable without further restrictions on the parameter

space. As this work is devoted to the prediction of Y , and not to the estimation

of θ, this is not problematic. We thus allow for this lack of identifiability and our

subsequent analysis of R(B̂) B Eθ[(Y∗ − Ŷ∗
B̂
)2] is valid for any θ such that (X,Y) ∼

sG-FRM(θ). In particular, the analysis is applicable to any identifiable sG-FRM(θ),

whenever further structure on θ is added to Definition 2.2.1. We note that R(B̂)

depends on θ, but we suppress this dependence in the notation for simplicity.

2.2.2 Benchmark of R(B̂)

To provide a benchmark for R(B̂), we let

α∗ := arg min
α

E
[
(Y∗ − X⊤∗ α)2

]
= [Cov(X)]+Cov(X,Y) (2.6)

denote the coefficient of the best linear predictor (BLP) of Y∗ from X∗, where

[Cov(X)]+ is the Moore-Penrose pseudoinverse of Cov(X). For any θ =

1A mean zero random variable x is called γ sub-Gaussian if E[exp(tx)] ≤ exp(t2γ2/2) for all
t ∈ R.

2A mean zero random vector x is called γ sub-Gaussian if ⟨x, v⟩ is γ sub-Gaussian for any unit
vector v.
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(K, A, β,ΣZ,ΣW , σ
2) such that (X∗,Y∗) ∼ FRM(θ) with corresponding latent vec-

tor Z∗, we have the following chain of simple equalities from our independence

assumptions

R(B̂) = Eθ

[
(Y∗ − X⊤∗ α

∗)2
]
+ Eθ

[
(X⊤∗ α

∗ − Ŷ∗
B̂
)2
]

= σ2 + Eθ

[
(Z⊤∗ β − X⊤∗ α

∗)2
]
+ Eθ

[
(X⊤∗ α

∗ − Ŷ∗
B̂
)2
]

(2.7)

= σ2 + Eθ

[
(Z⊤∗ β − Ŷ∗

B̂
)2
]
.

We interpret the term σ2 = Eθ[ε2] as an oracle risk value because it is the minimal

risk of predicting Y∗ from Z∗, had Z∗ been observable. We thus focus on bounding

the difference R(B̂) − σ2 and refer to it as excess risk, with the tacit understanding

that the excess is relative to oracle prediction.

We further note that the term Eθ[(Z⊤∗ β − X⊤∗ α
∗)2] in (2.7) is the minimal risk

incurred by predicting Z⊤∗ β by X⊤∗ α
∗, with an observable X∗. Display (2.7) shows

that it is a population level cost that is incurred in any risk analysis of a predictor

of type (2.3) performed under FRM(θ). Lemma 16 below quantifies its size, and

makes use of the signal-to-noise ratio given by

ξ B λK(AΣZA⊤)/∥ΣW∥op. (2.8)

Its proof can be found in Appendix B.2.1.

Lemma 16. For any θ = (K, A, β,ΣZ,ΣW , σ
2) with invertible ΣW such that (X,Y) ∼

FRM(θ),

ξ

1 + ξ
β⊤(A⊤Σ−1

W A)−1β ≤ Eθ

[
(Z⊤∗ β − X⊤∗ α

∗)2
]
≤ β⊤(A⊤Σ−1

W A)−1β. (2.9)

The inequalities above become asymptotically tight when the signal retained

in K dimensions by X dominates the ambient noise, that is, when ξ → ∞ as

p → ∞. In general, as soon as ξ > c, for some c > 0 and ΣW is well conditioned
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such that κ(ΣW) = λ1(ΣW)/λp(ΣW) < C, we further obtain, using (2.7), for any B̂,

that

R(B̂) − σ2 ≥ Eθ

[
(Z⊤∗ β − X⊤∗ α

∗)2
]
≳ ∥ΣW∥opβ

⊤(A⊤A)−1β. (2.10)

Therefore a risk analysis of linear predictors under factor regression models,

which consists in upper bounding R(B̂) − σ2, will necessarily include terms

larger than ∥ΣW∥opβ
⊤(A⊤A)−1β in the risk bounds, irrespective of the construc-

tion of the linear predictor. If, in addition, AΣZA⊤ is well-conditioned with

λ1(AΣZA⊤)/λK(AΣZA⊤) ≤ C, then

β⊤(A⊤Σ−1
W A)−1β ≍ ∥ΣW∥opβ

⊤Σ
1/2
Z

(
Σ

1/2
Z A⊤AΣ1/2

Z

)−1
Σ

1/2
Z β ≍

β⊤ΣZβ

ξ

and Lemma 16 in turn implies

β⊤ΣZβ

1 + ξ
≲ Eθ

[
(Z⊤∗ β − X⊤∗ α

∗)2
]
≲
β⊤ΣZβ

ξ
.

This demonstrates that the signal-to-noise ratio ξ must necessarily dominate

β⊤ΣZβ for the excess risk R(B̂) − σ2 to vanish as p→ ∞.

2.2.3 Upper Bound of the Risk R(B̂)

To motivate our main result, we first introduce some key quantities that appear

in the risk bound derivation for any generic B̂ leading to the predictors of type

(2.3).

The prediction risk bound depends on W in Definition 2.2.1, specifically on

the noise level of n−1∥W⊤W∥op. To quantify this noise level, we use the following

deviation bound from Lemma 47 in Appendix B.3. For any θ such that (X,Y) ∼

49



sG-FRM(θ), one has

Pθ
{

1
n
∥W⊤W∥op ≤ δW

}
≥ 1 − e−n (2.11)

where δW is defined as

δW := δW(θ) = c
[
∥ΣW(θ)∥op +

tr(ΣW(θ))
n

]
, (2.12)

with c = c(γw) being some positive constant. The quantity δW will play a role in the

risk bound and it could take any non-negative value in general. When λ1(ΣW) ≤ C

for some constant C > 0, one has δW ≲ 1+p/n.When λp(ΣW) ≥ c for some constant

c > 0, we have δW ≳ 1 + p/n. In particular, if c ≤ λp(ΣW) ≤ λ1(ΣW) ≤ C, we have

δW ≍ 1 + p/n. This holds for instance when ΣW is diagonal with entries bounded

away from 0 and∞, independent of n.

We write the projection onto the column space of B̂ as

PB̂ = B̂[B̂⊤B̂]+B̂⊤ = B̂B̂+,

its complement as P⊥
B̂
= Ip − PB̂ and r̂ = rank(XPB̂). Since B̂[XB̂]+ = PB̂[XPB̂]+,

as proved in Lemma 40 in Appendix B.2, we find that Ŷ∗
B̂
= X⊤∗ B̂[XB̂]+Y = Ŷ∗PB̂

making clear that the component of the data matrix orthogonal to the range

of B̂, XP⊥
B̂
, is not used for prediction. It is natural therefore that the size of this

component, as measured by its largest singular value, σ2
1(XP⊥

B̂
), will affect the risk

bound, and needs to be contrasted with the size of the retained signal, XPB̂, as

measured by its smallest non-zero singular value σ2
r̂ (XPB̂). These two quantities

appear in the risk bound below.

We now state our main theorem; its proof is deferred to Appendix B.2.1.

Recall that R(B̂) is the risk defined in (2.4). Write a ∧ b = min{a, b}.

Theorem 17. Let B̂ = B̂(X) ∈ Rp×q for some q ≥ 1, and set

r̂ := rank
(
XPB̂

)
, η̂ :=

1
n
σ2

r̂

(
XPB̂

)
, ψ̂ :=

1
n
σ2

1

(
XP⊥

B̂

)
. (2.13)
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For any θ = (K, A, β,ΣZ,ΣW , σ
2) with K ≤ Cn/ log n for some positive constant C =

C(γz) such that (X,Y) ∼ sG-FRM(θ), there exists some absolute constant c > 0 such that

Pθ
{
R(B̂) − σ2 ≲

[
∥ΣW∥op

η̂
r̂ +

(
1 +

δW

η̂

)
(K ∧ r̂ + log n)

]
σ2

n
(2.14)

+

[(
1 +
∥ΣW∥op

η̂

)
δW +

(
1 +

δW

η̂

)
ψ̂

]
β⊤(A⊤A)−1β

}
≥ 1 − c/n.

Here the symbol ≲ means the inequality holds up to a multiplicative constant possibly

depending on the sub-Gaussian constants γε, γz and γw.

Since we aim to provide a unified analysis of the risk for a general B̂, the

bound (2.14) itself depends on the random quantities r̂, η̂ and ψ̂. To make it

informative, one needs to further control these random quantities for specific

choices of B̂. The main usage of Theorem 17 is thus to reduce the task of bounding

R(B̂) to the relatively easier one of controlling r̂, η̂ and ψ̂. We will demonstrate

this for several choices of B̂ in the following sections.

Theorem 17 holds for any estimator B̂ ∈ Rp×q that is constructed from X with

any q ≥ 1. We now explain the various terms in the bound (2.14). Recall that

Ŷ∗
B̂
= X⊤∗ B̂(XB̂)+Y and Y = Zβ + ε. To aid intuition, by adding and subtracting

terms, we have

Ŷ∗
B̂
− Z⊤∗ β = X⊤∗ B̂(XB̂)+ε + X⊤∗ α

∗ − Z⊤∗ β + X⊤∗
[
B̂(XB̂)+Zβ − α∗

]
= X⊤∗ B̂(XB̂)+ε +

(
X⊤∗ α

∗ − Z⊤∗ β
)
+ X⊤∗ B̂(XB̂)+(Zβ − Xα∗)

+ X⊤∗
[
B̂(XB̂)+X − Ip

]
α∗. (2.15)

We discuss the four terms above one by one.

• The first term leads to the following variance term in (2.14):[
∥ΣW∥op

η̂
r̂ +

(
1 +

δW

η̂

)
(K ∧ r̂ + log n)

]
σ2

n
.
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We see that the random variable η̂ quantifies the retained signal in B̂(XB̂)+

by noting that ∥B̂(XB̂)+∥2op = ∥PB̂(XPB̂)+∥2op ≤ (n̂η)−1. The two factors

∥ΣW∥op/̂η and (1 + δW /̂η) come from bounding the second moments of W∗

and AZ∗ from X∗ = AZ∗ +W∗, respectively, relative to the retained signal η̂.

The dimension r̂ reflects the complexity of XPB̂ and the integer K is the

intrinsic dimension of the latent factor, thus only appearing in the term

containing (1 + δW /̂η).

• The second and third terms in (2.15) lead to the following term in (2.14),

which can be interpreted as arising from the fact that Z∗ and Z are not

observed: (
1 +
∥ΣW∥op

η̂

)
δW

∥ΣW∥op
· ∥ΣW∥opβ

⊤(A⊤A)−1β.

With slight abuse of terminology, we refer to this as a bias term. The factor

∥ΣW∥opβ
⊤(A⊤A)−1β

is irreducible, as argued in (2.10), the term ∥ΣW∥op/̂η has been explained in

the first term, and the inflation factor δW/∥ΣW∥op is due to the inflated noise

level of n−1∥W⊤W∥op compared to ∥ΣW∥op.

• The fourth term in (2.15) quantifies the error of estimating the best linear

predictor α∗ under the factor regression model. In this model, we note that

α∗ = Σ+AΣZβ with Σ := Cov(X). Also noting that B̂(XB̂)+X is a projection

matrix, the fourth term in (2.15) represents the error of estimating the range

space of Σ+A, which is exactly zero if the range of B̂(XB̂)+X contains the

range of Σ+A. In general, the bound in (2.14) corresponding to this term is

δWβ
⊤(A⊤A)−1β +

(
1 +

δW

η̂

)
ψ̂ · β⊤(A⊤A)−1β,

where the first part is the error of estimating the range space of PB̂Σ
+A while
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the second part is that of estimating the range space of P⊥
B̂
Σ+A, controlled

by ψ̂.

Remark 5. In light of the above discussion, we make two important remarks. First,

to maintain a fast rate of the risk bound in (2.14), we should retain enough signal

in XPB̂ relative to the noise δW such that η̂ ≳ δW with high probability. Second, if

this is the case, the bound (2.14) simplifies to

R(B̂) − σ2 ≲

[
∥ΣW∥op

η̂
r̂ + (K ∧ r̂ + log n)

]
σ2

n
+

(
δW + ψ̂

)
β⊤(A⊤A)−1β.

As r̂ = rank(XPB̂) increases, meaning that the predictor can be interpreted as

more complex, the variance term increases, while the term δWβ
⊤(A⊤A)−1β is not

affected.

If ψ̂ decreases as r̂ increases (as seen with the PCR predictor studied in the

next section), the term ψ̂β⊤(A⊤A)−1β, corresponding to the error of estimating the

range space of P⊥
B̂
Σ+A, gets smaller.

Therefore, the tradeoff of using a more complex predictor lies between the

increasing variance and the decreasing error of estimating the range space of

P⊥
B̂
Σ+A, provided that enough signal is retained in XPB̂. A more transparent

tradeoff can be seen for the PCR predictor analyzed in the next section. More

generally, for each of our examples, we will see the mechanism by which r̂, η̂,

and ψ̂ are controlled.
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2.3 Analysis of Principal Component Regression Under the Fac-

tor Regression Model

In this section we use the general result, Theorem 17, to derive risk bounds for

the popular Principal Component Regression (PCR) method. For any integer

1 ≤ k ≤ rank(X), the PCR-predictor PCR-k corresponds to taking B̂ = Uk, the p× k

matrix with columns equal to the first k right singular vectors of X corresponding

to the non-increasing singular values σ1(X) ≥ σ2(X) ≥ · · · . We start by giving

risk bounds for PCR-k for any k in the corollary below. For simplicity, we write

λ̂k =
1
n
σ2

k(X)

with the convention that λ̂0 = ∞ and λ̂k = 0 for all k > rank(X). All the proofs of

this section can be found in Appendix B.2.2.

Corollary 18. For any θ = (K, A, β,ΣZ,ΣW , σ
2) with K ≤ Cn/ log n and some positive

constant C = C(γz) such that (X,Y) follows sG-FRM(θ), there exists some absolute

constant c > 0 such that, for any k (possibly random),

Pθ
{
R(Uk) − σ2 ≲ B̂(k)

}
≥ 1 − cn−1 (2.16)

where B̂(k) = B̂1(k) + B̂2(k) and

B̂1(k) :=
[
∥ΣW∥op

λ̂k

k +
(
1 +

δW

λ̂k

)
(K ∧ k + log n)

]
σ2

n
(2.17)

B̂2(k) :=
(
∥ΣW∥op

λ̂k

δW + δW + λ̂k+1

)
β⊤(A⊤A)−1β. (2.18)

Corollary 18 follows immediately from the identities σ2
k(XPUk) = σ

2
k(X) and

σ2
1(XP⊥Uk

) = σ2
k+1(X), and an application of Theorem 17 with

r̂ = k, η̂ = λ̂k, ψ̂ = λ̂k+1 almost surely.
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The bound B̂(k) in (2.16) depends on λ̂k and λ̂k+1, which may be further controlled

by λk(AΣZA⊤)− δW and λk+1(AΣZA⊤)+ δW , respectively, in order to make the bound

more informative (see, for example, the proof of Remark 6 in Appendix B.2.2).

Nevertheless, (2.16) illustrates the effect of k and hints at the choice k = ŝ with

ŝ = max
{
k ≥ 0 : λ̂k ≥ C0δW

}
. (2.19)

Here δW is defined in (2.12) and C0 is some positive constant. The quantity ŝ

corresponds to what is known as the elbow method, and is a ubiquitous approach

for selecting the number of top principal components of the data matrix X.

The quality of ŝ as an estimator of the effective rank of Σ = Cov(X) has been

analyzed in [34], but its role in PCR has received little attention. By definition,

λ̂ŝ+1 < C0δW ≤ λ̂ŝ, which implies

B̂(̂s) ≲ (̂s + log n)
σ2

n
+ δWβ

⊤(A⊤A)−1β, almost surely.

Furthermore, Weyl’s inequality implies λ̂K+1 ≤ σ
2
1(W)/n and, in conjunction with

(2.11), and by choosing C0 > 1, we obtain ŝ ≤ K with high probability. We

summarize this discussion in the following result pertaining to prediction via

the first ŝ principal components selected via the elbow method.

Corollary 19. For any θ = (K, A, β,ΣZ,ΣW , σ
2) with K ≤ Cn/ log n such that (X,Y)

follows sG-FRM(θ), we have for ŝ defined in (2.19) for any C0 > 1,

Pθ
{
R(Uŝ) − σ2 ≲

(
K + log n

) σ2

n
+ δWβ

⊤(A⊤A)−1β

}
≥ 1 − O(n−1). (2.20)

Remark 6.

1. We refer to the method analyzed in Corollary 19 as the theoretical elbow

method, as it involves the theoretically optimal threshold level δW . The

next section analyzes the performance of a data-adaptive elbow method.
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2. For any θ, we show in Appendix B.2.2 that, if λK(AΣZA⊤) ≥ CδW for some

sufficiently large constant C > 0, then λ̂K ≥ C0δW holds for some C0 > 1

with high probability. The event {̂λK ≥ C0δW} implies {̂s ≥ K} which, in

conjunction with the high probability event {̂s ≤ K}, guarantees ŝ = K with

high probability. Corollary 19 thus covers the risk of PCR-K, that is, the

risk of the PCR predictor corresponding to the true K of this θ.

2.3.1 Selection of the Number of Retained Principal Compo-

nents via Penalized Least Squares

A practical issue of PCR-̂s is that the selection of ŝ according to (2.19) relies

on a theoretical order δW in (2.12), which depends on the unknown quantities

∥ΣW∥op and tr(ΣW). To overcome this difficulty, we provide an alternative, data

dependent procedure, which shares the risk bound derived for PCR-̂s.

Our procedure of selecting the number of retained principal components is

adopted from [27], originally proposed for selecting the rank of the coefficient

of a multivariate response regression model Y = XB + W. The factor model

X = ZA⊤ +W is a particular case with X = In×p and B = ZA⊤, and, following [27],

we define

s̃ := arg min
0≤k≤K̄

v̂2
k , with v̂2

k :=
∥X − X(k)∥

2
F

np − µnk
, and K̄ :=

⌊
κ

1 + κ
np
µn

⌋
∧ n ∧ p,

(2.21)

for a given sequence µn > 0. Here κ > 1 is some absolute constant introduced

to avoid division by zero. We write X(k) as the best rank k approximation of X.

More specifically, let the SVD of X as X =
∑

j σ ju jv⊤j with non-increasing σ j and
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we have X(k) =
∑k

j=1 σ ju jv⊤j .

The denominator of the ratio defining v̂2
k can be viewed as a penalty on the

numerator, with tuning sequence µn. From [27, Equation 2.7], the minimizer s̃

conveniently has a closed form

s̃ =
∑

k

1{̂λk ≥ µn̂v2
k},

counting the number of singular values of X above a variable threshold. This is

in contrast to the elbow method in (2.19), which counts the number of singular

values of X above the fixed threshold µ = C0δW , as

ŝ =
∑

k

1{̂λk ≥ µ}.

We note that when ΣW = 0, ∥X − X(k)∥F = ∥ZA⊤ − (ZA⊤)(k)∥F = 0 for any k ≥ K.

Hence there are multiple minima (zeroes in this case) in v̂2
k , and if we adopt the

convention to choose the first index k with ∥X − X(k)∥F = 0, we find s̃ = K, almost

surely. The risk of PCR-K has already been discussed in Remark 6 above.

The theoretical guarantees proved in [27] are based on the assumption that W

has i.i.d. entries with zero mean and bounded fourth moments. Proposition 20

extends this to models in which the rows of W are allowed to have dependent

entries, when they follow a sub-Gaussian distribution. We show that the choice

µn = c0(n + p), for some absolute numerical constant c0, leads to desirable results.

The induced size of K̄, for this µn, is of order n ∧ p. We found the choice c0 = 0.25

worked well for all our simulations, as presented in Section 2.6.

Let re(ΣW) = tr(ΣW)/∥ΣW∥op denote the effective rank of ΣW . The following

proposition shows that s̃ finds, adaptively, the theoretical elbow.
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Proposition 20. Let s̃ be defined in (2.21) with µn = c0(n+ p) for some absolute constant

c0 > 0. For any θ = (K, A, β,ΣZ,ΣW , σ
2) such that (X,Y) follows sG-FRM(θ), log p ≤ cn,

K ≤ K̄ and

re(ΣW) ≥ c′(n ∧ p) (2.22)

for some positive constants c = c(γw) and c′ = c′(γw), we have

Pθ
{
s̃ ≤ K, λ̂s̃ ≳ δW , λ̂s̃+1 ≲ δW

}
≥ 1 − O(1/n). (2.23)

Condition K ≤ K̄ holds, for instance, if K ≤ c′′(n ∧ p) with c′′ ≤ κ/(2c0(1 + κ)).

We explain the connection between restriction (2.22) and the proposed choice

of µn. Using elementary algebra, [27, Theorem 6 and Proposition 7] proves the

deterministic result {
2σ2

1(W)
∥W∥2F/(np)

≤ µn

}
⊆ {s̃ ≤ K} , (2.24)

which shows that if µn is appropriately large, then the selected s̃ is less than or

equal to dimension K of the factor regression model generating the data. On the

other hand, by concentration inequalities of ∥W∥2F/n and σ2
1(W)/n around tr(ΣW)

and δW , respectively (see the proof of Proposition 20 in Appendix B.2.2), the

bound

2σ2
1(W)

∥W∥2F/(np)
≲ np

δW

tr(ΣW)
= p +

np
re(ΣW)

(2.25)

holds with probability larger than 1 − O(1/n). Thus, in view of (2.24) and (2.25),

the event {s̃ ≤ K} holds with high probability as soon as µn > p+np/re(ΣW). Under

(2.22), we arrive at the choice µn = c0(n + p) and, in turn, K̄ = O(n ∧ p).

We note that (2.22) holds, for instance, in the commonly considered setting

0 < c′ ≤ λp(ΣW) ≤ λ1(ΣW) ≤ C′ < ∞, (2.26)
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while being more general. One can alternatively consider other error structures,

for instance, with re(ΣW) = O(1), in which case the above reasoning leads to the

choice µn ≳ np. However, this would limit the range of K, up to K̄ = O(1) in

(2.21), while our interest is in factor regression models with dimensions allowed

to grow with n.

Proposition 20 in conjunction with Corollary 18 immediately leads to the

following risk bound of PCR-s̃. It coincides with the bound for PCR-̂s in display

(2.20) of Corollary 19.

Corollary 21. Let s̃ be defined in (2.21) with µn = c0(n + p) for some absolute constant

c0 > 0. For any θ = (K, A, β,ΣZ,ΣW , σ
2) with K ≤ Cn/ log n such that (X,Y) follows

sG-FRM(θ), log p ≤ cn, K ≤ K̄ and (2.22) holds, for some positive constants c = c(γw)

and c′ = c′(γw), we have

Pθ
{
R(Us̃) − σ2 ≲ (K + log n)

σ2

n
+ δWβ

⊤(A⊤A)−1β

}
≥ 1 − O(n−1). (2.27)

2.3.2 Existing Results on PCR

Due to the popularity and simplicity of PCR, its prediction properties under the

factor regression model have been studied for nearly two decades. Most existing

theoretical results, discussed below, are asymptotic in n and p and, to the best of

our knowledge, have been established for a model of known dimension K, or

when K is identifiable under additional restrictions on the parameter space, and

can be consistently estimated.

The fact that PCR prediction, under the factor regression model with known

or identifiable K, has asymptotically vanishing excess risk only when both p
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and n grow to ∞ is a well known result. This can already be seen from our

derivation (2.10) above, which shows that a necessary condition for prediction

with vanishing excess risk, under factor regression models with well conditioned

ΣW , is ∥ΣW∥opβ
⊤(A⊤A)−1β→ 0, which can be met when p→ ∞, as explained below.

This phenomenon was first quantified in [86], where it is shown that

Ŷ∗UK
− Z⊤∗ β = op(1) as n, p→ ∞.

This result is the most closely related to ours, and we discuss it in detail below.

We also mention that several later works, for instance [8] and [42], provided

explicit convergence rates and inferential theory for the in-sample prediction

error Ŷ − Zβ, whereas in this work we study out-of-sample performance. For

completeness, we comment on these related, but not directly comparable, results

in Appendix B.5.

In addition to being asymptotic in nature, the results in [86], and also those

regarding the in-sample prediction accuracy, are established under the following

set of conditions: K = O(1), ∥β∥2 = O(1), ∥ΣW∥op = O(1), as p→ ∞, and

1
p

A⊤A→ IK , as p→ ∞, ΣZ is a diagonal matrix with distinct diagonal entries.

(2.28)

These conditions serve as identifiability conditions for θ = (K, β, A,ΣZ,ΣW , σ
2) [86].

Condition (2.28) further implies that, for some constants 0 < c ≤ C < ∞,

p ≲ λK(AA⊤) ≤ λ1(AA⊤) ≲ p, c ≤ λK(ΣZ) ≤ λ1(ΣZ) ≤ C. (2.29)

In contrast, our Corollaries 18, 19 and 21 are non-asymptotic statements,

which hold for any finite K, n and p, where K is allowed to depend on n, with

K log n ≲ n. Consequently, ∥β∥22 and λ1(ΣZ) are also allowed to grow with n.
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Furthermore, our conditions on the signal λK(AΣZA⊤) are much weaker than

(2.29) to derive the risk bound of PCR-K. To see this, and for a transparent

comparison, suppose ∥ΣW∥op ≲ 1 and λK(ΣZ) ≥ c. Then from Remark 6 we only

require a condition much weaker than λK(AA⊤) ≳ p of [86] given in (2.29) above,

namely

λK(AA⊤) ≳ 1 +
p
n
.

Finally, the results in [86] are established for the unique θ under additional

restrictions of the parameter space discussed above, whereas our results are

established for any θ with K log n ≲ n such that (X,Y) satisfying sG-FRM(θ),

without requiring θ to be identifiable. In particular, our results hold for any

identifiable θ that further satisfies (2.28).

We conclude our comparison by giving the bound implied by our Corollary

19, should the more stringent conditions (2.29) be met. Since (2.29) implies that

ŝ = K with high probability from Remark 6, Corollary 19 immediately yields,

with probability 1 − O(n−1),

R(UK) − σ2 ≲
log n

n
σ2 +

∥ΣW∥op

p
+
∥ΣW∥op

n
,

and thus, as in [86],

R(UK) − σ2 = op(1)

when p, n→ ∞ and ∥ΣW∥op = O(1).

2.4 Analysis of Alternative Prediction Methods

In this section we illustrate the usage of the main Theorem 17 to derive risk

bounds under a factor regression model for two other prediction methods: Gen-
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eralized Least Squares [33], as an example of another model agnostic predictor

construction, and model-tailored prediction, in an instance of an identifiable fac-

tor regression model provided by the Essential Regression framework introduced

in [22]. All proofs for this section are contained in Appendix B.2.3.

2.4.1 Prediction Risks of Minimum Norm Interpolating Predic-

tors Under Factor Regression Models

In the recent paper [33], risk bounds were established under the factor regression

model for the Generalized Least Squares (GLS) predictor, which corresponds to

taking B̂ = Ip:

Ŷ∗Ip
= X⊤∗ X+Y. (2.30)

We recover as these results in Corollary 22 and Corollary 23 below, as further

illustration of the application of our main theorem. Since PIp = Ip and P⊥Ip
= 0,

the application of Theorem 17 with ψ̂ = 0 amounts to obtaining a lower bound

on the smallest non-zero singular value of X to bound η̂.

We consider the low (p < n)- and high (p > n)-dimensional settings sep-

arately. In the former case, GLS reduces to the ordinary least squares (OLS)

method. The following corollary states the prediction risk of the OLS under

the factor regression model. The proof uses a standard random matrix theory

result [?, see]Theorem 5.39]vershynin2012toshowσ2
p(X) ≳ λp(ΣW)n, which implies

η̂ ≳ λp(ΣW). Recall that κ(ΣW) B λ1(ΣW)/λp(ΣW).

Corollary 22 (GLS: low-dimensional setting). Suppose p log n ≤ c0n for an absolute

constant c0 ∈ (0, 1). For any θ = (K, A, β,ΣZ,ΣW , σ
2) with K ≤ Cn/ log n and λp(ΣW) >
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c such that (X,Y) ∼ sG-FRM(θ), one has

Pθ
{
R(Ip) − σ2 ≲

(
p + log n

n
σ2 + ∥ΣW∥op β

⊤(A⊤A)−1β

)
κ(ΣW)

}
≥ 1 − O(n−1).

When p is much larger than n, the GLS becomes the minimum ℓ2 norm

interpolator [33], one method studied in the recent wave of literature on the

generalization of overparameterized models with zero or near-zero training

error [13–18, 33, 44, 51, 72, 77–79]. Theorem 17 can also be applied to recover

a slightly modified form of the prediction risk bound from [33] in this case,

which we state in the following corollary. Recall that re(ΣW) = tr(ΣW)/∥ΣW∥op is

the effective rank of ΣW .

Corollary 23 (GLS: high-dimensional setting. Interpolating predictors.). For any

θ = (K, A, β,ΣZ,ΣW , σ
2) with K ≤ Cn/ log n such that (X,Y) ∼ sG-FRM(θ), suppose W̃

defined in Definition 2.2.1 has independent entries and re(ΣW) > C′n for some sufficiently

large constant C‘ > 0. Then there exists c > 0 such that

Pθ
{
R(Ip) − σ2 ≲

K + log n
n

σ2 +
n

re(ΣW)
σ2 +

re(ΣW)
n
∥ΣW∥op β

⊤(A⊤A)−1β

}
≥ 1 − c/n.

By Proposition 6 of [33], we have σ2
n(X) ≳ tr(ΣW) with high probability

when re(ΣW) ≳ n. Corollary 23 thus follows from Theorem 17 with ψ̂ = 0 and

η̂ ≳ tr(ΣW)/n in the high-dimensional setting. A simplified version of the risk

bound in Corollary 23, together with a comparison with PCR-k prediction, is

presented in Section 2.4.3.
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2.4.2 Prediction Under Essential Regression

Both Principal Component Regression and Generalized Least Squares are model-

agnostic methods, in that they do not use explicit estimates of the model param-

eters θ = (K, A, β,ΣZ,ΣW , σ
2) to perform prediction. In contrast, further assump-

tions can be placed on the factor model to make θ identifiable, in which case a

direct estimate of A can be meaningfully constructed and used for prediction. The

Essential Regression (ER) framework introduced in [22] provides an approach to

do this.

Essential Regression is a particular factor regression model under which

the latent factor Z becomes interpretable under additional model assumptions.

Specifically, under model (2.1), one further assumes the following model specifi-

cations.

Assumption 4.

(A0) ∥A j q∥1 ≤ 1 for all j ∈ [p].

(A1) For every k ∈ [K], there exists at least two j , ℓ ∈ [p], such that |A j q| = |Aℓ q| = ek.

(A2) There exists a constant ν > 0 such that

min
1≤a<b≤K

( [ΣZ]aa ∧ [ΣZ]bb − |[ΣZ]ab| ) > ν.

(A3) The covariance ΣW of W is diagonal with bounded diagonal entries.

The indices i ∈ [p] satisfying Ai q = ek are called pure variables and collected in the

set I. We use J = [p] \ I to denote all the variables that are non-pure.

Within the Essential Regression framework, the matrix A becomes identifiable
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up to a signed permutation [26]. In fact, θ = (K, A, β,ΣZ,ΣW , σ
2) can be further

shown to be identifiable [22].

We explain how to construct predictors of Y tailored to a factor model, and

elaborate on the predictor tailored to Essential Regression. Under any factor

model (2.1), the best predictor of Y from Z is Z⊤β. However, since Z is not

observable, this expression does not lend itself to sample level prediction. A

practically usable expression for a predictor under the factor regression model

can be obtained by the following reasoning. Using the Moore-Penrose inverse

A+ B (A⊤A)−1A⊤ of the matrix A, we observe that model (2.1) implies

X̄ B A+X = Z + A+W.

The best linear predictor (BLP) of Z from X̄ is given by

Z̃ = Cov(Z, X̄)[Cov(X̄)]−1X̄ = ΣZ
(
ΣZ + A+ΣW A+⊤

)−1 A+X. (2.31)

The simple observation that

arg min
α

E[(Y − Z⊤α)2] = β = arg min
α

E[(Y − Z̃⊤α)2]

justifies predicting Y by Ỹ = Z̃⊤β. Inserting the identity β = Σ−1
Z A+Cov(X,Y)

simplifies Ỹ to

ỸA = X⊤A+⊤
(
ΣZ + A+ΣW A+⊤

)−1
ΣZβ

= X⊤A
[
Cov(A⊤X)

]−1 Cov(A⊤X,Y),

motivating prediction based on a new data point X∗ by

Y∗
Â
= X⊤∗ Â

(
Â⊤X⊤XÂ

)+
Â⊤X⊤Y,

which has the general form (2.3) with B̂ = Â, with Â being an estimator of A

tailored to the ER model, developed in [26]. We summarize the construction of Â
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in Appendix B.4 for completeness.

To analyze the prediction risk of Y∗
Â

we will also need the following assump-

tion on the covariance matrix ΣZ, which plays the same role as the Gram matrix

in classical linear regression with random design.

Assumption 5. Assume c ≤ λK(ΣZ) ≤ λ1(ΣZ) ≤ C for some constants c and C bounded

away from 0 and∞.

The prediction risk of Ŷ∗
Â

can be obtained via an application of Theorem 17,

with the choice B̂ = Â. Since A is identifiable under the Essential Regression

framework, the estimator Â can be compared directly with A and, as shown

in [26],

∥Â − A∥2op ≤ ∥AJ∥0 log(n ∨ p)/n (2.32)

with high probability. The rows of the p × |J| submatrix AJ of A correspond to

all the index set J of non-pure variables. The estimation bound (2.32) can be

leveraged to obtain a small improvement in the risk bound by slightly adjusting

the proof of Theorem 17. Using this approach, we obtain the following result by

establishing, with high probability, that

r̂ = K,

η̂ ≳ λK(AΣZA⊤),

ψ̂ ≲ ∥AJ∥0
log(p ∨ n)

n
+ ∥ΣW∥op := ψn(AJ).

Theorem 24 (Prediction in Essential Regression). Suppose (X,Y) ∼ sG-FRM(θ)

with θ = (K, A, β,ΣZ,ΣW , σ
2) satisfying Assumptions 4 & 5, K ≤ Cn/ log n and

λK(AΣZA⊤) ≥ c · ψn(AJ)
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for some sufficiently small constant c > 0. Then, with probability at least 1 − O(n−1),

R(Â) − σ2 ≲
K + log n

n
σ2 + ψn(AJ)β⊤(A⊤A)−1β. (2.33)

Remark 7.

1. We note that the bound (2.33) depends on ∥AJ∥0, which in turn depends on

the number of non-pure variables, and the sparsity of the rows of A corre-

sponding to these non-pure variables. The rate indicates that prediction

based on Â will perform best when the number of pure variables is large,

and any non-pure variable Xi, the ith component of X, only depends on

a small number of latent variables. We give, in the following section, a

simplified form of this bound, and compare this prediction scheme with

the other methods discussed in this work.

2. The identifiable factor model X = AZ +W, with A satisfying Assumption 4,

has been used in [26] to construct overlapping clusters of the components

on X. The latent factors can be viewed as random cluster centers, while a

sparse matrix A gives the cluster membership. From this perspective, and

in light of the discussion leading up to the predictor construction, one can

view R(Â) as the risk of predicting Y from predicted cluster centers, on the

basis of data that exhibits a latent cluster structure with overlap.

2.4.3 Comparison of Simplified Prediction Risks

In this section we offer a comparison of the prediction risk of the predictors

analyzed above. For a transparent comparison, we compare them under an iden-

tifiable factor regression model. To this end, we consider the Essential Regression
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framework as a data generating mechanism under which we compare PCR-k,

with known k = K, the GLS predictor (B̂ = Ip), and the Essential Regression

predictor (B̂ = Â), based on Corollary 19, Remark 6, Corollary 23 and Theorem

24, respectively. The notation an ⪅ bn stands for an = O(bn) up to a multiplicative

logarithmic factor in n or p.

For ease of comparison, we consider the simplified setting in which λK(A⊤A) ≳

p/K,3 ∥β∥2 ≤ Rβ and re(ΣW) ≍ p, and focus on the high-dimensional regime where

p > Cn for a large enough constant C > 0. We have

R(UK) − σ2 ⪅
K
n
σ2 +

K
p
∥ΣW∥opR2

β +
K
n
∥ΣW∥opR2

β

R(Â) − σ2 ⪅
K
n
σ2 +

K
p
∥ΣW∥opR2

β +
K∥AJ∥0

np
∥ΣW∥opR2

β

R(Ip) − σ2 ⪅
K
n
σ2 +

n
p
σ2 +

K
n
∥ΣW∥opR2

β

(2.34)

Since the Essential Regression predictor is an instance of model based prediction,

we comment on when the two model agnostic predictors are competitive, under

this particular model specification.

We begin with a comparison between R(UK) and R(Â), and note that the

difference in their respective errors bounds depends on the sparsity of AJ. The

risk bound on R(UK) is valid for any θ such that (X,Y) ∼ sG-FRM(θ), and is in

particular valid for θ satisfying the additional Essential Regression constraints.

Our results show that while PCR-K prediction is certainly a valid choice under

this particular model set-up, it could be outperformed by the model tailored

predictor. If each row of AJ is sparse such that ∥AJ∥0 ≍ |J|, then R(Â) has a faster

rate. This advantage becomes considerable if |J| = o(p), that is, in the presence
3This is met for instance when all X’s are pure variables and the numbers of pure variables for

all groups are balanced in the sense that |Ik | ≍ |I|/K. Another instance such that λK(A⊤A) ≳ p/K
holds with high probability is that |Ik | ≍ |I|/K and the rows of AJ are i.i.d. realizations of a
sub-Gaussian random vector whose second moment has operator norm bounded by 1/K. The
factor 1/K takes (A0) in Assumption 4 into account.
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of a growing number of pure variables. However, if AJ is not sparse such that

∥AJ∥0 ≍ |J|K, and |J| ≍ p, then R(Â) has a slower rate than R(UK). Nevertheless,

from a practical perspective, conditions on the sparsity of A (∥AJ∥0 ≍ |J|) simply

mean that not all p variables in the vector X contribute to explaining a particular

Zk, for each k, which is the main premise of Essential Regression. Furthermore,

in this risk bound comparison, R(Â) corresponds to Â ∈ Rp×K̂ , for an appropriate,

fully data dependent, estimator K̂ of the identifiable dimension K. In order to

employ a fully data driven PCR prediction, corresponding to an estimated K, we

would also need the delicate step of estimating it described in Section 2.3 above.

The risk bound above will then hold under conditions discussed in Remark 6.

Finally, the much simpler GLS interpolating predictor has a bound that com-

pares favorably to the other agnostic predictor, PCR-K, only when n/p is small

enough, for instance, p > n2/K. This extra term σ2n/p in the bound for R(Ip)

compared to the bound for PCR-K, is due to the additional variance induced by

the usage the full data matrix X, as opposed to the first K principal components,

which may already capture the majority of the signal.

2.5 Predictor Selection via Data Splitting

Whenever a factor regression model can be assumed to generate a given data

set, but it is unclear what further model specifications are in place, one can, in

principle, construct several predictors, some model agnostic and some tailored

to prior beliefs. In this section we address the problem of choosing among a set

of candidate predictors for a given data set that is assumed to be generated by a

factor regression model. Suppose we have M linear predictors with respective

69



coefficients α̂1, . . . , α̂M that we want to choose from. For ease of presentation, in

this section assume n is divisible by 2. Let D1 be a subset of [n] with |D1| = n/2,

and let D2 = [n] \ D1. Define

m̂ B arg min
m∈[M]

∑
i∈D2

(Yi − X⊤i α̂m)2, (2.35)

where for each m ∈ [M], α̂m is trained on the data set {(Xi,Yi) : i ∈ D1} and is

thus independent of {(Xi,Yi) : i ∈ D2}. We then use α̂ B α̂m̂ as our predictor,

for which we establish the following oracle inequality, which is an adaptation

of Theorem 2.1 from [92] to factor regression models and unbounded linear

predictors. Moreover, we provide a high-probability statement, as opposed to a

bound on the expected risk as in [92]. The proof is deferred to Appendix B.2.4.

Theorem 25. Let α̂ B α̂m̂, where m̂ is defined in (2.35). Then for any θ =

(K, A, β,ΣZ,ΣW , σ
2) such that (X,Y) ∼ sG-FRM(θ), there exist absolute constants

c, c′ > 0 and a constant c0 = c0(γw, γz, γε) > 0 such that when n > c log(M) and

for any a > 0,

Pθ
{
R(α̂) − σ2 ≤ (1 + a)2 min

m∈[M]
{R(α̂m) − σ2}

+C(a)
(
σ2 ∨ max

m∈[M]
{R(α̂m) − σ2}

)
log(nM)

n

}
≥ 1 − c′n−1,

(2.36)

where C(a) = c0(1 + a)3/a.

In the bound above, the worst excess risk maxm{R(α̂m) − σ2} appears in the

remainder term, which may appear unusual. Most model-selection oracle in-

equalities either are formulated as a bound on the empirical risk, or assume that

the predictors are uniformly bounded, or both, and as a result do not contain a

term of this form. The bound we give is for the prediction risk on new data, and
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for unbounded loss and predictors, since supα(X⊤α− y)2 = ∞. For the bound to be

useful, it thus must be the case that none of the M predictors has risk that grows

too fast. In particular, if the risks of all M predictors are bounded above in high

probability, then the second term in (2.36) will be O(log n/n) and thus typically

subdominant.

As an illustration, we can use this data-splitting procedure with M = 3 and

the three prediction methods discussed in Section 2.4.3. If the three excess risks

in (2.34) are all O(1), which is met under the conditions discussed in detail in

Section 2.4.3, then the bound (2.36) becomes

R(α̂) − σ2 ≲ (1 + a)2 min
(
R(UK) − σ2, R(Â) − σ2, R(Ip) − σ2

)
+C(a)σ2 log n

n
.

We further confirm the ability of the data-splitting approach to adapt to the

best-case risk via simulations in Section 2.6 below.

On a practical note, we remark that the splitting procedure can be repeated

several times with random splits to obtain estimates α̂(1), . . . , α̂(N) that can be

used to construct the average N−1 ∑N
i=1 α̂

(i). This aggregate coefficient vector satis-

fies the same risk bound (2.36) by convexity of the loss, while this approach in

practice could alleviate some of the bias induced by the choice of split for the data.

2.6 Simulations

In this section, we complement and support our theoretical findings with simu-

lations, focusing on the prediction performance of candidate predictors under

both the generic factor regression model and the Essential Regression framework.
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Candidate predictors: We consider the following list of predictors:

[leftmargin = 8mm]PCR-s̃ with s̃ obtained from (2.21) with µn = 0.25(n + p);

PCR-K: the principal component regression (PCR) predictor using the true

K; PCR-ratio: PCR with k selected via the criterion proposed in [2, 68]; 4

GLS: the Generalized Least Squares predictor defined in (2.30); ER-A: the

Essential Regression predictor with B̂ = Â in (2.3);Lasso: implemented in

glmnet with the tuning parameter chosen via cross-validation; Ridge: im-

plemented in glmnet with the tuning parameter chosen via cross-validation;

MS: the selected predictor from (2.35) in Section 2.5.

Both Lasso and Ridge are included for comparison. The Lasso is developed

for predicting Y from X when we expect that the best predictor of Y is well

approximated by a sparse linear combination of the components of X. Under our

model specifications, the best linear predictor of Y from X is given by

X⊤α∗ = X⊤[Cov(X)]−1Cov(X,Y) = X⊤Σ−1
W A

[
Σ−1

Z + A⊤Σ−1
W A

]−1
β,

where the last step follows from the factor model (2.1) and an application of the

Woodbury matrix identity. Although α∗ is not sparse in general, we observe that

∥α∗∥22 ≤ β
⊤[Σ−1

Z + A⊤Σ−1
W A]−1β. Hence its ℓ2-norm may be small if ∥ΣW∥opβ

⊤(A⊤A)−1β

is small. Our simulation design allows for these possibilities.

Data generating mechanism: We first describe how we generate ΣZ, ΣW , and

β. To generate ΣZ, we set diag(ΣZ) to a K-length sequence from 2.5 to 3

4We have also implemented the selection criterion suggested by [9], but it had inferior
performance, and is for this reason not included in our comparison here.
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with equal increments. The off-diagonal elements of ΣZ are then chosen as

[ΣZ]i j = (−1)(i+ j)([ΣZ]ii ∧ [ΣZ] j j)(0.3)|i− j| for all i , j ∈ [K]. Finally, ΣW is chosen

as a diagonal matrix with diagonal elements sampled from Unif(1, 3), and β is

generated with entries sampled from Unif(0, 3).

Generating A depends on the modeling assumption. Under the factor regres-

sion model, we sample each entry of A independently from N(0, 1/
√

K). Under

the Essential Regression setting, recall that A can be partitioned into AI and AJ

which satisfy Assumption 4. To generate AI, we set |Ik| = m for each k ∈ [K] and

choose AI = IK ⊗ 1m, where ⊗ denotes the kronecker product. Each row A j q of AJ

is generated by first randomly selecting its support with cardinality s j drawn

from {2, 3 . . . , ⌊K/2⌋} and then by sampling its non-zero entries from Unif(0, 1/s j)

with random signs. In the end, we rescale AJ such that the ℓ1 norm of each row is

no greater than 1.

Finally, we generate the n × K matrix Z and the n × p noise matrix W whose

rows are i.i.d. from NK(0,ΣZ) and Np(0,ΣW), respectively. We then set X = ZA⊤+W

and Y = Zβ + εwhere the n components of ε are i.i.d. N(0, 1).

For each setting, we generating 100 repetitions of (X,Y) and record their

corresponding results. The performance metric is based on the new data predic-

tion risk. To calculate it, we independently generate a new data set (Xnew,Ynew)

containing n i.i.d. samples drawn according to our data generating mechanism.

The prediction risk of the predictor Ŷnew is calculated as ∥Ŷnew − Znewβ∥
2/n.
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2.6.1 Prediction Under the Factor Regression Model

We compare the performance of PCR-s̃, PCR-K, PCR-ratio, GLS, Lasso, Ridge

and MS by varying p, K and the signal-to-noise ratio (SNR) ξ defined in (2.8),

one at a time. The MS predictor is based on (2.35) over all the aforementioned

methods.

We first set n = 300, K = 5 and vary p from {100, 300, 700, 1500, 3000, 5000},

then choose n = 300, p = 500 and vary K from {3, 5, 10, 15, 20}. The prediction

risks of different predictors for these two settings are shown in Figure 2.1. Since

both PCR-s̃ and PCR-ratio consistently select the true K, we only present the

result for PCR-K.
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Figure 2.1: Prediction risks of different predictors under the factor
regression model as p and K vary separately

Results: Overall, it is clear that the MS predictor selects the best predictor in

almost all settings, corroborating Theorem 25. Meanwhile, PCR-K has the best

performance in all settings as it is tailored to the factor regression model.

From the first panel, all methods perform better as p increases (with excep-
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tions given to GLS and Ridge when p ≈ n = 300). This contradicts the classical

understanding that having more features increases the degrees of freedom of the

model, hence inducing larger variance. By contrast, in our setting, increasing

the number of features provides information that can be used to predict A. This

can be seen from the minimal excess risk in Lemma 16 by noting that λK(A⊤A)

increases as p increases. This phenomenon has been observed in the classical

factor (regression) model, see, for instance, [8, 10, 11, 42, 86] and the references

therein.

Perhaps more interestingly, when p is much larger than n, GLS and Ridge

have performance similar to PCR-K. This demonstrates our conclusions in

Section 2.4.3 that GLS and PCR-K are comparable when p ≫ n. We also note

from our simulation that Ridge tends to select near-zero regularization parameter

when p ≫ n, whence Ridge essentially reduces to GLS [51]. In contrast to GLS

and Ridge, the performance of Lasso stops improving after p > 2500. When

p is moderately large (say p < 1000), GLS and Ridge have larger errors than

PCR-K and Lasso. In particular, if p is close to n, the error of GLS diverges, a

phenomenon observed in [51], for example, under the linear model.

From the second panel, the prediction error for all methods deteriorates as

K increases. This indicates that prediction becomes more difficult for large K,

supporting our results in Sections 2.3 and 2.4. We also note that the performance

of Ridge deteriorates faster than the other methods when K grows.

To further demonstrate how different predictors behave as the signal-

to-noise ratio (SNR) changes, we multiply A by a scalar α chosen within

{0.1, 0.13, 0.16, · · · , 0.37, 0.40}. We set n = 300, p = 500 and K = 5. For each
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Figure 2.2: Prediction risks of different predictors under the factor
regression model as SNR varies

α, we calculate the SNR and plot the prediction risks of each predictor in Figure

2.2.

Results: As expected, all methods perform worse as the SNR decreases. MS has

consistently selected the (near) best predictor. When the SNR is small (less than

2), Ridge has the best performance. As soon as the SNR exceeds 2, PCR-K and

PCR-s̃ start to outperform the other methods. In terms of selecting K, when the

SNR is larger than 2, PCR-s̃ starts estimating K consistently whereas PCR-ratio

fails until the SNR is greater than 4. Both PCR-s̃ and PCR-ratio tend to under-

estimate K in the presence of a small SNR. However, PCR-s̃ selects s̃ closer to K

than PCR-ratio, leading to better performance. Moreover, the loss due to using

s̃ < K by PCR-s̃ is not significant, in line with Corollary 21 and Remark 6.

2.6.2 Prediction Under the Essential Regression Model

We compare all the predictors when data is generated from an Essential Regres-

sion model. To vary p and K individually, we first set n = 300, K = 5, m = 5
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and choose p from {100, 300, 500, 700, 900}, then fix n = 300, p = 500, m = 5 and

vary K in {3, 5, 10, 15, 20}. The prediction risks of different predictors are shown

in Figure 2.3. PCR-s̃ and PCR-ratio are not included as they have almost the

same performance as PCR-K. As it was demonstrated under the factor regression

setting that GLS is outperformed by the other predictors when p is not large

enough, we also excluded its performance from the plot.

Summary: We observe the same phenomenon as before, that is: (1) all predictors

benefit from large p; (2) as K increases, the performance of all predictors deteri-

orate. Furthermore, the model-based ER predictor has similar performance as

the model-free PCR predictor when K is small. The advantage of ER over PCR

enlarges as K grows. This is aligned with our theoretical findings in Section 2.4.3

that ER benefits from the sparsity of AJ, because our data generating mechanism

ensures that the larger K is, the sparser AJ becomes.
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Figure 2.3: Prediction risks of different predictors under the Essential
Regression model as p and K vary separately
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•••••••• CHAPTER 3

A HIERARCHICAL DISTANCE BETWEEN CORPORA USING OPTIMAL

TRANSPORT OF TOPIC-BASED CLUSTER DISTRIBUTIONS

3.1 Introduction

In this work we propose a new method for comparing pairs of corpora of docu-

ments generated from sets of latent topics, using a hierarchical Wasserstein-type

metric, tailored to this problem. Although the Wasserstein distance, and its

many modifications, are routinely used for two-sample statistical comparisons,

e.g. [37, 74, 81, 89], very little is known about the construction and analysis of its

variants that can be readily applied to a two-ensemble comparison, where each

ensemble is itself a collection of independent, but not necessarily identically

distributed, samples and, moreover, can be sampled from high-dimensional

distributions. We treat this problem here, in the topic model setting, and propose

a distance for comparing ensembles of high-dimensional, discrete, distributions.

We assume that we observe two corpora of n and n′ documents, respectively.

We assume the corpora share a common dictionary of size p, which can be taken

to be the set of unique words in the two corpora.

For the first corpus, each document i ∈ [n] := {1, . . . , n} is modelled as a

sample of Ni words drawn from a discrete distribution Π(i) over the p words in

the dictionary. We observe the p-dimensional word-count vector Y (i) for each

document i ∈ [n], where we assume

Y (i) ∼Multinomialp(Ni,Π
(i)).

The observed word frequencies, for all n samples, are collected in the p × n
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word-frequency matrix X.

The topic model assumption is that the matrix of expected word frequencies

in the corpus, E(X) =: Π B (Π(1), . . . ,Π(n)) can be factorized as Π = AT. Here A

represents the p × K matrix of conditional probabilities of a word, given a topic,

and therefore each column of A belongs to the p-dimensional probability simplex

∆p B {x ∈ Rp | x ⪰ 0, 1⊤p x = 1}.

The notation x ⪰ 0 specifies that x j ≥ 0 for each j ∈ [p], and 1p is the vector of

all ones. In particular, the kth column A·k is a distribution over words in the

dictionary conditional on topic k, with components

Aik = P(word i|topic k) ∀i ∈ [p].

The K × n matrix T B (T (1), . . . ,T (n)) collects the probability vectors T (i) ∈ ∆K , the

simplex in RK . The entries of T (i) are probabilities with which each of the K topics

occurs within document i, for each i ∈ [n], and are typically sparse.

In this setting, each generating distribution Π(i) is therefore a discrete mixture

of A·k, with weights T (i)
k , for k ∈ [K] and i ∈ [n].

For the second corpus, the same assumptions hold where n,Ni,Y (i),X,Π, A,K,T

are replaced by n′,N′i ,Y
′(i),X′,Π′, A′,K′,T′. Note in particular that we allow for

K , K′, so the corpora can have different numbers of topics, and A , A′, in which

case the topics themselves (as represented by a column of A or A′) can differ be-

tween the corpora. Furthermore, the topic proportions per document, collected

in T and T′, can be different, even if the corpora cover the same topics. The

number of topics K and K′ are not known prior to estimation, and are allowed to

depend on and grow with the size of the corpus.
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We will employ ideas drawn from optimal transport to define a distance

between corpora, noting the added challenge posed by having independent, but

not identically distributed high-dimensional samples. In the latter case, at the

conceptual level, one could employ appropriate estimators of versions of the

Wasserstein distance, proposed to alleviate the curse of dimensionality in, for

instance, [45], but they employ empirical estimates of the common distributions

underlying each ensemble. Since in a topic model setting each sample in the

ensemble has its own distribution, different techniques must be developed.

We propose the following strategy, stated at the population-level below, and

expanded upon in Section 3.2.

(1) Reduction step: We cluster each corpus by topic. Document i of corpus

1 belongs to cluster a if T (i)
a > 0, for each a ∈ [K], thereby reducing this corpus

to a set of K clusters. Repeating the procedure, the second corpus is reduced to

a collection of K′ clusters. The resulting clusters, of each corpus, will typically

be overlapping, as documents can cover in detail, or only touch upon, multiple

topics.

(2) Representation step. We represent each corpus as a discrete distribution

over cluster centers. To this end, in Corpus 1, to each cluster a ∈ [K] we associate,

in (3.6), an appropriately defined weight θa > 0, with
∑K

a=1 θa = 1, and a center

T
(a) (Section 3.2.1). Each cluster center itself is viewed as a discrete measure,

supported on K points in ∆p consisting in the K discrete mixture components

A·k ∈ ∆p:

T
(a) =

K∑
k=1

T
(a)
k δA·k , (3.1)

where δu is the Dirac measure concentrated on u, and T (a)
k is defined in (3.7). The

set of all discrete measures on at most K points in ∆p is denoted byDK,p. We use
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the same reasoning to define T ′(a) andDK′,p, for Corpus 2.

We then represent Corpus 1 as a discrete measure θ supported on the K points

T
(a)
∈ DK,p:

θ B
K∑

a=1

θaδT (a) . (3.2)

The set of all discrete measures on at most K points in DK,p is denoted by

DK,K , and so θ ∈ DK,K . Similarly, Corpus 2 is represented by θ′ =:
∑K

′

a=1 θ
′

aδT ′(a) ,

and θ′ ∈ DK′,K′ . Note that both θ and θ′ lie inDK∨K′,K∨K′ .

(3) A distance between corpora. With these ingredients in place, we define

the distance between a pair of corpora as a distance between their probabilistic

representations Dcorpora : DK∨K′,K∨K′ ×DK∨K′,K∨K′ → R+ given by

Dcorpora(θ, θ′) B W1(θ, θ′; dcluster), (3.3)

where W1 refers to the 1-Wasserstein distance between the two distributions, and

is defined in Section (3.2.2). To complete the definition of the distance we need to

specify a distance between T (a) and T ′(b), for each a ∈ [K], b ∈ [K′], denoted by

dcluster : DK∨K′,p ×DK∨K′,p → R+.

We let dcluster(a, b) B dcluster(T (a),T ′(b)) and, owing to the probabilistic representa-

tion (3.1), we once again use the Wasserstein distance to define

dcluster(a, b) B W1(T (a),T ′(b); dmix), (3.4)

where dmix(k, l) is a distance between discrete mixture pairs (A·k, A′·l) ∈ ∆p × ∆p, for

(k, l) ∈ [K] × [K′]. While any distance between discrete probability vectors can be

employed at this step, for computational simplicity and to widen the applicability

of the final corpora distance, we work with the total variation distance and, with
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slight abuse of notation, we define

dmix(k, l) B
1
2
∥A·k − A′·l∥1. (3.5)

Displays (3.3) - (3.5) show the hierarchical construction of our proposed

distance and we henceforth refer to (3.3) as the hierarchical Wasserstein corpus

distance (HWCD).

3.1.1 Existing Results and Our Contribution

Other hierarchical versions of the Wasserstein distance are scattered throughout

the literature, and used for diverse purposes. For instance, they can be important

technical tools in theoretical Bayesian analyses [80], or used to define multi-level

clustering schemes [52], by extending what has become a classical usage of the

Wasserstein distance in the context of K-means clustering [84].

In the context of topic models, hierarchical variants of the Wasserstein dis-

tance have been used recently with empirical success in [94], and also received

sharp theoretical treatment in [21], but for the problem of document comparison,

in one corpus, which is an instance of a two-sample comparison, unlike the

two-ensemble comparison treated here.

Earlier applications of other versions of hierarchical optimal transport that

are closer to the problem tackled in this work can be found in [36], which pro-

vides a successful empirical comparison of two general, given, non-overlapping

clustering schemes, but does not provide accompanying supporting theory.

The problem of corpora comparison, with theoretical guarantees, has not been

studied, to the best of our knowledge, but a very limited number of empirical
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studies, based on approaches that differ from our proposal, exist, mainly in

the linguistics literature. Quantitative measures of corpora similarity were first

proposed in [65]. A χ2 measure based on word frequencies was found by [65]

to perform the best at recovering ground-truth similarity in a set of so-called

“Known Similarity Corpora".

The only topic-based similarity measure in the literature that we are aware

of that is specifically dedicated to corpora comparison is [46]. This empirical

distance is not based on estimating a population-level target and is without

supporting theory. It also does not account for the relative distance between

topics. In contrast, our distance is defined at the population level as a metric on

a space of probabilistic representations of corpora. This allows for theoretical

guarantees on its estimation, which we provide. Furthermore, by using the

Wasserstein distance, our method incorporates the relative distance between

topics. Due to our optimal transport approach, our method also provides a

transport plan between the topics in a pair of corpora, aiding in an interpretable

comparison of the corpora (See Figure 3.2 for a real-data example).

In light of existing results, our contribution is summarized below.

(1) We provide a new, principled, construction of a distance between two

ensembles of independent, but not identically distributed, discrete samples,

when each ensemble follows a topic model. Our proposal is a hierarchical

Wasserstein distance, that can be used for document corpora comparison, or any

other data sets following topic models. All the details are given in Section 3.2.

(2) We provide computationally tractable estimates of the distance, as well

as accompanying finite sample error bounds, in Theorem 26. The final rate
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cumulates the minimax-optimal error rate
√

K/n incurred by estimating the

mixture weight vectors T (i), i ∈ [n], with the minimax-optimal error rate
√
∥A∥0
nN

of estimating the word-topic matrix A, stated here for simplicity with Ni = N,

for all i ∈ [n]. The second corpus contributes similar error bounds to the final

corpus-distance estimate rate. The norm ∥A∥0 is the ℓ0 norm of the matrix A,

counting the number of elements in its support, and equals pK for a fully dense

matrix, but can be much smaller when A is sparse. The latter is expected to hold

in realistic scenarios since, given a topic, many words in a large dictionary will

have a very small, or zero, conditional probability of occurrence. Consequently,

our distance error bound shows that the distance between two corpora can be

estimated accurately even if they consist in short documents (small N) as long

as the size of each corpus n, n′, is relatively large, and that the latter itself can be

relaxed as long as A is sparse. The details are given in Section 3.3. An application

to the comparison of news sources is provided in Section 3.4.

3.2 A hierarchical Wasserstein distance between corpora

In this section we follow the program laid out in the introduction and expand on

each of the steps that lead up to the construction of our distance. We begin by

detailing the construction of the probabilistic representation of each corpus.
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3.2.1 A representation of a document corpus as a discrete distri-

bution on cluster center distributions

In this section we use the notation associated with Corpus 1; that for Corpus 2

will follow by analogy. We recall that, for each i ∈ [n], the components of the

vector T (i) ∈ ∆K are the proportions in which each of the K topics in the corpus is

covered by document i, and thus we expect T (i) to be sparse.

We begin by grouping the n documents by the topics they respectively address,

including in a group a all documents i for which T (i)
a > 0, for each a ∈ [K], thereby

creating K possibly overlapping clusters. To each topic-based cluster a ∈ [K] we

associate two objects: (1) A mass θa ∈ [0, 1], designed to reflect the relative weight

topic a has in the entire corpus; and (2) A cluster center T (a), a discrete measure

supported on K points in ∆p detailed below.

We assign mass to a topic-based cluster a ∈ [K] in a natural way:

θa B
1
n

n∑
i=1

T (i)
a , (3.6)

the average proportion in which topic a is represented in the entire corpus. It

may appear that we have been too liberal in our cluster construction, in that

we allowed a topic-based cluster a to include documents that may barely touch

upon a topic, such that T (i)
a > 0, but possibly very close to zero. However, we

adjust for this in the definition of the cluster centers T (a), for each a ∈ [K].

Recognizing that reducing a topic-based cluster to one representative could,

in principle, lose some of the within-cluster variability, we do not only represent

the cluster center by a vector of numerical values, but also add to them respective

amounts of mass, to encode their potential variation. We are therefore led
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naturally to viewing a cluster center as being itself a discrete measure.

In a topic model framework, the variation among documents is induced by a

variation in their topic distributions, T (i) ∈ ∆K , the entries of which place mass

on each of the K topics. Each topic gives rise to word frequencies specific to that

topic, collected in the word-topic vectors A·k. This allows for the identification of

a topic k with A·k ∈ ∆p, a process that has been shown to lead to empirical success

in [94], and vetted theoretically in [21]. We follow the same line of reasoning here,

and will represent a cluster center as a discrete measure supported on K points,

A·k ∈ ∆p, k ∈ [K]. We then define the mass it places on a point k as a weighted

average of document-specific topic proportions T (i)
k , over the entire corpus,

T
(a)
k B

n∑
i=1

γ(a)
i T (i)

k . (3.7)

The weight γ(a)
i is the proportion of topic a in document i, relative to the propor-

tion of topic a in the full corpus, and is defined by

γ(a)
i B

T (i)
a∑n

j=1 T ( j)
a

, ∀i ∈ [n]. (3.8)

In the limit case in which each document in the corpus pertains exactly to one

topic, let Ma = |{ j ∈ [n] : T ( j)
a > 0}| be the number of documents on topic a. Then

for each topic a ∈ [K] and document i ∈ [n], γ(a)
i = 1/Ma if document i contains

topic a, and γ(a)
i = 0 otherwise, and thus γ(a) is the uniform distribution over

documents containing topic a. In general, the definition (3.8) takes into account

the potential topical complexity of each document. With these ingredients, a

cluster center is associated with the discrete measure T (a) given by (3.1) in the

introduction.

To complete the representation process for Corpus 1, we use mass θa given

by (3.6) and cluster center T (a) given by (3.1), in conjunction with (3.7) and (3.8),
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to obtain the discrete measure θ given by display (3.2) of the introduction. We

repeat the process to associate the measure θ′ with Corpus 2.

3.2.2 A hierarchical Wasserstein distance for two-ensemble com-

parison

Once each corpus is represented as a discrete distribution, we define a distance

between corpora as a distance between their probabilistic representations θ and

θ′. Hierarchically employing distances rooted in optimal transport allows us

to take full advantage of the geometry of the underlying probability space of

discrete measuresDK∨K′,p that contains the support points of θ and θ′.

To see how, we first recall the definition of the Wasserstein distance for generic

discrete distributions r and s with finite support on a generic metric space (X, d).

The 1-Wasserstein distance between r and s is defined by

W1(r, s; d) B inf
w∈ΣW (r,s)

∑
x∈supp(r),y∈supp(s)

w(x, y) · d(x, y), (3.9)

where ΣW(r, s) denotes the set of all joint distributions (couplings) between r and

s, with marginals r and s, and supp(r), supp(s) denote the support of r and s,

respectively. We note that the minimizer w∗ of 3.9 is called a transport plan, and

can be use for interpreting how the measures r and s align.

We specialize this to distributions θ, θ′ and d = dcluster to obtain our proposed

Dcorpora (3.3) and to distributions T (a), T ′(b) and d = dmix (3.5) to calculate the

distance dcluster (3.4), all defined in the introduction. We note that the overall

computing effort involved in calculating Dcorpora reduces to two optimization
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problems in dimension K×K′, a much reduced dimension relative to the ambient

dimensions of the problem.

3.2.3 The discriminating power of the distance between corpora

with varying topical content and topic coverage

In this sub-section we offer a simulation study, at the population level, to aid

with the intuitive understanding of the properties of the new distance Dcorpora.

We focus on illustrating the discriminating power of the corpora-distance as a

function of the different aspects in which two corpora satisfying a topic model

can differ: (I) In terms of their respective word-topic matrices A and A′; and (II)

In terms of their topic distributions (T (i))i∈[n] and (T ′(i))i∈[n′]. If two corpora differ

in any combination of (I) and (II), their associated measures θ and θ′ will differ.

We illustrate that the new Dcorpora can capture these differences through a small

numerical study.

In particular, we illustrate below that Dcorpora has maximal value, 1, when the

two corpora cover a disjoint set of topics, as expected of any bona fide corpora-

distance and that, moreover, can distinguish between corpora on similar topics

(A ≈ A′), but which are covered in different proportions by the documents of

each corpus, (T (i))i∈[n] , (T ′(i))i∈[n′].

We generate A with p = 5000, K = 10 by sampling the entries of the top half of

A iid from Unif(0, 1), setting the entries in the lower half to zero, and normalizing

so the columns of A sum to 1. Let B be a p × K matrix generated independently

of A, with the upper half entries set to zero, lower half entries drawn iid from
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Unif(0, 1), and columns normalized to sum to 1. Then, for h ∈ [0, 1], let

A′ = (1 − h) ∗ A + h ∗ B. (3.10)

Define α:(K/2) ∈ ∆K such that the first K/2 components equal 2/K, and the remain-

ing components are zero. Let α(K/2): ∈ ∆K have the first K/2 components equal to

zero, and the remaining components equal to K/2. We generate T (1), . . .T (n) iid

such that

T (i) ∝ α:(K/2) + σ ∗ ε
(i), (3.11)

where ε(1), . . . , ε(n) ∼ Dirichlet(1K) is iid noise and σ = 0.01. Thus the first corpus

is concentrated on the first K/2 topics. We generate T ′(1), . . .T ′(n) iid such that

T ′(i) ∝ (1 − t) ∗ α:(K/2) + t ∗ α(K/2): + σ ∗ ε
′(i), (3.12)

where again ε′(1), . . . , ε′(n)
∼ Dirichlet(1K) is iid noise and t ∈ [0, 1]. When t is close

to zero, the second corpus is also concentrated on the first K/2 topics, and the

two corpora have similar topic coverage, in each document. As t increases, more

weight is placed on the final K/2 topics in the second corpus, until, when t is close

to 1, T ′(1), . . .T ′(n
′) are mostly supported on the final K/2 documents, making the

corpora dissimilar in terms of their topic coverage.

In Figure 3.1, we plot the corpora distance (3.3) between the two corpora

defined by (A, (T (i))i∈[n]) and (A′, (T ′(i))i∈[n′]), respectively, as a function of the

parameter h in (3.10), for four representative values of the parameter t in (3.12).

When h = 0, on the far left of the plot, A = A′, and two corpora have identical

topical content. When t = 0, they also have identical topic coverage, thus the

distance is zero. As t increases, although the topics are the same, the second

corpus places increasingly greater weight on the final K/2 topics, and the corpora

distance increases, as seen in the figure. When h = 1, on the far right of the plot,
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Figure 3.1: Corpora distance as a function of h in (3.10), for four repre-
sentative values of the parameter t in (3.12).

A′ = B; the topics in the two corpora then have disjoint support, resulting in a

corpus distance of 1 regardless of topic coverage.

3.3 Estimation of the HWCD: methods and error bounds

We estimate Dcorpora via plug-in estimates. The next sub-section gives our pro-

posed estimates of the number of topics, K and K′, of the word-topic matrices

A and A′, and of the topic distributions T (i) and T ′(i), as well as their theoretical

guarantees. For all estimated quantities we use the same notation we used for

their population-level counterparts, to which we add the hat symbol. We then

plug-in these estimates in (3.6) and (3.2) to obtain the estimator θ̂, and proceed

similarly using (3.7), (3.8) and (3.1) to construct T̂
(a)

, for each a ∈ K̂. We repeat

the process for Corpus 2. Then, following (3.3), our final estimate is

D̂corpora(̂θ, θ̂′) B W1(̂θ, θ̂′; d̂cluster), (3.13)
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where, using the same notation convention, and for a ∈ [K̂], b ∈ [K̂′],

d̂cluster(a, b) B W1(T̂
(a)
, T̂

′(b)
; d̂mix), (3.14)

with d̂mix defined as the Total Variation distance on ∆p, similarly to dmix. We use

the hat to emphasize that it acts on support points (Â·k)k∈[K′] and write d̂mix(a, b) B

1
2∥Â·a − Â′

·b∥1.

3.3.1 Error bounds on corpora-distance estimates

The error incurred in the estimation of Dcorpora cumulates the errors induced by

the estimation of the columns of the word-topic matrices (the mixture compo-

nents) and of the topic-document distributions (their mixture weights). Minimax-

rate optimal estimators of these quantities have only been developed very re-

cently. We discuss them separately below and use them to obtain, in Theorem 26,

our final distance error bound.

Estimators of word-topic matrices: The estimation of A (in Corpus 1, and

similarly A′ in Corpus 2) under topic models was originally studied within

a Bayesian framework [31, 48], and variational-Bayes type approaches were

further proposed to accelerate the computation of fully Bayesian approaches.

We refer to [29] for an in-depth overview of this class of techniques. More

recently, [3, 5, 7, 23, 24, 39, 62] studied provably fast algorithms for estimating

A from a frequentist point of view. The common thread of these works, both

theoretically and computationally, is the usage of what is known as the anchor

word assumption, which assumes the existence of at least one word in the

dictionary that is used in only one topic, and has been shown empirically to

hold [38] in most large corpora for which topic models are reasonable modeling
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tools. Furthermore, under this assumption, the topic model is identifiable, and

the estimation of A is a well-posed problem. Theoretically validated estimation

procedures that employ this identifiability assumption have been developed

in [5, 28], when K is known, and extended to the case in which K is unknown,

and also allowed to depend on the size n of the corpus, in [23]. The latter work

provides consistent estimators of K, establishes the minimax lower bound for

the estimation of A in ∥ ∥1,∞ norm, and offers the first minimax-rate adaptive

estimator in a regime in which K and p are allowed to depend on the sample

sizes. In this paper we use an extension of this work, that further allows for the

realistic scenario in which A is sparse.

We construct K̂ and Â using Algorithm 2 in [23] and Algorithm 1 in [24],

which by their Theorem 2 and Corollary 3, is minimax-rate optimal. The error

rate, that holds with high probability under the assumptions of these theorems,

is

min
P∈H
∥Â − AP∥1,∞ ≲

√
∥A∥0
nN

. (3.15)

HereH is the set of K × K permutation matrices, and the symbol ≲ means that

the inequality holds up to constants and possibly logarithmic factors. We also

use this estimator for Corpus 2.

Estimators of the mixture weights: Computationally efficient methods, with

theoretical guarantees, for estimating the topic distributions T (i), for i ∈ [n], of one

corpus, are scarce, with earlier results in [66], [6], restricted to known word-topic

matrices A. Computationally efficient estimators of T (i) whose rate also reflects

the error incurred by the estimation A have only been established very recently

in [67] and [21], and include minimax-rate analyses. The latter work proposes

a profile likelihood estimator, which we will also adopt here. The estimator

92



optimizes over ∆K̂ a multinomial likelihood function

T̂ (i) = argmaxT∈∆K̂
N

p∑
j=1

X(i)
j log

(
Â⊤j·T

)
, (3.16)

for each i, and for given estimators Â and K̂. We will work with the estimator

Â of [24], which attains the rate (3.15), and its associated K̂, which estimates K

consistently. Then, Corollary 10 in [21] shows that

min
P∈H
∥T̂ (i) − P⊤T (i)∥1 = OP

√K log p
N

+

√
∥A∥0 log p

nN

 , (3.17)

for every i. The standard symbol OP means that the rate in the right hand side

holds with high probability.

We note that if A is known, the last term in the error bound is zero, and if an

estimator with another rate is used, that rate will replace the second term above,

which can be seen by inspecting the proof of Corollary 10 in [21]. Furthermore,

this work also showed that, under appropriate conditions, T̂ (i) can be exactly

sparse, a remarkable property for an un-penalized estimator. This makes it ideally

suited for our task, as we expect the generative vector of topic proportions T (i) to

be sparse (not all topics are covered by each document) and T̂ (i) can recover the

true sparsity pattern, see [21] for details.

Error bounds for the corpora distance: Our proposed estimator of the corpora

distance is the plug-in estimator corresponding to the partial estimates explained

above. Its error bound is given below, and proved in Appendix C.1. We note that

it combines additively the error bounds given in (3.15) and (3.17), obtained under

the conditions stated in Corollary 3 of [24] and Corollary 10 in [21]. In particular,

we require each corpus to have a balanced number of topics. Formally, for Corpus

1, with θmin B mina∈[K] θa and θmax B maxa∈[K] θa, we assume that θmin ≍ θmax. It is

well understood that it is difficult to estimate A optimally in the absence of this

93



assumption, see e.g. [7] for an early reference. We make a similar assumption for

Corpus 2.

Theorem 26. If the estimators Â and T̂ (i), i ∈ [n], for Corpus 1 achieve, respectively, the

rates (3.15) and (3.17), and if the same rates hold in Corpus 2, then

|W1(̂θ, θ̂′; d̂cluster) −W1(θ, θ′; dcluster)| = OP

(√
∥A∥0 log(p)

nN
+

√
∥A′∥0 log(p)

n′N′

+ θ−1
min

√
K log(p)

N
+ θ′−1

min

√
K′ log(p)

N′

)
.

(3.18)

Remark 8. The error rate in estimating the corpus distance cumulates the errors

induced by the estimation of its ingredients, A, A′,T (i),T ′(i). Furthermore, the

quantity θmin appears in the rate (3.18) due to the estimation of the within-cluster

document weights γ(a) = nT (i)
a /θa, a ∈ [K]. Since we work under the assumption

that the topics are approximately balanced, we have θmin ≍ θmax > 1/K, the latter

inequality holding since
∑K

a=1 θa = 1. This shows that the rate of the estimator of

our proposed hierarchical Wasserstein distance could include an extra factor of

K ∨ K′ in the term involving cluster center distribution estimates. We suspect

that this factor is unavoidable, and defer to the future a careful minimax-rate

analysis for the estimation of this distance.

3.4 Application: comparing news sources

In this section we demonstrate the use of our distance with an application to

comparing news sources. We compare the New York Times (NYT) to four other

news sources by computing the distance between corpora of articles from each

source, using a variety of corpus distances. Each corpus consists of documents
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from June 2005 from the corresponding news source in the Gigaword English

dataset [82].

See Table 3.1 for the results. The news sources are arranged from left to right

in order of increasing geographic and cultural dissimilarity in content from the

NYT (US, US-based world news, French, Chinese); we expect an informative

corpus distance to respect this ordering.

The distances we consider are as follows, from the first row of the table to

the last: (i) Our proposed hierarchical distance (HWCD) with word-topic matrix

and number of topics estimated using Sparse-TOP [24], and document-topic

vectors T estimated by the MLE; and LDA [31] with the same number of topics,

as estimated by Sparse-TOP. (ii) We consider a corpus distance (Agg) that does

not use the proposed probabilistic representation of each corpus, but instead

aggregates an n × n′ matrix D of between-document distances (where n, n′ are

the number of documents in the two corpora) by computing 1
2n

∑
i max j Di j +

1
2n′

∑
j maxi Di j. For the between-document distances in D we use the topic-level

Wasserstein distance from [21]. (iii) Finally, we consider the method of [46], with

document-topic matrix estimated using both Sparse-TOP and LDA (with the

same number of topics).

Discussion of results: HWCD and Agg both successfully align with our

expectations that the distance between the news sources increases (left to right),

based on cultural and geographic similarity of the content. However, Table 3.1

shows that Agg has a computation time several orders of magnitude larger than

all other methods, limiting its practical utility. Furthermore, HWCD gives rise

to an interpretable transport plan between the topic-based cluster centers (see

Section 3.2.2), showing how topics are connected between news sources; see
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Figure 3.2.

Neither of the distances based on [46] capture the expected relative distances

to NYT: Foth.-TOP ranks NYT as closer to XIN and AFP than to LTW, and

Foth.-LDA ranks NYT as nearly equidistant to AWP, AFP, and XIN, with AWP

being the most distant. Furthermore, these distances are not robust to the topic

model estimation method, and can yield contradictory results (0.280 vs. 0.997,

for example), in contrast with the Wasserstein-based corpus distances.

3.5 Conclusion

We have defined a new approach to measure the distance between ensembles

of independent, but not identically distributed, discrete samples, when each

ensemble follows a topic model. This distance, a hierarchical Wasserstein distance

on topic-based cluster center distributions, simultaneously captures differences

in the content of the topics (as measured by word-topic matrices A) and their

relative frequency (measured by weights (θa)a∈[K]). We provided a method of

estimation of the corpora distance together with theoretical bound on the error

of estimation. Finally, we demonstrated its use with an application to newswire

data, demonstrating how the distance can be used to detect and interpret topical

similarity between news sources.
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News source

Method LTW APW AFP XIN Time (s)

HWCD-TOP 0.202 0.380 0.435 0.519 0.05
HWCD-LDA 0.357 0.500 0.567 0.649 0.03
Agg 0.188 0.349 0.414 0.498 1444.8
Foth.-TOP 0.397 1.000 0.350 0.280 0.03
Foth.-LDA 0.150 1.000 0.988 0.997 0.03

Table 3.1: Distance from the NYT corpus to four other news sources: LA
Times/Washington Post (LTW), Associated Press Worldstream (AWP),
Agence France-Presse (AFP), and Xinhua News (XIN). The rightmost
column gives average computation time.

NYT

War

Oil

TV/Writing

Court/Law

War

LTW

Politics

Oil

Court/Law

FBI

Entertainment

Trade

Nuclear/Iran

Figure 3.2: The transport plan between NYT and LTW corresponding to the
HCWD. We recall that the optimal transport plan w∗ is a joint distribution
with marginals θ̂, θ̂′ that is a solution to the optimization problem (3.13). We
draw a line between any topics k ∈ [K], k′ ∈ [K′] with a nonzero value for
the transport plan, w∗k,k′ > 0. The plan depicted here shows how the topical
similarity between the NYT and LTW corpora is realized: for example, both
sources cover “War", “Oil", and “Court/Law", and “Politics" in the NYT is
connected to both “Trade" and “Nuclear/Iran" in LTW.
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APPENDIX A

APPENDIX OF CHAPTER 1

A.1 Proofs for Section 1.2

A.1.1 Proof of Theorem 1

We work on the event

K B
{
σ2

n(X) ≳ tr(ΣX), ∥y∥2 ≲ nσ2
y

}
. (A.1)

On this event, recalling α̂ = X+y and invoking identity (A.101) in Appendix A.5,

∥α̂∥2 ≤ ∥X+∥2∥y∥2 =
∥y∥2

σ2
n(X)

≲ σ2
y

n
tr(ΣX)

. (A.2)

By Lemma 27 below,

∣∣∣∣∣R(θ)
R(0)

− 1
∣∣∣∣∣ ≤ ∥θ∥2ΣX

R(0)
+ 2

√
∥θ∥2
ΣX

R(0)
≤ ∥ΣX∥

∥θ∥2

R(0)
+ 2

√
∥ΣX∥

∥θ∥2

R(0)

for any vector θ ∈ Rp. Combining this with (A.2) and recalling that σ2
y = E[y2] =

R(0), we find that on K , ∣∣∣∣∣∣R(α̂)
R(0)

− 1

∣∣∣∣∣∣ ≲ n
re(ΣX)

+

√
n

re(ΣX)

Setting C′ = max(C, 1), when re(ΣX) > C′n ≥ n, so n/re(ΣX) > 1, we find

n
re(ΣX)

+

√
n

re(ΣX)
≤ 2

√
n

re(ΣX)
.

Thus, on K , ∣∣∣∣∣∣R(α̂)
R(0)

− 1

∣∣∣∣∣∣ ≲
√

n
re(ΣX)

.
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All that remains is to bound the probability of K . To this end, note that since we

suppose Assumption 1 holds, we have X = X̃Σ1/2
X , and thus

σ2
n(X) = λn(XX⊤) = λn(X̃ΣXX̃),

where X̃ has i.i.d. entries that have zero mean, unit variance, and sub-Gaussian

constants bounded by an absolute constant. Theorem 28 below thus implies that

if re(ΣX) > C · n for C > 0 large enough, then with probability at least 1 − 2e−cn,

σ2
n(X) ≥ tr(ΣX)/2 − c0∥ΣX∥n = tr(ΣX) · [1/2 − c0n/re(ΣX)].

Using that n/re(ΣX) < 1/C and choosing C large enough,

P(σ2
n(X) ≳ tr(ΣX)) ≥ 1 − 2e−cn. (A.3)

By Assumption 1, y = σyỹ. Since ỹ1, . . . , ỹn have zero mean and sub-Gaussian

constants bounded by an absolute constant, Bernstein’s inequality (Corollary

2.8.3 of [91]) implies that

P(∥ỹ∥2 ≳ n) = P

∣∣∣∣∣∣∣

n∑
i=1

ỹ2
i

∣∣∣∣∣∣∣ ≳ n

 ≤ 2e−2cn.

Thus,

P(∥y∥2 ≳ σ2
yn) = P(σ2

y∥ỹ∥
2 ≳ σ2

yn) = P(∥ỹ∥2 ≳ n) ≤ 2e−2cn.

Combining this with (A.3) establishes that P(K) ≥ 1 − ce−c′n, thus completing the

proof. ■

A.1.2 Lemma 27 and Theorem 28

The proof of Theorem 1 above made crucial use of the following lemma and

theorem.
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Lemma 27. For any vector θ ∈ Rp,

∣∣∣∣∣R(θ)
R(0)

− 1
∣∣∣∣∣ ≤ ∥θ∥2ΣX

R(0)
+ 2

√
∥θ∥2
ΣX

R(0)
. (A.4)

Proof. We first show that ΣXα
∗ = ΣXY , where ΣXY B E[Xy] and α∗ B Σ+XΣXY . To this

end, observe that

Cov((I − ΣXΣ
+
X)X) = (Ip − ΣXΣ

+
X)E[XX⊤](Ip − ΣXΣ

+
X)

= (Ip − ΣXΣ
+
X)ΣX(Ip − Σ

+
XΣX)

= 0,

where we use that ΣXΣ
+
XΣX = ΣX (see Appendix A.5). Thus (Ip − ΣXΣ

+
X)X = 0 a.s.,

so

ΣXα
∗ = ΣXΣ

+
XΣXY = E[ΣXΣ

+
XXy] = E[Xy] = ΣXY . (A.5)

Fixing θ ∈ Rp, we have

R(θ) − R(0) = E[(X⊤θ − y)2] − E[y2]

= θ⊤E[XX⊤]θ − 2θ⊤E[Xy]

= ∥θ∥2ΣX
− 2θ⊤ΣXY

= ∥θ∥2ΣX
− 2θ⊤ΣXα

∗ (by (A.5)),

so by the Cauchy-Schwarz inequality,

|R(θ) − R(0)| ≤ ∥θ∥2ΣX
+ 2∥θ∥ΣX∥α

∗∥ΣX . (A.6)

Next observe that

R(0) = E[y2] = E(y − X⊤α∗ + X⊤α∗)2 = R(α∗) + ∥α∗∥2ΣX
≥ ∥α∗∥2ΣX

,

where we use that by (A.5),

E(X⊤α∗)(X⊤α∗ − y) = α∗⊤ΣXα
∗ − α∗⊤ΣXY = 0.
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Thus, ∥α∗∥2
ΣX
≤ R(0), so by (A.6),

|R(θ) − R(0)| ≤ ∥θ∥2ΣX
+ 2∥θ∥ΣX

√
R(0). (A.7)

Dividing both sides by R(0) gives the final result. ■

Theorem 28. Suppose W is an n × r random matrix with independent subgaussian

entries that have zero mean and unit variance. Then for any positive semi-definite matrix

Σ ∈ Rr×r and some c′ > 0 large enough, with probability at least 1 − 2e−cn,

tr(Σ)/2− c′(M2 +M4)∥Σ∥n ≤ λn(WΣW⊤) ≤ λ1(WΣW⊤) ≤ 3tr(Σ)/2+ c′(M2 +M4)∥Σ∥n,

where M B maxi, j ∥Wi j∥ψ2 .1

A similar result for diagonal Σ has been derived in Lemma 9 of [13]. We make

use of the Hanson-Wright inequality in our proof to deal with non-diagonal Σ.

Theorem 4.6.1 in [91] provides similar two-sided bounds for the smallest and

largest eigenvalue of WΣW⊤, when Σ = Ir.

Proof. We will prove that for some c′ ≥ 1,

∥WΣW⊤ − tr(Σ)In∥ ≤ c′(M2 + M4)∥Σ∥n + tr(Σ)/2 (A.8)

with probability at least 1 − 2e−cn. Equation (A.8) implies that for any v ∈ Rn with

∥v∥ = 1,

|v⊤WΣW⊤v − tr(Σ)| ≤ c′(M2 + M4)∥Σ∥n + tr(Σ)/2,

and so

tr(Σ)/2 − c′(M2 + M4)∥Σ∥n ≤ v⊤WΣW⊤v ≤ 3tr(Σ)/2 + c′(M2 + M4)∥Σ∥n.
1We define the sub-Gaussian norm of any real-valued random variable U by ∥U∥ψ2 B inf{t >

0 : E exp(U2/t) < 2}. We say U is sub-Gaussian when ∥U∥ψ2 < ∞.
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Taking the minimum and maximum over v ∈ S n−1 then gives the desired result.

We now prove (A.8). Let N be a 1/4-net of S n−1 with |N| ≤ 9n, which exists by

Corollary 4.2.13 of [91]. Then by Exercise 4.4.3 of [91],

∥WΣW⊤ − tr(Σ)In∥ = sup
v∈S n−1

|v⊤WΣW⊤v − tr(Σ)| ≤ 2 sup
v∈N
|v⊤WΣW⊤v − tr(Σ)|, (A.9)

where we use that WΣW⊤ − tr(Σ)In is symmetric in the first step.

Now fix v ∈ S n−1 and define B = W⊤v ∈ Rr. Observe that B has mean

zero entries that are independent because the columns of W are independent.

Furthermore, by Proposition 2.6.1 of [91],

∥Bi∥
2
ψ2
= ∥

∑
j

W jiv j∥
2
ψ2
≤ C

∑
j

∥W ji∥
2
ψ2

v2
j ≤ max

li
∥Wli∥

2
ψ2

∑
j

v2
j = CM2,

where we used ∥v∥2 = 1 in the last step. Thus, by the Hanson-Wright inequality

(Theorem 6.2.1 in [91]),

P
(
|B⊤ΣB − EB⊤ΣB| ≥ c1M2t

)
≤ 2 exp

{
−c2 min

(
t/∥Σ∥, t2/∥Σ∥2F

)}
, (A.10)

where we can choose c1 > 0 large enough such that c2 ≥ 12.

Note that

EB⊤ΣB =
∑
i, j,k,l

EviWi jΣ jlWklvk =
∑

i j

v2
i Σ j jEW2

i j = ∥v∥
2tr(Σ) = tr(Σ), (A.11)

where in the second step we use that W has independent mean zero entries, in

the third step we use that EW2
i j = 1 for all i, j, and in the final step we use that

∥v∥ = 1.
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Choosing t = ∥Σ∥n/2 +
√

n∥Σ∥2F/2 in (A.10) and using that c2 ≥ 12, we observe

that

c2t/∥Σ∥ = c2n/2 + c2

√
n∥Σ∥2F/(2∥Σ∥) ≥ c2n/2 ≥ 3n,

and

c2t2/∥Σ∥2F = c2

[
n∥Σ∥/(2∥Σ∥F) +

√
n/2

]2
≥ c2n/4 ≥ 3n.

Thus,

P
(
|B⊤ΣB − tr(Σ)| ≥ c1M2∥Σ∥n/2 + c1M2

√
n∥Σ∥2F/2

)
≤ 2e−3n, (A.12)

where we used (A.11). Finally, using

∥Σ∥2F = tr(Σ2) ≤ ∥Σ∥tr(Σ),

and the inequality 2ab ≤ a2 + b2,

c1M2
√

n∥Σ∥2F/2 ≤ c1M2
√

(c1M2n∥Σ∥)(tr(Σ)/c1M2)/2 ≤ c2
1M4n∥Σ∥/4 + tr(Σ)/4.

Thus, by (A.12), and for c′ > 0 large enough,

P
(
|B⊤ΣB − tr(Σ)| ≥ c′(M2 + M4)∥Σ∥n + tr(Σ)/4

)
≤ 2e−3n. (A.13)

Denoting c′(M2 + M4)∥Σ∥n + tr(Σ)/4 by L, we thus have

P
(
∥WΣW⊤ − tr(Σ)In∥ ≥ 2L

)
≤ P

(
2 sup

v∈N
|v⊤WΣW⊤v − tr(Σ)| ≥ 2L

)
(by (A.9))

≤
∑
v∈N

P
(
|v⊤WΣW⊤v − tr(Σ)| ≥ L

)
(union bound)

≤ 2 × 9ne−3n (by (A.13))

= 2en log(9)−3n ≤ 2e−cn,

where we define c = 3−log(9) > 0 in the last step. This shows (A.8) and completes

the proof. ■
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A.2 Proofs for Section 1.3

A.2.1 Proof of Lemma 3 from Section 1.3.1

We will use ΣX = AΣZA⊤ + ΣE and the min-max formula for eigenvalues,

λi(ΣX) = min
S :dim(S )=i

max
x∈S :∥x∥=1

x⊤ΣX x, (A.14)

where the minimum is taken over all linear subspaces S ⊂ Rp with dimension i.

We prove the three points one by one.

1. Since for any x ∈ Rp, x⊤AΣZA⊤x ≥ 0, we have

x⊤ΣX x ≥ x⊤ΣE x,

so by (A.14), for any i ∈ [p],

λi(ΣX) ≥ λi(ΣE) ≥ λp(ΣE) > c2.

2. For any x ∈ Rp,

x⊤ΣX x = x⊤AΣZA⊤x + x⊤ΣE x

≥ x⊤AΣZA⊤x

≥ λK(ΣZ)x⊤AA⊤x

≥ c1 · x⊤AA⊤x.

Plugging this into (A.14) with i = K, we find λK(ΣX) ≥ c1λK(A⊤A) as claimed.

3. For any x ∈ Rp, x⊤ΣE x ≤ ∥ΣE∥. Using this in (A.14), we find for any i > K,

λi(ΣX) ≤ ∥ΣE∥ + λi(AΣZA⊤) = ∥ΣE∥ < C2,
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where in the second step we use that rank(AΣZA⊤) ≤ K, so λi(AΣZA⊤) = 0

for i > K. Combining this with λi(ΣX) > c2 from part 1 above completes the

proof.

■

A.2.2 Proof of Lemma 4 from Section 1.3.2

Using y = Z⊤β + ε and the fact that ε is independent of X and Z,

R(α∗) = E[(α∗⊤X − y)]2 = E[(α∗⊤X − Z⊤β)]2 + σ2 ≥ σ2,

which proves the first claim. Using X = AZ + E, we further find

R(α∗) − σ2 = E[(α∗⊤X − Z⊤β)]2 = α∗⊤ΣXα
∗ + β⊤ΣZβ − 2α∗⊤AΣZβ. (A.15)

Now suppose ΣE and ΣZ are invertible as in the second claim. Then in particular,

λp(ΣX) ≥ λp(ΣE) > 0,

so ΣX is invertible and thus Σ+X = Σ
−1
X . Also, ΣXY = E[Xy] = AΣZβ, so

α∗ = Σ+XΣXY = Σ
−1
X AΣZβ.

Defining Ā B AΣ1/2
Z and β̄ B Σ1/2

Z β, we have α∗ = Σ−1
X Āβ̄. Plugging this into (A.15)

and simplifying, we find

R(α∗) − σ2 = β̄⊤
[
IK − Ā⊤Σ−1

X Ā
]
β̄. (A.16)

By the Woodbury matrix identity,

Σ−1
X = (ĀĀ⊤ + ΣE)−1 = Σ−1

E − Σ
−1
E Ā(IK + Ā⊤Σ−1

E Ā)−1Ā⊤Σ−1
E ,
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so letting Ḡ B IK + Ā⊤Σ−1
E Ā,

Ā⊤Σ−1
X Ā = Ā⊤Σ−1

E Ā − Ā⊤Σ−1
E ĀḠ−1Ā⊤Σ−1

E Ā.

Now using Ā⊤Σ−1
E Ā = Ḡ − IK , we find

Ā⊤Σ−1
X Ā = (Ḡ − IK) − (Ḡ − IK)Ḡ−1(Ḡ − IK)

= Ḡ − IK − (IK − Ḡ−1)(Ḡ − IK)

= Ḡ − IK − [Ḡ − IK − IK + Ḡ−1]

= IK − Ḡ−1.

Using this to simplify (A.16), we find

R(α∗) − σ2 = β̄⊤Ḡ−1β̄ = β̄⊤(IK + ĀΣ−1
E Ā)−1β̄. (A.17)

Letting H B ĀΣ−1
E Ā, we find

R(α∗) − σ2 = β̄⊤H−1/2(IK + H−1)−1H−1/2β̄. (A.18)

For the lower bound, first observe that

R(α∗) − σ2 = β̄⊤H−1/2(IK + H−1)−1H−1/2β̄ ≥
β̄⊤H−1β̄

1 + ∥H−1∥
=
β⊤(AΣ−1

E A)−1β

1 + λ−1
K (H)

.

Furthermore,

λK(H) = λK(Ā⊤Σ−1
E Ā) ≥ λK(AΣZA⊤)/∥ΣE∥ = ξ, (A.19)

so using this in the previous display,

R(α∗) − σ2 ≥
β⊤(A⊤Σ−1

E A)−1β

1 + ξ−1 =
ξ

1 + ξ
· β⊤(A⊤Σ−1

E A)−1β.

To obtain the upper bound on R(α∗) we use

R(α∗) − σ2 = β̄⊤H−1/2(IK + H−1)−1H−1/2β̄ ≤
β̄⊤H−1β̄

1 + λK(H−1)
≤ β̄⊤H−1β̄ = β⊤(AΣ−1

E A)−1β,
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where in the last step we use Σ1/2
Z H−1Σ

1/2
Z = (AΣ−1

E A)−1. Finally,

β⊤(AΣ−1
E A)−1β = β̄⊤H−1β̄ ≤ ∥β∥2ΣZ

/λK(H) ≤ ∥β∥2ΣZ
/ξ,

where we use (A.19) in the last step.

■

A.2.3 Proofs for Section 1.3.3

Proof of Lemma 5

Let Ā = AΣ1/2
Z and β̄ B Σ1/2

Z β. Using ΣX = AΣZA⊤ = ĀĀ⊤, we find

α∗ = Σ+X Āβ̄ = (ĀĀ⊤)+Āβ̄ = Ā+⊤β̄, (A.20)

where we use Lemma 39 in the last step. Using this formula, we obtain

∥α∗∥2ΣX
= β̄⊤Ā+(ĀĀ⊤)Ā+⊤β̄ = β̄⊤β̄ = ∥β∥2ΣZ

,

where we use that Ā is full rank since A and ΣZ are full rank, and thus Ā+Ā = IK

by Lemma 39.

Next, by identity (A.95) in Lemma 39, and the fact that A+A = IK and ΣZ is

invertible,

Ā+ = (AΣ1/2
Z )+ = Σ−1/2

Z A+.

Using this in (A.20) we find that α∗ = A+⊤β, and thus

∥α∗∥2 = β⊤A+A+⊤β = β⊤(A⊤A)−1A⊤A+⊤β,

where we use A+ = (A⊤A)−1A⊤ by Lemma 39. Thus, again using A+A = A⊤A+⊤ = IK ,

we find

∥α∗∥2 = β⊤(A⊤A)−1β,
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as claimed. ■

Proof of Lemma 6

Defining Ā = AΣ1/2
Z and β̄ = Σ1/2

Z β, we have α∗ = Σ−1
X Āβ̄. Now recall that since

A and ΣZ are full rank, so is Ā and thus Ā+Ā = Ā⊤Ā+⊤ = IK (see Appendix A.5).

Thus,

α∗ = Σ−1
X Āβ̄

= Σ−1
X ĀĀ⊤Ā+⊤β̄

= Σ−1
X (ΣX − ΣE)Ā+⊤β̄ (since ΣX = ĀĀ⊤ + ΣE)

= (Ip − Σ
−1
X ΣE)Ā+⊤β̄.

By the Woodbury matrix identity applied to Σ−1
X = (ĀĀ⊤ + ΣE)−1,

Ip − Σ
−1
X ΣE = Σ

−1
E ĀḠ−1Ā⊤,

where Ḡ B IK + Ā⊤Σ−1
E Ā. Using this in the previous display,

α∗ = Σ−1
E ĀḠ−1Ā⊤Ā+⊤β̄ = Σ−1

E ĀḠ−1β̄, (A.21)

where we again use Ā+Ā = Ā⊤Ā+⊤ = IK in the second step.

Bounds on ∥α∗∥2
ΣX

: By (A.21), we find

∥α∗∥2ΣX
= β̄⊤Ḡ−1Ā⊤Σ−1

E (ĀĀ⊤ + ΣE)Σ−1
E ĀḠ−1β̄

= β̄⊤Ḡ−1(Ā⊤Σ−1
E Ā)2Ḡ−1β̄ + β̄⊤Ḡ−1(Ā⊤Σ−1

E Ā)Ḡ−1β̄

= β̄⊤Ḡ−1(Ḡ − IK)2Ḡ−1β̄ + β̄⊤Ḡ−1(Ḡ − IK)Ḡ−1β̄.

Expanding the above and simplifying, we find

∥α∗∥2ΣX
= β̄⊤[IK − Ḡ−1]β̄ = ∥β∥2ΣZ

− β̄⊤Ḡ−1β̄. (A.22)

108



Recalling that R(α∗) − σ2 = β̄⊤Ḡ−1β̄ from (A.17) above, Lemma 4 implies that

0 ≤ β̄⊤Ḡ−1β̄ ≤ ∥β∥2ΣZ
/ξ.

Combining this with (A.22) yields

(1 − ξ−1) · ∥β∥2ΣZ
≤ ∥α∗∥2ΣX

≤ ∥β∥2ΣZ
.

Thus, when ξ > c > 1, ∥α∗∥2
ΣX
≍ ∥β∥2

ΣZ
, as claimed.

Bounds on ∥α∗∥2: Using (A.21), we find

∥α∗∥2 = β̄⊤Ḡ−1Ā⊤Σ−2
E ĀḠ−1β̄. (A.23)

Thus,

∥α∗∥2 ≤
1

λp(ΣE)
β̄⊤Ḡ−1Ā⊤Σ−1

E ĀḠ−1β̄

=
1

λp(ΣE)
β̄⊤Ḡ−1(Ḡ − IK)Ḡ−1β̄

=
1

λp(ΣE)
(β̄⊤Ḡ−1β̄ − β̄⊤Ḡ−2β̄)

≤
1

λp(ΣE)
β̄⊤Ḡ−1β̄. (A.24)

We also have

∥α∗∥2 ≥
1
∥ΣE∥

β̄⊤Ḡ−1Ā⊤ΣE
−1ĀḠ−1β̄

=
1
∥ΣE∥

β̄⊤Ḡ−1(Ḡ − IK)Ḡ−1β̄

=
1
∥ΣE∥

[β̄⊤Ḡ−1β̄ − β̄⊤Ḡ−2β̄]

≥
1
∥ΣE∥

β̄⊤Ḡ−1β̄ · [1 − 1/λK(Ḡ)] (A.25)

≥
1
∥ΣE∥

β̄⊤Ḡ−1β̄ · [1 − 1/ξ], (A.26)
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where in the final step we used

λK(Ḡ) = 1 + λK(Ā⊤Σ−1
E Ā) ≥ λK(Ā⊤Ā)/∥ΣE∥ = ξ.

Combining (A.24) and (A.26),(
ξ − 1
ξ

)
1
∥ΣE∥

β̄⊤Ḡ−1β̄ ≤ ∥α∗∥2 ≤
1

λp(ΣE)
β̄⊤Ḡ−1β̄.

Recalling that R(α∗) − σ2 = β̄⊤Ḡ−1β̄ from (A.17) above, Lemma 4 implies(
ξ − 1
ξ + 1

)
1
∥ΣE∥

β⊤(A⊤Σ−1
E A)−1β ≤ ∥α∗∥2 ≤

1
λp(ΣE)

β⊤(A⊤Σ−1
E A)−1β. (A.27)

As shown at the end of this proof using the singular value decomposition of A,

we have that

λp(ΣE) · β⊤(A⊤A)−1β ≤ β⊤(A⊤Σ−1
E A)−1β ≤ ∥ΣE∥ · β

⊤(A⊤A)−1β.

Combining this with (A.27) proves that(
ξ − 1
ξ + 1

)
·

1
κ(ΣE)

· β⊤(A⊤A)−1β ≤ ∥α∗∥2 ≤ κ(ΣE) · β⊤(A⊤A)−1β. (A.28)

Thus, when ξ > c > 1 and κ(ΣE) < C, ∥α∗∥2 ≍ β⊤(A⊤A)−1β, as claimed.

Proof of (A.28): Write the singular value decomposition A = UAS AV⊤A , where UA is

an p × K matrix with satisfying U⊤A UA = IK , VA is a K × K orthogonal matrix, and

S A is a K×K diagonal matrix with positive entries (since we assume rank(A) = K).

Then,

(A⊤Σ−1
E A)−1 = (VAS AU⊤AΣ

−1
E UAS AV⊤A )−1 = VAS −1

A (U⊤AΣ
−1
E UA)−1S −1

A V⊤A . (A.29)

Thus,

β⊤(A⊤Σ−1
E A)−1β = β⊤VAS −1

A (U⊤AΣ
−1
E UA)−1S −1

A V⊤A β

≥ β⊤VAS −2
A V⊤A β ·

1
∥U⊤AΣ

−1
E UA∥

,
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so using

∥U⊤AΣ
−1
E UA∥ ≤ ∥Σ

−1
E ∥ = 1/λp(ΣE),

we find

β⊤(A⊤Σ−1
E A)−1β ≥ λp(ΣE) · β⊤VAS −2

A V⊤A β. (A.30)

We next observe that since U⊤A UA = IK

(A⊤A)−1 = (VAS AU⊤A UAS AV⊤A )−1 = VAS −2
A V⊤A , (A.31)

and thus, by (A.30),

β⊤(A⊤Σ−1
E A)−1β ≥ λp(ΣE) · β⊤(A⊤A)−1β,

which proves the lower bound in (A.28). To prove the upper bound, we use that

by (A.29),

β⊤(A⊤Σ−1
E A)−1β = β⊤VAS −1

A (U⊤AΣ
−1
E UA)−1S −1

A V⊤A β

≤ β⊤VAS −2
A V⊤A β ·

1
λK(U⊤AΣ

−1
E UA)

.

Thus, since

λK(U⊤AΣ
−1
E UA) ≥ λK(U⊤A UA)λp(Σ−1

E ) = 1/∥ΣE∥,

we have

β⊤(A⊤Σ−1
E A)−1β ≤ ∥ΣE∥ · β

⊤VAS −2
A V⊤A β = ∥ΣE∥ · β

⊤(A⊤A)−1β,

where in the last step we use (A.31). This establishes the upper bound of (A.28),

completing the proof.

■
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Proof of Corollary 7

Under the conditions stated, by either Lemma 5 or Lemma 6, ∥α∗∥2 ≲ β⊤(A⊤A)−1β.

Thus, using that ΣZ is invertible,

∥α∗∥2 ≲ β⊤(A⊤A)−1β = β⊤Σ1/2
Z (Σ1/2

Z A⊤AΣ1/2
Z )−1Σ

1/2
Z β ≤ ∥β∥2ΣZ

/λK(AΣZA⊤), (A.32)

so ∥α∗∥ → 0 when ∥β∥2
ΣZ
/λK(AΣZA⊤)→ 0.

For the second claim, we have

R(0) − R(α∗) = ∥α∗∥2ΣX
(by (1.16))

≳ ∥β∥2ΣZ
. (by either Lemma 5 or Lemma 6)

The claim follows by taking the limit inferior as p → ∞ on both sides of the

inequality and using condition (1.15). ■

A.3 Proofs for Section 1.4

A.3.1 Proofs for Section 1.4.1

In the proofs of Lemma 8 and Theorem 9, we will use the event

A B
{
∥Z̃+ε̃∥2 ≲ log(n)tr(Z̃+⊤Z̃+), c1n ≤ σ2

K(Z̃) ≤ ∥Z̃∥2 ≤ c2n
}
, (A.33)

which occurs with probability at least 1 − c/n, as shown in Lemma 29 below,

where Z = Z̃Σ1/2
Z and ε = σε̃ by Assumption 3.
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Proof of Lemma 8

On the eventA defined in (A.33), and using λK(ΣZ) > 0 by Assumption 2,

σ2
K(Z) = λK(ZZ⊤) = λK(Z̃ΣZZ̃⊤) ≥ λK(ΣZ) · σ2

n(Z̃) ≳ λK(ΣZ) · n > 0, (A.34)

so rank(Z) = K and thus Z+Z = IK by Lemma 39 in Appendix A.5. Similarly,

since A is of dimension p × K and rank(A) = K by Assumption 2,

A⊤A+⊤ = (A+A)⊤ = IK .

Using these two results together with (A.95) of Lemma 39, we find

X+ = (ZA⊤)+ = (Z+ZA⊤)+(ZA⊤A+⊤)+ = A+⊤Z+. (A.35)

Thus, on the eventA,

α̂ = X+y = A+⊤Z+y, (A.36)

so

∥α̂∥2 = ∥A+⊤Z+y∥2

= ∥A+⊤Z+Zβ + A+⊤Z+ε∥2 (by y = Zβ + ε)

≤ 2∥A+⊤β∥2 + 2∥A+⊤Z+ε∥2 (since Z+Z = IK onA)

= 2∥A+⊤β∥2 + 2∥(AΣ1/2
Z )+⊤Z̃+ε∥2,

where in the last step we used that by Lemma 39,

A+⊤Z = A+⊤(Z̃Σ1/2
Z )+ = A+⊤Σ−1/2

Z Z̃+ = (AΣ1/2
Z )+⊤Z̃+.

Continuing, and using

A+A+⊤ = (A⊤A)−1A⊤A+⊤ = (A⊤A)−1,
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we find

∥α̂∥2 ≲ β⊤(A⊤A)−1β + ∥(AΣ1/2
Z )+∥2 · σ2 · ∥Z̃+ε̃∥2

≲ β⊤(A⊤A)−1β +
1

λK(AΣZA⊤)
σ2 log(n)tr(Z̃+⊤Z̃+) (onA)

≤ β⊤(A⊤A)−1β +
1

λK(AΣZA⊤)
σ2 log(n)K∥Z̃+∥2

= β⊤(A⊤A)−1β +
1

λK(AΣZA⊤)
σ2 log(n)K

1
σ2

K(Z̃)

≲ β⊤(A⊤A)−1β +
1

λK(AΣZA⊤)
σ2 log(n)

K
n

(onA)

≤
1

λK(AΣZA⊤)

(
∥β∥2ΣZ

+ σ2 log(n)
K
n

)
. (by (A.32))

Under the assumptions of this Lemma, the event A holds with probability at

least 1 − c/n by Lemma 29, so the proof is complete. ■

Proof of Theorem 9

Part 1: By (A.36), α̂ = A+⊤Z+y on the event A defined in (A.33). Thus, using

X = AZ and A⊤A+⊤ = IK since A is full rank by Assumption 2,

ŷx = X⊤α̂ = Z⊤A⊤A+⊤Z+y = Z⊤Z+y = Z⊤β̂ = ŷz. (A.37)

Part 2: Using the independence of ε and Z together with (A.37), the excess risk

can be written as

R(α̂) − σ2 = E[(X⊤α̂ − Z⊤β)2] = E[(Z⊤β̂ − Z⊤β)2] = ∥̂β − β∥2ΣZ
. (A.38)

By (A.34), rank(Z) = K and Z+Z = IK on the eventA defined in (A.33). Thus,

β̂ = Z+y = Z+Zβ + Z+ε = β + Z+ε,

so by (A.38),

R(α̂) − σ2 = ∥Z+ε∥2ΣZ
= ∥Σ

1/2
Z Z+ε∥2. (A.39)

114



By (A.95) of Lemma 39,

Σ
1/2
Z Z+ = Σ1/2

Z (Z̃Σ1/2
Z )+ = Σ1/2

Z (Z̃+Z̃Σ1/2
Z )+(Z̃Σ1/2

Z Σ
−1/2
Z )+ = Σ1/2

Z Σ
−1/2
Z Z̃+ = Z̃+, (A.40)

where we used that Z̃+Z̃ = IK since rank(Z̃) = K on A. Thus by (A.39), we find

that onA,

R(α̂) − σ2 = ∥Z̃+ε∥2 = σ2∥Z̃+ε̃∥2 ≲ σ2 log(n)tr(Z̃+⊤Z̃+). (A.41)

We then use that rank(Z̃+) = K and that ∥Z̃+∥ = 1/σK(Z̃) from Lemma 39 in

Appendix A.5 below to find that onA,

tr(Z̃+⊤Z̃+) ≤ K∥Z̃+⊤Z̃+∥ = K∥Z̃+∥2 =
K

σ2
K(Z̃)

≲
K
n
.

Plugging this into (A.41) completes the proof of the upper bound.

For the lower bound, first observe that onA,

EεR(α̂) − σ2 = Eε∥Z̃+ε∥2 = σ2tr(Z̃+⊤Z̃+) ≥ σ2KλK(Z̃+⊤Z̃+) = σ2Kσ2
K(Z̃+),

so using σK(Z̃+) = 1/∥Z̃∥ by Lemma 39 again,

EεR(α̂) − σ2 ≥ σ2 K
∥Z̃∥2

≳ σ2 K
n
.

■

Lemma 29. Suppose that Assumptions 2 & 3 hold and that n > C · K for some large

enough absolute constant C > 0. Then there exists c > 0 such that

P
{
∥Z̃+ε̃∥2 ≲ log(n)tr(Z̃+⊤Z̃+), c1n ≤ σ2

K(Z̃) ≤ ∥Z̃∥2 ≤ c2n
}
≥ 1 − c/n.

Proof. Since Z̃ has independent rows with entries that are zero mean, unit vari-

ance, and have sub-Gaussian constants bounded by an absolute constant, Theo-

rem 4.6.1 of [91] gives that with probability at least 1 − 2/n,

√
n − c′′(

√
K +

√
log n) ≤ σn(Z̃) ≤ ∥Z̃∥ ≤

√
n + c′′(

√
K +

√
log n).
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and thus

√
n · [1− c′′(

√
K/n+

√
log(n)/n)] ≤ σn(Z̃) ≤ ∥Z̃∥ ≤

√
n · [1− c′′(

√
K/n+

√
log(n)/n)].

Using that n > CK we can choose C large enough such that

c′′(
√

K/n +
√

log(n)/n) < c0 < 1,

and thus

P
(
c3n ≤ σ2

K(Z̃) ≤ ∥Z̃∥2 ≤ c4n
)
≥ 1 − 2/n. (A.42)

The bound

P
(
∥Z̃+ε̃∥2 ≲ log(n)tr[Z̃+⊤Z̃+]

)
≥ 1 − e−cn

follows from Lemma 30, which we state below. Combining this with (A.42)

proves thatA occurs with probability at least 1 − c/n. ■

The following result is a slightly adapted version of Lemma 19 from [13] and

the discussion that follows.

Lemma 30. Suppose ε̃ ∈ Rn has independent entries with sub-Gaussian constants

bounded by an absolute constant, and suppose M ∈ Rn×n is a positive semidefinite matrix

independent of ε̃. Then, with probability at least 1 − e−cn,

ε̃⊤Mε̃ ≲ log(n) · tr(M).

Proof of Lemma 10

Suppose rank(X) = K. We can then write the singular value decomposition of

X as X = V̂KD̂Û⊤K , where V̂K ∈ Rn×K , ÛK ∈ Rp×K , and D̂ ∈ RK×K are full rank, and

V̂⊤K V̂K = Û⊤KÛK = IK . Thus,

(XÛK)+ = (V̂KD̂Û⊤KÛK)+ = (V̂KD̂)+.
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By Lemma 39 of Appendix A.5, we thus have

(XÛK)+ = (V̂+KV̂KD̂)+(V̂KD̂D̂+)+

= D̂+V̂+K (since V̂K and D̂ full rank)

= D̂+(V̂⊤K V̂K)+V̂⊤K

= D̂+V̂⊤K . (by V̂⊤K V̂K = IK)

We thus find

α̂PCR = ÛK(XÛK)+y = ÛKD̂+V̂⊤K y = X+y = α̂,

where we recognize ÛKD̂+V̂⊤K as the pseudoinverse of X in the third step.

Now suppose that Assumptions 2 & 3 hold and K > C · n. Then by Lemma 29

above, P{σ2
K(Z̃) ≳ n} ≥ 1 − c/n. Thus, using

σ2
K(Z) = σ2

K(Z̃Σ1/2
Z ) ≥ λK(ΣZ)σ2

K(Z̃)

and that λK(ΣZ) > 0 by Assumption 2,

P{rank(X) = K} ≥ P{σ2
K(Z) ≳ n} ≥ P{σ2

K(Z̃) ≳ n} ≥ 1 − c/n,

which completes the proof. ■

A.3.2 Proofs for Section 1.4.2

In this section we begin with the proof of Lemma 12 and our main result, Theorem

13, which rely on Proposition 11, proved subsequently. The proofs of Lemma 12

and Theorem 13 use the event

E B E1 ∩ E2 ∩ E3, (A.43)
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where for positive absolute constants c1 to c6,

E1 B
{
σ2

n(X) ≥ c1tr(ΣE), ∥E∥2 ≤ c2tr(ΣE), c3n ≤ σ2
K(Z̃) ≤ ∥Z̃∥2 ≤ c4n

}
,

E2 B
{
ε̃⊤X+⊤ΣX X+ε̃ ≤ c5 log(n)tr(X+⊤ΣX X+)

}
,

E3 B
{
ε̃⊤X+⊤X+ε̃ ≤ c6 log(n)tr(X+⊤X+)

}
.

We will show in Lemma 31 below that E occurs with probability at least 1 − c/n

for an absolute constant c > 0.

Proof of Theorem 12

Using α̂ = X+y, y = Zβ + ε, and that A is full rank by Assumption 2, we find

α̂ = X+y

= X+Zβ + X+ε

= X+ZA⊤A+⊤β + X+ε (A+A = IK since rank(A) = K)

= X+(X − E)A+⊤β + X+ε (using X = ZA⊤ + E)

= X+XA+⊤β − X+EA+⊤β + X+ε.

Thus, using (a + b + c)2 ≤ 3(a2 + b2 + c2),

∥α̂∥2 ≤ 3∥X+XA+⊤β∥2 + 3∥X+EA+⊤β∥2 + 3∥X+ε∥2

≲ ∥X+X∥2∥A+⊤β∥2 +
∥E∥2

σ2
n(X)
∥A+⊤β∥2 + σ2ε̃⊤X+⊤X+ε̃

≤ ∥A+⊤β∥2 + ∥A+⊤β∥2 + σ2 log(n)tr(X+⊤X+),

where in the last step holds on the event E, and uses that ∥X+X∥ ≤ 1 since X+X is

a projection matrix. Recalling that by (A.32),

∥A+⊤β∥2 = β⊤(A⊤A)−1β ≤ ∥β∥2ΣZ
/λK(AΣZA⊤),
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and using that rank(X) ≤ n, we find that on E,

∥α̂∥2 ≲
1

λK(AΣZA⊤)
∥β∥2ΣZ

+ σ2 log(n) · n · ∥X+∥2

=
1

λK(AΣZA⊤)
∥β∥2ΣZ

+ σ2 n log n
σ2

n(X)

≲
1

λK(AΣZA⊤)
∥β∥2ΣZ

+ σ2 n log n
tr(ΣE)

.

By Lemma 31, E holds with probability at least 1− c/n, so the proof is complete.■

Proof of Theorem 13

Using that Z, E and ε are independent of one another and of α̂, we have

R(α̂) = E[(X⊤α̂ − y)2]

= E[(Z⊤A⊤α̂ − Z⊤β − ε + E⊤α̂)2]

= σ2 + ∥Σ
1/2
E α̂∥2 + ∥Σ1/2

Z (A⊤α̂ − β)∥2.

Since α̂ = X+y = X+Zβ + X+ε,

∥Σ
1/2
E α̂∥2 ≤ 2∥Σ1/2

E X+Zβ∥2 + 2∥Σ1/2
E X+ε∥2 B 2B1 + 2V1.

Similarly,

∥Σ
1/2
Z (A⊤α̂ − β)∥2 ≤ 2∥Σ1/2

Z (A⊤X+Z − IK)β∥2 + 2∥Σ1/2
Z A⊤X+ε∥2 B 2B2 + 2V2.

We thus have R(α̂)−σ2 ≲ B+V , where we view B B B1+B2 as a bound on the bias

component of the risk and V B V1 + V2 as a bound on the variance component.

In what follows, we bound the four terms

B1 = ∥Σ
1/2
E X+Zβ∥2

B2 = ∥Σ
1/2
Z (A⊤X+Z − IK)β∥2

V1 = ∥Σ
1/2
E X+ε∥2

V2 = ∥Σ
1/2
Z A⊤X+ε∥2.
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Bounding the bias component: On the event E defined in (A.43), σn(X) > 0 and by

Assumption 2 and (A.34) above, σ2
n(Z) ≳ λK(ΣZ)n > 0. Thus X and Z are of rank

n and K respectively, so by Lemma 39 of Appendix A.5, XX+ = In and Z+Z = IK .

It follows that

Z+ − A⊤X+ = Z+XX+ − A⊤X+ (since XX+ = In)

= (Z+X − A⊤)X+

= (Z+[ZA⊤ + E] − A⊤)X+ (since X = ZA⊤ + E)

= Z+EX+, (since Z+Z = IK) (A.44)

and thus again using Z+Z = IK

B2 = ∥Σ
1/2
Z (A⊤X+Z − IK)β∥2 = ∥Σ1/2

Z (A⊤X+ − Z+)Zβ∥2 = ∥Σ1/2
Z Z+EX+Zβ∥2.

By (A.40) above and the fact that Z is full rank on E, Σ1/2
Z Z+ = Z̃+, so on E,

B2 = ∥Z̃+EX+Zβ∥2 ≤
∥E∥2

σ2
K(Z̃)

∥X+Zβ∥2 ≲
tr(ΣE)∥X+Zβ∥2

n
,

where we also used that ∥Z̃+∥2 = 1/σ2
K(Z̃). Since B1 = ∥Σ

1/2
E X+Zβ∥2 ≤ ∥ΣE∥∥X+Zβ∥2,

and

∥ΣE∥ = tr(ΣE)
∥ΣE∥

tr(ΣE)
=

tr(ΣE)
n
·

n
re(ΣE)

≲
tr(ΣE)

n
,

where we used the assumption re(ΣE) > c1n in the last step, we also have that on

E,

B = B1 + B2 ≲
tr(ΣE)∥X+Zβ∥2

n
. (A.45)

To bound ∥X+Zβ∥2, we first use A⊤A+⊤ = IK and ZA⊤ = X − E to find

∥X+Zβ∥2 = ∥X+ZA⊤A+⊤β∥2 ≤ 2∥X+XA+⊤β∥2 + 2∥X+EA+⊤β∥2.

The second term can be bounded, on the event E, by

∥E∥2∥A+⊤β∥2

σ2
n(X)

≲∥A+⊤β∥2.
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On the other hand, the first term can be bounded as ∥X+XA+⊤β∥2 ≤ ∥A+⊤β∥2 using

the fact that X+X is a projection matrix, so we find that on E,

∥X+Zβ∥2 ≲ ∥A+⊤β∥2. (A.46)

Finally, we have

∥A+⊤β∥2 = β⊤(A⊤A)−1β = β⊤Σ1/2
Z (Σ1/2

Z A⊤AΣ1/2
Z )−1Σ

1/2
Z β ≤

∥β∥2
ΣZ

λK(AΣZA⊤)
. (A.47)

Combining this with (A.46) and plugging into (A.45), we find that on the event

E,

B ≲
∥β∥2
ΣZ

λK(AΣZA⊤)
tr(ΣE)

n
=
∥β∥2
ΣZ
∥ΣE∥

λK(AΣZA⊤)
·

tr(ΣE)
∥ΣE∥n

=
∥β∥2
ΣZ

ξ

re(ΣE)
n

. (A.48)

Bounding the variance component: First note that

V = V1 + V2 = ∥Σ
1/2
E X+ε∥2 + ∥Σ1/2

Z A⊤X+ε∥2 = ε⊤X+⊤ΣX X+ε = σ2ε̃X+⊤ΣX X+ε̃,

so on the event E,

V ≲ σ2 log(n)tr(X+⊤ΣX X+) = σ2 log(n)
{
tr(X+⊤ΣE X+) + tr(X+⊤AΣZA⊤X+)

}
, (A.49)

where we use ΣX = AΣZA⊤ + ΣE in the second step. The first term in (A.49) can by

bounded as

tr(X+⊤ΣE X+) ≤ ∥ΣE∥ · n∥X+⊤X+∥ = ∥ΣE∥
n

σ2
n(X)

≲
n

re(ΣE)
, (A.50)

where in the first step we used that rank(X+) = rank(X) = n and in the last step

that σ2
n(X) ≳ tr(ΣE) on E.

For the second term in (A.49),

tr(X+⊤AΣZA⊤X+) ≤ K∥Σ1/2
Z A⊤X+∥2 (since rank(AΣZA⊤) = K)

= K∥Σ1/2
Z (Z+ − Z+EX+)∥2 (by (A.44) above)

≤ 2K∥Z̃+∥2 + 2K∥Z̃+∥2∥E∥2∥X+∥2,
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where we use that Σ1/2
Z Z+ = Z̃+ from (A.40) in the final step. Continuing, we find

tr(X+⊤AΣZA⊤X+) ≲
K

σ2
K(Z̃)

(
1 +

∥E∥2

σ2
n(X)

)
≲

K
n
, (A.51)

where we use the bounds defining E1 in the last inequality. Combining (A.51)

and (A.50) with (A.49), we conclude that on E,

V ≲ σ2 n log n
re(ΣE)

+ σ2 K log n
n

.

Combining this with the bias bound (A.48) gives the bound in the statement of

the theorem. By Lemma 31 below, P(E) ≥ 1 − c/n, so the proof is complete. ■

Lemma 31. Under model (1.5), suppose that Assumptions 2 and 3 hold and n > C · K

and re(ΣE) > C · n hold, for some C > 0. Then P(E) ≥ 1 − c/n, where E B E1 ∩ E2 ∩ E3

and

E1 B
{
σ2

n(X) ≥ c1tr(ΣE), ∥E∥2 ≤ c2tr(ΣE), c3n ≤ σ2
K(Z̃) ≤ ∥Z̃∥2 ≤ c4n

}
,

E2 B
{
ε̃⊤X+⊤ΣX X+ε̃ ≤ c5 log(n)tr(X+⊤ΣX X+)

}
,

E3 B
{
ε̃⊤X+⊤X+ε̃ ≤ c6 log(n)tr(X+⊤X+)

}
,

for positive constants c1 to c6.

Proof. We have P(Ec) ≤ P(Ec
1) + P(Ec

2) + P(Ec
3). The bounds P(Ec

2) ≤ e−cn and

P(Ec
3) ≤ e−cn follow immediately from Lemma 30 in Appendix A.3.1 above, using

the fact that ε̃ has independent entries with sub-Gaussian constants bounded by

an absolute constant. Considering P(Ec
1), we have

P(Ec
1) ≤ P{σ2

n(X) ≤ c1tr(ΣE)} + P{∥E∥2 ≥ c2tr(ΣE)} + P{c3n ≤ σ2
K(Z̃) ≤ ∥Z̃∥2 ≤ c4n}

The three terms above can be bounded as follows. Recall that we assume n > CK

and re(ΣE) > Cn for some C > 1 large enough.
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1. Since re(ΣE) > Cn, Proposition 11 can be applied to conclude

P{σ2
n(X) ≤ c1tr(ΣE)} ≤ 2e−cn.

2. By Assumption 3, E = ẼΣ1/2
E , where Ẽ has independent entries with zero

mean, unit variance, and sub-Gaussian constants bounded by an absolute

constant. Thus,

∥E∥2 = ∥EE⊤∥ = ∥ẼΣEẼ⊤∥,

and by applying Theorem 28 with Ẽ and ΣE we find that with probability

at least 1 − 2e−cn,

∥E∥2 ≤ tr(ΣE) + c′∥ΣE∥n = tr(ΣE) · (1 + c′n/re(ΣE)) ≲ tr(ΣE),

where the last inequality holds since n/re(ΣE) < 1/C. Thus for c2 > 0,

P{∥E∥2 ≥ c2tr(ΣE)} ≤ 2e−cn.

3. By (A.42) we have that with probability at least 1 − 2/n,

c3n ≤ σ2
K(Z̃) ≤ ∥Z̃∥2 ≤ c4n.

Combining the previous three steps shows that P(Ec
1) ≤ c/n. ■

Proof of Proposition 11

We will work on the event

F B {σ2
n(EU(K+1):p) ≥ c4tr(ΣE), ∥Z̃∥2 ≤ c5n},

where U(K+1):p ∈ Rp×(p−K) has columns equal to the orthonormal eigenvectors of

ΣX corresponding to the smallest p − K eigenvalues.
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Bounding P(F ): By Assumption 3, E = ẼΣ1/2
E , where Ẽ has independent sub-

Gaussian entries with zero mean, unit variance, sub-Gaussian constants bounded

by an absolute constant. Thus, letting

Q = U(K+1):pU′(K+1):p,

we have

σ2
n(EU(K+1):p) = λn(EQE⊤) = λn(ẼΣ1/2

E QΣ1/2
E Ẽ⊤).

We can now apply Theorem 28, stated and proved above in Section A.1, with Ẽ

and Σ1/2
E QΣ1/2

E . Noting that M = maxi j ∥Ẽ∥ψ2 is bounded by an absolute constant

by Assumption 3, this implies that with probability at least 1 − 2e−cn,

σ2
n(EU(K+1):p) ≥ tr(Σ1/2

E QΣ1/2
E )/2 − c′∥Σ1/2

E QΣ1/2
E ∥n. (A.52)

Since Q is a projection matrix, ∥Σ1/2
E QΣ1/2

E ∥ ≤ ∥ΣE∥∥Q∥ = ∥ΣE∥. Furthermore,

tr(Σ1/2
E QΣ1/2

E ) = tr(ΣEQ)

= tr(ΣE) − tr(ΣE(I − Q))

≥ tr(ΣE) − K∥ΣE(I − Q)∥ (since rank(I − Q) = K)

≥ tr(ΣE) − K∥ΣE∥∥I − Q∥

= tr(ΣE) − K∥ΣE∥ (since ∥I − Q∥ = 1)

≥ tr(ΣE) − n∥ΣE∥. (since n ≥ K)

Plugging these two results into (A.52), we find that with probability at least

1 − 2e−cn,

σ2
n(EU(K+1):p) ≥ tr(ΣE)/2−(1/2+c′)n∥ΣE∥ = tr(ΣE) ·[1/2−(1/2+c′)n/re(ΣE)] ≳ tr(ΣE),

(A.53)

where in the last inequality we use that n/re(ΣE) < 1/C and choose C large

enough.
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Also, since Z̃ has independent rows with entries that have zero mean, unit

variance, and sub-Gaussian constants bounded by an absolute constant, we have

that by Theorem 4.6.1 of [91],

∥Z̃∥2 ≤ c2n,

with probability at least 1 − e−c′n. Combining this with A.53 we conclude that

P(F ) ≥ 1 − ce−c′n.

Bounding σn(X) on F : We now show that σ2
n(X) ≳ tr(ΣE) holds on the event F . Let

ΣX = UDU⊤ with U ∈ Rp×p orthogonal and D = diag(λ1(ΣX), . . . , λp(ΣX)). Define

UK ∈ Rp×K to be the sub-matrix of U containing the first K columns, and define

U(K+1):p to be composed of the last p − K columns of U. Then

Ip = UU⊤ = UKU⊤K + U(K+1):pU⊤(K+1):p,

so

λn(XX⊤) = λn(XUKU⊤K X⊤ + XU(K+1):pU⊤(K+1):pX⊤) ≥ λn(XU(K+1):pU⊤(K+1):pX⊤),

where we use the min-max formula for eigenvalues in the last step. This implies

σn(X) ≥ σn(XU(K+1):p). (A.54)

By Weyl’s inequality for singular values, and using X = ZA⊤ + E,

|σn(XU(K+1):p) − σn(EU(K+1):p)| ≤ ∥ZA⊤U(K+1):p∥,

so by (A.54),

σn(X) ≥ σn(XU(K+1):p) ≥ σn(EU(K+1):p) − ∥ZA⊤U(K+1):p∥ ≳
√

tr(ΣE) − ∥ZA⊤U(K+1):p∥,

(A.55)

where the last inequality holds on the event F . We show below that

∥ZA⊤U(K+1):p∥ ≲
√

n∥ΣE∥ on F , which implies that

σn(X) ≳
√

tr(ΣE) − c
√

n∥ΣE∥ =
√

tr(ΣE) · (1 − c
√

n/re(ΣE)) ≳
√

tr(ΣE),
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where in the last inequality we use that n/re(ΣE) < 1/C and choose C large enough.

Upper bound of ∥ZA⊤U(K+1):p∥: On the event F ,

∥ZA⊤U(K+1):p∥
2 = ∥Z̃Σ1/2

Z A⊤U(K+1):p∥ ≤ ∥Z̃∥2∥Σ1/2
Z A⊤U(K+1):p∥

2 ≲ n∥Σ1/2
Z A⊤U(K+1):p∥

2.

(A.56)

Furthermore, using ΣX = AΣZA⊤ + ΣE, and that U⊤(K+1):pΣXU(K+1):p = D(K+1):p where

we define D(K+1):p B diag(λK+1(ΣX), . . . , λp(ΣX)),

∥Σ
1/2
Z A⊤U(K+1):p∥

2 = ∥U⊤(K+1):pAΣZA⊤U(K+1):p∥

= ∥U⊤(K+1):pΣXU(K+1):p − U⊤(K+1):pΣEU(K+1):p∥

= ∥D(K+1):p − U⊤(K+1):pΣEU(K+1):p∥

≤ λK+1(ΣX) + ∥U⊤(K+1):pΣEU(K+1):p∥

≤ λK+1(ΣX) + ∥ΣE∥∥U⊤(K+1):pU(K+1):p∥

= λK+1(ΣX) + ∥ΣE∥,

where we use U⊤(K+1):pU(K+1):p = Ip−K in the last step. Thus, using that

λK+1(ΣX) = λK+1(ΣX) − λK+1(AΣZA⊤) ≤ ∥ΣE∥

by Weyl’s inequality and the fact that λK+1(AΣZA⊤) = 0, we find

∥Σ
1/2
Z A⊤U(K+1):p∥

2 ≤ 2∥ΣE∥.

Combining this with (A.56), we find that on F ,

∥ZA⊤U(K+1):p∥ ≲
√

n∥ΣE∥.

■
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A.3.3 Proof of Theorem 15 from Section 1.4.4

Let DK = U⊤KΣXUK = diag(λ1(ΣX), . . . , λK(ΣX)) and note that since A and ΣZ are

rank K by Assumption 2,

λK(ΣX) ≥ λK(AΣZA⊤) ≥ λK(ΣZ)λK(AA⊤) > 0,

and thus DK is invertible. Furthermore, define η = y − X⊤α∗ with variance

σ2
η = E[η2], and the sample version η = y−Xα∗. We work on the event ∆ B ∆1∩∆2,

where

∆1 B
{
σ2

K(XUKD−1/2
K ) ≳ n, ∥XΣ−1/2

X ∥2 ≲ p
}
,

and

∆2 B
{
∥(XUKD−1/2

K )+η∥2 ≲ log(n) · σ2
η · tr[(XUKD−1/2

K )+⊤(XUKD−1/2
K )+]

}
.

As the last step of this proof, we will show that P(∆) ≥ 1 − c′/n.

Letting η B y − X⊤α∗, we have

E[Xη] = E[Xy] − E[XX⊤]α∗ = ΣXY − ΣXΣ
+
XΣXY = 0, (A.57)

where we used (A.5) in the last step. Thus,

R(α̃PCR) B E[(X⊤α̃PCR − y)2]

= E
[
(X⊤α̃PCR − X⊤α∗ − η)2

]
= E

[
(X⊤α̃PCR − X⊤α∗)2

]
+ E[η2] (by A.57)

= ∥α̃PCR − α
∗∥2ΣX
+ R(α∗). (A.58)

Defining the projection matrix P = UKU⊤K , and writing

y = Xα∗ + η = XPα∗ + X(Ip − P)α∗ + η,
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we find

α̃PCR = UK(XUK)+y

= UK(XUK)+XPα∗ + UK(XUK)+X(Ip − P)α∗ + UK(XUK)+η.

From the fact that XUK is an n × K matrix with K < n and rank(XUK) = K on the

event ∆1, we have (XUK)+XUK = IK by Lemma 39 of Appendix A.5 below. Thus,

using P = UKU⊤K we have (XUK)+XP = U⊤K . Applying this in the previous display,

we find

α̃PCR = Pα∗ + UK(XUK)+X(Ip − P)α∗ + UK(XUK)+η.

It thus follows from the decomposition (A.58) that

R(α̃PCR) − R(α∗) = ∥α̃PCR − α
∗∥2ΣX

≲ ∥(Ip − P)α∗∥2ΣX
+ ∥UK(XUK)+X(Ip − P)α∗∥2ΣX

+ ∥UK(XUK)+η∥2ΣX

=: B1 + B2 + V. (A.59)

Bounding B1: We find

B1 = ∥Σ
1/2
X (Ip − P)α∗∥2 ≤ ∥Σ1/2

X (Ip − P)∥2∥α∗∥2 = ∥(I − P)ΣX(I − P)∥∥α∗∥2. (A.60)

Since I − P is a projection onto the span of the last p − K eigenvectors of ΣX with

eigenvalues λK+1(ΣX), . . . , λp(ΣX), we have ∥(I − P)ΣX(I − P)∥ = λK+1(ΣX). By Weyl’s

inequality,

λK+1(ΣX) = λK+1(ΣX) − λK+1(AΣZA⊤) ≤ ∥ΣE∥,

where we used that λK+1(AΣZA⊤) = 0 in the first step since rank(AΣZA⊤) = K. Thus

∥Σ
1/2
X (Ip − P)∥2 ≤ ∥ΣE∥,

and combining this with (A.60) we find

B1 ≤ ∥ΣE∥∥α
∗∥2. (A.61)
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Bounding B2: Recalling DK = U⊤KΣXUK ,

B2 = α
∗⊤(Ip − P)X⊤(XUK)+⊤U⊤KΣXUK(XUK)+X(I − P)α∗

= ∥D1/2
K (XUK)+X(Ip − P)α∗∥2. (A.62)

Observe that by Lemma 39 of Appendix A.5,

(XUKD−1/2
K )+ = [(XUK)+(XUK)D−1/2

K ]+ · [XUKD−1/2
K D1/2

K ]+ = D1/2
K (XUK)+, (A.63)

where we used that XUK is a full rank n×K matrix with K < n so (XUK)+(XUK) =

IK . Using this in (A.62) yields

B2 = ∥(XUKD−1/2
K )+X(Ip − P)α∗∥2

≤
∥X(Ip − P)α∗∥2

σ2
K(XUKD−1/2

K )

≤
∥XΣ−1/2

X ∥2

σ2
K(XUKD−1/2

K )
· ∥Σ

1/2
X (Ip − P)α∗∥2

≲
p
n
∥Σ

1/2
X (Ip − P)α∗∥2,

where the last step holds on ∆. Recalling that ∥Σ1/2
X (Ip − P)α∗∥2 = B1 and using

(A.61), we find that

B2 ≲ ∥ΣE∥ · ∥α
∗∥2

p
n
. (A.64)
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Bounding V : We have on ∆,

V = η⊤(XUK)+⊤U⊤KΣXUK(XUK)+η

= η⊤(XUK)+⊤DK(XUK)+η

= ∥D1/2
K (XUK)+η∥2

= ∥(XUKD−1/2
K )+η∥2 (by (A.63))

≲ σ2
η · log(n) · tr[(XUKD−1/2)+⊤(XUKD−1/2)+] (on ∆2)

≤ σ2
η · log(n) · K · ∥(XUKD−1/2)+∥2 (since rank(XUKD−1/2) = K)

= σ2
η ·

K log n
σ2

K(XUKD−1/2)

≲ σ2
η ·

K log n
n

. (on ∆1).

Recalling η = y − X⊤α∗ so σ2
η = R(α∗),

V ≲ R(α∗) ·
K log n

n
. (A.65)

Combining this with (A.61) and (A.64) proves (1.33).

In the case ΣE = 0, the bound (1.34) follows immediately from (1.33). When

λp(ΣE) > 0, Lemma 4 of Section 1.3.2 implies

R(α∗) ≤ σ2 +
∥β∥2

ξ
.

When λp(ΣE) > 0, we also have that

∥α∗∥2 ≤ κ(ΣE)β⊤(A⊤A)−1β ≤
1

λp(ΣE)
·
∥β∥2
ΣZ

ξ
.

Plugging the last two displays into (1.33) gives

RPCR(β̂) − R(α∗) ≲ κ(ΣE)
∥β∥2
ΣZ

ξ
·

p
n
+
∥β∥2
ΣZ

ξ

K log n
n

+ σ2 K log n
n

≲ κ(ΣE)
∥β∥2
ΣZ

ξ
·

p
n
+ σ2 K log n

n
,
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where in the second step we use that

K log n < c · n ≲ p ≤ κ(ΣE)p.

This proves (1.35). All that remains is to bound the probability of the event ∆.

Bounding P(∆): We first bound the probability P(∆1). Note that the matrix

XUKD−1/2
K has independent Gaussian rows D−1/2

K U⊤K Xi, with covariance

E[D−1/2
K U⊤K XiX⊤i UKD−1/2

K ] = D−1/2
K U⊤KΣXUKD−1/2

K = D−1/2
K DKD−1/2

K = IK ,

and so XUKD−1/2
K i.i.d. N(0, 1) entries. Thus, by Theorem 4.6.1 of [91], with proba-

bility at least 1 − 2/n,

σK(XUKD−1/2
K ) ≥

√
n − c(

√
K +

√
log n) =

√
n · [1 − c

√
K/n − c

√
log(n)/n] ≳

√
n,

(A.66)

where in the last step we use the assumption that n > CK > C and choose C large

enough.

Similarly, XΣ−1/2
X is a n × p matrix with i.i.d. N(0, 1) entries, so again by by

Theorem 4.6.1 of [91], with probability at least 1 − 2e−n,

∥XΣ−1/2
X ∥ ≤

√
n + c(

√
p +
√

n) ≲
√

p. (A.67)

Using a union bound to combine this with (A.66), we find

P(∆1) ≥ 1 − c′/n,

for some c′ > 0.

To bound P(∆2), first note that by (A.57) and the assumption that (X, y) are

Gaussian, X and η are independent. Furthermore, η̃ = η/ση has independent

N(0, 1) entries. We can thus apply Lemma 30 from Appendix A.3.1 above with

M = (XUKD−1/2
K )+⊤(XUKD−1/2

K )+
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to conclude that with probability at least 1 − e−cn,

∥(XUKD−1/2
K )+η∥2 = η⊤Mη = σ2

ηη̃
⊤Mη̃ ≲ σ2

η · log(n) · tr(M),

and so P(∆c
2) ≤ e−cn. ■

A.3.4 Detailed Comparison of the Bias and Variance Terms in

Section 1.4.3

In this sections we give a detailed comparison between our Theorem 13 and

Theorem 4 in [13]. We assume throughout this section that the matrices ΣX and

ΣE are invertible and the condition number κ(ΣE) of the matrix ΣE is bounded

above by an absolute constant c1.

First define the effective ranks

rk(ΣX) B
∑

i>k λi(ΣX)
λi+1(ΣX)

, Rk(ΣX) B
(
∑

i>k λi(ΣX))2∑
i>k λ

2
i (ΣX)

.

The bound of [13] is stated to hold for probability at least 1 − δ for a general δ < 1

such that log(1/δ) > n/c for an absolute constant c > 1. Taking δ = e−c′n (for an

appropriate c′) to ease comparison with our results, the bound then states that

with when model (1.5) holds, (X, y) are jointly Gaussian, rank(ΣX) ≥ n, and n is

large enough, with probability at least 1 − e−c′n,

R(α̂) − R(α∗) ≲ B + V,

where

B B ∥α∗∥2∥ΣX∥max


√

r0(ΣX)
n

,
r0(ΣX)

n
, 1

 , (A.68)

and

V B σ2 log(n)
(

n
RK∗(ΣX)

+
K∗

n

)
(A.69)
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are bounds on the bias and variance respectively, and

K∗ = min{k ≥ 0 : rk(ΣX)/n ≥ b}, (A.70)

where b > 1 is an absolute constant.

We now compare these two terms to the corresponding terms in our bound

in Theorem 13.

Comparison of Variance Terms

We first compare the variance term V to corresponding variance term in our

Theorem 13, display (1.27). Note that as long as the SNR

ξ B λK(AΣZA⊤)/∥ΣE∥

grows fast enough, K∗ = K for large enough n, where K is the dimension of the

latent variables Z ∈ RK in the factor regression model.

Lemma 32. If K/n = o(1), re(ΣE)/n → ∞, and ξ → ∞, such that ξ−1re(ΣE)/n = o(1),

then K∗ = K for all n large enough.

Thus, under the conditions stated in Lemma 32 and for n large enough,

V B σ2 log(n)
(

n
RK(ΣX)

+
K
n

)
.

Using the convexity of x 7→ x2, we can bound RK(ΣX) above via

RK(ΣX) =

(∑p
i=K+1 λi(ΣX)

)2∑p
i=K+1 λ

2
i (ΣX)

≤
(p − K)

∑p
i=K+1 λ

2
i (ΣX)∑p

i=K+1 λ
2
i (ΣX)

≤ p.

Thus,

V ≥ σ2 log(n)
(

n
p
+

K
n

)
. (A.71)
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When κ(ΣE) < c1, p ≲ re(ΣE) ≤ p, and so the variance term in the bound of our

Theorem 13 is

σ2 log(n)
(

n
r0(ΣE)

+
K
n

)
≲ σ2 log(n)

(
n
p
+

K
n

)
.

Thus, comparing with (A.71), we see that under the stated conditions our vari-

ance bound is the same as that of [13], up to absolute constants.

Proof of Lemma 32. We will prove that

rℓ(ΣX)
n
≤

K
n

(1 + ξ−1) +
1
ξ

re(ΣE)
n

, for 0 ≤ ℓ ≤ K − 1 (A.72)

and that
rK(ΣX)

n
≥

re(ΣE)
n
−

K
n
. (A.73)

Together with the definition of K∗ in (A.70), these two bounds imply Lemma 32.

First note that for 0 ≤ ℓ ≤ K,

p∑
i=ℓ+1

λi(ΣX) = tr(ΣX) −
ℓ∑

i=1

λi(ΣX)

= tr(ΣE) + tr(AΣZA⊤) −
ℓ∑

i=1

λi(ΣX)

= tr(ΣE) +
K∑

i=ℓ+1

λi(AΣZA⊤) +
ℓ∑

i=1

(λi(AΣZA⊤) − λi(ΣX)), (A.74)

where the sums from ℓ + 1 to K and from 1 to ℓ are defined to be zero when ℓ = K

and ℓ = 0, respectively.

Proof of (A.72): By Weyl’s inequality,

|λi(AΣZA⊤) − λi(ΣX)| ≤ ∥ΣE∥, (A.75)
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so by (A.74),

p∑
i=ℓ+1

λi(ΣX) ≤ tr(ΣE) + (K − ℓ)λℓ+1(AΣZA⊤) + ℓ∥ΣE∥

≤ tr(ΣE) + Kλℓ+1(AΣZA⊤) + K∥ΣE∥. (A.76)

From the min-max formula for eigenvalues we have

λℓ+1(ΣX) = min
S :dim(S )=ℓ+1

max
x∈S :∥x∥=1

x⊤ΣX x,

where the minimum is taken over all linear subspaces S ⊂ Rp with dimension

ℓ + 1. Since x⊤ΣX x ≥ x⊤AΣZA⊤x for any x ∈ Rp, this implies

λℓ+1(ΣX) ≥ λℓ+1(AΣZA⊤). (A.77)

Combining (A.76) and (A.77), we find

rℓ(ΣX) =
∑p

i=ℓ+1 λi(ΣX)
λℓ+1(ΣX)

≤ K
(
1 +

∥ΣE∥

λℓ+1(AΣZA⊤)

)
+

tr(ΣE)
λℓ+1(AΣZA⊤)

≤ K
(
1 +

∥ΣE∥

λK(AΣZA⊤)

)
+

tr(ΣE)
λK(AΣZA⊤)

= K(1 + ξ−1) + ξ−1re(ΣE),

which completes the proof of (A.72).

Proof of (A.73): Equation (A.74) for ℓ = K is

p∑
i=K+1

λi(ΣX) = tr(ΣE) +
K∑

i=1

(λi(AΣZA⊤) − λi(ΣX)).

Again using (A.75),
p∑

i=K+1

λi(ΣX) ≥ tr(ΣE) − K∥ΣE∥. (A.78)
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Since

λK+1(ΣX) = λK+1(ΣX) − λK+1(AΣZA⊤) (since λK+1(AΣZA⊤) = 0)

≤ ∥ΣE∥ (Weyl’s inequality). (A.79)

Combining (A.78) and (A.79), we find

rK(ΣX) =
∑p

i=K+1 λi(ΣX)
λK+1(ΣX)

≥ re(ΣE) − K,

which proves (A.73).

■

Comparison of Bias Terms

A more interesting comparison arises between the bias term B and the corre-

sponding bias term in Theorem 13, display (1.27). Here we will see how the

approach we take in this paper, explicitly taking advantage of the structure of

the factor regression model, leads to a stronger bound under certain conditions

Lemma 33. Suppose ξ B λK(AΣZA⊤)/∥ΣE∥ > 1 and A, ΣZ, ΣE are all full rank. Then

B ≥
(
ξ − 1
ξ + 1

)
·

1
κ(ΣE)

∥β∥2ΣZ
max

√r0(ΣX)
n

,
r0(ΣX)

n

 , (A.80)

where
r0(ΣX)

n
≥

1
2

r0(AΣZA⊤)
n

+
1

2κ(AΣZA⊤)
1
ξ

re(ΣE)
n

. (A.81)

In particular, if ξ > c1 > 1 and κ(ΣE) < c2, κ(AΣZA⊤) < c2 for absolute constants c1, c2,

B ≳ ∥β∥2ΣZ
max


√

1
ξ

p
n
,

1
ξ

p
n

 . (A.82)

Compared to our bias bound ∥β∥2
ΣZ

p/(n · ξ) in Theorem 13, there is an addi-

tional quantity r0(AΣZA⊤)/n of order O(K/n). Ignoring this quantity, provided
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both κ(ΣE) and κ(AΣZA⊤) are uniformly bounded, we obtain the lower bound

(A.82). When p/(n · ξ) < 1, this rate is worse by a factor
√

p/(n · ξ), compared to

the bias term ∥β∥2
ΣZ

p/(n · ξ) in Theorem 13.

Proof of Lemma 33. Using that A, ΣZ, ΣE are all full rank, by (A.28) above,

∥α∗∥2 ≥

(
ξ − 1
ξ + 1

)
·

1
κ(ΣE)

· β⊤(A⊤A)−1β ≥

(
ξ − 1
ξ + 1

)
·

1
κ(ΣE)

∥β∥2
ΣZ

∥AΣZA⊤∥
.

Thus, using ∥ΣX∥ = ∥AΣZA⊤ + ΣE∥ ≥ ∥AΣZA⊤∥,

∥ΣX∥∥α
∗∥2 ≥

(
ξ − 1
ξ + 1

)
·

1
κ(ΣE)

∥β∥2ΣZ
,

which implies (A.80).

To prove (A.81), we first recall that r0(ΣX) = tr(ΣX)/∥ΣX∥ and ΣX = AΣZA⊤ + ΣE,

which implies that
r0(ΣX)

n
=

tr(AΣZA⊤)
n∥ΣX∥

+
tr(ΣE)
n∥ΣX∥

.

Observing that ∥ΣX∥ ≤ ∥AΣZA⊤∥ + ∥ΣE∥ ≤ 2∥AΣZA⊤∥, where we use that ∥ΣE∥ ≤

∥AΣZA⊤∥ by the assumption ξ > 1, we find

r0(ΣX)
n
≥

1
2

r0(AΣZA⊤)
n

+
1
2

tr(ΣE)
n∥AΣZA⊤∥

=
1
2

r0(AΣZA⊤)
n

+
1
2
λK(AΣZA⊤)
∥AΣZA⊤∥

∥ΣE∥

λK(AΣZA⊤)
tr(ΣE)
n∥ΣE∥

=
1
2

r0(AΣZA⊤)
n

+
1

2κ(AΣZA⊤)
1
ξ

re(ΣE)
n

,

which proves (A.81). ■

137



A.4 Supplementary Results

A.4.1 Closed Form Solutions of Min-Norm Estimator and Mini-

mizer of R(α)

Lemma 34. For zero mean random variables X ∈ Rp and y ∈ R, suppose ΣX B E[XX⊤]

and σ2
y B E[y2] are finite, and let ΣXY = E[Xy]. Then α∗ B Σ+XΣXY is a minimizer of

R(α):

R(α∗) = min
α∈Rp

R(α).

Proof. We have

R(α) = E[(X⊤α − y)2] = α⊤ΣXα + σ
2
y − 2α⊤ΣXY ,

so since R(α) is convex, α is a minimizer if and only if

∇αR(α) = 2ΣXα − 2ΣXY = 0.

By (A.5), ΣXα
∗ = ΣXY , so the claim is proved.

■

For X ∈ Rn×p and y ∈ Rn, let

α̂ B arg min
{
∥α∥ : ∥Xα − y∥ = min

u
∥Xu − y∥

}
.

We then have the following result.

Lemma 35. α̂ = X+y.
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Proof. We establish the proof in two steps.

Step 1: Existence and uniqueness of α̂. Since

∇u∥Xu − y∥2 = 2X⊤Xu − 2X⊤y,

and ∥Xu − y∥2 is convex in u, u is a minimizer of u 7→ ∥Xu − y∥2 if and only if

X⊤Xu = X⊤y. (A.83)

By the properties of the pseudo-inverse, X⊤XX+ = X⊤, so

X⊤X(X+y) = X⊤y,

and thus X+y is a minimizer of ∥Xu − y∥. The set of vectors u satisfying X⊤Xu =

X⊤y is also convex, so α̂ is a minimizer of a strictly convex function ∥ · ∥ over a

non-empty convex set. Such a minimizer exists and is unique, so α̂ exists and is

unique.

Step 2: formula for α̂. Since α̂ is a minimizer of ∥Xu − y∥, it must satisfy A.83,

i.e.

X⊤Xα̂ = X⊤y. (A.84)

We can write

α̂ = X+Xα̂ + (I − X+X)α̂,

and using XX+X = X as well as the fact that X+X is symmetric (see Appendix

A.5), a quick calculation gives

∥α̂∥2 = ∥X+Xα̂∥2 + ∥(I − X+X)α̂∥2.

Thus ∥X+Xα̂∥ ≤ ∥α̂∥2, and also

X⊤X(X+Xα̂) = X⊤Xα̂ = X⊤y,
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where we used XX+X = X in the first step and A.84 in the second step. Thus

X+Xα̂ is a minimizer of ∥ · ∥ among minimizers of ∥Xu − y∥. Since by Step 1 above

α̂ is the unique such minimizer, X+Xα̂ = α̂. Thus,

α̂ = X+Xα̂

= (X⊤X)+X⊤Xα̂ (since X+ = (X⊤X)+X⊤)

= (X⊤X)+X⊤y (by A.84)

= X+y. (since X+ = (X⊤X)+X⊤)

■

A.4.2 Proof that (1.5) is a Special Case of (1.21) in the Gaussian

Case

Lemma 36. Suppose that (X, y) follows model (1.5) with mean zero and is furthermore

jointly Gaussian. Then model (1.21) holds with θ = α∗ and and error η B y − X⊤α∗,

independent of X, where α∗ = Σ+XΣXY is the best linear predictor under model (1.5).

Proof. We first compute

E[Xη] = E[X(y − X⊤α∗)2] = E[XX⊤]α∗ − E[Xy] = ΣXα
∗ − ΣXY ,

where we use that X and y are mean zero in the final step. Using the fact that

ΣXα
∗ = ΣXY from (A.5) above, we find E[Xη] = 0 so X and η are uncorrelated,

where we again use that (X, y) are mean zero, so η is mean zero. Since X and y

are jointly normal, it follows that X and η are jointly normal. Thus, X and η are

independent and so model (1.21) holds as claimed. ■
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A.4.3 Risk of α̂ Under the Factor Regression Model for p ≪ n

For completeness, we provide a risk bound for the minimum-norm estimator α̂

under the factor regression model in the low-dimensional regime p ≪ n.

Theorem 37. Under model 1.5, suppose that Assumptions 1, 2 & 3 hold. Then if

n > C · p for some C > 0 large enough and p ≥ K, with probability at least 1 − c/n,

R(α̂) − σ2 ≲ κ(ΣE)
∥β∥2
ΣZ

ξ
+

p
n
σ2 log n,

where κ(ΣE) = λ1(ΣE)/λp(ΣE) is the condition number of ΣE.

Proof. As in the proof of Theorem 13 found in section A.3.2 above,

R(α̂) ≤ 2(B1 + B2) + 2(V1 + V2),

where

B1 = ∥Σ
1/2
E X+Zβ∥2

B2 = ∥Σ
1/2
Z (A⊤X+Z − IK)β∥2

V1 = ∥Σ
1/2
E X+ε∥2

V2 = ∥Σ
1/2
Z A⊤X+ε∥2.

We will bound these four terms on the event B = B1 ∩ B2, where

B1 B {∥Ẽ∥2 < c1n, σ2
K(Z̃) > c2n, σ2

p(X̃) ≥ c3n}

and

B2 B
{
ε̃⊤X+⊤ΣX X+ε̃ ≤ c5 log(n) · tr(X+⊤ΣX X+)

}
.

As the last step of the proof, we will show that P(B) ≥ 1 − c/n.
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Bounding the bias component: First observe that since K < n, when Z is full rank,

Z+Z = IK and so

A⊤X+ = Z+ZA⊤X+ = Z+(X − E)X+ = Z+XX+ − Z+EX+.

Thus,

B2 = ∥(A⊤X+Z − IK)β∥2

= ∥(Z+XX+Z − IK)β − Z+EX+Zβ∥2ΣZ

≤ 2∥(Z+XX+Z − IK)β∥2ΣZ
+ 2∥Z+EX+Zβ∥2ΣZ

. (A.85)

Note that since p ≥ K, by Assumption 2, rank(A) = K so by Lemma 39 of

Appendix A.5,

A⊤A+⊤ = IK . (A.86)

We thus have

∥(Z+XX+Z − IK)β∥2ΣZ
= ∥(Z+XX+Z − Z+Z)β∥2ΣZ

= ∥Z̃+(XX+ − Ip)Zβ∥2

≤
∥(XX+ − Ip)Zβ∥2

σ2
K(Z̃)

≲
1
n
∥(XX+ − Ip)Zβ∥2 (on B)

=
1
n
∥(XX+ − Ip)ZA⊤A+⊤β∥2 (by (A.86))

=
1
n
∥(XX+ − Ip)(X − E)A+⊤β∥2 (since X = ZA⊤ + E)

=
1
n
∥(XX+ − Ip)EA+⊤β∥2 (since XX+X = X)

≤
1
n
∥XX+ − Ip∥ · ∥EA+⊤β∥2

≤
1
n
∥EA+⊤β∥2

≲
n∥ΣE∥

n

∥β∥2
ΣZ

λK(AΣZA⊤)
(on B and by (A.47))

=
∥β∥2
ΣZ

ξ
, (A.87)
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where in the penultimate step we used

∥A+⊤β∥2 ≤
∥β∥2
ΣZ

λK(AΣZA⊤)
(A.88)

from (A.47). We can bound the second term in A.85 as follows:

∥Z+EX+Zβ∥2ΣZ
= ∥Z̃+EX+Zβ∥2

≤
∥E∥2

σ2
K(Z̃)

∥X+Zβ∥2

≲ ∥ΣE∥ · ∥X+Zβ∥2 (on B)

= ∥ΣE∥ · ∥X+ZA⊤A+⊤β∥2 (since A⊤A+⊤ = IK)

= ∥ΣE∥ · ∥X+(X − E)A+⊤β∥2 (since X = ZA⊤ + E)

≤ 2∥ΣE∥ · ∥X+XA+⊤β∥2 + 2∥ΣE∥ · ∥X+EA+⊤β∥2

≲ ∥ΣE∥∥A+⊤β∥2 + ∥ΣE∥
∥E∥

σ2
p(X)
∥A+⊤β∥2 (since ∥X+X∥ ≤ 1)

≲ ∥ΣE∥ · κ(ΣE)∥A+⊤β∥2

≤ κ(ΣE)
∥β∥2
ΣZ

ξ
. (by (A.88))

Using this and (A.87) in (A.85), and using the fact that κ(ΣE) > 1, we find that on

the event B,

B2 ≲ κ(ΣE)
∥β∥2
ΣZ

ξ
. (A.89)

Bounding the variance component: We have

V1 + V2 = ε
⊤X+⊤ΣX X+ε

= σ2ε̃⊤X+⊤ΣX X+ε̃ (by Assumption 3)

≲ σ2 log(n)tr(X+⊤ΣX X+) (on B2)

≤ σ2 log(n) · p∥X+⊤ΣX X+∥ (since rank(X+) = p)

= σ2 log(n) · p∥Σ1/2
X X+∥2. (A.90)
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From Assumption 1, X = X̃Σ1/2
X , and from Lemma 39 of Appendix A.5 below,

(X̃Σ1/2
X )+ = (X̃+X̃Σ1/2

X )+(X̃Σ1/2
X Σ

−1/2
X )+ = Σ−1/2

X X̃+.

Using this in (A.90), we find

V1 + V2 ≲ σ2 log(n) · p∥X̃+∥2 = σ2 log(n)
p

σ2
p(X̃)

.

Proof that P(B) ≥ 1 − c/n: The bounds P(B1) ≥ 1 − c/n and P(B2) ≥ 1 − e−cn follow

respectively from Theorem 4.6.1 of [91] and Lemma 30 in Appendix A.3.1 above,

by similar reasoning as in the proof of Theorem 13, for example. ■

A.4.4 Signal to Noise Ratio Bound for Clustered Variables

We present here a lower bound on the signal-to-noise ratio ξ = λK(AΣZA⊤)/∥ΣE∥

in terms of the number |Ia| of features related to cluster a only, for 1 ≤ a ≤ K. We

recall the definition

Ia B {i ∈ [p] : |Aia| = 1, Aib = 0 for b , a} .

Lemma 38. ξ ≥ mina |Ia| · λK(ΣZ)/∥ΣE∥.
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Proof. For any v ∈ RK with ∥v∥ = 1,

v⊤A⊤Av = ∥Av∥2 =
p∑

i=1

 K∑
a=1

Aiava

2

≥
∑
i∈I

 K∑
a=1

Aiava

2

=

K∑
b=1

∑
i∈Ib

A2
ibv2

b

=

K∑
b=1

|Ib|v2
b (|Aib| = 1 for i ∈ Ib)

≥ min
a
|Ia| ·

K∑
b=1

v2
b = min

a
|Ia|. (since ∥v∥ = 1).

Thus, using λK(AΣZA⊤) ≥ λK(ΣZ)λK(A⊤A),

ξ = λK(AΣZA⊤)/∥ΣE∥ ≥ λK(A⊤A)λK(ΣZ)/∥ΣE∥ ≥ min
a
|Ia|λK(ΣZ)/∥ΣE∥,

which completes the proof. ■

A.5 Properties of the Moore-Penrose Pseudo-Inverse

We state the definition and some properties of the pseudo-inverse in this section

for completeness. The material here can be found in [83], along with proofs

of some of the statements. For a matrix B ∈ Rn×m, there exists a unique matrix

B+, which we define as the pseudo-inverse of B, satisfying the following four

conditions:

BB+B = B (A.91)

B+BB+ = B+ (A.92)

BB+ is symmetric (A.93)

B+B is symmetric (A.94)
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We will use the following properties of the pseudo-inverse in this paper.

Lemma 39. For any B ∈ Rn×m and C ∈ Rm×d,

(BC)+ = (B+BC)+(BCC+)+. (A.95)

Furthermore, for any matrix B ∈ Rn×m with r = rank(B) and smallest non-zero singular

value σr(B),

B⊤BB+ = B⊤ (A.96)

B⊤(BB⊤)+ = B+ (A.97)

(B⊤B)+B⊤ = B+ (A.98)

B+B = Im if r = m (A.99)

BB+ = In if r = n (A.100)

∥B+∥ = 1/σr(B) (A.101)

rank(B+) = rank(B) = r. (A.102)
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APPENDIX B

APPENDIX OF CHAPTER 2

B.1 Organization of Appendices

We provide section-by-section proofs for the main results in Appendices B.2.1—

B.2.4. Auxiliary lemmas are collected in Appendix B.3. Appendix B.4 contains

the procedure of estimating A under the Essential Regression framework while

comparison with more existing literature on factor models is stated in Appendix

B.5.

B.2 Main proofs

We start by giving an elementary lemma that proves Y∗
B̂
= Y∗PB̂

for any B̂ ∈ Rp×q.

Recall that, for any matrix M, M+ denotes its Moore-Penrose inverse and PM

denotes the projection onto the column space of M.

Lemma 40. Let B̂ ∈ Rp×q be any matrix. Then

B̂(XB̂)+ = PB̂(XPB̂)+.

Proof. Write the SVD of B̂ as B̂ = UDV⊤ where U ∈ Rp×r0 and V ∈ Rq×r0 are
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orthonormal matrices with r0 = rank(B̂). We then have

B̂(XB̂)+ = B̂
(
B̂⊤X⊤XB̂

)+
B̂⊤X⊤

= UDV⊤
(
VDU⊤X⊤XUDV⊤

)+ VDU⊤X⊤

(i)
= U(U⊤X⊤XU)+U⊤X⊤

(ii)
= UU⊤(UU⊤X⊤XUU⊤)+UU⊤X⊤.

The result then follows by noting that PB̂ = UU⊤. Step (i) uses the fact that

(
VDU⊤X⊤XUDV⊤

)+
= VD−1 (

U⊤X⊤XU
)+ D−1V⊤

which can be verified by the definition of Moore-Penrose inverse. Indeed, let

M = U⊤X⊤XU, N = VDMDV⊤ and Ñ = VD−1M+D−1V⊤. We need to verify

NÑN = N, ÑNÑ = Ñ.

Straightforwardly,

NÑN = VDMM+MDV⊤ = VDMDV⊤ = N

and similar arguments hold for ÑNÑ = Ñ. Step (ii) uses step (i) with D = Ir0 and

V = U ■

B.2.1 Proofs for Section 2.2

Proof of Lemma 16

Let ΣX = Cov(X), ΣXY = Cov(X,Y). Since ΣW is invertible, λp(ΣX) = λp(AΣZA⊤ +

ΣW) ≥ λp(ΣW) > 0 so ΣX is invertible. Thus, letting α∗ = Σ−1
X ΣXY ,

R∗ − σ2 = E[(X⊤α∗ − Z⊤β)2]. (B.1)
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Using this expression, and the factor model structure X = AZ +W, Y = Z⊤β + ε,

the proof of Lemma 4 in [33] uses the Woodbury matrix identity to simplify (B.1),

arriving at

R∗ − σ2 = β⊤(Σ−1
Z + A⊤Σ−1

W A)−1β.

Letting H = Σ1/2
Z A⊤Σ−1

W AΣ1/2
Z , we then have

R∗ − σ2 = β⊤Σ1/2
Z (IK + H)−1Σ

1/2
Z β

= β⊤Σ1/2
Z H−1/2(IK + H−1)−1H−1/2Σ

1/2
Z β.

To obtain the upper bound on R∗ we use

R∗ − σ2 = β⊤Σ1/2
Z H−1/2(IK + H−1)−1H−1/2Σ

1/2
Z β ≤

β⊤Σ1/2
Z H−1Σ

1/2
Z β

1 + λK(H−1)
≤ β⊤(A⊤Σ−1

W A)−1β,

where we used Σ1/2
Z H−1Σ

1/2
Z = (A⊤Σ−1

X A)−1 in the last step.

To find the lower bound we first observe that

R∗ − σ2 = β⊤Σ1/2
Z H−1/2(IK + H−1)−1H−1/2Σ

1/2
Z β ≥

β⊤Σ1/2
Z H−1Σ

1/2
Z β

1 + ∥H−1∥op
=
β⊤(A⊤Σ−1

X A)−1β

1 + λ−1
K (H)

.

Furthermore,

λK(H) = λK(Σ1/2
Z A⊤Σ−1

W AΣ1/2
Z ) ≥ λK(AΣZA⊤)/∥ΣW∥op = ξ,

so using this in the previous display,

R∗ − σ2 ≥
β⊤(A⊤Σ−1

X A)−1β

1 + ξ−1 =
ξ

1 + ξ
· β⊤(A⊤Σ−1

X A)−1β,

as claimed. ■

Proof of Theorem 17

Define α̂B̂ = B̂
(
B̂⊤X⊤XB̂

)+
B̂⊤X⊤Y and recall that Ŷ∗

B̂
= X⊤∗ α̂B̂ from (2.3). Pick any θ

with K ≤ (Cn/ log n) ∧ p such that (X,Y) follows FRM(θ) where C = C(γz) is some
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positive constant. By X∗ = AZ∗ +W∗ and Y∗ = Z⊤∗ β + ε∗, and the independence of

Z∗, ε∗, and W∗, one has

R(B̂) − σ2 = E(Z∗,W∗)

[(
Ŷ∗

B̂
− Z⊤∗ β

)2
]

= EZ∗

[(
Z⊤∗ A⊤α̂B̂ − Z⊤∗ β

)2
]
+ EW∗

[(
W⊤
∗ α̂B̂

)2
]

(B.2)

=
∥∥∥∥Σ1/2

Z

(
A⊤α̂B̂ − β

)∥∥∥∥2
+

∥∥∥Σ1/2
W α̂B̂

∥∥∥2

≤

∥∥∥∥Σ1/2
Z

(
A⊤α̂B̂ − β

)∥∥∥∥2
+ ∥ΣW∥op

∥∥∥α̂B̂

∥∥∥2
. (B.3)

We define an event E∗ in (B.4) below, on which we bound the risk. Invoking

Lemmas 42, 43 and using β⊤A+ΣW A+⊤β ≤ β⊤(A⊤A)−1β∥ΣW∥op, we find that the

stated bound holds on the event E∗. Then, by Lemma 41, P(E∗) ≥ 1 − cn−1, which

completes the proof. ■

We state and prove three lemmas which are used in the proof of Theorem 17.

Recall that

r̂ = rank(XPB̂), ψ̂ =
1
n
σ2

1

(
XP⊥

B̂

)
, η̂ =

1
n
σ2

r̂

(
XPB̂

)
.

Lemma 41. For any θ with K ≤ (Cn/ log n) ∧ p and some positive constant C = C(γz)

such that (X,Y) follows FRM(θ), we have P(E∗) ≥ 1 − cn−1 for some absolute constant

c > 0, where we define the event

E∗ B EZ ∩ EW ∩ E
′
W ∩ EM ∩ EM′ ∩ EZβ. (B.4)

150



Here, for some constants c(γz) and c′(γw) depending on γz and γw, respectively,

EZ B

{
λK

(
Ω1/2 1

n
Z⊤ZΩ1/2

)
≥ c(γz)

}
,

EZβ :=
{

1
n

∥∥∥∥P⊥
XB̂

Zβ
∥∥∥∥2
≤ 8γ2

wβ
⊤A+ΣW A+⊤β + 2ψ̂β⊤(A⊤A)−1β

}
,

EW B

{
1
n

∥∥∥W⊤W
∥∥∥

op ≤ δW

}
,

E′W B

{
1
n

∥∥∥WA+⊤β
∥∥∥2
≤ 4γ2

wβ
⊤A+ΣW A+⊤β

}
,

EM B
{
ε⊤Mε ≤ 2γ2

εσ
2
[
2∥M∥op log n + tr(M)

]}
,

EM′ B
{
ε⊤M′ε ≤ 2γ2

εσ
2
[
2∥M′∥op log n + tr(M′)

]}
,

with Ω B Σ−1
Z , δW defined in (2.12), and

M B (XB̂)+⊤B̂⊤B̂(XB̂)+,

M′ B (XB̂)+⊤B̂⊤AΣZA⊤B̂(XB̂)+.

Proof. By an application of Theorem 5.39 of [90] and K log n ≤ C(γz)n, we find

P{Ec
Z} ≲ n−c′K . From Lemma 47 with G = WΣ−1/2

W , H = ΣW , and γ = γw, we find

P{Ec
W} ≤ e−n.

We note that WA+⊤β has independent γw
√
β⊤A+ΣW A+⊤β sub-Gaussian entries,

so WA+⊤β is a γw
√
β⊤A+ΣW A+⊤β sub-Gaussian random vector. Applying Lemma

46 with ξ =WA+⊤β, H = In, γ2
ξ = γ

2
wβ
⊤A+ΣW A+⊤β and choosing t = log n yield

P{(E′W)c} = P
{

1
n

∥∥∥WA+⊤β
∥∥∥2
> 4γ2

wβ
⊤A+ΣW A+⊤β

}
≤ n−1. (B.5)

We prove E′W ∩ EZβ = EW′ in Lemma 44. By the independence of ε and both X

and B̂, the matrix M is independent of ε. Thus, by an application of Lemma

46 with ξ = ε, H = M, γξ = σγε and t = log n gives P{Ec
M |M} ≤ n−1. Taking the

expectation over M then gives P{Ec
M} ≤ n−1. The same argument with H = M′

gives P{Ec
M′} ≤ n−1.
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Combining results, we find

P{E∗c} ≤ P
{
Ec

Z
}
+ P

{
Ec

W
}
+ P

{
(E′W)c} + P{Ec

M} + P{Ec
M′} ≲ n−1.

■

Lemma 42. Under conditions of Theorem 17, on the event E∗ defined in (B.4),

∥α̂B̂∥
2 ≲θ

(̂r + log n)σ2

n̂η
+ β⊤(A⊤A)−1β + η̂−1

(
ψ̂β⊤(A⊤A)−1β + β⊤A+ΣW A+⊤β

)
. (B.6)

Proof. Starting with the identity

α̂B̂ = B̂(XB̂)+Y = B̂(XB̂)+(Zβ + ε), (B.7)

with (XB̂)+ B (B̂X⊤XB̂)+B̂⊤X⊤, we have

∥α̂B̂∥
2 ≤ 2

∥∥∥∥B̂(XB̂)+ε
∥∥∥∥2
+ 2

∥∥∥∥B̂(XB̂)+Zβ
∥∥∥∥2
.

To bound the first term, notice that

∥∥∥∥B̂(XB̂)+ε
∥∥∥∥2
= ε⊤(XB̂)+⊤B̂⊤B̂(XB̂)+ε

= ε⊤Mε

≤ 2γ2
εσ

2
[
2∥M∥op log n + tr(M)

]
,

where the last step holds on E∗ (in particular, on EM ⊂ E
∗). Observe that, on E∗,

tr(M) = tr
(
(XB̂)+⊤B̂⊤B̂(XB̂)+

)
≤ rank(XB̂) · ∥M∥op

= r̂∥M∥op.

Write the SVD of B̂ as B̂ = UDV⊤ where U ∈ Rp×r0 and V ∈ Rq×r0 are orthogonal

matrices with r0 = rank(B̂). Recalling that (XB̂)+ = (B̂⊤X⊤XB̂)+B̂X⊤, the following
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holds, on the event E∗,

∥M∥op =
∥∥∥∥(XB̂)+⊤B̂⊤B̂(XB̂)+

∥∥∥∥
op

(i)
=

∥∥∥∥B̂(XB̂)+(XB̂)+⊤B̂⊤
∥∥∥∥

op

=
∥∥∥∥B̂(B̂⊤X⊤XB̂)+B̂X⊤XB̂(B̂⊤X⊤XB̂)+B̂⊤

∥∥∥∥
op

=
∥∥∥∥B̂

(
B̂⊤X⊤XB̂

)+
B̂⊤

∥∥∥∥
op

=
∥∥∥U

(
U⊤X⊤XU

)+U⊤
∥∥∥

op

(ii)
≤ σ−2

r̂ (XU)

(iii)
= (n̂η)−1 (B.8)

where we used ∥FF⊤∥op = ∥F⊤F∥op for any matrix F in (i), rank(XU) =

rank(XPB̂) = r̂ in (ii) and

σ2
r̂ (XU) = λ̂r(XUU⊤X) = λ̂r(XP2

B̂
X) = σr̂(XPB̂)

in (iii). This concludes, on the event E∗,∥∥∥∥B̂(XB̂)+ε
∥∥∥∥2
≤

2γ2
εσ

2

n̂η
(̂r + 2 log n). (B.9)

On the other hand, by A⊤A+⊤ = IK and X = ZA⊤ +W, observe that

B̂(XB̂)+Z = B̂(XB̂)+ZA⊤A+⊤

= B̂(XB̂)+(X −W)A+⊤

= B̂(XB̂)+XPB̂A+⊤ + B̂(XB̂)+XP⊥
B̂

A+⊤ − B̂(XB̂)+WA+⊤. (B.10)

By PB̂ = B̂B̂+ and the inequality (a + b + c)2 ≤ 3a2 + 3b2 + 3c2,∥∥∥∥B̂(XB̂)+Zβ
∥∥∥∥2
≤ 3

∥∥∥∥B̂(XB̂)+XB̂B̂+A+⊤β
∥∥∥∥2
+ 3

∥∥∥∥B̂(XB̂)+XP⊥
B̂

A+⊤β
∥∥∥∥2

(B.11)

+ 3
∥∥∥∥B̂(XB̂)+WA+⊤β

∥∥∥∥2

≤ 3
∥∥∥∥B̂(XB̂)+XB̂B̂+

∥∥∥∥2

op

∥∥∥A+⊤β
∥∥∥2
+ 3

∥∥∥∥B̂(XB̂)+
∥∥∥∥2

op

∥∥∥∥XP⊥
B̂

∥∥∥∥2

op

∥∥∥A+⊤β
∥∥∥2

+ 3
∥∥∥∥B̂(XB̂)+

∥∥∥∥2

op

∥∥∥WA+⊤β
∥∥∥2
.
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Recalling B̂ = UDV⊤, on the event E∗, the following observation∥∥∥∥B̂(XB̂)+XB̂B̂+
∥∥∥∥

op
=

∥∥∥U
(
U⊤X⊤XU

)+U⊤X⊤XUU⊤
∥∥∥

op

≤
∥∥∥(U⊤X⊤XU

)+U⊤X⊤XU
∥∥∥

op
≤ 1,

together with (B.8), concludes∥∥∥∥B̂(XB̂)+Zβ
∥∥∥∥2
≤ 3β⊤(A⊤A)−1β + 3̂η−1

(
ψ̂β⊤(A⊤A)−1β + 4γ2

wβ
⊤A+ΣW A+⊤β

)
. (B.12)

Collecting (B.9)—(B.12) concludes the proof. ■

Lemma 43. Under conditions of Theorem 17, on the event E∗ defined in (B.4),∥∥∥∥Σ1/2
Z

(
A⊤α̂B̂ − β

)∥∥∥∥2
≲θ

(
1 +

δW

η̂

) (
K ∧ r̂ + log n

n
σ2 + β⊤A+ΣW A+⊤β

)
+

[(
1 +

δW

η̂

)
ψ̂ + δW

]
β⊤(A⊤A)−1β.

Proof. Use identity (B.7) and the inequality (x + y)2 ≤ 2x2 + 2y2 to find∥∥∥∥Σ1/2
Z

(
A⊤α̂B̂ − β

)∥∥∥∥2

≤ 2
∥∥∥∥Σ1/2

Z [A⊤B̂(XB̂)+Z − IK]β
∥∥∥∥2
+ 2

∥∥∥∥Σ1/2
Z A⊤B̂(XB̂)+ε

∥∥∥∥2
. (B.13)

For the first term, since Z ∈ Rn×K has rank(Z) = K on the event E∗, we have

A⊤B̂(XB̂)+ − Z+ = Z+ZA⊤B̂(XB̂)+ − Z+ (by Z+Z = IK on E∗)

= Z+(X −W)B̂(XB̂)+ − Z+

= −Z+P⊥
XB̂
− Z+WB̂(XB̂)+, (B.14)

which yields ∥∥∥∥Σ1/2
Z [A⊤B̂(XB̂)+Z − IK]β

∥∥∥∥2

≤ 2
∥∥∥∥Σ1/2

Z Z+P⊥
XB̂

Zβ
∥∥∥∥2
+ 2

∥∥∥∥Σ1/2
Z Z+WB̂(XB̂)+Zβ

∥∥∥∥2

≲
1
n

∥∥∥∥P⊥
XB̂

Zβ
∥∥∥∥2
+

1
n

∥∥∥∥WB̂(XB̂)+Zβ
∥∥∥∥2

(B.15)

≲
1
n

∥∥∥∥P⊥
XB̂

Zβ
∥∥∥∥2
+ δW ·

∥∥∥∥B̂(XB̂)+Zβ
∥∥∥∥2
.
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We used ∥Σ1/2
Z Z+∥op = σ

−1
K (ZΩ−1/2) ≲ 1/

√
n on E∗ in the third line. The event EZβ

and (B.12) conclude∥∥∥∥Σ1/2
Z [A⊤B̂(XB̂)+Z − IK]β

∥∥∥∥2
(B.16)

≲

(
1 +

δW

η̂

) (
β⊤A+ΣW A+⊤β + ψ̂β⊤(A⊤A)−1β

)
+ δWβ

⊤(A⊤A)−1β.

For the second term in (B.13), we use that on E∗ (in particular, EM′ ⊂ E
∗),∥∥∥∥Σ1/2

Z A⊤B̂(XB̂)+ε
∥∥∥∥2
≤ 2γ2

εσ
2
[
2∥M′∥op log n + tr(M′)

]
Since rank(ΣZ) = K and rank(XP̂B̂) = r̂, we have

tr(M′) ≤ (K ∧ r̂ )∥M′∥op.

Moreover,

∥M′∥op =
∥∥∥∥Σ1/2

Z A⊤B̂(XB̂)+
∥∥∥∥2

op
≤ 2

∥∥∥Σ1/2
Z Z+PXB̂

∥∥∥2

op
+ 2

∥∥∥∥Σ1/2
Z Z+WB̂(XB̂)+

∥∥∥∥2

op

≲
1
n
+ δW ·

∥∥∥∥B̂(XB̂)+
∥∥∥∥2

op

by using (B.14) in the first line and E∗ in the second line. Invoking (B.8) concludes

that, on E∗, ∥∥∥∥Σ1/2
Z A⊤B̂(XB̂)+ε

∥∥∥∥2
≲

(K ∧ r̂ + log n)σ2

n

(
1 +

δW

η̂

)
. (B.17)

Plugging (B.16) and (B.17) into (B.13) completes the proof. ■

Lemma 44. Under conditions of Theorem 17, on the event E′W from (B.4),

1
n

∥∥∥∥P⊥
XB̂

Zβ
∥∥∥∥2
≤ 8γ2

wβ
⊤A+ΣW A+⊤β + 2ψ̂β⊤(A⊤A)−1β. (B.18)

Proof. By X = ZA⊤ +W, one has

P⊥
XB̂

Zβ = P⊥
XB̂

(
XA+⊤ −WA+⊤

)
β

= −P⊥
XB̂

WA+⊤β + P⊥
XB̂

XA+⊤β

= −P⊥
XB̂

WA+⊤β + P⊥
XB̂

X
(
A+⊤ − B̂G

)
β
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for any matrix G ∈ Rq×K . Choose

G = B̂+A+⊤ = min
G′

∥∥∥∥A+⊤ − B̂G′
∥∥∥∥

F

to obtain

P⊥
XB̂

Zβ = P⊥
XB̂

WA+⊤β + P⊥
XB̂

XP⊥
B̂

A+⊤β.

Then by the basic inequality (a + b)2 ≤ 2a2 + 2b2,

∥∥∥∥P⊥
XB̂

Zβ
∥∥∥∥2
≤ 2

∥∥∥∥P⊥
XB̂

WA+⊤β
∥∥∥∥2
+ 2

∥∥∥∥P⊥
XB̂

XP⊥
B̂

A+⊤β
∥∥∥∥2

(B.19)

≤ 2
∥∥∥∥P⊥

XB̂

∥∥∥∥2

op

∥∥∥WA+⊤β
∥∥∥2
+ 2

∥∥∥∥XP⊥
B̂

∥∥∥∥2

op

∥∥∥A+⊤β
∥∥∥2

≤ 2
∥∥∥WA+⊤β

∥∥∥2
+ 2nψ̂β⊤(A⊤A)−1β

where we invoked the definition of ψ̂ in the last line. Invoke E′W from (B.4) to

finish the proof. ■

B.2.2 Proofs for Section 2.3

Proof of Corollary 18

The corollary is an application of Theorem 17 with B̂ = Uk. Given any realization

of (X,Y) and (possibly random) k ∈ {0, 1, . . . , rank(X)}, we may write the SVD of

X as

X = V∆U⊤ =
∑

1≤ j≤k

∆ j jV q jU⊤q j +∑
j>k

∆ j jV q jU⊤q j
B Vk∆kU⊤k + V(−k)∆(−k)U⊤(−k).
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The diagonal matrix ∆ contains the non-increasing singular values and Uk con-

tains the corresponding k right-singular vectors. Consequently,

rank(XUk) = rank(Vk∆k) = k,

σ2
1

(
XP⊥Uk

)
=

∥∥∥XU(−k )U⊤(−k)

∥∥∥2

op
=

∥∥∥V(−k )∆(−k)U⊤(−k )

∥∥∥2

op
= σ2

k+1 (X) = n̂λk+1,

σ2
1
(
XPUk

)
= σ2

1
(
Vk∆kU⊤k

)
= σ2

k(X) = n̂λk.

Invoke Theorem 17 with B̂ = Uk, r̂ = k, ψ̂ = λ̂k+1 and η̂ = λ̂k to conclude the

proof.■

Proof of Corollary 19 & Remark 6

We first prove Corollary 19. From Corollary 18, it suffices to show Pθ {̂s ≤ K} ≥

1 − c/n, which is guaranteed by proving

Pθ
{

1
n
σ2

K+1(X) < C0δW

}
≥ 1 − c/n.

By Weyl’s inequality,

σK+1(X) ≤ σK+1(ZA⊤) + σ1(W) = σ1(W).

The result then follows by (2.11) and C0 > 1. ■

To prove Remark 6, we will show

P
{̂
λK ≳ λk(AΣZA⊤) − δW

}
≥ 1 − n−c.

Note that Weyl’s inequality yields

σk(X) ≥ σk(ZA⊤) − σ1(W) ≥ σK(ZΣ−1/2
Z )σk(Σ

1/2
Z A⊤) − σ1(W).

We obtain the desired result by invoking EZ from Lemma 41 and (2.11). ■
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Proof of Proposition 20

We work on the event

E′′W :=
{
σ2

1(W) ≤ nδW

}
∩

{
c1 tr(ΣW) ≤

1
n
∥W∥2F ≤ C1 tr(ΣW)

}
with δW defined in (2.12) and some constants C1 ≥ c1 > 0, depending on γw. We

have on the event E′′W ,

2σ2
1(W)

np
∥W∥2F

≤ 2nδW
np
∥W∥2F

≤
2δW

c1

np
tr(ΣW)

by E′′W

=
2c
c1

(
np

re(ΣW)
+ p

)
by (2.12)

≤
2c
c1

(n ∨ p
c′
+ p

)
by re(ΣW) ≥ c′(n ∧ p)

≤ c0(n + p) = µn

by choosing any c0 ≥ 2c(1 + 1/c′)/c1. From Theorem 6 and Proposition 7 of [27]

with P = In, E =W and m = p, we deduce

s̃ ≤ K

on the event E′′W .

To prove the lower bound σ2
s̃(X) ≳ nδW , we notice that, on the event E′′W ,

σ2
s̃(X) ≥ µn

∥X − X(s̃)∥
2
F

np − µn s̃
≥ µn
∥X − X(K)∥

2
F

np
. (B.20)

The first inequality uses (2.7) in [27], while the second inequality uses K ≤ K̄.

Further invoking (3.8) in Proposition 7 of [27] yields

∥X − X(K)∥
2
F

np − µnK
≥
∥W∥2F

np
.
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Next, on the event E′′W , choosing c0 ≥ 2c(1 + 1/c′)/c1 in µn = c0(n + p), we find

µn
∥W∥2F

np
≥ µnc1

tr(ΣW)
p

≥ 2c
(
1 +

1
c′

)
n + p

p
tr(ΣW)

≥ 2c
(
tr(ΣW) +

1
c′

n + p
p

re(ΣW)∥ΣW∥op

)
≥ 2c

(
tr(ΣW) + (n ∧ p)

n + p
p
∥ΣW∥op

)
by re(ΣW) ≥ c′(n ∧ p)

≥ 2c
(
tr(ΣW) + n∥ΣW∥op

)
= 2nδW .

Hence, combining all three previous displays, we derive

σ2
s̃(X) ≥ µn

∥X − X(K)∥
2
F

np

≥ µn
∥W∥2F

np
np − µnK

np

≥ nδW
np − µnK

np

≥
1

1 + κ
nδW by K ≤ K̄ and (2.21).

Next, we prove σ2
s̃+1(X) ≲ δW . By (2.7) in [27] once again, we have

σ2
s̃+1(X) ≤ µn

∥X − X(s̃+1)∥
2
F

np − µn(s̃ + 1)
.

From (2.3) in Proposition 1 of [27], this inequality is equivalent to

σ2
s̃+1(X) ≤ µn

∥X − X(s̃)∥
2
F

np − µn s̃
.
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Since s̃ ≤ K on E′′W , we have

σ2
s̃+1(X) ≤ µn

∥X − X(K)∥
2
F

np − µnK

≤ µn
np

np − µnK
∥W∥2F

np
by (3.8) of Proposition 7 in [27]

≤ (1 + κ)µn
∥W∥2F

np
by (2.21)

≤ (1 + κ)c0C1(n + p)
tr(ΣW)

p
by E′′W and µn = c0(n + p)

≤
(1 + κ)c0C1

c
nδW by tr(ΣW) ≤ p∥ΣW∥op.

It remains to prove 1 − P(E′′W) ≲ 1/n. First note that

1
n
∥W∥2F =

p∑
j=1

1
n

W⊤q jW q j.
By invoking Lemma 49 for fixed j ∈ [p] and some absolute constant c, the

inequality ∣∣∣∣∣1nW⊤q jW q j − [ΣW] j j

∣∣∣∣∣ ≤ cγ2
w[ΣW] j j

√
log p

n

holds with probability at least 1−2(p∨n)−2.Apply the union bound over 1 ≤ j ≤ p,

invoke log p ≤ Cn for sufficiently large C, and conclude

P
{

c(γw) tr(ΣW) ≤
1
n
∥W∥2F ≤ C(γw) tr(ΣW)

}
≥ 1 − 2(p ∨ n)−1.

Finally, Lemma 47 shows that P{σ2
1(W) ≤ nδW} ≥ 1 − e−n, taking c in δW large

enough. ■

B.2.3 Proofs for Section 2.4

Proof of Corollary 22

By Theorem 5.39 of [90], σ2
p(XΣ−1/2

X ) ≳ n with probability at least 1−cn−1, where we

use that XΣ−1/2
X has independent sub-Gaussian rows with sub-Gaussian constant
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bounded by an absolute constant, which is implied by the sub-Gaussianity of Z

and W, and that p log n ≲ n. Thus, with the same probability,

σ2
p(X) ≥ λp(ΣX)σ2

p(XΣ−1/2
X ) ≥ λp(ΣW)σ2

p(XΣ−1/2
X ) ≳ λp(ΣW)n.

Corollary 22 then follows from Theorem 17 with ψ̂ = 0, η̂ ≳ λp(ΣW), and r̂ ≤ p. ■

Proof of Corollary 23

Under conditions of Corollary 23, [33] proves that

P
{
σ2

n(X) ≳ tr(ΣW)
}
≥ 1 − cn−1.

We thus have r = n, ψ̂ = 0, and η̂ ≳ tr(ΣW)/n. Further noting that

δW = ∥ΣW∥op

(
1 +

re(ΣW)
n

)
≍

tr(ΣW)
n

,

such that δW /̂η ≍ 1, we conclude

R∗(Ip) − σ2 ≲
K + log n

n
σ2 +

n
re(ΣW)

σ2 +
tr(ΣW)

n
β⊤(A⊤A)−1β

≲
K + log n

n
σ2 +

n
re(ΣW)

σ2 +
re(ΣW)

n
∥ΣW∥op β

⊤(A⊤A)−1β.

■

Proof of Theorem 24

Instead of directly applying Theorem 17, we slightly modify the proofs of Theo-

rem 17 to obtain a sharp result for R(Â).

From the proof of Theorem 17, display (B.2) gives

R(Â) − σ2 ≤

∥∥∥∥Σ1/2
Z

(
A⊤α̂Â − β

)∥∥∥∥2
+ ∥ΣW∥op

∥∥∥α̂Â

∥∥∥2
.
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We then point out the modifications of the proof of Lemmas 42 and 43. Recall

Â ∈ Rp×K̂ . We work on the event E∗ defined in the proof of Theorem 17 intersected

with the event that K̂ = K and

∥Â − A∥2op ≤ ∥Â − A∥2F ≲ ∥AJ∥0
log(p ∨ n)

n
.

The last two events holds with probability at least 1− c(p∨ n)−1 for some constant

c > 0 [26]. In display (B.11) of Lemma 42 for bounding ∥α̂Â∥
2, we use∥∥∥∥B̂(XB̂)+Zβ

∥∥∥∥2
≤ 3

∥∥∥∥B̂(XB̂)+XB̂B̂+A+⊤β
∥∥∥∥2
+ 3

∥∥∥∥B̂(XB̂)+XP⊥
B̂

A+⊤β
∥∥∥∥2

+ 3
∥∥∥∥B̂(XB̂)+WA+⊤β

∥∥∥∥2

≤ 3
∥∥∥∥B̂(XB̂)+XB̂B̂+

∥∥∥∥2

op

∥∥∥A+⊤β
∥∥∥2
+ 3

∥∥∥∥B̂(XB̂)+
∥∥∥∥2

op

∥∥∥∥XP⊥
B̂

A+⊤β
∥∥∥∥2

+ 3
∥∥∥∥B̂(XB̂)+

∥∥∥∥2

op

∥∥∥WA+⊤β
∥∥∥2
.

We change the way to bound the second term on the right hand side. Specifically,

set B̂ = Â and use (a + b)2 ≤ 2a2 + 2b2 twice to obtain∥∥∥∥XP⊥
Â

A+⊤β
∥∥∥∥2
≤ 2

∥∥∥∥ZAP⊥
Â

A+⊤β
∥∥∥∥2
+ 2

∥∥∥∥WP⊥
Â

A+⊤β
∥∥∥∥2

≤ 2
∥∥∥ZΩ1/2

∥∥∥2

op

∥∥∥∥Σ1/2
Z (A − Â)⊤P⊥

Â
A+⊤β

∥∥∥∥2
(by Â⊤P̂⊥

Â
= 0)

+ 4
∥∥∥WA+⊤β

∥∥∥2
+ 4

∥∥∥WPÂA+⊤β
∥∥∥2

(by P⊥
Â
= Ip − PÂ).

By EZ, E′W and Lemma 45, after a bit algebra, we conclude

1
n

∥∥∥∥XP⊥
Â

A+⊤β
∥∥∥∥2

≲

(
∥AJ∥0

log(p ∨ n)
n

+ δW,J

)
βT (A⊤A)−1β + β⊤A+ΣW A+⊤β

≲

(
∥AJ∥0

log(p ∨ n)
n

+ ∥ΣW∥op

)
βT (A⊤A)−1β + β⊤A+ΣW A+⊤β. (B.21)

with probability at least 1 − cn−1. In the last step, we used the fact that ∥ΣW∥op is

bounded and ∥AJ∥ℓ0/ℓ2 ≤ ∥AJ∥0. Together with the proofs of Lemma 42, one can

deduce that

∥α̂Â∥
2 ≲

(K + log n)σ2

n̂η
+ β⊤(A⊤A)−1β + η̂−1

(
ψ̂β⊤(A⊤A)−1β + β⊤A+ΣW A+⊤β

)
.
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where

ψ̂ ≲ ∥ΣW∥op + ∥AJ∥0
log(p ∨ n)

n
.

To bound ∥Σ1/2
Z (A⊤α̂Â − β)∥2, we modify two places in the proof of Lemma 43.

Display (B.15) is bounded by

∥∥∥∥Σ1/2
Z [A⊤Â(XÂ)+Z − IK]β

∥∥∥∥2
≲

1
n

∥∥∥∥P⊥
XÂ

Zβ
∥∥∥∥2
+

1
n

∥∥∥∥WÂ(XÂ)+Zβ
∥∥∥∥2

≲
1
n

∥∥∥∥P⊥
XÂ

Zβ
∥∥∥∥2
+

1
n

∥∥∥WPÂ

∥∥∥2

op

∥∥∥∥Â(XÂ)+Zβ
∥∥∥∥2

where we will invoke Lemma 45. For the first term of the right hand side, by

(B.19), we have

∥∥∥∥P⊥
XB̂

Zβ
∥∥∥∥2
≤ 2

∥∥∥∥P⊥
XB̂

WA+⊤β
∥∥∥∥2
+ 2

∥∥∥∥P⊥
XB̂

XP⊥
B̂

A+⊤β
∥∥∥∥2

≤ 2
∥∥∥WA+⊤β

∥∥∥2
+ 2

∥∥∥∥XP⊥
B̂

A+⊤β
∥∥∥∥2

which can be further bounded by using (B.21) and invoking the event E′W. Col-

lecting all these ingredients, we conclude

∥∥∥∥Σ1/2
Z

(
A⊤α̂Â − β

)∥∥∥∥2
≲

(
1 +

δW,J

η̂

) (
K + log n

n
σ2 + β⊤A+ΣW A+⊤β

)
+

[(
1 +

δW,J

η̂

)
ψ̂ + δW,J

]
β⊤(A⊤A)−1β.

It then remains to lower bound η̂ by bounding σK(XPÂ) from below. By Weyl’s

inequality, rank(Â) = K, we have

σK

(
XPÂA(A⊤A)−1/2

)
≥ σK

(
XA(A⊤A)−1/2

)
−

∥∥∥∥XP⊥
Â

A(A⊤A)−1/2
∥∥∥∥

op

≥ σK

(
XAN−1/2N1/2(A⊤A)−1/2

)
−

∥∥∥∥XP⊥
Â

A(A⊤A)−1/2
∥∥∥∥

op

≥ σK

(
XAN−1/2

)
σK

(
N1/2(A⊤A)−1/2

)
−

∥∥∥∥XP⊥
Â

A(A⊤A)−1/2
∥∥∥∥

op
.

by writing N = A⊤ΣA. To lower bound σK

(
XAN−1/2

)
, using Weyl’s inequality
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again and invoking Lemma 48 yield

λK

(
N−1/2A⊤

1
n

X⊤XAN−1/2
)

≳ λK

(
N−1/2A⊤ΣAN−1/2

)
−

∥∥∥∥∥∥N−1/2A⊤
(
1
n

X⊤X − Σ
)

AN−1/2

∥∥∥∥∥∥
op

≳ 1 −

√
K log n

n
−

K log n
n

≳ 1

with probability at least 1 − cn−C. On the other hand, by X = ZA⊤ +W,∥∥∥∥XP⊥
Â

A(A⊤A)−1/2
∥∥∥∥

op
≤

∥∥∥∥ZA⊤P⊥
Â

A(A⊤A)−1/2
∥∥∥∥

op
+

∥∥∥∥WP⊥
Â

A(A⊤A)−1/2
∥∥∥∥

op

≤

∥∥∥∥Z(A − Â)⊤
∥∥∥∥

op
+

∥∥∥WA(A⊤A)−1/2
∥∥∥

op
+

∥∥∥WPÂA(A⊤A)−1/2
∥∥∥

op

≤
∥∥∥ZΩ1/2

∥∥∥
op
σ1(ΣZ)

∥∥∥∥(A − Â)⊤
∥∥∥∥

op
+

∥∥∥WA(A⊤A)−1/2
∥∥∥

op
+

∥∥∥WPÂ

∥∥∥
op
.

By EZ and Lemmas 45 and 47, we have

1
n

∥∥∥∥XP⊥
Â

A(A⊤A)−1/2
∥∥∥∥

op
≲ δW,J +

∥AJ∥0 log(p ∨ n)
n

≲ ∥ΣW∥op +
∥AJ∥0 log(p ∨ n)

n

with probability at least 1 − cn−1. Provided that

λK(AΣZA⊤) ≥ C
(
∥ΣW∥op +

∥AJ∥0 log(p ∨ n)
n

)
for sufficiently small constant C > 0, we then conclude that

σ2
K

(
XPÂA(A⊤A)−1/2

)
≳ nλK(AΣZA⊤)

from noting σ2
K

(
N1/2(A⊤A)−1/2

)
= λK(AΣZA⊤). This concludes η̂ ≳ λK(AΣZA⊤). The

result then follows by collecting terms. ■

The following lemma provides upper bounds for the operator norm of WPÂ.

Recall that ∥AJ∥ℓ0/ℓ2 =
∑

j∈J 1{∥A j q∥2,0}.

Lemma 45. Under conditions of Theorem 24, with probability at least 1 − c(p ∨ n)−1,

one has
1
n

∥∥∥WPÂ

∥∥∥2

op
≲ ∥ΣW∥op

(
1 +
∥AJ∥ℓ0/ℓ2

n

)
:= δW,J.
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Proof. We work on the event K̂ = K and ÂI = AI which holds with probability at

least 1 − c(p ∨ n)−c′ [26]. Then

∥∥∥WPÂ

∥∥∥
op
=

∥∥∥∥WÂÂ+
∥∥∥∥

op
≤

∥∥∥∥W qIAI Â+
∥∥∥∥

op
+

∥∥∥∥W qJ ÂJ Â+
∥∥∥∥

op

≤
∥∥∥W qIAI(A⊤I AI)−1/2

∥∥∥
op

∥∥∥∥(A⊤I AI)1/2Â+
∥∥∥∥

op
+ ∥W qJ∥op

∥∥∥∥ÂJ Â+
∥∥∥∥

op
.

Since ∥∥∥∥(A⊤I AI)1/2Â+
∥∥∥∥2

op
=

∥∥∥∥(A⊤I AI)1/2(Â⊤Â)−1(A⊤I AI)1/2
∥∥∥∥

op
≤ 1

by noting Â⊤Â = A⊤I AI + Â⊤J ÂJ, and similar arguments yield

∥∥∥∥ÂJ Â+
∥∥∥∥2

op
=

∥∥∥∥ÂJ(Â⊤Â)−1Â⊤J
∥∥∥∥

op
=

∥∥∥∥(Â⊤Â)−1/2Â⊤J ÂJ(Â⊤Â)−1/2
∥∥∥∥

op
≤ 1,

invoking Lemma 47 to bound ∥W qIAI(A⊤I AI)−1/2∥op and ∥W qJ∥op gives

1
n

∥∥∥W qIAI(A⊤I AI)−1/2
∥∥∥2

op
≲ ∥ΨII∥op +

tr(ΨII)
n

,

1
n
∥W qJ∥2op ≲ ∥[ΣW]JJ∥op +

tr([ΣW]JJ)
n

≤ δW,J,

with probability at least 1 − 2e−n, where

ΨII = (A⊤I AI)−1/2A⊤I [ΣW]IIAI(A⊤I AI)−1/2.

The result then follows by using ∥ΨII∥op ≤ ∥[ΣW]II∥op, tr(ΨII) ≤ K∥ΨII∥op ≤

K∥[ΣW]II∥op and K log n ≲ n. ■

B.2.4 Proof of Theorem 25 in Section 2.5

For any α ∈ Rp, let

R̂(α) =
2
n

∑
i∈D1

[Yi − X⊤i α]2
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so that for all m ∈ [M], by the definition of m̂, Ŝ (α̂) ≤ Ŝ (α̂m). Also let

Ŝ (α) =
2
n

∑
i∈D1

[Z⊤i β − X⊤i α]2.

Finally, for any fixed or random α define

S (α) = E(Z∗,X∗)(Z
⊤
∗ β − X⊤∗ α)2, R(α) = S (α) + σ2,

where the expectation is over (Z∗, X∗) that are independent of α.

We have

S (α̂) = R(α̂) − σ2

= (1 + a)[R̂(α̂) −
2
n

n∑
i∈D1

ε2
i ] + [R(α̂) − (1 + a)R̂(α̂) − (σ2 − (1 + a)

2
n

∑
i∈D1

ε2
i )].

Using R̂(α̂) ≤ R̂(α̂m) in the first term of the above, we have for any m ∈ [M],

S (α̂) ≤ (1 + a)[R̂(α̂m) −
2
n

n∑
i∈D1

ε2
i ]

+max
m

[R(α̂m) − (1 + a)R̂(α̂m) − (σ2 − (1 + a)
2
n

∑
i∈D1

ε2
i )]

= (1 + a)[R̂(α̂m) −
2
n

n∑
i∈D1

ε2
i ]

+max
m

[S (α̂m) − (1 + a)Ŝ (α̂m) + 2(1 + a)
2
n

∑
i∈D1

εi(X⊤i α̂m − Z⊤i β)]

≤ (1 + a)[R̂(α̂m) −
2
n

n∑
i∈D1

ε2
i ] +max

m
[S (α̂m) − (1 +

a
2

)Ŝ (α̂m)]

+max
m

[2(1 + a)
2
n

∑
i∈D1

εi(X⊤i α̂m − Z⊤i β) −
a
2

Ŝ (α̂m)]. (B.22)
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The first term in the above can be further re-written as

R̂(α̂m) −
2
n

n∑
i∈D1

ε2
i = (1 + a)S (α̂m) + [R̂(αm) − (1 + a)S (α̂m) −

2
n

∑
i∈D1

ε2
i ]

= (1 + a)S (α̂m) + [Ŝ (α̂m) − (1 + a)S (α̂m) +
4
n

∑
i∈D1

εi(Z⊤i β − X⊤i α̂m)]

≤ (1 + a)S (α̂m) +max
m

[(1 +
a
2

)Ŝ (α̂m) − (1 + a)S (α̂m)]

+max
m

[
4
n

∑
i∈D1

εi(Z⊤i β − X⊤i α̂m) −
a
2

Ŝ (α̂m)].

Using this result in (B.22), we find that for any m ∈ [M],

S (α̂) ≤ (1 + a)2S (α̂m)

+ (1 + a) max
m

[(1 +
a
2

)Ŝ (α̂m) − (1 + a)S (α̂m)]

+ (1 + a) max
m

[
4
n

∑
i∈D1

εi(Z⊤i β − X⊤i α̂m) −
a
2

Ŝ (α̂m)]

+max
m

[S (α̂m) − (1 +
a
2

)Ŝ (α̂m)]

+max
m

[2(1 + a)
2
n

∑
i∈D1

εi(X⊤i α̂m − Z⊤i β) −
a
2

Ŝ (α̂m)]

=: (1 + a)2S (α̂m) + (1 + a)T1 + (1 + a)T2 + T3 + T4. (B.23)

Below we prove that

Pθ
(
(1 + a)T1 + T3 ≤ c1

(2 + a)3

a
·

maxm S (α̂m) log(nM)
n

)
≥ 1 − c′1n−1, (B.24)

and

Pθ
{

(1 + a)T2 + T4 ≤ c2
(1 + a)3

a
σ2 log(nM)

n

}
≥ 1 − c′2n−1, (B.25)

where c1 and c2 depend only on γz, γw, γε from Definition 2.2.1, and c1, c2 > 0 are

absolute constants. The final result follows from taking a minimum over m in

(B.23) and combining (B.24) and (B.25) with a union bound.
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Bounding T1 and T3: Since α̂1, . . . , α̂2 are independent of {Xi : i ∈ D1}, we will prove

(B.24) for the case when α̂1, . . . , α̂2 are non-random without loss of generality.

We first consider T3. For all t, b > 0, the following holds:

S − Ŝ ≤
√

t
√

S ⇒ S ≤ (1 + b)Ŝ + t
1 + b

b
, (B.26)

where we write S = S (α̂m) and Ŝ = Ŝ (α̂m). To prove this, suppose the left hand

side holds true and consider the cases
√

S ≤ 1+b
b

√
t, which implies S ≤ Ŝ + t 1+b

b ,

and
√

S > 1+b
b

√
t, which implies S ≤ Ŝ + b

1+bS and thus S ≤ (1 + b)Ŝ . Thus,

Pθ
(
T3 > t

1 + a/2
a/2

)
≤ M max

m
Pθ

(
S (α̂m) − (1 +

a
2

)Ŝ (α̂m) > t
1 + a/2

a/2

)
≤ M max

m
Pθ

S (α̂m) − Ŝ (α̂m)√
S (α̂m)

>
√

t

 (by (B.26))

≤ M max
m

Pθ

∣∣∣∣∣2n ∑
i∈D1

[E[gi(m)] − gi(m)]
∣∣∣∣∣ > √t

 , (B.27)

where we let gi(m) B (Z⊤i β − X⊤i α̂m)2/
√

S (α̂m) in the last step. Recalling that for

any random variable U, ∥U2∥ψ1 = ∥U∥
2
ψ2

, and using the assumption that α̂m is a

fixed vector, we find

∥(Z⊤i β − X⊤i α̂m)2∥ψ1

= ∥Z⊤i β − X⊤i α̂m∥
2
ψ2

≤ ∥Z⊤i β − Z⊤i A⊤α̂m∥
2
ψ2
+ ∥W⊤

i α̂m∥
2
ψ2

(since Xi = AZi +Wi)

= ∥(Σ−1/2
Z Zi)⊤(Σ1/2

Z [β − A⊤α̂m])∥2ψ2
+ ∥(Σ−1/2

W W)⊤(Σ1/2
W α̂m)∥2ψ2

= ∥Σ
1/2
Z (β − A⊤α̂m)∥2∥(Σ−1/2

Z Zi)⊤u)∥2ψ2
(with ∥u∥ = ∥v∥ = 1)

+ ∥Σ
1/2
W α̂m∥

2∥(Σ−1/2
W W)⊤v∥2ψ2

≤ c1∥Σ
1/2
Z (β − A⊤α̂m)∥2 + c1∥Σ

1/2
W α̂m∥

2 (by Definition (2.2.1))

= c1S (α̂m),
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where c1 = c1(γz, γw). Thus,

∥Egi(m) − gi(m)∥ψ1 ≲ ∥gi(m)∥ψ1 ≤ c1

√
S (α̂m),

so by Bernstein’s inequality [90],

Pθ

∣∣∣∣∣2n ∑
i∈D1

[E[gi(m)] − gi(m)]
∣∣∣∣∣ > √t

 ≤ 2 exp
(
−n

(
t

c1S (α̂m)
∧

√
t

c1S (α̂m)

))
. (B.28)

Choosing t = c1 maxm S (α̂m) log(nM)/n, and combining with (B.27), for log(M) < cn,

Pθ
(
T3 >

1 + a/2
a/2

· c1
maxm S (α̂m) log(nM)

n

)
≤ 2/n. (B.29)

We next consider T1. For t, b > 0, we have

Ŝ − S ≤
√

t
√

S ⇒ Ŝ ≤
(
1 +

b
1 + b

)
S + t

1 + b
b

.

To prove this, suppose the left hand side holds and consider the cases
√

S ≤ 1+b
b

√
t,

which implies Ŝ ≤ S + 1+b
b t, and

√
S > 1+b

b

√
t, which implies Ŝ ≤ [1 + b/(1 + b)]S .

Multiplying the right hand inequality by (1 + b), and choosing b = a/2, we find(
1 +

a
2

)
Ŝ − (1 + a)S > t

(1 + a/2)2

a/2
⇒ Ŝ − S >

√
t
√

S (B.30)

Recalling

T1 = max
m

[(1 +
a
2

)Ŝ (α̂m) − (1 + a)S (α̂m)],

an application of (B.30) gives

Pθ
(
T1 > t

(1 + a/2)2

a/2

)
≤ M max

m
Pθ(Ŝ (α̂m) − S (α̂m) >

√
t
√

S )

≤ M max
m

Pθ

∣∣∣∣∣2n ∑
i∈D1

[E[gi(m)] − gi(m)]
∣∣∣∣∣ > √t


Choosing t = c1 maxm S (α̂m) log(nM)/n and applying (B.28) with log(M) < cn, we

conclude

Pθ
(
T1 >

(1 + a/2)2

a/2
· c1

maxm S (α̂m) log(nM)
n

)
≤ 2/n. (B.31)
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Combining (B.29) and (B.31) with a union bound and some algebra proves (B.24).

Bounding T2 and T4: For each i ∈ D1, define hi(m) = (Z⊤i β− X⊤i α̂m)/[Ŝ (α̂m)]1/2. Using

the inequality 2|xy| ≤ x2/c + cy2 for c > 0, we have that

4
n

∑
i∈D1

εi(Z⊤i β − X⊤i α̂m) −
a
2

Ŝ (α̂m) = 2[Ŝ (α̂m)]1/2 2
n

∑
i∈D1

εihi(m) −
a
2

Ŝ (α̂m)

≤ 2[Ŝ (α̂m)]1/2
∣∣∣∣∣2n ∑

i∈D1

εihi(m)
∣∣∣∣∣ − a

2
Ŝ (α̂m)

≤
2
a

∣∣∣∣∣2n ∑
i∈D1

εihi(m)
∣∣∣∣∣2

Similarly,

2(1 + a)
2
n

∑
i∈D1

εi(X⊤i α̂m − Z⊤i β) −
a
2

Ŝ (α̂m) ≤
2(1 + a)2

a

∣∣∣∣∣2n ∑
i∈D1

εihi(m)
∣∣∣∣∣2.

Thus,

T2 + T4 ≲ max
m

(1 + a)2

a

∣∣∣∣∣2n ∑
i∈D1

εihi(m)
∣∣∣∣∣2,

so

Pθ
(
T2 + T4 ≥ t

(1 + a)2

a

)
≤ M max

m
Pθ

∣∣∣∣∣2n ∑
i∈D2

εihi(m)
∣∣∣∣∣ ≥ √t


Since {εi}i∈D1 is independent of (Zi, Xi)i∈D2 , E[εihi(m)] = 0 for all i ∈ D2. Fur-

thermore, ∥εi∥ψ2 ≲ σ and |hi(m)| is bounded by 1, so ∥εihi(m)∥ψ2 ≤ σ/c2, where

c2 = c2(γε). Thus by Hoeffding’s inequality [90],

Pθ

∣∣∣∣∣2n ∑
i∈D2

εihi(m)
∣∣∣∣∣ ≥ √t

 ≤ 2 exp(−c2tn/σ2).

Choosing t = σ2 log(nM)/(c2n) completes the proof of (B.25). ■
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B.3 Auxiliary Lemmas

The following lemma is used in our analysis. The tail inequality is for a quadratic

form of sub-Gaussian random vectors. It is a slightly simplified version of

Lemma 30 in [54].

Lemma 46. Let ξ ∈ Rd be a γξ sub-Gaussian random vector. For all symmetric positive

semi-definite matrices H, and all t ≥ 0,

P
{
ξ⊤Hξ > γ2

ξ

( √
tr(H) +

√
2∥H∥opt

)2
}
≤ e−t.

Proof. From Lemma 8 in [54], one has

P
{
ξ⊤Hξ > γ2

ξ

(
tr(H) + 2

√
tr(H2)t + 2∥H∥opt

)}
≤ e−t,

for all t ≥ 0. The result then follows from tr(H2) ≤ ∥H∥optr(H). ■

The following lemma provides an upper bound on the operator norm of

GHG⊤ where G ∈ Rn×d is a random matrix and its rows are independent sub-

Gaussian random vectors. It differs from [33, Theorem 10] in the sense that

independence across columns of G is not required.

Lemma 47. Let G be n by d matrix whose rows are independent γ sub-Gaussian random

vectors with identity covariance matrix. Then for all symmetric positive semi-definite

matrices H,

P

1
n
∥GHG⊤∥op ≤ γ

2

√ tr(H)
n
+

√
6∥H∥op

2
 ≥ 1 − e−n

Proof. By definition and the property of the 1/2-net N,

∥GHG⊤∥op = sup
u∈Sn−1

u⊤GHG⊤u ≤ 2 sup
u∈N

u⊤GHG⊤u.
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For fixed u ∈ N, since G⊤u is a γ sub-Gaussian random vector, an application of

Lemma 46 with ξ = G⊤u, γξ = γ and H = H yields

P
{

u⊤GHG⊤u > γ2
( √

tr(H) +
√

2∥H∥opt
)2
}
≤ e−t.

Since |N| ≤ 5n, see [90, Lemma 5.2], choosing t = 3n and taking a union bound

over u ∈ N completes the proof. ■

Another useful concentration inequality of the operator norm of the random

matrices with i.i.d. sub-Gaussian rows is stated in the following lemma. This is

an immediate result of [90, Remark 5.40].

Lemma 48. Let G be n by d matrix whose rows are i.i.d. γ sub-Gaussian random vectors

with covariance matrix ΣY . Then for every t ≥ 0, with probability at least 1 − 2e−ct2 ,∥∥∥∥∥1
n

G⊤G − ΣY

∥∥∥∥∥
op
≤ max

{
δ, δ2

}
∥ΣY∥op ,

with δ = C
√

d/n + t/
√

n where c = c(γ) and C = C(γ) are positive constants depending

on γ.

The deviation inequalities of the inner product of two random vectors with

independent sub-Gaussian elements are well-known; we state the one in [22] for

completeness.

Lemma 49. [22, Lemma 10] Let {Xt}
n
t=1 and {Yt}

n
t=1 be any two sequences, each with

zero mean independent γx sub-Gaussian and γy sub-Gaussian elements. Then, for some

absolute constant c > 0, we have

P
1

n

∣∣∣∣∣∣∣
n∑

t=1

(XtYt − E[XtYt])

∣∣∣∣∣∣∣ ≤ γxγyt

 ≥ 1 − 2 exp
{
−c min

(
t2, t

)
n
}
.

In particular, when log p ≤ n, one has

P
1

n

∣∣∣∣∣∣∣
n∑

t=1

(XtYt − E[XtYt])

∣∣∣∣∣∣∣ ≤ C

√
log(p ∨ n)

n

 ≥ 1 − 2(p ∨ n)−c

where c ≥ 2 and C = C(γx, γy, c) are some positive constants.
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B.4 The LOVE Algorithm

For the reader’s convenience, we give the specifics of estimating Â in the Essential

Regression model, as developed in [26]. The first step is estimation of the number

of latent factors, K, and the partition of pure variables, I, which is achieved by

Algorithm B.4 below.

[ht] [1] PureVar̂Σ, δ Î ← ∅. i ∈ [p] Î(i) ←
{
l ∈ [p] \ {i} : max j∈[p]\{i} |̂Σi j| ≤ |̂Σil|+ 2δ

}
Pure(i) ← True. j ∈ Î(i)

∣∣∣|̂Σi j| − maxk∈[p]\{ j} |̂Σ jk|
∣∣∣ > 2δ Pure(i) ← False, break Pure(i)

Î(i) ← Î(i) ∪ {i} Î ←MERGE(Î(i), Î) Î and K̂ as the number of sets in ÎMergeÎ(i), Î

G ∈ Î Î is a collection of sets G ∩ Î(i) , ∅ G ← G ∩ Î(i) Replace G ∈ Î by G ∩ Î(i) Î

Î(i) ∈ Î add Î(i) in Î Î Given estimates K̂ and Î as outputs of Algorithm 1, we

compute, for each a ∈ [K̂] and b ∈ [K̂] \ {a},

[̂
ΣZ

]
aa
=

1

|̂Ia|(|̂Ia| − 1)

∑
i, j∈Îa,i, j

|̂Σi j|,
[̂
ΣZ

]
ab
=

1

|̂Ia||̂Ib|

∑
i∈Îa, j∈Îb̂

AiaÂibΣ̂i j, (B.32)

to form the estimator Σ̂Z of ΣZ.

The submatrix ÂÎ is then constructed as follows. For each k ∈ [K̂] and the

estimated pure variable set Îk,

Pick an element i ∈ Îk at random, and set Âi· = ek; (B.33)

For the remaining j ∈ Îk \ {i}, set Â j· = sign(̂Σi j) · ek. (B.34)

Letting Ĵ = [p] \ Î, to construct the remaining submatrix ÂĴ, we use the Dantzig-

type estimator ÂD proposed in [26] given by

Â j· = arg min
β j

{
∥β j∥1 :

∥∥∥∥Σ̂Zβ
j − (Â⊤

Î
ÂÎ)
−1Â⊤

Î
Σ̂Î j

∥∥∥∥
∞
≤ µ

}
(B.35)
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for any j ∈ Ĵ, with tuning parameter µ = O(
√

log(p ∨ n)/n). The estimator Â en-

joys the optimal convergence rate of max j∈[p] ∥Â j·−A j·∥q for any 1 ≤ q ≤ ∞ [26, The-

orem 5].

B.5 More Existing Literature on Factor Models

We discuss in this section some related work on factor models which might be

used to establish results of the excess risk of PCR.

By treating X and Y jointly from model 2.1 as an augmented factor model

X̃ :=

YX
 =

β
⊤

A

 Z +

 εW
 ,

the fit Ŷ is constructed by regressing Y onto X̃ŨK where ŨK is the matrix of the

first K right singular vectors of X̃ = (X̃⊤1 q, . . . , X̃⊤n q)⊤. [8] shows that

V−1/2
t

(
Ŷt − Z⊤t qβ)→ N(0, 1), for any 1 ≤ t ≤ n (B.36)

for a variance term Vt. The uniform convergence rate of Ŷt − Z⊤t qβ over 1 ≤ t ≤ n is

further derived in [42]. These element-wise results for in-sample prediction could,

in principle, be extended to out-of-sample prediction, via additional arguments,

but is not treated in the aforementioned works.

We now comment on the main differences between our Corollary 19 and the

aforementioned results. The existing results are all established under conditions

including K = O(1), ∥β∥22 = O(1), p → ∞, and (2.29), The uniform consistency

in [42] additionally requires n = o(p2). As a result, all previous results are

asymptotic statements as n, p→ ∞.
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By contrast, our Corollaries 18, 19 and 21 are non-asymptotic statements

which hold for any finite K, n and p. Moreover, they only requires the sub-

Gaussian tail assumptions in Definition 2.2.1 and K log n ≲ n. As detailed in

Section 2.3.2, our conditions on the signal λK(AΣZA⊤) are much weaker than (2.29)

to derive the risk of PCR-K.

Under condition (2.29), as assumed in the aforementioned literature, the

prediction risk in our Corollary 19 reduces to

R(UK) − σ2 = Op

(
σ2

n
+
∥ΣW∥op

p
+
∥ΣW∥op

n

)
.

This rate coincides with that of Vt, introduced in (B.36). Under conditions in [42],

their results (see, for instance, Corollary 3.1) imply

max
1≤t≤n

∣∣∣∣Ŷt − Z⊤t qβ∣∣∣∣2 = Op

((
log n

)2/r2 log p
n
+

n1/2

p

)
for some constant r2 > 0, which is slower than our rate.
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APPENDIX C

APPENDIX OF CHAPTER 3

C.1 Proof of Theorem 26

We work on the event where K̂ = K and K̂′ = K′. We assume the minimizer P in

(3.15) and (3.17) is the identity IK without loss of generality. Define

θ̃ =
K∑

a=1

θaδ
T̂

(a) ,

and similarly,

θ̃′ =
K∑

a=1

θ′aδT̂ ′(a) .

Note that d̂mix and dmix are both equal to the Total Variation distance on ∆p, so

we only use dmix in the proof below. Furthermore, on the event where K̂ = K

and K̂′ = K′, both dcluster and d̂cluster are both equal to the Wasserstein distance

W1(µ, ν; dmix) defined for µ, ν ∈ DK∨K′,p, therefore for notational simplicity we only

use the notation dcluster in the proof below. By the triangle inequality for the

Wasserstein distance,

W1(θ, θ′, dcluster) ≤ W1(θ, θ̃; dcluster) +W1(̃θ, θ̂; dcluster) +W1(̂θ, θ̂′; dcluster)

+W1(̂θ′, θ̃′; dcluster) +W1(̃θ′, θ′; dcluster).

Using the triangle inequality again,

W1(̂θ, θ̂′, dcluster) ≤ W1(̂θ, θ̃; dcluster) +W1(̃θ, θ; dcluster) +W1(θ, θ′; dcluster)

+W1(θ′, θ̃′; dcluster) +W1(̃θ′, θ̂′; dcluster).

Combining the previous two displays and using the upper bound of the

Wasserstein distance by the Total Variation distance (see [47], for example), we
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find

|W1(̂θ, θ̂′; dcluster) −W1(θ, θ′; dcluster)| ≤ W1(̂θ, θ̃; dcluster) +W1(̃θ, θ; dcluster)+

+W1(θ′, θ̃′; dcluster) +W1(̃θ′, θ̂′; dcluster)

≤ TV(̂θ, θ̃) +W1(̃θ, θ; dcluster)+

+W1(θ′, θ̃′; dcluster) + TV(̃θ′, θ̂′).

We bound these four terms in (C.7), (C.8), (C.9), and (C.10) below, which leads to

|W1(̂θ, θ̂′; dcluster) −W1(θ, θ′; dcluster)| ≲ max
k∈[K]
∥Â·k − A·k∥1 + max

k∈[K′]
∥Â′·k − A′·k∥1

+ θ−1
min max

i∈[n]
∥T̂ (i) − T (i)∥1 + θ

′−1
min max

i∈[n′]
∥T̂ ′(i) − T ′(i)∥1.

Combining this with the rates (3.15) and (3.17) gives the final result.

Bound of W1(̃θ, θ; dcluster)

By definition,

W1(̃θ, θ; dcluster) = inf
w∈ΣW (̃θ,θ)

K∑
a,b=1

w(T̂
(a)
,T (b)) ·W1(T̂

(a)
,T (b); dmix).

Define

w∗ =
K∑

a=1

θaδ
T̂

(a) × δT (a) , (C.1)

and note that w∗ ∈ ΣW (̃θ, θ). Thus,

W1(̃θ, θ; dcluster) ≤
K∑

a,b=1

w∗(T̂
(a)
,T (b)) ·W1(T̂

(a)
,T (a); dmix)

=

K∑
a=1

θa ·W1(T̂
(a)
,T (a); dmix)

≤ max
a∈[K]

W1(T̂
(a)
,T (a); dmix) ·

K∑
a=1

θa

= max
a∈[K]

W1(T̂
(a)
,T (a); dmix) (C.2)
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Defining

T̃
(a)
B

K∑
k=1

T
(k)δÂ·k , (C.3)

the triangle inequality for the Wasserstein distance gives

W1(T̂
(a)
,T (a); dmix) ≤ W1(T̂

(a)
, T̃

(a)
; dmix) +W1(T̃

(a)
,T (a); dmix). (C.4)

For the rightmost term, we have

W1(T̃
(a)
,T (a); dmix) = inf

w∈ΣW (T̃
(a)
,T (a))

K∑
k,l=1

w(Â·k, A·l) · dmix(Â·k, A·l).

Using the coupling

K∑
k=1

T
(a)
k · δÂ·k × δA·k ∈ ΣW(T̃

(a)
,T (a)),

we have

W1(T̃
(a)
,T (a); dmix) ≤

K∑
k=1

T
(a)
k · d

mix(Â·k, A·k)

≤ max
k∈[K]

1
2
∥Â·k − A·k∥1 (C.5)

For the first term in the right hand side of (C.4),

W1(T̂
(a)
, T̃

(a)
; dmix) ≤ TV(T̂

(a)
, T̃

(a)
)

=
1
2

K∑
k=1

|T̂
(a)
k − T

(a)
k |

=
1
2

K∑
k=1

∣∣∣∣∣∣∣
n∑

i=1

(̂γ(a)
i T̂ (i)

k − γ
(a)
i T (i)

k )

∣∣∣∣∣∣∣
≤

1
2

K∑
k=1

n∑
i=1

|T (i)
k ||̂γ

(a)
i − γ

(a)
i | +

1
2

K∑
k=1

n∑
i=1

|̂γ(a)
i ||T̂

(i)
k − T (i)

k |

≤
1
2
∥̂γ(a) − γ(a)∥1 +

1
2

max
i∈[n]
∥T̂ (i) − T (i)∥1, (C.6)

where in the second line we use that T̂
(a)

and T̃
(a)

are both discrete distributions

on (Â·k)k∈[K] with weights (T̂
(a)
k )k∈[K] and (T (a)

k )k∈[K], respectively, and in the final
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step we used ∥̂γ(a)∥1 = ∥T (i)∥1 = 1. Note that using the definition of γ(a) and θa, we

can write

γ(a)
i =

T (i)
a∑n

j=1 T ( j)
a

=
1
n

T (i)
a

θa
.

Similarly,

γ̂(a)
i =

1
n

T̂ (i)
a

θ̂a

.

Using this, we find for any i ∈ [n],

|̂γ(a)
i − γ

(a)
i | =

1
n

∣∣∣∣∣∣ T̂ (i)
a

θ̂a

−
T (i)

a

θa

∣∣∣∣∣∣
=

1
n

∣∣∣∣∣∣ T̂ (i)
a

θ̂a

−
T̂ (i)

a

θa
+

T̂ (i)
a

θa
−

T (i)
a

θa

∣∣∣∣∣∣
≤

1
n
|T̂ (i)

a − T (i)
a |

θa
+

1
n

T̂ (i)
a

θ̂a

|̂θa − θa|

θa
.

Summing over i ∈ [n] and using n−1 ∑
i T̂ (i)

a = θ̂a, we get

∥̂γ(a) − γ(a)∥1 ≤
1
n

n∑
i=1

|T̂ (i)
a − T (i)

a |

θa
+
|̂θa − θa|

θa

=
1
n

n∑
i=1

|T̂ (i)
a − T (i)

a |

θa
+

1
θa

∣∣∣∣∣∣∣1n
n∑

i=1

(T̂ (i)
a − T (i)

a )

∣∣∣∣∣∣∣
≤

2
n

n∑
i=1

|T̂ (i)
a − T (i)

a |

θa

≤ 2 max
i∈[n]

|T̂ (i)
a − T (i)

a |

θa

Then,

max
a∈[K]
∥̂γ(a) − γ(a)∥1 ≤ 2 max

i∈[n]
max
a∈[K]

|T̂ (i)
a − T (i)

a |

θa
≤

2
θmin

max
i∈[n]
∥T̂ (i) − T (i)∥1.

Combining this with (C.6) we find

max
a∈[K]

W1(T̂
(a)
, T̃

(a)
; dmix) ≤

(
1
2
+

1
θmin

)
max
i∈[n]
∥T̂ (i) − T (i)∥1

Combining this with (C.2), (C.4), and (C.5), we find

W1(̃θ, θ; dcluster) ≤
(
1
2
+

1
θmin

)
max
i∈[n]
∥T̂ (i) − T (i)∥1 +max

k∈[K]

1
2
∥Â·k − A·k∥1 (C.7)
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An analogous proof for the second corpus gives

W1(̃θ′, θ′; dcluster) ≤
(
1
2
+

1
θ′min

)
max
i∈[n′]
∥T̂ ′(i) − T ′(i)∥1 +max

k∈[K]

1
2
∥Â′·k − A′·k∥1. (C.8)

Bounding TV(̂θ, θ̃) and TV(̂θ′, θ̃′)

Using the fact that θ̂ and θ̃ are both discrete distributions on (T̂
(a)

)a∈[K] with

weights (̂θa)a∈[K] and (θa)a∈[K], respectively,

TV(̂θ, θ̃) =
K∑

k=1

|̂θk − θk| =
1
n

K∑
k=1

∣∣∣∣∣∣∣
n∑

i=1

(T̂ (i)
k − T (i)

k )

∣∣∣∣∣∣∣
≤

1
n

K∑
k=1

n∑
i=1

|T̂ (i)
k − T (i)

k |

=
1
n

n∑
i=1

∥T̂ (i) − T (i)∥1

≤ max
i∈[n]
∥T̂ (i) − T (i)∥1. (C.9)

Following the same approach for the second corpus, we find

TV(̂θ′, θ̃′) ≤ max
i∈[n′]
∥T̂ ′(i) − T ′(i)∥1. (C.10)

■
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