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Geographic patterns of phenotypic and genetic differentiation among 

populations provide critical insight for understanding the processes that underlie the 

origin and maintenance of biological diversity. Fully concordant phylogeographic 

patterns among co-distributed taxa are an indication that landscape features promote 

lineage diversification. The dynamics of natural populations, however, are often more 

complex and organisms respond to common historical processes in different ways. I 

quantified variation in two co-distributed and wide-ranging Neotropical frogs, 

Agalychnis callidryas and Dendropsophus ebraccatus that share many ecological 

traits, yet differ in the geographic distribution of color pattern polymorphisms. 

Specifically, I compared divergence patterns across multiple populations of each 

species to determine whether: 1) spatial patterns of phenotypic and genetic diversity 

were congruent; 2) the complex biogeographic history of the Central American 

Isthmus has resulted in a similar evolutionary history of vicariance and dispersal; 3) 

landscape features limited gene flow; 4) gene flow patterns explained the geographic 

distribution of phenotypic diversity. I compared historical (mitochondrial DNA) and 

contemporary (nuclear DNA) gene flow to patterns of phenotypic differentiation. I 

determined cases where gene flow processes alone could not explain the patterns of 

phenotypic diversity, implying that selection (sexual and/or natural selection) has 

played a role in diversification. My results indicated that Agalychnis callidryas and D. 

ebraccatus have differences in their biogeographic history, population genetic 

structure and dispersal biology; therefore color pattern and genetic differentiation have 

evolved due to independent mechanisms in each taxon. 
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CHAPTER ONE 

SELECTION FOR COLOR PATTERN IN TWO LINEAGES OF 

CREPUSCULAR TREEFROGS: EVIDENCE FOR SPECIES RECOGNITION, 

APOSEMATIC COLORATION AND CONVERGENCE  

 

ABSTRACT 

 Most species of frogs exhibit color pattern (CP) polymorphisms. Brightly 

colored, diurnal frogs have been subject of extensive study of color pattern, resulting 

in a solid evolutionary framework to test the adaptive significance of coloration in 

frogs. However, most frogs are nocturnal, many of which are also brightly colored, 

and the significance of color pattern, has been largely understudied and overlooked. I 

studied brightly colored, nocturnal treefrogs representing two lineages of treefrog, the 

phyllomedusines and dendropsophines. Three independent lines of evidence confirm a 

surprising role of color pattern as a social signal for phyllomedusines: tests of 

sympatry, visual system discrimination of color pattern, and the disassociation 

between color pattern and genetic distance. In contrast, color pattern polymorphisms 

of the Dendropsophinii frogs were consistent with the Convergent Niche Hypothesis, 

indicating a role of the environment in the maintenance of coloration. Amphibians are 

experiencing massive and devastating population declines and species extinctions, yet 

there is much to learn about basic social behavior of anurans. I suggest a general 

framework for testing hypotheses of the adaptive significance of color pattern that can 

be applied to most community of anurans. 
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INTRODUCTION 

 Frogs are the most successful lineage of extant amphibians. The number of 

frog species (more than 5,453) is 10 and 31 times larger than the number of 

salamander and caecilian species, respectively (Frost 2007). In addition to a nearly 

global distribution, frogs exhibit tremendous reproductive and life history diversity 

(Wells 1977), are important members of local ecological communities as both prey 

and predator, and serve as a model organism in developmental biology, evolution, 

immunology (Rollins-Smith and Conlon 2005; Woodhams et al. 2007) and chemical 

pharmacology (Macfoy et al. 2005; Saporito et al. 2007). Amphibian populations are 

experiencing massive and global declines: in the past two decades over 170 species 

have gone extinct and 32% are currently listed as threatened (AmphibiaWeb 2007). 

The loss of frog species will have a devastating impact on both ecosystem and human 

health, as well signifying the loss of cultural and aesthetic beauty, cherished by ancient 

and contemporary human civilizations.  

 Most species of frogs exhibit color pattern (CP) polymorphisms (Hoffman and 

Blouin 2000). Brightly colored, diurnal frogs (members of Dendrobatidae, 

Brachycephalidae, Atelopus, Hyloides) have been subject to extensive study of color 

pattern, resulting in a solid evolutionary framework to test the adaptive significance of 

coloration. However, most frogs are nocturnal, and many are also brightly colored: the 

significance of color pattern in these frogs have largely been understudied and 

overlooked. The precipitous decline of amphibian populations has many 

consequences, one of which is the curtailing of significant advances in behavioral and 

evolutionary biology. Mate choice and behavioral studies are required to fully 

understand adaptive coloration and selective forces underlying the evolution of 

populations and lineages. Yet these studies are time-intensive and would more 

effective and efficient after initial consideration of multiple hypotheses. I studied 
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populations of brightly colored, nocturnal frogs and found a surprising role of color 

pattern in social signaling (Table 1.1). In this paper, I suggest a general framework for 

testing hypotheses of the adaptive significance of color pattern that can be applied to 

any anuran community. 

  Animal coloration evolves through the interactions of natural selection 

favoring crypsis to avoid predator detection and sexual selection favoring 

conspicuousness for conspecific recognition. A color pattern signal is considered 

cryptic if the combined effect of shape, size and brightness represent a random sample 

of the environment (Cott 1940; Endler 1982). Selection for cryptic coloration often 

favors several key features including countershading where the dorsal coloration in 

darker relative to a lighter ventral region (Hailman and Jaeger 1974) as well as 

disruptive coloration, such as stripes and spots that have high contrast with other parts 

of the animals body (Schafer & Stobbe 2006; Stevens 2006). Natural selection on 

coloration for habitat background matching has been well documented in natural 

populations, including rodents (Hoekstra et al. 2004), lizards (Thorpe and Baez 1993; 

Thorpe 2002; Rosenblum 2006; Rosenblum et al. 2007; Stuart-Fox et al. 2007), frogs 

(Pyburn 1961; Nevo 1973; Stewart 1974; Hoffman and Blouin 2000), insects 

(Kettlewell and Conn 1977; Sandoval and Nosil 2005; Nosil et al. 2006) and snakes 

(King and Lawson 1995). 

 Conspicuous coloration, characterized by markings of maximal contrast in 

size, brightness and/or color, can be a visual signal to conspecifics (intrasexual 

competition or mate choice) or aposematic warning signal to predators indicating that 

a predation attempt would be unprofitable (e.g., toxicity, unpalatability; Endler 1980; 

Kuchta 2005; Darst and Cummings 2006; Darst et al. 2006). Attributes of conspicuous 

CP include brightly colored regions of the body, that may or may not be hidden at rest, 

or disruptive markings such as spots and stripes. The most well-studied anuran lineage 



 

 

TABLE 1.1. Color pattern for nine phyllomedusine frogs in three genera (Agalychnis, Hylomantis, Cruziohyla) in Central 
America.  
Taxon Stripe Color   

acaCAR acaPAC aan amo asa ali asp hle pda cca 
A. callidryas CAR (acaCAR) yes blue  acaCAR . + - - + - + - + - + - - - - - - + - 

A. callidryas PAC (acaPAC) yes orange  acaPAC  . - - - + - - - - - + - + - - + + 

A. annae (aan) 
 

no blue  aan   . + + + + + + + - + - - - - + 

A. morletti (amo) 
 

no blue  amo    . + + + + + - + + - - - + 

A. saltator (asa) 
 

no blue  asa     . + + + - + - - - - - 

A. litodryas (ali) 
 

no blue  ali      . + -  + - - - - - 

A. spurelli (asp) 
 

no orange  asp       .  + - - - - + 

H. lemur (hle) 
 

no yellow  hle        . - - - + 

P. dacnicolor (pda) no none  pda         . - - 

C. calcalifer (cca) yes yellow  cca          . 

The color of the flank and presence of vertical stripes is indicated for each species. Because of the disjunct distribution of two basic color morphs for A. 
callidryas, the Caribbean (CAR) and Pacific (PAC) morph is analyzed separately. Tabulation of similar (+) or different (-) color pattern for each taxon pair 
(stripe, color) and whether the pair is sympatric (shaded box) reveals that sympatric taxa are always divergent in at least one color pattern character.  
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that exemplifies conspicuous color pattern is the Neotropical poison-dart frogs 

(Dendrobatidae), a family that contains many brightly colored, polymorphic species 

(Summers and Clough 2001; Summers et al. 2003; Roberts et al. 2007; Wollenberg et 

al. 2008). Conspicuous coloration effectively minimizes predation due to assumed 

aposematism (Summers and Clough 2001; Darst et al. 2006). However, behavioral 

studies showed that sexual selection also underlies color differences among poison-

dart frog populations (Summers and Clough 2001; Siddiqi et al. 2004; Summers et al. 

2004; Reynolds and Fitzpatrick 2007). Thus, for brightly colored and toxic animals, 

conspicuous signals can serve multiple functions, for both species recognition and 

predator deterrence (Summers et al. 1999; Reynolds and Fitzpatrick 2007).  

 Color pattern often has cryptic and conspicuous features, a duality that must be 

considered while inferring the adaptive significance of coloration (Endler 1982). For 

example, dwarf chameleons exhibit cryptic coloration for optimal background 

matching to avoid predator detection, but also possess the capacity for rapid color 

change to signal conspecifics (Stuart-Fox et al. 2007; Stuart-Fox and Moussalli 2008). 

Anoline lizards provide another example of dual color pattern. Body coloration is 

cryptic while at rest but conspicuous when used for conspecific communication: male 

lizards have extendable throat ‘fans’ (dewlaps) that are brightly colored, species-

specific signals used for territorial displays and mate attraction. These examples 

illustrate how composite color pattern evolves in response to both natural and sexual 

selection pressures, a phenomenon widespread across animal taxa (Cott 1940; Endler 

1980; West-Eberhard 1983; Gomez and Thery 2007; Gray and McKinnon 2007; 

Kingsolver and Pfennig 2007; Stuart-Fox and Moussalli 2008).  

Color pattern polymorphisms are known from at least 225 species of anurans 

(Hoffman and Blouin 2000) and thus are ideal taxa for examining the 

microevolutionary forces that underlie the maintenance of CP within and/or among 
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populations.  The two focal taxa in this thesis, Agalychnis callidryas (red-eyed 

treefrog) and Dendropsophus ebraccatus (hourglass treefrog) are wide-ranging 

Neotropical frogs contained within the large treefrog family (Hylidae), in the 

Phyllomedusinae subfamily, and Dendropsophinii tribe, respectively. These taxa share 

many characteristics, including, (1) a broad geographic distribution, ranging from 

Central Mexico to Colombia (2) a specialized reproductive mode (oviposit eggs 

primarily on leaves overhanging water) (3) prolonged reproductive season in which 

males aggregate in temporary pools of water, (4) color pattern polymorphisms and (5) 

lack of sexual dimorphism for CP. Two distinctions make these species ideal for a 

comparative study of color pattern: First, A. callidryas exhibits marked regional 

differentiation, while D. ebraccatus does not (Savage and Heyer 1967; Savage 2002); 

Second, A. callidryas, like many phyllomedusine frogs, is known to contain toxic skin 

secretions effective for predator defense (Warburg 1965; Sazima 1974; Mignogna et 

al. 1997; Conlon et al. 2007). Based on studies of other chemically-defended and 

brightly colored frogs (e.g., diurnal frogs in the Dendrobatidae and Brachycephalidae 

families (Pombal et al. 1994) it is therefore possible that CP in A. callidryas also plays 

an aposematic role. However, the red-eyed treefrog (and all other phyllomedusines) 

are nocturnal and thus are active at a time when most potential predators cannot 

distinguish color.  

 The adaptive significance for coloration in these two frogs are unknown, 

although two competing hypothesis may lend insight into the selective regimes that 

underlie CP polymorphisms. The Species Recognition Hypothesis predicts that 

sympatric species are divergent for traits used as social signals. This hypothesis, 

formalized by Rand and Williams (1970) was based on dewlap and body 

characteristics (size, color and shape) of island anole lizards and found that multiple, 

divergent signals are optimally effective in species discrimination. Several 
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community-level analyses found that co-distributed species exhibit the strongest 

divergence in social signal and that divergence increases among closely related taxa 

(Losos 1985; Harmon et al. 2005). Mate recognition must play a clear role if the 

hypothesis is correct that divergence of social signals among closely related taxa 

underlies incipient speciation processes (West-Eberhard 1983; Shaw 1996; Seehausen 

et al. 1999; Masta and Maddison 2002; Gray and McKinnon 2007; Ritchie et al. 

2007). 

 Alternatively, the Convergent Niche Hypothesis (Grinnell 1924) predicts that 

multiple, syntopic species will exhibit similar color pattern characteristics if those 

characters maximize survival in a particular visual environment (Warburg 1965; Rand 

and Williams 1970; Stewart 1974; Endler 1982). In this case, color pattern is not used 

for species recognition and/or mate choice, but is an effective signal for predator 

deterrence, indicating a role of the environment in the evolution of CP (Endler 1982). 

Convincing support for this hypothesis is illustrated through careful study of Anolis 

lizards (Harmon et al. 2005). Phenotypic similarity among closely related species 

could indicate strong selection across the evolutionary history of that group. 

The objective of this study was to determine whether the patterns of color 

polymorphism exhibited by phyllomedusine frogs (including A. callidryas) and 

Dendropsophinii frogs (including D. ebraccatus) support the Species Recognition 

Hypothesis or Convergent Niche Hypothesis. Towards this goal, I quantified the 

likelihood that sympatric taxa are more likely to diverge in social signals than taxa 

whose geographic range do not overlap. I used Matrix Correspondence Tests to 

determine if color pattern has a phylogenetic signal by testing the hypothesis that 

closely related taxa are more similar in coloration than distant congeners. Next, I 

determined whether CP in the red-eyed treefrog (phyllomedusine) was conspicuous, 

and could be a conspecific signal by measuring the contrast luminosity of color 
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patches based on the visual system of A. callidryas. For A. callidryas, I addressed an 

untested question of whether bright coloration in a nocturnal frog has evolved as an 

aposematic trait, species recognition trait, or both. I found corroborating evidence 

from all tests that color pattern polymorphisms for A. callidryas support the Species 

Recognition Hypotheses but that CP in D. ebraccatus is better explained by the 

Convergent Niche Hypotheses. Based on the functional significance and mode of 

selection acting on color pattern, I then discuss the possibilities of predicting the 

consequences of CP for population genetic structure.  

 

METHODS 

Study Species 

 My goal was to form testable hypotheses of the probable role of color pattern 

through examination of the ecological community and lineage phylogenetic history. 

Most phyllomedusine frogs have green dorsal coloration with brightly colored limbs 

and flanks (hues of yellow, orange, blue), and a few have vertical flank stripes.  

Agalychnis callidryas is one of nine Central American phyllomedusine frogs and the 

only taxon to exhibit regional differentiation in flank and limb coloration, and flank 

stripe pattern (Savage and Heyer 1967; Robertson and Robertson 2008). 

Dendropsophinii frogs range in coloration from dorsal ground colors of yellow, 

brown, green and grey, and many are polymorphic for dorsal pattern.  Dendropsophus 

ebraccatus is one of nine Central American taxa contained in the Dendropsophinii 

tribe (Faivovich et al. 2005). Color pattern for D. ebraccatus is highly variable and 

characterized by yellow, gold and brown blotches and spots with the dominant dorsal 

pattern in most populations resembling an hourglass shape (Duellman 2001).  
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Test of Sympatry 

 Each taxon was coded for color and pattern. For phyllomedusines, I coded 

basic flank color (blue, yellow or orange) and the presence of vertical flank stripes. 

Coloration among Dendropsophii included dorsal ground colors (grey, green, yellow 

or brown) and the shape of the markings (spots, blotches, stripes). Because of the high 

levels of polymorphisms among dendropsophines, I determined that two species 

exhibited a similar CP if any of the multiple forms were present for either species. For 

example, D. ebraccatus and Tlalocohyla loquax were coded as a similar phenotype 

because one of the four major polymorphic states in D. ebraccatus (plain yellow) is 

similar to the single yellow form of T. loquax. 

 Sympatry was determined by examining range distribution maps (Duellman 

2001; Savage 2002). For both species, I tested whether two sympatric taxa were more 

likely to exhibit divergent signals than allopatric taxa.  In the first test, I based signal 

divergence on color (hue) alone. In the next test, signal divergence was based on 

pattern. In the last test, I used information from both signals and determined that two 

species were divergent in CP if they differed for at least one of the two traits. 

Significance was determined using a Fisher’s exact test in R (Team 2005). A 

significant result provides support for the Species Recognition Hypotheses, whereas 

no association indicates CP is consistent with the Convergent Niche Hypothesis. 

 

Visual discrimination of color pattern (Agalychnis callidryas) 

 Color perception depends on the properties of the signal, light conditions, and 

the sensory capabilities of the intended receiver (Lythgoe and Patridge 1991; Endler 

1992). While human observers readily recognize regional color differences for A. 

callidryas as hues of red, violet, orange, green and blue, the signal must be evident to 

conspecifics for the color patch to be used as a social signal and evolve through sexual 
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selection (Endler et al. 2005). The red-eyed treefrog must possess the visual system to 

detect and discriminate the signal. That is, the signal must be highly contrasted to 

adjacent body regions and background habitat. To test this hypothesis I evaluated the 

relative conspicuousness of the signal based on the spectral sensitivities of the visual 

system of A. callidryas.  

  First, I characterized the visual pigments of A. callidryas using 

microspectrophotometry. Subjects were dark-adapted overnight to maximize the visual 

pigment sensitivity to light.  The retinal cell tissue was dissected and viewed with 

infrared illumination to quantify the absorbance spectra for photoreceptor cells. The 

configuration of visual pigments were then used to construct a camera filter with 

spectral sensitivities matching those of the frog, allowing for a direct measure of the 

contrast luminosity of individual frogs against a natural background.  

 I took photographs of frogs from each of the five regions (representing five 

distinct phenotypes) in the field. Photographs were imported into Photoshop and 

transformed into greyscale images because color discrimination is based on the 

contrast luminosity of a ‘target’ relative to the ‘background’, and not based on hue. I 

used the color picker function in Photoshop to measure the brightness of several 

‘target’ regions of the red-eyed treefrog body (flank, leg, ventral region, vertical stripe, 

eye) as well as several points from the ‘background’, including the body and the leaf it 

was sitting upon. For each frog, I measured the contrast between the frog body part 

and the background and tested for significant differences in luminosity using the 

following equation: 

! 

1.96 "
Lt # Lb

$(Ltavg )%
, where Lt = luminosity of the target (color 

patch), Lb = luminosity background (Lythgoe and Patridge; 1991). A contrast ratio 

greater than 1.96 indicates sufficient discrimination based on the visual spectral 

sensitivities of the species (Lythgoe and Patridge 1991).  
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 I used an Ocean optic 2000 spectroradiometer (integration time = 50 msec) 

with a 400 micron bifurcated fiber laser and standardized against a white-grey card to 

determine the wavelength of color reflected by A. callidryas. I also determined if there 

were markings in the UV spectrum that would be visible to potential avian predators, 

indicating a role of natural selection in determining an color pattern that is not 

apparent to human observers (Thorpe and Richard 2001).  

  

Evolutionary patterns of color pattern 

  I used matrix correspondence tests (MCT) to evaluate the association between 

genetic relatedness (mtDNA) and two components color pattern (hue and stripes). 

Matrix Correspondence Tests use repeated randomization and recomputation to test 

for the correlation between two distance matrices by comparing the individual 

pairwise distance for each parameter (Manly 1986). The randomized values provide a 

null distribution with which to test the hypothesis of no association. Significance 

values were determined by comparing the observed and expected z-statistic, generated 

by 10,000 permutations.   

 I constructed a pairwise genetic distance matrix based on the patristic distance, 

implemented in TreeEdit Version 1.0a10 (Rambaut and Charleston 2001). I examined 

two color pattern traits, hue and stripes, to account for the possibility that each trait 

varies under different selection regimes.  I constructed pairwise distance matrices 

based on Euclidian distance of hue, measured in degrees. A distance matrix for stripes 

was based on a binary code, 1 (stripe) and 0 (no stripes). Because A. callidryas is the 

only phyllomedusine to exhibit within-taxon polymorphisms, I conducted two separate 

tests by coding A. callidryas flank coloration as blue and orange. A non-significant 

correlation indicates the genetic independence of color pattern among 

phyllomedusines.  
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RESULTS 

Tests of Sympatry 

 For phyllomedusines, I found that sympatric taxa were highly divergent in CP 

when considering the combined signal (color + stripe; p = 0.003), but were not 

divergent in flank coloration alone (p = 0.495) or when considering the presence of 

vertical stripes alone (p = 0.085). These findings are consistent with the prediction that 

multiple visual signals act in concert for species discrimination (Rand and Williams 

1970). Thus, sympatric species are more likely to diverge in color and pattern than 

allopatric species, providing supporting evidence for the Species Recognition 

Hypothesis but not the Convergent Niche Hypothesis. 

Many Dendropsophinii taxa are yellow or brown and polymorphic for dorsal 

pattern (Table 1.2). Sympatric taxa were not divergent in any of the following CP 

combinations: color alone (p = 0.200), dorsal pattern alone (p = 0.738) or the 

combined signal of color and pattern (p = 0.741). The sympatric distribution of a 

similar color pattern supports the Convergent Niche Hypothesis for Dendropsophinii 

frogs and indicates that the evolution of this type of color pattern is more likely 

associated with environmental features (e.g., predator pressures, crypsis, or 

conspicuous predator avoidance) than species recognition or mate choice. 

 

Visual discrimination of color pattern (Agalychnis callidryas) 

 Agalychnis callidryas possesses the visual system to discriminate both the hue 

and vertical stripes characteristic of the species. I identified spectral properties from 

three photopigment spectral classes, including two green rods having peak absorption 

at 515 nm and 525 nm and one blue cone having peak absorption at 437 nm.  I 

confirmed that this species does not have infrared or UV vision. 



 

 

 
 
 
TABLE 1.2. Color pattern for nine Dendropsophinii species in three genera (Dendropsophus, Isthmyohyl, Tlalocohyla) in 
Central America.  
 
Taxon Color Pattern  deb dmi dph dsa sel sbo sst ips tlo 
D. ebraccatus (deb) yellow brown spots, blotches, or plain deb . +/+ +/+ -/ + +/+ -/- -/- +/+ +/+ 
D. microcephalus (dmi) yellow spots, blotches, stripes, plain dmi  . +/+ -/+ +/+ -/- -/- +/- +/+ 
D. phlebodes (dph) yellow/tan brown markings dph   . -/+ +/+ -/- +/+ +/- +/+ 
D. sartori (dsa) brown, grey dark blotches dsa    . -/+ -/- +/+ -/- -/- 
S. elaeochroa (sel) yellow, tan, olive green dark striped markings sel     . -/- -/+ +/- +/+ 
S. boulengeri (sbo) green/tan dark stripes sbo      . -/- -/- -/- 
S. staufferi (sst) grey dark striped markings sst       . -/- -/- 
I.pseudopuma (ips) yellow, brown, green blotches, stripes, plain ips        . +/+ 
T. loquax  (tlo) yellow plain tlo         . 
The dorsal color and pattern is described for each species. Tabulation of similar (+) or different (-) color pattern for each taxon pair (color, pattern) and 
whether the pair is sympatric (shaded box) reveals no association between divergence in color pattern and sympatry. 
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 The vertical stripes and ventral aspect of the frog showed the greatest contrast 

luminosity relative to both the background and the rest of the frog body, indicating 

that these regions are likely important visual signals for conspecific recognition (Table 

1.3). The luminosity of ‘orange’ and ‘blue’ were also sufficiently contrasting and 

could be discriminated by A. callidryas (Table 1.3). 

 I found no evidence of markings that reflected light in the UV spectrum. The 

‘orange’ coloration reflected a true orange. However, the ‘blue’ reflected light in the 

green wavelength. Thus, for A. callidryas the ‘blue’ observed for some populations is 

actually the same pigment as the green covering the frog back and posterior surface of 

limbs, while the ‘orange’ coloration requires the presence of a new pigment. 

  

Evolutionary patterns of color and toxicity 

 Matrix Correspondence Tests revealed that flank color and the presence of 

flank stripes cannot be predicted based on genetic distance among phyllomedusine 

frogs tested in this study. Specifically, I found no association between genetic distance 

and orange flanks (r = 0.479, p = 0.061), blue flanks (r = 0.366, p = 0.073), or flank 

stripe (r = 0.359, p = 0.108). Significance was adjusted following Bonferonni 

correction, with the probability of a type 1 error set to alpha = 0.012. 

 

DISCUSSION 

 Our data confirm that pattern polymorphisms in phyllomedusine frogs are 

signals used for species recognition and thus could evolve through sexual selection. 

This conclusion is based on three independent lines of evidence: tests of sympatry, 

visual discrimination of color pattern, and the disassociation between color pattern and 

genetic distance. For sexual selection to drive signal divergence among populations, 



 

 

TABLE 1.3.  Brightness contrast measures for nine Agalychnis callidryas sampled from five regions in Costa Rica and 
Panama.   
 

POP REGION 
 

LEG FLANK LEG:LEAF FLANK:LEAF VENT:LEAF STRIPE:LEAF FLANK:STRIPE EYE:LEAF FLANK:LEG 

chg Southeast CR orange blue 
 

2.50 
 

3.42 
 

8.74 
 

25.74 
 

-16.79 
 

-9.19 
 

na 

val Panama orange blue 0.47 
 

-4.05 
 

-1.03 
 

2.59 
 

-8.48 
 

-7.21 
 

7.07 
 

gam Panama orange blue -0.29 
 

3.39 
 

1.74 
 

13.70 
 

-10.06 
 

-6.08 
 

4.00 
 

siq Northeast CR blue blue 6.54 
 

7.9 
 

30.26 
 

16.29 
 

5.04 
 

8.16 
 

na 

siq Northeast CR blue blue -1.81 
 

1.75 
 

18.52 
 

5.21 
 

-2.99 
 

na na 

lse Northeast CR blue blue 0.70 
 

-4.96 
 

na 15.03 
 

-23.97 
 

-9.16 
 

na 

car Northwest CR orange brown 2.04 
 

3.81 
 

33.07 
 

15.85 
 

-12.13 
 

-8.91 
 

na 

car Northwest CR orange brown 4.24 
 

0.20 
 

38.64 
 

22.97 
 

-17.23 
 

-15.40 
 

 na 
 

pav Southwest CR violet violet -6.90 
 

-9.02 
 

-7.37 
 

-5.14 
 

-2.85 
 

-18.29 
 

na 

The test value for significant difference in brightness between ‘target’ and ‘background’ areas is a value > 1.96 (bolded).  na = not available.  For individuals 
with different leg and flank coloration, the contrast between those two regions of the frog are flank:leg.   
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and eventually lead to speciation, several criteria must be met: 1) signals are perceived 

by conspecifics 2) signals must differ among populations and result from selection and 

not drift, 3) females must prefer native signals over non-native signals (Boul et al. 

2007).  I have determined that CP is highly regionalized and that the visual system of 

this species adequately discriminates CP. In this thesis, I use molecular markers 

(mtDNA and ncDNA) to confirm that population differentiation cannot be explained 

by non-adaptive processes alone, invoking the role of selection. Subsequent behavioral 

studies are required to confirm that female choice is based on CP.   

 Many chemically defended amphibians exhibit conspicuous, aposematic 

coloration that effectively deters predators (Summers and Clough 2001; Pires et al. 

2002; Darst et al. 2006; Conlon et al. 2007). However, because signal divergence 

among sympatric taxa was evident, aposematic coloration cannot be the only 

explanation for bright coloration. It is likely that the conspicuous coloration could 

serve dual purposes (mate choice and predator deterrence) for the red-eyed treefrog, as 

shown for other aposematic frogs (Siddiqi et al. 2004; Summers et al. 2004; Rudh et 

al. 2007). 

For the Dendropsophinii frogs, color pattern polymorphisms were consistent 

with the Convergent Niche Hypothesis. Blotches and spots (widespread across 

members of the clade, including Dendropsophus, Isthmyohyl, and Tlalocohyla species) 

are a form of disruptive coloration utilized by insects and vertebrates for crypsis 

against a heterogeneous background.  The maintenance of a relatively conserved color 

pattern within a tribe indicates that this phenotype has been under selection and that 

this group has not undergone adaptive and divergent radiation for this particular 

phenotype.  Our analyses indicate that CP in D. ebraccatus serves as a signal to escape 

predation, and thus could evolve through natural selection regimes. Studies of the 

visual system of predators against the natural background are required to determine 
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whether the CP in the hourglass treefrog is conspicuous or cryptic. I have no evidence 

that D. ebraccatus is chemically defended, but if this were true, it would support the 

notion that coloration in this species is conspicuous.  

 

Color pattern and Genetic Structure 

 Is it possible to predict the genetic population structure of a taxon based on the 

adaptive function of its coloration and mode of selection? The spatial distribution of 

phenotypic traits reflects a balance between divergent localized selection, drift and the 

homogenizing effects of gene flow (Endler 1973, 1980; Gray and McKinnon 2007). 

Predictions of genetic structure are initially based on the biogeographic history of 

populations, a species dispersal capacity, and the connectivity of populations. In the 

absence of localized, divergent selection, genetic and phenotypic distance measures 

should be congruent such that populations experiencing gene flow will be similar in 

coloration (Wright 1937; Ritchie et al. 2007; Roberts et al. 2007). Departures from this 

null model indicate a role of localized selection (Endler 1982; Lenormand 2002; Saint-

Laurent et al. 2003; Price 2006; Harper and Pfennig 2008). Whether the causative 

agent of phenotypic diversification among populations is a predator or conspecific, the 

combined effects of geographic history, genetic drift, selection and the natural history 

traits of the species results in a mosaic of differentiated populations.  

 

Thesis overview: color pattern, genetic structure, selection, and historical 

biogeography 

 The adaptive significance of coloration was not the objective of this thesis. 

However, quantification of the nature and geographic distribution of CP within and 

among populations is the requisite first step for subsequent hypothesis testing on the 

mode of selection on maintaining CP (Endler 1982; Gray and McKinnon 2007). The 
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objectives of this thesis were to quantify the geographic patterns of phenotypic and 

genetic diversity in two focal taxa, across 21 populations in Costa Rica and Panama to 

determine whether: 1) spatial patterns of phenotypic and genetic diversity were 

congruent 2) landscape features limited gene flow 3) the complex biogeographic 

history of Central American Isthmus populations for two frogs have resulted in a 

similar evolutionary history of vicariance and dispersal and 4) gene flow patterns 

explained the geographic distribution of phenotypic diversity. I examined the 

geographic distribution of genetic and phenotypic diversity through a historical and 

spatial approach to understand the evolutionary processes driving the maintenance of 

polymorphisms across a complex landscape. I focused on evaluating the role of gene 

flow in determining the population structure of both taxa and determined cases where 

gene flow processes alone cannot explain the distribution of phenotypic diversity. It is 

in these instances that I could invoke different modes of selection to sustain 

polymorphism for both taxa. This approach provides a comprehensive understanding 

of the historical and microevolutionary processes that underlie biological diversity.  
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CHAPTER TWO 

SPATIAL AND TEMPORAL PATTERNS OF PHENOTYPIC VARIATION IN 

A NEOTROPICAL FROG 

 

ABSTRACT  

 Studies of the spatial and temporal patterns of phenotypic diversity help to 

elucidate the fine-scale evolutionary and ecological mechanisms underlying 

geographic differentiation. The red-eyed treefrog, Agalychnis callidryas, is a 

widespread Neotropical frog that exhibits a broad range of coloration and flank-stripe 

pattern polymorphism. The goal of this study was two-fold: first, to investigate the 

stability of polymorphisms over a 38-yr period; and second, to evaluate biogeographic 

hypotheses of diversification among lower Central American populations through 

quantification of phenotypic diversity on a fine geographic scale. We quantified color, 

categorized flank-stripe pattern from digital photos taken during field sampling, and 

measured body size for each individual. We compared the regional frequency of each 

flank-stripe pattern in 2005 to the frequency distribution from a previous study of the 

same sites in 1967 using logistic regression analyses. We determined the geographic 

signal of leg coloration by employing linear discriminant function analyses to generate 

a classification matrix based on co-variance similarities, and by comparison of the 

average hue values within and among regions. We found a temporal shift in the 

frequency of flank-stripe patterns in three of four regions over 38 years.  Based on 

measures of leg coloration, the frequency distribution of flank-stripe patterns, and 

body size, we conclude that A. callidryas populations are easily distinguishable at a 

regional scale. Agalychnis callidryas exhibits regional differentiation in all phenotypic 

traits measured in this study, supporting the role of three major biogeographic barriers 
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to gene exchange. We found evidence of a putative contact zone between polytypic 

regions in Costa Rica.  In addition, we report temporal instability of the relative 

frequency of stripe patterns located on the flanks. The ecological and evolutionary 

mechanisms that may underlie this variation include sexual selection and predator 

avoidance.  

 

INTRODUCTION 

 Spatial and temporal patterns of phenotypic diversity and the underlying 

ecological and evolutionary processes that produce them provide important insights 

into the biogeographic history of a species (Grinnell 1924; Endler 1973; Velez and 

Feder 2006). All taxa exhibit some level of individual or population variation, but 

some species are highly polytypic across their range, or exhibit geographic clines in 

body size, behavioral, coloration, and ornamentation (Nevo 1973; Gray 1983; Brooks 

and Endler 2001; Storz et al. 2001).  Phenotypic diversity may vary among regions 

due to demographic factors (e.g., effective population size), diversifying selection, 

historical biogeography, or the isolating effects of restricted gene flow (Grinnell, 

1924; Pyburn, 1961a; Endler, 1973; Hairston, 1979).  Tracking this diversity over time 

allows us to observe the relative stability of these demographic, selective, or migration 

forces acting upon populations (Grinnell 1924; Pyburn 1961a; Holt et al. 2004; Blanco 

et al. 2005; Prieto et al. 2005; Grant and Grant 2006).  Studies of spatial and temporal 

variation provide insights into taxon diversification, and ultimately, processes leading 

to speciation (Irwin et al. 2001). 

 Intra-specific phenotypic variation can be distributed either within or among 

populations.  Approximately 5 % of anurans exhibit within-population phenotypic 

diversity (Hoffman and Blouin 2000); the relative frequency of known polymorphisms 

varies among sites depending on ecological and local factors, driven primarily by 
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predator-prey relationships (Pyburn 1961b; Hoffman and Blouin 2000; Ray and King 

2006). Variation within a population also depends on genetic drift, migration, and/or 

selection favoring balancing polymorphisms (Lenormand 2002; Eakley and Houde 

2004).  Some anurans exhibit among-population variation where all individuals in a 

population/region are relatively monomorphic for a single phenotype but phenotypes 

vary among regions. Evolutionary mechanisms driving among-population variation 

include genetic isolation (D'Anatro and Loureiro 2005) and local differences in natural 

or sexual selection (Hairston 1979; Hoekstra et al. 2004; Velez and Feder 2006), 

including crypsis favoring behavioral background matching (Kettlewell and Conn 

1977; Gillis 1982; Morey 1990).  Temporal instability of the relative frequency of 

polymorphisms is predicted from sudden changes in effective population size (usually 

population bottleneck), migration patterns or ecological conditions that change the 

direction of selection. 

 Here, we investigate patterns of phenotypic diversity in the red-eyed treefrog, 

Agalychnis callidryas Cope 1862 (Anura: Phyllomedusa: Hylidae), a species 

distributed from Central Mexico to Panama that exhibits striking regional 

differentiation in flank and leg coloration (Savage and Heyer 1967; Duellman 2001). 

Agalychnis callidryas is one of few Neotropical frogs to exhibit low within-population 

variation but high among-population variation (Summers et al. 2003; Richards and 

Knowles 2007).  These color differences are sufficiently dramatic that Northeastern 

and Western Costa Rican populations were once considered different species 

(Funkhouser 1957; Savage and Heyer 1967). The red-eyed treefrog exhibits sexual 

dimorphism in size (females are larger and heavier), but no sexual dimorphism in 

coloration or pattern. Phenotypic diversity of this species was studied almost 38 years 

ago (Savage and Heyer 1967), permitting a study of the geographic distribution of 

phenotypic diversity and its stability over time.  
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In this study, we quantify the current geographic distribution of three 

phenotypic traits in populations of A. callidryas in Costa Rica and Panama and 

examine temporal variation in one of the traits, flank-stripe pattern, after 38 years. 

These study populations represent 25 % of the geographic range of the species, yet 

contain all of the known color variation, thus providing an excellent opportunity to 

examine spatial and temporal processes acting at a fine geographic scale.  We examine 

flank-stripe pattern, color differentiation, and body size among focal populations. 

We evaluate geographic patterns of phenotypic variation in light of the 

complex topographic landscape of Central America. Plate tectonics and the formation 

of the Cordillera de Talamanca, the mountain range extending along the Central 

American continental divide, have played an important role in the geologic history of 

Central America, in particular in Costa Rica and Panama (Kohlmann et al. 2002; 

Savage 2002).  We investigated three putative biogeograhic breaks (Cordillera de 

Talamanca, Limón and Osa Peninsula) and one contact zone (Northeast-Northwest) in 

Costa Rica and Panama to understand the distribution of phenotypic diversity in our 

focal species. The Cordillera de Talamanca, approximately 3 million years old, 

extends 400 km along the length of Costa Rica and Western Panama (Kohlmann et al. 

2002; Savage 2002).  This mountain range asserts a strong barrier to gene exchange 

between Caribbean and Pacific populations for other terrestrial amphibians and 

reptiles (Zamudio & Greene, 1997; (Crawford 2003)Zeh et al., 2003; Weight et al., 

2005). The second putative biogeographic break occurs between populations on either 

side of the Golfo Dulce, which has separated the Osa Peninsula and the Burica 

Peninsula for the last 2 my (Kohlmann et al. 2002). Finally, an off-shore Caribbean 

coral reef influences the distribution of genetic and ecological diversity of marine 

organisms near Limón, Costa Rica (Kohlmann et al. 2002; Figure 1). However, the 

nature of the biogeographic break is poorly understood for terrestrial organisms. 
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Limón coincides with species distribution limits for some amphibians and beetles 

(Kohlmann et al. 2002; Savage 2002) and we test the hypothesis that it may also act to 

isolate A. callidryas populations.  

We also investigated a putative contact zone that occurs west of the Talamanca 

mountains at the junction of three younger, non-contiguous mountain ranges: 

Cordillera de Guanacaste, Cordillera Central and Cordillera de Tilarán.  Due to low-

elevation passes between the Northeast and Northwest regions, it is possible that low 

levels of historical gene flow connected these two regions (Savage & Heyer, 1967).   

 Our fine scale sampling across these biogeographic features allows us to 

investigate the isolating effect of barriers and the potential for homogenizing gene 

flow across a contact zone. Specifically, our three objectives were: 1) to examine 

differences in phenotypic variation relative to hypothesized biogeographical barriers 

that may have promoted regional differentiation; 2) to test covariation between 

microevolutionary/ecological traits and large biogeographic patterns through temporal 

and spatial sampling; and 3) to review the generality of the patterns of differentiation 

in A. callidryas using comparisons to patterns reported for other taxa in this region.  

 

MATERIAL AND METHODS 

Study Sites 

We evaluated geographic variation of individuals sampled from 12 populations 

in four regions throughout Costa Rica (CR) and Panama (PA):  Northeastern CR, 

Southeastern CR/PA, Western CR, and Central PA (Figure 1, see Appendix S1 in 

Supplemental Material: regional nomenclature follows Savage and Heyer, 1967). 

Populations in the Western CR region occur along the Pacific versant of the 

Talamanca Mountains.  All other populations occur along the Caribbean, including all 

Central PA populations which are located on the Caribbean side of the continental 
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divide (GIS data: Appendix S1). Seven of the sampled populations are the same as 

those sampled by Savage and Heyer, allowing for a direct comparison between sites 

over a 38-year period.  An additional five populations in close proximity to the Savage 

and Heyer sites (within 8 - 20 km) were included in the temporal comparisons.   

 Sampling sites were selected to test four biogeographic hypotheses of regional 

differentiation in the red-eyed treefrog.  We compare diversity patterns between the 

Pacific and Caribbean regions to test the isolating role of the Cordillera de Talamanca 

(Figure 2.1).  For the second biogeographic barrier (Gulfo Dulce), we sampled 

populations from both the Osa and Burrica Peninsula (Figure 2.1).  Finally, we 

compared Northeast and Southeast CR/PA populations to test a putative break at 

Limón, CR.  To investigate a possible contact zone between Northeast and Northwest 

CR populations, we sampled two mid-elevation sites situated along this potential 

corridor (Til and Sra). 

 We conducted field surveys during part of the breeding season (May – August) 

in 2004 and 2005. Data for both years were combined into a single dataset (2005). At 

each sample site, we captured adult males and females, collected body size data 

(snout-vent-length; SVL) flank-stripe pattern, and coloration.  We documented flank-

stripe and coloration by taking digital photographs of every individual using a Nikon 

Coolpix 5700 against a background black-white-grey card for color standardization 

(photographs available upon request, archived at Cornell University Museum of 

Vertebrates; CUMV). We photographed each individual in four positions to capture 

the full range of body coloration: posterior surface of the thighs, ventral surface, and 

both the left and the right side of the body with the legs and arms outstretched. One to 

three individuals from eight populations were preserved as vouchers and deposited at 

CUMV (14093,14206-08,14210-11,14228,14230,14231-33) and the University of 
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Costa Rica, San Jose (19100-101, 19213). All other individuals were released at the 

capture sites. 
 
 
Flank-Stripe Pattern 

 Agalychnis callidryas shows bright, contrasting flank-stripes, usually white to 

pale yellow, overlaying the background color. We implemented the scoring system 

designed by Savage and Heyer (1967) to categorize individuals as possessing one of 

five flank-stripe pattern types: A, AB, B, BC, and C (Figure 2.2). In 2005, we 

discovered frogs with two novel combinations of the three basic types; for these 

individuals, we modified the Savage and Heyer protocol and categorized them as AC 

or ABC (Figure 2.2). Individuals sampled in both time periods often exhibited 

different patterns on the two sides of their body (Savage & Heyer 1967). Due to high 

rates of asymmetry, we analyzed only the left side of the body.  

 

Measuring Coloration 

 In life, red-eyed tree frogs are bright green dorsally, have large red eyes and 

orange-red feet and hands. Coloration of flanks and limbs are very similar for an 

individual in most regions, thus we only measured and report leg color in this study.   

 Many studies of coloration use spectral reflectance (Summers et al. 2003; 

Hofmann et al. 2006; Vercken et al. 2006), which yields precise measures of hue, 

saturation, and brightness at focal points of interest.  This technique yields highly 

accurate results for quantifying color, especially when hue does not vary within an  
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Grey shaded region shows topographic relief.  Sites sampled in 2005 are close to localities sampled in a 
previous study of polymorphism (Savage & Heyer, 1967).  Inset shows detailed view of Southwestern 
CR.  See Appendix 1 for sample locality abbreviations. 
 
 
FIGURE 2.1. Agalychnis callidryas Cope 1862 sampling localities from four 
regions in Costa Rica (CR) and Panama (PA): Northeastern CR (NE CR), 
Southeastern CR/PA (SE CR/PA), Western CR, and Central PA.  
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Pattern A individuals have a horizontal line connecting all vertical stripes, in pattern B, the vertical 
stripes are disconnected, and each is ‘T’ shaped, and in pattern C the disconnected vertical stripes have 
no ‘T’ shape.  Individuals with a combination of these three basic pattern types are characterized as AB 
(both A and B stripes) or BC.  This study identifies two novel pattern types, ABC and AC, not observed 
by Savage and Heyer (1967). 
 
 
FIGURE 2.2. Flank pattern variation in Agalychnis callidryas.  
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individual. The greatest advantage of our method of quantifying color is that we are 

able to accurately measure multiple hues occurring across the entire surface area of an 

organism, as opposed to sub-sampling color patches.  The use of the grey-card color 

standard provides necessary and sufficient standardization to accurately differentiate 

hue. In addition, the use of digital photography is increasingly utilized to document 

animal coloration (Stevens et al., 2007; Richards and Knowles 2007; Touchon & 

Warkentin, personal communication) digital cameras are a cost-effective alternative 

for quantifying color variation and are easily used in field conditions.  

 Photographs of each individual were imported into Adobe Photoshop CS 

version 8 to correct for ambient light color correction by reference to a black-white-

grey standard (QPcard 101) in the background of every photograph.  The color-

corrected photographs were then imported into ImageJ (version 10.2) for analyses. We 

measured color as ‘hue’ in the HSB domain (hue, saturation, and brightness) because 

it became evident from preliminary testing that having a one-dimension measure of 

color (i.e., hue) was sufficient to distinguish populations.   

 The number of dominant leg colors of A. callidryas varies regionally; 

individuals from some populations are virtually monochromatic (e.g., blue), others 

contain two dominant colors (e.g., blue and orange), while others contain a continuum 

of multiple hues (e.g., reddish blue through greenish blue).  To avoid a sampling bias, 

we therefore selected the entire posterior surface of the leg in ImageJ (as opposed to 

focal subsampling) to acquire a frequency histogram of the number of pixels for each 

hue (0 – 255), corresponding to 8-bit hue values of 360. We were careful to exclude 

sampling the green portion of the leg common to all individuals (see Figure 2.3 for 

example). We transformed the ImageJ hue data (which ranges from 0-255) to the more 

conventional standard measure of hue with a range of 0-360.   Because of the broad 

range of leg coloration in the red-eyed treefrog, we divided the 360-degree color 
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spectrum into 8 equal color bins, each spanning 45 degrees (Figure 2.3).  Each color 

bin has a central hue, surrounded by a gradient of neighboring hues.  The eight color 

bins in this study are named according to the central hue for that bin (measured in 

degrees): red (-337.5  - 22.5), orange (22.6 – 67.5), yellow (67.6 – 112.5), green 

(112.6 – 157.5), light blue (157.6 – 202.5), dark blue (202.6 – 247.5), purple (247.6 – 

292.5) and violet (292.5 – 337.5).  The standard hue definition of pure red is zero, 

therefore the red bin spans 22.5 degrees on each side of zero degrees. Our 

transformations from the ImageJ data also eliminated any bright white overexposed 

(blown-out) regions of the photograph that come from light reflection of the wet body 

of the frog.  

 

STATISTICAL ANALYSES 

Flank-Stripe 

 We measured both temporal and spatial variation in flank-stripe pattern 

diversity. For the temporal analyses, we tested whether the relative frequency of each 

pattern differed between 1967 and 2005 within each region using a chi-square 

contingency test in JMP (Vers. 5.1.2). Due to low sample sizes in some categories, we 

performed an exact test for a measure of significance of the chi-square test (StatXact 

Ver. 4, 1998, Cytel Software Corporation, Cambridge, MA 02139). Because the 1967 

study did not contain AC or ABC phenotypes, we analyzed temporal patterns in two 

ways: first, we excluded AC and ABC individuals from 2005 for a direct comparison 

with the 1967 dataset; second, we consider the possibility that ABC and AC patterns 

were actually present in 1967, but scored as AB or A, respectively.  We repeated the 

analyses with those individuals in the study but rescored accordingly. 
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Western CR exhibits a clinal change in coloration, therefore we provide photo images of the 
northernmost population (Playa Bandera) and southernmost population (Pavones).  For each 
photograph, the corresponding LEG-AREA histogram obtained from hue analyses in ImageJ is 
transformed to traditional 360 color range. A thin black line outlining the thigh shows color selection 
analysed in ImageJ.  Histogram bars are coloured based on corresponding 360 color range. Color bins 
are: red (RE), orange (OR), yellow (YE), green (GR), light blue (LB), dark blue (DB), purple (PU), 
violet (VI). The exact numerical range for each color bins are in the text.  
 
 
FIGURE 2.3. Color polymorphism in the posterior surface of the thigh of 
Agalychnis callidryas from four regions throughout Costa Rica and Panama.   
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 For the spatial analyses, we tested whether the distribution of flank-stripe 

patterns differed both within and among regions sampled in 2005 (using chi-square 

contingency tests and exact test for correction of low sample sizes). In addition, we 

applied these analyses to the 1967 dataset to test for patterns of differentiation among 

regions sampled in the Savage and Heyer study (1967).  

 

Coloration 

 We tested for differences in leg color within and among regions sampled in 

2005.  We analyzed leg coloration in two ways.  First, we measured the percent of leg 

area in each color bin, hereafter referred to as LEG-AREA; second, we compared the 

mean population hue for each of 8 color bins.  To test for population and regional 

differences in LEG-AREA, we used linear discriminant analysis, which compares 

each individual to the group multivariate mean (JMP Vers. 5.1.2).  A classification 

matrix shows the number of individuals correctly assigned to source populations and 

the number of individuals misclassified to an alternate population, based on LEG-

AREA alone. We used chi-square tests to determine whether individual assignment 

was random with respect to source populations for each population and each region.  

Accurate assignment indicates that LEG-AREA has diagnostic value for regional 

identification and differentiation.  In some cases, LEG-AREA was insufficient to 

unambiguously assign individuals to the correct population and/or region.  For these 

cases, we compared the average hue among regions using Kruskal-Wallis non-

parametric comparison of means implemented in JMP Vers. 5.1.2. We used 

discriminant analysis to test the independence of flank pattern and leg coloration.  We 

tested the correlation between flank pattern and leg coloration (using chi-square 

contingency tests and exact test for correction of low sample sizes) by categorizing leg 

color into four bins: blue, blue and orange, orange, purple.  We also used discriminant 



  

 38  

 

function analysis to test whether flank pattern is predicted for each individual 

(regardless of population of origin) based on LEG-AREA of blue, orange, and purple.   

 

Body Size 

 We compared average male and female body size (SVL) among regions using 

Kruskal-Wallis non-parametric test of means.  The 1967 study includes measures of 

regional (but not individual) body size.  Therefore, we could not directly compare the 

two datasets, but can comment on the stability of a generalized pattern. 

 

RESULTS 

Flank-Stripe 

Temporal Pattern 

 The regional distribution of flank-stripe patterns has changed significantly over 

the last 38 years in all regions except Western CR (significance of exact test of chi-

square: p = 0.0902; Northeastern CR, p < 0.001; Southeastern CR/PA, p < 0.001; 

Central Panama, p < 0.001; Figure 2.4).  Repeating those analyses with ABC/AC 

individuals rescored as AB and A, respectively, did not change those results. Changes 

in this phenotype over time include a shift in the frequency of the dominant flank 

pattern: A to AB in Northeastern CR; AB to BC in Southeastern CR/PA; AB to C in 

Panama.  In addition, we observed the loss and gain of patterns, including, a gain of 

AB in Western CR, a gain of BC in Northeastern CR, a gain of C and loss of A in the 

Southeastern CR/PA, and loss of A and B in Panama.  Therefore, although populations 

continue to be significantly distinct based on flank-stripe patterns, these patterns are 

not static even over relatively short time frames. 
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Sampled in 1967 (grey bars) and 2005 (black bars).  All regions except Western CR show temporal 
change in flank-stripe frequencies.  Sample sizes provided in supplemental material SI Table 1.  
 
 
FIGURE 2.4. Temporal and spatial variation in the flank-stripe pattern in 
Agalychnis callidryas across four regions.   
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Spatial Pattern 

 In 2005, all regions are distinguished from each other by different dominant 

pattern(s) (X2
df=18 = 384.08, p < 0.001): pattern C in Western CR; pattern AB in the 

Northeastern CR; BC in the Southeastern CR/PA, and a high proportion of both BC 

and C in Central Panama (Figure 2.4).  Western CR is readily distinguishable from the 

other three regions based on the near fixation of pattern C and the absence of novel 

types ABC and AC, which are present in all other regions. These results are similar to 

our analyses of among-region variation in 1967 dataset (p < 0.001).   

 We detected flank-pattern differences between the two Central Panama 

populations (X2
df=2 = 23.458, p < 0.001), but no differences among populations within 

the other three regions: Western CR (X2
df=3 = 6.36, p = 0.095); Northeastern CR (X2

df=6 

= 6.324, p = 0.38), Southeastern CR/PA (X2
df=6 = 11.409, p = 0.076). 

 

COLORATION 

Among-Region Variation 

 Our results show regional differentiation in leg coloration. The only 

individuals in the study with completely blue legs were found in Northeastern CR 

(Figure 2.5). Individuals with bi-colored legs (red/orange and blue; Figure 2.5) 

occurred in two regions, Southeastern CR/PA and Central PA.  Western CR contains 

the only populations with solely red/orange legged individuals.  
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For each population, individuals are aligned along the horizontal axis.  LEG-AREA for each individual 
is represented in a stacked, vertical histogram.  Populations are arranged in a West to East direction for 
the three Caribbean regions and arranged in a North to South direction for the Pacific region. Sample 
sizes (x) are provided for each population. 
 
 
FIGURE 2.5. The proportion of the leg (measured as % pixels) assigned to each 
of eight color bins (LEG-AREA) for 12 populations of Agalychnis callidryas.   
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We observe a west – east transitional change in coloration among populations 

along the Caribbean coast; the western-most site contains individuals with completely 

blue legs while individuals from the eastern-most populations have primarily 

red/orange legs with some light blue coloration (Figure 2.5).  Between these two 

regions, individuals exhibit a near equal mix of red/orange and dark blue coloration on 

their legs.  

 Discriminant function analyses on LEG-AREA resulted in classification of 

most individuals to the source region (X2
df=16 = 530.82, p < 0.001; Table 2.1).  

Discriminant function analyses classified Northeastern CR individuals correctly in all 

cases (Table 2.1). Some individuals from Western CR were misclassified as Central 

PA, and vice-versa.  Individuals from Southeastern CR/PA were assigned incorrectly 

to Central PA, but with no reciprocity in misclassification (Table 2.1). To distinguish 

among these regions (with misclassified individuals), we compared the average 

regional hue in each of 8 color bins. First, we compared Pavones (Western CR 

population with a high misclassification rate) to three regions: Southeastern CR/PA, 

Central Panama, and the other populations in Western CR. We found Pavones was 

distinguishable from the others based on three color bins: red (X2
df=3 = 101.11p < 

0.001), orange (X2
df=2 = 49.23, p < 0.001), and violet (X2

df=3 = 27.38, p < 0.001; Table 

2.2).  Next we compared Western CR (excluding Pavones) and Central Panama and 

found average hue differences in 2 color bins: red (X2
df=1 = 16.27p < 0.001) and 

yellow (X2
df=1 = 7.96p =0.004; Table 2.2).  Finally, a comparison between 

Southeastern CR/PA and Central PA revealed differences in average red (X2
df=1 = 

30.07, p < 0.001), light blue (X2
df=1 = 19.33, p < 0.001), and dark blue (X2

df=1 = 11.12, 

p = < 0.001) bins (Table 2.2). 

 The association between flank pattern and leg coloration varies regionally 

(Figure 2.6): flank pattern C (occurs primarily in Western CR) contains mostly orange 
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legged-individuals, whereas flank pattern A (Northeastern CR) is observed with only 

blue-legged individuals.  However, the other flank patterns co-occur with 3 of 4 leg 

color types. There is a correlation between leg color and flank pattern when 

considering all individuals in the study (Rsquare = 0.479, X2
df=18 = 368.52, p < 0.001).  

This correlation is largely due to the near fixation of flank pattern C in Western CR 

(dominated by orange legs; Figure 2.6).  We repeated this analysis after removing 

individuals with flank pattern C and found a weaker correlation (Rsquare = 0.271, 

X2
df=8 = 91.409, p < 0.001).  Overall, these findings are consistent with results from the 

discriminant function analyses which correctly assigned individuals to flank pattern 

based on LEG-AREA (X2
df=16 = 361.59, p < 0.001).   

 

Within-region variation 

We detected among-population differentiation in coloration for all regions. This is 

most evident in Western CR, where populations exhibit a north-south cline in 

coloration (LEG-AREA: X2
df=9 = 77.54, p = 0.001; Figure 2.5): individuals have 

red/orange legs in Playa Bandera; Sierpe contains red/orange/green legged individuals; 

Campo contains red/orange/green/light blue legged individuals; and Pavones (the most 

southern Western CR site) contains individuals with coloration in almost all color bins 

(Figure 2.5).  



  

   

 

TABLE 2.1.  Classification matrix based on discriminant function analyses of LEG-AREA.   
 

Population j 
  SE CR/PA Central PA Western CR NE CR  
 Population 
i 

          Alm ChG Man ElV Gam Cam Sie PlB Pav LaS Til SaR           
N 

Alm   4 2 2 1 1 0 0 0 0 0 0 0   10 
ChG  6 6 5 1 2 0 0 0 1 0 0 0 21 

SE CR/PA 

Man   5 1 9 2 1 0 0 1 0 1 0 0 20 
ElV    0 0 2 11 5 1 0 0 2 0 0 0 21 Central PA 
Gam  0 0 0 4 10 2 1 2 0 0 0 0 18 
Cam  0 0 0 0 7 3 2 3 1 0 0 0 19 
Sie    0 0 0 0 1 4 5 9 0 0 0 0 19 
PlB   0 0 0 0 3 0 2 14 0 0 0 0 19 

Western 
CR 

Pav   1 1 2 1 2 0 0 0 13 0 0 0 20 
LaS   0 0 0 0 0 0 0 0 0 9 7 4 20 
Til   0 0 0 0 0 0 0 0 0 0 11 11 22 

NE CR 

SaR  0 0 0 0 0 0 0 0 0 2 5 7 14 
 
Tthe number of individuals sampled from population (i) on vertical axis, into population (j) on horizontal axis. The dark-grey shaded boxes show the number 
of individuals correctly assigned to the source population; the light-grey bars show correct assignment to source region. The unshaded boxes show the 
number of incorrectly assigned individuals. Total sample size per population, N. See Appendix S1 for population abbreviations. SE = Southeastern, NE = 
Northeastern. N = sample size.  
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TABLE 2.2  The mean region and population hue for 8 color filters. 
 
  RE OR YE GR LB DB PU VI 
          
Western CR 
 

 10.89 33.77 83.89 138.93 171.50 223.38 270.66 321.92 
 PlB 20.67 26.48 . . . . . . 
 Sie 16.71 32.05 79.63 129.08 174.99 216.57 268.56 318.28 
 Cam 14.70 30.62 79.53 137.26 174.71 224.42 267.84 314.57 
 Pav -3.93 41.76 86.75 141.99 169.89 224.93 271.36 327.31 
Northeastern   -10.31 46.52 90.62 145.13 194.74 213.90 259.59 312.08 
CR LaS -11.06 47.84 90.38 146.38 195.25 217.35 262.46 311.6 
 Til -12.04 48.82 88.73 141.16 193.99 211.54 257.77 312.71 
 SaR -5.08 42.09 92.18 145.98 195.18 212.66 256.86 312.58 
Southeastern  6.54 30.42 89.80 140.28 186.70 225.90 269.50 321.70 
CR/PA Man 9.95 27.80 92.88 143.13 189.63 226.63 267.85 320.02 
 ChG 4.60 30.47 89.66 140.40 183.71 224.68 270.52 322.68 
 Alm 3.83 35.56 86.07 136.54 187.15 227.00 270.68 323.03 
Central PA  13.26 31.75 86.66 138.20 178.37 223.40 270.90 321.71 
 ElV 12.76 32.70 86.95 140.18 177.75 221.31 269.74 321.98 
 Gam 13.82 30.69 86.23 135.32 179.29 226.72 271.04 323.01 
Each color filter spans 45 degrees, see text). See Appendix S1 for population abbreviations and Figure 3 for sample sizes.  Color bin abbreviations: red (RE), 
orange (OR), yellow (YE), green (GR), light blue (LB), dark blue (DB), purple (PU), violet (VI).  
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All Northeastern CR populations contain individuals with blue leg coloration; 

however, La Selva is distinct from San Ramon and Tilarán in both analyses of LEG-

AREA (p < 0.001) and average hue in two color bins, dark blue (X2
df=2 = 14.28, p = 

0.0008) and purple (X2
df=2 = 12.06, p = 0.0024; Table 2.2).  Southeastern CR/PA 

populations contain individuals with bi-colored legs (red/orange and blue); based on 

LEG-AREA, most individuals were correctly assigned to their source population 

(X2
df=4 = 23.77, p < 0.001; Table 2.1). Further, we detected fine-scale hue differences 

among Southeastern CR/PA populations in 5 color bins: red (X2
df=2 = 11.84, p = 

0.002), orange (X2
df=2  = 10.84, p =0.004), yellow (X2

df=2= 7.69, p = 0.02), light blue 

(X2
df=2  = 9.38, p = 0.009), and violet (X2

df=2  = 7.6, p = 0.02; Table 2.2). Central PA 

populations are distinct from each other based on both LEG-AREA (X2
df=1 = 9.14, p = 

0.01; Table 2.1) and mean hue value in the dark blue color bin (X2
df=2 = 6.12, p = 

0.013; Table 2.2).   

 

BODY SIZE   

  Male body size varies regionally (X2
df=3= 158.06, p < 0.0001); individuals are 

biggest in Northeastern CR, smallest in Panama and of similar intermediate size in 

Southeastern CR/PA and Western CR (Appendix S1). Unfortunately, we could not 

obtain the raw body size data from the 1967 study to compare SVL over the course of 

38 years. Savage and Heyer (1967) report that male body size is (similarly) largest in 

Northeastern CR but of smaller, equal size in the other three regions. However, 

without raw data we cannot conclusively comment on any directional change in body 

size in these regions.  Female body size in 2005 also varies regionally (X2
df=2= 28.51, p 

< 0.0001), but exhibits a slightly different pattern than the males. Although females 

are also largest in Northeastern CR, they are of intermediate body size in Central 
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Panama and smallest in Western CR (Appendix S1).  We lack body size data for 

females from Central Panama to include in the analysis.   

 

DISCUSSION 

Our data corroborate the patterns of phenotypic divergence among Agalychnis 

callidryas in the four Central American biogeographic zones observed in previous 

studies (Savage and Heyer 1967; Duellman 2001).  In addition to the flank pattern and 

body size variation already noted, we show that this variation is also observed in the 

geographic distribution of leg coloration.  Regions are easily differentiated based on a 

combination of LEG-AREA and average hue value across eight color bins.  We also 

detected fine-scale geographic variation in coloration among some populations within 

each region.  Temporal analyses of the flank-stripe pattern show significant changes in 

regional composition over 38 years in all areas except Western CR.  

Most anuran color patterns are genetically inherited (Pybrun 1961b; Hoffman 

& Blouin, 2000).  Amphibian skin coloration is controlled primarily by two groups of 

pigment cells, melanophores and chromatophores (Hoffman and Blouin 2000). Color 

change over a short period of time (seconds to minutes) is associated with 

physiological changes due to temperature, humidity, and ambient light, whereas 

changes over generations (e.g., due to natural selection) is typically associated with 

changes between greys to browns (Hoffman and Blouin 2000)  For A. callidryas, the 

shade of green on the dorsum can change rapidly with light exposure due to 

intracellular transport of pigment cells (Schliwa and Euteneuer 1983). However, the 

coloration along the flanks, thighs and upper arms does not change with environmental 

cues (personal observation).  Therefore, we consider color and pattern as variable, 

genetically inherited traits because it is unlikely that the full-color spectrum 

differentiation among A. callidryas populations is due to local environmental factors.  
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Overall, Northeastern CR populations are distinguished by their large body 

size, blue legs and dominant flank-stripe pattern A. Southeastern CR/PA populations 

are intermediate in size, have bi-colored legs (orange and dark blue), and a dominant 

B stripe. Central Panamanian frogs are small, have predominantly orange legs with a 

small percent of light blue, and contain flank-stripe patterns B and C. Western CR 

populations are of intermediate body size, exhibit a north-south clinal change in 

coloration, and are unique in being nearly monomorphic for C flank stripe-pattern.   

Two of the phenotypic traits measured in this study are correlated (leg 

coloration and flank-pattern). The strength of the correlation varies among flank-

pattern.  For example, flank-patterns A and C are tightly correlated with coloration, 

but the same is not true for other patterns (Figure 2.6).  We suggest that these two 

traits loosely co-evolve over spatial and temporal scales.  In North Atlantic CR, all 

individuals are fixed for blue legs.  While flank-pattern A is found only in blue-legged 

individuals, a large percent of these individuals with blue legs have alternate flank-

patterns.  Similarly, individuals sampled from Western CR exhibit near-fixation for 

flank-pattern C but with variation in leg coloration (Figure 2.5). Thus, one region 

(North Atlantic) shows a near-fixation for blue leg coloration (with variable flank-

pattern) while Western CR shows near-fixation for flank-pattern (with variable leg-

coloration).   
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Leg color bins are as follows: blue (black bars), blue and orange (white bars), orange (dark grey bars), 
violet (light grey bars).  Leg color is positively correlated for flank pattern (p <.001). 
 
 
FIGURE 2.6. The proportion of each of four leg color bins for seven flank 
pattern types in Agalychnis callidryas individuals. 
   

SPATIAL VARIATION 

Understanding the mechanisms that underlie geographic patterns in phenotypic 

variation provides insight into the evolutionary history of the species.  These 

mechanisms include genetic isolation, microhabitat adaptations and directional 

selection via signaling (mate-choice, predator-prey relationships; (Endler 1992). Based 

on the patterns of phenotypic diversity, we apply our knowledge of the natural history 

of the red-eyed treefrog and the geological history of Central America to discuss the 
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possible mechanisms underlying spatial patterns of diversity in two parts: 

biogeography and signaling. 

 

Biogeography 

 The distribution of genetic or phenotypic diversity often strongly correlates 

with landscape history (Prohl et al. 2006) and microhabitat differences  (Thorpe and 

Baez 1993; García-París et al. 2000). Many anurans, including A. callidryas, rely on 

rainfall for reproduction.  Because rainfall patterns and climate varies across regions in 

Costa Rica and Panama (Holdridge, 1947; Kohlmann et al., 2002), we expect that 

these differences will reinforce spatial isolation among populations. The highly 

localized variation in color pattern in A. callidryas may be partially explained by 

reduced gene flow as a result of the topographic landscape (providing both physical 

and climatic barriers) of Central America.  For the most part, our results corroborate 

regional genetic differentiation in other taxa (Zamudio & Green, 1997; Crawford, 

2003; Zeh et al., 2003; Weight et al., 2005).    

We found evidence to support the isolating effect of all three biogeographic 

barriers (Cordillera de Talamanca, Limón, Osa Peninsula) and one putative contact 

zone (Northeast-Northwest) in influencing the distribution of phenotypic diversity in 

A. callidryas.  The Cordillera de Talamanca asserts a strong barrier to gene exchange 

between Caribbean and Pacific populations for other terrestrial amphibians and 

reptiles (Zamudio & Greene, 1997; Crawford, 2003) and likely explains the 

divergence in coloration and flank-stripe in A. callidryas (Figures 2.4-2.5).  

Both leg coloration and flank-pattern differentiates the two regions separated 

by Limón (Figures 2.4-2.5) supporting the hypothesis that Limón is a biogeographic 

break for some terrestrial organisms. The addition of other characters (molecular, 
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behavioral al) to this dataset will greatly contribute to understanding the nature of this 

biogeographic break. 

Populations in Western CR showed the most intra-region variability among all 

the sampled regions, exhibiting a north-south clinal change in coloration (Figure 2.5).  

The southernmost population, Pavones, containing the most color polymorphism, is 

isolated from the other three Western CR populations by the Golfo Dulce.  Thus, it is 

possible that Pavones and the other Western CR populations evolved in allopatry. 

We found evidence to support the hypothesis of a putative contact zone 

(Northeast-Northwest) at the junction of three non-contiguous mountains east of the 

Talamanca Mountains. Savage and Heyer (1967) suggested low levels of historical 

gene flow connected these two regions.  Our more extensive sampling of flank pattern 

corroborates this pattern that low-elevation mountain-passes provide habitat corridors 

within the physiological tolerance of A. callidryas, and facilitate passage for dispersal 

between these two regions (Figure 2.4). For example, the dominant flank pattern 

observed in Tilarán was AC, a combination of A and C flank-stripes.  This mid-

elevation site may be a site of historical gene flow between Northeastern CR ‘A’ and 

Western CR ‘C’ forms, or alternatively, may reflect ancestral polymorphisms.  

However, breeding studies are required to confirm that AC is a hybrid form.  We 

maintain caution in using flank-pattern analyses alone to make predictions about gene 

flow patterns because leg coloration clearly distinguishes these two regions. 

  Climate also acts as a geographic barrier (Grinell, 1914). For example, 

differences in wind and rain patterns across the Talamanca Mountains alter the climate 

of Eastern, Western and Central Costa Rica (Holdridge 1947; Kohlmann et al. 2002).  

As a result, these regions are very diverse and range from dry, lowland, deciduous 

forest (Pacific), to cloud forest (along the divide), to hot and wet lowland rainforest 

(Caribbean). Agalychnis callidryas occurs only in wet forest in the Caribbean, and in 
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patches of coastal wet forest in the dry pacific versant, a pattern common in many 

Central American frogs with affinity to wet forest (Savage 2002).  Thus, migration is 

further restricted by the dry forest landscape between Southwestern CR and Central 

Panama.  

 

Signaling 

 Phenotypic signals used for communication (visual and acoustic) co-evolve 

with the sensory systems of conspecifics and predators, and therefore are a balance 

between sexual selection (Endler 1980; Tuttle and Ryan 1981; Endler 1992) and 

natural selection (Hoekstra et al. 2004). Therefore, it is useful to consider the type of 

color pattern (cryptic and aposematic) and its employment (predator avoidance and/or 

visual signaling for mate-choice) as co-evolutionary forces that shape the directional 

selection of phenotypic diversity (Endler 1992; Maan et al., 2004; Endler & Mielke, 

2005). 

 Organisms which possess no inherent chemical defence typically display 

cryptic coloration and/or behavioral al crypsis such that their color pattern matches a 

random sample of their environment. Many anurans exhibit cryptic color 

polymorphism polymorphism (Savage and Emerson 1970; Nevo 1973; Sazima 1978; 

Morey 1990).  We know that this is true for A. callidryas: the green dorsal coloration 

reflects in the infrared range (700 – 900 nm), perfectly matching leaf reflectance 

(Schwalm et al. 1977).  Agalychnis callidryas takes retreat under leaves during the 

day, thus effectively hiding from diurnal predators.  However, the variation we 

quantified in this study (reds, oranges, and blues) is not typically associated with 

crypsis, and we suggest that the differences in bright coloration or contrasting color 

pattern may have evolved as aposematic coloration.  Aposematism occurs in 

organisms that advertise chemical defenses (such as distasteful/poisonous toxins) to 
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potential predators through flashy and/or bright colors (Siddiqi et al. 2004). A classic 

example among anurans are a number of species in the poison arrow family, 

Dendrobatidae (Summers et al. 2003).  One species, Dendrobates pumilio, is highly 

color polymorphic and utilizes aposematism to avoid diurnal predation (Siddiqi et al. 

2004). Similar to poison arrow frogs, phyllomedusine frogs contain noxious skin 

peptides (Cei and Erspamer 1966) which stimulate regurgitation by snake predators 

(Sazima 1974). Aposemetism in crespuscular amphibians is poorly understood.  

However, a behavioral al study showed reduced predation rates on a brightly colored 

crepuscular salamander (Ensantina e. xanthoptica; (Kuchta 2005), suggesting that 

behavioral and vision studies are critical to determine whether crepuscular/nocturnal 

predators (birds, snakes, spiders) possess the visual system required for identifying 

and discriminating A. callidryas from non-toxic prey items.  It is possible that A. 

callidryas utilizes a combination of crypsis and aposematism as a defense 

mechanisms. 

 Sexual selection underlies geographic patterns of diversity and can drive 

speciation through assortative mating among closely related species and among 

populations (West-Eberhard 1983; Masta and Maddison 2002; Summers et al. 2003; 

Siddiqi et al. 2004; Summers et al. 2004). We hypothesize that female A. callidryas 

uses both visual and acoustic signals in mate choice: the colorful leg and flank regions 

with contrasting vertical and horizontal stripes may serve as visual signals, while the 

male advertisement calls are known as acoustic signals. These two signals (acoustic 

and visual) may operate together (Masta and Maddison 2002; Candolin 2003, 2005; 

Prohl et al. 2006): the acoustic signals provide information on the location of males 

within a swamp and the visual signals (color pattern) form the basis of mate choice at 

close range. Directional selection for brighter and larger contrasting color pattern has 

been observed in other anuran species, including the frog, Hyla squirelli (Buchanan 
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1994) and it is possible that differences in flank-stripe characteristics in A. callidryas 

reflect localized sexual selection pressures. 

 

TEMPORAL VARIATION 

 We observed a significant shift in the dominant flank-stripe pattern since data 

collected 38 years ago in 3 of the 4 regions (Figure 2.4). The only region that 

remained static was Western CR, a region that was and remains monomorphic for 

flank-stripe pattern C.  Temporal studies of changes in genetic and phenotypic 

variation are uncommon (Barcia et al. 2005; Prieto et al. 2005; Ray and King 2006).  

These studies have differed in results, with some reporting large shifts (Barcia et al. 

2005; Prieto et al. 2005) while others observed no change over time (Blanco et al. 

2005; Rendell and Whitehead 2005).  In the cases of limited change, the authors have 

argued that large effective population size limits genetic drift and stabilizes 

polymorphisms over time (Blanco et al. 2005). 

 In our study, temporal variation in flank-stripe pattern may reflect directional 

selection due to changes in mate choice criteria or predator behavioral (Pyburn 

1961b).  Alternatively, landscape changes, either natural or anthropogenic, might alter 

gene flow patterns and effectively swamp localized selection (Lenormand 2002). The 

stability of flank-stripe pattern in Western CR could be due to large effective 

population sizes (Ne), or to historical fixation of a single pattern in a region that 

receives no migrants from other more variable regions. We have no reason to believe 

Ne is higher in Western CR relative to other regions.  The combination of these two 

temporal patterns (static in Western CR and dynamic in 3 regions) suggests that A. 

callidryas is not subjected to the same ecological and evolutionary history across it’s 

range. We are currently using mitochondrial and nuclear genetic markers to examine 



  

55 

 

historical and contemporary patterns of gene flow among these populations/regions for 

comparison with phenotypic variation in this species.  

 

CONCLUSIONS  

 We observe a spatial and temporal change in flank pattern diversity in three of 

four regions as well as contemporary, regional divergence in three phenotypic traits in 

A. callidryas: coloration, flank stripe, and body size. The occurrence of color 

polymorphisms has been well documented over broad spatial scales (Duellman 2001; 

Savage & Heyer 1967); however, our analyses of population and regional-level color 

and pattern variation reveals a much more complex evolutionary history than 

previously described. 

 The characters analysed in this study clearly delineate biogeographic regions 

and allow us to formulate questions about population dynamics within regions.  

However, these traits are not intended for phylogenetic analysis; that is, the traits do 

not offer insight into the evolutionary relationships among regions.  We are continuing 

work in this direction using nuclear and mitochondrial DNA markers. 

 The present study detected fine-scale variation in coloration within and among 

populations, allowing us to consider the action of specific evolutionary processes 

(selection and gene flow) that operate to maintain differentiation. Based on these 

patterns of similarity, we expect that our genetic analyses will detect high gene flow 

between Southeastern CR/PA and Panamanian regions, and restricted gene flow 

between the two sub-divided Western Costa Rican populations.  We propose that 

landscape features, historical geological processes, and asynchronous reproductive 

seasons limit gene flow among regions and that sexual selection of color pattern may 

underlie the phenotypic differentiation observed in this study.   
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APPENDIX 2.1.  Sampling populations of Agalychnis callidryas from four regions in Costa Rica and Panama.  
 
 

Sampling size for flank-stripe pattern analyses for each population, and the total number of individuals sampled per region for 1967 study.  Body size varies 
among regions in 2005: measures of snout-vent-length (SVL; mean, std, x) provided for males and females per population and averaged for each region. na= 
not available. Geographic coordinates (GIS) are Latitude (Lat), Longitude (Long), elevation (El, m). 

Region Province Population GIS (Lat, Long, El) 2005 
N 

1967 
N 

Male SVL 
(mm) 

Female SVL 
(mm) 

Western  Puntarenas, CR Campo (Cam) 8.6909, -83.5013, 35 
 

16 na 46.60, 1.49, 18 65.05, na, 1 
CR Puntarenas, CR Pavones (Pav) 8.4204, -83.1069, 37 45 na 48.41, 1.85, 42 49.6, na, 1 

 Puntarenas, CR Sierpe (Sie) 8.8892, -83.477, 17 21  na 48.35, 2.30, 18 57.9, 2.97, 2 

 
 

Puntarenas, CR Pl. Bandera (PlB) 9.5188, -84.3774, 23 40 na 46.90, 2.23, 46 54.59, 2.71, 10 

     121 47 47.65, 2.19, 124 55.45, 4.12, 14 

Northeastern  Heredia, CR La Selva (LaS) 10.4327, -84.0080, 37 48 na 51.59, 2.85, 56 68.51, 3.37, 18 
CR Guanacaste, CR Tilaran (Til) 10.5162, -84.9601, 637 

 
22 na 49.21, 2.38, 21 64.75, 1.06, 2 

 Alajuela, CR San Ramon (SaR) 
 

10.2335, -84.5287, 638 
 

14 
 

na 50.40, 2.34, 5 72.35, 1.38, 6 

    84 87 50.90, 2.87, 82 69.11, 3.53, 26 

Southeastern  Limón, CR Manzanillo (Man) 9.6332, -82.6556, 2 36 na 48.11, 2.40, 35 66.4, na, 1 
CR/PA Bocas del Toro, 

PA 
Chiriqui Grande (ChG) 8.9460, -82.1571, 21 

 
25 na 46.79, 2.58, 20 59.73, 3.17, 4 

 Bocas del Toro, 
PA 

Almirante (Alm) 9.1980, -82.3445, 13 13 na 48.12, 1.45, 12 65.33, 1.46, 4 

    74 20 47.72, 2.37, 67 62.96, 3.75, 9 

Central Panamá, PA Gamboa (Gam) 9.1231, -79.6930, 51 
 

46 na 42.51, 1.81, 45 na 
Panama Coclé, PA El Valle (ElV) 8.6299, -80.1159, 866 22 na 45.74, 2.64, 22 na 

    68 77 43.58, 2.60, 67 na 
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CHAPTER THREE 

VICARIANCE AND LOCALIZED SELECTION CONTRIBUTE TO 

PHENOTYPIC DIVERSIFICATION IN A POLYTYPIC FROG 

 

ABSTRACT 

Spatial patterns of phenotypic diversity reflect the relative roles of gene flow 

and selection in determining geographic variation within a species. In this study we 

quantified color differentiation and genetic divergence among 20 populations of the 

red-eyed treefrog (Agalychnis callidryas) in Central America. Phylogenetic analyses 

revealed high population structure with five well-supported mitochondrial DNA 

clades. We infer from our phylogeny that geographic barriers have played a large role 

in isolating A. callidryas populations. The two phenotypic characters measured in this 

study did not co-vary across isolated population groups: flank coloration easily 

distinguished Caribbean from Pacific individuals, while leg coloration exhibited a 

more complex pattern. The incongruence between geographic, genetic and phenotypic 

diversity at broad spatial scales indicates that the relative strength of gene flow and 

selection is not equal across all geographic barriers, resulting in three general patterns: 

1) phenotypic differentiation in the presence of historical gene flow, 2) phenotypic 

uniformity across genetically differentiated regions 3) and co-variation of genetic and 

phenotypic characters. These patterns indicate that spatially-varying localized 

adaptations also contribute to color differences. Our study underscores the fact that 

selection gradients vary across relatively small spatial scales, even in species that 

occupy relatively homogenous environments. 
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INTRODUCTION 

 Studies of geographic variation among populations of widespread species 

inform evolutionary biologists of the historical and current processes that underlie 

population differentiation (Ford 1971; Brown et al. 1996). The spatial distribution of 

divergent phenotypes provides insight into the relative roles of natural and sexual 

selection, gene flow, and vicariance in the diversification of a species (Grinnell 1924; 

Slatkin 1985b). Many taxa exhibit some individual or population variation, although 

the spatial distribution of genetic and phenotypic diversity varies substantially among 

species (Hoffman and Blouin 2000; Gray and McKinnon 2007). For some species 

geographic clines in body size (Brown and Thorpe 1991; Storz 2002), behavior 

(Thompson 1990; Prohl et al. 2006), color pattern (McDiarmid 1968; Stewart 1974; 

Hoffman and Blouin 2000; Woolbright and Stewart 2008), life history traits (Dhondt 

et al. 1990) or ornamentation (Nevo 1973; Gray 1983; Brooks and Endler 2001a; Storz 

et al. 2001) result from selection acting on continuous traits across selective gradients 

(Endler 1973; Storz et al. 2001; Storz 2002), genetic drift, or both (Hoffman et al. 

2006). In contrast, far fewer species are highly polytypic across their range. In those 

cases, divergence usually results from isolation due to dispersal barriers that is 

reinforced by local adaptation and genetic drift (Summers et al. 2003; Fuller et al. 

2004; Maan et al. 2006b; Boul et al. 2007). These two patterns of spatial variation are 

not exclusive; some species exhibit phenotypic divergence among regions (due to 

dispersal barriers) as well as clinal variation within regions (Endler 1973). 

The interaction between barriers to gene flow and local natural selection 

determines the extent of phenotypic differentiation among localities and the rate and 

direction of phenotypic change over time (Grinnell 1924; Slatkin 1985a; Lenormand 

2002). Thus, geographic patterns of genetic and phenotypic diversity can be used to 

infer the evolutionary processes acting upon populations. For example, high levels of 
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gene flow, either due to high dispersal capacity or absence of isolating barriers, 

combined with limited localized selection results in widespread genetic and 

phenotypic homogeneity. In contrast, strong localized divergent selection and regional 

barriers to gene flow can result in highly structured populations (King and Lawson 

1995; Boul et al. 2007), especially when populations are small (Hofmann et al. 2006).  

Congruence in spatial patterns of genetic and phenotypic diversity provides evidence 

that similar microevolutionary processes have shaped both characters during the 

history of that species. In contrast, incongruence between genetic and phenotypic 

characters can result from restricted gene flow in the absence of divergent selection or 

from strong localized ecological selection in the presence of gene flow (Endler 1973; 

Gray 1983; Dallimer et al. 2003; Hoekstra et al. 2005; Jordan et al. 2005; Prohl et al. 

2006; Rosenblum 2006).  

The red-eyed treefrog, Agalychnis callidryas, is a common Neotropical 

treefrog broadly distributed from Central Mexico to Colombia (Duellman 2001; 

Savage 2002); this species exhibits regional phenotypic differentiation (Savage and 

Heyer 1967; Duellman 2001; Robertson and Robertson 2008), making it an ideal 

species for studying evolutionary mechanisms that contribute to geographic variation. 

Combined, color pattern differences within this species are sufficient to distinguish 

frogs from five biogeographic regions in Costa Rica and Panama with high accuracy 

(Robertson and Robertson 2008). Despite striking color divergence, different regions 

do not vary noticeably in habitat, elevation, or visual environment. It is therefore 

unlikely that regional color variation results from differences in localized ecological 

selection, as observed for many polytypic species that vary along steep environmental 

gradients (Kettlewell and Conn 1977a; Thorpe and Brown 1989; Hoekstra et al. 2005; 

Jordan et al. 2005; Rosenblum 2006). However, subtle regional differences in sexual 

selection or predator pressures could potentially drive the observed patterns of 
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phenotypic divergence (Brooks and Endler 2001b; Price 2006; Gosden and Svensson 

2008).  

In this study we compare patterns of genetic and phenotypic character 

distribution to test hypotheses about the role of selection and barriers to gene flow in 

the origin and maintenance of the highly regionalized diversity among red-eyed 

treefrog populations. We quantified variation in flank and leg color and compared it to 

the distribution of genetic lineages reconstructed from mitochondrial DNA sequences 

for populations throughout Costa Rica and Panama. Our sampling represents 

approximately 25% of the total geographic range of the species and encompasses all of 

the known color variants (Duellman 2001). Our specific objectives were to: 1) test the 

role of geographic factors, specifically isolation due to geographic distance and/or 

geographic barriers in structuring genetic diversity; 2) test whether regional color 

variation could also be explained by the same geographic factors; 3) test the null 

hypothesis that spatial patterns of phenotypic and genetic diversity were congruent. 

Incongruence, for example, high phenotypic discontinuity in the absence of genetic 

breaks, indicates that divergent polymorphisms are not solely the result of restricted 

gene flow among populations, and that selection or drift have contributed to 

divergence. 

 

MATERIAL AND METHODS 

Field Sampling 

We quantified patterns of genetic and phenotypic variation among 20 red-eyed 

treefrog populations throughout Costa Rica (CR) and Panama (PA) (Figure 3.1). 

Previous phenotypic analyses identified five distinct regions diagnosable by leg color 

and pattern (Robertson and Robertson 2008). Three of these regions are located on the 

Caribbean versant of Central America, east of the central Cordillera de Talamanca 
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(Northeastern CR, Southeastern CR/PA, and Central PA). The other two regions are 

located on the Pacific versant, west of the Talamancas (Northwestern CR and 

Southwestern CR; Figure 3.1, Table 3.2). We expanded upon the earlier study 

(Robertson and Robertson 2008) to include more populations, an additional measure 

of phenotypic diversity (flank coloration), and an analysis of genetic differentiation 

among the same populations to serve as a comparative framework for the phenotypic 

data. We conducted field surveys during the breeding seasons (May – August) of 

2003, 2004, and 2005. At each site, we captured 10 – 26 individuals and collected data 

on body size (snout to vent length and mass) and coloration. We photographed every 

individual using a Nikon Coolpix 5700 against a black-white-grey card for color 

standardization. For each individual, we photographed three areas of the body: 

posterior surface of the thighs, left flank, and right flank of the body.  

Up to three individuals per populations were preserved as vouchers and 

deposited at the Cornell University Museum of Vertebrates (CUMV: 14093,14206-

11,14228,14231-33) and the University of Costa Rica, San José (UCR accession 

numbers: 19100-101, 19213). All photographs have been archived at the CUMV. 

Non-vouchered individuals were photographed, toe-clipped for genetic material and 

released at site of capture. 
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The shading of topological relief corresponds to elevation: dark grey (>1300 m), light grey (300 – 1299 
m), white (0 – 300 m). Elevation higher than 1300 m represents unsuitable habitat that exceeds the 
physiological tolerance of A. callidryas. Dry forest habitat between Southwestern CR and Central 
Panama prevents the occurrence of red-eyed treefrogs along Pacific coast of Panama. Biogeographic 
barriers tested in this study are shown: Cordillera de Talamanca, Caribbean Valley Complex, Bocas del 
Toro, Río Parrita, and Osa Peninsula. 
 
FIGURE 3.1 Sampling localities for 20 populations of Agalychnis callidryas in five 
biogeographic regions. The Cordillera de Talamanca isolates the Pacific and 
Caribbean versants of Costa Rica and Panama.  



  

 

 

 
TABLE 3.1 Populations of Agalychnis callidryas from five regions in Costa Rica and Panama.   

Region Province Population GIS (Lat, Long, El) DFA 
N 

Southwestern CR Puntarenas, CR Pavones (pav) 8.4204, -83.1069, 37 20 
 Puntarenas, CR Campo (cam) 8.6909, -83.5013, 35 

 
16 

 Puntarenas, CR Sierpe (sie) 8.8892, -83.477, 17 19 
 Puntarenas, CR Uvita (uvi) 9.1235, -83.7011, 26 24 
Northwestern CR Puntarenas, CR Playa Bandera (plb) 9.5188, -84.3774, 23 19 
 Puntarenas, CR Carara (car) 9.7256, -84.5313, 385 

 
 

25 
 Guanacaste, CR Cabo Blanco (cab) 9.5805, -85.1246, 166 

 
 

18 
Northeastern CR Guanacaste, CR Tilarán (til) 10.5162, -84.9601, 637 

 
22 

 Alajuela, CR San Ramon (sar) 
 

10.2335, -84.5287, 638 
 

14 
 Heredia, CR La Selva (las) 10.4327, -84.0080, 37 20 
 Heredia, CR Universidad de EARTH 

(ear) 
10.2368, -83.567, 44 0 

 Heredia, CR Siquires (siq) 10.0546, -83.551, 574 
  
 

0 
Southeastern Limón, CR Cahuita (cah) 9.7189, -82.8143, 16 0 
CR/PA Limón, CR Manzanillo (man) 9.6332, -82.6556, 2 26 
 Bocas del Toro, PA Chiriquí Grande (chg) 8.9460, -82.1571, 21 

 
21 

 Bocas del Toro, PA Almirante (alm) 9.1980, -82.3445, 13 10 
Central Veraguas, PA Santa Fé (sfe) 8.5070, -81.1141, 714 17 
Panama Coclé, PA El Cope (cop) 8.6299, -80.592, 792 22 
 Coclé, PA El Valle (val) 8.6299, -80.1159, 866 21 
 Panamá, PA Gamboa (gam) 9.1231, -79.6930, 51 

 
22 

   TOTAL 336 
Sample sizes for coloration used in discriminant function analyses (DFA) are listed per population, with exact locality and geographic coordinates (GIS: 
latitude (Lat), longitude (Long), elevation (El). Population abbreviations correspond to locality on Figure 3.1. 
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POPULATION GENETIC VARIATION 

We extracted whole genomic DNA from 125 individuals sampled throughout 

Costa Rica and Panama (Figure 3.1). Toe clips or liver were digested in standard lysis 

buffer with Proteinase K followed by purification using the Qiagen DNeasy Tissue Kit 

(QIAGEN, Valencia, California) following manufacturer’s protocols. We amplified a 

fragment of the mtDNA including the partial 16S rRNA, the complete NADH 

dehydrogenase subunit 1, and the adjacent flanking tRNAMet (hereafter, referred to as 

ND1) using primers tmet-frog (5’TTGGGGTATGGGCCCAAAAGCT3’; Wiens et al. 

2005) and a primer designed for Agalychnis callidryas (ACA-Int: 

5’ACGTGATCTGAGTTCAGACCG 3’). PCR reactions were performed in a total 

volume of 25 µl, each containing 100 ng template DNA, 1X PCR Buffer, 0.75 mM 

dNTPs, 1.5 mM MgCl2, 1 uM primer, and 0.625 units of Taq polymerase. PCR 

conditions consisted of an initial 95 ºC denaturation for 5 minutes, followed by 35 

amplification cycles of denaturation at 94 ºC for 1 min, annealing at 50 ºC for 1 min, 

extension at 72 ºC for 1 min, and a final 5 minute extension at 72 ºC. Exonuclease (10 

units) and SAP (1 unit) were used to remove unincorporated oligonucleotides and 

dNTPs with an incubation at 37 °C for 45 minute and denaturation at 90 °C for 10 

minutes. We performed cycle sequencing reactions with Big Dye terminator 

sequencing components according to manufacturer’s protocol (Applied Biosystems, 

Perkin Elmer, Foster City, CA) using the same primers used for fragment 

amplification. Cycle sequencing reaction conditions were 25 cycles of 96 ºC (30 sec), 

50 ºC (15 sec), and 60 ºC (4 min). We sequenced gene fragments in both directions to 

resolve any base-calling ambiguities. Products were column purified to remove non-

incorporated terminator dye using Sephadex™ G-50 and electrophoresed on an ABI 

3100 Genetic Analyzer (Applied Biosystems, Foster City, California). 



  

71 

 

Electropherograms were checked by eye and fragments assembled into contiguous 

sequences using Sequencher 4.1 (GeneCodes, Michigan).  

We aligned ND1 sequences using ClustalW (Thompson et al. 1994) in the 

MegAlign 6.1.2 program of the Lasergene sequence analysis software (DNASTAR, 

Inc., Madison, Wisconsin). We conducted multiple alignments using the 

‘slow/accurate’ option. The initial guide tree was aligned using Gap Length Penalty = 

6.66, Gap Extension Penalty = 0.05, Delay Divergence Sequences = 30%, and 

Transitions = 0.5. For subsequent alignments, we kept all parameters constant but 

varied gap costs (4, 8, 10, 15) to identify regions of ambiguous homology (Gatesy et 

al. 1993); positions that varied in alignment across this range were excluded as 

characters in phylogenetic analyses. 

We estimated haplotype diversity (h) and nucleotide diversity (π) (Nei 1987) 

and the number of unique haplotypes using Arlequin 3.01 (Schneider et al. 2000). 

Overall genetic differentiation among regions was estimated using pairwise F-

statistics (φST) and we compared estimates to a null distribution of no difference 

between regions to test for significance (α = 0.05) using 10,000 permutations in 

Arlequin. Transition-transversion ratios, as well as the overall nucleotide frequencies 

were computed from the data. 

 We inferred a Bayesian phylogenetic topology using MrBayes (Huelsenbeck 

and Ronquist 2001). The best-fitting model of nucleotide substitution for our data was 

selected based on the Akaike Information Criterion as implemented in MrModelTest 

(Nylander 2004). Our Bayesian analyses consisted of two independent runs of four 

Markov chains, run for 10,000,000 iterations and with sampling every 1000th 

iteration. We applied default prior distributions in MrBayes with the exception of the α 

shape (exponential, mean = 1.0) and branch length parameters (exponential, mean = 

0.1). We determined the appropriate number of burn-in samples and tested for 
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stationarity of parameter values using trace plots in the software package TRACER 

(Rambaut and Drummond 2005). Removal of 10% of the initial samples provided 

ample burn-in in both analyses.  

 

PHENOTYPIC VARIATION 

In life, red-eyed tree frogs are green dorsally, have large red eyes and orange 

or violet front and hind feet. This species is one of few anuran taxa that exhibits 

relatively low levels of phenotypic variation within populations, but high variation 

among populations (Hoffman and Blouin 2000; Savage 2002). To the human eye, 

variation in leg and flank coloration among populations is obvious, and includes hues 

of red-orange, yellow, blue and violet (Robertson 2008). Unlike the green dorsum, leg 

and flank colors do not change ontogenetically or with environmental cues (Schliwa 

and Euteneuer 1983); personal observation). Thus, color in those two body regions can 

be reliably measured for studies of character differentiation. 

We imported photographs of each individual into Adobe Photoshop CS2 to 

correct for ambient light intensity and color by reference to the black-white-grey 

standard (QPcard 101) in the background of every photograph (Stevens et al. 2007). 

We quantified color as ‘hue’ in the HSB (hue, saturation, and brightness) realm 

because previous analyses of leg coloration confirmed that hue accurately represents 

variation when saturation values are high (McKenna et al. 1999; Robertson and 

Robertson 2008). Saturation is an index of the purity of a color; low saturation values 

correspond to ‘muddy’ colors because they contain a mixture of all three primary 

colors whereas highly saturated colors contain only one or two of three 

complementary colors. Thus, the error in hue measurements increases with decreasing 

saturation levels (McKenna et al. 1999). We used the Color Picker function in Adobe 

Photoshop CS2 to measure hue and saturation and conducted an homogeneity of 
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variance test within populations to compare the variance in hue for individuals with 

high (> 30 %) and low (≤ 30 %) saturation (implemented in JMP 7; SAS Institute 

Incorporated, 2006). If the variance between these groups differed significantly, this 

would validate previous findings that low saturation hues are unreliable, and thus must 

be excluded from further analyses (McKenna et al. 1999). 

We measured leg and flank coloration of 14 – 26 frogs per population (Table 

3.2). Dominant leg colors of A. callidryas vary regionally; individuals from some 

populations are monochromatic (blue), others contain two dominant colors (blue and 

orange), while others contain a continuum of hues (e.g., reddish blue through greenish 

blue). To quantify color, we followed the protocol of Robertson and Robertson (2008) 

and imported the color-corrected photographs into ImageJ 10.2 for downstream 

analyses. We selected the entire posterior surface of the leg in ImageJ to create a 

frequency histogram of the number of pixels of each hue. We then transformed the 

ImageJ hue data to the standard measure of hue with a range of 0-360 degrees and 

divided the color spectrum into eight equal bins (each spanning 45 degrees) named 

according to the central hue for each bin. For example, the standard hue definition of 

pure red is zero, therefore the red bin spans 22.5 degrees on each side of zero degrees. 

Final hue ranges for the eight color bins were: red (337.6 - 22.5), orange (22.6 – 67.5), 

yellow (67.6 – 112.5), green (112.6 – 157.5), light blue (157.6 – 202.5), dark blue 

(202.6 – 247.5), purple (247.6 – 292.5) and violet (292.5 – 337.5). 

 Our measurements of flank color differed from leg color because A. callidryas 

flanks have a series of disruptive, vertical stripes, precluding measurement of the 

entire flank region. However, flank coloration is nearly monochromatic, thereby 

justifying subsampling a representative patch of color between stripes at the midline of 

each frog. For both flank and leg measurements, we quantified the percent pixels in 
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each of eight hue bins, the average hue in each bin and saturation of each selected 

color patch.  

To test for population and regional differences in coloration, we used linear 

discriminant analysis implemented in JMP 7.0 to compare each individual response 

(across all variables) to the group multivariate mean. The following color parameters 

were included in the model: the average hue (leg and flank) for each of eight bins, the 

percentage of hue contained in each bin, and overall saturation level (31 – 100 %). We 

excluded from these analyses any individual whose leg and/or flank saturation was ≤ 

30 % because the standard deviation of measured hue increases as saturation 

decreases, confirming the analytical prediction that hue is not a reliable measure when 

saturation is low (McKenna et al. 1999). To quantify the number of individuals 

correctly assigned and those misclassified to source populations we generated a 

classification matrix, and tested the significance of individual assignments using a chi-

square test. This method predicts assignment based on multivariate analysis of 

variance. Significantly accurate assignment indicates that leg and flank coloration are 

highly diagnostic for the five regions examined. In addition, we used the 

quantification of hue and saturation (for both flank and leg) to construct pairwise 

Euclidian distance matrices for use in Matrix Correspondence Tests (MCTs). 

 

MATRIX CORRESPONDENCE TESTS 

We used Matrix Correspondence Tests (MCT) and partial MCT (pMCT) to 

examine the determinants of the geographic distribution of genetic and phenotypic 

diversity in red-eyed treefrogs. Matrix Correspondence Tests use repeated 

randomization and recomputation to test for the correlation between two distance 

matrices by comparing the individual pairwise distance for each parameter (Manly 

1986). The randomized values provide a null distribution with which to test the 
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hypothesis of no association. Significance values were determined by comparing the 

observed and expected Z-statistic, generated by 10,000 permutations. We conducted 

pMCT when more than one independent variable was significant (P < 0.05) in the 

individual MCT. Partial MCT tests measure the association between two matrices, 

while controlling for the variation in a third. As with many partial regression analyses, 

pMCT can be biased when dependent variables are correlated (Raufaste and Rousset 

2001; Castellano and Balletto 2002; Rousset 2002). We therefore compared the 

pairwise regression and partial regression analyses and interpreted our results in light 

of this possible limitation. We carried out MCT in two parallel analyses using 

phylogeny and coloration as dependent variables. We tested the association between 

genetic distance and geographic factors (proximity and barriers) as well as two 

measures of coloration (leg and flank) and the same geographic factors. Then, we 

tested for co-variation between genetic and phenotypic diversity. We conducted MCT 

analyses at three spatial scales: including all populations (Caribbean and Pacific), 

Caribbean populations only, and Pacific populations only.  

To construct the genetic distance matrix, we calculated pairwise patristic 

distances from the Bayesian consensus topology using the program TreeEdit 1.0a10 

(Rambaut and Charleston 2001). We constructed color matrices by calculating 

individual pairwise Euclidian distances based on the combined measures of coloration, 

including: saturation, average hue and the percentage of hue for each of eight bins. 

This methodology is similar to reducing multiple, uncorrelated variables into a single 

eigenvector value in a principal component analysis. 

We used two measures of geographic distance: the first matrix contained the 

straight-line distance between all pairs of sites (proximitySTRAIGHT), the second 

matrix reflected distances of likely dispersal paths based on our knowledge of the 

physiology and habitat requirements of the species (proximityAROUND). The second 
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matrix accounted for the inhospitable habitats in the the Cordillera de Talamanca and 

the dry Pacific landscape located between Southwestern CR and Central Panama 

(Figure 3.1), both areas that are not occupied by red-eyed treefrogs.  

 We used MCTs to test for isolation due to five known topographic or 

biogeographic barriers in Costa Rica and Panama: Cordillera de Talamanca, two 

barriers among Pacific populations (Osa Peninsula and Río Parrita), and two barriers 

among Caribbean populations (Caribbean Valley Complex and Bocas del Toro; Figure 

3.1). To test for associations between genetic and phenotypic discontinuities and these 

five landscape features we created a “barrier matrix” using binary indicator variables 

(0,1) to designate whether populations occurred in the same (1) or different (0) regions 

with respect to each putative barrier. Three populations included in the mtDNA 

phylogeny (ear, siq, cah) were excluded from MCT analyses because of insufficient 

data for coloration (Table 3.2). We generated pairwise matrices and conducted 

analyses in the program R 2.4.1 (Team 2005).  

 

RESULTS 

Population Genetic Variation 

The mitochondrial fragment used for analyses was 1149 bp in length, including 

118 bp of the 16S gene and 1031 bp of NADH1. We sequenced this fragment in 125 

A. callidryas and 1 outgroup taxon, A. saltator, and identified 75 unique haplotypes 

with 178 variable sites, of which 142 were parsimony informative; no 

insertions/deletions were detected. Haplotype (h) and nucleotide (π) diversity varied  
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TABLE 3.2 Summary of within-population diversity of NADH1 sequences.  
 

Region  Population  N No. Unique  
Haplotypes 

h Po π Pi 

Northeast CR  lse  10 6 0.95 
(0.059) 

15 0.0034 
(0.0021) 

3.91 

  sra  4 2 0.50 
(0.265) 

6 0.0026 
(0.0020) 

3.00 

  til  6 2 0.73 
(0.152) 

7 0.0030 
(0.0020) 

3.53 

  ear  6 3 0.93 
(0.121) 

10 0.0032 
(0.0021) 

3.53 

Southeast 
CR/PA 

 man  8 6 0.96 
(0.077) 

32 0.0074 
(0.0043) 

8.53 

  cah  3 2 1.00 
(0.272) 

22 0.0127 
(0.0098) 

14.66 

  alm  2 1 1.00 
(0.500) 

1 0.0008 
(0.0012) 

1.00 

  chi  6 4 0.93 
(0.121) 

29 0.0093 
(0.0057) 

10.80 

Central PA  gam  6 4 0.93 
(0.121) 

13 0.0043 
(0.0028) 

4.93 

  cop  7 4 0.85 
(0.137) 

12 0.0034 
(0.0022) 

3.90 

  val  4 2 0.83 
(0.222) 

4 0.0018 
(0.0015) 

2.16 

  sfe  6 1 0.53 
(0.172) 

34 0.0157 
(0.0094) 

8.13 

Southwest CR  sie  11 5 0.80 
(0.113) 

7 0.0017 
(0.0012) 

1.89 

  cam  5 4 0.90 
(0.161) 

5 0.0022 
(0.0016) 

2.60 

  uvi  11 8 0.94 
(0.065) 

82 0.0345 0.0183) 38.54 

  pav  7 1 0.71 
(0.180) 

4 0.0009 
(0.0008) 

1.14 

Northwest CR  cab  7 3 0.75 
(0.139) 

43 0.0097 
(0.0056) 

11.21 

  car  5 0 0.93 
(0.121) 

10 0.0026 
(0.0019) 

3.00 

  ban  11 5 0.92 
(0.066) 

14 0.0038 
(0.0023) 

4.36 

Population sample sizes (N), Heterozygosity (h, with standard error), Number of polymorphic sites 
(Po), Nucleotide diversity (π, with standard error), Mean number of pairwise differences (Pi). Estimates 
from the population siq were not available due to small sample size. 
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TABLE 3.3. Pairwise φST (below diagonal) and corrected average pairwise 
difference of mtDNA haplotypes (above diagonal) for 5 regions, representing 20 
populations of Agalychnis callidryas in Costa Rica and Panama.  
 

 Northeast 
CR 

Southeast 
CR 

Central 
PA 

Northwest 
CR 

Southwest 
CR 

Northeast 
CR 

4.11 
 

3.709 
 

19.465 
 

34.043 
 

54.089 
 

Southeast 
CR 

0.327* 13.005 
 

14.879 
 

29.480 
 

49.272 
 

Central PA 0.704* 0.533* 13.019 
 

30.318 
 

47.851 
 

Northwest 
CR 

0.863* 0.755* 0.754* 6.804 
 

52.361 
 

Southwest 
CR 

0.806* 0.737* 0.735* 0.781* 20.007 
 

The diagonal element (bolded) are the average pairwise nucleotide differences between haplotypes 
within each region. * = significance P < 0.0001. 

 
 

among populations with high h (mean ± SD = 0.846 ± 0.145; range = 50 – 100 %) and 

relatively low π for most populations (mean ± SD =  0.006 ±  0.007; range = 0.0008 – 

0.00345; Table 3.3). The average number of polymorphic sites between populations 

within regions varied from 4.11 (Northeast CR) to 20.00 (Southwest CR). The large 

genetic differences among populations in the Southwest CR region was driven by 

individuals from the population Uvita (uvi; Table 3.3); excluding that population, the 

degree of polymorphism in this region is 5.6, well within the range of the other  
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Values above branches are posterior probabilities. Phylogram is rooted with the outgroup taxon, 
Agalychnis saltator. Bars are coded by geographic regions in Figure 2.1. Population and regions 
correspond to those listed in Table 3.2. 
 
FIGURE 3.2  Bayesian consensus phylogram based on 1149 basepairs of the 
NADH1 mitochondrial DNA gene fragment.  
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regions. The average number of pairwise differences among regions was greatest 

when comparing Southwest CR to all other populations (Table 3.2). Pairwise φST 

values among regions were high and significant for all comparisons, ranging from 

0.327 (Northeastern - Southeastern CR) to 0.863 (Northwestern-Northeastern CR; 

Table 3.3).  

ModelTest 3.7 showed the model GTR + I + Γ with unequal base frequencies 

(A=0.3076, C=0.22190, G=0.11182, T=0.35230; pinvar = 0.6311 and α = 2.1712). 

The Bayesian topology including all haplotypes showed an overall pattern of regional 

differentiation and well supported regional clades (bootstrap values ranged from 89 – 

99%); however, haplotypes from none of the regions formed a monophyletic group 

(Figure 3.2). The consensus topology showed an early divergence of the Pacific clade 

A (including only Southwestern CR populations) relative to the other four regions 

(Figure 3.2). Within Pacific clade A, samples from the Osa Peninsula (cam) were 

genetically distinct from other Southwestern CR populations. Haplotypes from the 

remaining regions fell within three clades (Pacific clade B, Caribbean clades A and B, 

and the Central Panama clade) united at their base by a polytomy: (Figure 3.2). Pacific 

clade B included individuals from Northwestern CR, but also four individuals from 

Uvita, the admixed Southwestern CR population. The other seven Uvita individuals 

were members of Pacific clade A (Figure 3.3). The Caribbean clade A contained 

individuals from three regions and was the only clade to contain individuals from both 

sides of the Cordillera de Talamanca. Caribbean clade B (sister to Caribbean clade A) 

contained individuals from Southeastern CR and Central Panama. The third major 

clade contained individuals exclusively from Central Panama (Figure 3.2). 
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PHENOTYPIC VARIATION 

Prior to color analyses, we conducted an homogeneity of variance test within 

populations to compare the variance in hue for individuals with high (> 30%) and low 

(≤ 30%) saturation. We performed this test only on the three populations that 

contained both high and low saturation measurements (Figure 3.3; alm: F = 13.98, P = 

0.011; pav: F = 33.51, P < 0.0001; cop: F = 12.24, P = 0.005). We detected unequal 

variance in the two groups; hue values in the high saturation group clustered tightly, 

whereas hue values for individuals with low saturation were scattered across the color 

spectrum. This validated the concern that measures of hue are unreliable when 

saturation levels are low (McKenna et al. 1999). Thus, we subsequently measured and 

analyzed hue only for individuals with saturation levels > 30%. This also permitted 

multivariate comparisons including both leg and flank color data. The total number of 

excluded individuals was small (8.2% of all individuals; average number of 

individuals per region = 3.8). 

Divergence in flank coloration was most evident between Pacific (orange) and 

Caribbean (blue) populations (Figures 3.4-3.5). Pacific populations had mostly orange 

legs, but a few individuals from the Southwestern CR region exhibited some blue and 

green (Figure 3.4). In contrast, leg coloration among Caribbean regions varied from 

blue-violet (Northeastern CR) to populations with unequal proportions of blue and 

orange (Figure 3.4). The average leg coloration among Southeastern CR/PA 

individuals was approximately 65% orange and 35% blue; in contrast Central PA 
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Saturation ranges from 0 – 100 % among sampled individuals; the dotted line at 30 % represents the 
threshold saturation level for excluding individuals in the study of flank coloration. 
 
 
FIGURE 3.3. Flank hue and saturation measures for individuals sampled at 17 
sites in Costa Rica and Panama. 
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FIGURE 3.4. The proportion of the leg and flank (area measured as percent 
pixels) that falls within eight color bins (red, orange, yellow, green, light blue, 
dark blue, purple, violet) for 125 red-eyed treefrogs in the mtDNA analyses. 
 
Individuals are represented on the horizontal axes and the proportional leg and flank color for each 
individual are represented as a vertical histogram. The color frequency graphs underscore the low 
within-population variation and high regional variation characteristic of this species. The black, bold 
lines show the three biogeographic barriers associated with flank coloration (Bocas del Toro), leg 
coloration (Caribbean Valley Complex) and both flank and leg coloration (Cordillera de Talamanca). 
The phylogenetic clades (light grey bars) show genetic admixture between neighboring regions and the 
incongruence between genetic structure and phenotypic divergence. Caribbean clade A includes one 
individual sampled from cab (dotted line). 
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FIGURE 3.5. Variation in the average (and standard error) percentage of leg 
(top) and flank (bottom) coloration measured as ‘orange’ (combined orange and 
red color bins) for 17 populations of Agalychnis callidryas. The greatest divergence 
in coloration occurs across the Cordillera de Talamanca. 
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individuals had a higher proportion of orange in the legs (~ 90 % orange /10 % blue; 

Figures 3.4-3.5).  

The discriminant function analyses correctly classified 195 of 233 (83.6 %) 

individuals to their region of origin based on leg and flank coloration alone. The 

number of misclassified individuals per population was very low (mean ± SD = 0.165 

± 0.659; range; 0 - 5). Therefore, these characters are diagnostic for the five regions 

(X2
df=16= 595.45, P < 0.0001; Figure 3.4). The largest misclassification occurred 

between Northwestern and Southwestern CR (52 % of all misclassified individuals), 

reflecting the high similarity in coloration between these two regions (Figures 3.4-

3.5).  

 

MATRIX CORRESPONDENCE TESTS: ALL POPULATIONS 

At the broadest spatial scale, the greatest determinant of the distribution of 

genetic diversity was the barrier to gene exchange imposed by the Cordillera de 

Talamanca (r = 0.513, P = 0.0021; Table 3.4). Concordant with this result, genetic 

diversity varied with isolation by geographic distance around the mountains 

(proximityAR; r = 0.428, P = 0.0021; Appendix 3.2) but not ‘across’ them, as 

measured by the straight-line geographic distance (proximityST; Appendix 3.2). These 

results emphasize the prominent role of the cordillera in determining probable 

dispersal routes in this species. Thus, we used proximityAR for subsequent MCT 

analyses for populations across the range. 

Overall, the geographic distribution of coloration was also strongly determined 

by the Cordillera de Talamanca (flank r = 0.632, P = 0.0045; leg r = 0.306, P = 

0.0045; Table 3.5). In MCT, geographic proximity was associated with both color 

measures, but those relationships lost statistical significance in pMCT that accounted 
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for the variation due to the Talamanca mountains (Table 3.5). In all cases, the effect of 

the Cordillera was much stronger for flank coloration, indicating that the mountains 

had a bigger effect on flank coloration than leg coloration (Table 3.5).  

Genetic and phenotypic diversity patterns were incongruent at the broadest 

scale; the associations between genetic distance and divergence in leg coloration (r = 

0.138,  P = 0.0045; Table 3.5) and flank coloration (r = 0.3527, P = 0.0045; Table 3.5) 

were attenuated and not statistically significant in a pMCT that accounted for the 

variation due to the isolating effects of the Cordillera de Talamanca (Table 3.5). Thus, 

the geographic distribution of both genetic and phenotypic diversity at the broadest 

spatial scale (Pacific versus Caribbean) was driven primarily by the isolating effect of 

the central mountain range for A. callidryas.  

 

MATRIX CORRESPONDENCE TESTS: CARIBBEAN POPULATIONS ONLY 

Genetic diversification of Caribbean populations was associated with 

geographic distance (r = 0.686, P = 0.0021; Table 3.4) as well isolation due to both of 

the putative biogeographic barriers, Bocas del Toro (r = 0.630, P = 0.0021) and the 

Caribbean Valley Complex (r = 0.255, P = 0.0021; Table 3.4). However, genetic 

diversity was better explained by geographic distance, and not a barrier across the 

Caribbean Valley Complex in the pMCT (r = - 0.351, P > 0.1; Table 3.4). In fact, the 

relationship between genetic and geographic distance strengthened after removing the 

variation imposed by the barrier in pMCT (Appendix 3.2). Combined, these results 

indicate that the Caribbean Valley Complex was not a historical barrier to gene flow 

for A. callidryas.  

Flank coloration was associated with a barrier at Bocas del Toro (r = 0.141, P 

= 0.0350; Table 3.5) but did not vary with geographic distance in MCT (r = 0.0759, P 

= 0.4005; Table 3.5), indicating that flank color varies regionally but is not clinal. The 
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distribution of leg coloration was associated with geographic distance (r = 0.6821, P = 

0.018; Table 3.5) and both putative Caribbean barriers, the Caribbean Valley Complex 

(r = 0.7712, P = 0.0045) and Bocas del Toro (r = 0.5257, P = 0.0045; Table 3.5). 

However, only the barrier across the Caribbean Valley Complex remained a 

significant predictor for leg coloration in pMCT when accounting for variation due to 

geographic distance (Table 3.5). Thus, leg coloration varied along a cline among 

southern Caribbean populations and regionally among northern Caribbean 

populations.  

Patterns of phenotypic and genetic diversity were incongruent among Caribbean 

populations for MCT of flank (r = 0.102, P = 0.135) but not leg coloration (r = 0.306, 

P = 0.0045; Table 3.5). However, the association between genetic distance and 

divergence in leg coloration was weakened in pMCT (r = 0.175, P = 0.0135) when 

considering the variation due to the effects of the Caribbean Valley Complex barrier 

(Table 3.5). Thus, geographic barriers had an overall larger effect on the spatial 

distribution of leg coloration for Caribbean populations (Table 3.5).  

 

MATRIX CORRESPONDENCE TESTS: PACIFIC POPULATIONS ONLY  

Genetic diversity on the Pacific versant was structured by geographic factors in 

MCT: geographic distance (r = 0.508, P = 0.0021) and isolation due to two barriers,  
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TABLE 3.4. Matrix and Partial Matrix Correspondence Tests of the 
determinants of genetic diversity (phylogeny).  
 

The genetic distance matrix (dependent variable), was estimated as pairwise patristic distances. Patterns 
of phylogenetic diversity were correlated with two measures of geographic distance (proximityST and 
proximityAR) and five specific biogeographic barriers at three spatial scales. Specific barriers tested: A 
(Osa Peninsula), B (Rio Parrita), C (Cordillera de Talamanca), D (Caribbean Valley Complex), E 
(Bocas del Toro). Significance values were determined by comparing the observed and expected z-
statistic, generated by 10000 permutations. The raw p-value for each test (praw) is provided as well as 
the P value adjusted for multiple tests, using Bonferonni correction (padj), significance indicated in bold. 
- = test not conducted. Parentheses indicate which factor was controlled for pMCT. See Appendix 2 for 
full set of analyses. 

Parameters     Region 

Dependent 

variable 

Independent 

variable(s) 

r praw padj 

Caribbean & Pacific 

Populations 

phylogeny barrier C 0.5133 0.0001 

0.0021 

  proximityST 0.1725 0.0001 0.0021 

Caribbean Populations phylogeny barrier D 0.2558 0.0001 0.0021 

  barrier E 0.6303 0.0001 0.0021 

  proximity 0.6860 0.0001 0.0021 

  barrier E 

(proximity) 

0.2343 0.0001 

0.0021 

  barrier D 

(proximity) 

-

0.3513 

1.0 

21 

Pacific Populations phylogeny barrier A 0.2555 0.0001 0.0021 

  barrier B 0.7289 0.0001 0.0021 

  proximityAR 0.5080 0.0001 0.0021 

  proximityAR 

(barrier B) 

0.0743 0.0114 

0.2394 

  proximityAR 

(barrier A) 

0.5152 0.0001 

0.0021 



  

 

 

 
 
 

 
 

TABLE 3.5. Matrix and Partial Matrix Correspondence Tests of the determinants of phenotypic diversity. 
 dependent variable independent variable(s) flank praw padj leg praw padj 

phenotype barrier C 0.632 0.0001 0.0045 0.3063 0.0001 0.0045 
 phylogeny 0.352 0.0001 0.0045 0.1382 0.0001 0.0045 
 proximityAR (barrier C) 0.028 0.0444 1.9980 -0.0250 0.8074 36.333 

Pacific & 
Caribbean 
populations 

 phylogeny (barrier C) 0.042 0.0083 0.3735 -0.0230 0.8291 37.3095 
phenotype barrier D -0.018 0.8091 36.4095 0.7712 0.0001 0.0045 
 barrier E  0.141 0.0007 0.0315 0.525 0.0001 0.0045 
 phylogeny 0.102 0.0029 0.1305 0.306 0.0001 0.0045 
 proximity 0.075 0.0089 0.4005 0.682 0.0001 0.0045 
 barrier D (proximity) - - - 0.587 0.0001 0.0045 
 barrier E (proximity) - - - 0.021 0.2167 9.7515 
 phylogeny (barrier D) 0.110 0.0020 0.0900 0.178 0.0003 0.0135 

 
 
 

Caribbean 
populations 

 phylogeny (barrier E) 0.016 0.2625 11.8125 - 0.039 0.8807 39.6315 
phenotype barrier A 0.348 0.0001 0.0045 - 0.009 0.5082 22.869 
 barrier B 0.105 0.0116 0.5220 - 0.029 0.9327 41.9715 
 proximityAR 0.089 0.0436 1.9620 0.048 0.1510 6.7950 

  
Pacific 
populations 

 phylogeny 0.166 0.0014 0.0630 - 0.024 0.8987 40.4415 
 
The dependent matrices are flank and leg coloration. Patterns of phenotypic diversity were correlated with two measures of geographic distance 
(proximityST and proximityAR) and five specific biogeographic barriers at three spatial scales. Specific barriers tested: A (Osa Peninsula), B (Rio 
Parrita), C (Cordillera de Talamanca), D (Caribbean Valley Complex), E (Bocas del Toro). Significance values were determined by comparing the 
observed and expected z-statistic, generated by 10000 permutations. The raw p-value for each test (praw) is provided as well as the P value adjusted for 
multiple tests, using Bonferonni correction (padj), significance indicated in bold - = test not conducted. See Appendix 3.3 for full set of analyses. 
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the Río Parrita (r = 0.728, P = 0.0021; Table 3.4) and the Osa Peninsula (r = 0.255, P 

= 0.0021; Table 3.4). We used pMCT to determine that genetic and geographic 

distance covaried among populations in the southern Pacific region, even after 

accounting for the effects of the Osa Peninsula (Table 2.4). However, the effects the 

other barrier (Río Parrita), separating northwestern and southwestern CR, contributed 

significantly to spatial genetic structure (Table 2.4). Flank, but not leg, coloration 

varied across the Osa Peninsula ( r = 0.348, P = 0.0045). Otherwise, neither flank nor 

leg color varied with geographic distance or across the other Pacific barrier (Table 

2.5).  

We detected incongruent patterns of genetic and phenotypic diversity for 

populations along the Pacific versant. These results were not surprising for leg 

coloration (r =-0.024; P =0.8987), a trait that exhibits minimal variation across Pacific 

populations (Figure 3.4). The weak association between flank coloration and genetic 

diversity was marginally insignificant in MCT (r = 0.1669, P = 0.063; Appendix 3).  

 

DISCUSSION 

 Our objectives were to examine the geographic determinants of genetic and 

phenotypic diversity in red-eyed treefrogs and to examine the congruency between 

these spatial patterns, at multiple geographic scales and across putative biogeographic 

barriers. Across some regions, our analyses revealed the concordant distribution of 

mtDNA diversity and coloration, implicating evolutionary history and geological 

factors as important drivers of spatial diversity patterns. However, we detected 

multiple departures from this pattern, indicating that restrictions in gene flow alone 

cannot fully explain regional diversification in coloration. A direct test for selection on 

color was not the primary objective of our study, nonetheless, our analyses reveal 
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contexts in which there is opportunity for selection. We discuss the interplay among 

evolutionary and geographic processes with respect to the three general patterns of 

diversity detected in this study: co-variation of genetic and phenotypic diversity across 

historical barriers; phenotypic similarity across genetically isolated groups; and 

phenotypic differentiation in the presence of gene flow. 

 

HISTORICAL BARRIERS AND COVARIATION OF PHENOTYPIC AND 

GENETIC DIVERSITY 

Genetic and phenotypic diversity patterns that covary across geographic 

barriers indicate that the same processes have shaped both aspects of population 

diversity, and that the interruption of gene flow associated with that barrier facilitated 

the differentiation in the two isolated populations. We found that genetic 

differentiation was associated with color differences across two biogeographic 

barriers: the Cordillera de Talamanca and Bocas del Toro.  

Matrix correspondence analyses, pairwise φST values, and the multivariate 

discriminant function analyses based on coloration all indicate population isolation 

due to the Cordillera de Talamanca (Tables 2,3). The uplift of the Cordillera de 

Talamanca occurred approximately 3 million years ago (Coates and Obando 1996; 

Kohlmann et al. 2002) and has limited gene exchange between Pacific and Caribbean 

populations of terrestrial snakes (Zamudio and Greene 1997), frogs (Crawford 2003), 

and montane salamanders (García-París et al. 2000). This mountain range extends 400 

km along the Central American continental divide and reaches its highest point of 

3800 m at Cerro Chirripó (Coates and Obando 1996; Kohlmann et al. 2002). The wet 

tropical forest typical of lower elevations is replaced by cloud forest and dry Páramo 

above 3100 meters (Kohlmann et al. 2002). These higher elevation habitats are 

inhospitable to A. callidryas and prohibit movement across the Cordillera de 
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Talamanca. Nonetheless, the barrier imposed by the Cordillera de Talamanca is not 

absolute. Our phylogenetic analyses revealed a single Pacific individual with a 

haplotype nested within Caribbean clade A (cab1; Figure 3.3), suggesting either 

incomplete lineage sorting or low levels of gene flow, current or historic, connecting 

Pacific and Caribbean populations. The observation that flank-stripe patterns were 

mixed between Northwestern and Northeastern Costa Rican populations, a trait that 

otherwise exhibited regional variation, led to the hypothesis that mountain passes at 

these lower elevations (ca. 900 m) may have historically facilitated migration through 

dispersal corridors under more lenient climatic and habitat conditions (Savage and 

Heyer 1967). Despite this potential connection, our data indicate that phenotypic 

divergence in flank coloration on either side of the mountain range was due to 

continued geographic isolation over evolutionary time scales and genetic drift. 

Limited gene flow and genetic drift (due to lower effective population sizes) 

will promote phenotypic divergence of admixed populations at contact zones 

(Rosenblum et al. 2007). Indeed, the largest regional pairwise φST (0.863) and greatest 

difference in coloration was found between the two regions separated by the 

Cordillera de Talamanca, (Northwestern and Northeastern CR) despite close 

geographic proximity (56 km) and relatively recent time since divergence (Figure 3.3). 

Leg and flank color are more differentiated across this narrow contact zone than 

between the two of the most geographically distant sites in our study, Gamboa 

(Panama) and Pavones (Southwest CR), populations that are 800 km apart (Figure 

3.5). Fine scale analyses of genetic structure using microsatellite markers are currently 

underway to examine contemporary patterns of gene flow across the Cordillera de 

Talamanca. This will determine whether phenotypic divergence is maintained by 

geographic isolation and/or by selection in the presence of gene flow (Robertson, in 

prep). 
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Flank and leg coloration covaried with divergence in mtDNA across Bocas del 

Toro (Figure 3.3, Figure 3.4). This concordance is consistent with a history of 

isolation across this smaller barrier. Prior to the formation of the Cordillera de 

Talamanca, the region of Bocas del Toro experienced a short-lived uplift, 

approximately 5- 7 million years ago. Multiple colonization events consistent with the 

uplift have been documented for other taxa (Zeh et al. 2003; Weigt et al. 2005). In 

general, we detected subtle differences in gene and color divergence compared to 

those observed across the Cordillera de Talamanca. Our results indicate that the barrier 

at Bocas del Toro is more permeable to gene flow, as evidenced by mtDNA admixture 

and less phenotypic differentiation. Admixture of mtDNA could also reflect 

incomplete lineage sorting, or temporally isolated colonization events in the Bocas del 

Toro region.  

 

PHENOTYPIC UNIFORMITY IN STRUCTURED POPULATIONS 

Restrictions in gene flow across two Pacific barriers were not associated with 

divergence in leg coloration for red-eyed treefrog populations. The pattern of 

genetically structured yet phenotypically uniform populations alert us to the possible 

roles of selection and drift in shaping these populations. Pacific populations were 

genetically structured into two clades (Northwestern and Southwestern CR; Figure 

3.2) with reductions in gene flow coincident with a geological barrier. The Río Parrita 

drains from the Cordillera de Talamanca into the Pacific Ocean and coincides with 

plate tectonic and microplate tectonic activity (Kohlmann et al. 2002), separating 

populations into northern and southern regions. The nature of this landscape barrier is 

unknown for red-eyed treefrogs, but genetic isolation could be due to the effects of 

these historical geological factors and/or dispersal limitations imposed by a riverine 

barrier. Independent of the exact nature of the barrier, the MCTs and phylogenetic 
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analyses corroborate the geographic division between northern and southern 

populations (φST = 0.781). Our analyses identified a potential contact zone centered 

between ‘plb’ and ‘uvi’: mtDNA clade admixture and the exceptionally large average 

number of pairwise nucleotide differences among haplotypes sampled at ‘uvi’ (Table 

3.3) favors the hypothesis of some migrant gene exchange between historically 

divergent northern and southern haplotypes. Thus, even low levels of gene flow, 

possibly coupled with selection favoring a similar phenotype seem to be sufficient to 

prevent phenotypic differentiation that would otherwise arise in isolation (Wright 

1937; Slatkin 1985a).  

 We detected evidence of a second Pacific barrier, the Osa Peninsula: the 

phylogenetic tree and MCT indicated that the single population from the Osa 

Peninsula (cam) forms a deeply divergent monophyletic clade within a larger 

Southwestern CR clade. The Osa Peninsula is well known for its high endemicity and 

unique distribution of plants and animals, supporting the geological hypothesis that the 

Osa Peninsula was an off-shore island that drifted into the mainland of Costa Rica 

approximately 2 million years ago (Kohlmann et al. 2002). Genetic isolation of Osa 

Peninsula populations has also been detected for other vertebrates, including frogs 

(Crawford 2003; Crawford et al. 2007) and snakes (Zamudio and Greene 1997) 

suggesting that Osa Peninsula populations are still isolated, despite the reconnection to 

the mainland. Despite this isolation, we found little evidence of phenotypic divergence 

in leg coloration, thus indicating that either selection favors a single phenotype in the 

Osa and adjacent populations, or that contemporary gene flow maintains phenotypic 

homogeneity of Pacific populations. In contrast, flank color differed across the Osa 

Peninsula barrier, indicating that our two measures of phenotype are evolving 

independently.  
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PHENOTYPIC DIVERGENCE IN THE PRESENCE OF GENE FLOW 

Phenotypic divergence of red-eyed treefrog populations was not associated 

with restricted gene flow across the Caribbean Valley complex, a series of floodplain 

valleys of the south Caribbean region, that includes, Valle de la Estrella, Valle de 

Talamanca and Llanura de Santa Clara (Kohlmann et al. 2002; Kohlmann and 

Wilkinson, 2004; Figure 3.1). Although the nature of this barrier is not well 

understood, it coincides with the northern/southern edges of geographic ranges in 

other Central American taxa (Kohlmann et al. 2002; Savage 2002) and is significant 

for red-eyed treefrog populations, as well. Phylogenetic analyses revealed historical 

gene flow between two phenotypically divergent regions, Northeastern and 

Southeastern CR (Figures 3.4-3.5), indicating that color differentiation across the 

Caribbean Valley Complex is determined by strong localized selection sufficient to 

counteract the homogenizing effects of gene flow. Leg coloration across the barrier 

ranged from entirely blue legs in the north to a mixed blue/orange coloration in the 

south (Figures 3.3-3.5). These differences may be exaggerated further by reductions in 

effective population size due to strong selection against maladapted phenotypes (Nosil 

and Crespi 2004; Nosil et al. 2005; Rosenblum et al. 2007).  

 

MODE OF SELECTION 

Our data indicate that the high degree of phenotypic regionalization in the red-

eyed treefrog reflects a number of processes, including: differential fixation (through 

selection) of variants derived from a widespread, ancestral polymorphic state; 

stochastic processes after isolation; pleiotropic effects (Schemske and Bierzychudek 

2007); and/or linkage to other traits under selection. Independent of the exact 

mechanism, our analyses revealed that different processes drive color divergence in 

different parts of this species’ range.  
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Disentangling the selective environment controlling the evolution of color is 

difficult, because several different processes could underlie divergent phenotypic 

expression (Hairston 1979; Endler 1980; West-Eberhard 1983; Hoffman et al. 2006). 

Natural selection for habitat background matching is the most common form of 

selection documented to date, including for rodents (Hoekstra et al. 2004; Hoekstra et 

al. 2005), lizards (Thorpe and Baez 1993; Thorpe 2002; Rosenblum 2006; Rosenblum 

et al. 2007; Stuart-Fox et al. 2007), frogs (Pyburn 1961; Nevo 1973; Stewart 1974; 

Hoffman and Blouin 2000; Woolbright and Stewart 2008), insects (Kettlewell and 

Conn 1977b; Sandoval and Nosil 2005; Nosil et al. 2006) and snakes (King and 

Lawson 1995). Background matching is unlikely to drive color divergence in A. 

callidryas because there are no observable sharp environmental gradients that coincide 

with breaks among regions. In addition, the flank and leg color patches measured in 

this study are not cryptic. At rest, red-eyed treefrogs lie still with their brightly-colored 

flanks and limbs tucked underneath their body; in this position the frog perfectly 

matches the leaf it sits on (Schwalm et al. 1977; Emerson et al. 1990). In contrast, 

while active at dusk and throughout the night they sit upright and expose their limbs 

and flanks. The conspicuous nature of this display suggests that color pattern is used 

as a visual signal to conspecifics and/or predators during the night when this species is 

active. 

Natural and sexual selection have contributed to color evolution in other 

species of anurans (Summers and Clough 2001; Siddiqi et al. 2004; Reynolds and 

Fitzpatrick 2007; Rudh et al. 2007). Selection for brighter, contrasting coloration is an 

effective, aposematic signal to deter predators for species in the highly toxic poison 

dart frogs of the family Dendrobatidae (Summers and Clough 2001; Siddiqi et al. 

2004). Natural selection for conspicuous coloration could be driven by predator-

avoidance success if the contrasting coloration of A. callidryas warns predators of the 
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noxious skin peptides common in this and other phyllomedusine frogs (Sazima 1974; 

Mignogna et al. 1997; Conlon et al. 2007). Geographic variation in skin peptide 

composition co-varies with differences in coloration in the Australian treefrog, Litoria 

rubella (Steinborner et al. 1996), therefore color differences could reflect geographic 

regionalization in skin peptide profiles in A. callidryas as well.  

Sexual selection can rapidly drive population divergence through female mate 

choice (West-Eberhard 1983; Masta and Maddison 2002; Summers et al. 2003; Maan 

et al. 2004; Siddiqi et al. 2004; Summers et al. 2004). Directional selection favoring a 

large and a highly contrasted color pattern has been observed in the hylid frog, Hyla 

squirelli (Buchanan 1994). In Dendrobates pumillo, mate choice experiments revealed 

that intraspecific population divergence in coloration has also evolved through sexual 

selection (Summers et al. 1999; Reynolds and Fitzpatrick 2007). Female choice can 

vary under different environmental conditions, which in turn will promote population 

divergence (Maan et al. 2004; Maan et al. 2006a; Gray and McKinnon 2007).  

For divergent sexual selection to drive color differences among A. callidryas 

populations, divergent hues must be sufficiently distinguishable under the low-

ambient light conditions when this crepuscular species is active (Lythgoe and Patridge 

1991; Endler 1992; Endler et al. 2005). In addition, A. callidryas must possess the 

visual system for discriminating hues (or differences in luminosity of hues) that are 

obvious to human observers (Endler et al. 2005). We determined that these two criteria 

are met for A. callidryas, based on microspectrophotometry to characterize the visual 

pigments in A. callidryas and tests of the contrast luminosity of the colored flank and 

legs against a natural background (Robertson 2008). In addition, we examined color 

pattern among phyllomedusine frogs using phylogenetic and community-based 

statistical analyses and found corroborating support for the hypothesis that 

conspicuous coloration in A. callidryas is (at least, in part) a social signal used for 
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species recognition (Robertson 2008). If dendrobatid frogs serve as a generalized 

model of color evolution in aposematic colored frogs, then we would predict that 

bright, contrasting coloration evolved as a response to natural predators in A. 

callidryas, but that sexual selection through female choice has driven the divergence 

among populations and that the fixation of these regional differences have been 

facilitated by geographic isolation. While the effects of genetic drift should not be 

underestimated (Hoffman et al. 2006), sexual selection provides the most compelling 

initial hypothesis of selection to be addressed with future behavioral studies. 

 

COLOR EVOLUTION IN RED-EYED TREEFROGS 

The genetic control of coloration is poorly understood in most anurans. 

However, our analyses lend support to the hypothesis that regional variation in A. 

callidryas is due to differential fixation of pre-existing color morphs rather than the 

evolution of novel coloration. Our phylogenetic analyses revealed that the Southwest 

CR region diverged first and is sister to all other regions. This clade contained 

individuals with predominantly orange legs and orange flanks; however, the two 

southernmost populations in this region (‘pav’ and ‘cam’) were the most variable of all 

Pacific populations (Figure 3.4). The presence (albeit limited) of blue coloration in 

‘pav’ and ‘cam’ informs us that the full range of coloration occurred deep in the 

phylogeny and is present across most populations, including populations that are 

historically isolated from other populations. 

 

CONCLUSIONS  

Geographic barriers have contributed to isolation of populations or groups of 

populations in the red-eyed treefrog, and the long-term nature of some of these 

barriers have resulted in genetic and phenotypic divergence among isolated regions. 
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However, not all barriers are absolute, and in cases of gene flow among regions, 

populations will evolve under selection-gene flow equilibrium. Our phylogenetic 

analyses showed admixture among regions, corroborating that both geographic 

barriers and localized selection contribute to color divergence among A. callidryas 

populations. We found that the relative roles of selection and gene flow are likely to 

differ among biogeographic regions: genetic isolation and divergent coloration appears 

to be strongest across the continental divide, moderate among Caribbean populations 

and weakest among Pacific populations. Our study underscores the fact that selection 

gradients vary across relatively small spatial scales, even in species that occupy 

relatively homogenous environments or habitats. 
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CHAPTER FOUR 

VARIABLE ROLES OF BARRIERS ON GENE FLOW AND COLOR 

PATTERN IN A POLYTYPIC ANURAN (AGALYCHNIS CALLIDRYAS) 

 

ABSTRACT  

Differences in the relative strength of gene flow, genetic drift, and natural 

selection across a species’ range can produce markedly different evolutionary 

outcomes in local populations. Here, I focused on the contemporary evolutionary 

processes operating at the geographic boundaries of mtDNA clades to understand 

mechanisms driving phenotypic divergence between some regions while promoting 

homogeneity between others. The red-eyed treefrog, Agalychnis callidryas, is a 

common and widespread Neotropical frog that exhibits strong regional differentiation 

in coloration, color pattern and body size. I used nuclear microsatellite loci to 

determine the probable number of genetic demes and estimate gene flow within and 

among 5 mtDNA clades, representing 5 biogeographic regions in Costa Rica and 

Panama. Within biogeographic regions, I detected genetic isolation with distance 

without co-varying differences in coloration. Investigation of gene flow across these 

mtDNA boundaries revealed that two of five putative geographic barriers tested in this 

study, demarcated differences in color pattern while only one barrier effectively 

limited gene flow. I determined three general patterns that characterize diversity 

across clades: genetic isolation by distance with no concordant variation in coloration; 

genetic isolation with concordant divergence in color pattern; differentiation in color 

pattern in the presence of gene flow. These results indicate that even across the range 
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of a single species, gene flow, genetic drift and selection interact in both 

complementary and contrasting ways to influence phenotypic differences.1 

 

INTRODUCTION 

 Intraspecific populations across a species’ range may not evolve at the same 

rate or be subject to the same diversifying forces (Hendry and Taylor 2004; Chaves et 

al. 2007). Thus, the degree of phenotypic divergence can vary markedly within a 

species if local selective constraints counteract the homogenizing effects of gene flow, 

or if reduced gene flow promotes divergence due to genetic drift in small populations 

(Endler 1973; Endler 1977; Slatkin 1985). The interplay between gene flow, selection 

and drift across landscape barriers can therefore result in a mosaic of phenotypically 

differentiated populations (Sandoval 1994); some may be connected by migrants while 

others may evolve in relative isolation. The long term consequences of these spatially-

varying processes can include divergent ecological adaptations and eventual speciation 

(Gray and McKinnon 2007). 

 There are several ways to study the relative effects of gene flow, drift, and 

selection (Endler 1973; Spitze 1993; McKay and Latta 2002). One approach is to test 

whether the spatial distribution of polymorphisms in genetic or phenotypic characters 

is predicted by the degree of connectivity among populations (Shaw 1996a; Richmond 

and Reeder 2002; Hoekstra et al. 2004; Nosil and Crespi 2004; Richmond 2006; 

Schemske and Bierzychudek 2007). Under a model of neutral (non-selective) 

evolution, genetic divergence increases with the geographic distance separating 

populations (Wright 1937). Color pattern polymorphisms that vary in this same way 

indicate an underlying role gene flow and drift in determining phenotype (Spitze 1993; 

                                                
1 KEYWORDS: Agalychnis callidryas, anuran, Central America, divergent selection, polymorphism, 
balancing selection 
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McKay and Latta 2002). In contrast, when the spatial distributions of genetic and 

phenotypic diversity are incongruent, selection is often invoked as a possible 

mechanism driving this discordance.  

In this study, I examined the relative roles of contemporary gene flow, 

geographic barriers, selection and drift within and across genetic demes. The red-eyed 

treefrog, Agalychnis callidryas, is a common Neotropical frog broadly distributed 

from Central Mexico to Colombia (Savage 2002). It is a generalist species that occurs 

from sea level to approximately 1900 m elevation and can be found associated with 

most types of standing water (Savage 2002). Agalychnis callidryas exhibits striking, 

regional phenotypic differentiation (Savage and Heyer 1967; Savage 2002; Robertson 

and Robertson 2008). Despite striking regional differences in color, there are no 

obvious environmental differences to explain this phenotypic diversity; sites vary in 

habitat, elevation, and visual environment. It is unlikely that color variation among 

regions results from differences in localized ecological selection, as observed for 

many polytypic species that vary along stark environmental gradients (Kettlewell and 

Conn 1977; Hoekstra et al. 2005; Rosenblum 2006). 

 Interest in phenotypic diversity and mode of selection on color patterns stems 

from the assumption that different phenotypes confer differences in survival and 

fitness, thus informing us of processes leading to differentiation and speciation 

(Kettlewell and Conn 1977; Endler 1980; Gray and McKinnon 2007; Kingsolver and 

Pfennig 2007). Color pattern polymorphisms in amphibians (including cryptic and 

aposematic coloration) are known to evolve through natural and sexual selection 

processes (Nevo 1973; Milstead et al. 1974; Hoffman and Blouin 2000; Summers and 

Clough 2001; Summers et al. 2003). I previously discussed the possible modes of 

selection underlying color pattern in red-eyed treefrog populations (Robertson and 

Zamudio, in review) and here I focus specifically on the possibility that phenotypic 
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diversity is maintained due to differential mating success, and thus evolved by sexual 

selection. Color pattern as a visual signal in mate recognition and choice is shown to 

evolve through sexual selection in brightly colored diurnal frogs (Summers et al. 1999; 

Siddiqi et al. 2004; Reynolds and Fitzpatrick 2007) as well as crepuscular/nocturnal 

frogs (Buchanan 1994), indicating that the visual system of many anurans adequately 

discriminates color pattern, even in low light environments (Hailman and Jaeger 

1974). I chose to examine regional diversification in color pattern as this trait is related 

to reproductive isolation in many anurans, and likely to evolve through divergent 

selection in the face of reduced gene flow. 

 Previous study of the phylogenetic relationship among red-eyed treefrog 

(Agalychnis callidryas) populations in Costa Rica and Panama uncovered five 

mitochondrial DNA clades, with some admixture among neighboring lineages 

(Robertson and Zamudio, in review). While mitochondrial DNA is useful for detecting 

the historical processes that shape population diversity, there are limitations to 

inferences based on mtDNA alone, including the relatively slower rate of evolution 

and exclusively maternal inheritance of the marker (Avise 1999). In addition, 

mitochondrial DNA may underestimate contemporary genetic structure, especially for 

taxa exhibiting sex-biased dispersal. This study extends previous work by focusing at 

finer geographic scales and using multiple, unlinked nuclear markers, which elucidate 

contemporary population dynamics. Specifically, the objective of this study was to 

examine the underlying roles of gene flow and migration in maintaining relative 

phenotypic similarity within regions yet promoting diversification across regions. I 

compared levels of genetic divergence to spatial patterns of phenotypic diversity and 

tested the null hypothesis that phenotypic divergence is explained by limits to gene 

flow. Concordant spatial patterns of gene flow and phenotypic diversity supports the 

hypothesis that evolutionary history, migration, and geographic factors primarily 
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determine geographic variation. Departures from this pattern would indicate that 

coloration is adaptive and could evolve through divergent selection and/or genetic 

drift.  

 

MATERIAL AND METHODS 

Field Sampling 

Previous research identified populations of A. callidryas in Panama and Costa 

Rica as belonging to five genetic regions (Robertson and Zamudio, in review). Three 

of these regions are located on the Caribbean versant of Isthmus of Central America, 

east of the central Cordillera de Talamanca (Northeastern CR, Southeastern CR/PA, 

and Central PA; Figure 4.1, Appendix 4.1). The other two regions are located on the 

Pacific versant, west of the Talamancas (Northwestern CR and Southwestern CR; 

Figure 4.1, Appendix 4.1). I detailed the population and regional differences in 

phenotypic characters in previous analyses (Robertson and Robertson 2008). Thus, in 

this study I focus on phenotypic changes with gene flow and migration patterns within 

and across five mtDNA clades that occupy unique biogeographic regions. I tested the 

isolating effect of putative barriers across each of five zones (Zones A – E; Figure 

4.1). 

I conducted field surveys during the breeding seasons (May – August) of 2003, 

2004, and 2005. At each site, I captured 10 – 26 individuals and collected data on 

body size (snout to vent length and mass) and coloration. I documented coloration by 

taking digital photographs of every individual using a Nikon Coolpix 5700 against a 

background black-white-grey card for color standardization. For each individual, I 

photographed three areas of the body to capture the full range of coloration and 

pattern: 1) posterior surface of the thighs, 2) left flank and 3) right flank of the body.  



  

 

 

 
The Cordillera de Talamanca isolates the Pacific and Caribbean versants on Costa Rica and Panama. The shading of topological relief corresponds to 
elevation: dark grey (>1300 m), light grey (300 – 1299), white (0 – 300). Elevation higher than 1300 represents unsuitable habitat that exceeds the 
physiological tolerance of A. callidryas. Dry forest habitat between Soutwestern CR and Central Panama restricts red-eyed treefrogs dispersal along the 
Pacific coast of Panama. Five zones of interest shown A – E, population numbers correspond to Appendix 4.1. 
 
FIGURE 4.1. Sampling localities for 20 populations of Agalychnis callidryas in five biogeographic regions.  
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At each sampled population, I also collected tissue samples for genetic analyses 

(Appendix 4.1). 

Up to three individuals from eight of the sampled populations were preserved 

as vouchers and deposited at the Cornell University Museum of Vertebrates (CUMV: 

14093,14206-13,14228,14230-35) and the University of Costa Rica, San José (UCR 

accession numbers: 19100-101, 19213). Photographs have also been archived at the 

CUMV.  

 

Quantifying Color Pattern and Differentiation 

 The methodology implemented for measuring and quantifying color pattern is 

described in detail in Robertson and Robertson (2008). Briefly, light intensity was 

standardized for photographs in Adobe Photoshop with reference to a grey-black-

white card present in the background of photographs. The color-corrected photographs 

of the dorsal aspect of the leg were imported in ImageJ for analyses in the Hue, 

Saturation, Brightness (HSB) realm. ImageJ generates a frequency histogram of Hue 

of every pixel along the 0 – 256 color spectrum. I transformed these data into the more 

conventional 360 degree color spectrum and consolidated the data into 8 bins (each 45 

degrees). I calculated the percent and hue (degree) of each bin. Color bins were named 

according the central hue of that bin (red, orange, yellow, green, light blue, dark blue, 

purple, violet). For example, the red bin encompasses the range between +/- 22.5 

degrees, which subjectively includes the range from violet-red through pure red to red-

orange and the orange bin is centered on + 45 degrees and includes shades of orange.  

 Previous analyses determined that leg coloration of red-eyed treefrogs can be 

defined broadly as ‘red’ and ‘blue’ encompassing morphs that are entirely red to part 

red/part blue to entirely blue (Robertson and Robertson 2008). For these analyses, I 

considered ‘red’ as including the violet, red and orange bins and ‘blue’ as including 
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the light blue, dark blue, and purple bins. Yellow and green are excluded because 

those colors contribute minimally to color differentiation among individuals and 

regions (Robertson and Robertson 2008). 

 For each individual, I calculated three color parameters: composite red hue, 

composite blue hue, and the percentage of leg that was red. Composite measures were 

the average of three red and three blue bins weighted by the percent contribution of 

each. To to determine if the three color parameters varied within and across zones, I 

conducted ANOVAs for each parameter separately. The probability of a Type 1 error 

was adjusted for multiple comparisons using Tukey HSD.  

 

Microsatellite characterization and genotyping 

 I constructed a partial genomic library to isolate microsatellite repeat motifs for 

A. callidryas. I used QIAGEN DNeasy kit to extract DNA from three individuals for 

microsatellite construction. DNA was digested with two restriction enzymes, Alu I and 

Hae III, and ligated to a double-stranded SNX linker. I probed DNA fragments with 

di-, tri-, and tetra biotinylated oligonucleotides and captured with streptavidin-coated 

magnetic beads, followed by polymerase chain reaction (PCR) amplification using the 

SNX primer and Vent exo-polymerase for 35 cycles under the following conditions: 

95ºC for 50 sec; 60º C for 60 sec; 72º C for 90 sec. The product was electrophoresed 

on a 1% Agarose gel and purified using Qiaquick PCR purification kit. The PCR 

product was then digested with Nhe 1 and ligated to pUC 19 cloning vector for 

transformation in Epicurian Coli XL1-Blue MRF’ supercompetent cells. I sequenced 

colonies containing microsatellites with M13 forward and reverse primers using Big-

Dye Terminator-Cycle Sequencing Kit (Applied Biosystems) on an ABI 3100 Genetic 

Analyzer (Applied Biosystems, Foster City, California). I tested 34 microsatellite 
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primer pairs, of these 6 were polymorphic and amplified across all populations in the 

study (Appendix 4.2).  

 I digested toe-clips in proteinase K (20 µg/ml) and extracted genomic DNA 

using 5% Chelex solution (cite), incubated for 120 min at 55ºC and followed by 

denaturation at 90ºC for 10 min. Six microsatellite loci were amplified in touchdown 

PCR reactions using a MJ Research DNA Engine Thermocycler. PCR conditions 

consisted of an initial 90 ºC denaturation for 2 minutes, followed by 35 amplification 

cycles of denaturation at 94 ºC for 50 sec, annealing (ranging from 64 – 56ºC or 65 to 

54ºC; Appendix 4.1) for 60 sec, extension at 72 ºC for 60 sec, and a final 5 minute 

extension at 72 ºC. The annealing stage in the touchdown program decreased by 2ºC 

until it reached 56ºC/54ºC (6 cycles) and completed the remaining 29 cycles at the 

lowest annealing temperature. I performed PCR in 10µl reaction volumes containing: 

1X Roche reaction buffer without MgCl2, 1 mM MgCl2 (0.75 mM for ACA127 and 

ACA29), 0.2µM of each PCR primer, 0.2 µM dNTPs, 2.5U Roche Taq (except ACA 

36 which contained 2.5U Platinum Taq), and ~ 50 ng of DNA. The forward primer 

was 5’ labeled with a fluorescent dye (NED, 6-FAM, PET, VIC; Appendix 4.2) and 

amplicons were multiplexed in two groups and electrophoresed on an Applied 

BioSystems 3730xl DNA Analyzer. I assigned fragment sizes by comparison with a 

LIZ 500bp ladder and binned alleles into discrete size categories according to 

microsatellite repeat motif using Genemapper v3.5 software (Applied Biosystems). 

   

Genetic diversity and differentiation 

 I calculated allelic diversity and observed and expected heterozygosities for 

each locus in FSTAT (Version 2.1), and tested for significant deviation from Hardy-

Weinberg Equilibrium (HWE) accounting for unequal sample sizes with 2520 

permutations of the data across loci. Likewise, I tested for linkage disequilibrium (LD) 
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based on 300 permutations. Significance for both HWE and LD was determined at ∝= 

0.05 after Bonferonni correction. I used standard population genetic analyses to 

characterize population structure.  Pairwise FST estimates between all populations were 

estimated in FSTAT (following Weir and Cockerham 1984). I conducted an analysis 

of molecular variance (AMOVA) to determine the genetic variation among and within 

groups, in Arlequin v.2 (Schneider et al. 2000). I tested for a significantly positive 

correlation between genetic and geographic distance (isolation by distance: IBD) 

correcting for a correlation among points with a Mantel test in Alleles in Space (Miller 

2005; Miller et al. 2006). Geographic distances were derived from UTM global 

positioning system coordinates.  

 I used Bayesian Inference implemented in Structure 2.0 (Pritchard et al. 2000) 

to estimate the number of genetic demes represented by sampled individuals and to 

evaluate the degree of admixture among them. Structure utilizes a Markov chain 

Monte Carlo (MCMC) algorithm to find the posterior probability that individuals 

belong to each of K clusters assuming linkage equilibrium and HWE across multiple, 

unlinked loci. I applied an admixture model with correlated allele frequencies, alpha 

max = 10.0 for three datasets: Caribbean only, Pacific only, and the Caribbean/Pacific 

populations located on the continental divide (across Zone C).  Each run consisted of 3 

million generations, following a burn in of 1 million generations. The average 

maximum likelihood values, for each of 25 runs (K=1 to K=15: Caribbean; K=1 to 

K=9: Pacific; and K=1 to K=9: Continental Divide) were plotted to visually determine 

the plateau in likelihood scores. I also calculated ∆K to identify the greatest rate of 

change between each subsequent K (Evanno et al. 2000). Based on these two methods, 

I chose the most likely values of K for each dataset and plotted the assignment score 

for all individuals for a range of most probable K demes. I used these methods to 

inform the most probable number of demes and whether individuals within each deme 



  

120 

 

are a randomly mating population. Assignment profiles for 25 runs were coalesced in 

Clumpp (Jakobsson and Rosenberg 2007) for the final deme assignment graph.  

   

Role of geographic barriers 

 I tested the isolating effects of five barriers to dispersal previously shown to 

reduce gene flow among regions (Robertson and Zamudio, in review). Geographic 

barriers can interrupt gene flow because of physical limitations to dispersal or 

divergent selective environments that limit survival and/or reproductive success of 

migrants (Nosil et al. 2005). Thus, in general, barriers can be physical landscape 

features (e.g., mountains, bodies of water) or climatic and/or environmental 

characteristcs (Grinnell 1914, 1924; Holdridge 1947; Kohlmann et al. 2002). In 

Central America, the Cordillera de Talamanca, the large mountain range extending 

200 km along the continental divide isolates Pacific and Caribbean populations in a 

number of vertebrate and invertebrate taxa (Zamudio and Greene 1997; García-París et 

al. 2000; Kohlmann et al. 2002; Crawford 2003). The non-continuous distribution and 

presence of wet or dry tropical forest has also been implicated in isolating Central 

American populations (Crawford et al. 2007) . To test whether biogeographic regions 

structured phenotypic and/or genetic diversity patterns on contemporary time scales, I 

used Matrix Correspondence Tests.  The hypotheses regarding the nature of each 

barrier are discussed in previous papers (Crawford et al. 2007; Robertson and 

Robertson 2008).  

 Matrix Correspondence Tests (MCT) and partial MCT (pMCT) can test for 

associations between genetic and phenotypic divergence by using repeated 

randomization and permutation to test for the correlation between two distance 

matrices. The randomized values provide a null distribution with which to test the 

hypothesis of no association. Significance values were determined by comparing the 
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observed and expected Z-statistic, generated by 10,000 permutations in the program R 

ver 1.8-5 using the package Vegan (Oksanen et al. 2007). I conducted pMCT when 

more than one independent variable was significant (P < 0.05) in the individual MCT. 

Partial MCT tests measure the association between two matrices, while ‘removing’ the 

variation due to a third variable. As with many partial regression analyses, pMCT can 

be biased when dependent variables are correlated (Raufaste and Rousset 2001; 

Castellano and Balletto 2002; Rousset 2002). I therefore compared the pairwise 

regression and partial regression analyses and interpreted our results in light of this 

possible limitation.  

 I conducted MCT and pMCT at two geographic scales: within regions and 

across putative barriers (Zones A – E). For all analyses, I first determined the effects 

of geographic distance and barriers on genetic diversity. Then, I tested the association 

between coloration (independent variable) and geographic distance, genetic distance, 

and possible barriers. Partial analyses were computed so that the association between 

coloration and gene flow could be assessed while taking into account the variation due 

to geographic factors.  

 I computed the pairwise matrix Euclidean distance of color for individuals in R 

based on the color parameters discussed above. I used pairwise estimates of FST for 

measures of genetic divergence among populations (represented by a matrix of 

linearized FST values). Because migration rates may be unequal, I implemented 

asymmetrical MCT for this comparison. Geographic distance was represented by a 

matrix of linear distances among populations based on UTM coordinates. A 

dissimilarity matrix for each biogeographic barrier was represented by a binary matrix 

with 0 representing populations on the same side of the barrier and 1 for populations 

located on the opposite sides of the barrier. 
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 The MCT and pMCT allow for specific tests of the contributions of gene flow, 

geographic distance and landscape barriers under a general framework of genetic IBD. 

Positive correlations between color pattern, gene flow and geographic distance provide 

evidence that gene flow/genetic drift equilibrium processes largely drive coloration. 

Alternatively, selection for an optimal trait is inferred in cases where populations are 

phenotypically similar but gene flow is restricted. Finally, phenotypic divergence in 

the presence of gene flow implicates the role of regional selection.  

 

RESULTS 

Phenotypic Divergence 

 I detected color differentiation across three of the five contact zones analyzed 

(C, A, D; Table 4.1) and no differentiation across two zones (B and E; Table 4.1, 

Figure 4.3). Zones C, A, and D correspond to the Cordillera de Tilarán, Golfo Dulce, 

and Talamanca Valley, respectively; the characteristics and significance of each 

barrier are discussed later. Zone C exhibited maximal divergence: individuals from 

population 6 were entirely red while individuals from population 9 were entirely blue 

(Figure 4.3). Zones A and D contained individuals that exhibited both red and blue 

coloration, but differed in the percentage and average red and blue hue (Table 4.1, 

Figure 4.3).  

 

Gene Flow Within And Between Regions 

 Allelic diversity per locus ranged from 7 – 53 and averaged 30.3 across loci 

(Appendix 4.2). Mean heterozygosity was 0.487 with locus-specific estimates ranging 

from 0.194 to 0.672 (Appendix 4.2). Overall, I detected no consistent deviation in 

HWE or LD following Bonferonni correction. 
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TABLE 4.1. Color pattern differences across five zones.  
 
ZONE % RED HUE blue HUE red 

 1 2 LS 

means 

1 2 LS 

means 

1 2 LS 

means 

A 98.16 

(2.79) 

74.06 

(2.65) 

24.17 

(13.99) 

- - - 24.14 

(5.2) 

-1.96 

(1.96) 

26.11 

(3.74) 

B 99.99 

(2.13) 

99.97 

(1.89) 

0.02 

(2.85) 

- - - 32.09 

(4.18) 

35.19 

(4.83) 

3.09 

(6.39) 

C 99.97 

(1.53) 

0.31 

(1.83) 

99.63 

(1.09) 

- - - 22.10 

(5.34) 

-19.99 

(4.87) 

42.10 

(7.23) 

D 3.29 

(2.72) 

76.38 

(2.65) 

73.08 

(3.81) 

215.91 

(3.73) 

238.89 

(3.64) 

22.97 

(5.51) 

-37.92 

(2.93) 

7.01 

(2.78) 

44.93 

(4.04) 

E 83.54 

(3.14) 

86.46 

(3.14) 

2.92 

(4.65) 

238.21 

(6.03) 

216.00 

(5.68) 

22.21 

(8.9) 

1.81 

(1.63) 

10.80 

(1.50) 

8.90 

(2.21) 

Each zone contrasts two populations (1 vs 2), each located on either side of a putative barrier. Three 
color parameters examined were: percent of leg colored red (% RED), weighted average blue hue (HUE 
blue) in degrees (std error), and weighted average red hue (HUE red) in degrees (std error). The 
LSmeans (std error) compared color differences between the two populations for each parameter. The 
maximal divergence possible for % red was 100 and the maximal possible HUE differences were 134 
degrees. If both populations did not contain blue coloration, then tests were not conducted (-). The 
probability of a Type 1 error was adjusted for multiple comparisons using Tukey HSD.  

 

 I detected significant population genetic structure both among populations and 

among study regions: in AMOVA, population explained 8% of genetic variance and 

region explained 22% of genetic variability. The distance-based estimate of genetic 

divergence (FST) corroborated the findings based on AMOVA.  I detected significant 

restrictions in gene flow in 204 of 210 population pairwise comparisons (Appendix 

4.3). Overall, significant pairwise FST values were lowest within regions (0.018 – 

0.0189) and highest among regions (0.027 – 0.497; Table 4.3). I detected genetic 



  

124 

 

isolation with geographic distance at all three spatial scales in the study: across all 

populations (r = 0.3436, P = 0.0009); among Pacific populations (r = .0981, P = 

0.0009); and Caribbean populations (r = 0.3922, P = 0.0009). 

 At the broadest spatial scale, Bayesian clustering revealed strong 

differentiation between Pacific and Caribbean populations with the exception of 

localities across Zone C.  Structure divides five sampling localities into three genetic 

clusters, but with some admixture. 

 Structure analyses of Pacific populations revealed three demes (Figure 4.2). 

Along the Pacific, three demes showed a generalized divide between Northwestern 

and Southwestern populations, with some admixture between populations 8 and 9. The 

single population sampled from the Nicoya Peninsula (7) was genetically isolated 

from all other populations, consistent with FST estimates. I detected significant 

admixture at the centrally located population (4), with membership of individuals to 

both Northwestern and Southwestern demes.  

 Caribbean populations belonged to five demes (Figure 4.3). Among 

Northeastern CR populations, I detected a north-south clinal distribution in the 

membership frequency of two demes. The northern-most population (8) contained 

individuals that almost exclusively were assigned to a single deme, whereas 

neighboring populations (9 and 10) contained individuals of mixed ancestry.  
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Upper panel. Structure plots of Pacific and Caribbean populations revealed K number of demes 
uncovered for Pacific populations (K = 3) and Caribbean populations (K = 5) and shows admixture 
among regions. Bracketed arrows indicate populations examined across Zones (A – E). Lower panel. 
Skeletal phylogram based on Bayesian phylogenetic analyses of the mtDNA gene, NADH1, shows five 
regional clades with admixture among most neighboring lineages (Robertson and Zamudio, in prep). 
This study examined the isolating effects of geographic barriers and gene flow in determining 
phenotype across these admixed zones, indicated above each clade (Zones A– E).  
 
FIGURE 4.2. (Upper panel) Structure plots of Pacific and Caribbean 
populations.  (Lower panel) Skeletal phylogram based on Bayesian phylogenetic 
analyses of the mtDNA gene, NADH1.  
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Three parameters of coloration were measured in this study: percent of red, observed as the LS means + 
std error (open circles); average weighted blue hue (blue squares); and average weighted red hue (red 
squares). Each of five zones (A – E) cross genetic demes and are shown in brackets. Color profiles for 
all individuals contained in the two populations in closest geographic proximity across each zone are 
shown as a pie chart of the percentage of color in each of eight bins. Dashed lines divide the population 
pairs according to genetic deme. Photograph of the dorsal aspect of the legs for one representative 
individual illustrates the range of color variation observed for Agalychnis callidryas. 
 
FIGURE 4.3. The geographic distribution of phenotypic variation across all 
populations.  
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Southeastern CR populations also exhibited a clinal distribution in membership 

frequency of two primary demes. These two Caribbean CR demes exhibited limited 

admixture into neighboring northern and southern lineages. Panama was divided into 

two demes: one deme almost exclusively contained the southernmost population (21) 

and showed high admixture with Southeastern CR; the other deme contained three 

Panamanian populations with near-equal membership frequency.  

   

Association Among Genes, Color Pattern And Geographic Factors: Matrix 

Correspondence Tests 

 Within regions, estimates of genetic differentiation were positively correlated 

with geographic distance, indicating that populations are genetically structured and in 

drift-migration equilibrium (Table 4.2). Color pattern was relatively homogenous 

within regions and did not correlate with estimates genetic or geographic distance for 

four of five regions (Table 4.2). The exception occurred in Southwestern CR where 

color varied with geographic distance in pMCT (Table 4.2). 

 I detected genetic isolation by distance across all five zones as well as an 

isolating effect of a barrier across Zone C (Table 4.3). For Zone C color differences 

were associated with restrictions to gene flow due to a barrier, rather than to 

geographic distance (Table 4.3). The determinants of color across the other four zones 

varied, and included geographic distance (Zone A), a barrier (Zone D), genetic 

distance  (Zone B), and ‘none’ of the variables tested in this study (Zone E; Table 4.3). 

 Graphical representation of the correlations estimated in MCT reflects the 

magnitude of genetic and phenotypic divergence for each zone comparison. For four 

zones, estimates of gene flow did not deviate significantly from a null model of 

genetic IBD generated from pairwise comparisons within regions (Figure 4.4), 

exemplifying the conclusion that barriers did not impede gene flow across these zones.  
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TABLE 4.2. Matrix and Partial Matrix Correspondence Tests of the 
determinants of genetic diversity and color pattern within five genetic demes.  
 

Independ.  
variable 

Depend. 
variable 

WITHIN REGIONS 

  Northeast CR Southeast CR Panama Northwest CR Southwest CR 

FST  KM 0.470 (0.0001) 0.851 (0.0001) 0.778 (0.0001) 0.996 (0.0001) 0.612 (0.0001) 

color  FST 0.047 (0.0920) 0.036 (0.0910) 0.045 (0.1168) 0.0808 
(0.0290) 

0.245 (0.0001) 
 

 KM 0.042 (0.0610) -0.023 
(0.6830) 

0.098 (0.0229) 0.0525 
(0.0750) 

0.234 (0.0001) 

Partial       

color FST (KM) . . . . 0.131 (0.0100) 

 KM (FST) . . . . 0.110 (0.0080) 

 
Significance values were determined by comparing the observed and expected z-statistic, generated by 
10000 permutations. Parentheses indicate which factor was controlled for pMCT. Alpha for individual 
tests were adjusted for multiple comparisons using Bonferonni procedure (adjusted α = 0.008). 
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TABLE 4.3. Matrix and Partial Matrix Correspondence Tests of the 
determinants of genetic diversity and color pattern across zones.  
 

 
Significance values were determined by comparing the observed and expected z-statistic, generated by 
10000 permutations. Parentheses indicate which factor was controlled for pMCT. The factor(s) 
determining color differences across zones indicated for each zone. Alpha for individual tests were 
adjusted for multiple comparisons using Bonferonni procedure (adjusted α = 0.0023). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Independent  
Variable 

Dependent 
Variable 

ZONE A ZONE B ZONE C ZONE D ZONE E 

FST KM 0.724 
(0.0001) 

0.938 
(0.0001) 

0.931 
(0.0001) 

0.940 
(0.0001) 

0.997 
(0.0001) 

 barrier 0.598 
(0.0001) 

0.08 (0.133) 0.903 
(0.0001) 

0.866 
(0.0001) 

0.958 
(0.0001) 

       
Color FST 0.207 

(0.0001) 
0.351 
(0.0001) 

0.647 
(0.0001) 

0.515 
(0.0001) 

0.058 
(0.035) 

 KM 0.348 
(0.0001) 

0.220 
(0.0001) 

0.592 
(0.0001) 

0.610 
(0.0001) 

0.060 
(0.037) 

 barrier 0.288 
(0.0001) 

0.111 
(0.0062) 

0.734 
(0.0001) 

0.621 
(0.0001) 

0.064 
(0.049) 

Partial       
FST KM (barrier) 0.597 

(0.0001) 
. 0.835 

(0.0001) 
0.881 
(0.0001) 

0.984 
(0.001) 

 barrier (KM) -0.363 
(1.0) 

. 0.763 
(0.0001) 

-0.722 
(1.000) 

-0.642 
(1.00) 

       
Color FST ( KM ) -0.069 

(0.956) 
0.316 
(0.0001) 

0.418 (0.0 
01) 

-0.2164 
(1.000) 

. 

 Barrier (KM) -0.125 
(0.992) 

. 0.593 
(0.0001) 

0.1483 
(0.001) 

. 

 Barrier ( FST ) 0.210 
(0.0001) 

. 0.395 
(0.0001) 

0.4088 
(0.001) 

. 

 KM ( FST ) 0.293 
(0.0001) 

-0.222 
(1.000) 

-0.132 
(1.000) 

0.431 (0.001) . 

 KM (barrier ) 0.236 
(0.0001) 

. 0.038 
(0.0001) 

0.018 (0.268) . 

Factor(s)  KM FST FST , barrier barrier None 
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Linear regression of within-region comparisons (black squares) shows a positive relationship with FST 
and geographic distance (top panel) but with no relationship between phenotype and geographic 
distance (bottom panel). Top panel. Pairwise comparisons across zones (grey squares) show larger than 
expected FST for only Zone C. Bottom panel. Population pairwise comparison of phenotypic 
divergence within regions (black squares) with standard error (dashed lines) shows that three zones 
exhibit high phenotypic divergence from expectations based on within-region comparisons (Zones A, 
C, D).  
 
 
FIGURE 4.4. Relationship between genetic, phenotypic and geographic distance 
within regions and across zones.  
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Zone C is the single exception: FST was higher than predicted under a model of IBD 

for the geographic distance between sites (Figure 4.4). I did detected significant 

deviation in the magnitude of phenotypic differentiation across three zones. 

 

DISCUSSION 

 I examined genetic and color pattern differentiation within and across regions 

to test the hypothesis that restrictions to gene flow due to geographic factors 

(geographic distance and barriers) underlie spatial patterns of phenotypic diversity. 

Inferences of fine scale gene flow patterns using multiple, unlinked genomic markers 

revealed that red-eyed treefrog populations are in genetic equillibrium within 

biogeographic regions and that gene flow across admixed mtDNA clades was 

restricted due to effects of a one of five barriers tested in this study. Within regions, 

we detected genetic IBD but with no concordant change in phenotype indicating that 

1) processes other than gene flow and drift favor phenotypic homogeneity within 

regions 2) regional differentiation is due primarily to processes acting at deme 

boundaries. 

 Evaluation of contemporary patterns of gene flow in light of the historical 

barriers that determine population structure allows us to discern the effects of 

dispersal, lineage sorting, and recent introgression on the distribution of genetic and 

phenotypic diversity. The inferred patterns of genetic structure based on nuclear and 

mitochondrial DNA differed across red-eyed treefrog populations, underscoring the 

importance of looking across evolutionary time scales. Mitochondrial DNA is useful 

for detecting the historical processes that shape populations (Avise 1999), but can 

underestimate contemporary genetic structure when populations have become 

genetically isolated over recent time scales. Alternatively, isolating barriers to 

historical gene flow can be broken down with changes in climate and/or landscape 
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features. The inferences based on mtDNA and ncDNA revealed several instances of 

discordance consistent with both of these scenarios.  

 In one case, I detected mtDNA haplotype sharing among geographic regions 

that were found to be genetically isolated using ncDNA estimates of gene flow. The 

Northwestern CR region is one of several biogeographic zones known for its high 

species endemicity due geographic isolation imposed by dry forest (Savage 2002). 

Northwestern CR population 7 was contained in the same mtDNA clade as other 

Northwestern CR and Northeastern CR populations (Robertson and Zamudio, in 

review; Figure 4.2). However, analyses using microsatellite loci revealed this 

population is genetically isolated from all other sample localities (Appendix 4.3, 

Figure 4.2). Shared mtDNA haplotypes and the incomplete lineage sorting of 

Northwestern CR population 7 most likely reflect historical rather than contemporary 

dispersal patterns.  Persistent isolation over time can lead to differentiation in a suite 

of behavioral, genetic, and phenotypic traits (Gillespie et al. 1994; Shaw 1996b, a; 

Jordan et al. 2003); thus the geographic isolation detected for the Northwestern CR 

population 7 has important implications for potential incipient speciation. 

 In two cases, I detected discordance between ncDNA and mtDNA 

characterized by mtDNA divergence but high ncDNA gene flow, indicating that 

historical geographic barriers that resulted in early divergence have likely been broken 

down, permitting recent gene flow. For instance, Osa Peninsula individuals 

(Southwestern CR population 2) formed a well-supported mtDNA clade distinct from 

other Southwestern CR populations (Robertson and Zamudio, in review), yet this 

population was not well-differentiated based on microsatellite data (Figure 4.2; 

Appendix 4.3).  In a second case, the phylogenetic reconstruction of mtDNA 

haplotypes supported a north-south divide among Pacific groups, with limited 

admixture between the two most proximate populations (Northwest 5 and Southwest 
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4; Figure 4.3). Analyses of microsatellite data, however, indicated that high gene flow 

(no effects of a barrier) currently connects these two populations (Figure 4 .3, Table 

4.3).  

 In light of the historical mechanisms responsible for genetic structure at broad 

spatial scales, we can approach finer-scale questions through focus on the covariation 

of phenotypic and genetic diversity with respect to putative geographic barriers to 

gene flow. Phenotypes of A. callidryas are patchily distributed across this species’ 

range and just as several phylogeographic scenarios underlie the discordance between 

mtDNA and ncDNA, multiple evolutionary mechanisms are likely responsible for 

high levels of phenotypic diversity. I examined phenotypic/genotypic covariance 

under the theoretical expectation that covariation implicates a lack of strong sexual 

and/or natural selection. This framework, tested at multiple spatial scales and across 

multiple putative barriers, allows us to examine the extent to which the relative roles 

gene flow, selection and drift varies across populations.   

 Within regions, genetic divergence varied with geographic distance. 

Individuals within Caribbean and Pacific versants exhibited genetic isolation by 

distance (Table 4.4) and a clinal change in deme membership estimated by the 

assignments in the Stucture analyses (Figure 4.3). This indicated a stepping stone 

pattern of migration within regions. In contrast, color pattern was relatively 

homogenous within regions: that is, I observed no change in phenotype with either 

genetic or geographic distance. These results indicate that color pattern does not 

evolve through gene flow processes alone. Overall, phenotypic similarity within 

regions points towards the maintenance of a single phenotype through stabilizing 

selection and/or through the homogenizing effects of gene flow that counter any 

localized divergent selection. The exception occurred in Southwest CR where I 

observed an association between restrictions in gene flow and color differentiation, 
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indicating the evolutionary processes driving phenotypic diversity within the 

Southwestern CR region is distinct from the other regions in the study. 

 The discontinuous array of phenotypes across study sites was not solely due to 

the isolating effect of barriers nor the result of a similar evolutionary process. Instead 

the geographic structure of genetic and phenotypic variation indicates heterogeneity in 

the relative effects of barriers, gene flow, selection, and genetic drift across red-eyed 

treefrog populations; a pattern observed in other studies of morphological and genetic 

isolation across ecological zones (Chaves et al. 2007). These data support three 

mechanisms of genetic and phenotypic differentiation across the five zones I 

examined.  

 

Restricted gene flow: concordant genetic and phenotypic divergence is due to the 

isolating effects of a geographic barrier.  

 Phenotypic differentiation across geographic boundaries at small spatial scales 

has been observed in conspecific populations of plants (Geber and Eckhart 2005; 

Schemske and Bierzychudek 2007), insects (Nosil et al. 2003; Nosil et al. 2006), and 

vertebrates (Endler 1980; Hoekstra et al. 2004; Crispo et al. 2006) and in some cases 

divergence can lead to rapid ecological speciation (Hairston et al. 2005; Nosil et al. 

2005; Hendry et al. 2007). Agalychnis callidryas populations spanning Zone C 

exhibited high genetic divergence and extreme color differentiation over this relatively 

small spatial scale (56 km): multiple microsatellite loci exhibited non-overlapping 

alleles across this physical boundary and individuals from Pacific localities had orange 

legs and those from the Caribbean localities had blue legs. The geographic distance 

between the Northwest 6 and Northeast 9 (56 km) was comparable to other population 

pairs elsewhere in the study area that exhibited much lower estimates of genetic (FST) 

and phenotypic distance (Figure 4.4), further reinforcing the conclusion that both 
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genetic and phenotypic isolation is due to the presence of a barrier (Table 4.3). Zone C 

lies at the junction of two volcanic mountains, the Cordillera de Tilarán and Cordillera 

de Talamanca, that separate Caribbean and Pacific populations. Throughout most of 

Costa Rica and Panama, the Cordillera de Talamanca reaches an elevation outside the 

physiological capacity of the species (> 3100 m) and contains inhospitable habitat to 

A. callidryas (dry Paramo) and thus explains the effectiveness of this mountain range 

as a barrier to transcontinental migration. However, Zone C lies at the northern edge 

of the Cordillera de Talamanca where the elevation is lower (970 m; Appendix 4.1) 

and the habitat ideal to support A. callidryas, thus indicating that dispersal between the 

Caribbean and Pacific could be possible. The effectiveness of this barrier, however, 

has remained robust and intensive population sampling across this putative contact 

zone might reveal the evolutionary processes underlying the maintenance of this 

barrier.  

 

Moderate gene flow: phenotypic divergence in the presence of gene flow (no barrier). 

 For A. callidryas populations across Zone D, differences in color were not 

associated with isolation due to a geographic barrier, nor genetic isolation by distance. 

Instead, phenotypic divergence was greater than expected based on the geographic and 

genetic distance of populations sampled across the zone (Figure 4.4). Because 

geographic and genetic factors cannot soley explain observed levels of phenotypic 

differentiation, other non-neutral processes such as spatially varying (or divergent) 

selection are invoked as mechanisms contributing to color pattern divergence across 

Zone D. Zone D is centered among Caribbean populations; it is possible that the 

coloration characteristic of the Southeastern CR region (blue and orange legs) could 

be an ‘intermediate’ phenotype resulting from hybridization of Northeastern CR (blue) 

and Central Panama (primarily orange) forms. In this case, the discontinuous 
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distribution of phenotypes along Caribbean populations would be due to the combined 

effects of geographic factors (both distance and barriers), genetic isolation by distance, 

and spatially varying selection operating primarily at the boundaries of distinct 

biogeographic regions.   

 Populations across Zone A (Southwestern CR 1 and 3) exhibited a similar 

pattern of substantial phenotypic differentiation despite moderate levels of gene flow 

(Appendix 4.3; Figures 3.3-3.4). I found no evidence that color pattern differences 

were due to a barrier or restricted gene flow, and thus raises the possibility of 

divergent selective environments. Alternatively, this pattern could have arisen if 

populations were historically isolated and experienced only recent contact. The 

phylogenetic reconstruction of populations, however, shows limited mtDNA 

divergence between these populations spanning Zone A, thus does not support this 

hypothesis (Robertson and Zamudio, in review). 

 

High gene flow: phenotypic similarity due to gene flow (no barrier). 

 Finally, some populations of red-eyed treefrogs, such as those across Zones B 

and E, exhibited little to no genetic or phenotypic differentiation across potential 

barriers. Virtually no color differences were found within or between populations 

spanning Zone B over a moderate spatial scale (86 km): frog legs were orange-red in 

all populations. I detected low genetic divergence among these Pacific populations 

suggesting that phenotypic similarity across this zone is maintained by ongoing gene 

flow without strong, spatially variable selection for color.   

 Likewise, despite spanning large geographic and elevational distances across 

Zone E (124 km and 700 m elevation), most individuals exhibited primarily orange 

coloration in the leg but with a low percentage of blue. These populations contained 

multiple phenotypes that varied in the percent of blue from 0 – 29%, (Figure 4.3). The 
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putative barrier was ineffective at preventing gene flow or in accumulating differences 

in color pattern. Thus, gene flow among populations likely underlies phenotypic 

similarity across this zone. The greater inter-individual variation across Zone E 

compared to Zone B could be due to the higher overall phenotypic diversity exhibited 

by Caribbean populations relative to Pacific populations. In addition, demographic 

differences, such as higher effective populations sizes might contribute to the 

maintenance of within-population polymorphism. 

 

CONCLUSIONS 

 Spatial patterns of phenotypic diversity reflect a balance between gene flow and 

the diversifying effects of selection and genetic drift. Estimates of gene flow between 

populations based on nuclear data combined with spatial patterns of phenotypic 

diversity revealed that the interplay of these evolutionary processes varies across the 

species range. Barriers can impede gene flow and lead to phenotypic divergence, such 

as the barrier across Zone C that isolated Caribbean and Pacific versants, but this 

effect was not universal.  In other instances, phenotypic diversity across barriers was 

maintained in the presence of some genetic connectivity, while in other instances there 

was neither genetic nor phenotypic differentiation across a barrier. Thus, spatially 

varying selection combined with the isolating effects of geographic factors has 

resulted in a patchy distribution of phenotypes across Costa Rican and Panamanian 

populations. Disentangling the evolutionary processes acting across regions is 

essential to understanding the maintenance of diversification in a polytypic species 

and underscores the importance of evaluating spatial diversity patterns across 

historical and contemporary time scales and across multiple, putative barriers.  
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APPENDIX 4.1. Sampling populations of Agalychnis callidryas from five regions 
in Costa Rica and Panama.  

 
 
Geographic coordinates (GIS) are Latitude (Lat), Longitude (Long), elevation (El, m). Sampling sizes 
for color pattern (color) and microsatellite analyses (DNA) provided. Population number (No.) indicates 
position on Figure 4.1. 

 Region No.  Province Population GIS (Lat, 
Long, El) 

color DNA 
Southwestern 
CR 
 

1  Puntarenas, 
CR 

Pavones  8.4204, -
83.1069, 
37 

20 26 
 2  Puntarenas, 

CR 
Sierpe  8.8892, -

83.477, 17 
19 22 

 4  Puntarenas, 
CR 

Uvita  9.123, -
83.701, 26 

24 32 
 3  Puntarenas, 

CR 
Campo  8.6909, -

83.5013, 
35 

 

16 19 

PA
C

IF
IC

 

Northwestern 
CR 
 
 

5  Puntarenas, 
CR 

Pl. Bandera  9.5188, -
84.3774, 
23 

19 27 
  6  San Jose, 

CR 
Carara 9.725, -

84.531, 
385 

25 30 
  7  Guanacaste,  

CR 
Cabo Blanco  9.580, -

85.124, 
166 

18 30 
 Northeastern 

CR 
8  Guanacaste, 

CR 
Tilarán 10.5162, -

84.9601, 
637 
 

22 23 
 9  Alajuela, CR San Ramon  

 
10.2335, -
84.5287, 
638 
 

14 14 
 10  Heredia, CR La Selva 

Biological 
Station  

10.4327, -
84.0080, 
37 

20 33 
 11  Limón, CR Universidad 

de EARTH 
10.2318, -
83.5, 44 

0 32 
 12  Limón, CR Siquirres  10.0134, -

83.565, 
667 

0 26 
 13  Limón, CR Guayacan 10.0134, -

83.557, 
680 

0 7 
Southeastern 
CR/PA  

14  Limón, CR Cahuita  9.718, -
82.814, 16 

0 29 
 15  Limón, CR Manzanillo 9.6332, -

82.6556, 2 
26 30 

 16  Bocas del 
Toro, PA 

Chiriqui 
Grande  

8.9460, -
82.1571, 
21 
 

21 24 
 17  Bocas del 

Toro, PA 
Almirante  9.1980, -

82.3445, 
13 

10 15 
Central 
Panama 

18  Veraguas, 
PA 

Santa Fe  8.529, -
81.139, 
714 

17 19 

C
A

R
IB

B
EA

N
 

 19  Coclé, PA El Cope  8.6681, -
80.592, 
792 

22 31 
  20  Coclé, PA El Valle  8.6299, -

80.1159, 
866 

21 24 
  21  Panamá, PA Gamboa  9.1231, -

79.6930, 
51 
 

22 21 
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APPENDIX 4.2. Polymorphic di- and tetranucleotide microsatellite loci 
characterized for Agalychnis callidryas.  
 

Locus Primer sequences 5’ – 3’ Label Repeat 
motif 

Ta 
(ºC) 

A bp HO HE FIT FIS 

ACA126 F: GGG CCC CTG AAA TGT 
R: TAC ACA AAG CAT ACA TAG 
ATA CAA 

NED (TG)16 64-
56 

53 105-
305 

0.5
18 

0.9
48 

0.4
35 

0.3
84 

ACA36 F: CCA CCC CTG CTA AAA CAC 
TAC ATC CTA 
R: CC ACCT TGC ACC ACA GAC 
TAT CCA 

6-FAM (TG)12 64-
56 

10 384-
402 

0.3
72 

0.5
26 

0.3
03 

0.1
63 

ACA7 F: AAT AAA GTG GCA GAA CCG 
TGA TC 
R: TGT CTC TGC TGG CAC TTG 
TTG 

PET (TG)16 64-
56 

32 268-
348 

0.6
23 

0.9
23 

0.3
38 

0.1
94 

ACA148 F: CGG GAG GTT TCG CCC ACC 
CTT CT 
R: TCT TTA TCC CCA CTC TACT 
CC CAT ACG CAC ACT 

PET (TG)4 (N)23 
(TG)2 (N)11 
(TG)3 (N)10 
(TG)3 (N)24 
(TG)4 

64-
56 

7 224-
244 

0.1
94 

0.6
71 

0.7
60 

0.1
41 

ACA127 F: ACC GGT GCA CCC CTT CCT A 
R: CCG GCT CCT GCA AAA ACT 
T 

VIC (TGTC)13 65-
54 

31 172-
260 

0.6
72 

0.9
12 

0.2
60 

0.1
97 

ACA29 F: GTC AAT TAC AGG CCT CTT 
ATC TTT TTA 
R: GAT TCG CTT TCT CAT TTT 
GTC CCT CAT A 
 

PET (TG)26 65-
54 

49 100-
216 

0.5
43 

0.9
63 

0.4
40 

0.3
75 

 
Ta is the annealing temperature used in touchdown PCRs. The product range size for each locus (bp), 
the number of alleles (A), proportion of observed (HO) and expected (HE) heterozygosities, and 
estimates of Weir and Cockerham FIT and FIS averaged overall populations. 
 
 
 



  

 

 

APPENDIX 4.3. Pairwise estimates of FST (above diagonal) based on Weir and Cockerham (1984).  
 

 Southwestern CR Northwestern CR Northeastern CR Southeastern  CR/PA Central PA 
 

 1 2 3 4 5 6 7 8 9 10 11 13 12 14 15 17 16 18 19 20 21 

1 . 0.06 0.1 0.04 0.08 0.09 0.23 0.32 0.33 0.29 0.28 0.28 0.26 0.25 0.25 0.28 0.3 0.41 0.34 0.34 0.3 

2 66 . 22 0.02 0.08 0.09 0.26 0.3 0.32 0.26 0.27 0.26 0.24 0.23 0.25 0.26 0.28 0.39 0.31 0.32 0.29 

3 52 0.08 . 0.07 0.08 0.08 0.3 0.3 0.32 0.27 0.26 0.26 0.25 0.23 0.24 0.26 0.28 0.39 0.32 0.33 0.28 So
ut

h-
w

es
te

rn
 

C
R

 

4 101 35 52 . 0.03 0.05 0.2 0.26 0.26 0.23 0.23 0.2 0.2 0.19 0.2 0.21 0.24 0.34 0.27 0.28 0.25 

5 185 121 133 86 . 0.03 0.19 0.29 0.29 0.26 0.25 0.24 0.23 0.2 0.22 0.24 0.26 0.36 0.3 0.31 0.27 

6 213 148 161 113 28 . 0.19 0.24 0.23 0.21 0.21 0.15 0.17 0.15 0.16 0.16 0.2 0.29 0.22 0.24 0.18 

N
or

th
-

w
es

te
rn

 C
R

 

7 395 330 342 294 209 181 . 0.4 0.43 0.37 0.37 0.4 0.35 0.33 0.34 0.37 0.4 0.5 0.42 0.44 0.41 

8 309 243 258 207 128 99 122 . 0.13 0.04 0.05 0.07 0.06 0.12 0.12 0.14 0.16 0.24 0.22 0.22 0.21 

9 255 188 205 153 81 56 161 56 . 0.06 0.07 0.09 0.09 0.16 0.14 0.16 0.21 0.28 0.25 0.28 0.25 

10 316 250 266 214 142 117 222 104 61 . 0.02 0.05 0.05 0.11 0.1 0.12 0.15 0.23 0.22 0.21 0.2 

11 360 294 310 258 186 161 266 155 105 52 . 0.04 0.04 0.12 0.1 0.12 0.16 0.27 0.23 0.23 0.21 

12 363 297 313 261 189 164 269 162 108 67 24 . 
-

0.01 0.05 0.04 0.06 0.11 0.24 0.15 0.16 0.13 

N
or

th
-e

as
te

rn
 C

R
 

13 363 297 313 261 189 164 269 162 108 67 24 0 . 0.06 0.06 0.07 0.1 0.19 0.15 0.16 0.14 

14 451 385 401 349 277 252 358 251 196 153 100 88 88 . 0.00 0.01 0.04 0.12 0.08 0.1 0.06 

15 471 404 421 369 297 272 377 271 215 172 120 108 108 19 . 0.01 0.06 0.18 0.12 0.13 0.09 

17 521 454 471 419 347 322 427 322 265 228 177 161 161 77 59 . 0.04 0.15 0.09 0.11 0.07 

So
ut

h-
ea

st
er

n 
C

R
  

C
R

/P
A

 

16 552 486 502 450 378 353 458 353 297 261 211 194 194 112 94 34 . 0.12 0.1 0.08 0.03 

18 676 610 626 574 502 477 582 477 421 383 331 317 317 230 210 155 124 . 0.14 0.16 0.14 

19 721 654 671 619 547 522 627 521 466 423 370 359 359 270 250 201 174 60 . 0.08 0.09 

C
en

tra
l P

A
 

20 771 705 721 669 597 572 677 571 516 472 419 408 408 320 300 253 227 110 52 . 0.06 
 
Significance tested following Bonferonni correction set at 0.000238 and indicated in bold. Estimates based on 4200 permutations in FSTAT. Geographic distance 
in Kilometers (below diagonal) between each site was calculated as the distance around the Cordillera de Talamanca. Population numbers according to Appendix 
4.1. 

141 



  

142 

 

LITERATURE CITED 

 
Buchanan, B. W. 1994. Sexual dimorphism in Hyla squirella, chromatic and pattern 

variation between the sexes. Copeia:797-802. 
 
Castellano, S., and E. Balletto. 2002. Is the partial mantel test inadequate? Evolution 

56:1871-1873.  
  
Chaves, J. A., J. P. Pollinger, T. B. Smith, and G. LeBuhn. 2007. The role of 

geography and ecology in shaping the phylogeography of the speckled 
hummingbird (Adelomyia melanogenys) in Ecuador. Mol. Phylogen. Evol. 
43:795-807. 

 
Crawford, A. J. 2003. Huge populations and old species of Costa Rican and 

Panamanian dirt frogs inferred from mitochondrial and nuclear gene 
sequences. Mol. Ecol. 12:2525-2540. 

 
Crawford, A. J., E. Bermingham, and C. Polania. 2007. The role of tropical dry forest 

as a long-term barrier to dispersal: A comparative phylogeographical analysis 
of dry forest tolerant and intolerant frogs. Mol. Ecol. 16:4789-4807.  

 
Crispo, E., P. Bentzen, D. N. Reznick, M. T. Kinnison, and A. P. Hendry. 2006. The 

relative influence of natural selection and geography on gene flow in guppies. 
Mol. Ecol. 15:49-62.  

           
Endler, J. A. 1973. Gene flow and population differentiation. Science 179:243-250. 
 
---. 1977. Geographic variation, speciation, and clines. Princeton University Press, 

Princeton, New Jersey. 
 
---. 1980. Natural selection on color patterns in Poecilia reticulata. Evolution 34:76-

91.  
  
García-París, M., D. A. Good, G. Parra-Olea, and D. B. Wake. 2000. Biodiversity of 

Costa Rican salamanders: Implications of high levels of genetic differentiation 
and phylogeographic structure for species formation. Proc. Natl. Acad. Sci. 
USA 97:1640-1647.  

      
Geber, M. A., and V. M. Eckhart. 2005. Experimental studies of adaptation in Clarkia 

xantiana. Ii. Fitness variation across a subspecies border. Evolution 59:521-
531.  

 
Gillespie, R. G., H. B. Croom, and S. R. Palumbi. 1994. Multiple origins of a spider 

radiation in Hawaii. Proc. Natl. Acad. Sci. USA 91:2290-2294.  



  

143 

 

  
Gray, S. M., and J. S. McKinnon. 2007. Linking color polymorphism maintenance and 

speciation. Trends Ecol. Evol. 22:71-79.   
 
Grinnell, J. 1914. Barriers to distribution as regards birds and mammals. Am. Nat. 

48:248-254. 
 
---. 1924. Geography and evolution. Ecology 5:225-229. 
            
Hailman, J. P., and R. G. Jaeger. 1974. Phototactic responses to spectrally dominant 

stimuli and use of color vision by adult anuran amphibians - comparative 
survey. Anim. Behav. 22:757-795. 

 
Hairston, N. G., S. P. Ellner, M. A. Geber, T. Yoshida, and J. A. Fox. 2005. Rapid 

evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 
8:1114-1127. 

 
Hendry, A. P., P. Nosil, and L. H. Rieseberg. 2007. The speed of ecological 

speciation. Funct. Ecol. 21:455-464. 
 
Hendry, A. P., and E. B. Taylor. 2004. How much of the variation in adaptive 

divergence can be explained by gene flow? - an evaluation using lake-stream 
stickleback pairs. Evolution 58:2319-2331. 

 
Hoekstra, H. E., K. E. Drumm, and M. W. Nachman. 2004. Ecological genetics of 

adaptive color polymorphism in pocket mice: Geographic variation in selected 
and neutral genes. Evolution 58:1329-1341. 

 
Hoekstra, H. E., J. G. Krenz, and M. W. Nachman. 2005. Local adaptation in the rock 

pocket mouse (Chaetodipus intermedius): Natural selection and phylogenetic 
history of populations. Heredity 94:217-228. 

 
Hoffman, E. A., and M. S. Blouin. 2000. A review of colour and pattern 

polymorphisms in anurans. Biol. J. Linn. Soc. 70:633-665. 
 
Holdridge, L. R. 1947. Determination of world plant formations from simple climatic 

data. Science 105:367-368. 
 
Jakobsson, M., and N. A. Rosenberg. 2007. Clumpp: A cluster matching and 

permutation program for dealing with label switching and multimodality in 
analysis of population structure. Bioinformatics 23:1801-1806. 

 
Jordan, S., C. Simon, and D. Polhemus. 2003. Molecular systematics and adaptive 

radiation of Hawaii's endemic damselfly genus Megalagrion (Odonata: 
Coenagrionidae). Syst. Biol. 52:89-109. 



  

144 

 

 
Kettlewell, H. B. D., and D. L. T. Conn. 1977. Further background choice experiments 

on cryptic Lepidoptera. 
 
Kingsolver, J. G., and D. W. Pfennig. 2007. Patterns and power of phenotypic 

selection in nature. Bioscience 57:561-572. 
 
Kohlmann, B., J. Wilkinson, and K. Lulla. 2002. Costa Rica desde el espacio/ Costa 

Rica from space. Fundacíon Neotrópica, San José. 
 
McKay, J. K., and R. G. Latta. 2002. Adaptive population divergence: Markers, 

QTLand traits. Trends Ecol. Evol. 17:285-291. 
 
Miller, M. P. 2005. Alleles in space (ais): Computer software for the joint analysis of 

interindividual spatial and genetic information. J. Hered. 96:722-724. 
 
Miller, M. P., M. R. Bellinger, E. D. Forsman, and S. M. Haig. 2006. Effects of 

historical climate change, habitat connectivity, and vicariance on genetic 
structure and diversity across the range of the red tree vole (Phenacomys 
longicaudus) in the pacific northwestern United States. Mol. Ecol. 15:145-159. 

 
Milstead, W. W., A. S. Rand, and M. M. Stewart. 1974. Polymorphism in cricket frogs 

- hypothesis. Evolution 28:489-491. 
 
Nevo, E. 1973. Adaptive color polymorphism in cricket frogs. Evolution 27:353-367. 
Nosil, P., and B. J. Crespi. 2004. Does gene flow constrain adaptive divergence or vice 

versa? A test using ecomorphology and sexual isolation in Timema cristinae 
walking-sticks. Evolution 58:102-112. 

 
Nosil, P., B. J. Crespi, and C. P. Sandoval. 2003. Reproductive isolation driven by the 

combined effects of ecological adaptation and reinforcement. Proc. R. Soc. 
Lond., Ser. B: Biol. Sci. 270:1911-1918. 

 
Nosil, P., C. P. Sandoval, and B. J. Crespi. 2006. The evolution of host preference in 

allopatric vs. Parapatric populations of Timema cristinae walking-sticks. J. 
Evol. Biol. 19:929-942. 

 
Nosil, P., T. H. Vines, and D. J. Funk. 2005. Perspective: Reproductive isolation 

caused by natural selection against immigrants from divergent habitats. 
Evolution 59:705-719. 

 
Oksanen, J., R. Kindt, P. Legendre, and R. B. O'hara. 2007. Vegan: Community 

ecology package. http://cran.r-project.org/. 
 



  

145 

 

Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure 
using multilocus genotype data. Genetics 155:945-959. 

 
Raufaste, N., and F. Rousset. 2001. Are partial mantel tests adequate? Evolution 

55:1703-1705. 
 
Reynolds, R. G., and B. M. Fitzpatrick. 2007. Assortative mating in poison-dart frogs 

based on an ecologically important trait. Evolution 61:2253-2259. 
 
Richmond, J. Q. 2006. Evolutionary basis of parallelism in North American scincid 

lizards. Evol. Dev. 8:477-490. 
 
Richmond, J. Q., and T. W. Reeder. 2002. Evidence for parallel ecological speciation 

in scincid lizards of the eumeces skiltonianus species group (squamata: 
Scincidae). Evolution 56:1498-1513. 

 
Robertson, J., and A. Robertson. 2008. Spatial and temporal patterns of phenotypic 

variation in a neotropical frog. J. Biogeogr. 35:830-843. 
 
Rosenblum, E. B. 2006. Convergent evolution and divergent selection: Lizards at the 

white sands ecotone. Am. Nat. 167:1-15. 
 
Rousset, F. 2002. Partial mantel tests: Reply to Castellano and Balletto. Evolution 

56:1874-1875. 
 
Sandoval, C. P. 1994. The effects of the relative geographic scales of gene flow and 

selection on morph frequencies in the walking-stick Timema christinae. 
Evolution 48:1866-1879. 

 
Savage, J. M. 2002. The amphibians and reptiles of Costa Rica: A herptofauna 

between two continents, between two seas. The University of Chicago Press, 
Chicago. 

 
Savage, J. M., and W. R. Heyer. 1967. Variation and distribution in the tree frog genus 

Phyllomedusa Beitraege zur Neotropischen Fauna 5:111-131. 
 
Schemske, D. W., and P. Bierzychudek. 2007. Spatial differentiation for flower color 

in the desert annual Linanthus parryae: Was Wright right? Evolution 61:2528-
2543. 

 
Schneider, S., D. Roessli, and L. Excoffier. 2000. Arlequin. A software for population 

genetics data analysis. 
 
Shaw, K. L. 1996a. Polygenic inheritance of a behavioral phenotype: Interspecific 

genetics of song in the Hawaiian cricket genus Laupala. Evolution 50:256-266. 



  

146 

 

 
---. 1996b. Sequential radiations and patterns of speciation in the Hawaiian cricket 

genus Laupala inferred from DNA sequences. Evolution 50:237-255. 
 
Siddiqi, A., T. W. Cronin, E. R. Loew, M. Vorobyev, and K. Summers. 2004. 

Interspecific and intraspecific views of color signals in the strawberry poison 
frog Dendrobates pumilio. J. Exp. Biol. 207:2471-2485. 

 
Slatkin, M. 1985. Gene flow in natural populations. Annu. Rev. Ecol. Syst. 16:393-

430. 
 
Spitze, K. 1993. Population-structure in Daphnia obtusa - quantitative genetic and 

allozymic variation. Genetics 135:367-374. 
 
Summers, K., and M. E. Clough. 2001. The evolution of coloration and toxicity in the 

poison frog family (Dendrobatidae). Proc. Natl. Acad. Sci. USA 98:6227-
6232. 

 
Summers, K., T. W. Cronin, and T. Kennedy. 2003. Variation in spectral reflectance 

among populations of Dendrobates pumilio, the strawberry poison frog, in the 
Bocas Del Toro Archipelago, Panama. J. Biogeogr. 30:35-53. 

 
Summers, K., R. Symula, M. Clough, and T. Cronin. 1999. Visual mate choice in 

poison frogs. Proc. R. Soc. Lond., Ser. B: Biol. Sci. 266:2141-2145. 
 
Wright, S. 1937. The distribution of gene frequencies in populations. Proc. Natl. Acad. 

Sci. USA. 23:307-320. 
 
Zamudio, K. R., and H. W. Greene. 1997. Phylogeography of the bushmaster 

(Lachesis muta: Viperidae): Implications for neotropical biogeography, 
systematics, and conservation. Biol. J. Linn. Soc. 62:421-442. 

 



147 

 

CHAPTER FIVE 

DIVERGENCE IN HISTORICAL AND CONTEMPORARY ESTIMATES OF 

GENE FLOW AND COLOR PATTERN IN TWO SYMPATRIC AND 

WIDESPREAD TREEFROGS 

 

ABSTRACT 

 Comparative phylogeographic studies of co-distributed taxa test the degree to 

which historical processes have shaped contemporary population structure. 

Concordant patterns of lineage divergence among taxa suggest that shared processes 

across landscape features result in similar evolutionary outcomes. The complex 

geologic landscape of the Isthmus of Central America provides an ideal setting to test 

the effects of vicariance and other biogeographic factors on population history.  We 

compared divergence patterns between two co-distributed and wide-ranging 

Neotropical frogs (Agalychnis callidryas and Dendropsophus ebraccatus) that share 

many ecological characteristics yet exhibit different spatial patterns of phenotypic 

diversity. We detected significant differences in the phylogenetic history, the degree of 

admixture among clades, and limits to gene flow due to specific geographic barriers. 

Due to low concordance of historical diversification processes in our two focal 

species, we compared the relative effects of different microevolutionary processes to 

explain the unique patterns of diversification in each taxon. Differences in the levels 

of gene flow, patterns of genetic isolation by distance (IBD), and selective 

mechanisms underlying phenotypic diversity in our study taxa underscore the 

significance of species-specific ecological and life history traits in determining the 

phylogeographic and fine scale structure of phenotypic and genetic diversity. Our 

comparative approach allows us to test the generality of biogeographic structure and 
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the evolutionary processes that determine spatial patterns of diversification in lower 

Central America. 

 

INTRODUCTION 

 Concordant phylogeographic patterns are an indication that landscape features 

are a predominant determinant of lineage diversification of co-distributed taxa. The 

dynamics of natural populations, however, are often more complex with different 

organisms responding to common historical processes in differing ways way. 

Mitochondrial DNA is commonly used to infer the evolutionary history of populations 

and to test for the generality of population structure in co-distributed taxa (Avise et al. 

1987). In contrast, multi-locus genomic nuclear DNA markers (e.g., microsatellites) 

are typically used to test contemporary gene flow patterns at relatively fine spatial and 

temporal scales. Combining estimates derived from both genetic markers with a 

phenotypic marker is a hallmark of comparative taxon studies (Avise 1986; Avise et 

al. 1987; Avise 1989; Bermingham and Lessios 1993; Knowles 2004). Such studies 

permit a comprehensive investigation of historical and contemporary processes that 

drive spatial patterns of diversity. Further, they disentangle the generalities of 

dominant landscape features with species-specific processes to explain lineage 

diversification. 

 Due to its complex and dynamic geologic and climatic history, lower Central 

America is an ideal setting for the study of the biogeographic and ecological processes 

underlying species distribution patterns (Coates and Obando 1996; Campbell 1999; 

Kohlmann et al. 2002; Savage 2002). Plate tectonics have played an important role in 

the geologic history of Central America, in particular in Costa Rica and Panamá 

(Campbell 1999; Kohlmann et al. 2002; Savage 2002).  In recent geologic time (5 

mya) volcanic formations such as the Cordillera de Talamanca, the mountain range 
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extending along the Central American continental divide (Campbell 1999; Coates and 

Obando 1996) have effectively altered the climate experienced by the Caribbean, 

Pacific and Central regions (Campbell 1999; Holdrige 1947). Biotic regions in Costa 

Rica and Panama vary from dry, lowland, deciduous forest (Pacific) to cloud forest 

(along the divide) to hot and wet lowland rainforest (Caribbean): the Isthmus of 

Central America is marked by high floral and faunal diversity and endemicity, in part 

due to this biome diversity (Holdridge 1947; Savage 2002). In addition, the major 

geographic features, such as the Cordillera de Talamanca, contribute to concordant 

diversification patterns across many Central American taxa (Zamudio and Greene 

1997; García-París et al. 2000; Kohlmann et al. 2002; Crawford 2003). We tested 

whether specific landscape features were reliable predictors of genetic structuring and 

adaptive color pattern variation for co-distributed Isthmusian anuran taxa in Costa 

Rica and Panama. If these barriers significantly restrict migration, they could 

potentially create opportunities for divergent local selection and genetic drift to cause 

diversification among lineages.  

 To test the generality of the effects of biogeographic landscape features on 

distribution patterns we investigated historical and contemporary patterns of gene flow 

in two highly polymorphic species, the red-eyed treefrog (Phyllomedusinae: 

Agalychnis callidryas) and the hourglass treefrog (Dendropsophini tribe: 

Dendropsophus ebraccatus (Faivovich et al. 2005). These taxa are sympatric in Costa 

Rica and Panama and share many ecological characteristics, including a prolonged 

reproductive season, leaf-oviposition, aggregate breeding in temporary pools of water, 

and color pattern polymorphisms (Savage 2002). Despite these life history similarities, 

A. callidryas and D. ebbraccatus show marked differences in phenotypic distribution 

patterns. Agalychnis callidryas exhibits striking, regional differentiation in body size, 

flank-stripe pattern, and leg and flank coloration (Savage and Heyer 1967; Savage 
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2002; Robertson and Robertson 2008). In contrast, D. ebraccatus, also exhibits 

multiple dorsal color pattern types, but the polymorphisms are distributed within, 

rather than among, populations (Duellman 2001).  

 Animal color pattern (CP) evolves through natural selection (favoring 

conspicuous and/or crypsis) to avoid/deter predators and sexual selection favoring 

conspicuousness to aid in conspecific recognition. It is probable that natural selection 

has favored bright coloration as an aposematic, warning signal to predators of the 

noxious skin peptides common in phyllomedusine frogs (Sazima 1974; Mignogna et 

al. 1997). However, community and phylogenetic-based analyses of character 

displacement in Central American phyllomedusine frogs support the hypothesis that 

color pattern serves (at least, in part) a species recognition function. For this color 

signal to evolve through sexual selection, the taxon must have the visual system to 

detect the signal under ambient conditions (Cott 1940; Endler 1990; Lythgoe and 

Patridge 1991; Summers et al. 2003). We used microspectrophotometry to 

characterize the visual pigments of the red-eyed treefrog and confirmed that this 

species possesses the visual system to discriminate among hues that represent the full 

range of color pattern exhibited across its range. 

 In contrast, our analyses of Central American Dendropsophinii frogs revealed 

that color pattern polymorphisms likely evolved through natural selection pressures. 

The Convergent Niche Hypothesis (Grinnell 1924) predicts that multiple, syntopic 

species will exhibit similar characteristics (color pattern) if those characters maximize 

survival in a particular visual environment (Grinnell 1924; Warburg 1965; Rand and 

Williams 1970; Stewart 1974; Endler 1982; Harmon et al. 2005). In this case, color 

pattern serves as an effective signal for predator avoidance, indicating a role of the 

environment in the evolution of CP (Endler 1982). Thus, if the geographic distribution 

of color pattern in D. ebraccatus could not explained by patterns of gene flow, then 
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localized balancing selection favoring multiple phenotypes would be the best initial 

hypothesis to explain population-level heterogeneity (Endler 1973; Slatkin 1985; 

Sandoval 1994; Lenormand 2002). Testing the adaptive significance of coloration was 

not the objective of this study. However, quantification of the nature and geographic 

distribution of color pattern within and among populations is the requisite first step for 

interpreting the mechanisms underlying phenotypic diversification and for subsequent 

hypothesis testing on the mode of selection on maintaining color pattern (Endler 1982; 

Hoffman et al. 2006; Gray and McKinnon 2007). 

 Within natural populations, genetic drift, migration and selection contribute to 

the maintenance of CP (Endler 1973, 1980; Gray and McKinnon 2007). Concordance 

in genetic and phenotypic diversity indicates that populations experiencing gene flow 

are also similar in color pattern (Wright 1937; Ritchie et al. 2007; Roberts et al. 2007). 

However, discordance between these two distance measures departs from this null 

model, indicating a role of localized selection, drift or both (Endler 1982; Lenormand 

2002; Saint-Laurent et al. 2003; Price 2006; Harper and Pfennig 2008). Thus, the 

relative strength of the homogenizing effects of gene flow and the diversifying effects 

of selection has consequences for the geographic distribution of phenotypic diversity. 

If gene flow is highly restricted among populations, then the maintenance of CP 

polymorphisms will reflect population-level processes, and thus be largely driven by 

localized selection and drift.  

 Our main objective was to elucidate and compare the processes underlying 

genetic and phenotypic variation in two common and widespread Neotropical frogs. 

To achieve this, we had four primary aims: (1) recover the historical biogeography and 

contemporary population genetic structure using mtDNA sequences and polymorphic 

microsatellites markers; (2) quantify the geographic distribution of phenotypic 

diversity within and among regions; (3) examine the associations among gene 
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diversity, color pattern and geography; and  (4) compare patterns and processes of 

diversification between our two focal taxa. Quantification of regional phenotypic and 

genetic diversity (mtDNA and microsatellite genotyping) for D. ebraccatus was 

conducted and analyzed in this study; while data from prior studies of A. callidryas 

color pattern (Robertson and Robertson 2008), phylogenetic history and microsatellite 

genotyping were combined and analyzed here for comparative purposes. 

 The strength of this study lies in its comparative nature and geographical 

coverage, both factors that allow us to disentangle historical and species-specific traits 

in shaping populations. Together, the relative effects of geographic barriers, gene flow 

patterns and the strength of localized selection results in a mosaic of differentiated 

populations. The processes of diversification, therefore, may not be universal across 

populations within species, or across species (Sandoval 1994; Shaw 1996; Quesada et 

al. 2007). We demonstrate how diversity is maintained in space and time in two 

species that differ markedly in their geographic distribution of phenotypic diversity, 

despite occupying nearly equivalent ranges, living in similar habitats, and sharing 

similar reproductive biologies.   

 

MATERIALS AND METHODS 

Field Sampling 

We sampled 22 populations representing five regions in Costa Rica (CR) and 

Panama (PA):  Northeastern CR, Southeastern CR/PA, Northwestern CR, 

Southwestern CR and Central PA (Savage 2002). These five regions structured the 

genetic and phenotypic distribution of diversity in A. callidryas (Figure 5.3) and were 

used in this study as an initial hypothesis for the diversification in D. ebraccatus. We 

sampled fewer sites for D. ebraccatus (n = 15) than A. callidryas (n = 21), although 14 

of those sites were sampled for both species (Appendix 5.1). We conducted field 



  

 

 

153 

surveys during the breeding seasons (May – August) of 2003, 2004, and 2005. At each 

sampling site, we captured 8 - 50 adult males and females, measured body size (snout-

vent-length; SVL and mass) and collected data on dorsal color pattern (Appendix 5.1). 

We sampled all individuals we encountered at each population so as to not bias our 

measures of color pattern frequencies. We documented color pattern by taking digital 

photographs of every individual using a Nikon Coolpix 5700. Tissue samples (1 – 2 

toe clips) were collected in the field and stored in 100% ethanol for use in genetic 

analyses (Appendix 1 for sample sizes).   

Two individuals of D. ebraccatus and three individuals of A. callidryas were 

preserved as vouchers and deposited at the Cornell University Museum of Vertebrates, 

CUMV (accession #: CU 14029, 14093,14206-13,14228,14230-35) and the University 

of Costa Rica, San José (UCR; accession #: 19102, 19100-101, 19213). All 

photographs have been archived at the CUMV. All other individuals were released at 

sites of capture.  

 

QUANTIFYING PHENOTYPIC DIVERSITY 

Dendropsophus ebraccatus 

 Yellow, gold and brown blotches and spots characterize the dorsal pattern of 

D. ebraccatus, but the dominant dorsal pattern in most populations resembles an 

hourglass shape (Patterns 1 and 2, Figure 5.1 (Duellman 2001). Previous analyses of 

the geographic distribution of color pattern revealed widespread polymorphisms 

(Duellman 2001); however, this study addressed the extent to which dorsal pattern 

frequencies vary within and among populations at fine spatial scales (Figures 5.2-5.3). 

 



  

 

 

154 

Agalychnis callidryas  

 We detected significant co-varying regionalization in coloration and flank-

stripe patterns in a previous study of A. callidryas populations (Robertson and 

Robertson, 2008). In this study, we focused our analyses on flank-stripe pattern 

because this trait provides an appropriate comparison to type of color pattern exhibited 

by D. ebraccatus.  Agalychnis callidryas has bright, contrasting flank-stripes, usually 

white to pale yellow, overlaying the background color. We implemented the scoring 

system designed by Savage and Heyer (1967) to assign individuals to one of five 

flank-stripe pattern types: A, AB, B, BC, and C (Figure 5.1). In 2005, we discovered 

frogs with two novel combinations of the three basic types; for these individuals, we 

modified the Savage and Heyer protocol to include categories AC and ABC (Figure 

5.1). We analyzed only the left side of the body for each frog to avoid any bias that 

might occur due to lateral asymmetry (Savage and Heyer 1967(Robertson and 

Robertson 2008)). For both species, we conducted contingency analyses to determine 

whether the frequency distribution of color-pattern types varied among populations. 

Significance of Chi-Square test was conducted using Fisher’s exact test to control for 

small sample sizes. 
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Color pattern in Dendropsophus ebraccatus was characterized into four categories: (1) hourglass with 
spots (2) hourglass shape with no spots (3) spots, (4) and plain (Duellman 2001). Flank pattern variation 
in Agalychnis callidryas. Pattern A individuals have a horizontal line connecting all vertical stripes, in 
pattern B, the vertical stripes are disconnected, and each is ‘T’ shaped, and in pattern C the 
disconnected vertical stripes have no ‘T’ shape.  Individuals with a combination of these three basic 
pattern types are characterized as AB (both A and B stripes) or BC.  
 
FIGURE  5.1. Color pattern polymorphisms for Dendropsophus ebraccatus and 
Agalychnis callidryas.  
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The frequency of each dorsal pattern (Figure 5.1) shown for each sampled population. Population 
number indicated in the upper left hand corner of each frequency histogram chart. The Cordillera de 
Talamanca isolates the Pacific and Caribbean versants on Costa Rica and Panama. The shading of 
topological relief corresponds to elevation: dark grey (>1300 m), light grey (300 – 1299), white (0 – 
300). Dry forest habitat between Southwestern CR and Central Panama restricts red-eyed treefrogs 
dispersal along the Pacific coast of Panama. Five zones of interest shown A – E, population numbers 
correspond to Appendix 5.1. 
 
FIGURE 5.2. Sampling localities for 16 populations Dendropsophus ebraccatus in 
five biogeographic regions.  
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The frequency of each of seven flank stripe pattern (Figure 5.1) shown as pie graphs for each sampled 
populations. Flank pattern C is shown for each population in grey to illustrate the disjunct distribution 
of Pacific and Caribbean populations. Population number indicated in the upper left hand corner of each 
frequency histogram chart. The Cordillera de Talamanca isolates the Pacific and Caribbean versants on 
Costa Rica and Panama. The shading of topological relief corresponds to elevation: dark grey (>1300 
m), light grey (300 – 1299), white (0 – 300). Dry forest habitat between Southwestern CR and Central 
Panama restricts red-eyed treefrogs dispersal along the Pacific coast of Panama. Five zones of interest 
shown A – E, population numbers correspond to Appendix 5.1. 
 
 
FIGURE 5.3. Sampling localities for 20 populations Agalychnis callidryas in five 
biogeographic regions.  
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MOLECULAR BIOGEOGRAPHY AND POPULATION GENETIC 

STRUCTURE 

Phylogenetic Analyses 

We extracted DNA from 79 D. ebraccatus individuals and two outgroup taxa 

Pseudohyla puma and Dendropsophus microcephalus. Tissues (toe-clips) collected in 

the field were digested in standard lysis buffer with Proteinase K using the Qiagen 

DNeasy Tissue Kit (QIAGEN, Valencia, California) following manufacturer’s 

protocols. We amplified a mitochondrial gene fragment that includes partial sequence 

of the16S Ribosomal Subunit 1, the leucine and isoleucine transfer RNAs (tRNA) and 

the complete NADH dehydrogenase subunit 1 gene (ND1) using primers t-met frog 

(5’TTGGGGTATGGGCCCAAAAGCT3’; Wiens et al. 2005 and 16S-frog (5'-

TTACCCTRGGGATAACAGCGCAA-3'; Reeder, personal communication). PCR 

reactions were performed in a total volume of 25 µl, each containing 100 ng template 

DNA, 1X PCR Buffer, 0.75 mM dNTPs, 1.5 mM MgCl2, 1 µM primer, and 0.625 

units of Taq polymerase. PCR amplification conditions were:  95 ºC initial 

denaturation for 5 minutes, 35 cycles of denaturation at 94 ºC for 1 min, annealing at 

50 ºC for 1 min, extension at 72 ºC for 1 min, and a final 5 minute extension at 72 ºC. 

We used Exonuclease (10 units) and SAP (1 unit) to remove unincorporated 

oligonucleotides and dNTPs.  For each successful amplification, we performed cycle 

sequencing reactions with Big Dye terminator sequencing kits according to 

manufacturer’s protocol, using the same primers used for fragment amplification 

(Applied Biosystems, Perkin Elmer, Foster City, CA).         

Cycle sequencing reaction conditions were 25 cycles of 96 ºC (30 sec), 50 ºC 

(15 sec), and 60 ºC (4 min). We sequenced the gene in both directions to avoid base-

calling ambiguities. Products were column purified to remove non-incorporated 
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terminator dye using Sephadex™ G-50 and products were electrophoresed on an ABI 

3100 Genetic Analyzer. Electropherograms were checked by eye and contigs were 

created using Sequencher ver.4.1 (GeneCodes, Michigan).  

We partitioned the sequences into two datasets, ND1 and partial 16S + tRNA 

gene sequences for alignment ClustalW (Thompson et al. 1994) in the MegAlign ver. 

6.1.2 program of the Lasergene sequence analysis software (DNASTAR, Inc., 

Madison, Wisconsin). The initial guide tree was aligned using Gap Length Penalty = 

6.66, Gap Extension Penalty = 0.05, Delay Divergence Sequences = 30%, and 

Transitions = .5.  For subsequent alignments, we kept all parameters constant but 

varied gap costs (4, 8, 10, 15) using the ‘slow/accurate’ alignment option to identify 

regions of ambiguous homology (Gatesy et al. 1993); positions that varied in 

alignment across this range were excluded as characters in phylogenetic analyses.  

We conducted phylogenetic analyses in PAUP* ver. 4.0 b10 (Swofford 2001) 

using maximum-likelihood (ML) and Bayesian analyses in MrBayes 3.0b4. For ML 

and Bayesian analyses, we used Modeltest ver. 3.04 (Posada & Crandall 1998) and 

hierarchical likelihood ratio tests to determine the model of DNA substitution and 

parameter estimates that best fit our data. The GTR + I + Γ model (range = 0.05 – 5.66 

%; µ = 2.61%; σ = 1.65%) was selected as the preferred model. We used unequal base 

frequencies according to the model (A=0.3076, C=0.22190, G=0.11182, T=0.35230), 

pinvar of 0.340837and gamma shape parameter of 0.676678 in a heuristic maximum 

likelihood search.  

  Bayesian analyses used four chains (one cold and three heated) sampled every 

1000 generations for 10 million generations with the first 1000 trees discarded as 

burn-in. We applied default prior distributions in Mr. Bayes with the exception of the 

alpha shape parameter (exponential, mean = 1.0) and branch lengths (exponential, 

mean = 0.1). Standard measures of haplotype and nucleotide diversities within each 
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population were calculated in Arlequin ver. 3.01. Pairwise FST estimates between all 

populations were estimated in FSTAT, and we implemented an analysis of molecular 

variance (AMOVA), to determine the genetic variation among and within groups, in 

Arlequin ver. 3.01 (Schneider et al. 2000).  

 

Microsatellite characterization and genotyping 

 We constructed an enriched partial genomic library to isolate and characterize 

microsatellite loci for D. ebraccatus. We extracted genomic DNA from three 

individuals using a QIAGEN DNeasy kit. DNA was digested with two restriction 

enzymes, Alu I and Hae III, and ligated to a double-stranded SNX linker. We probed 

DNA fragments with di-, tri-, and tetra biotinylated oligonucleotides and captured 

them with streptavidin-coated magnetic beads, followed by polymerase chain reaction 

(PCR) amplification using the SNX primer and Vent exo-polymerase for 35 cycles 

under the following conditions: 95ºC for 50 sec; 60º C for 60 sec; 72º C for 90 sec. The 

product was electrophoresed on a 1% Agarose gel and purified using Qiaquick PCR 

purification kit. We then digested PCR product with Nhe 1 and ligated to pUC 19 

cloning vector for transformation in Epicurian Coli XL1-Blue MRF’ supercompetent 

cells. Colonies containing microsatellites were sequenced with M13 forward and 

reverse primers using Big-Dye Terminator-Cycle Sequencing Kit (Applied 

Biosystems) on an ABI 3100 Genetic Analyzer (Applied Biosystems, Foster City, 

California). We tested 54 microsatellite primer pairs, of these 6 were polymorphic and 

amplified across all populations in the study (Table 5.1).  

 



 

 
 
 
 
TABLE 5.1. Polymorphic di- and tetranucleotide microsatellite loci characterized for Dendropsophus ebraccatus.  
 
MP Locus Primer sequences 5’ – 3’ F 5’ 

Label 
Repeat Structures Ta  A (bp) HO HT FIT FIS 

1 HEB 165 U5’ GTG GGT AGC CAT GTA TTC AGA GAT 3’ 
L5’ ACA CCC CAA CAC CGC TCA CA 3’ 

NED (GT)8AT(GT)4G(GT)3 55.6 48 278 0.463 0.815 0.410 0.293 

1 HEB 231 U5’ GCA CTG CCC GGG AAT AAA G 3’ 
L5’ AAT GAG GAG AGG GTT GGG GAA AAA 3’ 

6 FAM (TG)32 58.6 51 152 0.727 0.944 0.343 0.285 

1 HEB 310 U5’ TCC CCT GCA TAA AGT AAG AGT GAG 3’ 
L5’ ACC CCT CTG TCC CCT TCA GAC 3’ 

PET (TG)15 
(N)8(TG)6(N)8(TG)6 

55.0 30 98 0.539 0.868 0.347 0.292 

2 HEB 161 U5’TCA CAT GAC GTC CRG AGC CAA TC 
3’L5’CAG CCA CCC ATG AGC ACT AA 3’ 

PET (TG)12(N)25(TG)6 67.6 24 50 0.550 0.900 0.414 0.313 

2 HEB 337 U5’ GCA CTG CTA CGC ATA TAC ATG TG’3 
L5’ GAG TGC TGG GTT CTT TCT ATG C 3’ 

NED (CA) 14 55.0 27 70 0.734 0.921 0.172 0.059 

2 HEB 226 U5’ TGG GAT GGT CAC GTT TTG A3’ 
L5’ ATT CGC ACA CTT ATT TGT GAA AAT 3’ 

6 FAM (TG)23 55.0 30 88 0.604 0.937 0.449 0.407 

 mean - - - - 35 - 0.603 0.898 0.353 0.241 
Annealing temperature (Ta ) ºC used PCR reactions.  The number of alleles (A), product range size (bp), proportion of observed (HO) and expected (HT) 
heterozygosities, are listed for each locus averaged across all populations sampled. Estimates of Weir and Cockerham FIT and FIS were calculated in FSTAT.  

161 



 

 We digested tissues (approximately 1 mm3) from all populations in 150 µL of 

a 5% Chelex solution (Chelex-100, BioRad) incubated with 19 µg Proteinase K for 

120 min at 55 ºC followed by denaturation at 90 ºC for 10 min.  We amplified six 

microsatellite loci using a Hybaid Gradient Thermocycler. PCR conditions consisted 

of an initial 90 ºC denaturation for 2 minutes, followed by 35 amplification cycles of 

denaturation at 94 ºC for 50 sec, annealing (ranging from 55 - 67.6 ºC; Table 5.2) for 

60 sec, extension at 72 ºC for 60 sec, and a final 5 minute extension at 72 ºC. We 

performed PCR in 10µl reaction volumes containing: 1X Roche reaction buffer 

without MgCl2, 1 mM MgCl2, 0.2µM of each PCR primer, 0.2 µM dNTPs, 2.5U 

Roche Taq and ~ 50 ng of template DNA. In each case, the forward primer was 5’ 

labeled with a fluorescent dye (NED, 6-FAM, PET, VIC; Table 5.1) and amplicons 

were multiplexed in two groups and electrophoresed on an Applied BioSystems 

3730xl DNA Analyzer. We assigned fragment sizes by comparison with a LIZ 500bp 

ladder and binned alleles into discrete size categories according to microsatellite 

repeat motif using Genemapper ver.3.5 software (Applied Biosystems). 

 

Estimating Gene Flow 

 All microsatellite analyses of A. callidryas were conducted previously and 

matched those of D. ebraccatus. For D. ebraccatus, we calculated allelic diversity and 

observed and expected heterozygosities for each locus in FSTAT (ver. 2.1), and tested 

for significant deviation from Hardy-Weinberg Equilibrium (HWE) accounting for 

unequal sample sizes with 2520 permutations of the data across loci. Likewise, we 

tested for linkage disequilibrium (LD) based on 300 permutations. Significance for 

both HWE and LD was determined at α = 0.05 after Bonferonni correction. We used 

standard population genetic analyses to characterize population structure.  Pairwise 

FST estimates between all populations were estimated in FSTAT (following Weir and  
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TABLE 5.2. Summary of within-population diversity of ND1 and 16S sequences 
for D. ebraccatus.   
 

Region Population N H Po Π Pi 
Southwest CR 1 4 0.75  20 0.0053 (0.0037) 10 
 2 5 0.84  13 0.0038 (0.0025) 7.2 
 4 5 0.80  10 0.0042 (0.0024) 6.2 
Northwest CR 5 5 0.84 12 0.0067 ( 0.0043) 3.00 
 6 4 0 0 0 0 
 9 5 0.86 16 0.0078 ( 0.0048) 5.00 
Northeast CR 10 6 0.75 5 0.0008 (0.0006) 2.8 
 11 6 0.50 7 0.0009 (0.0005) 1.6 
 13 5 0.50 6 0.0009 (0.0007) 1.8 
Southeast CR/PA 14a 4 0.75 5 0.0013 (0.001) 2.5 
 14b 5 0.84 3 0.0007 (0.0063) 1.4 
 15 5 0.84  15 0.0033 (0.0022) 6.2 
 16 5 0.84  2 0.0005 (0.0004) 1 
Central PA 20 6 0.56  2 0.0004 (0.0004) 0.80 
 21 5 0.48 1 0.0003 (0.0002) 0.6 
 22 5 0.84  9 0.0020 (0.0014) 3.8 
The number of individuals sampled per population (N), Heterozygosity (H), number of polymorphic 
sites (Po), nucleotide diversity (π with standard error), mean number of pairwise differences (Pi). 

 

Cockerham 1984). We conducted an analysis of molecular variance (AMOVA) to 

determine the genetic variation among and within groups, in Arlequin ver. 3.1 

(Schneider et al. 2000). 

 We used Bayesian Inference assignment tests in Structure ver. 2.0 (Pritchard et 

al. 2000) to estimate the number of genetic demes represented by sampled individuals 

and to evaluate the degree of admixture among them. Structure utilizes a Markov 

chain Monte Carlo (MCMC) algorithm to find the posterior probability that 

individuals belong to each of K clusters assuming linkage equilibrium and HWE 

across multiple, unlinked loci. We applied an admixture model with correlated allele 

frequencies, alpha max = 10.0. Each run included 3 million generations, following a 

burn in of 1 million iterations. The average maximum likelihood values, for each of 25 
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runs (K=1 to K = 15) were plotted to visually determine the plateau in likelihood 

scores. We also calculated ∆K to identify the greatest rate of change between each 

subsequent K (Evanno et al. 2000). Based on these two methods, we chose the most 

likely values of K for each dataset and plotted the assignment score for all individuals 

for a range of most probable K demes. Assignment profiles for 25 runs were coalesced 

in CLUMPP (Jakobsson and Rosenberg 2007) for the final deme assignment graph.  

 

ISOLATION BY DISTANCE: COMPARISON BETWEEN SPECIES 

 We tested for a pattern of genetic isolation by distance (IBD) by comparing the 

relationship among pairwise values of the natural logarithm of geographic distance 

and genetic distance, as FST / (1 – FST) (Rousset, 1997). Estimates of genetic 

divergence based on allele frequencies are constrained by the spatial distribution of 

populations and by the heterozygosity of the genetic markers (Hedrick, 2005; 

Meirmans, 2006). Therefore, to compare patterns of IBD between species, we 

computed a standardized measure of genetic differentiation (FST′; Meirmans 2006). 

We transformed our datasets in GenoDive ver 2.0b9 and assigned each population a 

unique set of alleles (Meirmans, 2006). We used FSTAT to calculate the maximum 

population pairwise genetic differentiation (FSTmax). Standardized measures of genetic 

differentiation (FST′) were computed by dividing the true pairwise values of FST by 

FSTmax. We used linear regression to examine the relationship between pairwise natural 

logarithm of geographic distance and the standardized (FST - 1 - FST) and performed 

10,000 permutations of the Mantel test (Mantel, 1967) implemented in R ver. 1.11-4 

(Oksanen et al. 2007) to determine whether the slope of each regression was 

significantly greater than zero. We used Fisher’s r-to-Z transformation to test the 

difference between correlation coefficients for IBD along Caribbean and Pacific 

populations for both species, adjusting for unequal sample sizes (Preacher 2002).  
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MATRIX CORRESPONDENCE TESTS: ASSOCIATIONS OF GENE FLOW, 

PHENOTYPE, AND GEOGRAPHY 

  We conducted Matrix Correspondence Tests (MCT) to test whether 

population frequencies of color pattern varied with respect to gene flow and/or 

geographic factors. Matrix Correspondence Tests use repeated randomization and 

permutation to test for the correlation between two distance matrices by comparing the 

individual pairwise distance for each parameter. Randomized values provide a null 

distribution with which to test the hypothesis of no association. Significance values 

were determined by comparing the observed and expected Z-statistic, generated by 

10,000 permutations in the program R ver. 2.7.0 (Team 2005).  

 We constructed pairwise dissimilarity matrices and conducted MCT and 

pMCT in R. For color pattern, we constructed a matrix of the pairwise Euclidian 

distances based on the frequency distribution of each color pattern within populations 

of D. ebraccatus and A. callidryas. Pairwise gene flow estimates among populations 

were represented by a matrix of linearized FST values. We represented geographic 

distance as the linear distance between populations based on UTM coordinates taken 

from a handheld GPS unit, but calculated as the distance around the Cordillera de 

Talamanca because dispersal is restricted across the cordillera, likely due to 

physiological constraints of high elevation mountain passes. We compared the 

isolating effect of five barriers on gene flow and color pattern: the Golfo Dulce (Zone 

A), Rio Tárcoles (Zone B), Cordillera de Talamanca/ Cordillera de Tilarán (Zone C), 

Caribbean Valley Complex (Zone D), and Bocas del Toro (Zone E; Figures 2-3). A 

matrix for each biogeographic barrier was constructed using a binary system: 0 

representing populations on the same side of a barrier and 1 for populations located on 

opposite sides of the barrier. 
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RESULTS  

Phenotypic Diversity  

Dendropsophus ebraccatus 

 We sampled, on average 26 individuals (range 8 – 50) from 12 populations for 

a total of 312 individuals (Appendix 5.1). The frequency distribution of dorsal patterns 

differed among all populations (p = 0.001) and differed among populations within all 

regions except for Northwestern CR (Northwestern CR: p = 0.2882; Northeastern CR: 

p < 0.001; Southeastern CR: p = 0.013; Panama: p = 0.003; and Southwestern CR: p = 

0.002; Figure 5.1). Overall, the two hourglass patterns (patterns 1 and 2; Figure 5.1) 

accounted for 68% of the total variation of all individuals while the plain type was 

least common and observed in only 11.5% of individuals. Not all populations 

contained all pattern types: we did not observe any individuals with the plain type in 

three populations (populations 4, 7, 13), two of these populations (populations 7 and 

13; Figure 5.2) also lacked the spotted type. Only 2 populations exhibited a balanced 

frequency of all types (populations 14 and 16).  

 

Agalychnis callidryas 

 We sampled, on average 23 individuals (range = 13- 48) from 17 populations 

for a total of 392 individuals (Appendix 5.1). The frequency distribution of flank stripe 

pattern differed over all populations (p < 0.001) and differed among populations 

within all regions except for Northwestern CR (Northwestern CR: p = 0.554; 

Northeastern CR: p = 0.0005; Southeastern CR: p = 0.002; Panama: p = 0.040; and 

Southwestern CR: p = 0.059).  Flank patterns were more variable in the Caribbean; 

Caribbean populations contained individuals with all pattern types, although flank 

pattern A was rare and observed in only a single population (Figure 5.3).  In contrast, 

Pacific populations were nearly monomorphic for flank pattern C (92%), with only a  



  

 

 

167 

few individuals of pattern type BC, one of the dominant pattern types among 

Caribbean populations (31.7%).  

 

Genetic Diversity Patterns 

Molecular Phylogeny of Dendropsophus ebraccatus 

 We amplified 79 D. ebraccatus and 2 outgroup taxa, D. microcephalus and 

Hyla pseudopuma, at the ND1 and partial 16S mtDNA gene fragment, resulting in 

sequences 1898 nucleotides in length (Figure 5.4). This fragment contained 685 

variable sites, of those 217 were parsimony informative; no insertions/deletions were 

detected. Haplotypic (h) and nucleotide (π) diversity varied among populations with 

high h for most populations and relatively low π (Table 5.2). We found high genetic 

divergence among individuals. Significant historical genetic structure was evident 

both within and among five regions based on mtDNA: AMOVA estimated that 

19.52% of genetic variance was partitioned among populations and 18.40% among 

regions. Historical gene flow estimates (pairwise FST) revealed high differentiation 

among regions (Appendix 5.2). 

 The Bayesian topology for 16 populations suggested a pattern of high regional 

differentiation; all biogeographic regions formed highly supported, reciprocally 

monophyletic clades (Figure 5.4). Populations from Panama diverged earliest from all 

other regions. Following that, the consensus phylogeny revealed two major clades 1) 

Southwestern CR clade and 2) Southeastern-Northeastern-Northwestern clade. The 

Southwestern CR clade diverged second from a widespread clade, indicating that this 

species had an ancestral widespread distribution and that Southwestern CR 

populations became isolated from the remaining Isthmusian populations. The 

phylogenetic reconstruction infers colonization of Southeastern CR from southern  



  

 

 

168 

 
 
 
 
 

 
 
 
FIGURE 5.4. Left panel. Bayesian consensus phylogram for Dendropsophus 
ebraccatus based on 1907 basepairs of the 16S Ribosomoal subunit + NADH1 
mitochondrial DNA gene fragment. Values above branches are posterior 
probabilities. Phylogram is rooted with the outgroup taxon, Agalychnis saltator. Right 
panel. Bayesian consensus phylogram for Agalychnis callidryas based on 1149 
basepairs of the NADH1 mitochondrial DNA gene fragment. Values above 
branches are posterior probabilities. Phylogram is rooted with the outgroup taxon, 
Agalychnis saltator. Bars are coded by geographic regions in Figure 5.1.  
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populations, with dispersal into Northeastern and Northwestern CR clades (Figure 

5.4).  

For A. callidryas, the Bayesian analyses and resulting topology for 20 

populations is reported elsewhere.  The consensus topology revealed five regional 

clades with admixture among most neighboring lineages. We detected an early 

divergence of the Southwestern CR populations relative to the other four regions 

(Figure 4). Populations from the remaining regions fell within three clades of admixed 

geographic regions united at their base by a polytomy: Northwestern and 

Southwestern CR; Northwestern CR- Northeastern CR-Southeastern CR-Central 

Panama; and Central Panama (Figure 5.4). 

 

Gene flow within and between regions 

 For D. ebraccatus, the number of alleles per locus ranged from 24 - 51 and 

averaged 30.3 across all loci (Table 5.2). Mean heterozygosity was 0.898 with specific 

loci ranging from 0.815 – 0.944 (Table 5.2). Overall, we detected no consistent 

deviation in HWE or LD among populations. 

 Significant population genetic structure was evident both within and among 

five regions at microsatellite loci. The AMOVA estimate that 13% of genetic variance 

was detected among populations within regions and 11% among regions. We detected 

significant restriction in gene flow in 92 of 105 population pairwise FST comparisons 

(Appendix 5.2). Overall, pairwise FST values were lowest within regions (Appendix 

5.2). We detected genetic isolation with geographic distance at all three spatial scales 

in the study: across all populations (r = 0.1971, P = 0.035); Caribbean populations (r = 

0.331, P = 0.026); and Pacific populations (r = .784, P = 0.037). 

 Bayesian analyses revealed six demes (four Caribbean demes and 2 Pacific 

demes) with no detectable admixture between Pacific and Caribbean populations  
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Solid lines labeled A – E indicate the position of geographic barriers tested in this study.   
 
FIGURE 5.5. Structure plot of all Dendropsophus ebraccatus populations 
revealed six demes, including 2 Pacific demes and 4 Caribbean demes with 
admixture among regions.  

 

(Figure 5.5). Among Caribbean populations, the Northeast populations comprised two 

demes, one of which contained a single isolated population (population 9; Figure 5.5). 

The other two Caribbean demes corresponded to Southeastern CR and Panamanian 

populations, with limited admixture detected at the geographic borders of these 

regions. Structure analyses of Pacific populations only revealed K = 2 demes (Figure 

5.5) with admixture between the demes: one deme was comprised of the Northwestern 

CR populations + 1 Southwestern CR population (population 4) and the other deme 

contained the two southern-most populations from Southwestern CR (Figure 5.5).   

 For A. callidryas, at the broadest spatial scale, Bayesian clustering revealed 

strong differentiation between Pacific and Caribbean populations. Caribbean 

populations belonged to five demes. Among Caribbean populations, we detected a 

north-south clinal distribution in the membership frequency of demes. Among three 

Pacific demes, we detected significant admixture at the centrally located population 

(4), with membership of individuals to both Northwestern and Southwestern demes.  
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Isolation by Distance 

 We calculated FST′ to compare the relationship between genetic and geographic 

distance (IBD) for D. ebraccatus and A. callidryas.  Both species exhibited IBD along 

Caribbean populations (D. ebraccatus r = 0.331, p = 0.026; A. callidryas r = 0.623, p = 

0.001) and Pacific populations (D. ebraccatus r = 0.784, p = 0.037; A. callidryas r = 

0.872, p = 0.0011; Figure 5.6). Test of equal variance of the predictor variable 

(migration estimates) indicated that the variance in migration estimates were unequal 

between Caribbean and Pacific populations of A. callidryas (stat), populations of A. 

callidryas and D. ebraccatus along the Caribbean (stat) and Pacific (stat), but were 

equal for Caribbean and Pacific populations of D. ebraccatus (stat). Therefore, were 

could only implement the Fishers r-to-Z transformation test of the difference between 

two correlation coefficients for a comparison between Caribbean and Pacific 

populations of D. ebraccatus. The correlation coefficients for IBD did not differ 

between Pacific and Caribbean populations of D. ebraccatus (z-score = -1.06, p = 

0.10). All other comparisons were not conducted because of the violation of the 

assumption of equal variance in the predictor variable (migration estimates).  

 

Matrix Correspondence Tests: gene flow, phenotype, geographic factors 

Geographic barriers to gene flow 

 We used Matrix Correspondence Tests to test for the association between gene 

flow and geographic factors (geographic distance and barriers) within and across five 

regions for D. ebraccatus. We examined these factors using both historical genetic 

distance (mtDNA) and contemporary gene flow estimates (ncDNA). Within regions,  
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Correlation coefficient from Mantel tests based on 10,000 permutations.  
 
 
FIGURE 5.6. Genetic isolation by distance (IBD) expressed as the relationship 
between (FST / 1 – FST) and natural log transformed kilometers (km), based on 
Standardized FST  for Agalychnis callidryas (black squares) and Dendropsophus 
ebraccatus (grey squares) populations across Caribbean (top) and Pacific 
(bottom) populations.  
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we detected a positive relationship between mtDNA and geographic distance for three 

regions but no association between ncDNA and geographic distance for any region 

(Table 5.3). We detected the role of three barriers in restricting gene flow across three 

zones (B, D, E) using mtDNA estimates of genetic divergence (Table 5.3). Gene flow 

estimates derived from ncDNA were associated with a barrier across zones C and E, 

but these relationships were nullified in pMCT when geographic distance was taken 

into account (Table 5.3).  

 For A. callidryas, genetic divergence among regions inferred from mtDNA 

varied with geographic distance and was structured by to the isolating effects of four 

biogeographic barriers (A, B, C, E; Table 5.4). Using contemporary estimates of gene 

flow (ncDNA), we found that only one of these barriers (Zone C; Table 5.4) was 

effective at restricting gene flow. 

 

Determinants of color pattern 

 For D. ebraccatus, the frequency distribution of color pattern at the population 

level was random with respect to nuclear gene flow (r = 0.026, p = 0.454) and  

geographic distance (r = 0.0009, p = 0.47). For A. callidryas, the frequency 

distribution of flank stripe pattern was associated with nuclear gene flow (r = 0.668, p 

< 0.001) but not geographic distance in a partial MCT that accounted for the variation 

due to gene flow (r = -0.7411, p = 0.743).  Comparison of color pattern between the 

two taxa revealed that the dorsal pattern frequency of D. ebraccatus was not 
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TABLE 5.3. Matrix and Partial Matrix Correspondence Tests of the determinants of genetic diversity (mtDNA and nc DNA) 
across five genetic demes.  
 
Independent 
Variable 

Dependent 
Variable 

 
WITHIN REGIONS 

 
  SW NW NE SE PA 
mtDNA Distance (KM) 0.2816 (0.014) -0.0556 (0.672) 0.2819 (0.001) 0.9158 (0.001) -0.504 (0.639) 
ncDNA Distance (KM) 0.3538 (0.676) na 0.3188 (0.298) 0.9732 (0.135) -0.180 (0.6657) 
   

BETWEEN REGIONS 
 

  ZONE A ZONE B ZONE C ZONE D ZONE E 
mtDNA Distance (KM) 0.8221 (0.001) 0.8221 (0.001) 

p 0.2818 (0.002) 
0.8245 (0.001) 0.798 (0.001) 

p 0.7049 (0.001) 
0.9552 (0.001) 
p 0.069 (0.06) 

 Barrier 0.0387 (0.188) 0.9668 (0.001) 
p 0.9026 (0.001) 

0.0110 (0.366) 0.5451 (0.001) 
p 0.1633 (0.003) 

0.9982 (0.001) 
p 0.9789 (0.001) 

ncDNA Distance (KM) 0.3538 (0.676) 0.8817 (0.049) 0.4814 (0.0001) 
p 0.447 (0.0001) 

0.0852 (0.359) 0.8696 (0.005) 
p 0.4417 (0.074) 

 Barrier 0.00 (0.79) 0.7471 (0.112) 0.1992 (0.032) 
p  -0.225 (0.5715) 

0.1729 (0.121) 0.8351 (0.0293) 
p 0.033 (0.499) 

Significance values were determined by comparing the observed and expected z-statistic, generated by 10000 permutations. Partial MCT indicated in italics. 
Bonferonni adjusted P-value for multiple tests is α = 0.006 (a tablewide value of 0.05). Some tests not conducted due to an insufficient number of populations (< 
3). 
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TABLE 5.4. Comparison of historical biogeography, population genetic structure and color pattern in D. ebraccatus and A. 
callidryas.  
 

 COLOR PATTERN POPULATION STRUCTURE 
 Spatial Divergence Determinants  # Genetic Demes IBD Caribbean IBD Pacific 
A. callidryas Among populations Gene flow 

Geographic distance 
5 (Caribbean) 
3 (Pacific) 

High 
(relatively higher) 

High 
(similar) 

D. ebraccatus Among populations Random, 
Local processes 

4 (Caribbean) 
2 (Pacific) 

Moderate 
(relatively lower) 

High 
(similar) 

 

 

 BIOGEOGRAPHY OVERALL CONCLUSIONS 
 mtDNA clades Colonization routes  
A. callidryas 5 admixed clades -Southwest diverged first 

-Colonization of Pacific, then Caribbean  
-Relatively greater dispersal 
-Gene flow drives color pattern distribution 
-Selection contributes to diversification in color pattern 

D. ebraccatus 5 monophyletic 
clades 

-Panama diverged first 
-Southwest diverged, but remained isolated 
-Colonization of Caribbean, then Pacific 

-Relatively weaker dispersal 
-Balancing selection maintains polymorphisms within populations 

 

  A. callidryas D. ebraccatus Studies showing barrier isolates populations 
 Barrier mtDNA ncDNA mtDNA ncDNA  
Zone A Golfo Dulce     (Crawford et al. 2007) 
Zone B Rio Tarcoles     (Kohlmann et al. 2002) 
Zone C Cordillera de Talamanca/ 

Cordillera de Tilarán 
    (Demastes et al. 1996; Zamudio and Greene 1997; García-París et al. 

2000; Crawford 2003) 
Zone D Caribbean Valley Complex     (Kohlmann et al. 2002) 
Zone E Bocas del Toro     (Zeh et al. 2003; Weigt et al. 2005) 
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associated with the frequency distribution of flank stripe pattern in A. callidryas across 

11 populations (r = -0.0053, p =0.471), indicating biogeographic history does not 

underlie expression of color pattern in these two taxa, in the same way. 

  

DISCUSSION 

 We examined patterns of genetic and color pattern differentiation in two co-

distributed species and found limited evidence to support the hypothesis that common 

historical processes have resulted in concordant patterns of diversification. Our 

findings of strong discordance underscore the importance of interpreting comparative 

phylogeographic studies in light of specific ecological and life history traits. The two 

study taxa exhibited differences that highlight the complex and dynamic processes 

underlying population structure, including the effects of landscape features, gene flow 

patterns, localized selection and drift. We discuss these differences in four sections. 

First, we highlight the unequal effects of biogeographic barriers in isolating 

populations between species and across temporal scales. Next, we address species 

differences in the colonization history of Isthmus populations. Third, we evaluate 

differences in the patterns of genetic isolation by distance across regions and between 

species. Finally, we evaluate the implications for the selective mode on color pattern 

polymorphisms on the evolution of populations.  

 

Geographic isolation due to biogeographic barriers varies at temporal scales 

 Through the combined use of mitochondrial and nuclear markers, we discerned 

processes occurring at deeper historical and relatively recent contemporary time 

scales. Because of differences in recombination, inheritance, and mutation between 

these two markers, we directly compare gene flow estimates or use mtDNA inferences 

to comment on female dispersal. Instead, we compare estimates derived from these 
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markers to gain insight into historical and contemporary processes of population 

diversification. We found that three biogeographic barriers were effective in historical 

isolation of populations that are now connected through contemporary gene flow. 

Across two other barriers, the isolating effects were unequal between the two study 

taxa (Table 5.4). The effects of a geographic barrier are likely to be more pronounced 

for a continuously distributed, vagile species, such as A. callidryas. Whereas, the 

isolating effect of that same barrier for a less vagile and philopatric species might be 

undetectable because the genetic variance between populations is accounted for at 

smaller geographic scales (Irwin 2002).  Indeed we detected significant restrictions in 

gene flow due to three geographic barriers for A. callidryas at ncDNA markers and 

none for D. ebraccatus (Table 5.4). The greater overall restrictions in nuclear gene 

flow at small spatial scales for D. ebraccatus supports the conclusion that the spatial 

scale at which we tested barriers exceeded the dispersal capacity of D. ebraccatus. 

 Among the five putative barriers tested in this study, two barriers limited 

historical gene flow among both A. callidryas and D. ebraccatus populations (Zones B 

and E). For both taxa, our phylogenetic reconstructions revealed historical isolation of 

the Southwestern CR clade. The unique biogeographic history of Southwestern CR 

(Zone B) has resulted in exceptional faunal endemism. This region was isolated from 

Northwestern CR and Caribbean lowland forest following the uplift of the Cordillera 

de Talamanca, approximately 2.5 MYA (Kohlmann et al. 2002; Savage 2002). The 

second barrier, located within the Caribbean region of Bocas del Toro (Zone E) is 

located in Southeastern CR/Western Panama (Figures 5.2-5.3). This region has a 

complex vicariant and dispersal history, marked by multiple dispersal events of South 

American fauna over the last 5 MY(Coates and Obando 1996; Kohlmann et al. 2002). 

Lowland Caribbean forest has been isolated by fluctuations in sea levels and continual 

volcanic uplift since the Miocene. Multiple pulses of dispersal from South America 
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during periods of low sea levels with subsequent isolation could account for the early 

divergence of Central Panama populations of D. ebraccatus and the relative isolation 

of A. callidryas populations in that same region. However, nuclear gene flow across 

these barriers (B and E) was unrestricted for both species. Thus, contemporary gene 

flow is acting to eliminate the footprint of historical isolation and, thus any historical 

local adaptations are likely to attenuate over time with the homogenizing effects of 

migration.  

 Differences between the focal taxa in response to landscape features were 

evident across two barriers, Zones C and D. For A. callidryas, both historical and 

contemporary estimates of gene flow were shaped by the isolation due to the central 

cordillera range (Zone C). Zone C marks the intersection of Caribbean and Pacific 

populations at the northwestern edge of the Cordillera de Talamanca, a barrier known 

to structure the distribution of many terrestrial organisms in Costa Rica (see Table 

5.4). This barrier is also associated with high phenotypic divergence in A. callidryas in 

both leg and flank coloration and flank-stripe pattern, providing substantial evidence 

that color pattern diversification has been largely driven by genetic isolation.  We 

detected no evidence of restricted gene flow across the Cordillera for populations of 

D. ebraccatus, nor did we detect phenotypic differentiation coincident with this 

landscape feature.  However, highly restricted gene flow among populations within 

regions bordered by the Cordillera de Talamanca provides support for our previous 

conclusion the spatial scale spanning this geographic barrier exceeds the dispersal 

capacity of the species; that is, the barrier itself is unlikely to effect migration patterns. 

For D. ebraccatus, finer spatial sampling between populations (e.g., 5 km) is required 

to resolve this issue. 

 Historical gene flow was reduced across the Caribbean Valley Complex (Zone 

D) for D. ebraccatus only. This zone is characterized by three valleys at the foothills 
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of the Cordillera de Talamanca (Valle de Talamanca, Valle de Estrella, Llanura de 

Santa Clara) situated between Northeastern and Southeastern CR and coincident with 

the geographic range limits of several taxa (Kohlmann et al. 2002). Fossil records 

dating to the Miocene (6 MYA) indicated a land connection between North and South 

America along this Caribbean coastline that has been interrupted repeatedly by marine 

introgressions (Kohlmann et al. 2002). Despite historical limitations to migration, our 

estimates of contemporary gene flow patterns revealed no obvious restrictions in gene 

flow due to this barrier. In contrast, we did not detect an effect of this barrier on gene 

flow at either historical or contemporary time scale for A. callidryas. Yet, this barrier 

demarcates significant phenotypic divergence between Northeastern and Southeastern 

populations of red-eyed treefrogs, providing an example of phenotypic differentiation 

in the presence of gene flow, likely due to the contributing effects of drift, selection or 

both.   

 

Colonization history of Central American Isthmus 

 Historical colonization of Isthmus populations, inferred from mtDNA 

phylogenetic reconstruction, revealed differences between the species in both the 

dispersal routes and degree of regional admixture. For A. callidryas, we detected five 

regional mtDNA clades with admixture among neighboring lineages (and no regional 

monophyly). The phylogenetic relationships among populations indicated that the 

Southwestern CR clade diverged first and was sister to all other Costa Rican and 

Panamanian clades. Dispersal likely occurred northward through Northwestern CR, 

followed by transcontinental migration into Caribbean populations. This interpretation 

is supported by a broad-scale phylogeographic study across the range of A. callidryas 

(Crawford et al., in preparation).  
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 In contrast, for D. ebraccatus, we detected five, deeply divergent, reciprocally 

monophyletic regional clades with no admixture among lineages (Figure 5.4). The 

biogeographic history, inferred from mtDNA haplotypes, indicated an initial 

divergence of Panamanian populations, followed by the isolation of Southwestern CR. 

Thus, for D. ebraccatus, a simple vicariance model does not explain the sister 

relationship between Caribbean and Pacific populations, a finding for other 

populations of Isthmus frogs (Crawford 2003). Our reconstruction revealed dispersal 

into Caribbean populations from Panama with transcontinental migration from the 

Caribbean (Northeastern CR) into Pacific (Northwestern CR) populations. Our two 

taxa differ significantly in their response to major landscape features, as well as 

dispersal and colonization history of Central American Isthmus populations. 

 

The effects of landscape complexity on gene flow and isolation by distance patterns 

 Agalychnis callidryas exhibited clinal variation in genetic membership 

coefficients for individuals as well as strong associations between genetic and 

geographic distance across both Pacific and Caribbean demes (Figure 5.6), indicating 

a stepping-stone model of migration. In contrast, D. ebraccatus populations exhibited 

very restricted gene flow, reduced admixture among the four Caribbean demes (Figure 

5.5) and no association between genetic and geographic distance among populations 

within each of the five regions. Overall, greater restrictions in gene flow among D. 

ebraccatus populations could result from inherent limitations in dispersal, the presence 

of habitat barriers not included in this study, as well as differences in demographic and 

life history traits (e.g., small body size, lower tolerance to desiccation, and higher 

philopatry). This extreme population differentiation was also observed for small, 

specialized leaf liter frogs in the genus Eleutherodactylus (Crawford 2003). 



  

181 

 

Agalychnis callidryas is 2 – 4 times larger than D. ebraccatus and large body size 

could account for differences in dispersal capacity. 

 We could not directly compare IBD relationships between our two focal taxa 

or between Caribbean and Pacific populations of A. callidryas, due to violation of the 

assumptions of equal variance in our migration estimates. However, the unequal 

variance between Caribbean and Pacific populations revealed that geographic distance 

is a poor predictor of genetic distance at large spatial scales. Thus, illustrating the 

effects of a heterogeneous landscape on dispersal patterns. Because of the high 

variance in migration estimates among Caribbean population relative to the Pacific, 

we conclude that landscape complexity and geographic barriers (untested in this study) 

corroborate our findings of higher overall genetic and phenotypic diversity. 

 

Determinants of color pattern 

  Color pattern varied among populations of A. callidryas and D. ebraccatus, 

but the mechanisms driving phenotypic diversity within and among populations 

differed between taxa. A. callidryas exhibited clinal change in color pattern that was 

associated with gene flow and geographic distance, whereas color pattern of D. 

ebraccatus populations were random with respect to both genetic and geographic 

distance.  

 The adaptive significance of color pattern in A. callidryas is discussed in detail 

elsewhere; briefly we favor the hypothesis that CP is (in part) a social signal used for 

species recognition. Thus, this trait may have evolved and differentiated among 

populations through combined forces of genetic isolation, sexual selection and drift. 

Pacific populations of A. callidryas were nearly monomorphic for flank pattern C, a 

pattern observed in low frequency in Caribbean populations of Panama and 

Southeastern CR. The high frequency and widespread distribution of pattern C along 
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Pacific populations is associated with higher estimates of gene flow and lower levels 

of genetic diversity. The sharpest distinction in flank pattern occurred at the divide 

between Caribbean and Pacific populations, corroborating the strong barrier to gene 

flow observed at this site on both historical and contemporary time scales (Zone C). 

This is consistent with divergence in flank coloration: Pacific populations contain 

individuals with orange flanks, while individuals in the Caribbean exhibit blue flanks. 

Along Caribbean populations, we observed a clinal change in the frequency 

distribution of flank stripe (this study) and leg coloration coinciding with a stepping-

stone model of migration and genetic IBD.While associations between flank-stripe 

pattern and gene flow indicated that color pattern evolved through gene flow-drift 

equilibrium, the directional diversification among populations could be reinforced by 

sexual selection. This is observed for other frogs known to use visual signals for mate 

discrimination (Buchanan 1994; Siddiqi et al. 2004; Rudh et al. 2007).  

 For D. ebraccatus the frequency distribution of color pattern varied among 

almost all populations (within and among regions) but was not determined by genetic 

or geographic factors. In this species, restrictions in gene flow reduced the likelihood 

that gene flow patterns underlie color pattern at fine spatial scales and instead, 

underscores the potentially important role of within-population processes in 

structuring color pattern. The occasional loss of a color morph in three disjunct 

populations across the study region implicates genetic drift as one of these factors 

(Figure 5.2). The large sample size for NE 10 (N = 50) justifies our position that losses 

were due to stochastic population-level processes rather than observational bias due to 

insufficient sampling. While our research goal was not to examine the adaptive 

significance of dorsal color pattern, it is useful to evaluate the possible selection 

pressures driving balanced polymorphisms. Within-population polymorphisms are 

common in anurans and often result from frequency-dependent selection (Hoffman 
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and Blouin 2000), non-assortative mating, life history characteristics (Summers et al. 

1997) or natural selection favoring crypsis (refs). Blotches and spots, characteristic of 

D. ebraccatus, are a common form of disruptive coloration, making individuals 

cryptic against a heterogeneous background (Cott 1940; Endler et al. 2005). Our 

community-based analyses of character displacement supported the hypothesis that 

color pattern polymorphisms in this frog are not used for species recognition, but 

indicated a role of the environment in the maintaining CP. Predator pressures could 

favor population polymorphisms if visual predators more readily identify common 

morphs as potential prey items, thus allowing rarer forms to persist (Cott 1940). Our 

best initial hypothesis of the maintenance of CP in D. ebraccatus is the interaction 

between stochastic and frequency-dependent processes, and is an area for future 

behavioral studies.     

  

CONCLUSIONS 

 Although many co-distributed taxa experience common historical processes, 

this study revealed how species-specific life history and demographic characteristics 

can result in very different evolutionary outcomes. We detected differences in the 

biogeographic history, population genetic structure and dispersal biology of A. 

callidryas and D. ebraccatus. In addition, the diversification and distribution of color 

pattern and genetic diversity have proceeded through different evolutionary and 

geographic mechanisms in each taxon. Our study species have two of the broadest 

geographic ranges of Middle American treefrogs, indicating their relative success in 

dispersal and colonization, yet our results indicate that these species have achieved 

this broad distribution in different ways.  
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APPENDIX 5.1. Sampling populations of Agalychnis callidryas from five regions in Costa Rica and Panama.  
 

Geographic coordinates (GIS) are Latitude (Lat), Longitude (Long), elevation (El, m). Sampling sizes for color pattern (color), microsatellite analyses 
(micros), and mtDNA sequencing (seq) provided. Population number (No.) indicates position on Figure 5.1.  
 

Region Province No. Population GIS (Lat, Long, El) ACA  

color  

HEB  

color 

HEB micro HEB 

seq 
Southwestern  

 

Puntarenas, CR 1 Pavones  8.4204, -83.1069, 37 20 39 30 4 
CR Puntarenas, CR 2 Sierpe  8.8892, -83.477, 17 19 - - - 
 Puntarenas, CR 4 Uvita  9.123, -83.701, 26 24 25 28 5 
 Puntarenas, CR 3 Campo  8.6909, -83.5013, 35 

 

16 26 25 5 
Northwestern  

 

 

Puntarenas, CR 5 Pl. Bandera  9.5188, -84.3774, 23 19 21 28 5 
CR San Jose, CR 6 Carara 9.725, -84.531, 385 25 24 31 4 
 Guanacaste,  CR 7 Cabo Blanco  9.580, -85.124, 166 18 - - - 
Northeastern  Guanacaste, CR 8 Tilarán 10.5162, -84.9601, 637 

 

22 - - - 
CR Alajuela, CR 9 San Ramon  

 

10.2335, -84.5287, 638 

 

14 22 21 5 
 Heredia, CR 10 La Selva Biological Station  10.4327, -84.0080, 37 20 50 98 6 
 Limón, CR 11 University of EARTH 10.2318, -83.5, 44 0 0 29 6 
 Limón, CR 12 Siquirres  10.0134, -83.565, 667 0 0 26 5 
 Limón, CR 13 Guayacan 10.0134, -83.557, 680 0 - - - 
Southeastern  Limón, CR 14 Cahuita  9.718, -82.814, 16 0 0 0 4 
CR/PA Limón, CR 15 Manzanillo 9.6332, -82.6556, 2 26 15 14 5 
 Bocas del Toro, PA 16 Chiriqui Grande  8.9460, -82.1571, 21 

 

21 8 11 5 
 Bocas del Toro, PA 17 Almirante  9.1980, -82.3445, 13 10 - - - 
Central  Veraguas, PA 18 Santa Fe  8.529, -81.139, 714 17 - - - 
Panama Coclé, PA 19 El Cope  8.6681, -80.592, 792 22 - - - 
 Coclé, PA 20 El Valle  8.6299, -80.1159, 866 21 24 20 5 
 Panamá, PA 21 Gamboa  9.1231, -79.6930, 51 

 

22 31 109 5 
 Panamá, PA 22 Cerra Azul 9.1671, -79.419, 638 

 

-79.41925 

 

- 27 31 5 
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APPENDIX 5.2.  Pairwise FST estimates based on mtDNA  (below diagonal) and six microsatellite loci (above diagonal) for 
15 populations of D. ebraccatus.   
 
  SW CR NW CR NE CR SE CR PA 

   
1 2 4 5 6 9 10 11 12 14 15 16 20 21 22 

1 . 0.133 0.199 0.2 0.191 0.319 0.182 0.172 0.213 0.215 0.164 0.187 0.255 0.214 0.148 

2 0.21 . 0.183 0.206 0.209 0.348 0.205 0.2 0.235 0.241 0.19 0.221 0.278 0.225 0.187 

SW CR 

4 0.45 0.5 . 0.223 0.205 0.312 0.182 0.182 0.222 0.134 0.102 0.12 0.261 0.21 0.134 

5 0.8 0.82 0.51 . 0.087 0.259 0.089 0.07 0.108 0.201 0.169 0.177 0.18 0.144 0.132 NW CR 
6 0.9 0.92 0.46 0.33 . 0.216 0.072 0.067 0.116 0.171 0.122 0.151 0.073 0.046 0.077 

9 0.26 0.3 0.42 0.07 0 . 0.132 0.164 0.246 0.307 0.248 0.294 0.294 0.24 0.219 

10 0.03 0.07 0.2 -0.01 -0.06 -0.1 . 0.011 0.081 0.166 0.136 0.143 0.131 0.103 0.096 

11 0.03 0.07 0.2 -0.01 -0.07 -0.1 -0.2 . 0.05 0.166 0.126 0.141 0.14 0.109 0.082 

NE CR 

12 0.92 0.93 0.51 0.62 0.96 0.21 0.04 0.03 . 0.221 0.181 0.2 0.198 0.159 0.145 

14 0.89 0.9 0.51 0.81 0.97 0.24 0.04 0.04 0.97 . 0.069 -0.008 0.207 0.149 0.068 

15 0.83 0.84 0.51 0.75 0.88 0.22 0.04 0.04 0.92 
  

. 0.053 0.194 0.143 0.021 

SE CR 

16 0.9 0.91 0.51 0.84 0.98 0.28 0.06 0.05 0.97 0.84 0.63 . 0.193 0.137 0.041 

20 0.95 0.96 0.52 0.93 1 0.5 0.18 0.18 0.99 0.99 0.96 0.99 . 0.025 0.092 

21 0.95 0.96 0.52 0.93 1 0.5 0.18 0.18 0.99 0.99 0.96 0.99 0.13 . 0.072 

PA 

22 0.93 0.94 0.52 0.92 0.98 0.5 0.18 0.18 0.97 0.97 0.94 0.97 -0.03 0.02 . 

FST significance corrected for multiple comparisons at 0.05 in bold.  Negative FST values are not different from zero.  Population number correspond to 
Figure 5.1 
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