
SCALABLE AND RELIABLE INFERENCE FOR

PROBABILISTIC MODELING

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Ruqi Zhang

August 2021



© 2021 Ruqi Zhang

ALL RIGHTS RESERVED



SCALABLE AND RELIABLE INFERENCE FOR PROBABILISTIC

MODELING

Ruqi Zhang, Ph.D.

Cornell University 2021

Probabilistic modeling, as known as probabilistic machine learning, provides a

principled framework for learning from data, with the key advantage of offering

rigorous solutions for uncertainty quantification. In the era of big and complex

data, there is an urgent need for new inference methods in probabilistic modeling

to extract information from data effectively and efficiently.

This thesis shows how to do theoretically-guaranteed scalable and reliable

inference for modern machine learning. Considering both theory and practice,

we provide foundational understanding of scalable and reliable inference methods

and practical algorithms of new inference methods, as well as extensive empirical

evaluation on common machine learning and deep learning tasks.

Classical inference algorithms, such as Markov chain Monte Carlo, have enabled

probabilistic modeling to achieve gold standard results on many machine learning

tasks. However, these algorithms are rarely used in modern machine learning due

to the difficulty of scaling up to large datasets. Existing work suggests that there

is an inherent trade-off between scalability and reliability, forcing practitioners to

choose between expensive exact methods and biased scalable ones. To overcome

the current trade-off, we introduce general and theoretically grounded frameworks

to enable fast and asymptotically correct inference, with applications to Gibbs

sampling, Metropolis-Hastings and Langevin dynamics.

Deep neural networks (DNNs) have achieved impressive success on a variety



of learning problems in recent years. However, DNNs have been criticized for

being unable to estimate uncertainty accurately. Probabilistic modeling provides

a principled alternative that can mitigate this issue; they are able to account for

model uncertainty and achieve automatic complexity control. In this thesis, we

analyze the key challenges of probabilistic inference in deep learning, and present

novel approaches for fast posterior inference of neural network weights.
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CHAPTER 1

INTRODUCTION

The power of data propels the development of society, science and technology. The

newest generation of machine learning systems is largely driven by the explosion of

data in recent decades. While data are key to solving problems, they are useless

until we turn them into predictions and decisions. Therefore, there is an urgent need

for innovative modeling tools that can effectively and efficiently extract information

from big data.

Probabilistic modeling takes the intrinsic uncertainty of the real world into

consideration, offering a principled way to quantify uncertainty about predictions

and decisions. It has been widely used across many different domains, ranging from

social science [114, 54] and neuroscience [100], to natural language processing [51]

and image generation [130].

In probabilistic modeling, the key algorithmic problem is probabilistic inference.

Inference refers to the process of using information from data to reason unknown

properties, which transfers our prior knowledge to posterior knowledge given data

evidence. Inference from big data faces several challenges: (1) the posterior distribu-

tion is always complex or multimodal, adding difficulties to inferring accurately; (2)

most inference methods become unacceptably slow or even intractable when used

with big data, due to the complexity dependency of the dataset size; (3) inference

with non-convex objective functions—as is the case when working with big data—is

poorly understood, leading to unexplained and unpredictable empirical results.

We will analyze these challenges and provide our solutions in this thesis. First,

we will introduce general frameworks to enable theoretically-guaranteed scalable
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and reliable inference, with applications to Gibbs sampling, Metropolis-Hastings

and Langevin dynamics. In addition to proposing new algorithms, we provide

theoretical analysis of the proposed algorithms, as well as theoretical understanding

about how well the existing methods are doing and how well we can possibly hope

to do. Then we focus on deep probabilistic modeling whose posterior is complicated

and highly multimodal. We analyze the key challenges of probabilistic inference in

deep learning, and presents novel approaches for fast posterior inference of neural

network weights.

1.1 Thesis Outline

Theoretically-Guaranteed Inference

Classical inference algorithms, such as Markov chain Monte Carlo (MCMC), have

enabled probabilistic modeling to achieve gold standard results on many machine

learning tasks [107]. However, these algorithms are rarely used in modern machine

learning due to the difficulty of scaling up to large datasets. Previous methods

have mostly attempted to scale inference using stochasticity, which uses a subset to

approximate the whole dataset. This strategy comes with a significant drawback:

stochasticity often sacrifices exactness, that is, it introduces asymptotic bias into

inference results. Exact inference is crucial for reliable uncertainty quantification,

especially for high-risk tasks such as healthcare and autonomous driving. Prior

work suggests that there is an inherent trade-off between scalability and exactness,

forcing practitioners to choose between expensive exact methods and biased scalable

ones.
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In this part, we will discuss why it is important to do theoretically-guaranteed

inference and how we can do it fast in practice. Chapter 3 is based on the work at

NeurIPS 2019 [156] and NeurIPS 2020 [155], where we introduce a general framework

to make classical inference algorithms both theoretically-guaranteed correct and

scalable, with the application to Gibbs sampling and Metropolis-Hastings. In

Chapter 4, we present the paper at AISTATS 2020 [154] where we propose a way to

do theoretically-guaranteed gradient-based inference methods by using amortized

Metropolis correction.

Efficient Inference for Reliable Deep Learing

Deep neural networks (DNNs) have achieved impressive success on a variety of

learning problems in recent years. However, DNNs have been criticized for being

unable to estimate uncertainty accurately. Probabilistic modeling provides a

principled alternative that can mitigate this issue; they are able to account for

model uncertainty and achieve automatic complexity control. Because of these

properties, Bayesian inference methods on small neural networks have achieved

great success. However, due to scalability issue, they remained unused on modern

machine learning problems concerning deep neural networks.

In this part, we develop several methods towards advancing deep probabilistic

modeling. In Chapter 5, which presents the paper at ICLR 2020 [157], we talk

about a new stochastic MCMC method to efficiently explore the highly multimodal

parameter space of DNNs given a practical computational budget. In Chapter 6,

which presents the paper at AISTATS 2021 [158], we advance variational inference

for cheap approximations of the posterior of Bayesian neural networks.
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CHAPTER 2

BACKGROUND

Probabilistic modeling is a very general framework to learn from data. The

pipeline of it can be summarized as in Figure 2.1. We first collect the data about

the problem we are interested in, and then define a model with a prior distribution

over the parameters to describe how the data can be observed from this system.

After doing these, we are ready to infer the parameters of the model from the data

by Bayes rule. In this inference step, we extract the knowledge from the data to

update our model. Finally, we use the learned model to do downstream tasks such

as prediction, decision making and scientific discovery.

2.1 Bayesian Inference

This thesis focuses on the algorithmic step of the probabilistic modeling pipeline:

Bayesian inference. Specifically, given a dataset D = {xi}Ni=1 and a θ-parameterized

model, it aims to compute the posterior distribution

π(θ) ∝ exp
(
−
∑N

i=1 Ui(θ)
)
,where Ui(θ) = − log p(xi|θ)− 1

N
log p(θ).

Here p(θ) is the prior and the p(xi|θ) give the likelihood of observing xi given the

parameter θ. We assume the data are conditionally independent given θ. The

Ui have a natural interpretation as component energy functions with π acting

as a Gibbs measure. In practice, computing π(θ) is often intractable and thus

requires using approximate methods, such as Markov chain Monte Carlo (MCMC)

and variational inference (VI). Below we will review the foundations of these two

popular approximate inference methods.
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Figure 2.1: Probabilistic modeling pipeline, with inference step in the red square.

2.1.1 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods play an important role in Bayesian

inference. They work by constructing a Markov chain with the desired distribution

as its equilibrium distribution; one samples from the chain and, as the algorithm

converges to its equilibrium, the samples drawn reflect the desired distribution [102,

42, 71, 108]. We introduce several popular MCMC methods which also serve as the

foundations for the following sections.

Metropolis-Hastings (MH)

The Metropolis-Hastings (MH) algorithm [65, 102] is one of the most commonly

used MCMC methods. In each step, MH generates a proposal θ′ from a proposal

distribution q(·|θ), and accepts it with probability

a(θ, θ′) = min
(

1, π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

)
= min

(
1, exp

(∑N
i=1(Ui(θ)− Ui(θ′))

)
· q(θ|θ

′)
q(θ′|θ)

)
.

(2.1)

If accepted, the chain transitions to θ′; otherwise, it remains at the current state

θ. This accept/reject step can be quite costly when N is large, since it entails
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computing a sum over the entire dataset.

Gibbs Sampling

Gibbs sampling [55] works by iteratively resampling a variable from its conditional

distribution with the remaining variables fixed. Suppose that the target distribution

is π(θ) = π(θ1, . . . , θn). In each iteration, we select a variable θj to sample at

random, and resample it from the conditional distribution

θj ∼ π(θj|θ{1,...,n}\{j}).

Hamiltonian Monte Carlo and Second-Order Langevin Dynamics

Hamiltonian Monte Carlo (HMC) and second-order Langevin dynamics (L2MC) [42,

71, 108] construct a Markov chain by augmenting the state space with an additional

momentum variable r, giving joint distribution

π(θ, r) ∝ exp(−H(θ, r)) = exp

(
−U(θ)− 1

2σ2
‖r‖2

)
,

where H is the Hamiltonian, which measures the total energy of the system. Note

we could replace the norm with any positive definite quadratic form on r. For

simplicity, we only consider the case of isotropic momentum energy—where the

mass matrix is σ2I. HMC then simulates Hamiltonian dynamics

dθ = σ−2r dt, dr = −∇U(θ) dt. (2.2)

The value of the Hamiltonian is preserved under these dynamics, so we must also

include transitions that change the value of H to explore the whole state space.

HMC does this by periodically resampling r from its conditional distribution. L2MC

does so by continuously modifying r with a friction term and added Gaussian noise.
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Even though (2.2) preserves H, the discrete simulation of (2.2) run by HMC or

L2MC does not necessarily do so. Therefore both algorithms need an MH correction

step to prevent bias due to discretization.

Stochastic Gradient MCMC

Stochastic Gradient MCMC (SG-MCMC) is a family of scalable sampling methods

that enables inference with mini-batches of data. When D is too large, it is expensive

to evaluate U(θ) for all the data points at each iteration. Instead, SG-MCMC

methods use a minibatch to approximate U(θ): Ũ(θ) = −N ′

N

∑N ′

i=1 log p(xi|θ) −

log p(θ) , where N ′ � N is the size of minibatch. We recommend [94] for a

general review of SG-MCMC algorithms. We describe two SG-MCMC algorithms

considered in this thesis.

SGLD & SGHMC Stochastic Gradient Langevin Dynamics (SGLD) [146] uses

stochastic gradients with Gaussian noise and can be regarded as stochastic version

of the first order Langevin Monte Carlo (LMC). Posterior samples are updated at

the k-th step as: θk = θk−1 − αk∇Ũ(θk) +
√

2αkεk, where αk is the stepsize and εk

has a standard Gaussian distribution.

To improve mixing over SGLD, Stochastic Gradient Hamiltonian Monte Carlo

(SGHMC) [27] introduces an auxiliary momentum variable v. SGHMC is built

upon HMC, with an additional friction term to counteract the noise introduced by

a mini-batch. Thus it can also be thought of as a stochastic version of L2MC. The

update rule for posterior samples is: θk = θk−1 + vk−1, and vk = vk−1−αk∇Ũ(θk)−

ηvk−1 +
√

2(η − γ̂)αkεk, where 1− η is the momentum term and γ̂ is the estimate

of the noise.
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2.1.2 Variational Inference

Another common approximate inference method is variational inference (VI) [76,

152], which approximates the true posterior with a tractable posterior qφ(θ) ≈

p(θ|D). Typically the approximate posterior qφ(θ) is obtained by minimizing a

divergence, e.g. variational inference (VI) often minimizes KL(qφ(θ)‖p(θ|D)). This

turns Bayesian inference into an optimization task (divergence minimization). In

practice, due to the intractability of p(D), VI alternatively maximizes an equivalent

objective called the variational lower bound :

LVI = Eθ∼qφ

[
log

p(D, θ)
qφ(θ)

]
= log p(D)−KL(qφ‖p). (2.3)

Renyi’s α-divergence α-divergence is a generalization of KL divergence [68,

90, 104]. There are different definitions of α-divergence and their equivalences are

shown in [31]. Here we focus on Renyi’s definition [90, 124] instead of others [4, 138]

as it allows our meta-learning framework to be differentiable in α (Section 6.2.1).

Renyi’s α-divergence is defined on α > 0, α 6= 1

Dα(p‖q) =
1

α− 1
log

∫
p(θ)αq(θ)1−αdθ, (2.4)

and for α = 1 it is defined by continuity: D1(p‖q) = limα→1Dα(p‖q) = KL(p‖q).

Similar to the variational lower bound, one can maximize the variational Renyi

bound (VR bound) [90]:

Lα(qφ;D) =
1

1− α
log Eθ∼qφ

[(
p(θ,D)

qφ(θ)

)1−α
]

(2.5)

= log p(D)−Dα(qφ‖p).

The expectation is usually computed by Monte Carlo (MC) approximation. To allow

gradient backpropagation, the VR bound uses the reparameterization trick [79, 131],
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where sampling θ ∼ qφ(θ) is conducted by first sampling ε ∼ p(ε) from a simple

distribution independent with the variational distribution (e.g. Gaussian) then

parameterizing θ = rφ(ε). It follows that the gradient of the VR bound w.r.t. the

variational parameter φ after MC approximation with K particles is

∇φLα(qφ;x) =
K∑
k=1

[
wα,k∇φ log

p(rφ(εk), x)

q(rφ(εk))

]
, (2.6)

where wα,k =
(
p(rφ(εk),x)

q(rφ(εk))

)1−α
/∑K

k=1

[(
p(rφ(εk),x)

q(rφ(εk))

)1−α
]
. When α = 1 the weights wα,k =

1/K and the gradient Eq.(2.6) becomes an unbiased estimate of the gradient of the

variational lower bound Eq.(2.3).

f-divergence f -divergence defines a more general family of divergences [33, 105].

Given a twice differentiable convex function f : R+ → R, the f -divergence is defined

as [33]:

Df (p‖qφ) = Eθ∼qφ [f (p(θ)/qφ(θ))− f(1)] . (2.7)

This family includes KL-divergences in both directions, by taking f(t) = − log t for

KL(q‖p) and f(t) = t log t for KL(p‖q). It also includes α-divergences by setting

f(t) = tα/(α(α − 1)) for α ∈ R\{0, 1}. Although the f -divergence family is very

rich due to its parameterization by an arbitrary twice-differentiable convex function,

it requires significant expertise to design a suitable f function for a specific task.

Thus the potential of f -divergence has not been fully leveraged.

2.2 Scalability-Reliability Trade-Off

The existing inference tools can be evaluated across two important features: the

ability to work with big data and large models, and the ability to provide reliable
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and trustworthy inference results. As shown in Figure 2.2, on the one hand, we

have optimization or Maximum A Posteriori, which approximates the posterior

distribution by just a point mass. It is highly scalable and can work well with

deep neural networks on millions of data points, but it is not reliable because it

completely discards uncertainty and a point estimate is very sensitive to disturbance.

On the other hand, we have Markov chain Monte Carlo, which is guaranteed to

converge to the true posterior regardless the posterior’s shape, but it is just too

slow to work with modern models and big data. In between, we have variational

inference which provides a simple approximation, such as a Gaussian approximation,

to the true posterior. Recently, a class of inexact MCMC methods [146, 81, 11]

emerges. In order to gain scalability, they introduce asymptotic bias to the inference

results, thus significantly sacrifice reliability. Clearly there exists a trade-off in

current inference methods, forcing practitioners to choose between expensive exact

methods and biased scalable ones.

However modern probabilistic modeling needs better trade-off, because we have

a much higher requirement for scalability and reliability and the current trade-off

cannot satisfy it. Many real applications’ scale grows exponentially and the results

have to be reliable enough to avoid disastrous outcomes. Examples include medical

diagnosis, autopilot driving, climate forecasting and policy enacting. In order to

solve these problems, We must push the frontier of the trade off to satisfy the

urgent need for new inference methods.
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Figure 2.2: Scalability-reliability trade-off in current inference methods.
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Part II

Theoretically-Guaranteed

Inference
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CHAPTER 3

POISSON-MINIBATCHING

In this chapter, we will introduce a general framework called Poisson-Minibatching

to enable theoretically-guaranteed scalable and reliable inference. Poisson-

Minibatching significantly scales classical inference methods while still keeping their

asymptotic correctness. We will discuss two applications of this framework, one to

Gibbs sampling and another to Metropolis-Hastings.

3.1 Gibbs sampling with Poisson-Minibatching

Gibbs sampling is a Markov chain Monte Carlo (MCMC) method which is widely

used for inference on graphical models [80]. Although Gibbs sampling is a powerful

method, its utility can be limited by its computational cost when the model is large.

One way to address this is to use stochastic methods, which use a subsample of the

dataset or model—called a minibatch—to approximate the dataset or model used

in an MCMC algorithm. Minibatched variants of many classical MCMC algorithms

have been explored [146, 97, 37, 87], including the MIN-Gibbs algorithm for Gibbs

sampling [37].

In this section, we propose a new minibatched variant of Gibbs sampling on factor

graphs called Poisson-minibatching Gibbs (Poisson-Gibbs). Like other minibatched

MCMC methods, Poisson-minibatching Gibbs improves Gibbs sampling by reducing

its computational cost. In comparison to prior work, our method improves upon

MIN-Gibbs in two ways. First, it eliminates the need for a potentially expensive

Metropolis-Hastings (MH) acceptance step, giving it a better asymptotic per-

iteration time complexity than MIN-Gibbs. Poisson-minibatching Gibbs is able
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to do this by choosing a minibatch in a way that depends on the current state of

the variables, rather than choosing one that is independent of the current state

as is usually done in stochastic algorithms. We show that such state-dependent

minibatches can still be sampled quickly, and that an appropriately chosen state-

dependent minibatch can result in a reversible Markov chain with the correct

stationary distribution even without a Metropolis-Hastings correction step.

The second way that our method improves upon previous work is that it

supports sampling over continuous state spaces, which are common in machine

learning applications (in comparison, the previous work only supported sampling

over discrete state spaces). The main difficulty here for Gibbs sampling is that

resampling a continuous-valued variable from its conditional distribution requires

sampling from a continuous distribution, and this is a nontrivial task (as compared

with a discrete random variable, which can be sampled from by explicitly computing

its probability mass function). Our approach is based on fast inverse transform

sampling method, which works by approximating the probability density function

(PDF) of a distribution with a polynomial [113].

In addition to these two new capabilities, we prove bounds on the convergence

rate of Poisson-minibatching Gibbs in comparison to plain (i.e. not minibatched)

Gibbs sampling. These bounds can provide a recipe for how to set the minibatch

size in order to come close to the convergence rate of plain Gibbs sampling. If

we set the minibatch size in this way, we can derive expressions for the per-

iteration computational cost of our method compared with others; these bounds

are summarized in Table 3.1. In summary, the contributions of this section are as

follows:

• We introduce Poisson-minibatching Gibbs, a variant of Gibbs sampling which
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State Space Algorithm Computational Cost/Iter

Discrete Gibbs sampling O(D∆)
MIN-Gibbs [37] O(DΨ2)
MGPMH [37] O(DL2 + ∆)
DoubleMIN-Gibbs [37] O(DL2 + Ψ2)
Poisson-Gibbs O(DL2)

Continuous Gibbs with rejection sampling O(N∆)
PGITS: Poisson-Gibbs with ITS O(L3)
PGDA: Poisson-Gibbs with O(L2 logL)

double approximation

Table 3.1: Computational complexity cost for a single-iteration of Gibbs sampling.
Here, N is the required number of steps in rejection sampling to accept a sample,
and the rest of the parameters are defined in Section 3.1.1.

can reduce computational cost without adding bias or needing a Metropolis-

Hastings correction step.

• We extend our method to sample from continuous-valued distributions.

• We prove bounds on the convergence rate of our algorithm, as measured by

the spectral gap, on both discrete and continuous state spaces.

• We evaluate Poisson-minibatching Gibbs empirically, and show that its perfor-

mance can match that of plain Gibbs sampling while using less computation

at each iteration.

3.1.1 Preliminaries and Definitions

In this section, we present some background about Gibbs sampling and graphical

models and give the definitions which will be used throughout the section. In this

section, we consider Gibbs sampling on a factor graph [80], a type of graphical

model that defines a probability distribution in terms of its factors. Explicitly, a
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factor graph consists of a set of variables V (each of which can take on values in

some set X ) and a set of factors Φ, and it defines a probability distribution π over

a state space Ω = X V , where the probability of some x ∈ Ω is

π(x) = 1
Z
· exp

(∑
φ∈Φ φ(x)

)
= 1

Z
·
∏

φ∈Φ exp (φ(x)) .

Here, Z denotes the scalar factor necessary for π to be a distribution. Equivalently,

we can think of this as the Gibbs measure with energy function

U(x) =
∑

φ∈Φ φ(x), where π(x) ∝ exp(U(x));

this formulation will prove to be useful in many of the derivations later in the section.

(Here, the ∝ notation denotes that the expression on the left is a distribution that

is proportional to the expression on the right with the appropriate constant of

proportionality to make it a distribution.) In a factor graph, the factors φ typically

only depend on a subset of the variables; we can represent this as a bipartite graph

where the nodesets are V and Φ and where we draw an edge between a variable

i ∈ V and a factor φ ∈ Φ if φ depends on i. For simplicity, in this section we assume

that the variables are indexed with natural numbers V = {1, . . . , n}. We denote

the set of factors that depend on the ith variable, as

A[i] = {φ|φ depends on variable i, φ ∈ Φ}.

An important property of a factor graph is that the conditional distribution of a

variable can be computed using only the factors that depend on that variable. This

lends to a particularly efficient implementation of Gibbs sampling, in which only

these adjacent factors are used at each iteration (rather than needing to evaluate

the whole energy function U): this is illustrated in Algorithm 1.

The performance of our algorithm will depend on several parameters of the

graphical model, which we will now restate, from previous work on MIN-Gibbs [37].
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Algorithm 1 Gibbs Sampling

Input: initial point x
loop

sample variable i ∼ Unif{1, . . . , n}
for all v ∈ X do
x(i)← v
Uv ←

∑
φ∈A[i] φ(x)

end for
construct distribution ρ where

ρ(v) ∝ exp(Uv)

sample v from ρ
update x(i)← v
output sample x

end loop

If the variables take on discrete values, we let D = |X | denote the number of values

each can take on. We let ∆ = maxi |A[i]| denote the maximum degree of the graph.

We assume that the magnitudes of the factor functions are all bounded, and for

any φ we let Mφ denote this bound

Mφ = (supx∈Ω φ(x))− (infx∈Ω φ(x)) .

Without loss of generality (and as was done in previous works [37]), we will assume

that 0 ≤ φ(x) ≤Mφ because we can always add a constant to any factor φ without

changing the distribution π. We define the local maximum energy L and total

maximum energy Ψ of the graph as bounds on the sum of Mφ over the set of the

factors associated with a single variable i and the whole graph, respectively,

L = maxi∈{1,2,...,N}
∑

φ∈A[i] Mφ and Ψ =
∑

φ∈Φ Mφ.

If the graph is very large and has many low-energy factors, the maximum energy of

a graph can be much smaller than the maximum degree of the graph. All runtime

analyses in this section assume that evaluating a factor φ and sampling from a

small discrete distribution can be done in constant time.
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3.1.2 Poisson-Minibatching Gibbs Sampling

In this section, we will introduce the idea of Poisson-minibatching under the setting

in which we assume we can sample from the conditional distribution of x(i) exactly.

One such example is when the state space of x is discrete. We will consider how to

sample from the conditional distribution when exact sampling is impossible in the

next section.

In plain Gibbs sampling, we have to compute the sum over all the factors in

A[i] to get the energy in every step. When the graph is large, the computation

of getting the energy can be expensive; for example, in the discrete case this cost

is proportional to D∆. The main idea of Poisson-minibatching is to augment a

desired distribution with extra Poisson random variables, which control how and

whether a factor is used in the minibatch for a particular iteration. [97] used a

similar idea to control whether a data point will be included in the minibatch or

not with augmented Bernoulli variables. However, this method has been shown to

be very inefficient when only updating a small fraction of Bernoulli variables in

each iteration [117]. Our method does not suffer from the same issue due to the

usage of Poisson variables which we will explain further later in this section.

We define the conditional distribution of additional variable sφ for each factor

φ as

sφ|x ∼ Poisson
(
λMφ

L
+ φ(x)

)
where λ > 0 is a hyperparameter that controls the minibatch size. Then the joint

distribution of variables x and s, where s is a variable vector including all sφ, is
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π(x, s) = π(x) ·P(s|x) and so

π(x, s) ∝ exp

(∑
φ∈Φ

(
sφ log

(
1 +

L

λMφ

φ(x)

)
+ sφ log

(
λMφ

L

)
− log (sφ!)

))
.

(3.1)

Using (3.1) allows us to compute conditional distributions (of the variables xi)

using only a subset of the factors. This is because the factor φ will not contribute

to the energy unless sφ is greater than zero. If many sφ are zero, then we only need

to compute the energy over a small set of factors. Since

E [|{φ ∈ A[i] | sφ > 0}|] ≤ E
[∑

φ∈A[i] sφ

]
=
∑

φ∈A[i]

(
λMφ

L
+ φ(x)

)
≤ λ+ L,

this implies that λ + L is an upper bound of the expected number of non-zero

sφ. When the graph is very large and has many low-energy factors, λ+ L can be

much smaller than the factor set size, in which case only a small set of factors will

contribute to the energy while most factor terms will disappear because sφ is zero.

Using Poisson auxiliary variables has two benefits. First, compared with the

Bernoulli auxiliary variables as described in FlyMC [97], there is a simple method

for sampling n Poisson random variables in total expected time proportional to the

sum of their parameters, which can be much smaller than n [37]. This means that

sampling n Poisson variables can be much more efficient than sampling n Bernoulli

variables, which allows our method to avoid any inefficiencies caused by sampling

Bernoulli variables as in FlyMC. Second, compared with a fixed-minibatch-size

method such as the one used in [146], Poisson-minibatching has the important

property that the variables sφ are independent. Whether a factor will be contained

in the minibatch is independent to each other. This property is necessary for

proving convergence rate theorems in the section.

In Poisson-Gibbs, we will sample from the joint distribution alternately. At

each iteration we can (1) first re-sample all the sφ, then (2) choose a variable index
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i and re-sample x(i). Here, we can reduce the state back to only x, since the future

distribution never depends on the current value of s. Essentially, we only bother to

re-sample the sφ on which our eventual re-sampling of x(i) depends: statistically,

this is equivalent to re-sampling all sφ. Doing this corresponds to Algorithm 2.

However, minibatching by itself does not mean that the method must be more

effective than plain Gibbs sampling. It is possible that the convergence rate of the

minibatched chain becomes much slower than the original rate, such that the total

cost of the minibatch method is larger than that of the baseline method even if the

cost of each step is smaller. To rule out this undesirable situation, we prove that the

convergence speed of our chain is not slowed down, or at least not too much, after

applying minibatching. To do this, we bound the convergence rate of our algorithm,

as measured by the spectral gap [83], which is the gap between the largest and

second-largest eigenvalues of the chain’s transition operator. This gap has been

used previously to measure the convergence rate of minibatched MCMC [37].

Theorem 1. Poisson-Gibbs (Algorithm 2) is reversible and has a stationary distri-

bution π. Let γ̄ denote its spectral gap, and let γ denote the spectral gap of plain

Gibbs sampling. If we use a minibatch size parameter λ ≥ 2L, then

γ̄ ≥ exp

(
−4L2

λ

)
· γ.

This theorem guarantees that the convergence rate of Poisson-Gibbs will not

be slowed down by more than a factor of exp(−4L2/λ). If we set λ = Θ(L2),

then this factor becomes O(1), which is independent of the size of the problem.

We proved Theorem 1 and the other theorems in this section using the technique

of Dirichlet forms, which is a standard way of comparing the spectral gaps of

two chains by comparing their transition probabilities (more details are in the

supplemental material).
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Next, we derive expressions for the overall computational cost of Algorithm 2,

supposing that we set λ = Θ(L2) as suggested by Theorem 1. First, we need to

evaluate the cost of sampling all the Poisson-distributed sφ. While a näıve approach

to sample this would take O(∆) time, we can do it substantially faster. For brevity,

and because much of the technique is already described in the previous work [37],

we defer an explicit analysis to the supplementary material, and just state the

following.

Statement 1. Sampling all the auxiliary variables sφ for φ ∈ A[i] can be done in

average time O(λ+ L), resulting in a sparse vector sφ.

Now, to get an overall cost when assuming exact sampling from the conditional

distribution, we consider discrete state spaces, in which we can sample from the

conditional distribution of x(i) exactly. In this case, the cost of a single iteration of

Poisson-Gibbs will be dominated by the loop over v. This loop will run D times,

and each iteration will take O(|S|) time to run. On average, this gives us an overall

runtime O((λ+L) ·D) = O(L2D) for Poisson-Gibbs. Note that due to the fast way

we sample Poisson variables, the cost of sampling Poisson variables is negligible

compared to other costs.

In comparison, the cost of the previous algorithms MIN-Gibbs, MGPMH and

DoubleMIN-Gibbs [37] are all larger in big-O than that of Poisson-Gibbs, as showed

in Table 3.1. MGPMH and DoubleMIN-Gibbs need to conduct an MH correction,

which adds to the cost, and the cost of MIN-Gibbs and DoubleMIN-Gibbs depend

on Ψ which is a global statistic. By contrast, our method does not need additional

MH step and is not dependent on global statistics. Thus the total cost of Gibbs

sampling can be reduced more by Poisson-minibatching compared to the previous

methods.

22



Application of Poisson-Minibatching to Metropolis-Hastings. Poisson-

minibatching method can be applied to other MCMC methods, not just Gibbs

sampling. To illustrate the general applicability of Poisson-minibatching method,

we applied Poisson-minibatching to Metropolis-Hastings sampling and call it Pois-

sonMH (details of this algorithm and a demonstration on a mixture of Gaussians

are given in the supplemental material). We get the following convergence rate

bound.

Theorem 2. PoissonMH is reversible and has a stationary distribution π. If we

let γ̄ denote its spectral gap, and let γ̄ denote the spectral gap of plain MH sampling

with the same proposal and target distributions, then

γ̄ ≥ 1
2

exp
(
− L2

λ+L

)
· γ.

Please note that PoissonMH has the same assumptions as stated in Section 3.1.1.

These assumptions are strong for an MH algorithm and thus prevent PoissonMH’s

appplication to many common tasks of MH. In Section 3.2, we introduce another

version of MH with Poisson-minibathching that removes these strong assumptions.

3.1.3 Poisson-Gibbs on Continuous State Spaces

In this section, we consider how to sample from a continuous conditional distribution,

i.e. when X = [a, b] ⊂ R, without sacrificing the benefits of Poisson-minibatching.

The main difficulty is that sampling from an arbitrary continuous conditional

distribution is not trivial in the same way as sampling from an arbitrary discrete

conditional distribution is. Some additional sampling method is required. In

principle, we can combine any sampling method with Poisson-minibatching, such as

rejection sampling which is commonly used in Gibbs sampling. However, rejection
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Algorithm 2 Poisson-Gibbs

given: initial state x ∈ Ω
loop

sample variable i ∼ Unif{1, . . . , n}.
for all φ in A[i] do

sample sφ ∼ Poisson
(
λMφ

L
+ φ(x)

)
end for
S ← {φ|sφ > 0}
for all v ∈ X do
x(i)← v

Uv ←
∑

φ∈S sφ log
(

1 + L
λMφ

φ(x)
)

end for
construct distribution ρ where

ρ(v) ∝ exp(Uv)

sample v from ρ
update x(i)← v
output sample x

end loop

sampling needs to evaluate the energy multiple times per sample, so even if we

reduce the cost of evaluating the energy by minibatching, the total cost can still be

large, besides which there is no good guarantee on the convergence rate of rejection

sampling.

In order to sample from the conditional distribution efficiently, we propose a

new sampling method based on inverse transform sampling (ITS) method. The

main idea is to approximate the continuous distribution with a polynomial; this

requires only a number of energy function evaluations proportional to the degree of

the polynomial. We provide overall cost and theoretical analysis of convergence

rate for our method.
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Algorithm 3 PGDA: Poisson-Gibbs Double Chebyshev Approximation

given: state x ∈ Ω, degree m and k, domain [a, b]
loop

set i, sφ, S, and U as in Algorithm 2.
construct degree-m Chebyshev polynomial approximation of energy Uv on
[a, b]: Ũv
construct degree-k Chebyshev polynomial approximation:f̃(v) ≈ exp(Ũv)
compute the CDF polynomial

F̃ (v) =

(∫ b

a

f̃(y) dy

)−1 ∫ v

a

f̃(y) dy

sample u ∼ Unif[0, 1].
solve root-finding problem for v: F̃ (v) = u
. Metropolis-Hastings correction:

p← exp(Uv)f̃(x(i))

exp(Ux(i))f̃(v)

with probability min(1, p), set x(i)← v
output sample x

end loop

Poisson-Gibbs with Double Chebyshev Approximation.

Inverse transform sampling is a classical method that generates samples from

a uniform distribution and then transforms them by the inverse of cumulative

distribution function (CDF) of the desired distribution. Since the CDF is often

intractable in practice, Fast Inverse Transform Sampling (FITS) [113] uses a

Chebyshev polynomial approximation to estimate the PDF fast and then get the

CDF by computing an integral of a polynomial. Inspired by FITS, we propose

Poisson-Gibbs with double Chebyshev approximation (PGDA).

The main idea of double Chebyshev approximation is to approximate the

energy function first and then the PDF by using Chebyshev approximation twice.

Specifically, we first get a polynomial approximation to the energy function U on
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[a, b], denoted by Ũ , the Chebyshev interpolant [137]

Ũ(x) =
m∑
k=0

αkTk

(
2(x− a)

b− a
− 1

)
, αk ∈ R, x ∈ [a, b], (3.2)

where Tk(x) = cos(k cos−1 x) is the degree-k Chebyshev polynomial. Although the

domain is continuous, we only need to evaluate U on m+ 1 Chebyshev nodes to

construct the interpolant, and the expansion coefficients αk can be computed stably

in O(m logm) time. The following theorem shows that the error of a Chebyshev

approximation can be made arbitrarily small with large m. (Although stated for

the case of [a, b] = [−1, 1], it easily generalizes to arbitrary [a, b].)

Theorem 3 (Theorem 8.2 from [137]). Assume U is analytic in the open Bernstein

ellipse B([−1, 1], ρ), where the Bernstein ellipse is a region in the complex plane

bounded by an ellipse with foci at ±1 and semimajor-plus-semiminor axis length

ρ > 1. If for all x ∈ B([−1, 1], ρ), |U(x)| ≤ V for some constant V > 0, the error

of the Chebyshev interpolant on [−1, 1] is bounded by

|Ũ(x)− U(x)| ≤ δm where δm =
4V ρ−m

ρ− 1
.

After getting the approximation of the energy, we can get the PDF by exp(Ũ).

However, it is generally hard to get the CDF now since the integral of exp(Ũ) for

polynomial Ũ is usually intractable. So, we use another Chebyshev approximation

f̃ to estimate exp(Ũ). Constructing the second Chebyshev approximation requires

no additional evaluations of energy functions; its total computational cost is Õ(mk)

because we need to evaluate a degree-m polynomial k times to compute the

coefficients. After doing this, we are able to compute the CDF directly since it

is the integral of a polynomial. With the CDF F̃ (x) in hand, inverse transform

sampling is used to generate samples. First, a pseudo-random sample u is generated

from the uniform distribution on [0, 1], and then we solve the following root-finding

26



problem for x: F̃ (x) = u. Since F̃ (x) is a polynomial, this root-finding problem

can be solved by many standard methods. We use bisection method to ensure the

robustness of the algorithm [113].

Importantly, the sample we get here is actually from an approximation of the

CDF. To correct the error introduced by the polynomial approximation, we add

a MH correction as the final step to make sure the samples come from the target

distribution. Our algorithm is given in Algorithm 3. As before, we prove a bound

on PGDA in terms of the spectral gap, given the additional assumption that the

factors φ are analytic.

Theorem 4. PGDA (Algorithm 3) is reversible and has a stationary distribution

π. Let γ̄ denote its spectral gap, and let γ denote the spectral gap of plain Gibbs

sampling. Assume ρ > 1 is some constant such that every factor function φ, treated

as a function of any single variable x(i), must be analytically continuable to the

Bernstein ellipse with radius parameter ρ shifted-and-scaled so that its foci are

at a and b, such that it satisfies |φ(z)| ≤ Mφ anywhere in that ellipse. Then, if

λ log(2) ≥ 4L, and if m is set large enough that 4ρ−m/2 ≤ √ρ− 1, then it will hold

that

γ̄ ≥
(
1− 4

√
z
)

exp

(
−4L2

λ

)
· γ,

where z =
4 · exp (8L) · ρ− k2

√
ρ− 1

+ exp

(
16L · ρ−m2
√
ρ− 1

)
− 1.

Similar to Theorem 1, this theorem implies that the convergence rate of PGDA

can be slowed down by at most a constant factor relative to plain Gibbs. If we set

m = Θ(logL), k = Θ(L) and λ = Θ(L2), then the ratio of the spectral gaps will

also be O(1), which is independent of the problem parameters.
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Poisson-Gibbs with Fast Inverse Transform Sampling (PGITS)

Note that it is possible to combine FITS with Poisson-Gibbs directly (i.e. use only

one polynomial approximation to estimate the PDF directly), and we call this

method Poisson-Gibbs with fast inverse transform sampling (PGITS). It turns out

that PGDA is more efficient than PGITS since PGDA requires fewer evaluations of

U to achieve the same convergence rate. If we set the parameters as above, the

total computational cost of PGDA is O(m · (λ+L) +m · k) = O(logL · (L2 +L)) =

O(logL · L2). On the other hand, the cost of PGITS to achieve the same constant-

factor spectral gap ratio is O(L3). Now we will outline the algorithm and derive

convergence rate results for it. These results will illustrate why PGITS can be

expected to perform worse than PGDA.

PGITS operates by approximating the PDF with a Chebyshev polynomial

approximation and then sampling from that polynomial approximation using

inverse transform sampling. Specifically, if the PDF we want to sample from is

f(x), we can approximate f by f̃ on [a, b] using Chebyshev polynomials,

f̃ =
m∑
k=0

αkTk

(
2(x− a)

b− a
− 1

)
, αk ∈ R, x ∈ [a, b] (3.3)

where Tk(x) = cos(k cos−1 x) is the degree k Chebyshev polynomial, and αk are

the Chebyshev coefficients of the function f [137]. We do this by interpolating f

at its Chebyshev nodes, resulting in f̃ being the mth order Chebyshev interpolant.

Once we have the polynomial approximation f̃ we can construct the corresponding

CDF approximation F̃ by calculating the integral directly (since polynomials are

straightforward to integrate). With the approximation F̃ , we are able to use inverse

transform sampling to generate samples. We call this whole algorithm PGITS and

it is listed as Algorithm 4.
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We show that PGITS is reversible and bound its spectral gap in the following

theorem.

Theorem 5. PGITS (Algorithm 4) is reversible and has a stationary distribution

π. Let γ̄ denote its spectral gap, and let γ denote the spectral gap of plain Gibbs

sampling. Assume ρ > 1 is some constant such that every factor function φ, treated

as a function of any single variable x(i), must be analytically continuable to the

Bernstein ellipse with radius parameter ρ shifted-and-scaled so that its foci are at a

and b, such that it satisfies |φ(z)| ≤Mφ anywhere in that ellipse. Then, if λ ≥ 2L

it will hold that

γ̄ ≥
(

1− 8 exp(L)ρ−m/2√
ρ− 1

)
· exp

(
−4L2

λ

)
· γ.

We can set m = Θ(L) and λ = Θ(L2) to make the ratio of the spectral gaps

O(1), which is independent of the size of the problem. If the parameters are set in

this way, the total cost of PGITS is O(m · (λ+ L)) = O(L · L2) = O(L3).

3.1.4 Experiments

We demonstrate our methods on three tasks including Potts models, continuous

spin models and truncated Gaussian mixture in comparison with plain Gibbs

sampling and previous minibatched Gibbs sampling. We release the code at

https://github.com/ruqizhang/poisson-gibbs.

Potts Models

We first test the performance of Poisson-minibatching Gibbs sampling on the Potts

model [115] as in [37]. The Potts model is a generalization of the Ising model [75]
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Algorithm 4 PGITS: Poisson-Gibbs Inverse Transform Sampling

given: state x ∈ Ω, degree m, domain [a, b]
loop

set i, sφ, S, and U as in Algorithm 2.
construct degree-m Chebyshev polynomial approximation of polynomial PDF
on [a, b]

f̃(v) ≈ exp(Uv)

compute the CDF polynomial

F̃ (v) =

(∫ b

a

f̃(y) dy

)−1 ∫ v

a

f̃(y) dy

sample u ∼ Unif[0, 1].
solve root-finding problem for v: F̃ (v) = u
. Metropolis-Hastings correction:

p← exp(Uv) · f̃(x(i))

exp(Ux(i)) · f̃(v)

with probability min(1, p), set x(i)← v
output sample x

end loop
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Figure 3.1: (a) Marginal error comparison among Poisson-Gibbs and previous
methods on a Potts model. (b) Marginal error of Poisson-Gibbs on varying values
of λ on a Potts model. (c) Symmetric KL divergence comparison among PGITS,
PGDA and previous methods on a continuous spin model.

with domain {1, . . . , D} over an N ×N lattice. The energy of a configuration is

the following:

U(x) =
n∑
i=1

n∑
j=1

β · Aij · δ (x(i), x(j))
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Figure 3.2: Runtime comparisons with the same experimental setting as in Fig-
ure 3.1.

where the δ function equals one only when x(i) = x(j) and zero otherwise. Aij is

the interaction between two sites i and j and β is the inverse temperature. As was

done in previous work, we set the model to be fully connected and the interaction

Aij is determined by the distance between site i and site j based on a Gaussian

kernel [37]. The graph has n = N2 = 400 variables in total, β = 4.6 and D = 10.

On this model, L = 5.09.

We first compare our method with two other methods: plain Gibbs sampling

and the most efficient MIN-Gibbs methods on this task, DoubleMIN-Gibbs. Note

that, in comparison to our method, DoubleMIN-Gibbs needs an additional MH

correction step which requires a second minibatch to be sampled. We set λ = 1 ·L2

for all minibatch methods. We tried two values for the second minibatch size in

DoubleMIN-Gibbs λ2 = 1 · L2 and 104 · L2. We compute run-average marginal

distributions for each variable by collecting samples. By symmetry, the marginal for

each variable in the stationary distribution is uniform, so the `2-distance between

the estimated marginals and the uniform distribution can be used to evaluate the

convergence of Markov chain. We report this marginal error averaged over three

runs.

Figure 3.1a shows the `2-distance marginal error as a function of iterations.

We observe that Poisson-Gibbs performs comparably with plain Gibbs and it

31



outperforms DoubleMIN-Gibbs significantly especially when λ2 is not large enough.

The performance of DoubleMIN-Gibbs is highly influenced by the size of the second

minibatch. We have to increase the second minibatch to 104 ·L2 in order to make it

converge. This is because the variance of MH correction will be very large when the

second minibatch is not large enough. On the other hand, Poisson-Gibbs does not

require an additional MH correction which not only reduces the computational cost

but also improves stability. In Figure 3.1b, we show the performance of our method

with different values of λ. When we increase the minibatch size, the convergence

speed of Poisson-Gibbs approaches plain Gibbs, which validates our theory. The

number of factors being evaluated of Poisson-Gibbs varies each iteration, thus we

report the average number which are 7, 28 and 132 respectively for λ = 0.1 · L2,

1 · L2 and 5 · L2.

The runtime comparisons with the same setup are reported in Figure 3.2a

and 2b to demonstrate the computational speed-up of Poisson-Gibbs empirically.

We can see that the results align with our theoretical analysis: Poisson-Gibbs is

significantly faster than plain Gibbs samping and faster than previous minibatched

Gibbs sampling methods. Compared to plain Gibbs, Poisson-Gibbs speeds up the

computation by evaluating only a subset of factors in each iteration. Compared

to DoubleMIN-Gibbs, Poisson-Gibbs is faster because it removes the need of an

additional MH correction step.

Continuous Spin Models

In this section, we study a more general setting of spin models where spins can take

continuous values. Continuous spin models are of interest in both the statistics and

physics communities [103, 20, 41]. This random graph model can also be used to
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describe complex networks such as social, information, and biological networks [111].

We consider the energy of a configuration as the following:

U(x) =
n∑
i=1

n∑
j=1

β · Aij · (x(i) · x(j) + 1)

where x(i) ∈ [0, 1] and β = 1. Notice that the existing minibatched Gibbs sampling

methods [37] are not applicable on this task since they can be used only on discrete

state spaces. We compare PGITS, PGDA with: (1) Gibbs sampling with FITS

(Gibbs-ITS); (2) Gibbs sampling with Double Chebyshev approximation (Gibbs-

DA); (3) Gibbs with rejection sampling (Gibbs-rejection); and (4) Poisson-Gibbs

with rejection sampling (PG-rejection). We use symmetric KL divergence to

quantitatively evaluate the convergence. On this model, L = 13.71 and we set

λ = L2. The degree of polynomial is m = 3 for PGITS and the first approximation

in PGDA. The degree of polynomial is k = 10 for the second approximation in

PGDA. In rejection sampling, we set the proposal distribution to be wg where g is

the uniform distribution on [0, 1] and w is a constant tuned for best performance.

The ground truth stationary distribution is obtained by running Gibbs-ITS for 107

iterations.

On this task, the average number of evaluated factors per iteration of Poisson-

Gibbs is 190. Figure 3.1c shows the symmetric KL divergence as a function of

iterations, with results averaged over three runs. Observe that our methods achieve

comparable performance to Gibbs sampling with only a fraction of factors. For

rejection sampling, the average steps needed for a sample to be accepted is greater

than 300 which means that the cost is much larger than that of PGITS and PGDA.

Given the same time budget, it can only run for many fewer iterations (we run it for

104 iterations). On the other hand, the two Chebyshebv approximation methods

are much more efficient for both Poisson-Gibbs and plain Gibbs. The advantage
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of FITS over rejection sampling has also been discussed in previous work [113].

Also notice that PGDA converges faster than PGITS given the same degree of

polynomial. This empirical result validates our theoretical results that suggest

PGDA is more efficient than PGITS.

We also report the symmetric KL divergence as a function of runtime in Figure

3.2c. Similar to the previous section, the two Poisson-Gibbs methods are faster

than plain Gibbs sampling.

Truncated Gaussian Mixture

We further demonstrate PGITS and PGDA on a truncated Gaussian mixture model.

We consider the following Gaussian mixture with tied means as done in previous

work [146, 87]:

x1 ∼ N (0, σ2
1), x2 ∼ N (0, σ2

2), yi ∼
1

2
N (x1, σ

2
y) +

1

2
N (x1 + x2, σ

2
y).

We used the same parameters as in [146]: σ2
1 = 10, σ2

2 = 1, σ2
y = 2, x1 = 0 and

x2 = 1. This posterior has two modes at (x1, x2) = (0, 1) and (x1, x2) = (1,−1).

We truncate the posterior by bounding the variables x1 and x2 in [−6, 6]. The

energy can be written as

U(x) = log p(x1) + log p(x2) +
N∑
i=1

log p(yi|x1, x2)

which can be regarded as a factor graph with N factors. We add a positive constant

to the energy to ensure each factor is non-negative: this will not change the

underlying distribution. As in [87], we set N = 106. L = 1581.14 for this model

and we set λ = 500, m = 20 and k = 25. We have also considered higher values

of λ and found that the results are very similar. We generate 106 samples for all

methods. A uniform distribution in [−6, 6] is used as the proposal distribution in
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Figure 3.3: A visualization of the estimated density on a truncated Gaussian
mixture model.

Gibbs with rejection sampling. We try varying values for w but none of them results

in reasonable density estimate which may be due to the inefficiency of rejection

sampling [113]. We report the results when the average needed steps for a sample

to be accepted is around 1000. The average number of factors being evaluated per

iteration of Poisson-Gibbs is 1802. Our results are reported in Figure 3.3, where we

observe visually that the density estimates of PGITS and PGDA are very accurate.

In contrast, rejection sampling completely failed to estimate the density given the

budget.

3.2 Metropolis-Hastings with Poisson-Minibatching

Metropolis-Hastings is one of the most basic inference algorithms and is also the

oldest MCMC method. Recall that the Metropolis-Hastings (MH) algorithm accepts

the candidate with probability

a(θ, θ′) = min
(

1, π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

)
= min

(
1, exp

(∑N
i=1(Ui(θ)− Ui(θ′))

)
· q(θ|θ

′)
q(θ′|θ)

)
.

(2.1)

This accept/reject step can be quite costly whenN is large, since it entails computing

a sum over the entire dataset.

Prior work has proposed many approaches to mitigate the cost of this decision
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step [10]. One popular approach involves introducing stochasticity: instead of

computing over the entire dataset, a subsample, or minibatch, is used to compute an

approximation. These minibatch MH methods can be divided into two classes, exact

and inexact, depending on whether or not the target distribution π is necessarily

preserved. Inexact methods introduce asymptotic bias to the target distribution,

trading off correctness for speedups [11, 81, 132, 116, 117]. Exact methods either

require impractically strong constraints on the target distribution [98, 156], limiting

their applicability in practice, or they negatively impact efficiency, counteracting

the speedups that minibatching aims to provide in the first place [9, 32]. Moreover,

all existing exact methods operate on the belief that there is a trade-off between

batch size and convergence rate—between scalability and efficiency. Yet no prior

work formally exposes this trade-off, and most prior work gives no convergence

rate guarantees. Given these various considerations, it is not entirely clear how to

evaluate which minibatch MH method to use.

In this section we forge a path ahead to untangle this question. While inexact

methods have been prominent recently due to their efficiency, they are not reliable:

we show that the stationary distribution of any inexact method can be arbitrarily

far from the target π. This means they can yield disastrously wrong inference

results in practice, and it is difficult to tell just how bad those results can be.

We therefore turn our attention to exact methods and introduce TunaMH.1

Compared to prior work, we make milder assumptions, which enables TunaMH to

apply to a wider variety of inference tasks. More specifically, we require local rather

than global bounds on the target distribution [98, 156] and do not rely on the

Bernstein-von Mises approximation [32, 10, 13]. TunaMH is guaranteed to retain

1TunaMH since it tunes the efficiency-scalability trade-off and uses a Poisson (French for
“fish”) variable.
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sample efficiency in the presence of minibatching: its convergence rate (measured

by the spectral gap) is within a constant factor of standard, non-minibatch MH.

More importantly, TunaMH also enables us to rigorously characterize the trade-off

between scalability and efficiency. It has a hyperparameter χ, which enables tuning

the trade-off between expected batch size and convergence rate.

By exposing this trade-off, our analysis raises the natural question: is Tu-

naMH optimal for this trade-off? That is, could another exact algorithm use an

asymptotically smaller average batch size while having the same convergence rate

guarantees? We explore this in Section 3.2.3; under the same mild assumptions

we use to derive TunaMH, we prove a lower bound on the expected batch size for

any exact minibatch MH method that can keep a reasonable convergence rate. To

our knowledge, we are the first to prove a lower bound of this nature for minibatch

MH. Moreover, TunaMH is asymptotically optimal in balancing the expected batch

size and convergence rate. It remains exact and efficient while on average using the

smallest possible number of samples. In summary:

• We demonstrate that any inexact minibatch MH method can be arbitrarily

inaccurate (Section 3.2.1).

• We introduce a new exact method, TunaMH (Section 3.2.2), with a lower bound on

its convergence rate (in terms of the spectral gap) and a tunable hyperparameter

to balance the trade-off between convergence rate and batch size.

• We prove a lower bound on the batch size for any exact minibatch MH method

given a target convergence rate—the first such lower bound in this area. This

result indicates that the expected batch size of TunaMH is asymptotically optimal

in terms of the problem parameters (Section 3.2.3).

• We show empirically that TunaMH outperforms state-of-the-art exact minibatch
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MH methods on robust linear regression, truncated Gaussian mixture, and logistic

regression (Section 3.2.4).

3.2.1 Preliminaries and Drawbacks of Prior Minibatch MH

Methods

We first formally define the class of methods that we study theoretically in this

section: minibatch MH methods of the form of Algorithm 5. This class contains

methods that sample a proposal from distribution q (which we always assume

results in the chain being ergodic), and choose to accept or reject it by calling

some randomized subroutine, SubsMH, which outputs 1 or 0 for “accept” or “reject,”

respectively. Algorithms in this class have several notable properties. First, SubsMH

is stateless : each acceptance decision is made independently, without carrying over

local state associated with the MH procedure between steps. Many prior methods

are stateless [81, 11, 132, 32]. We do not consider stateful methods, in which the

decision depends on previous state; they are difficult to analyze due to running on

an extended state space [6, 116]. Second, SubsMH takes a function that computes

energy differences Ui(θ)− Ui(θ′) and outputs an acceptance decision. We evaluate

efficiency in terms of how many times SubsMH calls this function, which we term

the batch size the method uses. Third, SubsMH takes parameters that bound the

maximum magnitude of the energy differences. Specifically, as in [32], we assume:

Assumption 1. For some constants c1, . . . , cN ∈ R+, with
∑

i ci = C, and sym-

metric function M : Θ × Θ → R+, for any θ, θ′ ∈ Θ, the energy difference is

bounded by |Ui(θ)− Ui(θ′)| ≤ ciM(θ, θ′).

One can derive such a bound, which can be computed in O(1) time, for many
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Algorithm 5 Stateless, Energy-Difference-Based Minibatch Metropolis-Hastings

given: state space Θ, energy functions U1, . . . , UN : Θ→ R, proposal dist. q,
initial state θ ∈ Θ
given: parameters c1, . . . , cN , C, M from Assumption 1, randomized algorithm
SubsMH

loop
sample θ′ ∼ q(·|θ)
define function ∆U : {1, . . . , N} → R, such that ∆U(i) = Ui(θ)− Ui(θ′)
call subroutine o← SubsMH(∆U,N, q(θ|θ′)/q(θ′|θ), c1, . . . , cN , C,M(θ, θ′))
if o = 1, update θ ← θ′

end loop

common inference problems: for example, if each energy function Ui is Li-Lipschitz

continuous, then it suffices to set ci = Li and M(θ, θ′) = ‖θ−θ′‖ (See Appendix B.4

for examples of ci and M on common problems). Note that the SubsMH method

may choose not to use these bounds in its decision. We allow this so the form of

Algorithm 5 can include methods that do not require such bounds. Most existing

methods can be described in this form [81, 11, 132, 32, 9]. For example, standard

MH can be written by setting SubsMH to a subroutine that computes the acceptance

rate a as in (2.1) and outputs 1 (i.e., accept) with probability a.

Such minibatch MH methods broadly come in two flavors: inexact and exact.

We next establish the importance of being exact and demonstrate how TunaMH

resolves drawbacks in prior work.

The Importance of Being Exact

Inexact methods are popular due to helping scale MH to new heights [11, 81, 132,

116]. They approximate the MH acceptance ratio to within an error tolerance (> 0),

trading off exactness for efficiency gains. Surprisingly, the bias from inexactness

can be arbitrarily large even when the error tolerance is small.
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Theorem 6. Consider any minibatch MH method of the form in Algorithm 5 that

is inexact (i.e. does not necessarily have π as its stationary distribution for all π

satisfying Assump. 1). For any constants δ ∈ (0, 1) and ρ > 0, there exists a target

distribution π and proposal distribution q such that if we let π̃ denote a stationary

distribution of the inexact minibatch MH method on this target, it satisfies

TV(π, π̃) ≥ δ and KL(π, π̃) ≥ ρ.

where TV is the total variation distance and KL is the Kullback–Leibler divergence.

Theorem 6 shows that when using any inexact method, there always exists

a target distribution π (factored in terms of energy functions Ui) and proposal

distribution q such that it will approximate π arbitrarily poorly. This can happen

even when individual errors are small; they can still accumulate a very large overall

error. We prove Theorem 6 via a simple example—a random walk along a line,

in which the inexact method causes the chain to step towards one direction more

often than the other, even though its steps should be balanced (Appendix B.1.1).

Note that it may be possible to avoid a large error by using some specific proposal

distribution, but such a proposal is hard to know in general.

We use AustereMH [81] and MHminibatch [132] to empirically validate Theo-

rem 6. For these inexact methods, we plot density estimates with the number of

states K = 200 in Figure 3.4a (see Appendix B.4 for using other K); the stationary

distribution diverges from the target distribution significantly. Moreover, the TV

distance between the density estimate and the true density increases as K increases

on this random walk example (Figure 3.4b). By contrast, our exact method (Section

3.2.2) keeps a small TV distance on all K and estimates the density accurately with

an even smaller average batch size. We also tested AustereMH on robust linear
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Figure 3.4: Existing MH method issues. (a)-(b) Inexact methods can diverge a lot
from true distribution. “dTV ” and “B” denote the TV distance and the batch size
respectively. (c) SMH has low and TunaMH with different values of hyperparameter
χ has high acceptance rates.

regression, a common task, to show that the error of inexact methods can be large

on standard problems (Appendix B.4).

Issues with Existing Exact Methods

This observation suggests that we should be using exact methods when doing

minibatch MH. However, existing approaches present additional drawbacks, which

we discuss below.

Factorized MH and Scalable MH are stateless, exact minibatch methods.

Factorized MH (FMH) decomposes the acceptance rate into a product of factors,

which allows for rejecting a proposal based on a minibatch of data [23, 30, 9].

Truncated FMH (TFMH) is a FMH variant that maintains geometric ergodicity;

it falls back on standard MH in a step when the bound on the factors reaches a

certain threshold [32]. No matter how this threshold is set, we can construct tasks

where TFMH is either arbitrarily inefficient (rejecting arbitrarily often, slowing

convergence), or degrades entirely to standard MH.

Statement 2. For any constant p ∈ (0, 1), there exists a target distribution such

that TFMH either has an acceptance rate which is less than p times that of standard
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MH, or it completely degrades to standard MH (summing over the whole dataset at

each step).

We prove this statement in Appendix B.1.2 using an example of a uniform

distribution along a line, where we let xi take one of two values, {−M/N,M/N}

with M > 0. We show that the acceptance rate of TFMH can be arbitrarily low by

increasing M , which we also empirically verify in Figure 3.4c.

To improve the acceptance rate of TFMH, Scalable MH (SMH) introduces

control variates, which approximate Ui with a Taylor series around the mode [32].

However, it only works with unimodal posteriors and high-quality Bernstein-von

Mises approximations—conditions that do not hold for many common inference

tasks.

PoissonMH is a stateless minibatch MH method adapted from Poisson-Gibbs

on factor graphs as we discussed in Section 3.1.2. However, unlike the method in

this section, it requires strong assumptions—specifically, a global upper bound on

the energy. Such an upper bound usually does not exist and, even if it does, can

be very large, resulting in an impractically large batch size.

FlyMC is a stateful method, which means it uses auxiliary random variables

to persist state across different MH steps [98]. It requires a lower bound on the

likelihood function, which is typically more demanding than Assumption 1 and

does not have theoretical performance guarantees.

Other exact methods exist based on Piecewise Deterministic Markov Pro-

cesses [18, 13]. They require regularity conditions only available for some problems,

so their practical utility is limited.
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3.2.2 TunaMH: Asymptotically Optimal Exact MH

In this section, we present our method, TunaMH, which evades the issues of prior

exact methods discussed in Section 3.2.1. Like SMH [32], our method works on

distributions for which an a priori bound on the energy differences is known

(Assumption 1).

Our algorithm, presented in Algorithm 6, takes as parameters c1, . . . , cN , C,

and M from Assumption 1, along with an additional hyperparameter, χ > 0. It

proceeds in four steps. First, like any MH method, it generates a proposal θ′ from

given distribution q. Second, it samples a batch size B from a Poisson distribution.

This makes the expected number of energy functions Ui evaluated by our method

at each step E[B] = χC2M2(θ, θ′) +CM(θ, θ′)2. Importantly, this means the batch

size may vary from iteration to iteration, and the expected size depends on θ and θ′.

For example, TunaMH may tend to set B larger for larger-distance proposals with

a higher M(θ, θ′). Third, it samples (with replacement) a minibatch of size B, but

for each data point it samples, it has some probability of ejecting this point from

the minibatch. Finally, it accepts the proposed θ′ with some probability, computed

using a sum over the post-ejection minibatch. Our method can be derived by

carefully replacing the auxiliary variables in PoissonMH with local Poisson variables

whose distributions change each iteration depending on the pair (θ, θ′) (Appendix

B.2). By construction TunaMH is exact; it preserves the target distribution π

as its stationary distribution. This is because TunaMH is reversible, meaning its

transition operator T satisfies π(θ)T (θ, θ′) = π(θ′)T (θ′, θ) for any θ, θ′ ∈ Θ. This is

a common condition that guarantees that a MCMC method has π as its stationary

distribution [83, 19].

2Note that E[B] is typically << N and can be decreased using small step sizes. If, however,
E[B] > N , then we can simply use standard MH in that iteration, similar to TFMH.
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Algorithm 6 TunaMH

given: initial state θ ∈ Θ; proposal dist. q; hyperparameter χ; Asm. 1 parameters
ci, C, M
loop

propose θ′ ∼ q(·|θ) and compute M(θ, θ′)

. Form minibatch I
sample B ∼ Poisson (χC2M2(θ, θ′) + CM(θ, θ′))
initialize minibatch indices I ← ∅ (an initially empty multiset)
for b ∈ {1, . . . , B} do

sample ib such that P(ib = i) = ci/C, for i = 1 . . . N

with probability
χcibCM

2(θ,θ′)+ 1
2

(Uib (θ′)−Uib (θ)+cibM(θ,θ′))

χcibCM
2(θ,θ′)+cibM(θ,θ′)

add ib to I
end for

. Accept/reject step based on minibatch I
compute MH ratio r ← exp

(
2
∑

i∈I artanh
(

Ui(θ)−Ui(θ′)
ciM(θ,θ′)(1+2χCM(θ,θ′))

))
· q(θ

′|θ)
q(θ|θ′)

with probability min(1, r), set θ ← θ′

end loop

Compared to previous exact methods, a significant benefit of TunaMH is that

we can prove theoretical guarantees on its efficiency. Specifically, its convergence

speed is guaranteed to be close to standard MH and χ allows us to control how

close. To show this, we lower bound the convergence rate of TunaMH in terms of

the spectral gap, which is commonly used to characterize convergence speed in the

MCMC literature [129, 63, 83, 156, 154]. The larger the spectral gap, the faster

the chain converges.

Definition 1. The spectral gap of a reversible Markov chain is the distance between

the largest and second-largest eigenvalues of its transition operator. That is, if the

eigenvalues of the transition operator are 1 = λ1 > λ2 ≥ λ3 · · · , then the spectral

gap is γ = 1− λ2.

Theorem 7. TunaMH (Algorithm 6) is reversible with stationary distribution π.

Let γ̄ denote the spectral gap of TunaMH, and let γ denote the spectral gap of
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standard MH with the same target distribution and proposal distribution. Then,

γ̄ ≥ exp
(
− 1
χ
− 2
√

log 2
χ

)
· γ.

Intuitively, this theorem (proof in Appendix B.1.3) suggests the convergence

rate of TunaMH is at most a constant slower than that of standard MH, and can be

increased by adjusting the hyperparameter χ. Recall that χ also controls the batch

size of TunaMH. Effectively, this means χ is a dial that allows us to directly tune

the trade-off between convergence rate and batch size. When χ is large, the batch

size B is large and the spectral gap ratio, γ̄/γ, is close to 1: the larger batch size is

less scalable but keeps a high convergence rate. Conversely, when χ is small, the

batch size is small and the spectral gap ratio is close to 0: we trade off slow-downs

in convergence rate for scalability. For example, for any 0 < κ < 1, to guarantee

the spectral gap ratio γ̄/γ ≥ κ it suffices to set (Appendix B.1.6)

χ = 4
(1−κ) log(1/κ)

, giving an average batch size of E[B] = 4C2M2(θ,θ′)
(1−κ) log(1/κ)

+CM(θ, θ′).

(3.4)

In practice, we usually want to minimize the wall-clock time to achieve a certain

estimate error, which requires tuning χ to optimally balance scalability and efficiency.

We attempt to derive a theoretically optimal value of χ in Appendix B.3 by

minimizing the product of the relaxation time—a measure of the number of steps

needed—and the expected wall-clock time per step. Note that this product may

be loose in bounding the total wall-clock time (we leave tightening this bound to

future work), making the derived χ larger than necessary. In Section 3.2.4 we give

a simple heuristic to tune χ, which works well and is generally better than the

derived value.

Theorem 7 only requires the mild constraints of Assumption 1 on the target

distribution, so applies in many scenarios and compares well to other exact methods.
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SMH further requires a Bernstein-von Mises approximation to have guarantees

on its batch size and acceptance rate. PoissonMH provides convergence rate

guarantees, but demands the strong assumption that the target distribution has a

global upper bound on the energy. FlyMC does not have any theoretical guarantees

on performance.

3.2.3 Towards Optimal Exact Minibatch MH

In Theorem 7, we expose the trade-off between convergence rate and batch size

in TunaMH. Here, we take this analysis a step further to investigate the limits of

how efficient an exact minibatch MH method can be. To tackle this problem, we

derive a lower bound on the batch size for any minibatch MH method that retains

exactness and fast convergence. We then show that TunaMH is asymptotically

optimal in terms of its dependence on the problem parameters C and M . In other

words, it is not possible to outperform TunaMH in this sense with a method in the

class described by Algorithm 5.

Theorem 8. Consider any stateless exact minibatch MH algorithm described by

Algorithm 5, any state space Θ (with |Θ| ≥ 2), any C > 0, and any function

M : Θ×Θ→ R+. Suppose that the algorithm guarantees that, for some constant

κ ∈ (0, 1), for any distribution, the ratio between the spectral gap of minibatch

MH γ̂ and the spectral gap of standard MH γ is bounded by γ̂ ≥ κγ. Then there

must exist a distribution π over Θ and proposal q such that the batch size B of that

algorithm, when deciding whether to accept any transition θ → θ′, is bounded from

below by

E[B] ≥ ζ · κ ·
(
C2M2(θ, θ′) + CM(θ, θ′)

)
(3.5)
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for some constant ζ > 0 independent of algorithm and problem parameters.

To prove this theorem, we construct a random walk example over two states,

then consider the smallest batch size a method requires to distinguish between two

different stationary distributions (Appendix B.1.4). The impact of Theorem 8 is

three-fold:

First, it provides an upper bound on the performance of algorithms of Algorithm

5’s form: in each iteration, the average batch size of any exact minibatch MH

method of the form of Algorithm 5 must be set as in (3.5) in order to maintain a

reasonable convergence rate. To the best of our knowledge, this is the first theorem

that rigorously proves a ceiling for the possible performance of minibatch MH.

Second, TunaMH achieves this upper bound. In fact, Theorem 8 suggests that

TunaMH is asymptotically optimal in terms of the problem parameters, C and M .

To see this, observe that when we ignore κ, both expressions that bound E[B] in

(3.4) and (3.5) are O– (C2M2(θ, θ′) + CM(θ, θ′)). Thus TunaMH reaches the lower

bound, achieving asymptotic optimality in terms of C and M . (Of course, this

sense of “optimality” does not rule out potential constant-factor improvements over

TunaMH or improvements that depend on κ.)

Lastly, this result suggests directions for developing new exact minibatch MH

algorithms: to be significantly faster than TunaMH, we either need to introduce

additional assumptions to the problem or to develop new stateful algorithms.

In prior work, when assuming a very concentrated posterior, some methods’

batch size can scale in O(1) [10, 13, 32] or O(1/
√
N) [32] in terms of the dataset size

N while maintaining efficiency. Theorem 8 is compatible with these results, further

demonstrating this is essentially the best dependency on N an exact minibatch MH
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method can achieve. We show this by explicitly assuming the dependency of C and

M on N , as in SMH [32], yielding the following corollary (proof in Appendix B.1.5):

Corollary 1. Suppose that C increases linearly with N (C = O– (N)) and M(θ, θ′)

scales in O– (N−(h+1)/2) for some constant h > 0. Then the lower bound in Theorem

8 becomes O– (N (1−h)/2). In particular, it is O– (1) when h = 1, and O– (1/
√
N) when

h = 2.

That is, TunaMH matches the state-of-the-art’s dependency on N , and this

dependency is optimal. Similarly, since C and M are the only problem parameters

in the lower bound in Theorem 8, we can also get the optimal dependency on the

other problem parameters by explicitly assuming the relation of them with C and

M .

3.2.4 Experiments

We compare TunaMH to MH, TFMH, SMH (i.e. TFMH with MAP control variates)

and FlyMC. We only include PoissonMH in the Gaussian mixture experiment, as

it is not applicable in the other tasks. All of these methods are unbiased, so they

have the same stationary distribution. To ensure fair wall-clock time comparisons,

we coded each method in Julia; our implementations are at least as fast as, if

not faster than, prior implementations. For each trial, we use Gaussian random

walk proposals. We tune the proposal stepsize separately for each method to reach

a target acceptance rate, and report averaged results and standard error from

the mean over three runs. We set χ to be roughly the largest value that keeps

χC2M2(θ, θ′) < 1 in most steps; we keep χ as high as possible while the average

batch size is around its lower bound CM(θ, θ′). We found this strategy works well
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in practice. We released the code at https://github.com/ruqizhang/tunamh.

Robust Linear Regression

We first test TunaMH on robust linear regression [32, 98]. We use a Student’s

t-distribution with degree of freedom v = 4 and set data dimension d = 100

(Appendix B.4). We tune each method separately to a 0.25 target acceptance rate.

To measure efficiency, we record effective sample size (ESS) per second—a common

MCMC metric for quantifying the number of effectively independent samples a

method can draw from the posterior each second [19]. Figure 3.5a shows TunaMH

is the most efficient for all dataset sizes N ; it has the largest ESS/second. For

minibatch MH methods, Figure 3.5b compares the average batch size. TunaMH’s

batch size is significantly smaller than FlyMC’s—about 35x with N = 105. TFMH

has the smallest batch size, but this is because it uses a very small step size to

reach the target acceptance rate (Table B.1 in Appendix B.4). This leads to poor

efficiency, which we can observe in its low ESS/second.

MAP variants Since TFMH and FlyMC have variants that use the maximum

a posteriori (MAP) solution to boost performance, we also test TunaMH in this

scheme. SMH uses MAP to construct control variates for TFMH to improve low

acceptance rates. We consider both first- and second-order approximations (SMH-1

and SMH-2). FlyMC uses MAP to tighten the lower bound (FlyMC-MAP). For our

method (TunaMH-MAP) and MH (MH-MAP), we simply initialize the chain with

the MAP solution. Figure 3.5c shows that TunaMH performs the best even when

previous methods make use of MAP. With control variates, SMH does increase the

acceptance rate of TFMH, but this comes at the cost of a drastically increased batch

size (Figure 3.5d) which we conjecture is due to the control variates scaling poorly in
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Figure 3.5: Robust linear regression, d = 100. (a) ESS/second without MAP. (b)
Average batch size without MAP. (c) ESS/second with MAP. (d) Average batch
size with MAP.

high dimensions (d = 100).3 FlyMC-MAP tightens the bounds, entailing a decrease

in the batch size. However, as clear in the difference in ESS/second, it is still less

efficient than TunaMH due to its strong dependence between auxiliary variables

and the model parameters—an issue that previous work also documents [116].

Truncated Gaussian Mixture

Next we test on a task with a multimodal posterior, a very common problem in

machine learning. This demonstrates the advantage of TunaMH not relying on

MAP, because MAP is a single solution and therefore is unable to reflect all possible

modes in multimodal distributions. As a result, methods that rely on MAP tuning

or MAP-based control variates are unable to perform well on such problems.

3Control variates worked well in the SMH paper [32] because all experiments had small
dimension (d = 10).
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Figure 3.6: Truncated Gaussian mixture. (a) Symmetric KL comparison. (b) True
distribution. (c) Denstity estimate of TunaMH after 1 second.

We consider a Gaussian mixture. To get bounds on TunaMH, TFMH, SMH, and

FlyMC, we truncate the posterior, bounding θ1, θ2 ∈ [−3, 3] similar to [156]. We can

include PoissonMH because its required bound exists after truncation. As in [132],

we use a tempered posterior π(θ) ∝ exp (−β
∑

i Ui(θ)) with N = 106 and β = 10−4.

Figure 3.6a compares performance, showing symmetric KL versus wall-clock time.

TunaMH is the fastest, converging after 1 second, whereas the others take much

longer. As expected, SMH-1 performs worse than TFMH, verifying the control

variate is unhelpful for multimodal distributions. FlyMC and FlyMC-MAP are

also inefficient; their performance is on par with standard MH, indicating negligible

benefits from minibatching.

TunaMH also performs significantly better in terms of batch size, especially in

comparison to PoissonMH (Table 3.2). This is due to TunaMH’s local bound on

the energy, as opposed to PoissonMH’s global bound. This also allows TunaMH

to run on more problem types, such as robust linear (Section 3.2.4) and logistic

(Section 3.2.4) regression. To illustrate the estimate quality, we also visualize the

density estimate after 1 second; TunaMH’s estimate (Figure 3.6c) is very close to

the true distribution (Figure 3.6b), while the other methods do not provide on-par

estimates within the same time budget (Appendix B.4).
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Table 3.2: Avg. batch size ± SE from the mean on 3 runs. PoissonMH not
applicable to logistic reg.

Tasks TFMH FlyMC PoissonMH TunaMH

Gaussian Mixture 13.91± 0.016 811.52± 234.16 3969.67± 327.26 86.45± 0.04
Logistic Regression 39.28± 0.12 1960.19± 150.96 — 504.07± 0.33

Logistic Regression on MNIST

Lastly we apply TunaMH to logistic regression on the MNIST image dataset of

handwritten number digits. Mirroring the work of FlyMC [98], we aim to classify

7s and 9s using the first 50 principal components as features. We set χ = 10−5

following our heuristic. In Figure 3.7a we see that TunaMH is the fastest of all

methods to converge, as measured by wall-clock time. We also compare average

batch size in Table 3.2. TunaMH’s average batch size is 4x smaller than FlyMC’s.

TFMH again has the smallest batch size, but sacrifices efficiency by using a small

step size in order to achieve the target acceptance rate. Thus, overall, TFMH is

again inefficient in these experiments.

Effect of Hyperparameter χ To understand the effect of χ in TunaMH, we

report results with varying χ. Figure 3.7b plots test accuracy as a function of

the number of iterations. As χ increases, TunaMH’s convergence rate approaches

standard MH. This verifies our theoretical work: χ acts like a dial to control

convergence rate and batch size trade-off—mapping to the efficiency-scalability

trade-off. Figure 3.7c shows TunaMH’s wall-clock time performance is not sensitive

to χ, as the performance is superior to standard MH regardless of how we set it.

However, χ needs to be tuned in order to achieve the best performance. Previous

methods do not have such a dial, so they are unable to control this trade-off to

improve the sampling efficiency.
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Figure 3.7: MNIST logistic regression. (a) Test accuracy comparison. (b)-(c)
TunaMH’s test accuracy for various χ. Batch size for χ = 10−5, 10−4, 5× 10−4 is
504.07, 810.35 and 2047.91 respectively.
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CHAPTER 4

AMORTIZED METROPOLIS ADJUSTMENT

The runtime efficiency benefits of Stochastic Gradient MCMC (SG-MCMC) meth-

ods come with a drawback: stochastic gradients introduce bias. Bias can cause

convergence to a stationary distribution that differs from the one we wanted to

sample from, and usually comes from two sources: converting the continuous-time

process into discrete gradient updates, and noise from stochastic gradient estimates.

These sources of error are in a sense unavoidable because they are also the source

of SG-MCMC’s runtime efficiency. Discretization with a large step size ε (instead

of diminishing ε→ 0) allows SG-MCMC to quickly move around its state space,

and using stochastic gradients is key for scalability.

The standard approach for removing bias from a Markov chain is to introduce

a Metropolis-Hastings (MH) correction [102]. This involves rejecting some fraction

of the chain’s transitions to restore the correct stationary distribution. Näıvely

applying MH to SG-MCMC algorithms is often computationally prohibitive because

the MH step typically needs to sum over the entire dataset. Performing this

expensive computation every iteration would defeat the purpose of using stochastic

gradients to improve performance. Thus, more sophisticated techniques are needed

to achieve efficient, unbiased sampling for SG-MCMC.

In this section, we show that asymptotic exactness is possible without being

prohibitively expensive. Specifically, we propose Amortized Metropolis-Adjusted

stochastic Gradient second-Order Langevin Dynamics (AMAGOLD). It achieves

asymptotic exactness for SGHMC by using an MH correction step and does so

without obliterating the performance gains provided by stochasticity. Table 4.1

provides a clarifying summary of the algorithms considered in this section. Our
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Algorithm Exact? Stochastic Gradient?

AMAGOLD Yes Yes
L2MC Yes No
HMC Yes No
SGHMC No Yes

Table 4.1: Comparing 2nd order MCMC methods.

key insight is to apply the MH step infrequently. Rather than computing it every

update, AMAGOLD performs it every T steps (T > 0). We prove this is sufficient

to remove bias while also improving performance by amortizing the MH correction

cost over T steps. We develop both reversible and non-reversible AMAGOLD

variants and prove both converge to the desired distribution. We also prove a

convergence rate relative to using full-batch gradients, which cleanly captures the

effect of using stochastic gradients. This result provides insight about the trade-off

between minibatching speed-ups and the convergence rate. Our results also show

the noise from stochastic gradients has a provably bounded effect on convergence.

In summary, our contributions are as follows:

• We introduce AMAGOLD, an efficient, asymptotically-exact SGHMC variant

that infrequently applies an MH correction. We give reversible and non-

reversible versions.

• We guarantee AMAGOLD converges to the target distribution, and does so

without requiring step size ε→ 0 or precise noise variance estimation.

• We prove a bound on AMAGOLD’s convergence rate with mild assumptions,

measured by the spectral gap. This bound is relative to how fast the algorithm

would have converged if full-batch gradients were used. This is the first such

relative convergence bound we are aware of for SG-MCMC.

• We validate our convergence guarantees empirically. Comparing to SGHMC,
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Algorithm 7 SGHMC

1: given: Energy U , initial state θ ∈ Θ, step size ε, momentum variance σ2,
friction β

2: loop
3: optionally, resample momentum:
4: r ∼ N (0, σ2)
5: initialize position and momentum:
6: r 1

2
← r, θ0 ← θ

7: for t = 1 to T do
8: position update: θt ← θt−1 + εσ−2rt− 1

2

9: sample noise ηt ∼ N (0, 4εβσ2)
10: sample random energy component Ũt
11: update momentum:

rt+ 1
2
← rt− 1

2
− ε∇Ũt(θt)− 2εβrt− 1

2
+ ηt

12: end for
13: new values: (θ, r)← (θT , rT+ 1

2
)

14: . no MH step
15: end loop

AMAGOLD is more robust to hyperparameters. Regarding performance,

AMAGOLD is competitive with full-batch baselines on synthetic and real-

world datasets, and outperforms SGHMC on various tasks.

4.1 Preliminaries and Related Work

We write SGHMC as shown it Algorithm 7. Notably, SGHMC does not include an

MH correction; to reduce the bias, it requires small ε.

Related Work

Our work is situated within a rich literature of SG-MCMC variants that take

advantage of stochastic gradient techniques. These methods have demonstrated
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success on deep neural networks (DNNs) for various tasks [88, 51, 157]. In particular,

second-order SG-MCMC methods like SGHMC, which have a momentum term, have

been shown to outperform first-order methods like SGLD on many applications [27,

25]. [52] proves SGHMC’s convergence can be faster than SGLD’s on non-convex

problem due to its momentum-based acceleration. SGHMC can also be thought of

as a stochastic version of L2MC [71] or HMC; we therefore use both L2MC and

HMC as experimental full-batch baselines.

Prior work has also studied SGHMC’s convergence properties. [27] examines its

convergence for “asymptotically” small step sizes, in which a continuous-time system

governs the dynamics (in contrast, our algorithm is asymptotically exact with a

constant step size). Other work proves convergence with high-order integrators

[25] and obtains non-asymptotic convergence bounds for SGHMC on non-convex

optimization tasks [52].

Additional work has studied the properties of first-order MH adjusted Langevin

methods, such as MALA [61, 128, 126, 127, 135]. [43] derives the mixing time

of MALA for strongly log-concave densities, showing it has a better convergence

rate than unadjusted Langevin (in comparison, AMAGOLD does not require the

assumption of strongly log-concave densities). [81] developed a minibatch MH

approach, which uses subsampling in the MH correction step, and applied it to

correct bias in SGLD. They show cases where SGLD diverges from the target

distribution, while SGLD with a minibatched MH correction performs well.

The work above involves first-order methods. To the best of our knowledge, we

are the first to develop an unbiased, efficient second-order SG-MCMC algorithm.

We are also the first in this space to use the spectral gap, a traditional metric

to evaluate MCMC convergence [63, 83, 37]. It requires milder assumptions than
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techniques in prior SG-MCMC work, such as 2-Wasserstein [119, 34], mean squared

error [142, 25], and empirical risk [52].

4.2 Amortized Metropolis Adjustment

Reversible Markov chains are a particularly well-studied and well-behaved class of

Markov chains. A Markov chain with transition probability operator G is reversible

(also called satisfying the detailed balance condition) if for any pair of states x and

y

π(x)G(x, y) = π(y)G(y, x). (4.1)

It is well-known that a chain satisfying (4.1) has stationary distribution π. An

MH correction constructs a reversible chain G with stationary distribution π from

any Markov chain P (called the proposal distribution) by doing the following at

each iteration. First, starting from state x, sample y from the proposal distribution

P (x, y). Second, compute the acceptance probability

τ = min

(
1,
π(y)P (y, x)

π(x)P (x, y)

)
.

Finally, with probability τ transition to state y; otherwise, remain in state x. This

correction results in a reversible chain with stationary distribution π; however,

computing τ at every step can be costly.

The natural way to amortize the cost of running MH is to replace the single

proposal of baseline MH with T proposal-chain steps. This divides its cost among

T iterations of the underlying chain, effectively decreasing it by a factor of T . For

stochastic MCMC, each proposal step can be written as P (x, y; ζ), which denotes

the probability of going from state x to state y given stochastic sample ζ taken
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from some known distribution. (In minibatched MCMC, ζ captures information

about which data we sample at that step.) Using this, we can run the following

algorithm, starting at x. First, set x0 = x, and run for t from 0 to T − 1

sample noise ζt, then sample xt+1 ∼ P (xt, xt+1; ζt).

Next, set y = xT : this is the proposal run an MH correction on. Finally, compute

the acceptance probability

τ = min

(
1,
π(y)

π(x)

T−1∏
t=0

P (xt+1, xt; ζt)

P (xt, xt+1; ζt)

)
(4.2)

= min

(
1,

T−1∏
t=0

π(xt+1)P (xt+1, xt; ζt)

π(xt)P (xt, xt+1; ζt)

)
. (4.3)

and transition to state y with probability τ ; otherwise, remain in state x.

It is straightforward to see this algorithm results in a reversible chain with

stationary distribution π.1 Additionally, this amortized MH step (4.2) is easily

computed as long as the probabilities P (·, ·; ζ) are tractable.

We expect this approach will be effective when the MH step does “not reject

too often”. This will certainly be the case when the terms inside the product in

(4.3) all tend to be close to 1, which happens when the proposals P (x, y; η) are

“close” to being reversible with stationary distribution π. This is a good heuristic:

our amortization approach should be effective when the proposals are close to being

reversible.

Unfortunately, this heuristic does not apply to SGHMC’s proposal step since

SGHMC and other Hamiltonian-like steps are not close to satisfying the reversibil-

ity condition (4.1). Instead, the natural “reverse” trajectory for a Hamiltonian

step reverses the order of the states and negates the momentum. The analog of

1A detailed proof appears in Appendix C.1.1.
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reversibility for this sort of step is skew-reversibility [139]. Given some measure-

preserving involution over the state space denoted x⊥, a chain G is skew-reversible

if π(x) = π(x⊥) and

π(x)G(x, y) = π(y⊥)G(y⊥, x⊥). (4.4)

Concretely, for Hamiltonian dynamics we use the involution that negates the

momentum, i.e. (θ, r)⊥ = (θ,−r). It is straightforward to show that a skew-

reversible Markov chain also has π as its stationary distribution.1 Such non-reversible

chains have attracted a great deal of recent attention because they are more efficient

than reversible ones in some situations [139, 74, 95].

A natural consequence of this setup is that we can amortize MH in the same

manner as before, using skew-reversibility in place of reversibility. This gives the

same multi-step-proposal algorithm as before, except that the acceptance probability

is replaced with

τ = min

(
1,
π(y⊥)

π(x)

T−1∏
t=0

P (x⊥t+1, x
⊥
t ; ζt)

P (xt, xt+1; ζt)

)
. (4.5)

The resulting corrected chain will be skew-reversible with stationary distribution

π.1 Intuitively, this chain will “not reject too often” as long as the proposals P

are “close” to being skew-reversible. Since SGHMC steps are close to being skew-

reversible, this is the more natural approach for amortizing MH, rather than using

(4.2). If one wants to use the well-developed theoretical tools for a reversible chain,

it is known that we can recover a reversible chain from a skew-reversible one by

simply resampling the momentum at the beginning of the outer loop.1 Note this

reversible chain can be different from the one obtained by using condition (4.2).
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4.3 AMAGOLD

We now apply the amortized Metropolis adjustment (AMA) method of Section 4.2

to second-order SG-MCMC. As a proposal, we use the stochastic leapfrog step that

starts in (θ, r) and proposes (θ∗, r∗) by running

θ0 = θ +
1

2
εσ−2r

r∗ = ((1− εβ)r − ε∇Ũt(θ0) +N (0, 4εβσ2I))/(1 + εβ)

θ∗ = θ0 +
1

2
εσ−2r∗.

Applying our amortized MH correction to this proposal step using the acceptance

probability (4.5) results in AMAGOLD (Algorithm 8). AMAGOLD is, by construc-

tion, skew-reversible, and we have the option of making it reversible by resampling

the momentum.

AMAGOLD has three key differences compared to SGHMC. First, motivated by

the time-reversal-symmetric nature of conditions (4.1) and (4.4), we use a clearly

time-symmetric update step in the inner loop (compare Line 12 of Algorithm 8,

which can be written as rt+ 1
2
← rt− 1

2
− ε∇Ũt(θt)− εβ(rt− 1

2
+ rt+ 1

2
) + ηt, with the

less clearly symmetric Line 11 of Algorithm 7). Note this is just a different way of

writing the algorithm: the update steps could be made equivalent by appropriately

setting the hyperparameters. Second, we use a type of leapfrog integration that

starts and ends the outer loop with a half-position-update (Lines 5 and 15). This

too is done in the interest of time-reversal-symmetry. Third, there is an additional

term ρ in AMAGOLD, which we call the energy accumulator, which accumulates

the log of the product in (4.5). Computing ρ requires little extra cost since all its

terms are already obtained in the standard update. AMAGOLD is thus unbiased

without adding too much cost over SGHMC. The following theorem summarizes

AMAGOLD’s asymptotic accuracy. (This follows from the construction; an explicit
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Algorithm 8 AMAGOLD

1: given: Energy U , initial state θ ∈ Θ, step size ε, momentum variance σ2,
friction β

2: loop
3: optionally, resample momentum:

r ∼ N (0, σ2I)
4: initialize momentum, energy acc:

r− 1
2
← r, ρ− 1

2
← 0

5: half position update: θ0 ← θ + 1
2
εσ−2r− 1

2

6: for t = 0 to T − 1 do
7: if t 6= 0 then
8: position update: θt ← θt−1 + εσ−2rt− 1

2

9: end if

10: sample noise ηt ∼ N (0, 4εβσ2I)
11: sample random energy component Ũt

12: update momentum:
rt+ 1

2
← ((1− εβ)rt− 1

2
− ε∇Ũt(θt) + ηt)/(1 + εβ)

13: update energy acc:

ρt+ 1
2
← ρt− 1

2
+ 1

2
εσ−2∇Ũt(θt)T

(
rt− 1

2
+ rt+ 1

2

)
14: end for

15: half position update:
θT ← θT−1 + 1

2
εσ−2rT− 1

2

16: new values: θ∗ ← θT , r∗ ← rT− 1
2

17: a← exp
(
U(θ)− U(θ∗) + ρT− 1

2

)
18: with probability min(1, a),

update θ ← θ∗, r ← r∗ (as long as θ∗ ∈ Θ)
19: otherwise update r ← −r− 1

2

20: end loop

proof is in Appendix C.1.2.)

Theorem 9. Consider the Markov chain described by AMAGOLD (Algorithm 8).

If the momentum is resampled (on line 3), then this Markov chain is reversible. Oth-

erwise the Markov chain is skew-reversible. In either case, its stationary distribution

is π.
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Connection to previous methods AMAGOLD is related to several previous

MCMC methods. When using a full-batch gradient, AMAGOLD becomes L2MC

with amortized MH-adjustment. Using a full-batch, β = 0, and resampling,

AMAGOLD becomes HMC. To see this, we first notice that with β = 0 the update

rules of θ and r are the same as in HMC. The remaining thing is to show a is also

the same as in HMC. We rewrite ρt+ 1
2

as

ρt+ 1
2

= ρt− 1
2

+
1

2
σ−2

(
rt− 1

2
− rt+ 1

2

)T (
rt− 1

2
+ rt+ 1

2

)
= ρt− 1

2
+

1

2
σ−2

(∥∥∥rt− 1
2

∥∥∥2
−
∥∥∥rt+ 1

2

∥∥∥2
)

As a result,

ρT− 1
2

=
1

2
σ−2

T−1∑
t=0

(∥∥∥rt− 1
2

∥∥∥2

−
∥∥∥rt+ 1

2

∥∥∥2
)

=
1

2
σ−2

(∥∥∥r− 1
2

∥∥∥2

−
∥∥∥rT− 1

2

∥∥∥2
)

It follows that a becomes the same as in HMC.

If we disable AMAGOLD’s MH step (and adjust hyperparameters), it becomes

SGHMC.

Illustrating AMAGOLD To illustrate AMAGOLD is able to achieve unbiased

stochastic MCMC, we test our method on a double-well potential [40, 86]:

U(θ) = (θ + 4)(θ + 1)(θ − 1)(θ − 3)/14 + 0.5.

The target distribution is proportional to exp(−U(θ)). To simulate stochastic

gradients, we let ∇Ũ = ∇U + N (0, 1). We show the results of SGHMC and

AMAGOLD when β = 0.25, T = 10 and ε = 0.25. Results for ε = {0.05, 0.15} are

in Appendix C.3.

In Figure 4.1 and Appendix C.3, the estimated densities of AMAGOLD are

very close to the true density on varying step sizes. In contrast, SGHMC does
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Figure 4.1: Estimated densities of (a) SGHMC and (b) AMAGOLD for step size
0.25 compared to the ground truth and (c) step size 0.01 for tuned AMAGOLD
(see Section 4.3.2); (d) Comparison of symmetric KL divergence, varying step sizes
for SGHMC and AMAGOLD.

not converge to the correct distribution asymptotically. This is especially the case

when the step size is large: SGHMC diverges from the true distribution. These

observations validate Theorem 9, as AMA guarantees convergence to the target

distribution. To quantitatively measure divergence from the true distribution, we

plot the symmetric KL divergence as a function of the step size in Figure 4.1d. We

can see that SGHMC is very sensitive to step size, and may require careful tuning

in practice, while AMAGOLD is more robust.

4.3.1 Convergence Rate Analysis

Using stochastic gradients in MCMC can reduce the cost of each iteration. However,

this does not mean the overall cost of the algorithm will be less in comparison to
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its non-stochastic counterpart. Rather, it is possible that the stochastic chain’s

convergence rate becomes much slower than the non-stochastic one. To be confident

in the effectiveness of an SG-MCMC method, we must rule this out: We must

show that the convergence speed of the stochastic chain is not slowed down, or at

least not too much, compared to the non-stochastic chain. We do this analysis for

AMAGOLD as follows.

Since AMAGOLD can be regarded as stochastic L2MC, we study reversible

AMAGOLD’s convergence rate relative to L2MC with an amortized MH correction.

Prior work has used this type of bound to prove the convergence rate of subsampled

MCMC methods [37, 156]. Unlike work that uses 2-Wasserstein, MSE, or empirical

risk minimization to evaluate the convergence rate of SG-MCMC, we are the first to

use the spectral gap—a traditional metric for evaluating MCMC convergence [63, 83]

that is directly related to another common measurement, the mixing time [83]. Our

bound only requires mild assumptions compared to prior work [142, 25], and we

measure convergence to the target distribution directly, rather than empirical risk

minimization [52].

The spectral gap γ of a reversible Markov chain with transition probability

operator G is defined as the smallest distance between any non-principal eigenvalue

of G and 1, the principal eigenvalue of G [83]. The spectral gap determines the

convergence rate of a Markov chain: a chain with a smaller γ will take longer to

converge. To ensure the existence of γ, we assume geometric ergodicity of the

full-batch chain [129]. To bound γ, we assume the covariance of the gradient

samples of AMAGOLD is bounded isotropically with

E
[
(∇Ũ(θ)−∇U(θ))(∇Ũ(θ)−∇U(θ))T

]
� V 2

d
I

for some constant V > 0. This sort of bounded-variance assumption is standard in
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the analysis of stochastic gradient algorithms.

The following theorem shows that with appropriate hyperparameter settings the

convergence rate of AMAGOLD will not be slowed down by more than a constant

factor.

Theorem 10. For some parameters ε > 0, σ > 0, and β > 0, let γ̄ denote the

spectral gap of the L2MC chain running with parameters (ε, σ, β). Assume that these

parameters are such that εV 2 ≤ 4σ2βd. Define a constant c = 1 +
√

εV 2

16σ2βTd2 . Let γ

denote the spectral gap of AMAGOLD running with parameters (ε, σ ·c−1/4, β ·c−1/2).

Then,

γ

γ̄
≥ exp

(
−εTV

2

4σ2β
−

√
εTV 2

σ2β

)
.

This requirement on parameters is easy to satisfy because d is generally large

and ε is generally small in practice. For the same reason, c is usually close to 1, so

the parameters used by the two chains are very close.

This theorem has three useful takeaways: First, AMAGOLD’s convergence

rate is essentially the same as L2MC up to a constant, which will approach 1

as the batch size increases (V decreases) or ε decreases. Second, it shows the

effect of minibatching on convergence rate: if one reduces the minibatch size

(i.e. V 2 increases), they can expect the convergence rate to decrease with a

rate of exp(−O(V 2)). Third, the theorem outlines a range of parameters (where

εTV 2 � σ2β) over which AMAGOLD converges at a similar rate to the full-batch

algorithm.
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4.3.2 AMAGOLD in Practice

Here we describe some simple modifications that can further improve AMAGOLD’s

performance.

Minibatch MH Amortizing the cost of an MH correction over T steps is not

always sufficient for achieving good performance on large datasets. This is because

calculating the true energy U requires a scan over the whole dataset. We can

further reduce the cost of a single correction by using minibatch MH to compute

the acceptance probability—using a minibatch at line 17 of Algorithm 8. Prior

work has estimated the MH correction using a subset of the data [81, 11, 98, 132]

and also TunaMH in Section 3.2. These methods are composable with, rather than

exclusive with, AMAGOLD and could provide additional speed-ups.

Tuning the step size Our experiments on double well potential (Figure 4.1)

show step size significantly influences SGHMC’s performance. Besides being more

robust to step size, AMAGOLD’s step size can be more easily tuned. The MH step’s

acceptance probability provides information about whether a step size is desirable.

Based on this information, the step size can be tuned automatically to target some

fixed acceptance probability during burn-in without affecting convergence. With

a fixed step size ε = 0.01, both AMAGOLD and SGHMC provide poor density

estimates due to too small step size. However, when we let AMAGOLD adjust ε

such that the average MH acceptance probability is 85%, it estimates the density

accurately (Figure 4.1c, Appendix C.3).
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Figure 4.2: AMAGOLD’s performance against baselines. In (b) and (d) the step
size varies from 0.01 to 0.25; the symmetric KL divergence is a function of step size.

4.4 Experiments

Here we validate our theory empirically and explore the performance of AMAGOLD

on a variety of applications. We compare to full-batch baselines HMC and L2MC

to show AMAGOLD is more efficient and we compare to SGHMC because, despite

exhibiting bias, it is commonly used in the literature. Unless otherwise specified,

we use reversible AMAGOLD, meaning we resample the momentum, T = 10 and

β = 0.25. We set hyperparameters for AMAGOLD in a similar way as SGHMC [27].

For simplicity, we do not use the techniques in Section 4.3.2. Additional details

are in Appendix C.3. The code can be found at https://github.com/ruqizhang/

amagold.
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Figure 4.3: The convergence speed (symmetric KL divergence as a function of
iterations) of AMAGOLD compared to L2MC on Dist1 with step size 0.15.

Synthetic Distributions

We conduct experiments on synthetic two-dimensional distributions (Figures 4.2a

and 4.2c), which are adapted from [151]. The analytical expressions are in Ap-

pendix C.3. We compare our algorithm against three baselines: (1) HMC, (2) L2MC

with amortized MH correction, and (3) SGHMC. HMC and L2MC serve as non-

stochastic, unbiased baselines. As in [27], we replace ∇U by stochastic estimates

∇Ũ = ∇U +N (0, I) for the stochastic methods. We draw 5× 106 samples and use

symmetric KL divergence as a function of step size to quantitatively evaluate the

convergence of the Markov chain. On both distributions, AMAGOLD’s symmetric

KL divergence is close to full-batch methods and is much lower than SGHMC’s,

especially when the step size is large. This validates our theory that AMAGOLD

is unbiased, while SGHMC’s bias increases with step size. See Appendix C.3 for

more details.

We then verify the theory that AMAGOLD has a comparable convergence

rate to L2MC while using stochastic gradient estimates. Specifically, in Figure 4.3

AMAGOLD’s convergence rate is the same as L2MC’s (up to a constant factor

slowdown of about 10−3). We include runtime comparisons in Appendix C.3.
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Bayesian Logistic Regression on Real-World Data

We evaluate our method on Bayesian logistic regression using two real-world

datasets: Australian and Heart (Figure 4.4). We compute the MSE between

the estimated and true parameters, obtained from 107 samples from HMC as in

[85]. AMAGOLD exhibits smaller error than SGHMC on varying step sizes. We

show runtime comparisons with step size 10−4. Compared to full-batch HMC and

L2MC, AMAGOLD is significantly faster due to minibatching. It is also not much

slower than SGHMC, indicating AMA can reduce the cost of adding the MH step.

AMAGOLD’s large error using a large step size is due to a drop in MH acceptance

probability (Appendix C.3). However, this drop can be easily avoided in practice.

One can either set the step size such that it achieves a reasonable acceptance rate

(usually 20–80%, depending on the application) or use the tuning technique in

Section 4.3.2. With a reasonable acceptance rate, AMAGOLD achieves much lower

error compared to SGHMC.

Bayesian Neural Networks

We apply AMAGOLD on Bayesian neural networks. The architecture is a MLP

with two-layer with RELU non-linearities. The dataset size is 60000 and we use

minibatch size 2000. We use irreversible AMAGOLD since we find it gives better

results. Similar to [157], to speed up the convergence of the sampling methods, we

use SGD with momentum in the first 3 epochs as burn-in and then switch to either

SGHMC or AMAGOLD.

Classification We evaluate the classification accuracy of AMAGOLD and

SGHMC. As in [27], we reparameterize our algorithm, setting v = εσ−2r, b = εβ and
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Figure 4.4: We use two real-world datasets (a) Australian (15 covariates, 690 data
points) and (b) Heart (14 covariates, 270 data points). The minibatch size is 32
and 16, respectively. We collect 5× 106 samples and test step size varying from
10−6 to 5× 10−3.

Algorithm b h = 0.0005 h = 0.001

SGHMC 0.01 3.69±0.03 3.77±0.17
SGHMC 5e-6 89.95±0.29 89.70±0.91
AMAGOLD 0.01 3.63±0.04 3.65±0.08
AMAGOLD 5e-6 3.65±0.10 3.63±0.10

Table 4.2: Comparison between AMAGOLD and SGHMC of test error (%) ±
standard error. We collect 20 samples in total.

h = ε2σ−2 (Appendix C.2). This equivalent two-parameter reformulated update

is similar to SGD with momentum and thus more easily tuned on DNNs. Ta-

ble 4.2 shows the test error on various hyperparameter settings. AMAGOLD yields

consistent test error, regardless of the hyperparameter values. In contrast, the

performance of SGHMC is affected significantly by the hyperparameters. When b

is small, SGHMC diverges. Similar performance of SGHMC has also been reported

in [40].
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Uncertainty Evaluation We evaluate the sampling performance in terms of

uncertainty evaluation, which is important in many ML applications [82, 16]. We

test predictive uncertainty estimation on out-of-distribution samples [82]. The 8

models in Table 4.2 are tested on the notMNIST dataset [21]. Since the models

have never seen the samples from notMNIST, ideally the predictive distribution

should be uniform, which gives the maximum entropy. We plot the empirical CDF

for the entropy of the predictive distribution (Figure 4.5). AMAGOLD provides

consistent uncertainty estimations on all settings, which aligns with the classification

results. In contrast, when b is small or h is large, SGHMC performance suffers; it

is overconfident about its prediction.

Both of these experiments indicate that SGHMC is very sensitive to hyper-

parameters. It needs to be carefully tuned to achieve desired performance on

classification and uncertainty estimation. In contrast, AMAGOLD is robust to

various hyperparameter settings because it is guaranteed to converge to the target

distribution.
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Figure 4.5: Empirical CDF on notMNIST dataset.
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CHAPTER 5

CYCLICAL STOCHASTIC GRADIENT MCMC

Deep neural networks are often trained with stochastic optimization methods

such as stochastic gradient decent (SGD) and its variants. Bayesian methods

provide a principled alternative, which account for model uncertainty in weight

space [96, 106, 147], and achieve an automatic balance between model complexity

and data fitting. Indeed, Bayesian methods have been shown to improve the gener-

alization performance of DNNs [67, 16, 85, 99, 148], while providing a principled

representation of uncertainty on predictions, which is crucial for decision making.

Approximate inference for Bayesian deep learning has typically focused on

deterministic approaches, such as variational methods [67, 16]. By contrast, MCMC

methods are now essentially unused for inference with modern deep neural networks,

despite previously providing the gold standard of performance with smaller neural

networks [106]. Stochastic gradient Markov Chain Monte Carlo (SG-MCMC)

methods [146, 27, 40, 85] provide a promising direction for a sampling based

approach to inference in Bayesian deep learning. Indeed, it has been shown that

stochastic methods, which use mini-batches of data, are crucial for finding weight

parameters that provide good generalization in modern deep neural networks [77].

However, SG-MCMC algorithms for inference with modern neural networks

face several challenges: (i) In theory, SG-MCMC asymptotically converges to

target distributions via a decreasing stepsize scheme, but suffers from a bounded

estimation error in limited time [136, 25]. (ii) In practice, empirical successes have

been reported by training DNNs in relatively short time [88, 27, 51, 109, 130]. For

example, [130] apply SG-MCMC to generative adversarial networks (GANs) to solve

the mode collapse problem and capture diverse generation styles. However, the loss
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Figure 5.1: Illustration of the proposed cyclical stepsize schedule (red) and the
traditional decreasing stepsize schedule (blue) for SG-MCMC algorithms.

surface for DNNs is highly multimodal [7, 29]. In order for MCMC to be effective

for posterior inference in modern neural networks, a crucial question remains: how

do we make SG-MCMC efficiently explore a highly multimodal parameter space

given a practical computational budget?

Several attempts have been made to improve the sampling efficiency of SG-

MCMC. Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) [27] introduces

momentum to Langevin dynamics. Preconditioned stochastic gradient Langevin

dynamics (pSGLD) [85] adaptively adjusts the sampler’s step size according to the

local geometry of parameter space. Though simple and promising, these methods

are still inefficient at exploring multimodal distributions in practice. It is our

contention that this limitation arises from difficulties escaping local modes when

using the small stepsizes that SG-MCMC methods typically require. Note that the

stepsize in SG-MCMC controls the sampler’s behavior in two ways: the magnitude

to deterministically drift towards high density regions wrt. the current stochastic

gradient, and the level of injecting noise to randomly explore the parameter space.

Therefore, a small stepsize reduces both abilities, resulting in a large numbers of

iterations for the sampler to move across the modes.
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In this section, we propose to replace the traditional decreasing stepsize schedule

in SG-MCMC with a cyclical variant. To note the distinction from traditional

SG-MCMC, we refer to this method as Cyclical SG-MCMC (cSG-MCMC). The

comparison is illustrated in Figure 5.1. The blue curve is the traditional decay,

while the red curve shows the proposed cyclical schedule. Cyclical SG-MCMC

operates in two stages: (i) Exploration: when the stepsize is large (dashed red

curves), we consider this stage as an effective burn-in mechanism, encouraging the

sampler to take large moves and leave the local mode using the stochastic gradient.

(ii) Sampling: when the stepsize is small (solid red curves), the sampler explores one

local mode. We collect samples for local distribution estimation during this stage.

Further, we propose two practical techniques to improve estimation efficiency: (1)

a system temperature for exploration and exploitation; (2) A weighted combination

scheme for samples collected in different cycles to reflect their relative importance.

This procedure can be viewed as SG-MCMC with warm restarts: the exploration

stage provides the warm restarts for its following sampling stage. cSG-MCMC

combines the advantages from (1) the traditional SG-MCMC to characterize the

fine-scale local density of a distribution and (2) the cyclical schedule in optimization

to efficiently explore multimodal posterior distributions of the parameter space.

In limited time, cSG-MCMC is a practical tool to provide significantly better

mixing than the traditional SG-MCMC for complex distributions. cSG-MCMC can

also be considered as an efficient approximation to parallel MCMC; cSG-MCMC

can achieve similar performance to parallel MCMC with only a fraction of cost

(reciprocal to the number of chains) that parallel MCMC requires.

To support our proposal, we also prove the non-asymptotic convergence for the

cyclical schedule. We note that this is the first convergence analysis of a cyclical
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stepsize algorithm (including work in optimization). Moreover, we provide extensive

experimental results to demonstrate the advantages of cSG-MCMC in sampling

from multimodal distributions, including Bayesian neural networks and uncertainty

estimation on several large and challenging datasets such as ImageNet.

In short, cSG-MCMC provides a simple and automatic approach to inference in

modern Bayesian deep learning, with promising results, and theoretical support.

This work is a step towards enabling MCMC approaches in Bayesian deep learning.

We release code at https://github.com/ruqizhang/csgmcmc.

5.1 Preliminaries: SG-MCMC with a Decreasing Stepsize

Schedule

To guarantee asymptotic consistency with the true distribution, SG-MCMC requires

that the step sizes satisfy the following assumption:

Assumption 2. The step sizes {αk} are decreasing, i.e., 0 < αk+1 < αk, with 1)∑∞
k=1 αk =∞; and 2)

∑∞
k=1 α

2
k <∞.

Without a decreasing step-size, the estimation error from numerical approx-

imations is asymptotically biased. One typical decaying step-size schedule is

αk = a(b+ k)−γ, with γ ∈ (0.5, 1] and (a, b) some positive constants [146].
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5.2 Cyclical SG-MCMC

We now introduce our cyclical SG-MCMC (cSG-MCMC) algorithm. cSG-MCMC

consists of two stages: exploration and sampling. In the following, we first introduce

the cyclical step-size schedule, and then describe the exploration stage in Section 5.2

and the sampling stage in Section 5.2. We propose an approach to combining

samples for testing in Section D.2.

Assumption 1 guarantees the consistency of our estimation with the true dis-

tribution in the asymptotic time. The approximation error in limited time is

characterized as the risk of an estimator R = B2 + V , where B is the bias and V is

the variance. In the case of infinite computation time, the traditional SG-MCMC

setting can reduce the bias and variance to zero. However, the time budget is

often limited in practice, and there is always a trade-off between bias and variance.

We therefore decrease the overall approximation error R by reducing the variance

through obtaining more effective samples. The effective sample size can be increased

if fewer correlated samples from different distribution modes are collected.

For deep neural networks, the parameter space is highly multimodal. In practice,

SG-MCMC with the traditional decreasing stepsize schedule becomes trapped in a

local mode, though injecting noise may help the sampler to escape in the asymptotic

regime [159]. Inspired to improve the exploration of the multimodal posteriors

for deep neural networks, with a simple and automatic approach, we propose the

cyclical cosine stepsize schedule for SG-MCMC. The stepsize at iteration k is defined

as:

αk =
α0

2

[
cos

(
π mod(k − 1, dK/Me)

dK/Me

)
+ 1

]
, (5.1)

where α0 is the initial stepsize, M is the number of cycles and K is the number of
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total iterations [91, 73].

The stepsize αk varies periodically with k. In each period, αk starts at α0,

and gradually decreases to 0. Within one period, SG-MCMC starts with a large

stepsize, resulting in aggressive exploration in the parameter space; as the stepsize

is decreasing, SG-MCMC explores local regions. In the next period, the Markov

chain restarts with a large stepsize, encouraging the sampler to escape from the

current mode and explore a new area of the posterior.

Related work in optimization. In optimization, the cyclical cosine annealing

stepsize schedule has been demonstrated to be able to find diverse solutions in

multimodal objectives, though not specifically different modes, using stochastic

gradient methods [91, 73, 53, 49]. Alternatively, we adopt the technique to SG-

MCMC as an effective scheme for sampling from multimodal distributions.

Exploration

The first stage of cyclical SG-MCMC, exploration, discovers parameters near local

modes of an objective function. Unfortunately, it is undesirable to directly apply

the cyclical schedule in optimization to SG-MCMC for collecting samples at every

step. SG-MCMC often requires a small stepsize in order to control the error induced

by the noise from using a minibatch approximation. If the stepsize is too large, the

stationary distribution of SG-MCMC might be far away from the true posterior

distribution. To correct this error, it is possible to do stochastic Metropolis-Hastings

(MH) [81, 11, 26]. However, stochastic MH correction is still computationally too

expensive. Further, it is easy to get rejected with an aggressive large stepsize, and

every rejection is a waste of gradient computations.
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Algorithm 9 Cyclical SG-MCMC.

Input: The initial stepsize α0, number of cycles M , number of training iterations
K and the proportion of exploration stage β.
for k = 1:K do
α← αk according to Eq (5.1).

if mod (k−1,dK/Me)
dK/Me < β then

% Exploration stage

θ ← θ − α∇Ũk(θ)
else

% Sampling stage

Collect samples using SG-MCMC methods
end if

end for
Output: Samples {θk}

To alleviate this problem, we propose to introduce a system temperature T to

control the sampler’s behaviour: p(θ|D) ∝ exp(−U(θ)/T ). Note that the setting

T = 1 corresponds to sampling from the untempered posterior. When T → 0, the

posterior distribution becomes a point mass. Sampling from limT→0 exp(−U(θ)/T )

is equivalent to minimizing U(θ); in this context, SG-MCMC methods become

stochastic gradient optimization methods.

One may increase the temperature T from 0 to 1 when the step-size is decreasing.

We simply consider T = 0 and perform optimization as the burn-in stage, when

the completed proportion of a cycle r(k) = mod (k−1,dK/Me)
dK/Me is smaller than a given

threshold: r(k) < β. Note that β ∈ (0, 1) balances the proportion of the exploration

and sampling stages in cSG-MCMC.

Sampling

The sampling stage corresponds to T = 1 of the exploration stage. When r(k) > β

or step-sizes are sufficiently small, we initiate SG-MCMC updates and collect
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samples until this cycle ends.

SG-MCMC with Warm Restarts. One may consider the exploration stage as

automatically providing warm restarts for the sampling stage. Exploration alleviates

the inefficient mixing and inability to traverse the multimodal distributions of the

traditional SG-MCMC methods. SG-MCMC with warm restarts explores different

parts of the posterior distribution and captures multiple modes in a single training

procedure.

In summary, the proposed cyclical SG-MCMC repeats the two stages, with

three key advantages: (i) It restarts with a large stepsize at the beginning of a

cycle which provides enough perturbation and encourages the model to escape from

the current mode. (ii) The stepsize decreases more quickly inside one cycle than a

traditional schedule, making the sampler better characterize the density of the local

regions. (iii) This cyclical stepsize shares the advantage of the “super-convergence”

property discussed in [133]: cSG-MCMC can accelerate convergence for DNNs by

up to an order of magnitude.

Connection to the Santa algorithm. It is interesting to note that our approach

inverts steps of the Santa algorithm [24] for optimization. Santa is a simulated-

annealing-based optimization algorithm with an exploration stage when T = 1,

then gradually anneals T → 0 in a refinement stage for global optimization. In

contrast, our goal is to draw samples for multimodal distributions, thus we explore

with T = 0 and sample with T = 1. Another fundamental difference is that Santa

adopts the traditional stepsize decay, while we use the cyclical schedule.

We visually compare the difference between cyclical and traditional step size
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schedules (described in Section 5.1) in Figure 5.1. The cyclical SG-MCMC algorithm

is presented in Algorithm 9.

Connection to Parallel MCMC. Running parallel Markov chains is a natural

and effective way to draw samples from multimodal distributions [140, 2]. However,

the training cost increases linearly with the number of chains. Cyclical SG-MCMC

can be seen as an efficient way to approximate parallel MCMC. Each cycle effectively

estimates a different region of posterior. Note cyclical SG-MCMC runs along a

single training pass. Therefore, its computational cost is the same as single chain

SG-MCMC while significantly less than parallel MCMC.

Combining Samples. In cyclical SG-MCMC, we obtain samples from multiple

modes of a posterior distribution by running the cyclical step size schedule for

many periods. We provide a sampling combination scheme to effectively use the

collected samples in Section D.2 in the appendix.

5.3 Theoretical Analysis

Our algorithm is based on the SDE characterizing the Langevin dynamics: dθt =

−∇U(θt)dt+
√

2dWt , whereWt ∈ Rd is a d-dimensional Brownian motion. In this

section, we prove non-asymptotic convergence rates for the proposed cSG-MCMC

framework with a cyclical stepsize sequence {αk} defined in (5.1). For simplicity,

we do not consider the exploration stage in the analysis as that corresponds to

stochastic optimization. Generally, there are two different ways to describe the

convergence behaviours of SG-MCMC. One characterizes the sample average over
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a particular test function (e.g., [25, 143]); the other is in terms of the Wasserstein

distance (e.g., [119, 149]). We study both in the following.

Weak convergence Following [25] and [143], we define the posterior average of an

ergodic SDE as: φ̄ ,
∫
X φ(θ)ρ(θ)dθ for some test function φ(θ) of interest. For the

corresponding algorithm with generated samples (θk)
K
k=1, we use the sample average

φ̂ defined as φ̂ = 1
K

∑K
k=1 φ(θk) to approximate φ̄. We prove weak convergence of

cSGLD in terms of bias and MSE, as stated in Theorem 11.

Theorem 11. Under Assumptions 3 in the appendix, for a smooth test function φ,

the bias and MSE of cSGLD are bounded as:

BIAS:
∣∣∣Eφ̃− φ̄∣∣∣ = O

(
1

α0K
+ α0

)
, MSE: E

(
φ̃− φ̄

)2

= O

(
1

α0K
+ α2

0

)
.

Convergence under the Wasserstein distance Next, we consider the more

general case of SGLD and characterize convergence rates in terms of a stronger

metric of 2-Wasserstein distance, defined as:

W 2
2 (µ, ν) := inf

γ

{∫
Ω×Ω

‖θ − θ′‖2
2dγ(θ, θ′) : γ ∈ Γ(µ, ν)

}
where Γ(µ, ν) is the set of joint distributions over (θ, θ′) such that the two marginals

equal µ and ν, respectively.

Denote the distribution of θt in the SDE as νt. According to [28], the stationary

distribution ν∞ matches our target distribution. Let µK be the distribution of the

sample from our proposed cSGLD algorithm at the K-th iteration. Our goal is

to derive a convergence bound on W2(µK , ν∞). We adopt standard assumptions

as in most existing work, which are detailed in Assumption 4 in the appendix.

Theorem 12 summarizes our main theoretical result.
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Theorem 12. Under Assumption 4 in the appendix, there exist constants

(C0, C1, C2, C3) independent of the stepsizes such that the convergence rate of our

proposed cSGLD with cyclical stepsize sequence (5.1) is bounded for all K satisfying

(K mod M =0), as W2(µK , ν∞) ≤

C3 exp(−Kα0

2C4
) +

(
6 +

C2Kα0

2

) 1
2
[
(C1

3α2
0K

8
+ σC0

Kα0

2
)

1
2 + (C1

3α2
0K

16
+ σC0

Kα0

4
)

1
4

]
.

Particularly, if we further assume α0 = O(K−β) for ∀β > 1, W2(µK , ν∞) ≤

C3 +
(
6 + C2

Kβ−1

) 1
2 [( 2C1

K2β−1 + 2C0

Kβ−1 )
1
2 + ( C1

K2β−1 + C0

Kβ−1 )
1
4 ].

Remark 1. i) The bound is decomposed into two parts: the first part measures

convergence speed of exact solution to the stationary distribution, i.e., ν∑
k αk

to

ν∞; the second part measures the numerical error, i.e., between µK and ν∑
k αk

. ii)

The overall bound offers a same order of dependency on K as in standard SGLD

(please see the bound for SGLD in Section D.1.3 of the appendix. See also [119]).

iii) If one imposes stricter assumptions such as in the convex case, the bound can be

further improved. Specific bounds are derived in the appendix. We did not consider

this case due to the discrepancy from real applications.

5.4 Experiments

We demonstrate cSG-MCMC on several tasks, including a synthetic multimodal

distribution (Section 5.4), image classification on Bayesian neural networks (Section

5.4) and uncertainty estimation in Section 5.4. We also demonstrate cSG-MCMC

can improve the estimate efficiency for uni-modal distributions using Bayesian

logistic regression in Section D.5 in the appendix. We choose SLGD and SGHMC

as the representative baseline algorithms. Their cyclical counterpart are called

cSGLD and cSGHMC, respectively.
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(a) Target (b) SGLD (c) cSGLD

Figure 5.2: Sampling from a mixture of 25 Gaussians shown in (a) for the parallel
setting. With a budget of 50k×4 =200k samples, traditional SGLD in (b) has
only discovered 4 of the 25 modes, while our cSGLD in (c) has fully explored the
distribution.

Synthetic multimodal data

We first demonstrate the ability of cSG-MCMC for sampling from a multi-modal

distribution on a 2D mixture of 25 Gaussians. Specifically, we compare cSGLD

with SGLD in two setting: (1) parallel running with 4 chains and (2) running

with a single chain, respectively. Each chain runs for 50k iterations. The stepsize

schedule of SGLD is αk ∝ 0.05k−0.55. In cSGLD, we set M = 30 and the initial

stepsize α0 = 0.09. The proportion of exploration stage β = 1
4
. Fig 5.2 shows

the estimated density using sampling results for SGLD and cSGLD in the parallel

setting. We observed that SGLD gets trapped in the local modes, depending on

the initial position. In any practical time period, SGLD could only characterize

partial distribution. In contrast, cSGLD is able to find and characterize all modes,

regardless of the initial position. cSGLD leverages large step sizes to discover a new

mode, and small step sizes to explore local modes. This result suggests cSGLD can

be a significantly favourable choice in the non-asymptotic setting, for example only

50k iterations in this case. The single chain results and the quantitative results on

mode coverage are reported in Section D.5 of the appendix.
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(a) MDS (b) Interpolation (c) Comparison

Figure 5.3: Results of cSG-MCMC with DNNs on the CIFAR-100 dataset. (a) MDS
visualization in weight space: cSG-MCMC show larger distance than traditional
schedules. (b) Testing errors (%) on the path of two samples: cSG-MCMC shows
more varied performance. (c) Testing errors (%) as a function of the number of
cycles M : cSGLD yields consistently lower errors.

Bayesian Neural Networks

We demonstrate the effectiveness of cSG-MCMC on Bayesian neural networks

for classification on CIFAR-10 and CIFAR-100. We compare with (i) traditional

SG-MCMC; (ii) traditional stochastic optimization methods, including stochastic

gradient descent (SGD) and stochastic gradient descent with momentum (SGDM);

and (iii) Snapshot : a stochastic optimization ensemble method method with a the

cyclical stepsize schedule [73]. We use a ResNet-18 [66] and run all algorithms for

200 epochs. We report the test errors averaged over 3 runs, and the standard error

(±) from the mean predictor.

We set M = 4 and α0 = 0.5 for cSGLD, cSGHMC and Snapshot. The proportion

hyper-parameter β =0.8 and 0.94 for CIFAR-10 and CIFAR-100, respectively. We

collect 3 samples per cycle. In practice, we found that the collected samples share

similarly high likelihood for DNNs, thus one may simply set the normalizing term

wi in (D.18) to be the same for faster testing.

We found that tempering helps improve performance for Bayesian inference

with neural networks. Tempering for SG-MCMC was first used by [85] as a
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CIFAR-10 CIFAR-100
SGD 5.29±0.15 23.61±0.09

SGDM 5.17±0.09 22.98±0.27
Snapshot-SGD 4.46±0.04 20.83±0.01

Snapshot-SGDM 4.39±0.01 20.81±0.10
SGLD 5.20±0.06 23.23±0.01
cSGLD 4.29±0.06 20.55±0.06
SGHMC 4.93±0.1 22.60±0.17
cSGHMC 4.27±0.03 20.50±0.11

Table 5.1: Comparison of test error (%) between cSG-MCMC with non-parallel
algorithms. cSGLD and cSGHMC yields lower errors than their optimization
counterparts, respectively.

practical technique for neural network training for fast convergence in limited

time1. We simply use the prescribed temperature of [85] without tuning, but

better results of the sampling methods can be achieved by tuning the temperature.

More details are in Appendix D.4. We hypothesize that tempering helps due to

the overparametrization of neural networks. Tempering enables one to leverage

the inductive biases of the network, while representing the belief that the model

capacity can be misspecified. In work on Safe Bayes, also known as generalized and

fractional Bayesian inference, tempered posteriors are well-known to help under

misspecification [12, 36, 62].

For the traditional SG-MCMC methods, we found that noise injection early

in training hurts convergence. To make these baselines as competitive as possible,

we thus avoid noise injection for the first 150 epochs of training (corresponding

to the zero temperature limit of SGLD and SGHMC), and resume SGMCMC as

usual (with noise) for the last 50 epochs. This scheme is similar to the exploration

and sampling stages within one cycle of cSG-MCMC. We collect 20 samples for the

MCMC methods and average their predictions in testing.

1https://github.com/ChunyuanLI/pSGLD/issues/2

87



Testing Performance for Image Classification We report the testing errors

in Table 5.1 to compare with the non-parallel algorithms. Snapshot and traditional

SG-MCMC reduce the testing errors on both datasets. Performance variance for

these methods is also relatively small, due to the multiple networks in the Bayesian

model average. Further, cSG-MCMC significantly outperforms Snapshot ensembles

and the traditional SG-MCMC, demonstrating the importance of (1) capturing

diverse modes compared to traditional SG-MCMC, and (2) capturing fine-scale

characteristics of the distribution compared with Snapshot ensembles.

Diversity in Weight Space. To further demonstrate our hypothesis that with

a limited budget cSG-MCMC can find diverse modes, while traditional SG-MCMC

cannot, we visualize the 12 samples we collect from cSG-MCMC and SG-MCMC

on CIFAR-100 respectively using Multidimensional Scaling (MDS) in Figure 5.3

(a). MDS uses a Euclidean distance metric between the weight of samples. We

see that the samples of cSG-MCMC form 4 clusters, which means they are from 4

different modes in weight space. However, all samples from SG-MCMC only form

one cluster, which indicates traditional SG-MCMC gets trapped in one mode and

only samples from that mode.

Diversity in Prediction. To further demonstrate the samples from different

cycles of cSG-MCMC provide diverse predictions we choose one sample from each

cycle and linearly interpolate between two of them [58, 73]. Specifically, let J(θ)

be the test error of a sample with parameter θ. We compute the test error of the

convex combination of two samples J(λθ1 + (1− λ)θ2), where λ ∈ [0, 1].

We linearly interpolate between two samples from neighboring chains of cSG-

MCMC since they are the most likely to be similar. We randomly select 4 samples
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Method Cyclical+Parallel Decreasing+Parallel Decreasing+Parallel Cyclical+Single
Cost 200/800 200/800 100/400 200/200

Sampler SGLD SGHMC SGLD SGHMC SGLD SGHMC SGLD SGHMC
CIFAR-10 4.09 3.95 4.15 4.09 5.11 4.52 4.29 4.27
CIFAR-100 19.37 19.19 20.29 19.72 21.16 20.82 20.55 20.50

Table 5.2: Comparison of test error (%) between cSG-MCMC with parallel algorithm
(M=4 chains) on CIFAR-10 and CIFAR-100. The method is reported in the format
of “step-size schedule (cyclical or decreasing) + single/parallel chain”. The cost is
reported in the format of “#epoch per chain / #epoch used in all chains”. Note
that a parallel algorithm with a single chain reduces to a non-parallel algorithm.
Integration of the cyclical schedule with parallel algorithms provides lower testing
errors.

from SG-MCMC. If the samples are from the same mode, the test error of the

linear interpolation of parameters will be relatively smooth, while if the samples

are from different modes, the test error of the parameter interpolation will have a

spike when λ is between 0 and 1.

We show the results of interpolation for cSG-MCMC and SG-MCMC on CIFAR-

100 in Figure 5.3 (b). We see a spike in the test error in each linear interpolation

of parameters between two samples from neighboring chains in cSG-MCMC while

the linear interpolation for samples of SG-MCMC is smooth. This result suggests

that samples of cSG-MCMC from different chains are from different modes while

samples of SG-MCMC are from the same mode.

Although the test error of a single sample of cSG-MCMC is worse than that

of SG-MCMC shown in Figure 5.3 (c), the ensemble of these samples significantly

improves the test error, indicating that samples from different modes provide

different predictions and make mistakes on different data points. Thus these

diverse samples can complement each other, resulting in a lower test error, and

demonstrating the advantage of exploring diverse modes using cSG-MCMC.
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Comparison to Parallel MCMC. cSG-MCMC can be viewed as an economical

alternative to parallel MCMC. We verify how closely cSG-MCMC can approximate

the performance of parallel MCMC, but with more convenience and less compu-

tational expense. We also note that we can improve parallel MCMC with the

proposed cyclical stepsize schedule.

We report the testing errors in Table 5.2 to compare multiple-chain results. (1)

Four chains used, each runs 200 epochs (800 epochs in total), the results are shown

in the first 4 columns (Cyclical+Parallel vs Decreasing+Parallel). We see that

cSG-MCMC variants provide lower errors than plain SG-MCMC. (2) We reduce

the number of epochs (#epoch) of parallel MCMC to 100 epoch each for decreasing

stepsize schedule. The total cost is 400 epochs. We compare its performance with

cyclical single chain (200 epochs in total) in the last 4 columns (Decreasing+Parallel

vs Cyclical+Single). We see that the cyclical schedule running on a single chain

performs best even with half the computational cost! All the results indicate the

importance of warm re-starts using the proposed cyclical schedule. For a given

total cost budget, the proposed cSGMCMC is preferable to parallel sampling.

Comparison to Snapshot Optimization. We carefully compared with Snap-

shot, as our cSG-MCMC can be viewed as the sampling counterpart of the Snapshot

optimization method. We plot the test error wrt.various number of cycles M in

Fig. 5.3. As M increases, cSG-MCMC and Snapshot both improve. However, given

a fixed M , cSG-MCMC yields substantially lower test errors than Snapshot. This

result is due to the ability of cSG-MCMC to better characterize the local distribu-

tion of modes: Snapshot provides a singe minimum per cycle, while cSG-MCMC

fully exploits the mode with more samples, which could provide weight uncertainty

estimate and avoid over-fitting.
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NLL ↓ Top1 ↑ Top5 ↑
SGDM 0.9595 76.046 92.776

Snapshot-SGDM 0.8941 77.142 93.344
SGHMC 0.9308 76.274 92.994
cSGHMC 0.8882 77.114 93.524

Table 5.3: Comparison on the testing set of ImageNet. cSGHMC yields lower
testing NLL than Snapshot and SGHMC.

Figure 5.4: Empirical CDF for the entropy of the predictive distribution on notM-
NIST dataset. cSGLD and cSGHMC show lower probability for the low entropy
estimate than other algorithms.

Results on ImageNet. We further study different learning algorithms on a

large-scale dataset, ImageNet. ResNet-50 is used as the architecture, and 120

epochs for each run. The results on the testing set are summarized in Table 5.3,

including NLL, Top1 and Top5 accuracy (%), respectively. 3 cycles are considered

for both cSGHMC and Snapshot, and we collect 3 samples per cycle. We see that

cSGHMC yields the lowest testing NLL, indicating that the cycle schedule is an

effective technique to explore the parameter space, and diversified samples can help

prevent over-fitting.
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Uncertainty Evaluation

To demonstrate how predictive uncertainty benefits from exploring multiple modes

in the posterior of neural network weights, we consider the task of uncertainty

estimation for out-of-distribution samples [82]. We train a three-layer MLP model

on the standard MNIST train dataset until convergence using different algorithms,

and estimate the entropy of the predictive distribution on the notMNIST dataset

[21]. Since the samples from the notMNIST dataset belong to the unseen classes,

ideally the predictive distribution of the trained model should be uniform over the

notMNIST digits, which gives the maximum entropy.

In Figure 5.4, we plot the empirical CDF for the entropy of the predictive

distributions on notMNIST. We see that the uncertainty estimates from cSGHMC

and cSGLD are better than the other methods, since the probability of a low

entropy prediction is overall lower. cSG-MCMC algorithms explore more modes in

the weight space, each mode characterizes a meaningfully different representation

of MNIST data. When testing on the out-of-distribution dataset (notMNIST),

each mode can provide different predictions over the label space, leading to more

reasonable uncertainty estimates. Snapshot achieves less entropy than cSG-MCMC,

since it represents each mode with a single point.

The traditional SG-MCMC methods also provide better uncertainty estimation

compared to their optimization counterparts, because they characterize a local

region of the parameter space, rather than a single point. cSG-MCMC can be

regarded as a combination of these two worlds: a wide coverage of many modes in

Snapshot, and fine-scale characterization of local regions in SG-MCMC.
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CHAPTER 6

META-LEARNING DIVERGENCES FOR VARIATIONAL

INFERENCE

Approximate inference is a powerful tool for probabilistic modelling of com-

plex data. Among these inference methods, variational inference (VI) [76, 152]

approximates the intractable target distribution through optimizing a tractable

distribution. This optimization-based inference makes VI computationally effi-

cient, thus suitable to large-scale models in deep learning, such as Bayesian neural

networks [16] and deep generative models [79]. The objective function in VI is a

divergence which measures the discrepancy between the approximate distribution

and the target distribution. As an objective function, this divergence significantly

affects the inductive bias of the VI algorithm. By selecting a divergence, we en-

code our preference to the approximate distribution, such as whether it should

be mass-covering or mode-seeking. The Kullback-Leibler (KL) divergence is one

of the most widely used divergence metrics. However, it has been criticized for

under-estimating uncertainty, leading to poor results when uncertainty estimation

is essential [14, 15, 144]. Many alternative divergences have been proposed to

alleviate this issue [8, 33, 68, 90, 105, 144].

Although prior work has enriched the divergence family, the optimal divergence

metric usually depends on tasks [105, 90]. As illustrated by Figure 6.1, different

divergence metrics can lead to very different inference results. Unfortunately,

choosing a divergence for a specific task is challenging as it requires a thorough

understanding of (i) the shape of the target distribution; (ii) the desirable properties

of the approximate distribution; and (iii) the bias-variance trade-off of the variational

bound. A crucial question remains to be addressed in order to make VI a success:
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Figure 6.1: An illustration of approximate distributions on a Gaussian mixture by
different α-divergences (defined in Eq.(2.5)). “std” is the standard deviation of the
Gaussian approximation.

how can we automatically choose a suitable divergence tailored to specific types of

task?

To answer this question, we propose meta-learning divergences of variational

inference which utilizes meta-learning, or learning to learn, to refine VI’s divergence

automatically. In a nutshell, we leverage the fact that various real-world applications

consist of many small tasks (e.g. personalized recommendations for different user

groups in recommender systems), and it is important to design a meta-learning

algorithm to learn a good inference algorithm for new tasks from previous tasks.

We summarize our contributions as follows:

• We develop a general framework for meta-learning variational inference’s

divergence (Section 6.2.1), which chooses the desired divergence objective

automatically given a type of tasks. In this way, we meta-learn the VI

algorithm.

• Besides meta-learning the divergence objective, we further meta-learn the

parameters for the variational distribution without additional cost (Section

6.2.2), enabling meta-learning VI in few-shot setting.

• We demonstrate VI with meta-learned divergences outperforms standard VI

on Gaussian mixture distribution approximation, Bayesian neural network
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regression, image generation with variational autoencoders, and recommender

systems with a partial variational autoencoder (Section 6.3).

6.1 Preliminaries and Related Work

The goal of meta-learning VI algorithm is to learn, from a set of tasks, a VI

algorithm that produces an approximate distribution with desired properties on

new similar tasks. We approach this goal by learning the divergence in use for VI.

We formalize the problem setups as follows.

Assume we have a task distribution p(T ). Each task Ti ∼ p(T ) has its own

dataset DTi and its own probabilistic model pTi(θi,DTi). Let Dη(·‖·) denote a

learnable divergence parameterized by η; then for each task Ti the approximate

posterior qφi(θi) is computed by minimizing Dη(pTi(θi|DTi)‖qφi(θi)). In the rest of

the section we write Dη(qφi , Ti) = Dη(pTi(θi|DTi)‖qφi(θi)) for brevity. To do meta-

training, in each step we first sample a minibatch of tasks Ti, i = 1, . . . ,M from

p(T ). Then we define a meta-loss function J (qφi , Ti), and optimize the total meta-

loss across all training tasks in the minibatch
∑M

i=1 J (qφi , Ti) over the divergence

parameter η. This meta-loss function is designed to evaluate the desired properties

of the approximate distribution for these tasks, e.g. negative log-likelihood. During

meta-testing, a new task is sampled from p(T ), and the learned divergence Dη is

used to optimize the variational distribution qφ.

We also consider (in Section 6.2.2) a few-shot learning setup similar to the

model-agnostic meta-learning (MAML) framework [44]. In this case, each task only

has a few training data, therefore it is crucial to learn a good model initialization

to avoid overfitting and adapt fast on unseen tasks. The goal of meta-learning VI
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algorithm in this setting is to obtain a divergence as well as an initialization of

the variational parameters φ for unseen tasks. During meta-testing, we will train

the model with the learned divergence and the learned initialization of variational

parameters on new tasks.

The above two meta-learning settings are practical as demonstrated in many

previous works [44, 45, 57, 78], showing that attaining common knowledge from

previous tasks is valuable for future tasks.

Related Work

Variational Inference Variational inference (VI) has advanced rapidly in recent

years [152]. These advances can be grouped into three categories: (1) introduction of

new divergences for VI [8, 68, 90]; (2) introduction of more expressive approximate

families [125, 122]; (3) improvement of sampling estimates for model evidence [22]

and gradient [120]; (4) stochastic optimization to scale VI [38, 69, 89]. Our work

is related to the work that improves the variational objective with alternative

divergence measures; the difference is that our divergence measure is learnable and

can be selected in an automatic fashion for a certain type of tasks.

Meta-Learning/few-shot learning Recent work has applied Bayesian mod-

elling techniques to enhance uncertainty estimate for meta-learning/few-shot learn-

ing [45, 59, 78, 123]. They view the framework of MAML [44] as hierarchical

Bayes and conduct Bayesian inference on meta-parameters and/or task-specific

parameters. [59] and [78] applied approximate Bayesian inference to task-specific pa-

rameters, while [45] kept point estimate for task-specific parameters and conducted

variational inference over the meta-parameters instead. [123] obtained posteriors
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over both meta and task-specific parameters with variational inference. Our focus

is distinct from this line of work in that our research is in the opposite direction:

leveraging the idea of meta-learning to advance Bayesian inference. Additionally,

our meta-D&φ without learning divergence (VI&φ) can be viewed as a different

Bayesian MAML method other than hierarchical Bayes, which directly trains the

variational parameters so that it can quickly adapt to new tasks.

Meta-Learning for loss functions Our meta-learning method is also related to

meta-learning a loss function. In reinforcement learning, [72] meta-learned the loss

function for policy gradients where the parameters of the loss function is updated

using evolutionary strategies. [150] meta-learned the hyperparameters of the loss

functions in TD(λ) and IMPALA. Our work extends the idea of a learnable loss

function to Bayesian inference.

Meta-Learning for Bayesian inference algorithms A recent attempt to

meta-learning stochastic gradient MCMC (SG-MCMC) is presented by [57], which

proposed to meta-learn the diffusion and curl matrices of the SG-MCMC’s under-

lying stochastic differential equation. Also [145] applied meta-learning to build

efficient and generalizable block-Gibbs sampling proposals. Our work is distinct

from previous work in that we apply meta-learning to improve VI, which is a more

scalable inference method than MCMC. To the best of our knowledge, we are the

first to study the automatic choice and design of VI algorithms.
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6.2 Meta-VI

6.2.1 Meta-Learning Divergences (meta-D)

We consider the first setting of learning a divergence. We assume for now Dη is given

in some parametric form; later on we will provide the details of parameterization

of two divergence families (α- and f -divergence) and show how they fit in this

framework. The general idea is to first optimize the approximate posterior by

minimizing the current divergence, then update the divergence using the feedback

from the meta-loss. Concretely, for each task Ti we perform B gradient descent

steps on the variational parameters φi using VI with the current divergence Dη:

φi ← φi − β∇φiDη(qφi , Ti). (6.1)

By doing so the updated variational parameters φi are a function of the divergence

parameter η, which we then update by one-step gradient descent using the meta-loss

J :

η ← η − γ∇η
1

M

∑
i

J (qφi , Ti). (6.2)

We call this algorithm meta-D for meta-learning divergences, which is outlined

in Algorithm 10. Our algorithm is different from MAML in that MAML’s inner

and outer loop losses are designed to be the same, prohibiting it to meta-learn

the inner loop loss function which is the divergence in VI. The key insight of our

approach is that the updated variational parameters are dependant on the inner

loop divergence. This dependency enables meta-D to update the divergence by

descending the meta-loss with back-propagation through the variational parameters.
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Algorithm 10 Meta-D

Input: p(T ): distribution over tasks; β, γ: learning rate hyperparameters;
initialize η
loop

Sample M tasks Ti ∼ p(T )
for all Ti do

if φi does not exist then
initialize φi (can have different architectures)

end if
Update φi with the current divergence:
for b = 1 : B do
φi ← φi − β∇φiDη(qφi , Ti)

end for
end for
Update η ← η − γ∇η

1
M

∑
i J (qφi , Ti)

end loop
Output: η

Algorithm 11 Meta-D&φ

Input: p(T ): distribution over tasks; β, γ, τ : learning rate hyperparameters
Initialize φ, η
loop

Sample M tasks Ti ∼ p(T )
for all Ti do

Update φi with the current divergence:
for b = 1 : B do
φi ← φ− β∇φDη(qφ, Ti)

end for
end for
Update φ← φ− τ∇φ

1
M

∑
i J (qφi , Ti);

η ← η − γ∇η
1
M

∑
i J (qφi , Ti)

end loop
Output: η, φ

Meta-learning within α-divergence family To make α-divergence learnable

by the meta-D framework (in this case η = α), it requires the inner-loop updates

(Eq.(6.1)) to be continuous in α. This means a naive solution which relies on

automatic differentiation of existing α-divergences will fail, due to the fact that

these α-divergences are not twice differentiable everywhere [90, 105]. Instead,
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we propose to manually compute the gradient of Renyi’s α-divergence (Eq.(2.6))

which is continuous in α ∈ (0,+∞). Specifically we parameterize α-divergence by

parameterizing its gradient (Eq.(2.6)) and set ∇φiDη = −∇φiLα in Algorithm 10.

We denote meta-learning a divergence within α-divergences family as meta-α.

Meta-learning within f-divergence family We wish to parameterize the f -

divergence Eq.(2.7) by parameterizing the convex function f using a neural network,

since neural networks are known to be universal approximators and thus can cover

diverse f -divergences. However, it is less straightforward to specify the convexity

constraint for neural networks. Fortunately, Proposition 1 below indicates that

the f -divergence and its gradient can be specified through its second derivative

f ′′ [144].

Proposition 1. If ∇θ log
(
p(θ)
qφ(θ)

)
exists, then by setting gf (t) = t2 · f ′′(t), we have

(with θ = rφ(ε))

∇φDf (p‖qφ)

= −Eε∼p(ε)

[
gf

(
p(θ)

qφ(θ)

)
∇φrφ(ε)∇θ log

(
p(θ)

qφ(θ)

)]
. (6.3)

Therefore it remains to specify g (or f ′′), and the following Proposition 2

guarantees that using non-negative functions as g is sufficient for parameterizing

the f -divergence family.

Proposition 2. For any non-negative function g on R+, there exists a function f

such that g(t) = gf (t) = t2 · f ′′(t). If gf (1) > 0, then Df (p‖qφ) = 0 implies p = qφ.

See [144] for the proofs. Given these guarantees, we propose to parameterize f

implicitly by parameterizing g(t) = gf (t) which can be any non-negative function.
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We turn the problem into using a neural network to express a non-negative function

that is strictly positive at t = 1. For convenience, we further restrict the form of

the function to be

g(t) = exp(hη(t)) (6.4)

where hη(t) is a neural network with parameter η. This definition of g is strictly

positive for all t, satisfying the assumption of Proposition 2. By doing so, the

f -divergence is now learnable through Algorithm 10, by computing the gradient

∇φiDη = ∇φiDfη with Eq. (6.3).

With dataset D, the density ratio in Eq. (6.3) becomes p(θ|D)
qφ(θ)

= p(D|θ)p(θ)
qφ(θ)p(D)

.

We estimate p(D) through importance sampling and MC approximation. After

doing this, p(θk|D)
qφ(θk)

= p(D|θk)p(θk)
qφ(θk)

/
1
K

∑K
k=1

p(D|θk)p(θk)
qφ(θk)

which can be regarded as a

self-normalized estimator (see Appendix E.1 for details).

Our method is different from [144] in the way that we use deep neural net-

works parameterization and enable learning the f -divergence through standard

optimization. We denote meta-learning a divergence within f -divergences family

as meta-f .

6.2.2 Meta-Learning Divergences and Variational Parame-

ters (meta-D&φ)

In addition to learning the divergence objective, we also consider the few-shot setting

where fast adaptation of the variational parameters to new tasks is desirable. Similar

to MAML, the probabilistic models {pTi(θi,DTi)} share the same architecture, and

the goal is to learn an initialization of variational parameters φi ← φ. On a specific
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task, φ is adapted to be φi according to the learnable divergence Dη (which can be

−Lα or Dfη):

φi ← φ− β∇φDη(qφ, Ti). (6.5)

The updated φi is a function of both η and φ. For meta-update, besides updating

divergence parameter η with Eq.(6.2), we also use the same meta-loss to update

φ← φ− τ∇φ
1

M

∑
i

J (qφi , Ti). (6.6)

We call this algorithm meta-D&φ which meta-learns both the divergence objective

and variational parameters’ initialization. It is summarized in Algorithm 11.

Similar to the previous section, the divergence families in consideration are α- and

f -divergence (denoted as meta-α&φ and meta-f&φ respectively).

6.3 Experiments

We evaluate the proposed approaches on a variety of tasks. For the mixture

of Gaussians task, we perform distribution approximation (no data) and use

different meta-losses to directly demonstrate the ability of meta-D (meta-learning

divergences) and meta-D&φ (meta-learning divergences and variational parameters)

to learn the optimal divergence. For all other experiments, we use negative log-

likelihood as the meta-loss. For meta-D, we use standard VI (KL divergence) and

VI with α = 0.5 divergence which is a comonly used α-divergence [89, 144] as

baselines. For meta-D&φ, we test it in few-shot setup (i.e. few training data), and

compare it to learning φ only which is obtained by Algorithm 11 without updating η.

During meta-testing, we test this learned φ with KL divergence (denoted by VI&φ).

We also include results of VI without learning initialization in the few-shot setup
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Table 6.1: Meta-D on MoG: learned
value of α. BO (8 iters) has similar
runtime as meta-α.

Methods α = 0.5 TV

meta-α 0.52±0.01 0.31±0.01
BO (8 iters) 0.81±0.03 0.69±0.08
BO (16 iters) 0.54±0.07 0.32±0.03

Table 6.2: Meta-D on MoG: rank of
meta-loss over 10 test tasks.

Methods α = 0.5 TV

meta-α 2.10±0.70 2.10±0.30
meta-f 2.10±1.37 1.00±0.00
BO (8 iters) 3.50±0.67 4.00±0.00
BO (16 iters) 2.30±0.90 2.90±0.30

as a reference to show the gain of meta-learning initialization. Unless otherwise

specified, we set B = 1. We discussed the effect of this hyperparameter in Appendix

E.2 and put details of experimental setting in Appendix E.3.

Approximate Mixture of Gaussians (MoG)

We first verify the ability of our methods on learning good divergences using a 1-d

distribution approximation problem. Each task includes approximating a mixture

of two Gaussians p by a Gaussian distribution qφ∗ attained from minφDη(p‖qφ).

The mixture of Gaussian distribution p(θ) = 0.5N (θ;µ1, σ
2
1) + 0.5N (θ;µ2, σ

2
2) is

generated by

µ1 ∼ Unif[0, 3], σ1 ∼ Unif[0.5, 1.0];

µ2 = µ1 + 3, σ2 = σ1 ∗ 2.

Therefore each task has a different target distribution but with similar properties

(the same µ2 − µ1 and σ2/σ1). As shown in Figure 6.1, the divergence choice has

significant impact on the approximation.

We test our methods with two types of meta-loss J : D0.5(q‖p) and total

variation (TV). If D0.5(q‖p) is the metric we care about when evaluating the quality

of approximation q, then a good divergence will be D0.5(q‖p) itself. This case is

to verify our method is able to learn the preferred divergence given a rich enough
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family {Dη}. In practice, the desired evaluation metric for approximation quality

(e.g. log-likelihood) typically does not belong to α- or f -divergence family; to test

this scenario we use the total variation distance (TV) to evaluate the performance

of our method when meta-loss is beyond the divergence family.

We first test meta-D (meta-learning the divergences, Algorithm 10). As a

baseline, we treat α as a hyperprameter and use Bayesian optimization (BO) [134]

to optimize it. Note that BO is not applicable when the divergence set is f -

divergence which is parameterized by a neural network, therefore BO is only used

as a baseline for meta-α.

We report the learned values of α from meta-α and BO in Table 6.1. When the

meta-loss is D0.5, the learned α from meta-α is very close to 0.5, confirming that

our method can pick up a desired divergence. Note that BO is less computationally

efficient, as it needs to train a model from scratch every single time when evaluating a

new value of α, while our method can update α based on the current model.1 We test

learning f -divergence and visualize the learned hη(t) (Eq.(6.4)) in Figure 6.2(a)&(b).

When the meta-loss is D0.5(q‖p), the corresponding h0.5(t) for D0.5 is analytical

(Appendix E.3), and we see from Figure 6.2(a) that the learned hη(t) ≈ h0.5(t)+1.25.

This means meta-D has learned the optimal divergence D0.5, since f(t) and af(t)

define the same divergence for ∀a > 0.

When the meta-loss is TV, the optimal divergence is not analytic. Therefore,

we instead report the averaged rank of meta-losses on 10 test tasks in Table 6.2 (see

Table E.1 in Appendix for averaged value of meta-losses). It clearly shows that meta-

α and meta-f are superior over BO. Moreover, meta-f outperforms meta-α when

1We also considered BO in later sections but found it very inefficient (e.g. on the experiment
in Section 6.3, BO can only conduct two searches given similar runtime as our methods) thus
omitted the results.
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Table 6.3: Meta-D&φ on MoG: rank of meta-loss over 10 test tasks.

Method α = 0.5 TV α = 0.5 TV
(20 iters) (20 iters) (100 iters) (100 iters)

VI&φ 2.70±0.46 2.70±0.46 2.40±0.49 2.50±0.50
meta-α&φ 2.10±0.54 1.80±0.60 2.20±0.75 1.40±0.66
meta-f&φ 1.20±0.60 1.50±0.81 1.40±0.80 2.10±0.83
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Figure 6.2: Visualization of (a)-(b) learned hη and (c)-(d) approximate distribution
after 20 updates. Meta-f refers to meta-learning divergences (Algorithm 10) within
f -divergences. Meta-α&φ and Meta-f&φ refer to meta-learning divergences and
variational parameters (Algorithm 11) within α- and f -divergences respectively.
VI&φ refers to meta-learning varitional parameters only.

the meta-loss is TV. From Figure 6.2(b), we can see that the learned f -divergence

is not inside α-divergence, showing the benefit of using a larger divergence family.

It also indicates that our f -divergence parameterization using a neural network is

flexible and can lead to new f -divergences that are not used before.

Next we test meta-D&φ (meta-learning divergences and variational parameters,

Algorithm 11). During training, we perform B = 20 inner loop gradient updates.

The learned α is 0.88 and 0.77 for meta-loss D0.5 and TV respectively, which is
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different from those reported in Table 6.1. We conjecture that this is related to

the learned φ and B (the horizon length). During meta-testing, we start from the

learned φ and train the variational parameters with the learned divergence for 20

and 100 iterations, corresponding to short and long horizons respectively. Table 6.3

summarizes the rankings. Our methods are better than VI&φ (which uses KL and

only meta-learns φ) in all cases, demonstrating the benefit of learning a task-specific

divergence instead of using the conventional VI for all. To further elaborate, we

visualize in Figure 6.2(c)&(d) the approximate distributions after 20 steps. The

q distributions obtained by meta-D&φ tend to fit the MoG more globally (mass-

covering), resulting in better meta-losses when compared with VI&φ. Compared to

Algorithm 10, Algorithm 11 helps shorten the training time on new tasks (100 v.s.

2000 iterations). Notably, meta-D&φ is able to provide this initialization along

with divergence learning without extra cost.

Regression Tasks with Bayesian Neural Networks

The second test considers Bayesian neural network regression. The distribution

of ground truth regression function is defined by a sinusoid function with het-

eroskedastic noise (which is a function of x, see Figure 6.3(a)): y = A sin(x+ b) +

A/2 |cos((x+ b)/2)| ε, where the amplitude A ∈ [5, 10], the phase b ∈ [0, 1] and

ε ∼ N (0, 1). The heteroskedastic noise makes the uncertainty estimate more crucial

comparing with the sinusoid function fitting task in prior work [44, 78].

For Meta-D (meta-learning divergences, Algorithm 10), the quantitative results

are summarized in Table 6.4. We can see that the test log-likelihood (LL) of both

meta-α and meta-f are significantly better than VI and VI (α = 0.5), while the

root mean square error (RMSE) are similar for all methods. We visualize the
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Table 6.4: Meta-D on sin: 10 test tasks
and each task has 1000 training data
(1000 epochs).

Test LL RMSE

VI -0.59±0.01 0.44±0.01
VI (α = 0.5) -0.57±0.02 0.43±0.01

meta-α -0.39±0.04 0.43±0.00
meta-f -0.40±0.04 0.42±0.02

Table 6.5: Meta-D&φ on sin: 10 test
tasks and each task has 40 training data
(300 epochs).

Test LL RMSE

VI -3.94±0.18 0.51±0.02
VI&φ -0.69±0.04 0.44±0.02

meta-α&φ -0.43±0.05 0.42±0.03
meta-f&φ -0.46±0.04 0.43±0.02

(a) Ground Truth (b) VI (c) VI (α = 0.5) (d) meta-α (e) meta-f

Figure 6.3: Meta-D for BNN regression: visualizing the predictive distributions
on sinusoid data. With our proposed method to meta-learn the divergence (panels
(d) and (e)), the learned distribution can accurately capture the uncertainty in
different regions while with vanilla VI (panel (b)) or VI with typical α = 0.5 fails
to capture the varying uncertainty in different regions.

predictive distribution on an example sinusoid function in Figure 6.3. All methods

fit the mean well which is consistent with the RMSE results. Meta-α and meta-f

can reason about the heteroskedastic noise whereas VI and VI (α = 0.5) used

homoskedastic noise to fit the data resulting in bad test LL.

For Meta-D&φ (meta-learning divergences and variational parameters, Algo-

rithm 11), during meta-testing, we fine-tune the learned φ with learned divergence

on 40 datapoints for 300 epochs. Again meta-α&φ and meta-f&φ are able to model

heteroskedastic predictive distribution while VI&φ cannot. The quantitative results

are reported in Table 6.5, and an example of predictive distribution is visualised

in Figure E.3 (see Appendix). Meta-D&φ achieves similar results as meta-D with

only 40 training data and 300 epochs. Methods without learning initialization for

this setup significantly under-perform, indicating that learning model initialization

is essential when data is scarce.
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Table 6.6: Meta-D (meta-learning divergences) on MNIST: marginal log-likelihood
on 5 test tasks. Each task has 6000 training data. We train the model for 1000
epochs during meta-testing.

Digit 5 6 7 8 9

VI -133.69± 0.23 -121.80±0.15 -92.25±0.40 -145.14±0.19 -119.64±0.23
VI (α = 0.5) -133.24±0.16 -121.90±0.71 -91.52±0.72 -144.90±0.31 -119.59±0.90

meta-α -132.74±0.33 -120.67±0.36 -90.62 ±0.45 -145.13±0.96 -119.42±0.36
meta-f -133.21±0.44 -121.10± 0.20 -91.80±0.28 -144.85±0.31 -119.42±0.15

Table 6.7: Meta-D&φ (meta-learning divergences and variational parameters) on
MNIST: marginal log-likelihood on 5 test tasks. Each task has 100 training data.
We train the model for 200 epochs during meta-testing.

Digit 5 6 7 8 9

VI -177.92±0.46 -182.93±0.06 -125.57±0.41 -182.63±0.55 -161.68±0.27
VI&φ -174.32±0.18 -176.17±0.26 -123.20±0.12 -177.96±0.23 -147.25±0.32

meta-α&φ -163.31±0.61 -163.19±0.36 -115.52±0.16 -173.35±0.38 -142.76±0.33
meta-f&φ -160.16±0.16 -154.16±0.67 -122.61±0.43 -165.83±0.48 -138.90±0.10

Image Generation with Variational Auto-encoders

We also evaluate the image generation task with variational auto-encoders (VAEs).

Specifically, we train VAEs to generate MNIST digits with different divergences.

Generating each digit is regarded as a task and we use the first 5 digits (0-4) as

the training tasks and the last 5 digits (5-9) as the test tasks.

We report the test marginal log-likelihood for each test digit in Table 6.6 and 6.7.

Overall, these results align with other experiments that the meta-D and meta-D&φ

are both better than their counterparts. Meta-D and meta-D&φ are better than

VAE with common divergences on all 5 test tasks, indicating our methods have

learned a suitable divergence.
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(a) Meta-D (b) Meta-D&φ

Figure 6.4: Test log-likelihood on MovieLens.Panel (a) shows the results of meta-
learning divergences only (Meta-D), and panel (b) shows the results of meta-learning
both divergences and variational parameters (Meta-D&φ).

Recommender System with a Partial Variational Autoencoder

We test our method on recommender systems with a Partial Variational Auto-

encoder (p-VAE) [93]. P-VAE is proposed to deal with partially observed data

and has been shown to achieve state-of-the-art level performance on user rating

prediction in recommender system [92]. We consider MovieLens 1M dataset [64]

which contains 1,000,206 ratings of 3,952 movies from 6,040 users. We select four

age groups as training tasks, and use the remaining three groups as test tasks.

During meta-testing, we use 90%/10% and 60%/40% training-test split for Meta-

D and Meta-D&φ, respectively. From Figure 6.4(a), we see that when applied

to learning p-VAEs, meta-D outperforms standard VI (KL divergence) and VI

with α = 0.5 divergence in terms of test LL, showing that meta-D has learned a

suitable divergence that leads to better test performance. Figure 6.4(b) implies

that all methods with learned φ can converge quickly on the new task with only

100 iterations. Both meta-α&φ and meta-f&φ learn faster than VI&φ in meta-test

time, indicating that the learned divergence can help fast adaptation.
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CHAPTER 7

CONCLUSION

This thesis studied and improved the reliability-scalability trade-off of inference

in probabilistic modeling. Specifically, we explored two themes, theoretically-

guaranteed inference and efficient inference for reliable deep learning.

In Chapter 3, we proposed the Poisson-minibatching framework to generate

unbiased samples with theoretical guarantees on the convergence rate and scalability,

with applications to Gibbs sampling and Metropolis-Hastings. Our algorithms

provably converge to the desired stationary distribution at a rate that is at most

a constant factor slower than the full batch method, as measured by the spectral

gap. Additionally, we demonstrate that inexact MH methods can lead to arbitrarily

incorrect inference and argue for the use of exact methods. We also prove a lower

bound on the batch size that any minibatch MH method must use to maintain

exactness and convergence rate, and show our MH method is asymptotically optimal.

In Chapter 4, we introduced AMAGOLD, which achieves unbiased, efficient

second-order SG-MCMC by infrequently applying the computationally-expensive

Metropolis- Hasting adjustment step, amortizing the cost across multiple algorithm

steps. We prove this is sufficient for convergence to the target distribution, and

provide reversible and non-reversible versions for practical use. AMAGOLD’s

convergence rate is theoretically guaranteed: the bound captures the trade-off

between the speed-up from minibatching and the convergence rate. Lastly, our

work is complementary to, rather than exclusive with, other research in stochastic

MCMC. In future work, it would be interesting to explore combining AMA with

other SG-MCMC variants and minibatch MH methods.

110



In Chapter 5, we presented cyclical SG-MCMC methods to automatically

explore complex multimodal distributions. Our approach is particularly compelling

for Bayesian deep learning, which involves rich multimodal parameter posteriors

corresponding to meaningfully different representations. We have also shown that

our cyclical methods explore unimodal distributions more efficiently. These results

are in accordance with theory we developed to show that cyclical SG-MCMC

will converge faster to samples from a stationary distribution in general settings.

Moreover, we show cyclical SG-MCMC methods provide more accurate uncertainty

estimation, by capturing more diversity in the hypothesis space corresponding to

settings of model parameters.

In Chapter 6, we proposed meta-learning divergences of VI which automates

the selection of divergence objective in VI via meta-learning. It further allows

meta-learning of variational parameter initialization for fast adaptation on new

tasks. Within our meta-learning divergences framework, we consider two divergence

families, α- and f -divergence, and design parameterizations of divergences to

enable learning via gradient descent. Experimental results on Gaussian mixture

approximation, regression with Bayesian neural networks, generative modeling

and recommender systems demonstrate the superior performance of meta-learned

divergences over standard divergences.

While probabilistic inference was once popular for many machine learning tasks,

it is now often replaced by optimization methods in modern machine learning due

to scalability issue. I hope that this thesis will help renew interest in probabilistic

methods for machine learning and shed light on the future direction to continue

pushing the frontier of probabilistic modeling.
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APPENDIX A

SECTION 3.1 GIBBS SAMPLING WITH

POISSON-MINIBATCHING

A.1 Fast Sampling of the Auxiliary Variables

In this section, we describe in detail the method used to sample the auxiliary

variables sφ and prove Statement 1. The method for doing so is described here in

Algorithm 12.

Algorithm 12 Sample auxiliary variables sφ

. pre-computation step; happens once
for i = 1 to n do

Λi ←
∑

φ∈A[i]
λMφ

L
+Mφ

compute distribution ρi over A[i] where

ρi(φ) ∝ λMφ

L
+Mφ.

process distribution ρi so that in future, it can be sampled from in constant
time

end for

. to actually re-sample the auxiliary variables
given: current state x ∈ Ω, variable i to resample
initialize sparse vector s : A[i]→ Z
sample B ∼ Poisson(Λi)
for b = 1 to B do

sample φ ∼ ρi
compute φ(x)

with probability
λMφ
L

+φ(x)
λMφ
L

+Mφ

update sparse vector sφ ← sφ + 1

end for

To see that this is valid, let B =
∑n

i si where si are Poisson variables with

parameters λi. We know that B is also Poisson distributed with parameter Λ =
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∑n
i λi. Conditioned on the value of B, it is known that si follows a multinomial

distribution with event probabilities λi/Λ and trial count B. Therefore, we can

first sample B ∼ Poisson(Λ) and then sample

(s1, . . . sn) ∼ Multinomial

(
B,

(
λ1

Λ
, . . . ,

λn
Λ

))
.

Our Algorithm 12 is only slightly more complicated than this process, in order to

minimize the number of times that φ(x) is evaluated, but it can be seen to produce

the valid distribution by the same reasoning.

The computational cost of Algorithm 12 is clearly proportional to B, and since

E[B] = Λi =
∑
φ∈A[i]

λMφ

L
+Mφ ≤ λ+ L,

it follows that the overall average computational cost will also be λ + L. This

proves Statement 1.

A.2 Proofs and Derivations

A.2.1 Derivation of the joint distribution

In this subsection, we derive the joint distribution (3.1) by substituting the distri-

butions of x and s into the conditional distribution of s given x. By the expression
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of Poisson distribution for sφ and the independence of sφ, we have

π(x, s) = π(x)π(s|x)

∝ exp

(∑
φ∈Φ

φ(x)

)∏
φ∈Φ

π(sφ|x)

= exp

(∑
φ∈Φ

(φ(x) + log π(sφ|x))

)

= exp

(∑
φ∈Φ

(
φ(x) + sφ log

(
λMφ

L
+ φ(x)

)
− log(sφ!)− λMφ

L
− φ(x)

))

= exp

(∑
φ∈Φ

(
sφ log

(
λMφ

L
+ φ(x)

)
− log(sφ!)− λMφ

L

))

∝ exp

(∑
φ∈Φ

(
sφ log

(
λMφ

L
+ φ(x)

)
− log(sφ!)

))

= exp

(∑
φ∈Φ

(
sφ log

(
1 +

L

λMφ

φ(x)

)
+ sφ log

(
λMφ

L

)
− log (sφ!)

))
.

A.2.2 Proof of Theorem 1

In this section, we prove that Poisson-Gibbs converges, and derive a bound on its

convergence rate.

Proof. First, we will derive an expression for the transition operator of Poisson-

Gibbs chain, and show it is reversible. Then we will bound the spectral gap.

If x and y are states which differ in only one variable i, the probability of

transitioning from x to y will be the probability of choosing to sample variable i

times the expected value over the random choice of s of the probability of sampling
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y(i) from ρ. That is,

T (x, y)

=
1

n
· E [ρ(y(i))]

=
1

n
· E
[

exp(Uy(i))∫
exp(Uu) du

]
=

1

n
·
∑
s

exp(Uy(i))∫
exp(Uu) du

·
∏
φ∈A[i]

1

sφ!

(
λMφ

L
+ φ(x)

)sφ
exp

(
−
(
λMφ

L
+ φ(x)

))

=
1

n
·
∑
s

exp
(∑

φ∈A[i] sφ log
(
λMφ

L
+ φ(y)

))
∫

exp
(∑

φ∈A[i] sφ log
(
λMφ

L
+ φ(zu)

))
du

·
∏
φ∈A[i]

(
1 +

L

λMφ

φ(x)

)sφ
· exp (−φ(x))

·
∏
φ∈A[i]

1

sφ!

(
λMφ

L

)sφ
· exp

(
−λMφ

L

)
where zu denotes x where x(i) has been set equal to u. Note that sφ here are

non-negative integers that a Poisson variable can take, not variables. So if we let

rφ ∼ Poisson
(
λMφ

L

)
and rφ to be all independent, we can write this as

T (x, y) =
1

n
· Er

[
exp

(∑
φ∈A[i] rφ log

(
λMφ

L
+ φ(y)

))
∫

exp
(∑

φ∈A[i] rφ log
(
λMφ

L
+ φ(zu)

))
du

·
∏
φ∈A[i]

(
1 +

L

λMφ

φ(x)

)rφ
· exp (−φ(x))

]

=
1

n
· Er

[
exp

(∑
φ∈A[i] rφ

(
log
(

1 + L
λMφ

φ(y)
)

+ log
(

1 + L
λMφ

φ(x)
)))

∫
exp

(∑
φ∈A[i] rφ log

(
1 + L

λMφ
φ(zu)

))
du

· exp

− ∑
φ∈A[i]

φ(x)

]

Therefore, since

π(x) =
1

Z
· exp

(∑
φ∈Φ

φ(x)

)
,
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it follows that

π(x)T (x, y)

=
1

nZ
· Er

[
exp

(∑
φ∈A[i] rφ

(
log
(

1 + L
λMφ

φ(y)
)

+ log
(

1 + L
λMφ

φ(x)
)))

∫
exp

(∑
φ∈A[i] rφ log

(
1 + L

λMφ
φ(zu)

))
du

· exp

∑
φ∈Φ

φ(x)−
∑
φ∈A[i]

φ(x)

]

=
exp(U¬i(x))

nZ

· Er

exp
(∑

φ∈A[i] rφ

(
log
(

1 + L
λMφ

φ(y)
)

+ log
(

1 + L
λMφ

φ(x)
)))

∫
exp

(∑
φ∈A[i] rφ log

(
1 + L

λMφ
φ(zu)

))
du

 .
where we define U¬i(x) =

∑
φ/∈A[i] φ(x). This expression is symmetric in x and y

(note that U¬i(x) does not depend on variable i), so it follows that the Markov

chain is reversible, and its stationary distribution is indeed π.

We can proceed to try to bound its spectral gap, using the technique of Dirichlet

forms. We start by simplifying our expression by defining

φ̄(x) =
Lφ(x)

λMφ

.

Using this, we get

π(x)T (x, y)

=
exp(U¬i(x))

nZ
· Er

exp
(∑

φ∈A[i] rφ
(
log
(
1 + φ̄(y)

)
+ log

(
1 + φ̄(x)

)))
∫

exp
(∑

φ∈A[i] rφ log
(
1 + φ̄(zu)

))
du

 .
We proceed by bringing the exponential on the top of this sum down to the bottom
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and inside the integral, which produces

π(x)T (x, y) =
exp (U¬i(x))

nZ
· Er

[(∫
exp

( ∑
φ∈A[i]

rφ

(
log
(
1 + φ̄(zu)

)
− log

(
1 + φ̄(x)

)
− log

(
1 + φ̄(y)

)))
du

)−1]

≥ exp (U¬i(x))

nZ
·

(
Er

[∫
exp

( ∑
φ∈A[i]

rφ

(
log
(
1 + φ̄(zu)

)
− log

(
1 + φ̄(x)

)
− log

(
1 + φ̄(y)

)))
du

])−1

where this inequality follows from Jensen’s inequality and the fact that 1/x is

convex. By converting the exp-of-sum to a product-of-exp, and recalling that the

rφ are independent, we can further reduce this to

π(x)T (x, y) ≥ exp (U¬i(x))

nZ

(∫
Er

[ ∏
φ∈A[i]

exp

(
rφ

(
log
(
1 + φ̄(zu)

)
− log

(
1 + φ̄(x)

)
− log

(
1 + φ̄(y)

)))]
du

)−1

=
exp (U¬i(x))

nZ

(∫ ∏
φ∈A[i]

Er

[
exp

(
rφ

(
log
(
1 + φ̄(zu)

)
− log

(
1 + φ̄(x)

)
− log

(
1 + φ̄(y)

)))]
du

)−1

.

This final expectation expression is just the moment generating function of the

Poisson random variable rφ evaluated at

t = log
(
1 + φ̄(zu)

)
− log

(
1 + φ̄(x)

)
− log

(
1 + φ̄(y)

)
.

Here, from the standard formula for that MGF, we get

Er[exp(rφt)] = exp

(
λMφ

L
(exp(t)− 1)

)
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So

exp(t)− 1

=
1 + φ̄(zu)

(1 + φ̄(x))(1 + φ̄(y))
− 1

=
φ̄(zu)− φ̄(x)− φ̄(y)− φ̄(x)φ̄(y)

(1 + φ̄(x))(1 + φ̄(y))

= φ̄(zu)− φ̄(x)− φ̄(y)

−
(
φ̄(zu)− φ̄(x)− φ̄(y)

) (
φ̄(x) + φ̄(y) + φ̄(x)φ̄(y)

)
+ φ̄(x)φ̄(y)

(1 + φ̄(x))(1 + φ̄(y))
.

Since

0 ≤ φ̄(x) =
Lφ(x)

λMφ

≤ L

λ
≤ 1

2

(where here we’re using the condition in the theorem statement that 2L ≤ λ) we

can bound this with

exp(t)− 1

≤ φ̄(zu)− φ̄(x)− φ̄(y)

−
(
−φ̄(x)− φ̄(y)

) (
φ̄(x) + φ̄(y)

)
+
(
1− φ̄(x)− φ̄(y)

)
φ̄(x)φ̄(y)

(1 + φ̄(x))(1 + φ̄(y))

≤ φ̄(zu)− φ̄(x)− φ̄(y) +

(
φ̄(x) + φ̄(y)

) (
φ̄(x) + φ̄(y)

)
(1 + φ̄(x))(1 + φ̄(y))

≤ φ̄(zu)− φ̄(x)− φ̄(y) +
(
φ̄(x) + φ̄(y)

)2

≤ φ̄(zu)− φ̄(x)− φ̄(y) +
4L2

λ2
.

So,

Eexp(rφt) = exp

(
λMφ

L
(exp(t)− 1)

)
≤ exp

(
λMφ

L

(
φ̄(zu)− φ̄(x)− φ̄(y) +

4L2

λ2

))
= exp

(
φ(zu)− φ(x)− φ(y) +

4LMφ

λ

)
.
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Substituting this into the original expression produces

π(x)T (x, y)

≥ exp (U¬i(x))

nZ

∫ ∏
φ∈A[i]

exp

(
φ(zu)− φ(x)− φ(y) +

4LMφ

λ

)
du

−1

=
exp (U¬i(x))

nZ

·

∫ exp

∑
φ∈A[i]

φ(zu)−
∑
φ∈A[i]

φ(x)−
∑
φ∈A[i]

φ(y) +
∑
φ∈A[i]

4LMφ

λ

 du

−1

≥ exp (U¬i(x))

nZ

∫ exp

∑
φ∈A[i]

φ(zu)−
∑
φ∈A[i]

φ(x)−
∑
φ∈A[i]

φ(y) +
4L2

λ

 du

−1

= exp

(
−4L2

λ

)
exp (U¬i(x))

nZ

(∫
exp

(
Ūu − Ūx(i) − Ūy(i)

)
du

)−1

= exp

(
−4L2

λ

)
exp (U¬i(x))

nZ

exp(Ūx(i)) · exp(Ūy(i))∫
exp(Ūu)du

= exp

(
−4L2

λ

)
1

nZ

exp(U(x)) · exp(Ūy(i))∫
exp(Ūu)du

where Ūv denotes the assignment of Uv in the plain Gibbs sampling algorithm

(Algorithm 1),

Ūv =
∑
φ∈A[i]

φ(zv),

Finally, if we let G denote the transition probability operator of plain Gibbs

sampling, we notice right away that

π(x)T (x, y) ≥ exp

(
−4L2

λ

)
1

nZ

exp(U(x)) · exp(Ūy(i))∫
exp(Ūu)du

= exp

(
−4L2

λ

)
π(x)G(x, y).

We will use the Dirichlet form argument to finish the proof. A real function f

is square integrable with respect to probability measure π, if it satisfies∫
f(x)2π(dx) <∞.
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Define L2(π) to be the Hilbert space of all such functions.

Let L2
0(π) ⊂ L2(π) to be the Hilbert space that uses the same inner product

but only contains functions such that

Eπ[f ] =

∫
f(x)π(dx) = 0.

We also define the notation

〈f, g〉 =

∫
f(x)g(x)π(dx).

A special example is Varπ[f ] = 〈f, f〉.

From here, the Dirichlet form of a Markov chain associated with transition

operator T is given by [50]

E(f) =
1

2

∫ ∫
(f(x)− f(y))2 T (x, y)π(x)dxdy.

And the spectral gap can be written as [3]

γ = inf
f∈L2

0(π):Varπ [f ]=1
E(f).

The spectral gap is related to other common measurement of the convergence of

MCMC. For example, it has the following relationship with the mean squared error

eπ on a Markov chain {Xn}n∈N [129],

e2
π ≤

2

nγ
‖f‖2

2 .

With the expression of the spectral gap, it follows that

γ̄ = inf
f∈L2

0(π):V arπ [f ]=1

[
1

2

∫ ∫
(f(x)− f(y))2 T (x, y)π(x) dx dy

]
≥ exp

(
−4L2

λ

)
· inf
f∈L2

0(π):V arπ [f ]=1

[
1

2

∫ ∫
(f(x)− f(y))2G(x, y)π(x) dx dy

]
= exp

(
−4L2

λ

)
· γ.
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This proves the theorem.

A.2.3 Proof of Theorem 5

Proof. Similar to the previous analysis of Poisson-Gibbs, we will show the PGITS

is reversible by using the expression of the transition operator. Then we will bound

the spectral gap.

Let Ti,s(x, y) denote the probability of transitioning from state x to y given that

we have already chosen to sample variable i with minibatch coefficients s. Then,

the overall transition operator will be

T (x, y) = E [Ti,s(x, y)]

where the expectation is taken over i and s.

Let the polynomial interpolant for exp(Uv) be f̃(v) which is given in (3.3). Note

that this interpolant is a function of the index i and the minibatch coefficients s.

Then,

Ti,s(x, y) = ρ(y(i)) ·min(1, a)

=
f̃(y(i))∫
f̃(u)du

·min

(
1,

exp(Uy(i))f̃(x(i))

exp(Ux(i))f̃(y(i))

)

Therefore,

T (x, y)

=
1

n
E
f̃(y(i))∫
f̃(u)du

·min

(
1,

exp(Uy(i))f̃(x(i))

exp(Ux(i))f̃(y(i))

)

=
1

n
E

1∫
f̃(u)du

·min
(
f̃(y(i)), exp(Uy(i) − Ux(i))f̃(x(i))

)

121



=
1

n
E

1∫
f̃(u)du

·min

f̃(y(i)), exp

∑
φ∈A[i]

sφ log
1 + L

λMφ
φ(y)

1 + L
λMφ

φ(x)

 f̃(x(i))


=

1

n

∑
s

1∫
f̃(u)du

·min

f̃(y(i)), exp

∑
φ∈A[i]

sφ log
1 + L

λMφ
φ(y)

1 + L
λMφ

φ(x)

 f̃(x(i))


· exp

∑
φ∈A[i]

sφ log

(
λMφ

L
+ φ(x)

)
− log (sφ!)−

(
λMφ

L
+ φ(x)

)
=

1

n

∑
s

1∫
f̃(u)du

·min

(
f̃(y(i)) exp

∑
φ∈A[i]

sφ log

(
1 +

L

λMφ

φ(x)

) ,

exp

∑
φ∈A[i]

sφ log

(
1 +

L

λMφ

φ(y)

) f̃(x(i))

)

· exp

∑
φ∈A[i]

(
sφ log

(
λMφ

L

)
− log (sφ!)−

(
λMφ

L
+ φ(x)

))

=
1

n

∑
s

1∫
f̃(u)du

·min

(
f̃(y(i)) exp

∑
φ∈A[i]

sφ log

(
1 +

L

λMφ

φ(x)

) ,

exp

∑
φ∈A[i]

sφ log

(
1 +

L

λMφ

φ(y)

) f̃(x(i))

)

· exp

∑
φ∈A[i]

(
sφ log

(
λMφ

L

)
− log (sφ!)−

(
λMφ

L

)) exp(−Ux(i))

Multiplying π(x) on both sides,

π(x)T (x, y)

=
exp(U¬i(x))

nZ

∑
s

1∫
f̃(u)du

·min

(
f̃(y(i)) exp

∑
φ∈A[i]

sφ log

(
1 +

L

λMφ

φ(x)

) ,

f̃(x(i)) exp

∑
φ∈A[i]

sφ log

(
1 +

L

λMφ

φ(y)

))

· exp

∑
φ∈A[i]

(
sφ log

(
λMφ

L

)
− log (sφ!)−

(
λMφ

L

))
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This expression is symmetric in x and y, so it follows that

π(x)T (x, y) = π(y)T (y, x)

Thus the Markov chain is reversible, and its stationary distribution is π.

We now bound its spectral gap, using the technique of Dirichlet forms. First,

as before, we start by re-writing the chain in terms of an expectation of a new

random variable rφ where rφ ∼ Poisson
(
λMφ

L

)
and the rφ are all independent. We

also define φ̄(x) = Lφ(x)
λMφ

as before. This gives us

π(x)T (x, y)

=
exp(U¬i(x))

nZ
Er

[
1∫

f̃(u)du
·min

(
f̃(y(i)) exp

∑
φ∈A[i]

rφ log
(
1 + φ̄(x)

) ,

f̃(x(i)) exp

∑
φ∈A[i]

rφ log
(
1 + φ̄(y)

))]

=
exp(U¬i(x))

nZ
Er

[
1∫

f̃(u)du
·min

(
f̃(y(i)) exp

(
Ux(i)

)
, f̃(x(i)) exp

(
Uy(i)

))]

where now the f̃ are considered to be a function of rφ rather than sφ as before.

To proceed further we will need to use the fact that f̃ is a Chebyshev interpolant

to bound its error compared with U . Recall that, here,

Uv =
∑
φ∈A[i]

rφ log

(
1 +

L

λMφ

φ(zv)

)
=
∑
φ∈A[i]

rφ log
(
1 + φ̄(zv)

)
,

and f̃(v) ≈ exp(Uv) in the sense of being a degree-m Chebyshev polynomial

interpolant. Recall that we assumed that the each function φ, treated as a function

in any single variable, must be analytic on a (shifted) Bernstein ellipse on the

interval [a, b] with parameter ρ (i.e. a standard Bernstein ellipse on [−1, 1] with

parameter ρ shifted and scaled to have its foci at a and b), and that its magnitude
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must be bounded by

|φ(z)| ≤Mφ

for any z in this ellipse (keeping all the other parameters as usual within [a, b]. It

follows that the magnitude of the function Uv is bounded by

|exp(Uv)| =

∣∣∣∣∣∣exp

∑
φ∈A[i]

rφ log

(
1 +

L

λMφ

φ(zv)

)∣∣∣∣∣∣
=
∏
φ∈A[i]

∣∣∣∣1 +
L

λMφ

φ(zv)

∣∣∣∣rφ
≤
∏
φ∈A[i]

(
1 +

L

λ

)rφ
.

Therefore, from Theorem 3, we know that∣∣∣f̃(v)− exp(Uv)
∣∣∣ ≤ 4ρ−m

ρ− 1
·
∏
φ∈A[i]

(
1 +

L

λ

)rφ
=

4ρ−m

ρ− 1
·
(

1 +
L

λ

)∑
φ∈A[i] rφ

.

Since we also assumed that φ(z) is always non-negative, Uv must also be non-

negative, and so in particular exp(−Uv) ≤ 1, so∣∣∣∣∣ f̃(v)

exp(Uv)
− 1

∣∣∣∣∣ ≤ 4ρ−m

ρ− 1
·
(

1 +
L

λ

)∑
φ∈A[i] rφ

≤ 4ρ−m

ρ− 1
· exp

L
λ

∑
φ∈A[i]

rφ

 .

If we now define

C =
4ρ−m

ρ− 1
· exp

L
λ

∑
φ∈A[i]

rφ

 ,

then

(1− C) · exp(Uv) ≤ f̃(v) ≤ (1 + C) · exp(Uv).

In particular, this means that

min
(
f̃(y(i)) exp

(
Ux(i)

)
, f̃(x(i)) exp

(
Uy(i)

))
≥ (1− C) · exp

(
Ux(i) + Uy(i)

)
,

and

1∫
f̃(u) du

≥ 1

1 + C
· 1∫

exp(Uu) du
.
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Substituting this into our bound above gives

π(x)T (x, y) ≥ exp(U¬i(x))

nZ
Er

[
1− C
1 + C

·
exp

(
Ux(i) + Uy(i)

)∫
exp(Uu) du

]
.

Now, recall that we set this up by sampling rφ independently from a Poisson random

variable rφ ∼ Poisson
(
λMφ

L

)
. This distribution is equivalent to assigning

Λ =
∑
φ∈A[i]

λMφ

L
,

sampling the random variable B ∼ Poisson (Λ), and then sampling rφ ∼

Multinomial
(
B,

λMφ

ΛL

)
. If we re-think our distribution as coming from this process,

then by the Law of Total Expectation,

π(x)T (x, y) ≥ exp(U¬i(x))

nZ
EB

[
1− C
1 + C

· Er

[
exp

(
Ux(i) + Uy(i)

)∫
exp(Uu) du

∣∣∣∣∣B
]]

,

where we can pull out the terms in C because we can write C to depend only on B

as

C =
4ρ−m

ρ− 1
· exp

L
λ

∑
φ∈A[i]

rφ

 =
4ρ−m

ρ− 1
· exp

(
LB

λ

)
.
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Next, we can bound this inner expectation with

Er

[
exp

(
Ux(i) + Uy(i)

)∫
exp(Uu) du

∣∣∣∣∣B
]

= Er

[
1∫

exp(Uu − Ux(i) − Uy(i)) du

∣∣∣∣B]
≥ Er

[∫
exp(Uu − Ux(i) − Uy(i)) du

∣∣∣∣B]−1

= Er

[∫
exp

( ∑
φ∈A[i]

rφ

(
log
(
1 + φ̄(zu)

)
− log

(
1 + φ̄(x)

)
− log

(
1 + φ̄(y)

)))
du

∣∣∣∣∣B
]−1

= Er

∫ exp

∑
φ∈A[i]

rφtφ

 du

∣∣∣∣∣∣B
−1

=

∫ Er

exp

∑
φ∈A[i]

rφtφ

∣∣∣∣∣∣B
 du

−1

,

where we define

tφ = log
(
1 + φ̄(zu)

)
− log

(
1 + φ̄(x)

)
− log

(
1 + φ̄(y)

)
.

This inner expectation is now just the moment-generating function of the multino-

mial distribution. Applying the standard formula for that MGF gives us

Er

exp

∑
φ∈A[i]

rφtφ

∣∣∣∣∣∣B
 =

∑
φ∈A[i]

λMφ

ΛL
· exp(tφ)

B

.

Substituting this back into our original expression gives

π(x)T (x, y) ≥ exp(U¬i(x))

nZ
EB

1− C
1 + C

·

∫ ∑
φ∈A[i]

λMφ

ΛL
· exp(tφ)

B

du

−1 .
Next, let δ > 0 be a small constant, to be assigned later. Recall that for any

non-negative random variable X and any event A, by the Law of Total Probability,

E [X] = E [X|A] ·P(A) + E [X|¬A] ·P(¬A) ≥ E [X|A] ·P(A).

126



So, since the interior of this expectation is a non-negative number, it follows that

π(x)T (x, y)

≥ exp(U¬i(x))

nZ
EB

1− C
1 + C

·

∫ ∑
φ∈A[i]

λMφ

ΛL
· exp(tφ)

B

du

−1
∣∣∣∣∣∣∣C ≤ δ


·PB(C ≤ δ)

≥ exp(U¬i(x))

nZ
· 1− δ

1 + δ
· EB


∫ ∑

φ∈A[i]

λMφ

ΛL
· exp(tφ)

B

du

−1
∣∣∣∣∣∣∣C ≤ δ


·PB(C ≤ δ).

By Jensen’s inequality again, we get

π(x)T (x, y)

≥ exp(U¬i(x))

nZ
EB

1− C
1 + C

·

∫ ∑
φ∈A[i]

λMφ

ΛL
· exp(tφ)

B

du

−1
∣∣∣∣∣∣∣C ≤ δ


·PB(C ≤ δ)

≥ exp(U¬i(x))

nZ
· 1− δ

1 + δ
·

∫ EB

∑
φ∈A[i]

λMφ

ΛL
· exp(tφ)

B∣∣∣∣∣∣C ≤ δ

 du

−1

·PB(C ≤ δ).

Since this inner expectation is again non-negative, we can again apply our above

inequality, but in the opposite direction, giving

E [X|A] ≤ E [X]

P(A)
.

This produces

π(x)T (x, y) ≥ exp(U¬i(x))

nZ
· 1− δ

1 + δ
·

∫ EB

∑
φ∈A[i]

λMφ

ΛL
· exp(tφ)

B du

−1

·PB(C ≤ δ)2.
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Now, we are just left with the MGF of a Poisson-distributed random variable. This

we already know to be

EB

∑
φ∈A[i]

λMφ

ΛL
· exp(tφ)

B = EB

exp

B log

∑
φ∈A[i]

λMφ

ΛL
· exp(tφ)


= exp

Λ

∑
φ∈A[i]

λMφ

ΛL
· exp(tφ)

− 1


= exp

∑
φ∈A[i]

λMφ

L
· (exp(tφ)− 1)

 ,

where in the last line we can leverage the fact that

∑
φ∈A[i]

λMφ

ΛL
= 1

to justify pulling the −1 inside the sum. From the analysis of Poisson-Gibbs, we

had that

exp(tφ)− 1 ≤ φ̄(zu)− φ̄(x)− φ̄(y) +
4L2

λ2
.

So,

EB

∑
φ∈A[i]

λMφ

ΛL
· exp(tφ)

B
≤ exp

∑
φ∈A[i]

λMφ

L
·
(
φ̄(zu)− φ̄(x)− φ̄(y) +

4L2

λ2

)
= exp

∑
φ∈A[i]

(
φ(zu)− φ(x)− φ(y) +

4LMφ

λ

)
≤ exp

(
Ūu − Ūx(i) − Ūy(i) +

4L2

λ

)
,

where as in the analysis of Poisson-Gibbs, Ūv denotes the assignment of Uv in the

plain Gibbs sampling algorithm (Algorithm 1),

Ūv =
∑
φ∈A[i]

φ(zv).
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Substituting this expression in to our overall bound, we get

π(x)T (x, y) ≥ exp(U¬i(x))

nZ
· 1− δ

1 + δ
·
(∫

exp

(
Ūu − Ūx(i) − Ūy(i) +

4L2

λ

)
du

)−1

·PB(C ≤ δ)2

=
exp(U(x))

nZ
· 1− δ

1 + δ
·

exp(Ūy(i))∫
exp

(
Ūu
)
du

· exp

(
−4L2

λ

)
·PB(C ≤ δ)2.

Finally, if we let G denote the transition probability operator of plain Gibbs

sampling, we notice right away that

π(x)T (x, y) ≥ 1− δ
1 + δ

· exp

(
−4L2

λ

)
·PB(C ≤ δ)2 · π(x)G(x, y)

≥ (1− 2δ) · exp

(
−4L2

λ

)
·PB(C ≤ δ)2 · π(x)G(x, y).

To get a final bound, all we need to do is bound PB(C ≤ δ). This is straightforward,

since

PB(C ≤ δ) = PB

(
4ρ−m

ρ− 1
· exp

(
LB

λ

)
≤ δ

)
= PB

(
exp

(
LB

λ

)
≤ ρ− 1

4ρ−m
· δ
)
.

Notice that by the MGF formula for B,

EB

[
exp

(
LB

λ

)]
≤ exp

(
Λ

(
exp

(
L

λ

)
− 1

))
.

Since we chose a minibatch size parameter λ ≥ 2L, it follows that L/λ ≤ 1/2, and

so

exp

(
L

λ

)
− 1 ≤ 2L

λ
,

and so since also

Λ =
∑
φ∈A[i]

λMφ

L
≤ λ.
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it follows that

EB

[
exp

(
LB

λ

)]
≤ exp

(
λ · 2L

λ

)
= exp(2L).

Therefore, by Markov’s inequality,

PB(C ≥ δ) = PB

(
exp

(
LB

λ

)
≥ ρ− 1

4ρ−m
· δ
)

≤ exp(2L)
ρ−1

4ρ−m
· δ

≤ 4ρ−m

ρ− 1
· exp(2L)

δ
.

Thus,

PB(C ≤ δ) = 1−PB(C ≥ δ)

≥ 1− 4ρ−m

ρ− 1
· exp(2L)

δ
,

and in particular

PB(C ≤ δ)2 = (1−PB(C ≥ δ))2

≥ 1− 2PB(C ≥ δ)

≥ 1− 8ρ−m

ρ− 1
· exp(2L)

δ
.

Substituting this back into our overall bound gives us

π(x)T (x, y) ≥ 1− δ
1 + δ

· exp

(
−4L2

λ

)
·PB(C ≤ δ)2 · π(x)G(x, y)

≥ (1− 2δ) ·
(

1− 8ρ−m

ρ− 1
· exp(2L)

δ

)
· exp

(
−4L2

λ

)
· π(x)G(x, y)

≥
(

1− 2δ − 8ρ−m

ρ− 1
· exp(2L)

δ

)
· exp

(
−4L2

λ

)
· π(x)G(x, y).

Finally, choosing the value of δ as

δ =
2 exp(L)

ρm/2 ·
√
ρ− 1

,
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we get

π(x)T (x, y) ≥
(

1− 8 exp(L)ρ−m/2√
ρ− 1

)
· exp

(
−4L2

λ

)
· π(x)G(x, y).

Now applying the standard Dirichlet form argument, we get

γ̄ ≥
(

1− 8 exp(L)ρ−m/2√
ρ− 1

)
· exp

(
−4L2

λ

)
· γ,

which was the desired expression.

A.2.4 Proof of Theorem 4

Proof. The reversibility can be proved by the same procedure as in Section A.2.3.

By applying that same analysis, which did not depend on the manner in which the

approximation f̃ was constructed, we can arrive at the expression

π(x)T (x, y)

=
exp(U¬i(x))

nZ
Er

[
1∫

f̃(u)du
·min

(
f̃(y(i)) exp

(
Ux(i)

)
, f̃(x(i)) exp

(
Uy(i)

))]
.

By the assumption of φ(z), we have

|Uv| =

∣∣∣∣∣∣
∑
φ∈A[i]

rφ log
(
1 + φ̄(zv)

)∣∣∣∣∣∣
≤
∑
φ∈A[i]

rφ

∣∣∣∣log

(
1 +

L

λMφ

φ(x)

)∣∣∣∣
≤
∑
φ∈A[i]

rφ

∣∣∣∣ 2L

λMφ

φ(x)

∣∣∣∣
≤ 2L

λ

∑
φ∈A[i]

rφ.

where the second inequality holds because

|z| ≤ 1

2
⇒ |log(1 + z)| ≤ 2 |z| ,
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using the assumptions λ ≥ 2L and |φ(x)| ≤ Mφ. Now applying Lemma 1 in

Section A.4, assigning σ =
√
ρ gives us,∣∣∣Ũv − Uv∣∣∣ ≤ 8ρ−

m
2

√
ρ− 1

· L
λ

∑
φ∈A[i]

rφ,

for any v in the shifted-and-scaled Bernstein ellipse with parameter
√
ρ.

Next, since Ũv is a polynomial in v, exp(Ũv) must be analytic everywhere in C.

In particular it must be analytic on the Bernstein ellipse on the interval [a, b] with

parameter
√
ρ. On that interval, it is bounded by∣∣∣exp(Ũv)

∣∣∣ ≤ exp
(∣∣∣Ũv∣∣∣)

≤ exp
(
|Uv|+

∣∣∣Ũv − Uv∣∣∣)
≤ exp

2L

λ

∑
φ∈A[i]

rφ

 · exp

 8ρ−
m
2

√
ρ− 1

· L
λ

∑
φ∈A[i]

rφ


≤ exp

4ρ−
m
2 +
√
ρ− 1

√
ρ− 1

· 2L

λ

∑
φ∈A[i]

rφ

 .

Now applying Theorem 3 using the Bernstein ellipse with parameter
√
ρ, we have,

for any v on the interval [a, b],

∣∣∣f̃(v)− exp(Ũv)
∣∣∣ ≤ 4ρ−

k
2

√
ρ− 1

· exp

4ρ−
m
2 +
√
ρ− 1

√
ρ− 1

· 2L

λ

∑
φ∈A[i]

rφ


Therefore, it follows that∣∣∣∣∣ f̃(v)

exp(Uv)
− 1

∣∣∣∣∣ ≤
∣∣∣∣∣ f̃(v)− exp(Ũv) + exp(Ũv)

exp(Uv)
− 1

∣∣∣∣∣
≤

∣∣∣f̃(v)− exp(Ũv)
∣∣∣

exp(Uv)
+
∣∣∣exp(Ũv − Uv)− 1

∣∣∣
≤
∣∣∣f̃(v)− exp(Ũv)

∣∣∣+ exp
(∣∣∣Ũv − Uv∣∣∣)− 1,
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where the last inequality is justified by the fact that Uv is non-negative and for any

x, |exp(x)− 1| ≤ exp(|x|)− 1. Now substituting in our bounds from above gives us∣∣∣∣∣ f̃(v)

exp(Uv)
− 1

∣∣∣∣∣ ≤ exp

 8ρ−
m
2

√
ρ− 1

· L
λ

∑
φ∈A[i]

rφ


+

4ρ−
k
2

√
ρ− 1

· exp

4ρ−
m
2 +
√
ρ− 1

√
ρ− 1

· 2L

λ

∑
φ∈A[i]

rφ

− 1.

As before, we let B =
∑

φ∈A[i] rφ where B ∼ Poisson(Λ). Then∣∣∣∣∣ f̃(v)

exp(Uv)
− 1

∣∣∣∣∣ ≤ exp

(
8ρ−

m
2

√
ρ− 1

· LB
λ

)

+
4ρ−

k
2

√
ρ− 1

· exp

(
4ρ−

m
2 +
√
ρ− 1

√
ρ− 1

· 2LB

λ

)
− 1

We define

E = exp

(
8ρ−

m
2

√
ρ− 1

· LB
λ

)
+

4ρ−
k
2

√
ρ− 1

· exp

(
4ρ−

m
2 +
√
ρ− 1

√
ρ− 1

· 2LB

λ

)
− 1,

and by following the same steps as used in Section A.2.3, with E in place of the C

of that proof, we can get, for any constant δ > 0,

π(x)T (x, y) ≥ (1− 2δ) · exp

(
−4L2

λ

)
·PB(E ≤ δ)2 · π(x)G(x, y).

All that remains is to bound PB(E ≤ δ). Using the MGF formula for B twice, we

get that

EB(E) =
4ρ−

k
2

√
ρ− 1

· exp

(
Λ

(
exp

(
4ρ−

m
2 +
√
ρ− 1

√
ρ− 1

· 2L

λ

)
− 1

))

+ exp

(
Λ

(
exp

(
8ρ−

m
2

√
ρ− 1

· L
λ

)
− 1

))
− 1.

If we require that m is large enough that

4ρ−
m
2 ≤ √ρ− 1,
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then

EB(E) ≤ 4ρ−
k
2

√
ρ− 1

· exp

(
Λ

(
exp

(
4L

λ

)
− 1

))
+ exp

(
Λ

(
exp

(
8ρ−

m
2

√
ρ− 1

· L
λ

)
− 1

))
− 1.

By Taylor’s theorem, for x > 0,

exp(x)− 1 = exp(x)− exp(0) ≤ x · exp(x).

So, since Λ ≤ λ, we can bound our expectation with

EB(E) ≤ 4ρ−
k
2

√
ρ− 1

· exp

(
Λ · 4L

λ
· exp

(
4L

λ

))
+ exp

(
Λ · 8ρ−

m
2

√
ρ− 1

· L
λ
· exp

(
8ρ−

m
2

√
ρ− 1

· L
λ

))
− 1

≤ 4ρ−
k
2

√
ρ− 1

· exp

(
4L · exp

(
4L

λ

))
+ exp

(
8ρ−

m
2

√
ρ− 1

· L · exp

(
8ρ−

m
2

√
ρ− 1

· L
λ

))
− 1

≤ 4ρ−
k
2

√
ρ− 1

· exp

(
4L · exp

(
4L

λ

))
+ exp

(
8ρ−

m
2

√
ρ− 1

· L · exp

(
4L

λ

))
− 1.

Since λ log(2) ≥ 4L, we can bound exp(4L/λ) ≤ 2, and so

EB(E) ≤ 4ρ−
k
2

√
ρ− 1

· exp (8L) + exp

(
16Lρ−

m
2

√
ρ− 1

)
− 1.

We now define

F =
4 · exp (8L) · ρ− k2

√
ρ− 1

+ exp

(
16Lρ−

m
2

√
ρ− 1

)
− 1.

By Markov’s inequality,

PB(E ≥ δ) ≥ EB(E)

δ
≥ F/δ.
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It follows

PB(E ≤ δ)2 = (1−PB(E ≥ δ))2 ≥ 1− 2PB(E ≥ δ) ≥ 1− 2F/δ.

Substituting it back into the overall bound,

π(x)T (x, y) ≥ (1− 2δ) · exp

(
−4L2

λ

)
·PB(E ≤ δ)2 · π(x)G(x, y)

≥
(

1− 2δ − 2F

δ

)
· exp

(
−4L2

λ

)
· π(x)G(x, y)

Let

δ =
√
F ,

it becomes

π(x)T (x, y) ≥
(

1− 4
√
F
)
· exp

(
−4L2

λ

)
· π(x)G(x, y)

Again, using the Dirichlet form we bound the spectral gap,

γ̄ ≥
(

1− 4
√
F
)

exp

(
−4L2

λ

)
· γ

A.3 PoissonMH

We apply our Poisson-minibatching method to Metropolis-Hastings sampling. In

Poisson-minibatching MH (PoissonMH), we first generate a candidate x∗ from the

proposal distribution q(x∗|x). Then the MH ratio will be calculated as following

p =
exp

(∑
φ∈S sφ log

(
1 + L

λMφ
φ(x∗)

))
q(x∗|x)

exp
(∑

φ∈S sφ log
(

1 + L
λMφ

φ(x)
))

q(x|x∗)
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We accept x∗ with the probability min(1, p). After applying Poisson-

minibatching, the MH ratio no longer needs to use the whole dataset which will

reduce the computational cost significantly.

Theorem 2 is similar to the bounds of Poisson-Gibbs. As long as we set

λ = Θ(L2), the convergence is slowed down by at most a constant factor which is

unrelated to the size of the problem.

A.3.1 Proof of Theorem 2

Proof. We begin with the transition probability from x to x∗

T (x∗, x)

= E

{
q(x∗|x) min

(
1,
q(x|x∗)π(x∗, s)

q(x∗|x)π(x, s)

)}
= E

q(x∗|x) min

1,
q(x|x∗) exp

(∑
φ∈Φ

[
sφ log

(
λMφ

L + φ(x∗)
)
− log sφ!

])
q(x∗|x) exp

(∑
φ∈Φ

[
sφ log

(
λMφ

L + φ(x)
)
− log sφ!

])


= E

q(x∗|x) min

1,
q(x|x∗) exp

(∑
φ∈Φ

[
sφ log

(
λMφ

L + φ(x∗)
)])

q(x∗|x) exp
(∑

φ∈Φ

[
sφ log

(
λMφ

L + φ(x)
)])


=
∑
s

q(x∗|x) min

1,
q(x|x∗) exp

(∑
φ∈Φ

[
sφ log

(
λMφ

L + φ(x∗)
)])

q(x∗|x) exp
(∑

φ∈Φ

[
sφ log

(
λMφ

L + φ(x)
)])

∏
φ∈Φ

p(sφ|x)

=
∑
s

q(x∗|x) min

exp

∑
φ∈Φ

[
sφ log

(
λMφ

L
+ φ(x)

)
− φ(x)−

λMφ

L
− log sφ!

] ,

q(x|x∗) exp
(∑

φ∈Φ

[
sφ log

(
λMφ

L + φ(x∗)
)])

q(x∗|x) exp
(∑

φ∈Φ φ(x) +
λMφ

L + log sφ!
)


=
∑
s

q(x∗|x) min

exp

∑
φ∈Φ

[
sφ log

(
λMφ

L
+ φ(x)

)
− φ(x)−

λMφ

L
− log sφ!

] ,

q(x|x∗)
q(x∗|x)

exp

∑
φ∈Φ

[
sφ log

(
λMφ

L
+ φ(x∗)

)
− φ(x)−

λMφ

L
− log sφ!

]
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Multiplying π(x) to both sides,

π(x)T (x∗, x)

=
1

Z
exp

(∑
φ∈Φ

φ(x)

)
T (x∗, x)

=
1

Z

∑
s

min

(
q(x∗|x)

(
exp

(∑
φ∈Φ

[
sφ log

(
λMφ

L
+ φ(x)

)
− λMφ

L
− log sφ!

])
,

q(x|x∗) exp

(∑
φ∈Φ

[
sφ log

(
λMφ

L
+ φ(x∗)

)
− λMφ

L
− log sφ!

])))

This implies the Markov chain is reversible.

We can continue to reduce this to

π(x)T (x∗, x)

=
1

Z

∑
s

min

(
q(x∗|x) exp

(∑
φ∈Φ

sφ

[
log

(
λMφ

L
+ φ(x)

)
− log

λMφ

L

])
,

q(x|x∗) exp

(∑
φ∈Φ

sφ

[
log

(
λMφ

L
+ φ(x∗)

)
− log

λMφ

L

]))

·
∏
φ∈Φ

1

sφ!
exp

(
−λMφ

L

)(
λMφ

L

)sφ
=

1

Z

∑
s

min

(
q(x∗|x) exp

(∑
φ∈Φ

sφ log

(
1 +

L

λMφ

φ(x)

))
,

q(x|x∗) exp

(∑
φ∈Φ

sφ log

(
1 +

L

λMφ

φ(x∗)

)))

·
∏
φ∈Φ

1

sφ!
exp

(
−λMφ

L

)(
λMφ

L

)sφ

Similar to the previous proof, sφ here are non-negative integers that a Poisson

variable can take, not variables. So if we let rφ ∼ Poisson
(
λMφ

L

)
and rφ to be all
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independent, we can write this as

π(x)T (x∗, x) =
1

Z
E min

(
q(x∗|x) exp

(∑
φ∈Φ

rφ log

(
1 +

L

λMφ

φ(x)

))
,

q(x|x∗) exp

(∑
φ∈Φ

rφ log

(
1 +

L

λMφ

φ(x∗)

)))

Assume G(x∗, x) is the transition operator of a plain MCMC. Consider the

ratio,

π(x)T (x∗, x)

π(x)G(x∗, x)

=
1

Z
E min

(
q(x∗|x) exp

(∑
φ∈Φ

rφ log

(
1 +

L

λMφ

φ(x)

))
,

q(x|x∗) exp

(∑
φ∈Φ

rφ log

(
1 +

L

λMφ

φ(x∗)

)))

·

[
1

/(
1

Z
min

(
q(x∗|x) exp

(∑
φ∈Φ

φ(x)

)
, q(x|x∗) exp

(∑
φ∈Φ

φ(x∗)

)))]

We know that min(A,B)
min(C,D)

= min
(

A
min(C,D)

, B
min(C,D)

)
≥ min

(
A
C
, B
D

)
. The last

inequality is due to the fact that 1
min(C,D)

≥ 1
C

and 1
min(C,D)

≥ 1
D

.
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With this inequality, we can continue simplifying the ratio,

π(x)T (x∗, x)

π(x)G(x∗, x)
≥ E

[
min

(
exp

(∑
φ∈Φ rφ log

(
1 + L

λMφ
φ(x)

))
exp

(∑
φ∈Φ φ(x)

) ,

exp
(∑

φ∈Φ rφ log
(

1 + L
λMφ

φ(x∗)
))

exp
(∑

φ∈Φ φ(x∗)
) )]

= E

[
min

(
exp

(∑
φ∈Φ

(
rφ log

(
1 +

L

λMφ

φ(x)

)
− φ(x)

))
,

exp

(∑
φ∈Φ

(
rφ log

(
1 +

L

λMφ

φ(x∗)

)
− φ(x∗)

)))]

= E

[
max

(
exp

(∑
φ∈Φ

(
φ(x)− rφ log

(
1 +

L

λMφ

φ(x)

)))
,

exp

(∑
φ∈Φ

(
φ(x∗)− rφ log

(
1 +

L

λMφ

φ(x∗)

))))−1]

Because f(x) = 1
x

is a convex function, by Jensen’s inequality it follows

π(x)T (x∗, x)

π(x)G(x∗, x)
≥ E

[
max

(
exp

(∑
φ∈Φ

(
φ(x)− rφ log

(
1 +

L

λMφ

φ(x)

)))
,

exp

(∑
φ∈Φ

(
φ(x∗)− rφ log

(
1 +

L

λMφ

φ(x∗)

))))]−1

We have that the maximum of the product is less than the product of maximum,

therefore

π(x)T (x∗, x)

π(x)G(x∗, x)
≥
∏
φ∈Φ

E

[
max

(
exp

(
φ(x)− rφ log

(
1 +

L

λMφ

φ(x)

))
,

exp

(
φ(x∗)− rφ log

(
1 +

L

λMφ

φ(x∗)

)))]−1
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Since max(A,B) ≤ A+B when A and B are positive, it follows

π(x)T (x∗, x)

π(x)G(x∗, x)
≥
∏
φ∈Φ

E

[
exp

(
φ(x)− rφ log

(
1 +

L

λMφ

φ(x)

))
+

exp

(
φ(x∗)− rφ log

(
1 +

L

λMφ

φ(x∗)

))]−1

E

[
exp

(
− rφ log

(
1 + L

λMφ
φ(x)

))]
is the moment generating function of the

Poisson random variable rφ evaluated at

t = − log

(
1 +

L

λMφ

φ(x)

)
We know that

E exp(rφt) = exp

(
λMφ

L
(exp(t)− 1)

)

Therefore,

E

[
exp

(
− rφ log

(
1 +

L

λMφ

φ(x)

))]
= exp

(
− φ(x)

1 + L
λMφ

φ(x)

)

Substituting this into the original expression produces

π(x)T (x∗, x)

π(x)G(x∗, x)
≥

[
2
∏
φ∈Φ

exp

(
− φ(x)

1 + L
λMφ

φ(x)
+ φ(x)

)]−1

≥

[
2
∏
φ∈Φ

exp(Mφ) exp

(
− 1

1 + L
λ

+ 1

)]−1

=

[
2
∏
φ∈Φ

exp(Mφ) exp

(
L

λ+ L

)]−1

=

[
2 exp

(
L2

λ+ L

)]−1

=
1

2
exp

(
− L2

λ+ L

)
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From Dirichlet form argument, we get

γ̄ ≥ 1

2
exp

(
− L2

λ+ L

)
· γ.

A.3.2 Additional Experiment: PoissonMH on Truncated

Gaussian Mixture

We test PoissonMH on the truncated Gaussian mixture as in Section 3.1.4. The

proposal is q(x∗|x) = N (x, 0.452I). We set λ = 500. The estimated density is

in Figure A.1 which is very close to the true density. This demonstrates the

effectiveness of PoissonMH and the general applicability of Poisson-minibatching

method.

2 1 0 1 2 3
3

2

1

0

1

2

3

Figure A.1: The estimated density of PoissonMH on a truncated Gaussian mixture
model.

A.4 Extended Results about Chebyshev Interpolants

In [137], Theorem 8.2 proves bounds on the error of a Chebyshev interpolant on

the interval [−1, 1]. However, in order to apply this theorem to a second Chebyshev
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interpolant that is a function of the first, we would need to bound the magnitude

of that function on a Bernstein ellipse. To do this, we need the following extended

version of Theorem 8.2, which bounds the error not only on the interval [−1, 1] but

more generally on a Bernstein ellipse.

Lemma 1. Assume U : C → C is analytic in the open Bernstein ellipse

B([−1, 1], ρ), where the Bernstein ellipse is a region in the complex plane bounded

by an ellipse with foci at ±1 and semimajor-plus-semiminor axis length ρ > 1. If for

all x ∈ B([−1, 1], ρ), |U(x)| ≤ V for some constant V > 0, then for any constant

1 < σ < ρ, the error of the Chebyshev interpolant on the smaller Bernstein ellipse

B([−1, 1], σ) is bounded by

|Ũ(x)− U(x)| ≤ 4V

ρ/σ − 1
·
(ρ
σ

)−m
.

Proof. This proof is essentially identical to that of Theorem 8.2 in [137], except

that the error is bounded in a Bernstein ellipse rather than over only the real

interval [−1, 1].

First, note that one parameterization of the boundary of the Bernstein ellipse

with parameter ρ is {
z + z−1

2

∣∣∣∣z ∈ C, |z| = ρ

}
,

and the open ellipse itself can be written as

B([−1, 1], ρ) =

{
z + z−1

2

∣∣∣∣z ∈ C, ρ−1 ≤ |z| ≤ ρ

}
.

Now, Theorem 8.1 from [137] states that the Chebyshev coefficients of a function

that satisfies the conditions of this theorem (boundedness and analyticity in a

Bernstein ellipse) are bounded by |a0| ≤ V and

|ak| ≤ 2V ρ−k, k ≥ 1.
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That is, for ak bounded in this way,

U(x) =
∞∑
k=0

akTk(x)

at least for all x in the ρ-Bernstein ellipse on which f is analytic. (While [137] only

states explicitly that this holds for x ∈ [−1, 1], the fact that it also holds on the

rest of the Bernstein ellipse follows directly from the fact that both sides of the

equation are analytic over that region, using the identity theory for holomorphic

functions.) Formula (4.9) from [137] states that

U(x)− Ũm(x) =
∞∑

k=m+1

ak
(
Tk(x)− Tl(k,m)(x)

)
where Ũm denotes the degree-m Chebyshev interpolant, and

l(k,m) = |((k +m− 1) mod 2m)− (m− 1)| .

Notice in particular that it always holds that l(k,m) ≤ m+ 1. Now, for x inside

the Bernstein ellipse B([−1, 1], σ), there will always exist a z ∈ C such that

σ−1 ≤ |z| ≤ σ and

x =
z + z−1

2
.

For such an x, and for any k,

|Tk(x)| =
∣∣∣∣Tk (z + z−1

2

)∣∣∣∣ =

∣∣∣∣zk + z−k

2

∣∣∣∣ =
|z|k + |z|−k

2
≤ σk,

where the second equality is a well-known property of the Chebyshev polynomials.
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It follows that, for any x in this Bernstein ellipse,∣∣∣U(x)− Ũm(x)
∣∣∣ =

∣∣∣∣∣
∞∑

k=m+1

ak
(
Tk(x)− Tl(k,m)(x)

)∣∣∣∣∣
≤

∞∑
k=m+1

|ak| ·
∣∣Tk(x)− Tl(k,m)(x)

∣∣
≤

∞∑
k=m+1

2V ρ−k ·
(
σk + σl(k,m)

)
≤ 4V

∞∑
k=m+1

ρ−kσk

≤ 4V

(
σ

ρ

)m+1 ∞∑
k=0

(
σ

ρ

)k
≤ 4V

(
σ

ρ

)m+1
1

1− σ
ρ

≤ 4V

(
σ

ρ

)m
1

ρ/σ − 1
.

This is the desired result.
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APPENDIX B

SECTION 3.2 METROPOLIS-HASTINGS WITH

POISSON-MINIBATCHING

B.1 Proofs and Derivations

B.1.1 Proof of Theorem 6

In this section, we prove Theorem 6, which asserts that any inexact stateless MH

algorithm can produce arbitrarily large bias between its target distribution (the

distribution we are trying to sample from) and its stationary distribution (the

distribution that the chain actually produces samples from asymptotically).

Proof. Let A denote the SubsMH in Algorithm 5 of the minibatch MH method in

question. SinceA is inexact, there must exist a state space Θ, proposal distribution q,

and target distribution µ, satisfying Assumption 1 with parameters c1, . . . , cN , C,M ,

where

µ(θ) ∝ exp

(
−

N∑
i=1

Vi(θ)

)
for some N and energy functions V1, . . . , VN , such that A run on µ with proposal

distribution q does not have stationary distribution µ.

Next, let aµ(θ, θ′) denote the acceptance probability of algorithm A on the

above task for a proposed transition from θ to θ′. Assume by way of contradiction

that on this problem, it is always true that

aµ(θ, θ′)

aµ(θ′, θ)
=
µ(θ′)q(θ|θ′)
µ(θ)q(θ′|θ)

.
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If this were true, then the overall transition probability of this chain, for θ 6= θ′,

would be

Tµ(θ, θ′) = q(θ′|θ) · aµ(θ, θ′)

and it would hold that

µ(θ)Tµ(θ, θ′) = µ(θ′)Tµ(θ′, θ).

That is, the chain would be reversible, also known as satisfying detailed balance.

But it is a standard result that for any reversible chain, µ must be a stationary

distribution of that chain. We have now derived a contradiction, which establishes

that our assumption is false. That is, there exists a θ, θ′ ∈ Θ such that

aµ(θ, θ′)

aµ(θ′, θ)
6= µ(θ′) · q(θ|θ′)
µ(θ) · q(θ′|θ)

.

Explicitly, this means that if we define the function ∆V such that

∆V (i) = Vi(θ)− Vi(θ′),

then for this subsampling problem,

E [A(∆V,N, q(θ|θ′)/q(θ′|θ), c1, . . . , cN , C,M(θ, θ′))]

E [A(−∆V,N, q(θ′|θ)/q(θ|θ′), c1, . . . , cN , C,M(θ, θ′))]
6= µ(θ′) · q(θ|θ′)
µ(θ) · q(θ′|θ)

. (B.1)

Without loss of generality, assume that

q(θ|θ′)/q(θ′|θ) ≤ 1.

(This is without loss of generality since we can ensure it is the case by swapping θ

and θ′.) We fixed θ and θ′ to be the pair satisfying Equation B.1 throughout this

section.

Constructing an example. We use this to prove the theorem by a constructive

example. Let x1, . . . , xN be defined by

xi = ∆V (i) = Vi(θ)− Vi(θ′).
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Define X as the sum

X =
N∑
i=1

xi.

For some parameter K ∈ N (to be defined later), consider the state space Ω defined

as

Ω = {(k, z) | k ∈ {0, . . . , K − 1}, 0 ≤ z ≤ exp(kX)},

using the natural measure for a finite disjoint union of measure spaces. Define a

target distribution over Ω given by the density

π(k, z) ∝ exp

(
−

N∑
i=1

k · xi

)
,

or equivalently

π(k, z) ∝ exp

(
−

N∑
i=1

Ui(k, z)

)
where Ui(k, z) = kxi.

Define a proposal distribution q̂, such that, starting from (k, z):

• With probability 1/4, we sample z′ uniformly from [0, exp(kX)] and propose

a transition to (k, z′).

• With probability 1/4, we propose a transition to (k − 1, z), if it is in Ω.

• With probability 1
4
· q(θ|θ

′)
q(θ′|θ) , we propose a transition to (k + 1, z), if it is in Ω.

• With the remaining probability, we just propose to stay at (k, z).

This is effectively acting as a random walk over k, and our goal will be to show

that while the true target distribution π has a marginal in k that is the uniform

distribution, the minibatch MH method causes the chain’s transition to be biased

to step more in one direction than another, resulting in a highly biased stationary

distribution (where we can make the bias arbitrarily large by setting K).
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We use the same ci and C as before, and define a new function M̂ such that

M̂((k, z), (k + 1, z)) = M̂((k, z), (k − 1, z)) = M(θ, θ′)

and M̂(· · · ) = 0 for other proposed transitions (we can set M̂ however we want for

pairs of states that are never proposed in a transition, since this will not affect the

algorithm). Clearly, this setup satisfies Assumption 1, since the original distribution

did.

Now, consider what our minibatch MH method will do when run on this task.

There are three cases to consider.

Proposed changes in z. When a proposed change in z is made, the resulting

∆U will be uniformly 0, and the probability of the reverse transition will be equal

(1/4 in both directions), so the algorithm will be passed the arguments

A(0, N, 1, c1, . . . , cN , C, 0).

Since this does not depend at all on z or k, this means that the acceptance

probability of these transitions will be the same regardless of the state. Call this

probability α0.

A proposal to decrease k. When a proposal is made to decrease k, the proba-

bility of the forward and reverse transitions will be

q̂((k − 1, z)|(k, z)) =
1

4
and q̂((k, z)|(k − 1, z)) =

1

4
· q(θ|θ

′)

q(θ′|θ)
.

It follows that

q̂((k, z)|(k − 1, z))

q̂((k − 1, z)|(k, z))
=
q(θ|θ′)
q(θ′|θ)

.
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The energy function difference for this proposal will be

∆U(i) = Ui((k, z))− Ui((k − 1, z)) = kxi − (k − 1)xi = xi,

so in particular ∆U = ∆V . And, of course for this transition M̂ will take on the

value M(θ, θ′). So, the minibatch MH algorithm will be passed the arguments

A(∆V,N, q(θ|θ′)/q(θ′|θ), c1, . . . , cN , C,M(θ, θ′)),

and so it will accept with probability

E [A(∆V,N, q(θ|θ′)/q(θ′|θ), c1, . . . , cN , C,M(θ, θ′))] .

Call this probability α−.

A proposal to increase k. When a proposal is made to increase k, the proba-

bility of the forward and reverse transitions will be

q̂((k + 1, z)|(k, z)) =
1

4
· q(θ|θ

′)

q(θ′|θ)
. and q̂((k, z)|(k + 1, z)) =

1

4
.

It follows that

q̂((k, z)|(k + 1, z))

q̂((k + 1, z)|(k, z))
=
q(θ′|θ)
q(θ|θ′)

.

The energy function difference for this proposal will be

∆U(i) = Ui((k, z))− Ui((k + 1, z)) = kxi − (k + 1)xi = −xi,

so in particular ∆U = −∆V . And, as before for this transition M̂ will take on the

value M(θ, θ′). So, the minibatch MH algorithm will be passed the arguments

A(−∆V,N, q(θ′|θ)/q(θ|θ′), c1, . . . , cN , C,M(θ, θ′)),

and so it will accept with probability

E [A(−∆V,N, q(θ′|θ)/q(θ|θ′), c1, . . . , cN , C,M(θ, θ′))] .

Define the probability α+ as

α+ = E [A(−∆V,N, q(θ′|θ)/q(θ|θ′), c1, . . . , cN , C,M(θ, θ′))] · q(θ|θ
′)

q(θ′|θ)
.
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The resulting Markov chain. From the above analysis, we can conclude that

the Markov chain that results from subsampling algorithm A applied to this method

is as follows. Starting from (k, z), if we let T̂ denote the transition operator of this

Markov chain,

• With probability 1
4
· α0, we sample z′ uniformly from [0, exp(kX)] and transi-

tion to (k, z′).

• With probability 1
4
· α−, we transition to (k − 1, z), if it is in Ω.

• With probability 1
4
· α+, we transition to (k + 1, z), if it is in Ω.

• With the remaining probability, we just stay at (k, z).

Consider the distribution

ν(k, z) ∝
(
α+

α−

)k
.

It is easy to see that this Markov chain satisfies detailed balance with ν as its

stationary distribution. In particular,

ν(k, z) · T ((k − 1, z)|(k, z)) =

(
α+

α−

)k
· 1

4
· α−

=

(
α+

α−

)k−1

· 1

4
· α+

= ν(k − 1, z) · T ((k, z)|(k − 1, z)).

So ν will be a stationary distribution of the minibatch MH chain T̂ .

Observe that the marginal distribution of k in π is

π(k) =

∫ exp(kX)

0

π(k, z) dz ∝ exp

(
−

N∑
i=1

k · xi

)
· exp(kX) = 1,

so the marginal distribution of k in the target distribution is actually the uniform

distribution. On the other hand, using the same derivation, the marginal distribution
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of k in ν is

ν(k) ∝
(
α+

α−

)k
· exp(kX) =

(
α+

α−
· exp(X)

)k
.

We know immediately by substituting our definitions of α+ and α− into (B.1)

that

α−
α+

6= µ(θ′)

µ(θ)
= exp

(
N∑
i=1

(Vi(θ)− Vi(θ′)

)
= exp

(
N∑
i=1

xi

)
= exp(X).

As a consequence, we know that

α+

α−
· exp(X) 6= 1.

Call this constant

A =
α+

α−
· exp(X),

and observe that A 6= 1 and that A is independent of our choice of K (which still

remains unset). This gives

ν(k) ∝ Ak.

Explicitly, this distribution will be

ν(k) =
1∑K−1

k=0 A
k
· Ak =

1− A
1− AK

· Ak.

Since the total variation distance between two probability measures is lower bounded

by the TV-distance between their marginal distributions in any one variable, and

similarly the KL divergence is also lower bounded by the KL divergence between

its marginal distributions in any one variable (both these facts follow directly from

the monotonicity property of the f -divergence, of which the KL-divergence and

TV-distance are both instances), to prove this theorem it suffices to show both

TV-distance and KL-divergence bounds on the marginal distributions in k. We do

this now.
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Bounding the total variation distance. Now, we compute the total variation

distance between π and ν. For this bit of the proof, we will just consider the

marginal distribution in k, as this provides a lower bound on the TV distance

between the joint distribution. For simplicity, for the rest of the proof, we let π̃

denote this marginal distribution of k in ν, and also let π denote the marginal

distribution of k in π. By the definition of total variation distance,

TV(π, π̃) =
1

2

K−1∑
k=0

|π̃(k)− π(k)|

=
1

2

K−1∑
k=0

∣∣∣∣ 1− A
1− AK

· Ak − 1

K

∣∣∣∣ .
If A < 1,

TV(π, π̃) =

K0∑
k=0

(
1− A

1− AK
· Ak − 1

K

)
=

1− AK0

1− AK
− K0

K
(B.2)

where K0 is the largest k such that

1− A
1− AK

· Ak > 1

K
.

By solving the above equation, we have

K0 =

⌊
log(1− AK)− log(1− A)− log(K)

log(A)

⌋
.

We can lower bound K0 by

K0 ≥
log(1− AK)− log(1− A)− log(K)

log(A)
− 1

≥ − log(1− A)− log(K)

log(A)
− 1.

It follows that the first term in (B.2) becomes

1− AK0

1− AK
≥

1− 1
KA(1−A)

1− AK
≥ 1− 1

KA(1− A)
.
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We can also upper bound K0 and then the second term can be bounded as the

following

K0

K
≤ log(1− AK)− log(K)

K log(A)
.

When K ≥ log(1−exp(− 1
2))

log(A)
, we have log(1 − AK) ≥ −1

2
. Since log(K) ≤ K

1
2 and

K−1 ≤ K−
1
2 , we have

K0

K
≤
−1

2
K−1 −K− 1

2

log(A)
≤ −

(
3

2 log(A)

)
K−

1
2 .

Therefore, the TV distance is bounded by

TV(π, π̃) ≥ 1− 1

KA(1− A)
+

(
3

2 log(A)

)
K−

1
2

≥ 1 +

(
3

2 log(A)
− 1

A(1− A)

)
K−

1
2 .

To make TV(π, π̃) ≥ δ, we just need to set

K ≥

(
3

2 log(A)
− 1

A(1−A)

)2

(1− δ)2
.

Similarly, if A > 1,

TV(π, π̃) =
K−1∑
k=K0

(
1− A

1− AK
· Ak − 1

K

)
=
AK − AK0

AK − 1
− K −K0

K

=
K0

K
− AK0 − 1

AK − 1

where

K0 =

⌈
log(AK − 1)− log(A− 1)− log(K)

log(A)

⌉
which is the smallest k such that

1− A
1− AK

· Ak > 1

K
.
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We can get an upper bound of K0 by

K0 ≤
log(AK − 1)− log(A− 1)− log(K)

log(A)
+ 1

= logA

(
AK − 1

K(A− 1)

)
+ 1.

Therefore,

AK0 − 1

AK − 1
≤
A ·
(

AK−1
K(A−1)

)
− 1

AK − 1

=
A

K(A− 1)
− 1

AK − 1
.

We can lower bound K0 by

K0 ≥ logA
(
AK − 1

)
− logA(A− 1)− logA(K).

When K ≥ 1− logA(A− 1), AK − 1 ≥ AK−1. Then we have

K0 ≥ logA
(
AK−1

)
− logA(A− 1)− logA(K)

= K − 1− logA(A− 1)− logA(K).

It follows that

K0

K
≥ 1− 1

K
− logA(A− 1)

K
− logA(K)

K
.

Since log(K) ≤ K
1
2 and K−1 ≤ K−

1
2 , the TV distance can be bounded by

TV(π, π̃) ≥ 1− 1

K
− logA(A− 1)

K
− logA(K)

K
− A

K(A− 1)
+

1

AK − 1

≥ 1−
(

1 + logA(A− 1) +
1

log(A)
+

A

A− 1

)
K−

1
2 .

To make TV(π, π̃) ≥ δ, we just need

K ≥

(
1 + logA(A− 1) + 1

log(A)
+ A

A−1

1− δ

)2

.

Since we could set K arbitrarily, it is clear that we can do this.
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Bounding the KL divergence. We can compute KL divergence between π and

π̃ as follows

KL(π, π̃) =
K−1∑
k=0

1

K
· log

(
1

K
· 1− AK

(1− A)Ak

)

=
1

K
·
K−1∑
k=0

[
log

(
1

K
· 1− AK

(1− A)

)
− k log(A)

]

= log

(
1− AK

K(1− A)

)
− log (A)

K

K−1∑
k=0

k

= log

(
1− AK

K(1− A)

)
− (K − 1) log (A)

2

If A < 1, we have

KL(π, π̃) = log
(
1− AK

)
− log((1− A)K)− K log (A)

2
+

log (A)

2

≥ log
(
1− AK

)
−
(

1− A+ log (A)

2

)
K +

log (A)

2
.

The last equation is because log(x) ≤ x
2
.

To further simplify the above equation, we first note that 1− A+ log (A) < 0

when A 6= 1. And then when K ≥ logA

(
1− A 1

2

)
, we have 1−AK ≥ A

1
2 . It follows

that we can simplify it to be

KL(π, π̃) ≥ log (A)−
(

1− A+ log (A)

2

)
K.

To make KL(π, π̃) ≥ ρ, it is clear that we just need to set

K ≥ 2(ρ− log(A))

A− 1− log(A)
.

Consider when A > 1,

KL(π, π̃) = log

(
AK − 1

K(A− 1)

)
− (K − 1) log (A)

2
.
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If K ≥ log(2)
log(A)

, we have that AK − 1 ≥ AK

2
. It follows that

KL(π, π̃) ≥ K log(A)− log(K)− log(2A− 2)− K log (A)

2

=
K log (A)

2
− log(K)− log(2A− 2).

To make KL(π, π̃) ≥ ρ, we need

K log (A)

2
− log(K) ≥ ρ+ log(2A− 2).

Let K = exp(y). By Taylor series, we know exp(y) ≥ y2

2
. Then it follows that

y2 log (A)

4
− y ≥ ρ+ log(2A− 2).

Solve the above inequality, we can get

y ≥
1 + 2 · log(A)

4
·
(
ρ+ log(2A− 2)

)
2 · log(A)

4

=

2 + log(A)

(
ρ+ log(2A− 2)

)
log(A)

.

It follows that it suffices to set

K ≥ exp

2 + log(A)

(
ρ+ log(2A− 2)

)
log(A)

 .

Concluding the proof. The theorem now follows from choosing a K large

enough that both the TV distance inequality we derived and the KL divergence

inequality we derived are satisfied.

Connection between Theorem 6 and TV Bound of Inexact MH Methods

Some inexact methods such as MHSubLhd [11] have bounded TV distance between

the target distribution and the approximate distribution (see Proposition 3.2 in

[11]). We would like to emphasize that Theorem 6 is compatible with these results.
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Specifically, Proposition 3.2 assumes PMH has a bounded mixing time. It is well

known that this produces a TV bound for any kernel by coupling [83]. Our theorem

does not have this assumption; it suggests that for MHSubLhd, with a given user-

specified error, there exists a target distribution and proposal satisfying Theorem 6,

on which PMH either does not have bounded mixing time or the mixing time is

large enough such that the TV bound is greater than δ.

B.1.2 Proof of Statement 2

Proof. We prove this by construction. Consider a dataset {xi}Ni=1. The data

instances can take two values {−M
N
, M
N
} where M is a positive constant. Assume

that half of the data instances take value M
N

and the remaining take −M
N

. Let

the target distribution be π(θ) = 1
Z

exp
(
θ ·
∑N

i=1 xi

)
and the domain for θ be

{0, 1, . . . , K − 1}. We define the proposal distribution to be the following

p(θ, θ) =
1

2
, for all θ; p(θ, θ−1) =

1

4
, p(θ, θ+1) =

1

4
for θ ∈ {1, . . . , K−2};

and p(0, 1) = p(K − 1, K − 2) = 1
2
.

Recall that FMH factorizes the target distribution π(θ) and the proposal distri-

bution p(θ) as follows

π(θ) ∝
m∏
i=1

πi(θ), p(θ) ∝
m∏
i=1

pi(θ)

where m ≥ 1 and πi and pi are some non-negative functions. Then the acceptance

rate is given by

aFMH(θ, θ′) =
m∏
i=1

min

(
1,
π(θ′)pi(θ

′, θ)

π(θ)pi(θ, θ′)

)
.

A common choice is to set m = N . On this example, we can write the acceptance
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rate of transitioning from θ to θ′ = θ + 1 in FMH as follows

aFMH(θ, θ′) =
N∏
i=1

min (1, exp(xi)) =

(
exp

(
− M

N

))N
2

= exp

(
− M

2

)
.

It is easy to show that the acceptance rate of transitioning from θ to θ′ = θ − 1 in

FMH is the same.

When M > −2 log(p), it is clear that the acceptance rate of FMH is less than

p. By contrast, the acceptance rate of standard MH is

aMH(θ, θ′) = min

(
1, exp

(
±

N∑
i=1

xi

))
= 1.

In order to preserve geometric ergodicity, [32] introduces truncated FMH

(TFMH) which forces FMH degrade to standard MH when the energy exceeds a

threshold R. If we set hyperparameter R > M/2, then in each step, the value of

aTFMH will be the same as aFMH. Therefore, if setting M > −2 log(p), we have

aTFMH

aMH

≤ p

1
= p.

If we set R ≤M/2, TFMH falls back to standard, full-batch MH — using the

whole dataset at each step. This proves the statement.

B.1.3 Proof of Theorem 7

In this section, we prove Theorem 7, which asserts that TunaMH is reversible and

has stationary distribution π, and gives bounds on its spectral gap relative to the

spectral gap of the original Metropolis-Hastings algorithm.

Proof. For convenience, we prove Theorem 7 using Algorithm 14 statement which

is statistically equivalent to Algorithm 6. The transition operator can be written
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as the following

T (θ, θ′)

= E

{
q(θ′|θ) min

(
1,
q(θ|θ′) exp

(∑
i

[
si log

(
λci
C

+ φi(θ
′)
)
− log si!

])
q(θ′|θ) exp

(∑
i

[
si log

(
λci
C

+ φi(θ)
)
− log si!

]) )}

= E

{
q(θ′|θ) min

(
1,
q(θ|θ′) exp

(∑
i

[
si log

(
λci
C

+ φi(θ
′)
)])

q(θ′|θ) exp
(∑

i

[
si log

(
λci
C

+ φi(θ)
)]) )}

=
∑
s

{
q(θ′|θ) min

(
1,
q(θ|θ′) exp

(∑
i

[
si log

(
λci
C

+ φi(θ
′)
)])

q(θ′|θ) exp
(∑

i

[
si log

(
λci
C

+ φi(θ)
)]) )}∏

i

p(si|θ, θ′)

=
∑
s

{
q(θ′|θ) min

(
exp

(∑
i

[
si log

(
λci
C

+ φi(θ)

)
− φi(θ)−

λci
C
− log si!

])
,

q(θ|θ′) exp
(∑

i

[
si log

(
λci
C

+ φi(θ
′)
)])

q(θ′|θ) exp
(∑

i φi(θ) + λci
C

+ log si!
) )}

=
∑
s

{
q(θ′|θ) min

(
exp

(∑
i

[
si log

(
λci
C

+ φi(θ)

)
− φi(θ)−

λci
C
− log si!

])
,

q(θ|θ′)
q(θ′|θ)

exp

(∑
i

[
si log

(
λci
C

+ φi(θ
′)

)
− φi(θ)−

λci
C
− log si!

]))}

Multiplying π(θ) to both sides produces

π(θ)T (θ, θ′)

=
1

Z
exp

(
−
∑
i

Ui(θ)

)
T (θ, θ′)

=
1

Z

∑
s

min

(
q(θ′|θ) exp

(∑
i

[
si log

(
λci
C

+ φi(θ)

)
− Ui(θ) + Ui(θ

′)

2
− ci

2
M(θ, θ′)− λci

C
− log si!

])
,

q(θ|θ′) exp

(∑
i

[
si log

(
λci
C

+ φi(θ
′)

)

− Ui(θ) + Ui(θ
′)

2
− ci

2
M(θ, θ′)− λci

C
− log si!

])))
.

It is clear that the expression is symmetric in θ and θ′. Therefore the chain is

reversible and its stationary distribution is π(θ). This proves the first part of the
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theorem.

To prove the second part of the theorem, the bound on the spectral gap, we

continue to reduce the transition probability in the previous proof to

π(θ)T (θ, θ′)

=
1

Z

∑
s

min

(
q(θ′|θ) exp

(∑
i

[
si log

(
λci
C

+ φi(θ)

)
− Ui(θ) + Ui(θ

′)

2
− ci

2
M(θ, θ′)− si log

λci
C

])
,

q(θ|θ′) exp

(∑
i

[
si log

(
λci
C

+ φi(θ
′)

)

− Ui(θ) + Ui(θ
′)

2
− ci

2
M(θ, θ′)− si log

λci
C

]))

·
∏
i

1

si!
exp

(
−λci
C

)(
λci
C

)si
=

1

Z

∑
s

min

(
q(θ′|θ) exp

(∑
i

[
si log

(
1 +

C

λci
φi(θ)

)
− Ui(θ) + Ui(θ

′)

2
− ci

2
M(θ, θ′)

])
,

q(θ|θ′) exp

(∑
i

[
si log

(
1 +

C

λci
φi(θ

′)

)
− Ui(θ) + Ui(θ

′)

2
− ci

2
M(θ, θ′)

]))

·
∏
i

1

si!
exp

(
−λci
C

)(
λci
C

)si
.

Note that si here are non-negative integers that a Poisson variable can take,

not variables. So if we let ri ∼ Poisson
(
λci
C

)
and ri to be all independent, we can
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write this as

π(θ)T (θ, θ′) =
1

Z
E min

(
q(θ′|θ) exp

(∑
i

ri log

(
1 +

C

λci
φi(θ)

))
,

q(θ|θ′) exp

(∑
i

ri log

(
1 +

C

λci
φi(θ

′)

)))

· exp

[
− 1

2

(∑
i

Ui(θ) +
∑
i

Ui(θ
′) + CM(θ, θ′)

)]
.

Assume G(θ, θ′) is the transition operator of standard MH. Consider the ratio

π(θ)T (θ, θ′)

π(θ)G(θ, θ′)

=
1

Z
E min

(
q(θ′|θ) exp

(∑
i

ri log

(
1 +

C

λci
φi(θ)

))
,

q(θ|θ′) exp

(∑
i

ri log

(
1 +

C

λci
φi(θ

′)

)))

· exp

[
− 1

2

(∑
i

Ui(θ) +
∑
i

Ui(θ
′) + CM(θ, θ′)

)]

·

[
1

/(
1

Z
min

(
q(θ′|θ) exp

(
−
∑
i

Ui(θ)

)
, q(θ|θ′) exp

(
−
∑
i

Ui(θ
′)

)))]
.

We know that min(A,B)
min(C,D)

= min
(

A
min(C,D)

, B
min(C,D)

)
≥ min

(
A
C
, B
D

)
. The last

inequality is due to the fact that 1
min(C,D)

≥ 1
C

and 1
min(C,D)

≥ 1
D

.
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With this inequality, we can continue simplifying the ratio,

π(θ)T (θ, θ′)

π(θ)G(θ, θ′)

≥ E

[
min

(
exp

(∑
i ri log

(
1 + C

λci
φi(θ)

))
exp (−

∑
i Ui(θ))

,
exp

(∑
i ri log

(
1 + C

λci
φi(θ

′)
))

exp (−
∑

i Ui(θ
′))

)]

· exp

[
− 1

2

(∑
i

Ui(θ) +
∑
i

Ui(θ
′) + CM(θ, θ′)

)]

= E

[
min

(
exp

(∑
i

(
ri log

(
1 +

C

λci
φi(θ)

)
− φi(θ)

))
,

exp

(∑
i

(
ri log

(
1 +

C

λci
φi(θ

′)

)
− φi(θ′)

)))]

= E

[
max

(
exp

(∑
i

(
φi(θ)− ri log

(
1 +

C

λci
φi(θ)

)))
,

exp

(∑
i

(
φi(θ

′)− ri log

(
1 +

C

λci
φi(θ

′)

))))−1]
.

Because f(x) = 1
x

is a convex function, by Jensen’s inequality it follows

π(θ)T (θ, θ′)

π(θ)G(θ, θ′)
≥ E

[
max

(
exp

(∑
i

(
φi(θ)− ri log

(
1 +

C

λci
φi(θ)

)))
,

exp

(∑
i

(
φi(θ

′)− ri log

(
1 +

C

λci
φi(θ

′)

))))]−1

.

We use max(A,B) ≤ (Ap +Bp)
1
p to remove the max function.

π(θ)T (θ, θ′)

π(θ)G(θ, θ′)
≥ E

[(
exp

(
p
∑
i

(
φi(θ)− ri log

(
1 +

C

λci
φi(θ)

)))
+

exp

(
p
∑
i

(
φi(θ

′)− ri log

(
1 +

C

λci
φi(θ

′)

)))) 1
p

]−1

.
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Since x
1
p is concave, by Jensen’s inequality

π(θ)T (θ, θ′)

π(θ)G(θ, θ′)
≥ E

[
exp

(
p
∑
i

(
φi(θ)− ri log

(
1 +

C

λci
φi(θ)

)))
+

exp

(
p
∑
i

(
φi(θ

′)− ri log

(
1 +

C

λci
φi(θ

′)

)))]− 1
p

=

[∏
i

E exp

(
pφi(θ)− pri log

(
1 +

C

λci
φi(θ)

))
+

∏
i

E exp

(
pφi(θ

′)− pri log

(
1 +

C

λci
φi(θ

′)

))]− 1
p

.

E

[
exp

(
− pri log

(
1 + C

λci
φi(θ)

))]
is the moment generating function of the

Poisson random variable ri evaluated at

t = −p log

(
1 +

C

λci
φi(θ)

)
.

We know that

E exp(rit) = exp

(
λci
C

(exp(t)− 1)

)
,

therefore,

E

[
exp

(
− pri log

(
1 +

C

λci
φi(θ)

))]
= exp

(
λci
C

(
1 +

C

λci
φi(θ)

)−p
− λci

C

)
.

Substituting this into the original expression produces

π(θ)T (θ, θ′)

π(θ)G(θ, θ′)
≥

[∏
i

exp

(
λci
C

(
1 +

C

λci
φi(θ)

)−p
− λci

C
+ pφi(θ)

)

+
∏
i

exp

(
λci
C

(
1 +

C

λci
φi(θ

′)

)−p
− λci

C
+ pφi(θ

′)

)]− 1
p

.

Considering the term inside exp. Define a function f(y) = λci
C

(
1 + C

λci
y
)−p
−

λci
C

+ py for y ≥ 0. It is clear that f(0) = 0. The first derivative is

f ′(y) = p+ (−p)
(

1 +
C

λci
y

)−p−1
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which is also 0 at y = 0. The second and third derivatives are

f ′′(y) = (−p)(−p− 1)
C

λci

(
1 +

C

λci
y

)−p−2

, (B.3)

f ′′′(y) = (−p)(−p− 1)(−p− 2)

(
C

λci

)2(
1 +

C

λci
y

)−p−3

. (B.4)

By Taylor series, we have

f(y) = f(0) + f ′(0)y +
f ′′(0)

2!
y2 +

f ′′′(v)

3!
y3

where v is between 0 and y. By (B.4), we know that f ′′′(v) ≤ 0, therefore since

y ≥ 0, we have

f(y) ≤ f(0) + f ′(0)y +
f ′′(0)

2!
y2

=
f ′′(0)

2!
y2.

Substituting y = φi(θ) produces

f(φi(θ)) ≤ (−p)(−p− 1)
C

λci
φ2
i (θ)

≤ (−p)(−p− 1)
C

λci
c2
iM

2(θ, θ′).

Similarly, we can get

f(φi(θ
′)) ≤ p(p+ 1)

C

λci
c2
iM

2(θ, θ′).

Substituting these to the spectral ratio, we get

π(θ)T (θ, θ′)

π(θ)G(θ, θ′)
≥

[
2
∏
i

exp

(
p(p+ 1)

C

λci
c2
iM

2(θ, θ′)

)]− 1
p

=

[
2 exp

(∑
i

p(p+ 1)
C

λ
ciM

2(θ, θ′)

)]− 1
p

=

[
2 exp

(
p(p+ 1)

C2

λ
M2(θ, θ′)

)]− 1
p

= 2−
1
p exp

(
−(p+ 1)

C2

λ
M2(θ, θ′)

)
.
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Now, we maximize the R.H.S. with respect to p. Let E = C2

λ
M2(θ, θ′), then it

becomes

2−
1
p exp (−(p+ 1)E) = exp

(
−E − pE − 1

p
log 2

)
.

The maximum is attained at p =
√

log 2
E

and the value is

exp
(
−E − 2

√
E log 2

)
.

It follows that

π(θ)T (θ, θ′)

π(θ)G(θ, θ′)
≥ exp

(
−C

2

λ
M2(θ, θ′)− 2

√
C2

λ
M2(θ, θ′) log 2

)
.

We set λ = χC2M2(θ, θ′), it becomes

π(θ)T (θ, θ′)

π(θ)G(θ, θ′)
≥ exp

(
− 1

χ
− 2

√
log 2

χ

)
.

We complete the theorem by a Dirichlet form argument. We can write the

Dirichlet form E(f) of a Markov chain with transition operator G as [50]:

E(f) =
1

2

∫ ∫ [
(f(θ)− f(θ′))

2
]
G(θ, θ′)π(θ)dθdθ′.

If we let L2
0(π) to be the Hilbert space of functions f such that f has mean zero

and is square integrable with respect to probability measure π. It follows that the

spectral gap γ of a Markov chain is [3]

γ = inf
f∈L2

0(π):V arπ [f ]=1
E(f).

From this, it is easy to get that

γ̄ = inf
f∈L2

0(π):V arπ [f ]=1

[
1

2

∫ ∫ [
(f(θ)− f(θ′))

2
]
T (θ, θ′)π(θ)dθdθ′

]
≥ exp

(
− 1

χ
− 2

√
log 2

χ

)

· inf
f∈L2

0(π):V arπ [f ]=1

[
1

2

∫ ∫ [
(f(θ)− f(θ′))

2
]
G(θ, θ′)π(θ)dθdθ′

]
= exp

(
− 1

χ
− 2

√
log 2

χ

)
· γ.
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B.1.4 Proof of Theorem 8

First, we will show the following lemma, which gives half of what we want to have

in the theorem.

Lemma 2. Considering the same setting as the theorem, the average batch size B

of any exact, stateless minibatch MH algorithm at any iteration follows

E[B] ≥ 2−18 · κC2M2(θ, θ′)− 2−4 · κ.

Proof. We prove the lemma by construction. First, observe that since the state

space Θ has at least two states, we can restrict our attention to just two of those

states, by choosing a π that has zero mass on any other state in the space and a

q that never proposes transitioning out to any of those other states (at which π

has zero mass). Such a proposal will still be ergodic, so it still satisfies our general

assumption that we consider only ergodic chains in this section. Without loss

of generality, suppose that those two states are {−M
2
, M

2
} (this is without loss of

generality because we can always just rename the states), and let C denote the

constant in the theorem statement and define (with a bit of abuse of notation) the

constant M := M(−M
2
, M

2
). By doing this, we can (again without loss of generality)

restrict our attention to the case where Θ = {−M
2
, M

2
}.

Next, we construct our counterexample. Let the dataset be {xi}Ni=1 where

xi ∈ {−1, 1}. We let the domain for parameter θ to be {−M
2
, M

2
}, and the target

distribution to be

π(θ) =
1

Z
exp

(
−

N∑
i=1

Ui(θ)

)
=

1

Z
exp

(
−Cθ
N

N∑
i=1

xi

)

166



where Ui(θ) = C
N
· θxi. Note that by letting N become large, any minibatch MH

algorithm that queries the energy difference oracle some number of times will

observe a distribution of energy differences that is arbitrarily close to a sequence of

independent identically distributed random variables supported on {±CM
N
}.

We define ci = C
N

, and the proposal distribution to be

p(θ, θ) =
1

2
, p(θ,−θ) =

1

2
for θ ∈

{
− M

2
,
M

2

}
.

Now, let 0 < q < 1 be some constant, and consider two cases: (1) 1
N

∑
i xi = q and

(2) 1
N

∑
i xi = −q < 0. Suppose that in both cases the xi are shuffled at random.

These two cases will have different stationary distributions,

π1(θ) =
1

Z
exp (−Cqθ) and π2(θ) =

1

Z
exp (Cqθ) ,

and an exact algorithm must be able to distinguish between them. Therefore by

using these cases, we can get a bound on the required batch size needed for the

exact MH algorithm to distinguish between them. First, we observe that the two

cases are symmetric, such that if T1 is the transition matrix of the chain in case (1)

and T2 is the transition matrix of the chain in case (2), then T1(θ, θ
′) = T2(θ

′, θ).

Let 0 < ψ < 1
2

denote the probability that T1 transitions from M
2

to −M
2

. Then

because the MH method is exact and the chain is reversible, the probability of the

reverse transition is ψ exp(−CMq). So, explicitly, the transition operators will look

like

T1 =

1− ψ ψe−CMq

ψ 1− ψe−CMq

 and T2 =

1− ψe−CMq ψ

ψe−CMq 1− ψ

 .
The eigenvectors and eigenvalues of this are

T1π1 = π1 and T1

−1

1

 = (1− ψ − ψ exp(−CMq))

−1

1

 .
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Suppose that we initialize both chains uniformly on {−M
2
, M

2
}. Observe that1/2

1/2

 =

 exp(−CMq)
1+exp(−CMq)

1
1+exp(−CMq)

+
1− exp(−CMq)

2(1 + exp(−CMq))
·

 1

−1

 ,
the first vector being π1 and the second being a multiple of the other eigenvector.

Equivalently, 1/2

1/2

 = π1 +
1

2
tanh

(
CMq

2

)
·

 1

−1

 ,
and so for any t, after t steps of the Markov chain, the distribution will be

T t1

1/2

1/2

 = π1 +
1

2
tanh

(
CMq

2

)
· (1− ψ − ψ exp(−CMq))t ·

 1

−1

 .
Similarly,

T t2

1/2

1/2

 = π2 +
1

2
tanh

(
CMq

2

)
· (1− ψ − ψ exp(−CMq))t ·

−1

1

 .
So, the total variation distance between the state of the chains at time t will be

bounded by

TV

T t1
1/2

1/2

 , T t2
1/2

1/2




≥ TV (π1, π2)− tanh

(
CMq

2

)
· (1− ψ − ψ exp(−CMq))t .

Also observe that

TV (π1, π2) =
1

2

∥∥∥∥∥∥∥
 exp(−CMq)

1+exp(−CMq)

1
1+exp(−CMq)

−
 1

1+exp(−CMq)

exp(−CMq)
1+exp(−CMq)


∥∥∥∥∥∥∥

1

=
1− exp(−CMq)

1 + exp(−CMq)
= tanh

(
CMq

2

)
,
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so

TV

T t1
1/2

1/2

 , T t2
1/2

1/2


 ≥ tanh

(
CMq

2

)
·
(
1− (1− ψ − ψ exp(−CMq))t

)
.

Also, since we know that our algorithm is guaranteed to have spectral gap ratio at

least κ with the original chain, it follows that ψ ≥ κ/2, and so

TV

T t1
1/2

1/2

 , T t2
1/2

1/2


 ≥ tanh

(
CMq

2

)
·
(

1−
(

1− κ

2
− κ

2
exp(−CMq)

)t)
.

Now, denote the exact minibatch algorithm to be A. As it runs, the algorithm

A will request data examples by querying the energy difference oracle. Under case

(1), we let yi denote the ith sample that A would have observed if it requested i or

more samples, and similarly we let zi denote the analogous sample in case (2). Fix

some constant t ∈ N (which we will set later). We let K1 denote the total number

of samples observed by A across the first t iterations in case (1), and set

µ = {y1, y2, . . . , yK1}.

Similarly, we let K2 denote the number of samples observed by A across the first t

iterations in case (2), and set

ν = {z1, z2, . . . , zK2}.

Now, we fix some constant K (to be set later), and consider the following coupling

between the behavior of A across its first t iterations in case (1) and in case (2).

First, let all internal randomness of A and the proposal process under case (1) and

(2) be the same, which means that for a given observation of data examples, the

algorithm A will make the same decision, such as whether to require more data

examples or not and whether to accept or not. Second, choose a coupling that
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minimizes the probability that

(y1, y2, . . . , yK1) 6= (z1, z2, . . . , zK2).

Such a coupling is guaranteed to exist by the Coupling Lemma, and the probability

that these two are not equal will be equal to the total variation distance between

their distributions. Third, assign all the other yi and zi, for i > K, independently

according to their distribution.

We are interested in the quantity p(µ 6= ν), which bounds the probability that

the algorithm may make a different decision in cases (1) and (2). We can decompose

this probability into two terms,

p(µ 6= ν) = p(µ 6= ν and yj = zj for all j ≤ K)

+ p(µ 6= ν and yj 6= zj for some j ≤ K).

If µ 6= ν but yj = zj for all j ≤ K, the only way that this is possible is for K1 > K

(and, symmetrically, also K2 > K), since otherwise the algorithms would behave

identically. So,

p(µ 6= ν) ≤ p(K1 > K) + p(yj 6= zj for some j ≤ K). (B.5)

By Markov’s inequality,

p(µ 6= ν) ≤ E[K1]

K
+ p(yj 6= zj for some j ≤ K).

For the second term of (B.5), we can reduce the case to only considering K samples.

Let Sy be the total number of samples yi that are −1 and let Sz be the total

number of samples zi that are −1. Since A is effectively sampling a shuffled dataset

at some arbitrary indices without replacement, both of these random variables

Sy and Sz are—properly speaking—hypergeometric random variables. However,

since our dataset size N is arbitrary here, we can by setting N very large work in
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the limit (as N →∞) in which these variables become binomial (since sampling

with replacement and without replacement can be made to have arbitrarily close

to the same distribution by making the dataset large). Observe that (in this

limit) Sy follows a binomial distribution B(K, 1−q
2

) and Sz follows a binomial

distribution B(K, 1+q
2

). Clearly, if Sy = Sz, then we can arrange the coupling so

that (y1, . . . , yK) = (z1, . . . , zK). So, by the Coupling Lemma,

p(yj 6= zj for some j ≤ K) = p(Sy 6= Sz) = TV(Sy, Sz).

From the analysis in [1], we can bound the total variance distance between these

two binomial variables with

TV(Sy, Sz) ≤
√
e · τ

(1− τ)2

where τ =
√

K+2
2
· q < 1. Substituting these bounds, we get

p(µ 6= ν) ≤ E[K1]

K
+
√
e · τ

(1− τ)2
.

But the probability that µ 6= ν must be an upper bound on the probability that

the distributions of the chains in case (1) and (2) after t steps are not equal, since

if µ = ν in the coupling then the two chains are in the same state. So, using our

bound from earlier, we get

tanh

(
CMq

2

)
·

(
1−

(
1− 1

2
κ− 1

2
κ exp(−CMq)

)t)
≤ E[K1]

K
+
√
e · τ

(1− τ)2
.

Now isolating E[K1] gives

K ·tanh

(
CMq

2

)
·

(
1−

(
1− 1

2
κ− 1

2
κ exp(−CMq)

)t)
−K ·
√
e· τ

(1− τ)2
≤ E[K1].

Also, observe that(
1− 1

2
κ− 1

2
κ exp(−CMq)

)t
≤
(

1− 1

2
κ

)t
≤ exp

(
−κt

2

)
,
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so

K · tanh

(
CMq

2

)
·
(

1− exp

(
−κt

2

))
−K ·

√
e · τ

(1− τ)2
≤ E[K1].

This gives us the lower bound on E[K1] that we are interested in. Now, it remains

to assign q, K, and t. We start by assigning t such that

t =
⌈
2κ−1 log(2)

⌉
,

in which case

exp

(
−κt

2

)
≤ 1

2

and so

K · 1

2
· tanh

(
CMq

2

)
−K ·

√
e · τ

(1− τ)2
≤ E[K1].

Now, we add some simplifying assumptions, which we will validate are true later.

We assume that

τ =

√
K + 2

2
· q ≤ 1

2
;

in this case
√
e · τ

(1− τ)2
·K ≤ 4

√
e · τ ≤ 5

√
K + 2 · q.

We set q such that

CMq = 1,

and we assume that CM is large enough that this assignment of q is within range

(i.e. 0 < q < 1). This gives us

K · 1

2
· tanh

(
1

2

)
− 5K

√
K + 2 · 1

CM
≤ E[K1].

Since tanh(1/2) > 5/16, we can simplify this to

K · 5

32
− 5K

√
K + 2 · 1

CM
≤ E[K1].

All that remains is to assign K. We assign K such that

√
K + 2 · 1

CM
=

1

64
.
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In this case, we get

K =
C2M2

4096
− 2,

and our bound reduces to (
C2M2

4096
− 2

)
· 5

64
≤ E[K1].

We can simplify this further to

2−16 · C2M2 − 5

32
≤ E[K1].

Now, this is a bound on the expected number of samples taken across t iterations.

This means that the number of samples taken in any given iteration will be bounded

by

E[K1]

t
≥

2−16 · C2M2 − 5
32

2κ−1 log(2) + 1
=

2−16 · κC2M2 − 5κ
32

2 log(2) + κ
.

A few more loose bounds, leveraging κ < 1, gives us

E[K1]

t
≥ 2−18 · κC2M2 − κ

16
.

This proves the lemma.

Next, we will show the following lemma, which characterizes what happens

when CM is small.

Lemma 3. Considering minibatch MH algorithms in the same setting as the

theorem, the expected batch size at any iteration must be lower bounded by

E[B] ≥ κ

2
min (CM(θ, θ′), 1) .

Proof. Here, we will prove a lower bound that characterizes the limits of exact

stateless minibatch MH algorithms when they use very few examples. Again,

without loss of generality we consider a reduction to the two-state case as we did
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in the proof of the previous lemma. Suppose that a exact stateless minibatch

MH algorithm with the same forward and backward proposal probabilities (given

some c1, . . . , cN , C, and M) requests any energy function examples at all only with

probability p. Consider two cases, which have the same c1, . . . , cN , C and M . In

the first case,
n∑
i=1

(Ui(θ)− Ui(θ′)) = CM(θ, θ′),

while in the second case,

n∑
i=1

(Ui(θ)− Ui(θ′)) = −CM(θ, θ′).

These are clearly possible by setting Ui to the limits of what is covered by the

bounds. In the first case, the baseline MH method would accept with probability

1. In the second case, it will accept with probability exp(−CM(θ, θ′)). Since the

stateless MH algorithm is reversible, it must accept in the first case with some

probability a and in the second case with probability a · exp(−CM(θ, θ′)). But,

the algorithm can only distinguish the two cases if it requests samples, which only

happens with probability at most p. So,

a− a · exp(−CM(θ, θ′) ≤ p.

Since we know that it must be the case that a ≥ κ (from a straightforward analysis

of a two-state case), it follows that

p

κ
≥ p

a
≥ 1− exp(−CM(θ, θ′)) ≥ 1

2
min (CM(θ, θ′), 1) .

Since p is an obvious lower bound on the expected value of the batch size, it follows

that

E[B] ≥ κ

2
min (CM(θ, θ′), 1) .

174



To prove Theorem 8 we now combine the results of these two lemmas. We have

E[B] ≥ 2−18 · κC2M2(θ, θ′)− 2−4 · κ.

and

E[B] ≥ κ

2
min (CM(θ, θ′), 1) .

Since these are both lower bounds, we can combine them to get

E[B] ≥ max
(

2−18 · κC2M2(θ, θ′)− 2−4 · κ, κ
2

min (CM(θ, θ′), 1)
)

= κ ·max

(
2−18 · C2M2(θ, θ′)− 2−4,

1

2
min (CM(θ, θ′), 1)

)
.

It is obvious from a simple big-O analysis here that there exists a global constant

ζ > 0 such that

E[B] ≥ ζ · κ
(
C2M2(θ, θ′) + CM(θ, θ′)

)
.

This proves the theorem.

B.1.5 Proof of Corollary 1

Proof. Recall that the lower bound on the batch size in each iteration is

E[B] ≥ ζ · κ
(
C2M2(θ, θ′) + CM(θ, θ′)

)
.

Since C = O– (N) and M(θ, θ′) = O– (N−(h+1)/2), the expectation of the batch size

follows

E[B] = O– (C2M2(θ, θ′) + CM(θ, θ′)) = O– (CM(θ, θ′)) = O– (N1−h/2).

When h = 1, E[B] = O– (1) and when h = 2, E[B] = O– (1/
√
N).
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B.1.6 Derivation of Equation (3.4)

Based on the bound in Theorem 7, to make sure that the spectral ratio γ̄/γ ≥ κ,

we can set χ such that

exp

(
− 1

χ
− 2

√
log 2

χ

)
= κ.

Solving the above equation gives us

χ =
(2 log 2− log κ+ 2

√
log 2(log 2− log κ))

log2 κ
≤ 4

(1− κ) log(1/κ)
.

Since the spectral gap ratio is monotonically increasing w.r.t. χ, we can instead set

χ to the upper bound

χ =
4

(1− κ) log(1/κ)

which guarantees that γ̄/γ ≥ κ.

B.2 Construction of Algorithm 6

Algorithm 6 can be derived by carefully replacing the global bounds on the energy

in PoissonMH [156] with local bounds on the energy differences (Assumption 1).

PoissonMH is a variant of Poisson Gibbs and therefore inherits the same assumptions

for Gibbs sampling on graphical models, which are often violated in the applications

of MH. In particular, PoissonMH works on factor graphs which define a distribution

π(θ) over a set of factors {φi(θ)}Ni=1 as follows

π(θ) ∝ exp

(
N∑
i=1

φi(θ)

)
.

PoissonMH assumes that each factor φi is non-negative without the loss of

generality (we can add a positive constant to φi to make it non-negative without
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Algorithm 13 PoissonMH

given: initial state θ ∈ Θ; proposal dist. q; hyperparameter λ; Global bounds
Mi, L
loop

propose θ′ ∼ q(·|θ)
for i ∈ {1, . . . , N} do

sample si ∼ Poisson
(
λMi

L
+ φi(θ)

)
end for
form minibatch S ← {i|si > 0}

compute MH ratio r ←
exp
(∑

i∈S si log
(

1+ L
λMi

φi(θ
′)
))
q(θ′|θ)

exp
(∑

i∈S si log
(

1+ L
λMi

φi(θ)
))
q(θ|θ′)

with probability min(1, r), set θ ← θ′

end loop

changing the distribution) and is bounded globally by a constant Mi. That is

0 ≤ φi(θ) ≤Mi for all θ.

This assumption does not hold for most applications of MH, such as the linear and

logistic regression experiments in Section 3.2.4.

Let L =
∑

iMi and define Poisson auxiliary variable si as the following

si|θ ∼ Poisson

(
λMi

L
+ φi(θ)

)
,

where λ > 0 is a hyperparameter. Running standard MH on the joint distribution

of θ and si results in the following acceptance ratio

rPoissonMH(θ, θ′) =
exp

(∑
i si log

(
1 + L

λMi
φi(θ

′)
))

q(θ′|θ)

exp
(∑

i si log
(

1 + L
λMi

φi(θ)
))

q(θ|θ′)
.

Here, the sum is essentially performed over the set of index i whose si is greater

than zero. When si = 0, it is clear that the factor φi will not appear in the

acceptance ratio rPoissonMH. Thus PoissonMH enables using a subset of factors for

the MH decision step (Algorithm 13).
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To construct our method from this, we can define the factor φi in the factor

graph to be

φi(x) =
Ui(θ) + Ui(θ

′)

2
− Ui(x) +

ci
2
M(θ, θ′) (B.6)

where x ∈ {θ, θ′}. It is easy to see that φi satisfy 0 ≤ φi(x) ≤ ciM(θ, θ′). And

then we define the Poisson variables si as the follows

si|(θ, θ′) ∼ Poisson

(
λci
C

+ φi(θ)

)
= Poisson

(
λci
C

+
Ui(θ

′)− Ui(θ) + ciM(θ, θ′)

2

)
.

These Poisson auxiliary variables {si}Ni=1 are called local, because their distribu-

tions change each iteration depending on the current pair (θ, θ′) and only rely on

local bounds in Assumption 1. This is in contrast to the global auxiliary variables

used in PoissonMH and FlyMC which are used to form a joint distribution with θ

and both require global bounds in their conditional distributions.

The acceptance ratio rTunaMH is the same as rPoissonMH but with the new defini-

tions of si and φi. We outline TunaMH using the notation of φi and si in Algorithm

14.

We now show that Algorithm 14 is statistically equivalent to Algorithm 6. To

see this, we first use thinning, a commonly used technique [84, 13, 18, 32, 156], to

quickly resample all si from their new distributions in each iteration in Algorithm 14.

This is achieved by replacing the global bounds with the local bounds in Algorithm 4

in the Appendix of [156]. Specifically, we first sample B from a Poisson distribution

B ∼ Poisson(λ+ CM(θ, θ′)).

Here λ+ CM(θ, θ′) is an upper bound on E[
∑

i si]. We then form the minibatch

by running
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for b ∈ {1, . . . , B} do
sample ib such that P(ib = i) = ci/C, for i = 1 . . . N

with probability
λcib+Cφib (θ)

λcib+CcibM(θ,θ′)
add ib to I

end for

Algorithm 14 TunaMH

given: initial state θ ∈ Θ; proposal dist. q; λ; Asm. 1 parameters ci, C, M ;
function φi defined in (B.6)
loop

propose θ′ ∼ q(·|θ) and compute M(θ, θ′)
for i ∈ {1, . . . , N} do

sample si ∼ Poisson
(
λci
C

+ φi(θ)
)

end for
form minibatch S ← {i|si > 0}

compute MH ratio r ←
exp
(∑

i∈S si log
(

1+ C
λci

φi(θ
′)
))
q(θ′|θ)

exp
(∑

i∈S si log
(

1+ C
λci

φi(θ)
))
q(θ|θ′)

with probability min(1, r), set θ ← θ′

end loop

By substituting λ = χC2M2(θ, θ′) and the expression of φi, we can get the part

of “form minibatch I” in Algorithm 6.

To see that the MH ratio in Algorithm 6 and 14 are equivalent, we can write

out r in Algorithm 14 using the above fast way of resampling si

rTunaMH =
exp

(∑
i∈I log

(
1 + C

λci
φi(θ

′)
))

q(θ′|θ)

exp
(∑

i∈I log
(

1 + C
λci
φi(θ)

))
q(θ|θ′)

.

We then substitute the definition of φi in (B.6) and it follows that

rTunaMH = exp

(∑
i∈I

(
log

(
2λci + C (Ui(θ)− Ui(θ′) + ciM(θ, θ′))

2λci + C (Ui(θ′)− Ui(θ) + ciM(θ, θ′))

)))
· q(θ

′|θ)
q(θ|θ′)

.
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We can rearrange the log term inside rTunaMH as

log

(
2λci + C (Ui(θ)− Ui(θ′) + ciM(θ, θ′))

2λci + C (Ui(θ′)− Ui(θ) + ciM(θ, θ′))

)
= log

(
2λci + C (Ui(θ)− Ui(θ′)) + ciCM(θ, θ′)

2λci + C (Ui(θ′)− Ui(θ)) + ciCM(θ, θ′)

)
= log

(
1 + C

2λci+ciCM(θ,θ′)
(Ui(θ)− Ui(θ′))

1 + C
2λci+ciCM(θ,θ′)

(Ui(θ′)− Ui(θ))

)

= 2 artanh

(
C (Ui(θ)− Ui(θ′))
ci(2λ+ CM(θ, θ′))

)
.

So rTunaMH can be written as

rTunaMH = exp

(
2
∑
i∈I

artanh

(
C (Ui(θ)− Ui(θ′))
ci(2λ+ CM(θ, θ′))

))
· q(θ

′|θ)
q(θ|θ′)

.

Finally setting λ to be χC2M2(θ, θ′) produces the MH ratio in Algorithm 6.

By proving the equivalence of the minibatch and the MH ratio, we show that

Algorithm 6 and 14 are statistically equivalent.

B.3 Theoretically Optimal Value of χ

The overall wall-clock time L for a chain to converge can be represented as the

number of steps times the wall-clock time l of each step. We then minimize an

upper bound of this overall wall-clock time to get the optimal value of χ.

Consider a lazy Markov chain on a finite state Θ. The relaxation time trel of a

Markov chain is defined to be the inverse of the spectral gap γ: trel = 1/γ. The

mixing time tmix, i.e. the number of steps required for a chain to converge to within

TV distance δ to the target distribution π, is bounded by [83]

tmix ≤ trel log

(
1

δ ·minθ∈Θ π(θ)

)
.
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It follows that the overall wall-clock time L is upper bouned by

L = l · tmix ≤ l · trel log

(
1

δ ·minθ∈Θ π(θ)

)
.

We assume that the expected wall clock time to run a step is proportional to the

batch size plus some constant, which measures the cost of computing the proposal.

Specifically, We use η and ξ to denote the time to get a proposal θ′ and compute a

Ui in a step. Then we can write the time of a step l as

l = Bξ + η.

In order to minimize L, we can instead minimize its upper bound, which is

equivalent to minimize

l · trel = (Bξ + η) · 1

γ
. (B.7)

Recall that for TunaMH, the average batch size over all steps is

E(θ,θ′)∼π(θ)q(θ′|θ)[χC
2M2(θ, θ′) + CM(θ, θ′)],

and the spectral gap γ̄ is lower bounded by the spectral gap of standar MH γ

such that

γ̄ ≥ exp

(
− 1

χ
− 2

√
log 2

χ

)
· γ.

Substituting the expression of batch size and spectral gap to (B.7) gives

l ·trel ≤
(
E(θ,θ′)∼π(θ)q(θ′|θ)[χC

2M2(θ, θ′) + CM(θ, θ′)]ξ + η
)
·exp

(
1

χ
+2

√
log 2

χ

)
· 1
γ
.

To minimize the RHS of the above equation over χ, we let the derivative w.r.t.
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χ to be zero and get,

ξC2E(θ,θ′)∼π(θ)q(θ′|θ)[M
2(θ, θ′)]χ−1 + (ξCE(θ,θ′)∼π(θ)q(θ′|θ)[M(θ, θ′)] + η)χ−2

+
√

log 2ξC2E(θ,θ′)∼π(θ)q(θ′|θ)[M
2(θ, θ′)]χ−

1
2

+
√

log 2(ξCE(θ,θ′)∼π(θ)q(θ′|θ)[M(θ, θ′)] + η)χ−
3
2

= ξC2E(θ,θ′)∼π(θ)q(θ′|θ)[M
2(θ, θ′)].

When χ is small, the LHS is approximately (ξCE(θ,θ′)∼π(θ)q(θ′|θ)[M(θ, θ′)]+η)χ−2

which gives us

χ =

√
ξCE(θ,θ′)∼π(θ)q(θ′|θ)[M(θ, θ′)] + η

ξC2E(θ,θ′)∼π(θ)q(θ′|θ)[M2(θ, θ′)]
.

When it is quick to get a proposal (η ≈ 0) and the variance of M is small, we

can further simplify it to

χ =
1√

CE(θ,θ′)∼π(θ)q(θ′|θ)[M(θ, θ′)]
.

In practice, we can get the above theoretically optimal value of χ by empirically

estimating the mean and variance of M(θ, θ′). Note that even if these empirical

estimates are accurate, there may exist better χ, since the upper bounds (the

mixing time bound and the spectral gap bound) we use to get the optimal value

may be loose. We give a simpler heuristic to tune χ in practice in Section 3.2.4.

B.4 Experimental Details and Additional Results

Experiment in Section 3.2.1

To verify Theorem 6, we empirically construct a distribution in the form of Section

B.1.1 such that AustereMH and MHminibatch are biased on. Note that the proof in
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Section B.1.1 shows there must exist such a distribution for any inexact minibatch

method but does not tell us how to find one for a specific method. Therefore, in

order to find such a distribution, we construct an example and empirically test

whether AustereMH and MHminibatch are biased on it.

We let data xi take one of two values {−1, 5}. Consider a dataset of size 6000.

We let 5000 data take value −1 and the remaining 1000 data take value 5. Define

the target distribution π(θ) to be

π(θ) ∝ exp

(
− 1

N

N∑
i=1

θ · xi

)

where the domain of θ is {0, 1, . . . , K − 1}. Therefore the number of state is K.

Since
∑

i xi = 0, it is clear to see that the stationary distribution of θ is a uniform

distribution. We define the proposal distribution to be the following

p(θ, θ) =
1

2
, for all θ; p(θ, θ−1) =

1

4
, p(θ, θ+1) =

1

4
for θ ∈ {1, . . . , K−2};

and p(0, 1) = p(K − 1, K − 2) = 1
2
.

We set the hyperparameter error ε in AustereMH to be 0.01 and δ in MHmini-

batch to be 5, following the setting in their original papers [81, 132]. We set batch

size m in both methods to be 30. We find that AustereMH and MHminibatch are

both inexact on this example and the error increases as we increase K. Thus we

empirically verify the statement in Theorem 6.

Besides the density estimate comparison on K = 200 shown in Figure 3.4b, we

additionally report the estimate results on other values of K in Figure B.1. We see

that the results are similar, all showing that TunaMH and standard MH can give

accurate estimate whereas inexact methods are seriously wrong.
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Figure B.1: Density estimate comparison on K = 500, 1000, 2000, 5000.

On Robust Linear Regression We further tested AustereMH on robust linear

regression in Section 3.2.4 with N = 5000. We computed the MSE between

estimated and true parameters. MH, TunaMH and AustereMH obtained MSE

0.149, 0.15 and 1.19 respectively, indicating inexact method error can be large on

typical problems.

Robust Linear Regression

We follow the experimental setup of robust linear regression (RLR) in [32]. Specifi-

cally, we have data xi ∈ Rd and yi ∈ R. The likelihood is modeled by a student’s

t-distribution with degrees of freedom v:

p(yi|θ, xi) = Student(yi − θᵀxi|v).

It follows that

Ui(θ) =
v + 1

2
log

(
1 +

(yi − θᵀxi)2

v

)
,
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and the first derivative

∂jUi(θ) = −(v + 1)
xij(yi − θᵀxi)
v + (yi − θᵀxi)2

.

Since the function Ui is Lipschitz continuous, we can easily get the bound used in

TunaMH, TFMH and SMH. We set M(θ, θ′) = ‖θ − θ′‖2 and then it follows

ci = sup
θ∈R
‖∇Ui(θ)‖2 =

v + 1

2
√
v
‖xi‖2 .

The data xi and yi is generated as follows

yi =
∑
j

xij + εi

where εi ∼ N (0, 1).

In Section 3.2.4, we set v = 4, d = 100 and use a flat prior p(θ) = 1. Note that

our problem dimension d is much larger than that in the SMH paper [32] (d = 10).

This makes the control variates in SMH problematic since the bounds they require

appear to scale badly in high dimensions.

To reach the target acceptance rate, we set the stepsize in each method as

in Table B.1 and B.2. For TunaMH and TunaMH-MAP, we set χ = 1e − 5 for

N = 5000, 20000 and χ = 1e− 4 for N = 50000, 100000. For FlyMC and FlyMC-

MAP, we set the probability for a data going from dark to bright qd→b to be 0.01.

Without the MAP, we collect 80000 samples after 200000 step burnin. With the

MAP, we collect 80000 samples without burnin.
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Table B.1: Stepsize of methods without the MAP.

MH TFMH FlyMC TunaMH

RLR N = 5000 4e-3 1e-4 2.7e-3 8e-4, χ = 1e− 5

RLR N = 20000 2e-3 3e-5 1.5e-3 3e-4, χ = 1e− 5

RLR N = 50000 1.3e-3 1.2e-5 9e-4 2e-4, χ = 1e− 4

RLR N = 100000 9e-4 6e-6 7e-4 1.7e-4, χ = 1e− 4

TGM 3e-1 2.2e-2 1e-2 1e-1
LR 5e-3 1e-4 2e-3 1e-3

Table B.2: Stepsize of methods with the MAP.

MH-MAP SMH-1 SMH-2 FlyMC-MAP TunaMH-MAP

RLR N = 5000 4e-3 4e-3 4e-3 6e-3 8e-4, χ = 1e− 5

RLR N = 20000 2e-3 2e-3 2e-3 3.5e-3 3e-4, χ = 1e− 5

RLR N = 50000 1.2e-3 1.2e-3 1.2e-3 2.5e-3 1.2e-4, χ = 1e− 4

RLR N = 100000 9e-4 5.9e-4 8e-4 1.7e-3 7e-5. χ = 1e− 4

TGM - 1e-1 - 1e-2 -

Additional Experimental Results with d = 10 We ran RLR experiment with

d = 10 and N = 105 to compare the performance in low dimensions. The ESS/S

for TFMH, FlyMC, TunaMH are 0.02, 0.75, & 1.7, respectively; SMH-1, SMH-2,

FlyMC-MAP and TunaMH-MAP are 174.7, 5969.5, 730.8, & 730.1 respectively.

This suggests TunaMH is significantly better without MAP/control variates. With

MAP/control variates, TunaMH is better than SMH-1, similar to FlyMC and worse

than SMH-2.
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Truncated Gaussian Mixture

The data in this truncated Gaussian mixture (TGM) task is generated as follows

xi ∼
1

2
N (θ1, σ

2
x) +

1

2
N (θ1 + θ2, σ

2
x)

where θ1 = 0, θ2 = 1 and σ2 = 2. The posterior θ has two modes at (θ1, θ2) = (0, 1)

and (θ1, θ2) = (1,−1). In order to get the bounds required by all methods, we

truncate the Gaussian by setting θ1, θ2 ∈ [−3, 3].

For simplicity we assume a flat prior p(θ) = 1. Then the energy is given by

Ui(θ) = − log p(xi|θ)

= log(2
√

2πσx)− log

[
exp

(
− (xi − θ1)2

2σ2
x

)
+ exp

(
− (xi − θ1 − θ2)2

2σ2
x

)]
.

Denote E1 = exp

(
− (xi−θ1)2

2σ2
x

)
and E2 = exp

(
− (xi−θ1−θ2)2

2σ2
x

)
. To get the upper

bound in TunaMH, TFMH and SMH, we compute the gradient

∂Ui(θ)

∂θ1

= − 1

E1 + E2

(
E1 ·

xi − θ1

σ2
x

+ E2 ·
xi − θ1 − θ2

σ2
x

)
,

∂Ui(θ)

∂θ2

= − 1

E1 + E2

(
E2 ·

xi − θ1 − θ2

σ2
x

)
.

Since θi ∈ [−3, 3], it follows that∣∣∣∣∂Ui(θ)∂θ1

∣∣∣∣ ≤ |xi|+ 3

σ2
x

+
|xi|+ 3 + 3

σ2
x

≤ 2 |xi|+ 9

σ2
x

,∣∣∣∣∂Ui(θ)∂θ2

∣∣∣∣ ≤ |xi|+ 3 + 3

σ2
x

≤ |xi|+ 6

σ2
x

.

Therefore we can set M(θ, θ′) = ‖θ − θ′‖2 and

ci =

√(
2 |xi|+ 9

σ2
x

)2

+

(
|xi|+ 6

σ2
x

)2

.
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To use the control variate in SMH, we need to compute the second derivatives

∂2Ui(θ)

∂2θ1

=
1

(E1 + E2)2
·
(
E1 ·

xi − θ1

σ2
x

+ E2 ·
xi − θ1 − θ2

σ2
x

)2

−
[
E1 ·

((
xi − θ1

σ2
x

)2

− 1

σ2
x

)
+ E2 ·

((
xi − θ1 − θ2

σ2
x

)2

− 1

σ2
x

)]
· 1

E1 + E2

∂2Ui(θ)

∂θ1∂θ2

=
1

(E1 + E2)2
·
(
E2 ·

(
xi − θ1 − θ2

σ2
x

))
·
(
E1 ·

xi − θ1

σ2
x

+ E2 ·
xi − θ1 − θ2

σ2
x

)
−
[
E2

((
xi − θ1 − θ2

σ2
x

)2

− 1

σ2
x

)]
· 1

E1 + E2

∂2Ui(θ)

∂2θ2

=
1

(E1 + E2)2
·
(
E1 ·

xi − θ1

σ2
x

+ E2 ·
xi − θ1 − θ2

σ2
x

)2

−
[
E2 ·

((
xi − θ1 − θ2

σ2
x

)2

− 1

σ2
x

)]
· 1

E1 + E2

.

Given the parameter space, we have the upper bounds∣∣∣∣∂2Ui(θ)

∂2θ1

∣∣∣∣ ≤ (2 |xi|+ 9

σ2
x

)2

+

(
|xi|+ 3

σ2
x

)2

+

(
|xi|+ 6

σ2
x

)2

+
2

σ2
x∣∣∣∣∂2Ui(θ)

∂θ1∂θ2

∣∣∣∣ ≤ 2 |xi|+ 9

σ2
x

· |xi|+ 6

σ2
x

+

(
|xi|+ 6

σ2
x

)2

+
1

σ2
x∣∣∣∣∂2Ui(θ)

∂2θ2

∣∣∣∣ ≤ (2 |xi|+ 9

σ2
x

)2

+

(
|xi|+ 6

σ2
x

)2

+
1

σ2
x

.

It follows

Ū2,i =

(
2 |xi|+ 9

σ2
x

)2

+

(
|xi|+ 3

σ2
x

)2

+

(
|xi|+ 6

σ2
x

)2

+
2

σ2
x

.

which is required in SMH-1.

To get the lower bounds in FlyMC, we use the first-order Taylor expansion for

Ui(θ). Higher order approximation is possible but would require heavier computa-
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tion. By Taylor expansion,

Ui(θ) = Ui(θ
0) +∇Ui(θ0)ᵀ(θ − θ0) +

1

2
(θ − θ0)ᵀ∇2Ui(c)(θ − θ0)

where c is between θ and θ0.

Then we can define logBi(θ) in FlyMC as the follows

logBi(θ) = −Ui(θ0)−∇Ui(θ0)ᵀ(θ − θ0)− 1

2
·max

c

∥∥∇2Ui(c)
∥∥

1
·
∥∥θ − θ0

∥∥2

1

= −Ui(θ0)−∇Ui(θ0)ᵀ(θ − θ0)− 1

2
· Ū2,i ·

∥∥θ − θ0
∥∥2

1
.

The sum of logBi is

N∑
i=1

logBi(θ) = −N · Ui(θ0)−
( N∑

i=1

∇Ui(θ0)

)ᵀ

(θ − θ0)− 1

2
·
N∑
i=1

Ū2,i ·
∥∥θ − θ0

∥∥2

1
.

We set θ0 to be 0 and the MAP solution in standard and MAP-tuned FlyMC

respectively.

We tune the stepsize of each method to reach the acceptance rate 60% and

the value of stepsize is summarized in Table B.1 and B.2. We set χ = 10−4 in

TunaMH and qd→b = 0.01 in FlyMC and FlyMC-MAP. We compute the symmetric

KL between the run-average density estimate and the true distribution. Since this

is a two-dimensional problem, we are able to visualize the density estimate. As

shown in Figure B.2, we plot the density estimate after running the method for 1

second. It is clear to see that the density estimate of TunaMH is close to the truth

whereas all other methods are unable to provide accurate density estimate given

the time budget.
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Figure B.2: Visualization of the density estimate after 1 second.

Logistic Regression on MNIST

MNIST with only 7s and 9s images contains 12214 training data and 2037 test

data. Let h be the sigmoid function. Let the label yi ∈ {0, 1}, then the model in

logistic regression (LR) is

p(yi = 1) = h(θᵀxi) =
1

1 + exp (−θᵀxi)
.

It follows that

Ui(θ) = −yi log h (θᵀxi)− (1− yi) log h (−θᵀxi) .

It is easy to see that

|∂jUi| = |(h(θᵀxi)− yi)xij| ≤ 1 · |xij| .

Thus we can set M(θ, θ′) to be ‖θ − θ′‖2 and ci to be ‖xi‖2. We use this bound

for TunaMH, TFMH and SMH. For FlyMC, we use the same bound on logistic

regression as in the FlyMC paper [98].

We set the target acceptance rate to be 60% and the resulted stepsize is reported

in Table B.1. We set qd→b to be 0.1 following [98].
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APPENDIX C

SECTION 4 AMORTIZED METROPOLIS ADJUSTMENT

C.1 Proofs

C.1.1 Proof of Results in Section 4.2

In this section, we will provide proofs of the results that we asserted in Section 4.2

about reversibility and skew-reversibility of our algorithms. First, for completeness

we re-prove the fact that a skew-reversible chain has stationary distribution π,

which is known, but not as well-known as the corresponding result for reversible

chains.

Lemma 4. If G is a skew-reversible chain, that is one that satisfies (4.4), then π

is its stationary distribution.

Proof. Since G is skew-reversibile, by definition it satisfies for any states x and y

the conditions that π(x) = π(x⊥) and

π(x)G(x, y) = π(y⊥)G(y⊥, x⊥).

By combining these two we can easily get

π(x)G(x, y) = π(y)G(y⊥, x⊥).

Next, summing up over all x in the while state space Ω,

∑
x∈Ω

π(x)G(x, y) =
∑
x∈Ω

π(y)G(y⊥, x⊥) = π(y)
∑
x∈Ω

G(y⊥, x⊥).

191



Since ⊥ denotes an involution, it follows that summing up over x for all x in the

state space is equal to summing up over all x⊥, so

∑
x∈Ω

π(x)G(x, y) = π(y)
∑
x∈Ω

G(y⊥, x) = π(y),

where the last equality follows from the fact that for any Markov chain, the sum of

the probabilities of transitioning into all states is always 1. So, we’ve shown that

∑
x∈Ω

π(x)G(x, y) = π(y)

which can be written in matrix form as πG = π; this proves the lemma.

Lemma 5. The amortized Metropolis-Hastings procedure described in Section 4.2

using acceptance probability (4.2) results in a chain that is reversible with stationary

distribution π.

Proof. According to the algorithm described in Section 4.2, the probability

density of transitioning from state x to state y 6= x via intermediate states

x = x0, x1, x2, . . . , xT−1, xT = y is

E

[
τ ·

T−1∏
t=0

P (xt, xt+1; ζt)

]
,

where the expected value here is taken over the randomness used to select the

stochastic samples ζt. This follows from the law of total expectation. This means

that the total probability of transitioning from x to y 6= x is just the integral of

this over the intermediate states

G(x, y) =

∫
E

[
τ ·

T−1∏
t=0

P (xt, xt+1; ζt)

]
dx1 · dx2 · · · dxT−1,
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Now substituting in the value of τ from (4.2) gives us

G(x, y)

=

∫
E

[
min

(
1,
π(y)

π(x)

T−1∏
t=0

P (xt+1, xt; ζt)

P (xt, xt+1; ζt)

)
·
T−1∏
t=0

P (xt, xt+1; ζt)

]
dx1 · dx2 · · · dxT−1

=

∫
E

[
min

(
T−1∏
t=0

P (xt, xt+1; ζt),
π(y)

π(x)

T−1∏
t=0

P (xt+1, xt; ζt)

)]
dx1 · dx2 · · · dxT−1.

Multiplying both sides by π(x),

π(x)G(x, y)

=

∫
E

[
min

(
π(x)

T−1∏
t=0

P (xt, xt+1; ζt), π(y)
T−1∏
t=0

P (xt+1, xt; ζt)

)]

dx1 · dx2 · · · dxT−1.

From here, the fact that G is reversible follows directly from a substitution of

xt 7→ xT−t in the integral, combined with the observation that the ζt are i.i.d. and

so exchangeable.

Lemma 6. The amortized Metropolis-Hastings procedure for skew-reversible chains

described in Section 4.2 using acceptance probability (4.5) results in a chain that is

skew-reversible with stationary distribution π, as long as π satisfies π(x) = π(x⊥).

Proof. As above, the probability density of transitioning from state x to state y 6= x

via intermediate states x = x0, x1, x2, . . . , xT−1, xT = y is

E

[
τ ·

T−1∏
t=0

P (xt, xt+1; ζt)

]
,

where the expected value here is taken over the randomness used to select the

stochastic samples ζt. This follows from the law of total expectation. This means

that the total probability of transitioning from x to y 6= x is just the integral of
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this over the intermediate states

G(x, y) =

∫
E

[
τ ·

T−1∏
t=0

P (xt, xt+1; ζt)

]
dx1 · dx2 · · · dxT−1,

Now substituting in the value of τ from (4.2) gives us

G(x, y)

=

∫
E

[
min

(
1,
π(y)

π(x)

T−1∏
t=0

P (x⊥t+1, x
⊥
t ; ζt)

P (xt, xt+1; ζt)

)
·
T−1∏
t=0

P (xt, xt+1; ζt)

]

dx1 · dx2 · · · dxT−1

=

∫
E

[
min

(
T−1∏
t=0

P (xt, xt+1; ζt),
π(y)

π(x)

T−1∏
t=0

P (x⊥t+1, x
⊥
t ; ζt)

)]

dx1 · dx2 · · · dxT−1.

Multiplying both sides by π(x), and leveraging the fact that π(x) = π(x⊥),

π(x)G(x, y)

=

∫
E

[
min

(
π(x)

T−1∏
t=0

P (xt, xt+1; ζt), π(y⊥)
T−1∏
t=0

P (x⊥t+1, x
⊥
t ; ζt)

)]

dx1 · dx2 · · · dxT−1.

From here, the fact that G is skew-reversible follows directly from a substitution

of xt 7→ x⊥T−t in the integral (which is a valid substitution without introducing an

extra constant term because the involution ⊥ is measure-preserving by assumption),

combined with the observation that the ζt are i.i.d. and so exchangeable.

Lemma 7. A skew-reversible chain will become reversible by resampling the mo-

mentum at the beginning of outer loop.

Proof. Assume the chain starts at (θ, r) and ends at (θ∗, r∗). By the skew-detailed

balance, we have

π(θ, r)G((θ, r), (θ∗, r∗)) = π(θ∗,−r∗)G((θ∗,−r∗), (θ,−r))
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Since the momentum is resampled and is independent of θ, we can integrate it and

describe the chain in terms of θ

π(θ)H(θ, θ∗) :=

∫
π(θ)π(r)G((θ, r), (θ∗, r∗))drdr∗

Similarly, we have

π(θ∗)H(θ∗, θ) :=

∫
π(θ∗)π(−r∗)G((θ∗,−r∗), (θ,−r))dr∗dr

By the skew-detailed balance we know

π(θ)H(θ, θ∗) = π(θ∗)H(θ∗, θ)

This proves the lemma.

C.1.2 Proof of Theorem 9

Proof. First, we consider resampling momentum in Algorithm 8 and will show that

the chain is reversible. We consider the probability of starting from θ and going

through a particular sequence of rt+ 1
2

and θt and arriving at (θ∗, r∗). We have

G(θ, θ∗), which is the transition probability from θ to θ∗, as the following

G(θ, θ∗) = E

∫
P
(
θ0, θ1, . . . , θT−1, θ

∗
∣∣∣θ, Ũ0, . . . , ŨT−1

)
min(1, a(θ))dθ0 · · · dθT−1

where θ = {θ0, . . . , θT−1, θ
∗} and the expectation is taken over the stochastic energy

function samples Ũt.

Next, we want to derive the probability density in terms of r and η =

{η0, . . . , ηT−1}. This involves a change of variables in the PDF formula. We

notice that θ is a bijective function of r and η. By the rule of change of variables,
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we know that

P
(
θ0, θ1, . . . , θT−1, θ

∗
∣∣∣θ, Ũ0, . . . , ŨT−1

)
min(1, a(θ))

= P
(
r, η0, . . . , ηT−1

∣∣∣θ, Ũ0, . . . , ŨT−1

)
min(1, a(η, r)))det−1(D(η,r)(θ))

where D(η,r)(θ, θ
∗) is the Jacobian matrix.

To get this Jacobian matrix, we first apply the chain rule,

D(η,r)(θ) = Dr(θ) ·D(η,r)r

where r = {r, r, . . . , rT− 1
2
}.

Since the derivative of θt with respect to any rs− 1
2

for s > t is zero, it follows

that Dr(θ) will be triangular, and so the determinant is just the product of the

diagonal entries. From our formula for the update rule,

θt = θ +
1

2
εσ−2rt− 1

2
, for t = 0, T

θt = θt−1 + εσ−2r− 1
2
, for t = 1, . . . , T − 1.

Therefore,

∂θ0

∂rt− 1
2

=
1

2
εσ−2Id, for t = 0, T

∂θt
∂rt− 1

2

= εσ−2Id, for t = 1, . . . , T − 1.

It follows that

det (Dr(θ)) =
1

4d
(
εσ−2

)(T+1)d
.

Similarly, the derivative of ηt with respect to any rs− 1
2

for s > t is zero, it follows

that D(η,r)r will be triangular, and so the determinant is just the product of the

diagonal entries. That is,

Dr(η, r)) =
T−1∏
t=0

∂ηt
∂rt+ 1

2

.
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From our original formula for the update rule,

rt+ 1
2

= rt− 1
2
− ε∇Ũt(θt)− εβ

(
rt− 1

2
+ rt+ 1

2

)
+ ηt

we have

(1 + εβ)rt+ 1
2

= rt− 1
2
− ε∇Ũt(θt)− εβrt− 1

2
+ ηt,

and so

∂ηt
∂rt+ 1

2

= (1 + εβ)Id.

It follows that

det
(
D(η,r)r

)
= (1 + εβ)−Td

Now we can get that

det
(
D(η,r)(θ)

)
= det (Dr(θ)) · det

(
D(η,r)r

)
= (1 + εβ)−Td · 1

4d
(
εσ−2

)(T+1)d

Thus,

G(θ, θ∗) = E

∫
P
(
θ0, θ1, . . . , θT−1, θ

∗
∣∣∣θ, Ũ0, . . . , ŨT−1

)
min(1, a(θ))dθ0 · · · dθT−1

= (1 + εβ)Td · 4d
(
εσ−2

)−(T+1)d
E

∫
P
(
r, η0, . . . , ηT−1

∣∣∣θ, Ũ0, . . . , ŨT−1

)
min(1, a(η, r)))dθ0 · · · dθT−1

By the distribution of r and ηt, we know that

P
(
r, η0, η2, . . . , ηT−2

∣∣∣θ, Ũ0, . . . , ŨT−1

)
=
(
2πσ2

)−d
2 · exp

(
−‖r‖

2

2σ2

)
·
T−1∏
t=0

(
8πεβσ2

)−d
2 · exp

(
− ‖ηt‖

2

8εβσ2

)

=
(
2πσ2

)−d
2 ·
(
8πεβσ2

)−Td
2 · exp

(
−‖r‖

2

2σ2

)
· exp

(
− 1

8εβσ2

T−1∑
t=0

‖ηt‖2

)
.
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Notice that

T−1∑
t=0

‖ηt‖2

=
T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt) + εβ

(
rt− 1

2
+ rt+ 1

2

)∥∥∥2

=
T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ 2εβ
(
rt+ 1

2
− rt− 1

2
+ ε∇Ũt(θt)

)T (
rt− 1

2
+ rt+ 1

2

)
+ ε2β2

∥∥∥rt− 1
2

+ rt+ 1
2

∥∥∥2

=
T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ 2εβ

(∥∥∥rt+ 1
2

∥∥∥2

−
∥∥∥rt− 1

2

∥∥∥2
)

+ 2ε2β∇Ũt(θt)T
(
rt− 1

2
+ rt+ 1

2

)
+ ε2β2

∥∥∥rt− 1
2

+ rt+ 1
2

∥∥∥2

= 2εβ

(∥∥∥rT− 1
2

∥∥∥2

− ‖r‖2

)
+

T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ 4εβσ2
(
ρt+ 1

2
− ρt− 1

2

)
+ ε2β2

∥∥∥rt− 1
2

+ rt+ 1
2

∥∥∥2

= 2εβ
(
‖r∗‖2 − ‖r‖2)+ 4εβσ2

(
ρT− 1

2
− ρ− 1

2

)
+

T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2

.
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By substituting this above and recalling that ρ− 1
2

= 0,

G(θ, θ∗)

= (1 + εβ)Td · 4d
(
εσ−2

)−(T+1)d
E

∫
P
(
r, η0, η2, . . . , ηT−2, θ

∗
∣∣∣θ, Ũ0, . . . , ŨT−1

)
min(1, a(η, r))dθ0 · · · dθT−1

= (1 + εβ)Td · 4d
(
εσ−2

)−(T+1)d
E

∫ (
2πσ2

)−d
2 ·
(
8πεβσ2

)−Td
2 · exp

(
−‖r‖

2

2σ2

)

· exp

(
− 1

8εβσ2
· 2εβ

(
‖r∗‖2 − ‖r‖2))

· exp

(
− 1

8εβσ2
· 4εβσ2

(
ρT− 1

2
− ρ− 1

2

))
· exp

(
− 1

8εβσ2
·
T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
)

·min(1, a)dθ0 · · · dθT−1

= (1 + εβ)Td · 4d
(
εσ−2

)−(T+1)d
E

∫ (
2πσ2

)−d
2 ·
(
8πεβσ2

)−Td
2

· exp

(
− 1

4σ2

(
‖r∗‖2 + ‖r‖2)) · exp

(
−1

2
ρT− 1

2

)
· exp

(
− 1

8εβσ2
·
T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
)

·min(1, a)dθ0 · · · dθT−1

where r are to be understood as functions of the θt, and the integral is taken over

θt.
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Substituting the expression of a, then the term inside the integral is

(
2πσ2

)−d
2 ·
(
8πεβσ2

)−Td
2 · exp

(
− 1

4σ2

(
‖r∗‖2 + ‖r‖2))

· exp

(
−1

2
ρT− 1

2

)
· exp

(
− 1

8εβσ2
·
T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
)

·min
(

1, exp
(
U(θ)− U(θ∗) + ρT− 1

2

))
=
(
2πσ2

)−d
2 ·
(
8πεβσ2

)−Td
2 · exp

(
− 1

4σ2

(
‖r∗‖2 + ‖r‖2))

· exp

(
− 1

8εβσ2
·
T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
)

· exp (U(θ)) ·min

(
exp

(
−U(θ)− 1

2
ρT− 1

2

)
, exp

(
−U(θ∗) +

1

2
ρT− 1

2

))
.

Finally, this probability multiplied by the probability of θ0, which is 1
Z

exp (−U(θ)),
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is

π(θ)G(θ, θ∗)

=
1

Z
· (1 + εβ)Td · 4d

(
εσ−2

)−(T+1)d

E

∫ (
2πσ2

)−d
2 ·
(
8πεβσ2

)−Td
2 · exp

(
− 1

4σ2

(
‖r∗‖2 + ‖r‖2))

· exp

(
− 1

8εβσ2
·
T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
)

· exp (U(θ)) ·min

(
exp

(
−U(θ)− 1

2
ρT− 1

2

)
, exp

(
−U(θ∗) +

1

2
ρT− 1

2

))
dθ0 · · · dθT−1

=
1

Z
· (1 + εβ)Td · 4d

(
εσ−2

)−(T+1)d ·
(
2πσ2

)−d
2 ·
(
8πεβσ2

)−Td
2 ·

E

∫
exp

(
− 1

4σ2

(
‖r∗‖2 + ‖r‖2))

· exp

(
− 1

8εβσ2
·
T−1∑
t=0

(∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
))

·min

(
exp

(
−U(θ)− 1

2
ρT− 1

2

)
, exp

(
−U(θ∗) +

1

2
ρT− 1

2

))
dθ0 · · · dθT−1

=
1

Z
· (1 + εβ)Td · β−

Td
2 · 2−

3(T−1)d
2 · π−

(T+1)d
2 · ε−

(3T+2)d
2 · σ(T+1)d

· E
∫

exp

(
− 1

4σ2

(
‖r∗‖2 + ‖r‖2))

· exp

(
− 1

8εβσ2
·
T−1∑
t=0

(∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
))

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2

∣∣∣U(θ)− U(θ∗) + ρT− 1
2

∣∣∣) dθ0 · · · dθT−1.

And writing this out explicitly in terms of

ρT− 1
2

=
1

2
εσ−2

T−1∑
t=0

∇Ũt(θt)T
(
rt− 1

2
+ rt+ 1

2

)
,
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we get

π(θ)G(θ, θ∗)

=
1

Z
· (1 + εβ)Td · β−

Td
2 · 2−

3(T−1)d
2 · π−

(T+1)d
2 · ε−

(3T+2)d
2 · σ(T+1)d

· E
∫

exp

(
− 1

4σ2

(
‖r∗‖2 + ‖r‖2))

· exp

(
− 1

8εβσ2
·
T−1∑
t=0

(∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
))

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2

∣∣∣∣∣U(θ)− U(θ∗) +
1

2
εσ−2

T−1∑
t=0

∇Ũt(θt)T
(
rt− 1

2
+ rt+ 1

2

)∣∣∣∣∣
)

dθ0 · · · dθT−1.

Now, for this forward path from θ to θ∗, consider the reverse leapfrog trajectory

from θ∗ to θ. This trajectory will have the same values for θ, θ0, . . . , θ
∗ in the

reversed order and will have negated values for r− 1
2
, r1− 1

2
, . . . , rT− 1

2
in the reversed

order again. Because of this negation, the values of ρ 1
2
, ρ1+ 1

2
, . . . , ρT− 1

2
will also be

negated. It follows that π(θ∗)G(θ∗, θ) will have the same expression.

Therefore,

π(θ)G(θ, θ∗) = π(θ∗)G(θ∗, θ).

This shows that Algorithm 8 with resampling momentum is reversible.

Now we show that the chain satisfies skew detailed balance and the stationary

distribution of θ is π(θ) if not resampling momentum. Skew detailed balance means

that the chain satisfies the following condition [139]

π(x)G(x, y) = π
(
y⊥
)
G
(
y⊥, x⊥

)
where G is the transition probability.
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By Section C.1.1, we know that a chain that satisfies the above condition will

have invariant distribution π(x).

In our setting, x = (θ, r) and x⊥ = (θ,−r). Given this, the skew detailed

balance is

π(θ, r)G((θ, r), (θ∗, r∗)) = π(θ∗,−r∗)G((θ∗,−r∗), (θ,−r)).

Next we will show that Algorithm 8 without resampling momentum satisfies the

above condition and it naturally follows that Algorithm 8 without resampling

converges to the desired distribution.

We consider the joint distribution of (θ, r). By a similar analysis of resampling

case, we can get that

π(θ, r) ·G((θ, r), (θ∗, r∗))

=
1

Z
· (1 + εβ)Td · β−

Td
2 · 2−

3(T−1)d
2 · π−

(T+1)d
2 · ε−

(3T+2)d
2 · σ(T+1)d

· E
∫

exp

(
− 1

4σ2

(
‖r∗‖2 + ‖r‖2))

· exp

(
− 1

8εβσ2
·
T−1∑
t=0

(∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
))

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2

∣∣∣∣∣U(θ)− U(θ∗) +
1

2
εσ−2

T−1∑
t=0

∇Ũt(θt)T
(
rt− 1

2
+ rt+ 1

2

)∣∣∣∣∣
)

dθ0 · · · dθT−1.

Again, the reverse trajectory will have the same values for θ, θ0, . . . , θ
∗ and will

have negated values for r− 1
2
, r1− 1

2
, . . . , rT− 1

2
in the reversed order. Therefore,

π(θ∗,−r∗)G((θ∗,−r∗), (θ,−r)) will have the same expression.
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It follows that

π(θ, r)G((θ, r), (θ∗, r∗)) = π(θ∗,−r∗)G((θ∗,−r∗), (θ,−r))

which is what we want.

C.1.3 Proof of Theorem 10

In this section we prove a bound on the convergence rate of AMAGOLD as compared

with second-order Langevin dynamics (L2MC).

Proof. We start with the expression we derived for the transition probability in the

proof of reversibility.

π(θ)G(θ, θ∗)

=
1

Z
· (1 + εβ)Td · β−

Td
2 · 2−

(3T−1)d
2 · π−

(T+1)d
2 · ε−

(3T+2)d
2 · σ(T+1)d

· E
∫

exp

(
− 1

4σ2

(
‖r∗‖2 + ‖r‖2))

· exp

(
− 1

8εβσ2
·
T−1∑
t=0

(∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ c2ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
))

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2

∣∣∣∣∣U(θ)− U(θ∗) +
1

2
εσ−2

T−1∑
t=0

∇Ũt(θt)T
(
rt− 1

2
+ rt+ 1

2

)∣∣∣∣∣
)

dθ0 · · · dθT−1.

Since

θt = θt−1 + εσ−2rt− 1
2
,

if we define θ−1 and θT by convention such that

θ−1 + θ0

2
= θ and

θT−1 + θT
2

= θ∗,
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it follows that for all t ∈ {0, . . . , T − 1}

rt+ 1
2
− rt− 1

2
= ε−1σ2 (θt+1 − 2θt + θt−1)

and

rt+ 1
2

+ rt− 1
2
ε−1σ2 (θt+1 − θt−1)

so we can write the above transition probability explicitly in terms of the θt as

π(θ)G(θ, θ∗)

=
1

Z
· (1 + εβ)Td · β−

Td
2 · 2−

(3T−1)d
2 · π−

(T+1)d
2 · ε−

(3T+2)d
2 · σ(T+1)d

· E
∫

exp
(
− c

4σ2

(
‖r∗‖2 + ‖r‖2))

· exp

(
− 1

8εβσ2
·
T−1∑
t=0

(∥∥∥ε−1σ2 (θt+1 − 2θt + θt−1) + ε∇Ũt(θt)
∥∥∥2

+ c2ε2β2
∥∥ε−1σ2 (θt+1 − θt−1)

∥∥2

))
· exp

(
−U(θ) + U(θ∗)

2

)

· exp

(
−1

2

∣∣∣∣∣U(θ)− U(θ∗) +
1

2
εσ−2

T−1∑
t=0

∇Ũ(θt)
T
(
ε−1σ2 (θt+1 − θt−1)

)∣∣∣∣∣
)

· dθ0 · · · dθT−1.
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Simplifying this a bit, we get

π(θ)G(θ, θ∗)

=
1

Z
· (1 + εβ)Td · β−

Td
2 · 2−

(3T−1)d
2 · π−

(T+1)d
2 · ε−

(3T+2)d
2 · σ(T+1)d

· E
∫

exp

(
−σ

2

ε2
(
‖θ∗ − θT−1‖2 + ‖θ0 − θ‖2))

· exp

(
− σ2

8ε3β
·
T−1∑
t=0

∥∥∥θt+1 − 2θt + θt−1 + ε2σ−2∇Ũt(θt)
∥∥∥2
)

· exp

(
−βσ

2

8ε
·
T−1∑
t=0

‖θt+1 − θt−1‖2

)

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2

∣∣∣∣∣U(θ)− U(θ∗) +
1

2

T−1∑
t=0

∇Ũt(θt)T (θt+1 − θt−1)

∣∣∣∣∣
)
dθ0 · · · dθT−1.

Next, let

Nt = ∇Ũt(θt)−∇Ut(θt),

At = θt+1 − 2θt + θt−1 + ε2σ−2∇Ut(θt),

Bt = θt+1 − θt−1,

Ct = U(θ)− U(θ∗) +
1

2

T−1∑
t=0

∇Ut(θt)T (θt+1 − θt−1) .

Notice that only Nt depends on the randomness of the stochastic gradient samples.

206



Then,

π(θ)G(θ, θ∗)

=
1

Z
· (1 + εβ)Td · β−

Td
2 · 2−

(3T−1)d
2 · π−

(T+1)d
2 · ε−

(3T+2)d
2 · σ(T+1)d

·
∫

E

[
exp

(
−σ

2

ε2
(
‖θ∗ − θT−1‖2 + ‖θ0 − θ‖2))

· exp

(
− σ2

8ε3β
·
T−1∑
t=0

(
‖At‖2 + 2ε2σ−2ATt Nt + ε4σ−4 ‖Nt‖2))

· exp

(
−βσ

2

8ε
·
T−1∑
t=0

‖Bt‖2

)

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2

∣∣∣∣∣Ct +
1

2

T−1∑
t=0

NT
t Bt

∣∣∣∣∣
)]

dθ0 · · · dθT−1.

Now, for any constant c > 1, we can bound

E

[∣∣∣∣∣
T−1∑
t=0

NT
t Bt

∣∣∣∣∣
]
≤

√√√√√E

(T−1∑
t=0

NT
t Bt

)2


=

√√√√T−1∑
t=0

BT
t E [NtNT

t ]Bt

≤

√√√√T−1∑
t=0

V 2

d
‖Bt‖2

≤ V 2

d

ε

2(c− 1)βσ2
+ (c− 1)

βσ2

2ε

T−1∑
t=0

‖Bt‖2 .

Additionally, we know that E [Nt] = 0 and

E
[
‖Nt‖2] = E

[
tr
(
NtN

T
t

)]
≤ tr

(
V 2

d
I

)
= V 2.
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So, since by Jensen’s inequality, E [exp(X)] ≥ exp(E [X]), we can bound this with

π(θ)G(θ, θ∗)

≥ 1

Z
· (1 + εβ)Td · β−

Td
2 · 2−

(3T−1)d
2 · π−

(T+1)d
2 · ε−

(3T+2)d
2 · σ(T+1)d

·
∫

exp

(
−σ

2

ε2
(
‖θ∗ − θT−1‖2 + ‖θ0 − θ‖2))

· exp

(
− σ2

8ε3β
·
T−1∑
t=0

‖At‖2

)
· exp

(
−εTV

2

8σ2β

)

· exp

(
−cσ

2β

8ε
·
T−1∑
t=0

‖Bt‖2

)

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2
|Ct|
)
· exp

(
− 1

(c− 1)Td
· εTV

2

8σ2β

)
dθ0 · · · dθT−1.

Now, this is a lower bound on the AMAGOLD chain with parameters (ε, σ, β). Next,

we consider the transition probability of a rescaled chain, with slightly different

parameters, that will be set as a function of c. Specifically, consider the chain with

parameters (ε, σ · c−1/4, β · c−1/2). (We will set the parameter c later; at this point

in the proof it is just an arbitrary constant c > 1.) If we call this rescaled chain
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Gr, then by substitution of the parameters into the above expression, we get

π(θ)Gr(θ, θ
∗)

≥ 1

Z
· (1 + c−1/2εβ)Td · β−

Td
2 · 2−

3(T−1)d
2 · π−

(T+1)d
2 · c−

d
4 · ε−

(3T+2)d
2 · σ(T+1)d

·
∫

E exp

(
− σ2

c1/2ε2
(
‖θ∗ − θT−1‖2 + ‖θ0 − θ‖2))

· exp

(
− σ2

8ε3β
·
T−1∑
t=0

‖At‖2

)
· exp

(
−cεTV

2

8σ2β

)

· exp

(
−σ

2β

8ε
·
T−1∑
t=0

‖Bt‖2

)

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2
|Ct|
)
· exp

(
− 1

(c− 1)Td
· cεTV

2

8σ2β

)
dθ0 · · · dθT−1

≥ 1

Z
· (1 + c−1/2εβ)Td · β−

Td
2 · 2−

3(T−1)d
2 · π−

(T+1)d
2 · c−

d
4 · ε−

(3T+2)d
2 · σ(T+1)d

· exp

(
−cεTV

2

8σ2β

)
· exp

(
− 1

(c− 1)Td
· cεTV

2

8σ2β

)
·
∫

E exp

(
−σ

2

ε2
(
‖θ∗ − θT−1‖2 + ‖θ0 − θ‖2))

· exp

(
− σ2

8ε3β
·
T−1∑
t=0

‖At‖2

)

· exp

(
−σ

2β

8ε
·
T−1∑
t=0

‖Bt‖2

)

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2
|Ct|
)
dθ0 · · · dθT−1.

On the other hand, consider the transition probability of the full-gradient L2MC

chain with parameters (ε, σ, β). This chain will be the same as the AMAGOLD

chain, except that Nt = 0 always. So, if we call this chain’s transition probability
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Ḡ, we will have

π(θ)Ḡ(θ, θ∗)

=
1

Z
· (1 + εβ)Td · β−

Td
2 · 2−

(3T−1)d
2 · π−

(T+1)d
2 · ε−

(3T+2)d
2 · σ(T+1)d

·
∫

exp

(
−σ

2

ε2
(
‖θ∗ − θT−1‖2 + ‖θ0 − θ‖2))

· exp

(
− σ2

8ε3β
·
T−1∑
t=0

‖At‖2

)

· exp

(
−βσ

2

8ε
·
T−1∑
t=0

‖Bt‖2

)

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2
|Ct|
)
dθ0 · · · dθT−1.

Using this, we can simplify our bound on the transition probability of the AM-

AGOLD chain to

π(θ)Gr(θ, θ
∗) ≥

(
1 + c−1/2εβ

1 + εβ

)Td
· c−

d
4 · exp

(
−cεTV

2

8σ2β

)
· exp

(
− 1

(c− 1)Td
· cεTV

2

8σ2β

)
· π(θ)Ḡ(θ, θ∗).

Thus,

π(θ)Gr(θ, θ
∗)

π(θ)Ḡ(θ, θ∗)
≥
(

1 + c−1/2εβ

1 + εβ

)Td
· c−

d
4 · exp

(
−cεTV

2

8σ2β

)
· exp

(
− 1

(c− 1)Td
· cεTV

2

8σ2β

)
.

All that remains to get a bound is to set c appropriately. Since

c−
d
4 = exp

(
−d

4
log(c)

)
≥ exp

(
−d

4
(c− 1)

)
,

and

c−1/2 ≥ 1− c− 1

2
,
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we can bound this with

π(θ)Gr(θ, θ
∗)

π(θ)Ḡ(θ, θ∗)

≥

(
1 +

(
1− c−1

2

)
εβ

1 + εβ

)Td

· exp

(
−d

4
(c− 1)− cεTV 2

8σ2β
− 1

(c− 1)Td
· cεTV

2

8σ2β

)
≥
(

1− (c− 1)εβ

2(1 + εβ)

)Td
· exp

(
−d

4
(c− 1)− cεTV 2

8σ2β
− 1

(c− 1)Td
· cεTV

2

8σ2β

)
.

Since for any 0 ≤ x < 1/2, it holds that 1− x ≥ exp(−2x), as long as

(c− 1)εβ

1 + εβ
≤ 1,

it holds that

1− (c− 1)εβ

2(1 + εβ)
≥ exp

(
−(c− 1)εβ

1 + εβ

)
.

So, under this assumption,

π(θ)Gr(θ, θ
∗)

π(θ)Ḡ(θ, θ∗)

≥ exp

(
−(c− 1)εβTd

1 + εβ
− d

4
(c− 1)− cεTV 2

8σ2β
− 1

(c− 1)Td
· cεTV

2

8σ2β

)
= exp

(
−εTV

2

8σ2β
− εV 2

8σ2βd

)
· exp

(
−(c− 1)

(
(1 + εβ(1 + 4T ))d

4(1 + εβ)
+
εTV 2

8σ2β

)
− εV 2

8(c− 1)σ2βd

)
= exp

(
−εTV

2

8σ2β
− εV 2

8σ2βd

)
· exp

(
−(c− 1)

(
3

2
Td+

εTV 2

8σ2β

)
− εV 2

8(c− 1)σ2βd

)
.

If we also assume that

εV 2

4σ2βd
≤ 1,

then

εTV 2

8σ2β
≤ Td

2
,
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and so

π(θ)Gr(θ, θ
∗)

π(θ)Ḡ(θ, θ∗)
≥ exp

(
−εTV

2

8σ2β
− εV 2

8σ2βd

)
· exp

(
−(c− 1)2Td− εV 2

8(c− 1)σ2βd

)
.

Next, set

c− 1 =

√
εV 2

16σ2βTd2
.

From this, we will get

π(θ)Gr(θ, θ
∗)

π(θ)Ḡ(θ, θ∗)
≥ exp

(
−εTV

2

8σ2β
− εV 2

8σ2βd

)
· exp

(
−

√
εTV 2

σ2β

)

≥ exp

(
−εTV

2

4σ2β
−

√
εTV 2

σ2β

)
.

Now, in order for this to hold, we needed

(c− 1)εβ

1 + εβ
≤ 1.

With our setting of c, and our other assumption,

c− 1 =

√
εV 2

16σ2βTd2
=

√
εV 2

4σ2βd
· 1

4Td
≤
√

1

4Td
≤ 1,

so the bound will trivially hold. Thus the only added assumption we needed is the

one stated in the Theorem statement, that

εV 2

4σ2βd
≤ 1.

Now we apply the standard Dirichlet form argument. The spectral gap of a Markov

chain can be written as [3]

γ = inf
f∈L2

0(π):V arπ [f ]=1
E(f)

where L2
0(π) denotes the Hilbert space of all functions that are square integrable

with respect to probability measure π and have mean zero. E(f) is the Dirichlet
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form of a Markov chain associated with transition operator T [50]:

E(f) =
1

2

∫ ∫ [
(f(θ)− f(θ∗))2]G(θ, θ∗)π(θ)dθdθ∗

By the expression of the spectral gap, it follows that

γ = inf
f∈L2

0(π):V arπ [f ]=1

[
1

2

∫ ∫ [
(f(θ)− f(θ∗))2]G(θ, θ∗)π(θ)dθdθ∗

]

≥ exp

(
−εTV

2

4σ2β
−

√
εTV 2

σ2β

)

· inf
f∈L2

0(π):V arπ [f ]=1

[
1

2

∫ ∫ [
(f(θ)− f(θ∗))2] Ḡ(θ, θ)π(θ)dθdθ∗

]

= exp

(
−εTV

2

4σ2β
−

√
εTV 2

σ2β

)
· γ̄

This finishes the proof.

C.2 Reformulation of AMAGOLD Algorithm

We reformulate our algorithm by setting v = εσ−2r,b = εβ, h = ε2σ−2 and outline

the algorithm after reformulation in Algorithm 15.
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Algorithm 15 Reformulated AMAGOLD

1: given: Energy U , initial state θ ∈ Θ
2: loop
3: optionally, resample momentum: v ∼ N (0, hI)
4: initialize momentum and energy acc: v− 1

2
← v, ρ− 1

2
← 0

5: half position update: θ0 ← θ + 1
2
v− 1

2

6: for t = 0 to T − 1 do
7: if t 6= 0 then
8: position update: θt ← θt−1 + vt− 1

2

9: end if
10: sample noise ηt ∼ N (0, 4hb)
11: sample random energy component Ũt

12: update momentum: vt+ 1
2
←
(

(1− b)vt− 1
2
− h∇Ũt(θt) + ηt

)
/(1 + b)

13: update energy acc: ρt+ 1
2
← ρt− 1

2
+ 1

2
∇Ũt(θt)T

(
vt− 1

2
+ vt+ 1

2

)
14: end for
15: half position update: θT ← θT−1 + 1

2
vT− 1

2

16: new values: θ∗ ← θT , v∗ ← vT− 1
2

17: a← exp
(
U(θ)− U(θ∗) + ρT− 1

2

)
18: with probability min(1, a) update θ ← θ∗, v ← v∗ (as long as θ∗ ∈ Θ)
19: otherwise update v ← −v− 1

2

20: end loop
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C.3 Additional Experiments Results and Setting Details

Double Well Potential

We visualize the estimated density on additional step size settings. Consistent with

Figure 4.1d, it is clear here that SGHMC is very sensitive to step size. A small

change in step size will cause a big difference in the estimated density. In contrast,

AMAGOLD is more robust and can work well with a large range of step sizes.

When the setup of step size is inappropriate, as in Figures C.1a and b where it

is fixed to be too small, either SGHMC or AMAGOLD converges in the training

time. This is because the chain moves too slowly toward the stationary distribution.

However, AMAGOLD with step size tuning is able to automatically adjust the

step size based on the information provided by MH step. As shown in Figure 4.1c,

tuned AMAGOLD can determine a step size that causes convergence given the

same training time budget. All results are obtained by collecting 105 samples with

1000 burn-in samples.

Two-Dimensional Synthetic Distributions

Analytical Expression

Dist1: N (z1; z2
2/4, 1)N (z2; 0, 4)

Dist2: 0.5N

(
z; 0,

 2 1.8

1.8 2

)+ 0.5N

(
z; 0,

 2 −1.8

−1.8 2

)

Runtime Comparisons We report runtime comparisons between AMAGOLD

and SGHMC on Dist1 and Dist2 with step size 0.15 (Figure C.2). This experiment
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Figure C.1: Estimated densities of SGHMC (1st column) and AMAGOLD (2nd
column) on varying step sizes.

uses the analytical energy expression (no data examples), so there is no speed-up of

stochastic methods over full-batch methods. At the beginning, SGHMC converges

faster due to the lack of MH step, but eventually it converges to a biased distribution.

AMAGOLD is not much slower than SGHMC, which shows that AMA can reduce

the amount of computation of adding MH step while keep the chain unbiased.

Additional Note on Figure 4.2 It is worth noting that, even though it is lower

than SGHMC’s, AMAGOLD’s KL divergence grows when the step size is large
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Figure C.2: Runtime comparisons between SGHMC and AMAGOLD on synthetic
distributions (a) Dist1 and (b) Dist2.

compared to full-batch methods. This is because the MH acceptance probability

decreases, causing the chain to converge more slowly. This is expected. It is

well-known that stochastic methods are more sensitive to step sizes than full-batch

methods [110]. However, since AMAGOLD’s KL divergence grows much slower

than SGHMC’s, AMAGOLD is more robust to different step sizes

Bayesian Logistic Regression

We report the acceptance probability of AMAGOLD on Heart for varying step sizes

in Figure C.3. For a large range of step sizes, the acceptance rate is sufficiently

high to allow the chain converge fast, demonstrated in Figure 4.4. The acceptance

rate may become very low with a large step size resulting in slow move. But this

undesired acceptance probability can be easily detected and avoided in practice.

Bayesian Neural Networks

The architecture of Bayesian Neural Networks is a two-layer MLP with first hidden

layer size 500 and the second hidden layer size 256.
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Figure C.3: The acceptance probability of the MH step in AMAGOLD for varying
step sizes on the Heart dataset.
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APPENDIX D

SECTION 5 CYCLICAL STOCHASTIC GRADIENT MCMC

D.1 Proofs

D.1.1 Assumptions

Assumptions in weak convergence analysis

In the analysis, we define a functional ψ that solves the following Poisson Equation:

Lψ(θk) = φ(θk)− φ̄, or equivalently,
1

K

K∑
k=1

Lψ(θk) = φ̂− φ̄. (D.1)

The solution functional ψ(θk) characterizes the difference between φ(θk) and the

posterior average φ̄ for every θk, thus would typically possess a unique solution,

which is at least as smooth as φ under the elliptic or hypoelliptic settings [101].

Following [25, 143], we make certain assumptions on the solution functional, ψ, of

the Poisson equation (D.1).

Assumption 3. ψ and its up to 3rd-order derivatives, Dkψ, are bounded by a

function V, i.e., ‖Dkψ‖ ≤ HkVpk for k = (0, 1, 2, 3), Hk, pk > 0. Furthermore, the

expectation of V on {θk} is bounded: supl EVp(θk) <∞, and V is smooth such that

sups∈(0,1) Vp (sθ + (1− s) θ′) ≤ C (Vp (θ) + Vp (θ′)), ∀θ, θ′, p ≤ max{2pk} for some

C > 0.
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Assumptions in convergence under the Wasserstein distance

Following existing work in [119], we adopt the following standard assumptions

summarized in Assumption 4.

Assumption 4. • There exists some constants A ≥ 0 and B ≥ 0, such that

U(0) ≤ A and ∇U(0) ≤ B.

• The function U is LU -smooth : ‖∇U(w)−∇U(v)‖ ≤ LU‖w − v‖.

• The function U is (mu, b)− dissipative, which means for some mU > 0 and

b > 0 〈w,∇U(w)〉 ≥ mU‖w‖2 − b.

• There exists some constant δ ∈ [0, 1), such that E[‖∇Ũk(w)−∇U(w)‖2] ≤

2σ(M2
U‖w‖2 +B2).

• We can choose µ0 which satisfies the requirement: κ0 := log
∫
e‖w‖

2
µ0(w)dw <

∞.

D.1.2 Proof of Theorem 11

To prove the theorem, we borrow tools developed by [25, 141]. We first rephrase

the stepsize assumptions in general SG-MCMC in Assumption 5.

Assumption 5. The algorithm adopts an N-th order integrator. The step sizes

{hk} are such that 0 < hk+1 < hk, and satisfy 1)
∑∞

k=1 hk = ∞; and 2)

limK→∞

∑K
k=1 h

N+1
k∑K

k=1 hk
= 0.

Our prove can be derived by the following results from [25].

Lemma 8 ([25]). 11 Let SK ,
∑K

k=1 hk. Under Assumptions 3 and 5, for a

smooth test function φ, the bias and MSE of a decreasing-step-size SG-MCMC with
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a N th-order integrator at time SL are bounded as:

BIAS:
∣∣∣Eφ̃− φ̄∣∣∣ = O

(
1

SK
+

∑K
k=1 h

N+1
k

SK

)
(D.2)

MSE: E
(
φ̃− φ̄

)2

≤ C

(∑
l

h2
k

S2
K

E ‖∆Vl‖2 +
1

SK
+

(
∑K

k=1 h
N+1
k )2

S2
K

)
. (D.3)

Note that Assumption 5 is only required if one wants to prove the asymptotically

unbias of an algorithm. Lemma 11 still applies even if Assumption 5 is not satisfied.

In this case one would obtain a biased algorithm, which is the case of cSGLD.

Proof of Theorem 11. Our results is actually a special case of Lemma 11. To see

that, first note that our cSGLD adopts a first order integrator, thus N = 1. To

proceed, note that SK =
∑K

k=1 αk = O(α0K), and

K−1∑
j=0

α2
j+1 =

α2
0

4

K−1∑
j=0

[cos(
πmod(j − 1, [K/M ])

[K/M ]
) + 1]2

=
α2

0

4

K−1∑
j=0

[cos2(
πmod(j − 1, K/M)

K/M
) + 1]2

=
α2

0

4

K

M
(
M

2
+M) =

3α2
0K

8
. (D.4)

As a result, for the bias, we have∣∣∣Eφ̃− φ̄∣∣∣ = O

(
1

SK
+

∑K
k=1 h

N+1
k

SK

)
= O

(
1

α0K
+

3α2
0K/8

α0K

)
= O

(
1

α0K
+ α0

)
.

For the MSE, note the first term
∑

l

h2
k

S2
K
E ‖∆Vl‖2 has a higher order than other

terms, thus it is omitted in the big-O notation, i.e.,

E
(
φ̃− φ̄

)2

= O

(
1

α0K
+ (

3α2
0K/8

α0K
)2

)
= O

(
1

α0K
+ α2

0

)
.

This completes the proof.
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D.1.3 Proof of Theorem 12

Proof of the bound for W2(µK , ν∞) in cSGLD. Firstly, we introduce the following

SDE

dθt = −∇U(θt)dt+
√

2dWt , (D.5)

Let νt denote the distribution of θt, and the stationary distribution of (D.5) be

p(θ|D), which means ν∞ = p(θ|D).

θk+1 = θk −∇Ũk(θk)αk+1 +
√

2αk+1ξk+1 (D.6)

Further, let µk denote the distribution of θk.

Since

W2(µK , ν∞) ≤ W2(µK , ν∑K
k=1 αk

) +W2(ν∑K
k=1 αk

, ν∞) (D.7)

, we need to give the bounds for these two parts respectively.

W2(µK , ν∑K
k=1 αk

) For the first part, W2(µK , ν∑K
k=1 αk

), our proof is based on the

proof of Lemma 3.6 in [119] with some modifications. We first assume E(∇Ũ(w)) =

∇U(w), ∀w ∈ Rd , which is a general assumption according to the way we choose

the minibatch. And we define p(t) which will be used in the following proof:

p(t) = {k ∈ Z|
k∑
i=1

αi ≤ t <

k+1∑
i=1

αi}

Then we focus on the following continuous-time interpolation of θk:

θ(t) =θ0 −
∫ t

0

∇Ũ

θ(p(s)∑
k=1

αk)

 ds+
√

2

∫ t

0

dW(d)
s
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where ∇Ũ ≡ ∇Ũk for t ∈
[∑k

i=1 αi,
∑k+1

i=1 αi

)
. And for each k , θ(

∑k
i=1 αi) and θk

have the same probability law µk.

Since θ(t) is not a Markov process, we define the following process which has the

same one-time marginals as θ(t)

V (t) = θ0 −
∫ t

0

Gs (V (s)) ds+
√

2

∫ t

0

dW(d)
s

with

Gt(x) := E

∇Ũ
θ( q(t)∑

i=1

αi)

 |θ(t) = x


Let Pt

V := L (V (s) : 0 ≤ s ≤ t) and Pt
θ := L (θ(s) : 0 ≤ s ≤ t) and according to the

proof of Lemma 3.6 in [119], we can derive a similar result for the relative entropy

of Pt
V and Pt

θ:

DKL(Pt
V ‖Pt

θ) =−
∫

d Pt
V log

d Pt
V

d Pt
θ

=
1

4

∫ t

0

E‖∇U(V (s))−Gs(V (s))‖2ds

=
1

4

∫ t

0

E‖∇U(θ(s))−Gs(θ(s))‖2ds

The last line follows the fact that L(θ(s)) = L(V (s)), ∀s.

Then we will let t =
∑K

k=1 αk and we can use the martingale property of the integral
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to derive:

DKL(P
∑K
k=1 αk

V ‖P
∑K
k=1 αk

θ )

=
1

4

K−1∑
j=0

∫ ∑j+1
k=1 αk

∑j
k=1 αk

E‖∇U(θ(s))−Gs(θ(s))‖2ds

≤ 1

2

K−1∑
j=0

∫ ∑j+1
k=1 αk

∑j
k=1 αk

E‖∇U(θ(s))−∇U(θ(

q(s)∑
k=1

αi)‖2ds

+
1

2

K−1∑
j=0

∫ ∑j+1
k=1 αk

∑j
k=1 αk

E‖∇U(θ(

q(s)∑
k=1

αi)−Gs(θ(

q(s)∑
k=1

αi)‖2ds

≤ L2
U

2

K−1∑
j=0

∫ ∑j+1
k=1 αk

∑j
k=1 αk

E‖θ(s)− θ(
q(s)∑
k=1

αi)‖2ds (D.8)

+
1

2

K−1∑
j=0

∫ ∑j+1
k=1 αk

∑j
k=1 αk

E‖∇U(θ(

q(s)∑
k=1

αi)−Gs(θ(

q(s)∑
k=1

αi)‖2ds (D.9)

For the first part (D.8), we consider some s ∈ [
∑j

k=1 αk,
∑j+1

k=1 αk), for which the

following holds:

θ(s)− θ(
j∑

k=1

αk)

= −(s−
j∑

k=1

αk)∇Ũk(θk) +
√

2(W(d)
s −W

(d)∑j
k=1 αk

)

= −(s−
j∑

k=1

αk)∇U(θk) + (s−
j∑

k=1

αk)(∇U(θk)−∇Ũk(θk)) +
√

2(W(d)
s −W

(d)∑j
k=1 αk

)

(D.10)

Thus, we can use Lemma 3.1 and 3.2 in [119] for the following result:

E‖θ(s)− θ(
j∑

k=1

αk)‖2

≤ 3α2
j+1E‖∇U(θj)‖2 + 3α2

j+1E‖∇U(θj)−∇Ũj(θj)‖2 + 6αj+1d

≤ 12α2
j+1(L2

UE‖θj‖2 +B2) + 6αj+1d
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Hence we can bound the first part, (choosing α0 ≤ 1),

L2
U

2

K−1∑
j=0

∫ ∑j+1
k=1 αk

∑j
k=1 αk

E‖θ(s)− θ(
q(s)∑
k=1

αi)‖2ds

≤ L2
U

2

K−1∑
j=0

[
12α3

j+1(L2
UE‖θj‖2 +B2) + 6α2

j+1d
]

≤ L2
U max

0≤j≤K−1

[
6(L2

UE‖θj‖2 +B2) + 3d
]

(
K−1∑
j=0

α2
j+1)

≤ L2
U max

0≤j≤K−1

[
6(L2

UE‖θj‖2 +B2) + 3d
] 3α2

0K

8
(D.11)

The last line (D.11) follows from1 (D.4). The second part (D.9) can be bounded

as follows:

1

2

K−1∑
j=0

∫ ∑j+1
k=1 αk

∑j
k=1 αk

E‖∇U(θ(

q(s)∑
k=1

αi)−Gs(θ(

q(s)∑
k=1

αi)‖2ds

=
1

2

K−1∑
j=0

αj+1E‖∇U(θj)−∇Ũ(θj)‖2

≤ σ max
0≤j≤K−1

(L2
UE‖θj‖2 +B2)

K−1∑
j=0

αj+1

≤ σ max
0≤j≤K−1

(L2
UE‖θj‖2 +B2)(

α0

2

K−1∑
j=0

(cos(
πmod(j,K/M)

K/M
) + 1))

≤ σ max
0≤j≤K−1

(L2
UE‖θj‖2 +B2)(

Kα0

2
)

1Note: we only focus on the case when K mod M = 0.
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Due to the data-processing inequality for the relative entropy, we have

DKL(µK‖ν∑K
k=1 αk

) ≤ DKL(Pt
V ‖Pt

θ)

≤ L2
U

2

K−1∑
j=0

∫ ∑j+1
k=1 αk

∑j
k=1 αk

E‖θ(s)− θ(
q(s)∑
k=1

αi)‖2ds

+
1

2

K−1∑
j=0

∫ ∑j+1
k=1 αk

∑j
k=1 αk

E‖∇U(θ(

q(s)∑
k=1

αi)−Gs(θ(

q(s)∑
k=1

αi)‖2ds

≤ L2
U max

0≤j≤K−1

[
6(L2

UE‖θj‖2 +B2) + 3d
] 3α2

0K

8

+ σ max
0≤j≤K−1

(L2
UE‖θj‖2 +B2)(

Kα0

2
)

According to the proof of Lemma 3.2 in [119], we can bound the term E‖θk‖2

E‖θk+1‖2 ≤ (1− 2αk+1mU + 4α2
k+1M

2
U)E‖θk‖2 + 2αk+1b+ 4α2

k+1B
2 +

2αk+1d

β

Similar to the statement of Lemma 3.2 in [119], we can fix α0 ∈ (0, 1∧ mU
4M2

U
). Then,

we can know that

E‖θk+1‖2 ≤ (1− 2αminmU + 4α2
minM

2
U)E‖θk‖2 + 2α0b+ 4α2

0B
2 +

2α0d

β
(D.12)

, where αmin is defined as αmin , α0

2

[
cos
(
π mod(dK/Me−1,dK/Me)

dK/Me

)
+ 1
]
.

There are two cases to consider.

• If 1− 2αminmU + 4α2
minM

2
U ≤ 0, then from (D.12) it follows that

E‖θk+1‖2 ≤ 2α0b+ 4α2
0B

2 +
2α0d

β

≤ E‖θ0‖2 + 2(b+ 2B2 +
d

β
)

• If 0 ≤ 1− 2αminmU + 4α2
minM

2
U ≤ 1, then iterating (D.12) gives

E‖θk‖2 ≤ (1− 2αminmU + 4α2
minM

2
U)kE‖θ0‖2 +

α0b+ 2α2
0B

2 + α0d
β

αminmU − 2α2
minM

2
U

≤ E‖θ0‖2 +
2α0

mUαmin
(b+ 2B2 +

d

β
)
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Now, we have

max
0≤j≤K−1

(L2
UE‖θj‖2 +B2)

≤ (L2
U(κ0 + 2(1 ∧ α0

mUαmin
)(b+ 2B2 + d)) +B2) := C0

Due to the expression of α0

αmin
, C0 is independent of α0. Then we denote the

6L2
U(C0 + d) as C1 and we can derive

DKL(µK‖ν∑K
k=1 αk

) ≤ C1(
3α2

0K

8
) + σC0(

Kα0

2
)

Then according to Proposition 3.1 in [17] and Lemma 3.3 in [119], if we denote

κ0 + 2b+ 2d as C2, we can derive the following result:

W2(µK , ν∑K
k=1 αk

)

≤ (12 + C2(
K∑
k=1

αk))
1
2 · [DKL(µK‖ν∑K

k=1 αk
)

1
2 +DKL(µK‖ν∑K

k=1 αk
)

1
4 ]

≤ (12 +
C2Kα0

2
)

1
2 · [(3C1α

2
0K

8
+
KσC0α0

2
)

1
2 + (

3C1α
2
0K

16
+
KσC0α0

4
)

1
4 ]

W2(ν∑K
k=1 αk

, ν∞) We can directly get the following results from (3.17) in [119]

that there exist some positive constants (C3, C4),

W2(ν∑K
k=1 αk

, ν∞) ≤ C3 exp(−
K∑
k=1

αk/C4)

Now combining the bounds for W2(µK , ν∑K
k=1 αk

) and W2(ν∑K
k=1 αk

, ν∞), substi-

tuting α0 = O(1/Kβ), and noting W2(ν∑K
k=1 αk

, ν∞) decreases w.r.t. K, we arrive

at the bound stated in the theorem.
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Relation with SGLD

For the standard polynomially-decay-stepsize SGLD, the convergence rate is

bounded as

W2(µ̃K , ν∞) ≤ W2(µ̃K , ν∑K
k=1 hk

) +W2(ν∑K
k=1 hk

, ν∞) (D.13)

where W2(µ̃K , ν∑K
k=1 hk

) ≤ (6 + h0

∑K
k=1

1
k
)

1
2 ·

[(D1h
2
0

π2

6
+ σD0h0

K∑
k=1

1

k
)

1
2 + (D1h

2
0

π2

16
+ σD0

h0

2

K∑
k=1

1

k
)

1
4 ]

and W2(ν∑K
k=1 hk

, ν∞) ≤ C3 exp(−
∑K
k=1 hk
C4

).

Proof of the bound of W2(µ̃K , ν∞) in the standard SGLD. Similar to the proof of

W2(µK , ν∞) in cSGLD, we get the following update rule for SGLD with the stepsize

following a polynomial decay i.e., hk = h0

k
,

θk+1 = θk −∇Ũk(θk)hk+1 +
√

2hk+1ξk+1

Let µ̃k denote the distribution of θk.

Since

W2(µ̃K , ν∞) ≤ W2(µ̃K , ν∑K
k=1 hk

) +W2(ν∑K
k=1 hk

, ν∞),

we need to give the bounds for these two parts respectively.

W2(µ̃K , ν∑K
k=1 hk

)

We first assume E(∇Ũ(w)) = ∇U(w), ∀w ∈ Rd , which is a general assumption

according to the way we choose the minibatch. Following the proof in [119] and
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the analysis of the SPOS method in [153], we define the following p(t) which will

be used in the following proof:

p(t) = {k ∈ Z|
k∑
i=1

hi ≤ t <

k+1∑
i=1

hi}

Then we focus on the following continuous-time interpolation of θk:

θ(t) =θ0 −
∫ t

0

∇Ũ

θ(p(s)∑
k=1

hk)

 ds+
√

2

∫ t

0

dW(d)
s ,

where ∇Ũ ≡ ∇Ũk for t ∈
[∑k

i=1 hi,
∑k+1

i=1 hi

)
. And for each k , θ(

∑k
i=1 hi) and θk

have the same probability law µ̃k.

Since θ(t) is not a Markov process, we define the following process which has the

same one-time marginals as θ(t)

V (t) = θ0 −
∫ t

0

Gs (V (s)) ds+
√

2

∫ t

0

dW(d)
s

with

Gt(x) := E

∇Ũ
θ( q(t)∑

i=1

hi)

 |θ(t) = x


Let Pt

V := L (V (s) : 0 ≤ s ≤ t) and Pt
θ := L (θ(s) : 0 ≤ s ≤ t) and according to the

proof of Lemma 3.6 in [119], we can derive the similar result for the relative entropy

of Pt
V and Pt

θ:

DKL(Pt
V ‖Pt

θ) =−
∫

d Pt
V log

d Pt
V

d Pt
θ

=
1

4

∫ t

0

E‖∇U(V (s))−Gs(V (s))‖2ds

=
1

4

∫ t

0

E‖∇U(θ(s))−Gs(θ(s))‖2ds
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The last line follows the fact that L(θ(s)) = L(V (s)), ∀s.

Then we will let t =
∑K

k=1 hk and we can use the martingale property of integral

to derive:

DKL(P
∑K
k=1 hk

V ‖P
∑K
k=1 hk

θ )

=
1

4

K−1∑
j=0

∫ ∑j+1
k=1 hk

∑j
k=1 hk

E‖∇U(θ(s))−Gs(θ(s))‖2ds

≤ 1

2

K−1∑
j=0

∫ ∑j+1
k=1 hk

∑j
k=1 hk

E‖∇U(θ(s))−∇U(θ(

q(s)∑
k=1

hi)‖2ds

+
1

2

K−1∑
j=0

∫ ∑j+1
k=1 hk

∑j
k=1 hk

E‖∇U(θ(

q(s)∑
k=1

hi)−Gs(θ(

q(s)∑
k=1

hi)‖2ds

≤ L2
U

2

K−1∑
j=0

∫ ∑j+1
k=1 hk

∑j
k=1 hk

E‖θ(s)− θ(
q(s)∑
k=1

hi)‖2ds (D.14)

+
1

2

K−1∑
j=0

∫ ∑j+1
k=1 hk

∑j
k=1 hk

E‖∇U(θ(

q(s)∑
k=1

hi)−Gs(θ(

q(s)∑
k=1

hi)‖2ds (D.15)

For the first part (D.14), we consider some s ∈ [
∑j

k=1 hk,
∑j+1

k=1 hk), the following

equation holds:

θ(s)− θ(
j∑

k=1

hk)

= −(s−
j∑

k=1

hk)∇Ũk(θk) +
√

2(W(d)
s −W

(d)∑j
k=1 hk

)

= −(s−
j∑

k=1

hk)∇U(θk) + (s−
j∑

k=1

hk)(∇U(θk)−∇Ũk(θk)) +
√

2(W(d)
s −W

(d)∑j
k=1 hk

)

(D.16)

Thus, we can use Lemma 3.1 and 3.2 in [119] for the following result:

E‖θ(s)− θ(
j∑

k=1

hk)‖2

≤ 3h2
j+1E‖∇U(θj)‖2 + 3h2

j+1E‖∇U(θj)−∇Ũj(θj)‖2 + 6hj+1d

≤ 12h2
j+1(L2

UE‖θj‖2 +B2) + 6hj+1d
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Hence we can bound the first part, (choosing h0 ≤ 1),

L2
U

2

K−1∑
j=0

∫ ∑j+1
k=1 hk

∑j
k=1 hk

E‖θ(s)− θ(
q(s)∑
k=1

hk)‖2ds

≤ L2
U

2

K−1∑
j=0

[
12h3

j+1(L2
UE‖θj‖2 +B2) + 6h2

j+1d
]

≤ L2
U max

0≤j≤K−1

[
6(L2

UE‖θj‖2 +B2) + 3d
]

(
K−1∑
j=0

h2
j+1)

≤ L2
U max

0≤j≤K−1

[
6(L2

UE‖θj‖2 +B2) + 3d
] π2

6
h2

0 (D.17)

where the last line follows from the fact that

K−1∑
j=0

1

(j + 1)3
≤

K−1∑
j=0

1

(j + 1)2
≤

∞∑
j=0

1

(j + 1)2
=
π2

6
.

The second part (D.15) can be bounded as follows:

1

2

K−1∑
j=0

∫ ∑j+1
k=1 hk

∑j
k=1 hk

E‖∇U(θ(

q(s)∑
k=1

hi)−Gs(θ(

q(s)∑
k=1

hi)‖2ds

=
1

2

K−1∑
j=0

hj+1E‖∇U(θj)−∇Ũ(θj)‖2

≤ σ max
0≤j≤K−1

(L2
UE‖θj‖2 +B2)

K−1∑
j=0

hj+1

≤ σ max
0≤j≤K−1

(L2
UE‖θj‖2 +B2)(h0

K∑
j=1

1

j
)
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Due to the data-processing inequality for the relative entropy, we have

DKL(µ̃K‖ν∑K
k=1 hk

) ≤ DKL(Pt
V ‖Pt

θ)

≤ L2
U

2

K−1∑
j=0

∫ ∑j+1
k=1 hk

∑j
k=1 hk

E‖θ(s)− θ(
q(s)∑
k=1

hi)‖2ds

+
1

2

K−1∑
j=0

∫ ∑j+1
k=1 hk

∑j
k=1 hk

E‖∇U(θ(

q(s)∑
k=1

hi)−Gs(θ(

q(s)∑
k=1

hi)‖2ds

≤ L2
U max

0≤j≤K−1

[
6(L2

UE‖θj‖2 +B2) + 3d
] π2

6
h2

0

+ σ max
0≤j≤K−1

(L2
UE‖θj‖2 +B2)(h0

K∑
j=1

1

j
)

Similar to the proof of cSGLD , we have

max
0≤j≤K−1

(L2
UE‖θj‖2 +B2) ≤ D0

Then we denote the 6L2
U(D0 + d) as D1 and we can derive

DKL(µ̃K‖ν∑K
k=1 hk

) ≤ D1h
2
0

π2

6
+ σD0h0

K∑
j=1

1

j

Then according to Proposition 3.1 in [17] and Lemma 3.3 in [119], if we denote

κ0 + 2b+ 2d as D2, we can derive the following result,

W2(µ̃K , ν∑K
k=1 hk

)

≤ [12 +D2(
K∑
k=1

hk)]
1/2 · [(DKL(µ̃K‖ν∑K

k=1 hk
))1/2 + (DKL(µ̃K‖ν∑K

k=1 hk
)/2)1/4]

= [12 +D2(h0

K∑
j=1

1

j
)]1/2 · [(D1h

2
0

π2

6
+ σD0h0

K∑
j=1

1

j
)1/2 + (D1h

2
0

π2

12
+ σD0h0

K∑
j=1

1

2j
)1/4]

Now we derive the bound for W2(µ̃K , ν∑K
k=1 hk

).
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W2(ν∑K
k=1 hk

, ν∞)

We can directly get the following results from (3.17) in [119] that there exist some

positive constants (C3, C4),

W2(ν∑K
k=1 hk

, ν∞) ≤ C3 exp(−
K∑
k=1

hk/C4)

Based on the convergence error bounds, we discuss an informal comparison

with standard SGLD. Consider the following two cases.We must emphasize that

since the term W2(µK , ν∑K
k=1 αk

) in the (D.7) increases w.r.t. K, our α0 must be

set small enough in practice. Hence, in this informal comparison, we also set α0

small enough to make W2(µK , ν∑K
k=1 αk

) less important.

i) If the initial stepsizes satisfy α0 ≥ h0, our algorithm cSGLD runs much

faster than the standard SGLD in terms of the amount of “diffusion time” i.e., the

”t” indexing θt in the continuous-time SDE mentioned above. This result follows

from
∑K

k=1 αk = Kα0

2
and

∑K
k=1 hk =

∑K
k=1

h0

k
= O(h0 logK)� Kα0

2
. In standard

SGLD, since the error described by W2(µ̃K , ν∑K
k=1 hk

) increases w.r.t. K, h0 needs

to be set small enough in practice to reduce the error. Following the general

analysis of SGLD in [119, 149], the dominant term in the decomposition (D.13)

will be W2(ν∑K
k=1 hk

, ν∞) since it decreases exponentially fast with the increase of

t and W2(µ̃K , ν∑K
k=1 hk

) is small due to the setting of small h0. Since
∑K

k=1 αk

increases much faster in our algorithm than the term
∑K

k=1 hk in standard SGLD,

our algorithm thus endows less error for K iterations, i.e., W2(ν∑K
k=1 αk

, ν∞) �

W2(ν∑K
k=1 hk

, ν∞). Hence, our algorithm outperforms standard SGLD, as will be

verified in our experiments.
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ii) Instead of setting the h0 small enough, one may consider increasing h0 to make

standard SGLD run as “fast” as our proposed algorithm, i.e.,
∑K

k=1 hk ≈
∑K

k=1 αk.

Now the W2(ν∑K
k=1 hk

, ν∞) in (D.13) is almost the same as the W2(ν∑K
k=1 hk

, ν∞) in

(D.7). However, in this case, it is worth noting that h0 scales as O(α0K/ logK). We

can notice that h0 is much larger than the α0 and thus the W2(µ̃K , ν∑K
k=1 hk

) cannot

be ignored. Now the h2
0 term in W2(µ̃K , ν∑K

k=1 hk
) would scale as O(α2

0K
2/ log2K),

which makes W2(µ̃K , ν∑K
k=1 αk

) in (D.13) much larger than our W2(µK , ν∑K
k=1 αk

)

defined in (D.7) since O(α2
0K

2/ log2K)� O(α2
0K). Again, our algorithm cSGLD

achieves a faster convergence rate than standard SGLD.

D.2 Combining Samples

In cyclical SG-MCMC, we obtain samples from multiple modes of a posterior

distribution by running the cyclical step size schedule for many periods. We

now show how to effectively utilize the collected samples. We consider each cycle

exploring different part of the target distribution p(θ|D) on a metric space Θ. As we

have M cycles in total, the mth cycle characterizes a local region Θm ⊂ Θ, defining

the “sub-posterior” distribution: pm(θ|D) =
p(θ|D)1Θm

wm
,with wm =

∫
Θm

p(θ|D)dθ,

where wm is a normalizing constant. For a testing function f(θ), we are often

interested in its true posterior expectation f̄ =
∫
f(θ)p(θ|D)dθ. The sample-based

estimation is

f̂ =
M∑
m=1

wmf̂m with f̂m =
1

Km

Km∑
j=1

f(θ
(m)
j ), (D.18)

where Km is the number of samples from the mth cycle, and θ(m) ∈ Θm.

The weight for each cycle wi is estimated using the harmonic mean method [60,

118]: ŵm ≈ [ 1
Km

∑Km
j=1

1

p(D|θ(m)
j )

]−1. This approach provides a simple and consistent
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estimator, where the only additional cost is to traverse the training dataset to

evaluate the likelihood p(D|θ(m)
j ) for each sample θ

(m)
j . We evaluate the likelihood

once off-line and store the result for testing.

If Θm are not disjoint, we can assume new sub-regions Θ̃m which are disjoint

and compute the estimator as following

f̂m =
1

nm

M∑
m=1

Km∑
j=1

f(θ(j)
m )1Θ̃m

(θ
(m)
j )

where

nm =
M∑
m=1

Km∑
j=1

1Θ̃m
(θ

(m)
j )

and 1Θ̃m
(θ

(m)
j ) equals 1 only when θ

(m)
j ∈ Θ̃m. By doing so, our estimator still holds

even if Θm are not disjoint.

D.3 Theoretical Analysis under Convex Assumption

Firstly, we introduce the following SDE

dθt = −∇U(θt)dt+
√

2dWt , (D.5)

Let νt denote the distribution of θt, and the stationary distribution of (D.5) be

p(θ|D), which means ν∞ = p(θ|D).

However, the exact evaluation of the gradient ∇U is computationally expensive.

Hence, we need to adopt noisy evaluations of ∇U . For simplicity, we assume that

at any point θk, we can observe the value

˜∇Uk = ∇U(θk) + ζk
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where ζk : k = 0, 1, 2, ... is a sequence of random (noise) vectors. Then the algorithm

is defined as:

θk+1 = θk − αk+1
˜∇Uk +

√
2αk+1ξk+1 (D.19)

Further, let µk denote the distribution of θk.

Following the existing work in [35], we adopt the following standard assumptions

summarized in Assumption 6,

Assumption 6.

• For some positive constants m and M, it holds

U(θ)− U(θ′)−∇U(θ′)T (θ − θ′) ≥ (m/2)‖θ − θ′‖2
2

‖∇U(θ)−∇U(θ′)‖2 ≤M‖θ − θ′‖2

for any θ, θ′ ∈ Rd

• (bounded bias) E[‖E(ζk|θk)‖2
2] ≤ δ2d

• (bounded variance) E[‖ζk − E(ζk|θk)‖2
2 ≤ σ2d

• (independence of updates) ξk+1 in (D.19) is independent of (ζ1, ζ2, ..., ζk)

D.3.1 Theorem

Under Assumption 6 in the appendix and α0 ∈ (0, 1
m
∧ 2

M
), if we define the αmin as

α0

2

[
cos
(
π mod(dK/Me−1,dK/Me)

dK/Me

)
+ 1
]
, we can derive the the following bounds.

If mαmin +Mα0 ≤ 2, then W2(µk+1, ν∞) ≤

(1−mαmin)KW2(µ0, ν∞) +
(1.65Mα

3/2
0 + α0δ)d

1/2

mαmin
+

δ2α0d
1/2

1.65Mα
1/2
0 + δ +

√
mαminδ

.
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If mαmin +Mα0 > 2, then W2(µk+1, ν∞) ≤

(1− (2−Mα0))KW2(µ0, ν∞) +
(1.65Mα

3/2
0 + α0δ)d

1/2

2−Mα0

+
δ2α0d

1/2

1.65Mα
1/2
0 + δ +

√
2−Mα0δ

,

where the M,m, δ, σ are some positive constants defined in Assumption 6

D.3.2 Proof

Proof. According to the (5.1), we can find that the stepsize αk varies from α0 to

αmin, where αmin is defined as αmin , α0

2

[
cos
(
π mod(dK/Me−1,dK/Me)

dK/Me

)
+ 1
]
. When

0 < α0 < min(2/M, 1/m), it is easy for us to know that 0 < αk < min(2/M, 1/m)

for every k > 0. Then we can derive that all the ρk , max(1−mαk,Mαk − 1) will

satisfy 0 < ρk < 1. Now according to the Proposition 2 in [35], we can derive the

result that

W2(µk + 1, ν∞)2 ≤ {ρk+1W2(µk, ν∞) + 1.65M(α3
k+1d)1/2 + αk+1δ

√
p}2 + δ2α2

k+1d

(D.20)

Then we will use another lemma derived from [35].

Lemma 9. If A,B,C are non-negative numbers such that A ∈ (0,1) and the sequence

of non-negative numbers yk satisfies the following inequality

y2
k+1 ≤ [(1− A)yk + C]2 +B2

for every integer k > 0. Then,

yk ≤ (1− A)ky0 +
C

A
+

B2

C +
√
AB

Using Lemma 9, we can finish our proof now.
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• If mαmin + Mα0 ≤ 2, the ρk will satisfy ρk ≤ 1 − mαmin for every k > 0.

Then the (D.20) will turn into

W2(µk+1, ν∞)2

≤ {(1−mαmin)W2(µk, ν∞) + 1.65M(α3
0d)1/2 + α0δd

1/2}2 + (δα0d
1/2)2

for every k > 0. Then we can set A = mαmin, C = 1.65M(α3
0d)1/2 + α0δd

1/2,

B = δα0d
1/2 and we can get the result.

• If mαmin +Mα0 > 2, the ρk will satisfy ρk ≤Mα0− 1 for every k > 0. Then

the (D.20) will turn into

W2(µk+1, ν∞)2

≤ {[1− (2−Mα0)]W2(µk, ν∞) + 1.65M(α3
0d)1/2 + α0δd

1/2}2 + (δα0d
1/2)2

for every k > 0. Then we can set A = 2−Mα0, C = 1.65M(α3
0d)1/2 +α0δd

1/2,

B = δα0d
1/2 and we can get the result.

D.4 Tempering in Bayesian Neural Networks

Tempering is common in modern Bayesian deep learning, for both variational

inference and MCMC approaches [85, 112, 48]. In general, tempering reflects the

belief that the model capacity is misspecified. This combination of beliefs with data

is what shapes the posterior we want to use to form a good predictive distribution.

Although we use the prescribed temperature in pSGLD [85] for all neural network

experiments in the main text (T ≈ 0.0045), we here investigate the effect of temper-

ature T on performance. We show negative log-likelihood (NLL) and classification
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error as a function of temperature on CIFAR-10 and CIFAR-100 using cSGLD with

the same setup as in Section 5.4. We consider T ∈ [1, 0.5, 0.1, 0.05, 0.01, 0.005, 0].

Figure D.1 and D.2 show the results on CIFAR-10 and CIFAR-100, respectively. On

CIFAR-10, the best performance is achieved at T = 0.1 with NLL 0.1331 and error

4.22%. On CIFAR-100, the best performance is achieved at T = 0.01 with NLL

0.7835 and error 20.53%. We find that the optimal temperature is often less than

1. We hypothesize that this result is due to the model misspecification common to

neural networks.

Indeed, modern neural networks are particularly overparametrized. Tempering

enables one to use a model with similar inductive biases to a modern neural network,

but with a more well calibrated capacity (which is especially important when we

are doing Bayesian integration instead of optimization). Indeed, we show that

by sampling from the tempered posterior, we outperform optimization. Learning

the amount of tempering by cross-validation is a principled way of aligning the

tempering procedure with representing a reasonable posterior. We have shown

that sampling with cSGMCMC with tempering helps in terms of both NLL and

accuracy, which indicates that we are finding a better predictive distribution.
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(a) Test negative log-likelihood (b) Test error

Figure D.1: NLL and error (%) as a function of temeprature on CIFAR-10 using
cSGLD. The best performance of both NLL and error is achieved at T = 0.1.
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Figure D.2: NLL and error (%) as a function of temeprature on CIFAR-100 using
cSGLD. The best performance of both NLL and error is achieved at T = 0.01.

D.5 Additional Experimental Results and Setting Details

Sensitivity of Hyperparameters

Compared to SG-MCMC, there are two additional hyperparameters in Algorithm 9:

the number of cycles M and the proportion of exploration stage β. We now study

how sensitive they are when comparing to the parallel MCMC. With the same

setup as in Section 5.4, We compare our method with M cycles and L epochs per

cycle with running M chains parallel MCMC for L epochs. The training budget is

200 epochs. In Table 5.2, M = 4 and β = 0.8 on CIFAR-10. We compare cSGLD

and parallel SGLD with smaller and larger values of M and β. In Table D.1, we

see that the conclusion that cSG-MCMC is better than parallel SG-MCMC holds

with different values of M and β.

Hyperparameters Setting in Practice

Given the training budget, there is a trade-off between the number of cycles M

and the cycle length. We find that it works well in practice by setting the cycle

length such that the model with optimization methods will be close to a mode after
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running for that length. (e.g. the cycle length for CIFAR-10 is 50 epochs. The

model optimized by SGD can achieve about 5% error after 50 epochs which means

the model is close but not fully converge to a mode after 50 epochs.) Once the cycle

length is fixed, M is fixed. β needs tuning for different tasks by cross-validation.

Generally, β needs to be tuned so that the sampler has enough time to reach a

good region before starting sampling.

M = 2, β = 0.8 M = 5, β = 0.8 M = 4, β = 0.7 M = 4, β = 0.9
cSGLD 4.27 4.33 4.08 4.34

Parallel SGLD 5.49 7.38 6.03 6.03

Table D.1: Comparison of test error (%) between cSG-MCMC and parallel algorithm
with varying values of hyperparameters on CIFAR-10.

Synthetic Multimodal Distribution

The density of the distribution is

F (x) =
25∑
i=1

λN (x|µi,Σ),

where λ = 1
25

, µ = {−4,−2, 0, 2, 4}> × {−4,−2, 0, 2, 4}, Σ =

[
0.03 0

0 0.03

]
.

In Figure D.3, we show the estimated density for SGLD and cSGLD in the

non-parallel setting.

To quantitatively show the ability of different algorithms to explore multi-modal

distributions, we define the mode-coverage metric: when the number of samples

falling within the radius r of a mode center is larger than a threshold n̄, we consider

this mode covered. On this dataset, we choose r = 0.25 and n̄ = 100. Table D.2

shows the mode-coverage for several algorithms, based on 10 different runs.
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(a) Target (b) SGLD (c) cSGLD

Figure D.3: Sampling from a mixture of 25 Gaussians in the non-parallel setting.
With a budget of 50K samples, traditional SGLD has only discovered one of
the 25 modes, while our proposed cSGLD has explored significantly more of the
distribution.

Algorithm Mode coverage
SGLD 1.8±0.13
cSGLD 6.7±0.52

Parallel SGLD 18±0.47
Parallel cSGLD 24.4±0.22

Table D.2: Mode coverage over 10 different runs, ± standard error.

Bayesian Logistic Regression

We consider Bayesian logistic regression (BLR) on three real-world datasets from the

UCI repository: Australian (15 covariates, 690 data points), German (25 covariates,

1000 data points) and Heart (14 covariates, 270 data points). For all experiments,

we collect 5000 samples with 5000 burn-in iterations. Following the settings in [85],

we report median effective sample size (ESS) in Table D.3.

Note that BLR is unimodal in parameter space. We use this experiment as

an adversarial situation for cSG-MCMC, which we primarily designed to explore

multiple modes. We note that even in the unimodal setting, cSG-MCMC more

effectively explores the parameter space than popular alternatives. We can also

use these experiments to understand how samplers respond to varying parameter
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dimensionality and training set sizes.

Overall, cSG-MCMC dramatically outperforms SG-MCMC, which demonstrates

the fast mixing rate due to the warm restarts. On the small dataset Heart, SGHMC

and cSGHMC achieve the same results, because the posterior of BLR on this

dataset is simple. However, in higher dimensional spaces (e.g., Australian and

German), cSG-MCMC shows significantly higher ESS; this result means that each

cycle in cSG-MCMC can characterize a different region of the posteriors, combining

multiple cycles yields more accurate overall approximation.

Australian German Heart
SGLD 1676 492 2199
cSGLD 2138 978 2541
SGHMC 1317 2007 5000
cSGHMC 4707 2436 5000

Table D.3: Effective sample size for samples for the unimodal posteriors in Bayesian
linear regression, obtained using cyclical and traditional SG-MCMC algorithms,
respectively.

For both cSGLD and cSGHMC, M = 100, β = 0.01. For cSGLD, α0N =

1.2, 0.5, 1.5 for Austrilian, German and Hear respectively. For cSGHMC α0N =

0.5, 0.3, 1.0 for Austrilian, German and Hear respectively. For SG-MCMC, the

stepsize is a for the first 5000 iterations and then switch to the decay schedule

(5.1) with b = 0, γ = 0.55. aN = 1.2, 0.5, 1.5 for Austrilian, German and Hear

respectively for SGLD and aN = 0.5, 0.3, 1.0 for Austrilian, German and Hear

respectively for SGHMC. η = 0.5 in cSGHMC and SGHMC.

Assume that we collect {θb}Bb=1 samples. Effective sample size (ESS) is computed

by

ESS =
B

1 + 2
∑B−1

s (1− s
B

)ρs
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where ρs is estimated by

ρ̂s =
1

σ̂2(B − s)

B∑
b=s+1

(θb − µ̂)(θb−s − µ̂)

Similar to [70], σ̂2 and µ̂ are obtained by running an independent sampler. We

use HMC in this section.

Bayesian Neural Networks

For SG-MCMC, the stepsize decays from 0.1 to 0.001 for the first 150 epochs

and then switch to the decay schedule (5.1) with a = 0.01, b = 0 and γ = 0.5005.

η = 0.9 in cSGHMC, Snapshot-SGDM and SGHMC.

Uncertainty Evaluation

For both cSG-MCMC and Snapshot, M = 4. β = 0.8 in cSG-MCMC. α0N = 0.01

and 0.008 for cSGLD and cSGHMC respectively. For SG-MCMC, the stepsize

is a for the first 50 iterations and then switch to the decay schedule (5.1) with

b = 0, γ = 0.5005. aN = 0.01 for SGLD and aN = 0.008 for SGHMC. η = 0.5 in

cSGHMC, Snapshot-SGDM and SGHMC.
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APPENDIX E

SECTION 6 META-LEARNING DIVERGENCES OF

VARIATIONAL INFERENCE

E.1 Computing Equation (6.3) in Practice

With dataset D, the density ratio in f -divergence becomes p(θ|D)
qφ(θ)

= p(D|θ)p(θ)
qφ(θ)p(D)

. We

estimate p(D) through importance sampling and MC approximation: p(D) =

Eθ∼p(θ)[p(D|θ)] = Eθ∼qφ(θ)[
p(D|θ)p(θ)
qφ(θ)

] ≈ 1
K

∑K
k=1

p(D|θk)p(θk)
qφ(θk)

where θk ∼ qφ(θ). After

doing this, the density ratio becomes p(θk|D)
qφ(θk)

= p(D|θk)p(θk)
qφ(θk)

/
1
K

∑K
k=1

p(D|θk)p(θk)
qφ(θk)

which can be regarded as a self-normalized estimator, similar to the normalization

importance weight in [90]. A self-normalized estimator generally helps stabilize

the training especially at the beginning. We use Eq.(6.3) with this estimator and

stochastic approximation of gradients for all experiments except for the mixture of

Gaussians task where we can directly compute p(θ)/qφ(θ).

E.2 Effect of Hyperparameter B

Similar to other MAML-based algorithms [44, 45, 78], the cost of our method

increases as hyperparameter B increases and the value of B could potentially

affect the results. As in prior work, we treat B as a hyperparameter and tune it

for each task. Empirically, we found setting B = 1 is enough for most tasks we

considered in the experimental section. For example, we also tried B = 2, 5 for

meta-α in Section 6.3 and found that they gave similar values of learned α as B = 1

(α = 0.10, 0.13, 0.16 for B = 1, 2, 5 respectively). Setting B larger will be costly and

even cause gradients to be problematic due to requiring higher-order derivatives.
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We may combine our methods with recent techniques in meta-learning [46, 47, 121]

to allow large B, which is an interesting future work.

E.3 Additional Experimental Results and Setting Details

Task Distribution p(T )

When the number of training tasks is finite (which is often the case in practice)

such as image generation with MNIST (Section 6.3) and recommender system

with MovieLens (Section 6.3), the task distribution p(T ) is defined as a uniform

distribution over all training tasks for both meta-D (Algorithm 10) and meta-D&φ

(Algorithm 11). When the number of training tasks is infinite such as Gaussian

mixture approximation (Section 6.3) and sinusoid regression (Section 6.3), we use

a uniform distribution over all training tasks as p(T ) for meta-D&φ but a uniform

distribution over a subsampled set of training tasks as p(T ) for meta-D (the set

size is 10 and 20 for Gaussian mixture approximation and sinusoid regression

respectively). This is to avoid storing too many models since meta-D allows each

task Ti has its own model φi.

Parameterization of f-Divergence in Practice

Based on the Proposition 1 and 2, we can parameterize f -divergence by parame-

terizing g(t) = t2f ′′(t) = exp(hη(t)) where hη is a neural network with parameter

η. However, this way of parameterization makes it hard to learn the divergences

whose g(t) is very small when t is small (because h(t) has to output negative

numbers with large absolute values), such as Renyi divergence with α ≈ 0. These
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kinds of divergences behave like approximating the expectation in Eq.(6.3) only

with θ whose p(θ)/qφ(θ) is large, which is important for modeling bimodal and

heteroscedastic distributions [39].

To alleviate this issue, we can instead parameterize f ′′(t) = exp(hη(t)), then g(t)

in Eq.(6.3) becomes t2 exp(hη(t)). It is easy to see that this parameterization solves

the above issue due to t2 which becomes small when t is small. However, it is hard

to learn the divergences that put similar weights to MC samples (e.g. standard

KL(q‖p), which gives the equal weights). These two ways of parameterization

are statistically equivalent but have different inductive bias. Parameterizing f ′′

tends to learn a divergence that puts different weights to MC samples according

to p(θ)/qφ(θ) (due to t2). On the other hand, parameterizing g(t) tends to give

relatively similar weights to MC samples. In the experiments, we parameterize g(t)

when the learned α from meta-α is close to 1 (Section 6.3 and 6.3) and parameterize

f ′′(t) when the learned α is close to 0 (Section 6.3 and 6.3). We found this strategy

works well in practice.

Model Architecture for f-divergence

On all experiments, we parameterize hη(t) in f -divergence by a neural network

with 2 hidden layers with 100 hidden units and RELU nonlinearilities. In practice,

we find that pretraining hη(t) to be the standard KL divergence can stabilize the

training at the beginning. We initialize hη(t) in this way for all experiments.
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Figure E.1: Three examples of mixture of Gaussians. Each task includes approxi-
mating a mixture of Gaussians by a Gaussian distribution.

Approximate Mixture of Gaussians

In this experiment, each task is to approximate a mixture of Gaussians by a

Gaussian distribution. We give examples of the mixture of Gaussians in Figure E.1.

The expectation in Eq.(2.5) and (6.3) is computed by MC approximation with 1000

particles. Note that p(θ) is computable, since we know the parameters of p.

TV Distance TV is a common distance measure for probability distributions.

It is defined as

TV(p, q) = sup
x
|p(x)− q(x)| = 1

2

∫
|p(x)− q(x)| dx.

For α ∈ (0, 1], TV is related to α-divergence by αTV2 ≤ 2 ·Dα(p‖q) [56].

Note that although TV belongs to a more general f -divergence family by setting

ftv(t) = |t− 1| /2, it does not belong to the f -divergence we defined in the section.

Since fTV(t) is not twice-differentiable. Therefore, we can use TV as an example to

test the performance of our methods when meta-loss is beyond α- and f -divergence.

Bayesian Optimization We used a standard setup of BO, following [134]. To

ensure fair comparisons, we implemented BO through a public and stable library 1.

1https://github.com/fmfn/BayesianOptimization.
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We set the search region for BO to be α ∈ [0, 3]. The acquisition function is the

upper confidence bound with kappa 0.1. We used the same data for training meta-D

for BO. Specifically, the objective function that BO minimizes is the meta-loss (D0.5

or TV). Every time BO selects an α, we train 10 models with that α-divergence on

the training sets of 10 training tasks respectively and get the mean of log-likelihood

on the test sets of the 10 training tasks. Each time the model is trained for 2000

iterations. It is possible to choose the best α for each test task by BO, i.e. every

time we have a new test task we run BO to select an α for this task. However, by

doing this, we are not able to extract any common knowledge from the previous

tasks and running BO for each task could be very expensive. We did not include

this baseline because it does not satisfy the meta-learning setting and the cost will

be much higher than our methods.

Analytical Expression of hf(t) When f -divergence is D0.5, the f function is

f(t) = t0.5

−0.52 . Then we can write out the corresponding hf (t) as

hf (t) = log gf (t) = log f ′′(t) + 2 log t = 0.5 log t.

Because the definition of f -divergence is invariant to constant scaling of the function

f , i.e. f and af define the same divergence for ∀a > 0, we consider the corresponding

hf (t) for af which is

hf (t) = 0.5 log t+ log a.

In Figure 2, we compare the learned hη(t) and the ground truth hf (t). We found

that the learned hη(t) is very close to 0.5 log t+ 1.25, which means that our method

has learned the optimal divergence D0.5. We conjecture that the constant a for

the learned f is related to the learning rate. In fact, this gives f -divergence the

ability to automatically adjust the learning rate through the scaling constant. For

example, the constant a is exp(1.25) > 1 which may suggest that the learning rate
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β is a bit small. Note that α-divergence does not have this ability. We plot f for

t ∈ [0, 3] in Figure 6.2 since we find most t lie in this range.

Additional Experimental Results For meta-D, we report in Table E.1 the

meta-losses on 10 test tasks, which are obtained by executing the learned divergence

minimization algorithm for 2000 iterations. The error bar is large due to the large

variance among different tasks, so we report the ranking in Table 6.2, similar to

[93], to clearly show the adavantages of meta-D over BO. Similarly, we also report

the meta-losses for meta-D&φ over 10 tasks in Table E.2.

Table E.1: Meta-D on MoG: value of meta-loss over 10 test tasks.

Methods α = 0.5 TV

ground truth 0.0811±0.0277 -
meta-α 0.0811±0.0277 0.2143±0.0936
meta-f 0.0795±0.0301 0.2020±0.1024
BO (8 iters) 0.0833±0.0289 0.2203±0.0898
BO (16 iters) 0.0811±0.0277 0.2143±0.0936

Table E.2: Meta-D&φ on MoG: value of meta-loss over 10 test tasks.

Methods\Meta-loss α = 0.5 (20 iters) TV (20 iters) α = 0.5 (100 iters) TV (100 iters)

VI&φ 0.1237±0.0539 0.2572±0.1137 0.0905±0.0332 0.2321±0.0961
meta-α&φ 0.1207±0.0500 0.2462±0.1043 0.0879±0.0305 0.2263±0.0936
meta-f&φ 0.0793±0.0237 0.2344±0.0955 0.0784±0.0332 0.2301±0.0949

Regression Tasks with Bayesian Neural Networks

Each task includes a regression problem on a sinusoid wave; see Figure E.2 for

examples of the sinusoid waves. The BNN model is a two-layer neural network

with hidden layer size 20 and RELU nonlinearities. For meta-learning divergence
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only, the training set size is 1000 and is obtained by sampling x ∈ [−4, 4] uniformly.

We use K = 100 and batch size 40 of which 20 data points are for updating φi and

20 points are for updating η. We train meta-D for 1000 epochs. To evaluate the

performance, we train the model with the learned divergence and VI respectively

on new tasks for 1000 epochs. For learning both the divergence objective and initial

variational parameters, we sample 20 tasks each time where each task has 40 data

points. We use 20 points for updating φi and the other 20 points for updating

divergence η and the shared initialization φ. B = 4 for meta-α&φ. To evaluate, we

start with the learned initialization and train the variational parameters with the

learned divergence for 300 epochs.

Figure E.2: Three examples of sinusoid waves. Each task includes a regression on a
sinusoid wave.

Additional Experimental Results We provide the learned value of α from

meta-α and meta-α&φ in Table E.3. The predictive distributions on an example

test task are given in Figure E.3. Similar to the results of meta-D, meta-D&φ is

also able to model heteroskedastic noise while VI&φ cannot.

Table E.3: Learned value of α of meta-α
and meta-α&φ on sinusoid regression.

meta-α meta-α&φ

α 0.10 0.12

Table E.4: Learned value of α of meta-α
and meta-α&φ on MNIST.

meta-α meta-α&φ

α 0.14 0.80
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(a) Ground Truth (b) VI&φ (c) meta-α&φ (d) meta-f&φ

Figure E.3: Meta-D&φ on sin: the predictive distribution on a sinusoid wave.

Image Generation with Variational Auto-Encoders

During meta-training, we sample 128 images of each task/digit and use half of

the images to compute Eq.(6.1) and the other half for computing the meta-loss.

The number of training epochs is 600. We set K = 10. For all methods, we use

the same architecture (100 hidden units and 3 latent variables) and the marginal

log-likelihood estimator as in [79]. We report the learned value of α from meta-α

and meta-α&φ in Table E.4. The meta-loss is the negative marginal log-likelihood.

Examples of Reconstructed Images Besides comparing marginal likelihood

in Section 6.3, we visualize the reconstructed images on two examples of digit 5.

As shown in Fig E.4, our methods produce higher quality of images because the

reconstructed images are sharper and are able to capture different writing styles

whereas the images from standard VI are blurry.

(a) VI&φ (b) meta-α&φ (c) meta-f&φ

Figure E.4: Reconstructed images of digit 5 by Meta-D&φ.
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Recommender System

We split the users into seven age groups: under 18, 18-24, 25-34, 35-44, 45-49,

50-55 and above 56, and regard predicting the ratings of users within the same age

group as a task since the users with similar age may have similar preferences. We

select 4 age groups (under 18, 25-34, 45-49, above 56) as training tasks, and use the

remaining as test tasks. The meta-loss is the negative log-likelihood as used in [92].

For meta-D (Algorithm 10), during meta-training, we sample 100 users per task

(400 users in total) and use half of the observed ratings to compute Eq.(6.1) and

the other half for computing the meta-loss. The number of training epochs is 400.

During meta-testing, we use 90%/10% training-test split for the three test tasks

and train p-VAE with the learned divergence.

For meta-D&φ (Algorithm 11), we compare our method with getting a p-VAE

model initialization only, which can be regarded as a combination of MAML and

p-VAE (denoted VI&φ). During evaluation, we apply 60%/40% training-test split

for the test tasks and train the learned p-VAE model with the learned divergence.

Additional Experimental Results We provide the learned value of α from

meta-α and meta-α&φ in Table E.5. And we visualize the learned hη(t) from

meta-f and meta-f&φ in Figure E.5. Besides the test log-likelihood, there are other

popular evaluation metric being used in recommender system and sometimes they

are not consistent with each other. Therefore, we also evaluate the performance of

our method in terms of other common metrics: test root mean square error (RMSE)

and test mean absolute error (MAE). For both metrics, our methods performs

better than the baseline in the setting of learning inference algorithm and the

setting of learning inference algorithm and model parameters (see Figure E.6 and
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E.7).

Table E.5: Learned value of α of meta-α and meta-α&φ on MovieLens.

meta-α meta-α&φ

α 0.90 1.06

Figure E.5: Visualization of learned hη(t) from meta-f and meta-f&φ on MovieLens.

Figure E.6: Meta-D on ML: Comparison of meta-D and VI in terms of test RMSE
and test MAE.

Figure E.7: Meta-D&φ on ML: Comparison of meta-D&φ and VI&φ in terms of
test RMSE and test MAE.
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Comparison with MLAP [5]

Meta-Learning by Adjusting Priors (MLAP) is a method that meta-learns the

Bayesian prior. We compared our method with it to show the importance of learning

divergence. We tested on the permuted pixels experiment on MNIST, following

the same experimental setup in [5]. As this is a few-shot learning setup, we run

meta-α&φ (meta-learning divergences and variational parameter). Our method

attained test error 2.97% which outperformed the best result 3.40% (attained by

MLAP-M) in [5] significantly. This further demonstrates the importance of learning

divergence and the effectiveness of our method on finding the suitable divergence.
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[92] Chao Ma, Wenbo Gong, José Miguel Hernández-Lobato, Noam Koenigstein,
Sebastian Nowozin, and Cheng Zhang. Partial VAE for hybrid recommender
system. In NIPS Workshop on Bayesian Deep Learning, 2018.

[93] Chao Ma, Sebastian Tschiatschek, Konstantina Palla, Jose Miguel Hernandez
Lobato, Sebastian Nowozin, and Cheng Zhang. Eddi: Efficient dynamic dis-
covery of high-value information with partial VAE. International Conference
on Machine Learning, 2019.

[94] Yi-An Ma, Tianqi Chen, and Emily Fox. A complete recipe for stochastic
gradient mcmc. In Advances in Neural Information Processing Systems, pages
2917–2925, 2015.

[95] Yi-An Ma, Tianqi Chen, Lei Wu, and Emily B Fox. A unifying frame-
work for devising efficient and irreversible MCMC samplers. arXiv preprint
arXiv:1608.05973, 2016.

[96] David JC MacKay. A practical bayesian framework for backpropagation
networks. Neural computation, 1992.

[97] Dougal Maclaurin and Ryan P Adams. Firefly Monte Carlo: Exact MCMC
with subsets of data. In UAI, pages 543–552, 2014.

[98] Dougal Maclaurin and Ryan Prescott Adams. Firefly Monte Carlo: Exact
MCMC with subsets of data. In Twenty-Fourth International Joint Conference
on Artificial Intelligence, 2015.

[99] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and
Andrew Gordon Wilson. A simple baseline for bayesian uncertainty in deep
learning. In Advances in Neural Information Processing Systems, pages
13132–13143, 2019.

264



[100] Jeremy R Manning, Rajesh Ranganath, Kenneth A Norman, and David M
Blei. Topographic factor analysis: a Bayesian model for inferring brain
networks from neural data. PloS one, 9(5):e94914, 2014.

[101] J. C. Mattingly, A. M. Stuart, and M. V. Tretyakov. Construction of numer-
ical time-average and stationary measures via Poisson equations. SIAM J.
NUMER. ANAL., 48(2):552–577, 2010.

[102] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Au-
gusta H Teller, and Edward Teller. Equation of state calculations by fast
computing machines. The Journal of Chemical Physics, 21(6):1087–1092,
1953.

[103] Manon Michel, Johannes Mayer, and Werner Krauth. Event-chain Monte
Carlo for classical continuous spin models. EPL (Europhysics Letters),
112(2):20003, 2015.

[104] Thomas P Minka. Expectation propagation for approximate Bayesian infer-
ence. In Proceedings of the Seventeenth conference on Uncertainty in artificial
intelligence, pages 362–369. Morgan Kaufmann Publishers Inc., 2001.

[105] Tom Minka et al. Divergence measures and message passing. Technical report,
Technical report, Microsoft Research, 2005.

[106] Radford M Neal. Bayesian learning for neural networks. New York: Springer-
Verlag, 1996.

[107] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer
Science & Business Media, 2012.

[108] Radford M Neal et al. MCMC using Hamiltonian dynamics. Handbook of
Markov Chain Monte Carlo, 2(11):2, 2011.

[109] Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser,
Karol Kurach, and James Martens. Adding gradient noise improves learning
for very deep networks. ICLR workship, 2016.

[110] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic ap-
proximation approach to stochastic programming. SIAM J. on Optimization,
19(4):1574–1609, January 2009.

265



[111] Mark EJ Newman. The structure and function of complex networks. SIAM
review, 45(2):167–256, 2003.

[112] Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason
Yosinski. Plug & play generative networks: Conditional iterative generation
of images in latent space. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4467–4477, 2017.

[113] Sheehan Olver and Alex Townsend. Fast inverse transform sampling in one
and two dimensions. arXiv preprint arXiv:1307.1223, 2013.

[114] Emma Pierson, Sam Corbett-Davies, and Sharad Goel. Fast threshold tests
for detecting discrimination. volume 84 of Proceedings of Machine Learning
Research, pages 96–105, Playa Blanca, Lanzarote, Canary Islands, 09–11 Apr
2018. PMLR.

[115] Renfrey Burnard Potts. Some generalized order-disorder transformations. In
Mathematical proceedings of the cambridge philosophical society, volume 48,
pages 106–109. Cambridge University Press, 1952.

[116] Matias Quiroz, Robert Kohn, Mattias Villani, and Minh-Ngoc Tran. Speeding
up MCMC by efficient data subsampling. Journal of the American Statistical
Association, 114(526):831–843, 2019.

[117] Matias Quiroz, Minh-Ngoc Tran, Mattias Villani, Robert Kohn, and Khue-
Dung Dang. The block-poisson estimator for optimally tuned exact subsam-
pling mcmc. arXiv preprint arXiv:1603.08232, 2016.

[118] Adrian E Raftery, Michael A Newton, Jaya M Satagopan, and Pavel N
Krivitsky. Estimating the integrated likelihood via posterior simulation using
the harmonic mean identity. 2006.

[119] Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex
learning via stochastic gradient Langevin dynamics: a nonasymptotic analysis.
arXiv preprint arXiv:1702.03849, 2017.

[120] Tom Rainforth, Adam R Kosiorek, Tuan Anh Le, Chris J Maddison, Maxim-
ilian Igl, Frank Wood, and Yee Whye Teh. Tighter variational bounds are
not necessarily better. International Conference on Machine Learning, 2018.

[121] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine.

266



Meta-learning with implicit gradients. In Advances in Neural Information
Processing Systems, pages 113–124, 2019.

[122] Rajesh Ranganath, Dustin Tran, and David Blei. Hierarchical variational
models. In Proceedings of the 33rd International Conference on Machine
Learning, pages 324–333, 2016.

[123] Sachin Ravi and Alex Beatson. Amortized Bayesian meta-learning. Interna-
tional Conference on Learning Representations, 2019.
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