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Algorithms are used to make decisions in an ever-increasing number of socially

consequential domains. From risk assessment tools in the criminal justice sys-

tem to content moderation tools to assessments in hiring, algorithms play a key

role in shaping the lives of people around the world. Algorithms offer many po-

tential benefits: they are consistent, scalable, and can leverage more data than

any human could reasonably consume. However, without careful considera-

tion algorithmic decision-making also carries a number of risks, like replicating

human biases, creating perverse incentives, and propagating misinformation.

This thesis seeks to develop principles for the responsible deployment of algo-

rithms in applications of societal concern, realizing their benefits while address-

ing their potential harms. What does it mean to make decisions fairly? How do

theoretical ideas about societal impacts manifest in practice? How do existing

legal protections apply in algorithmic settings, and how can technical insights

inform policy?

In this thesis, we explore these questions from a variety of perspectives.

Part II leverages theoretical models to surface challenges posed by algorithmic

decision-making and potential avenues to overcome them. Part III incorporates

models of behavior to better understand the interplay between algorithms and

humans decisions. In Part IV, we explore how these insights manifest in prac-

tice, studying applications in employment and credit scoring contexts. We con-

clude in Part V with open directions for future research.
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CHAPTER 1

INTRODUCTION AND SUMMARY OF RESULTS

Algorithms are increasingly used to make decisions in socially consequen-

tial domains. Algorithms make or contribute to decisions made in a grow-

ing list of contexts including the criminal justice system (Angwin et al., 2016),

medicine (Obermeyer and Mullainathan, 2019), employment (Bogen and Rieke,

2018), and many others. The motivation behind the deployment of these algo-

rithmic tools is that they will ultimately lead to more accurate, efficient, and

consistent decisions. However, a growing body of research has begun to high-

light the potential harms perpetuated by algorithmic decision-making (Barocas

and Selbst, 2016; Eubanks, 2018b; Noble, 2018). Algorithms can perpetuate dis-

crimination (Barocas and Selbst, 2016), cause representational harms (Sweeney,

2013; Noble, 2018; Crawford, 2017), and deny opportunity (Eubanks, 2018b).

The research community, as well as society more broadly, have sought to

address these harms through a variety of methods, theoretical and empirical,

qualitative and quantitative. Taken together, this body of work (informally re-

ferred to as the Fairness, Accountability, and Transparency (FAccT) commu-

nity) demonstrates how a wide range of perspectives can come together to

deepen our understanding of the impacts of algorithms and technology on soci-

ety. This includes empirical efforts to understand performance disparities in

commercially developed algorithms (Buolamwini and Gebru, 2018; Raji and

Buolamwini, 2019; Koenecke et al., 2020); theoretical characterizations of bias

and discrimination in decision-making (Chouldechova, 2017; Kleinberg et al.,

2017; Joseph et al., 2016); and legal analyses of algorithmic systems and their

impacts (Barocas and Selbst, 2016; Kim, 2016, 2017; Ajunwa, 2021).
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In this thesis, we present a number of contributions to this body of literature,

drawing on a variety of techniques and tools from computer science, economics,

and the law. In Part II, we develop theoretical tools and frameworks to charac-

terize the impacts and limits of decision-making. We further develop these tools

in Part III, where we incorporate models of behavior, including behavioral bi-

ases, strategic behavior, and competition, to reason about decision-making in

complex, multi-agent environments. In Part IV, we leverage these technical in-

sights to deepen our qualitative understanding of algorithmic impacts, particu-

larly with respect to employment and lending. We conclude in Part V with open

directions for future work. Part VI contains appendices with supplementary in-

formation and proofs.

The work in this thesis has been previously published as Barocas et al. (2020);

Kleinberg et al. (2017); Kleinberg and Raghavan (2018, 2020, 2021); Pleiss et al.

(2017); Raghavan et al. (2018, 2020).

1.1 Summary of Results

1.1.1 Theoretical Foundations for Fairness in Algorithmic

Decision-Making

In Part II, we examine the impacts of algorithmic decision-making from a the-

oretical perspective. We show fundamental challenges in making fair decisions

using tools from theoretical computer science and machine learning.
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Fairness in risk assessment. Algorithms are often used to quantitatively as-

sess risk, predicting future outcomes based on historical data. When these pre-

dictive algorithms are applied to people, i.e., evaluating the risk of future be-

havior or outcomes, decision-makers have an obligation to ensure that these

predictions are in some sense fair to decision subjects.

In Chapter 3, we formalize three natural definitions of fairness proposed in

the context of risk assessment in the criminal justice system. We formally prove

that these three definitions cannot be simultaneously satisfied, even approxi-

mately, outside of a few highly constrained cases. In particular, we demon-

strate a fundamental tension between calibration and equal error rates. Our re-

sults provide a resolution to a debate over algorithms used in recidivism pre-

diction (Angwin et al., 2016; Dieterich et al., 2016; Angwin and Larson, 2016).

We build upon these results in Chapter 4, further exploring the incompati-

bility between calibration and equal error rates. In particular, we demonstrate

the consequences of pursuing equality of error rates while maintaining calibra-

tion. We find that such efforts will necessarily come at the expense of predictive

accuracy without improving outcomes for anyone. Our results suggest that at-

tempting to remedy disparities found in algorithmic decision-making simply

by altering models, as opposed to the data they ingest and the broader context

in which they operate, is insufficient.

Externalities in online learning. In supervised settings like risk assessment,

we commonly assume the data to be fixed and known before decisions are

made. However, in many platforms, decisions are made in dynamic settings

where data arrives continuously and past decisions influence the collection of
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data to be used in the future. Settings like this are commonly modeled through

the online learning framework (Auer, 2002).

Existing techniques from online learning rely on a balance of exploration and

exploitation: a platform may attempt to experiment on some users in order to

gain more information, or they may attempt to leverage existing information to

make the instantaneously optimal decision for that user. The need to explicitly

experiment in order to gather new information results in externalities: users’

outcomes are influenced by the presence of other users.

Prior work has articulated concerns that exploration may impose an undue

burden on small, marginalized communities (Bird et al., 2016). In Chapter 5, we

quantify this worry by formally showing how the presence of one population

in an online learning setting can result in negative externalities for another pop-

ulation. However, we show conditions under which these externalities may be

in a sense unnecessary—if data are sufficiently diverse, we show that a greedy

algorithm that maximizes each user’s individual utility (and thus does not en-

gage in explicit exploration) is nearly socially optimal. Formally, this involves

a smoothed analysis of the Bayesian linear contextual bandits model, showing

conditions under which the greedy algorithm can effectively match the perfor-

mance of any algorithm on any instance.

1.1.2 Models of Behavior

In Part III, we explore the effects that behavioral factors have on decision-

making. In particular, we consider the impacts of behavioral biases and strategic

behavior.
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Implicit bias and selection. Over the past two decades, the notion of implicit

bias has come to serve as an important component in our understanding of

discrimination in activities such as hiring, promotion, and school admissions

(Greenwald and Banaji, 1995; Bertrand and Mullainathan, 2004). Research on

implicit bias posits that when people evaluate others – for example, in a hiring

context – their unconscious biases about membership in particular groups can

have an effect on their decision-making, even when they have no deliberate in-

tention to discriminate against members of these groups. A growing body of

experimental work has pointed to the effect that implicit bias can have in pro-

ducing adverse outcomes.

In Chapter 7, we propose and analyze a theoretical model for studying the

effects of implicit bias on selection decisions, and a way of analyzing possible

procedural remedies for implicit bias within this model. A canonical situation

represented by our model is a hiring setting: a recruiting committee is trying to

choose a set of finalists to interview among the applicants for a job, evaluating

these applicants based on their future potential, but their estimates of potential

are skewed by implicit bias against members of one group. In this model, we

show that the Rooney Rule, a commonly imposed requirement that at least one

of the finalists be chosen from the affected group, can not only improve the

representation of this affected group, but also lead to higher payoffs in absolute

terms for the organization performing the recruiting. However, identifying the

conditions under which such measures can lead to improved payoffs involves

subtle trade-offs between the extent of the bias and the underlying distribution

of applicant characteristics, leading to novel theoretical questions about order

statistics in the presence of probabilistic side information.
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Strategic behavior and evaluation. Algorithms are often used to produce

decision-making rules that classify or evaluate individuals. When these indi-

viduals have incentives to be classified a certain way, they may behave strate-

gically to influence their outcomes. A growing body of computer science lit-

erature models these interactions to construct algorithms that are in some way

robust to this behavior (Dalvi et al., 2004; Brückner and Scheffer, 2011; Hardt

et al., 2016a; Dong et al., 2018; Hu et al., 2019; Milli et al., 2019). Typically, these

models assume that strategic behavior is undesirable—that is, while an agent

can manipulate their appearance, they cannot change the underlying property

that the decision-maker seeks to determine.

On the other hand, issues of incentives and strategic behavior have long been

considered in the economics literature, particularly in the context of principal-

agent models (Grossman and Hart, 1983; Holmström and Milgrom, 1987, 1991;

Hermalin and Katz, 1991). Unlike the computer science literature, these eco-

nomic models typically assume that the decision-maker’s utility depends di-

rectly on an agent’s behavior. Thus, in these models, strategic behavior isn’t

intrinsically good or bad, but decision-makers have preferences over behaviors.

We seek to integrate perspectives from the computer science and economics

literatures. We develop a model in Chapter 8 for how strategic agents can in-

vest effort in order to change the outcomes they receive. Drawing from models

in the computer science literature, we assume agents are represented by their

features, which they have some ability to manipulate. In the style of principal-

agent models from economics, we seek to characterize which of these behaviors

can be incentivized. We give a tight characterization of when certain behaviors

can be incentivized, and we show that whenever any “reasonable” mechanism
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can do so, a simple linear mechanism suffices.

Algorithmic monoculture. As algorithms are increasingly applied to screen

applicants for high-stakes decisions in employment, lending, and other do-

mains, concerns have been raised about the effects of algorithmic monoculture,

in which many decision-makers all rely on the same algorithm. This concern

invokes analogies to agriculture, where a monocultural system runs the risk

of severe harm from unexpected shocks. In Chapter 9, we show that the dan-

gers of algorithmic monoculture run much deeper, in that monocultural conver-

gence on a single algorithm by a group of decision-making agents, even when

the algorithm is more accurate for any one agent in isolation, can reduce the

overall quality of the decisions being made by the full collection of agents. Un-

expected shocks are therefore not needed to expose the risks of monoculture;

it can hurt accuracy even under “normal” operations, and even for algorithms

that are more accurate when used by only a single decision-maker. Our results

rely on minimal assumptions, and involve the development of a probabilistic

framework for analyzing systems that use multiple noisy estimates of a set of

alternatives.

1.1.3 Application Domains

In Part IV, we explore the consequences of algorithmic decision-making in two

applications: algorithmic hiring and explaining credit decisions. Combining

perspectives from computer science, sociology, and the law, we analyze the

practice of algorithmic decision-making in these contexts.
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Algorithmic hiring. There has been rapidly growing interest in the use of al-

gorithms in hiring, especially as a means to address or mitigate bias. However,

little is known about how these methods are used in practice. How are algo-

rithmic assessments built, validated, and examined for bias? In Chapter 11,

we document and analyze the claims and practices of companies offering al-

gorithms for employment assessment. In particular, we identify vendors of al-

gorithmic pre-employment assessments (i.e., algorithms to screen candidates),

document what they have disclosed about their development and validation

procedures, and evaluate their practices, focusing particularly on efforts to de-

tect and mitigate bias. Our analysis considers both technical and legal perspec-

tives. Technically, we consider the various choices vendors make regarding data

collection and prediction targets, and explore the risks and trade-offs that these

choices pose. We also discuss how algorithmic de-biasing techniques interface

with, and create challenges for, antidiscrimination law. We conclude with sev-

eral policy recommendations designed to prevent discrimination in algorithmic

employment decisions.

Explanations in credit scoring. Counterfactual explanations are gaining

prominence within technical, legal, and business circles as a way to explain

the decisions of a machine learning model without disclosing the model itself.

These explanations share a trait with the long-established “principal reason” ex-

planations that are required by U.S. credit laws: they both explain a decision by

highlighting a set of features deemed most relevant—and withholding others.

These “feature-highlighting explanations” have several desirable properties:

They place no constraints on model complexity, do not require model disclo-

sure, provide a justification for a model’s decision or instructions for achieving
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a different decision, and seem to automate compliance with the law. But they

are far more complex and subjective than they appear.

In Chapter 12, we demonstrate that the utility of feature-highlighting expla-

nations relies on a number of easily overlooked assumptions. These assump-

tions have to do with how features in the model relate to the actions required

to change them, the cost of these actions, and the effect of these actions in other

domains in people’s lives. They also depend on the underlying model having

certain properties, without which explanations will fail, and the stability of the

explanation over time. We then explore several consequences of acknowledging

and attempting to address these assumptions, including a paradox in the way

that feature-highlighting explanations aim to respect autonomy, the unchecked

power that feature-highlighting explanations grant decision makers, and a ten-

sion between making these explanations useful and the need to keep the model

confidential.

While new research suggests several ways that feature-highlighting expla-

nations can work around some of the problems that we identify, the disconnect

between features in the model and actions in the real world—and the subjec-

tive choices necessary to compensate for this—must be understood before these

techniques can be usefully implemented.

1.1.4 Open Directions

We conclude with a broad overview of several potential directions for future

study of the impacts of algorithmic decision-making on society. Modern al-

gorithmic decision-making systems incorporate machine-learned predictions in

10



broader pipelines and mechanisms, implicating a number of concerns over ac-

curacy and allocation found in both the machine learning and mechanism de-

sign literatures. These challenges increasingly require a combination of tech-

niques and insights from the two fields, particularly with respect to how they

conceive of and ensure fair decision-making.

Algorithms are often used to make decisions in settings where the law pro-

hibits discrimination. In such contexts, we must be increasingly sensitive to

the potential for algorithmic discrimination, the potential for algorithmic deci-

sions to be discriminatory. Future work will need to carefully consider both the

computational and legal dimensions of this problem.

One avenue to protect consumers from discriminatory or otherwise unfair

decisions is to require transparency: people should know when and how they

are being algorithmically evaluated. Ensuring that such disclosures provide

meaningful explanations is an emerging field of study that presents a number

of open challenges.
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Part II

Theoretical Foundations for Fairness

in Algorithmic Decision-Making
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CHAPTER 2

OVERVIEW OF Part II

In Part II, we apply a theoretical lens to fair algorithmic decision-making.

We consider both supervised learning (Chapters 3 and 4) and online learning

(Chapter 5).

In Chapter 3, we consider the risk assessment setting, where a predictive

model is used to determine an individual’s risk for a particular behavior or out-

come. For example, in the criminal justice system, risk assessment tools are used

in pre-trial hearings to determine the risk of recidivism, or future arrest. In such

settings, there is a public interest in ensuring such predictions are in some sense

“fair” to defendants. We show that three natural definitions of fair decision-

making in this context are in conflict with one another: outside of two special

cases, these criteria cannot be simultaneously satisfied, even approximately.

We build on these results in Chapter 4, showing a tension between calibration

and efforts to equalize the cost of predictive errors across populations. In par-

ticular, our results imply that efforts to simultaneously enforce calibration while

equalizing some notion of cost must make predictions worse for some subset of

the population without improving outcomes for anyone.

In Chapter 5, we turn to the issue of externalities in online learning. We

demonstrate that the inclusion of heterogeneous groups of users into the same

online learning algorithm can create negative externalities, leading to worse

outcomes for smaller populations than they would have otherwise received if

treated separately. However, we develop novel analyses of the greedy algorithm

in the Bayesian linear contextual bandit setting, demonstrating conditions un-
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der which the greedy algorithm is instance-optimal, meaning it cannot result in

negative externalities for any population.
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CHAPTER 3

INHERENT TRADE-OFFS IN THE FAIR DETERMINATION OF RISK

SCORES

There are many settings in which a sequence of people comes before a

decision-maker, who must make a judgment about each based on some ob-

servable set of features. Across a range of applications, these judgments are

being carried out by an increasingly wide spectrum of approaches ranging from

human expertise to algorithmic and statistical frameworks, as well as various

combinations of these approaches.

Along with these developments, a growing line of work has asked how we

should reason about issues of bias and discrimination in settings where these al-

gorithmic and statistical techniques, trained on large datasets of past instances,

play a significant role in the outcome. Let us consider three examples where

such issues arise, both to illustrate the range of relevant contexts, and to surface

some of the challenges.

A set of example domains. First, at various points in the criminal justice sys-

tem, including decisions about bail, sentencing, or parole, an officer of the court

may use quantitative risk tools to assess a defendant’s probability of recidivism

— future arrest — based on their past history and other attributes. Several re-

cent analyses have asked whether such tools mitigate or exacerbate the sources

of bias in the criminal justice system; in one widely-publicized report, Angwin

et al. analyzed a commonly used statistical method for assigning risk scores in

the criminal justice system — the COMPAS risk tool — and argued that it was

biased against African-American defendants (Angwin et al., 2016; Larson et al.,

2016). One of their main contentions was that the tool’s errors were asymmet-
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ric: African-American defendants were more likely to be incorrectly labeled as

higher-risk than they actually were, while white defendants were more likely to

be incorrectly labeled as lower-risk than they actually were. Subsequent analy-

ses raised methodological objections to this report, and also observed that de-

spite the COMPAS risk tool’s errors, its estimates of the probability of recidivism

are equally well calibrated to the true outcomes for both African-American and

white defendants (Dieterich et al., 2016; Flores et al., 2016; Gong, 2016).

Second, in a very different domain, researchers have begun to analyze the

ways in which different genders and racial groups experience advertising and

commercial content on the Internet differently (Datta et al., 2015; Sweeney,

2013). We could ask, for example: if a male user and female user are equally

interested in a particular product, does it follow that they’re equally likely to

be shown an ad for it? Sometimes this concern may have broader implications,

for example if women in aggregate are shown ads for lower-paying jobs. Other

times, it may represent a clash with a user’s leisure interests: if a female user

interacting with an advertising platform is interested in an activity that tends to

have a male-dominated viewership, like professional football, is the platform as

likely to show her an ad for football as it is to show such an ad to an interested

male user?

A third domain, again quite different from the previous two, is medical test-

ing and diagnosis. Doctors making decisions about a patient’s treatment may

rely on tests providing probability estimates for different diseases and condi-

tions. Here too we can ask whether such decision-making is being applied

uniformly across different groups of patients (Garb, 1997; Williams and Mo-

hammed, 2009), and in particular how medical tests may play a differential role
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for conditions that vary widely in frequency between these groups.

Providing guarantees for decision procedures. One can raise analogous ques-

tions in many other domains of fundamental importance, including decisions

about hiring, lending, or school admissions (Executive Office of the President,

2016), but we will focus on the three examples above for the purposes of this dis-

cussion. In these three example domains, a few structural commonalities stand

out. First, the algorithmic estimates are often being used as “input” to a larger

framework that makes the overall decision — a risk score provided to a human

expert in the legal and medical instances, and the output of a machine-learning

algorithm provided to a larger advertising platform in the case of Internet ads.

Second, the underlying task is generally about classifying whether people pos-

sess some relevant property: recidivism, a medical condition, or interest in a

product. We will refer to people as being positive instances if they truly pos-

sess the property, and negative instances if they do not. Finally, the algorithmic

estimates being provided for these questions are generally not pure yes-no de-

cisions, but instead probability estimates about whether people constitute posi-

tive or negative instances.

Let us suppose that we are concerned about how our decision procedure

might operate differentially between two groups of interest (such as African-

American and white defendants, or male and female users of an advertising

system). What sorts of guarantees should we ask for as protection against po-

tential bias?

A first basic goal in this literature is that the probability estimates provided

by the algorithm should be well-calibrated: if the algorithm identifies a set of
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people as having a probability z of constituting positive instances, then approx-

imately a z fraction of this set should indeed be positive instances (Crowson

et al., 2016; Foster and Vohra, 1998). Moreover, this condition should hold when

applied separately in each group as well (Flores et al., 2016). For example, if we

are thinking in terms of potential differences between outcomes for men and

women, this means requiring that a z fraction of men and a z fraction of women

assigned a probability z should possess the property in question.

A second goal focuses on the people who constitute positive instances (even

if the algorithm can only imperfectly recognize them): the average score re-

ceived by people constituting positive instances should be the same in each

group. We could think of this as balance for the positive class, since a violation

of it would mean that people constituting positive instances in one group re-

ceive consistently lower probability estimates than people constituting positive

instances in another group. In our initial criminal justice example, for instance,

one of the concerns raised was that white defendants who went on to com-

mit future crimes were assigned risk scores corresponding to lower probability

estimates in aggregate; this is a violation of the condition here. There is a com-

pletely analogous property with respect to negative instances, which we could

call balance for the negative class. These balance conditions can be viewed as gen-

eralizations of the notions that both groups should have equal false negative

and false positive rates.

It is important to note that balance for the positive and negative classes, as

defined here, is distinct in crucial ways from the requirement that the average

probability estimate globally over all members of the two groups be equal. This

latter global requirement is a version of statistical parity (Feldman et al., 2015;
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Calders and Verwer, 2012; Kamiran and Calders, 2009; Kamishima et al., 2012).

In some cases statistical parity is a central goal (and in some it is legally man-

dated), but the examples considered so far suggest that classification and risk

assessment are much broader activities where statistical parity is often neither

feasible nor desirable. Balance for the positive and negative classes, however, is

a goal that can be discussed independently of statistical parity, since these two

balance conditions simply ask that once we condition on the “correct” answer

for a person, the chance of making a mistake on them should not depend on

which group they belong to.

The present work: Trade-offs among the guarantees. Despite their different

formulations, the calibration condition and the balance conditions for the pos-

itive and negative classes intuitively all seem to be asking for variants of the

same general goal — that our probability estimates should have the same ef-

fectiveness regardless of group membership. One might therefore hope that it

would be feasible to achieve all of them simultaneously.

Our main result, however, is that these conditions are in general incompati-

ble with each other; they can only be simultaneously satisfied in certain highly

constrained cases. Moreover, this incompatibility applies to approximate ver-

sions of the conditions as well.

3.1 A Formal Model of Risk Assessment

In this section we formulate this main result precisely, as a theorem building on

a model that makes the discussion thus far more concrete.
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3.1.1 Formulating the Goal

Let’s start with some basic definitions. As above, we have a collection of people

each of whom constitutes either a positive instance or a negative instance of the

classification problem. We’ll say that the positive class consists of the people who

constitute positive instances, and the negative class consists of the people who

constitute negative instances. For example, for criminal defendants, the posi-

tive class could consist of those defendants who will be arrested again within

some fixed time window, and the negative class could consist of those who will

not. The positive and negative classes thus represent the “correct” answer to

the classification problem; our decision procedure does not know them, but is

trying to estimate them.

Feature vectors. Each person has an associated feature vector σ, representing

the data that we know about them. Let pσ denote the fraction of people with

feature vector σ who belong to the positive class. Conceptually, we will picture

that while there is variation within the set of people who have feature vector σ,

this variation is invisible to whatever decision procedure we apply; all people

with feature vector σ are indistinguishable to the procedure. Our model will

assume that the value pσ for each σ is known to the procedure.1

Groups. Each person also belongs to one of two groups, labeled 1 or 2, and we

would like our decisions to be unbiased with respect to the members of these

1Clearly the case in which the value of pσ is unknown is an important version of the problem
as well; however, since our main results establish strong limitations on what is achievable, these
limitations are only stronger because they apply even to the case of known pσ .
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two groups.2 In our examples, the two groups could correspond to different

races or genders, or other cases where we want to look for the possibility of

bias between them. The two groups have different distributions over feature

vectors: a person of group t has a probability atσ of exhibiting the feature vector

σ. However, people of each group have the same probability pσ of belonging to

the positive class provided their feature vector is σ. In this respect, σ contains

all the relevant information available to us about the person’s future behavior;

once we know σ, we do not get any additional information from knowing their

group as well.3

Risk Assignments. We say that an instance of our problem is specified by the

parameters above: a feature vector and a group for each person, with a value

pσ for each feature vector, and distributions {atσ} giving the frequency of the

feature vectors in each group.

Informally, risk assessments are ways of dividing people up into sets based

on their feature vectors σ (potentially using randomization), and then assigning

each set a probability estimate that the people in this set belong to the positive

class. Thus, we define a risk assignment to consist of a set of “bins” (the sets),

where each bin is labeled with a score vb that we intend to use as the probability

for everyone assigned to bin b. We then create a rule for assigning people to bins

based on their feature vector σ; we allow the rule to divide people with a fixed

feature vector σ across multiple bins (reflecting the possible use of randomiza-

2We focus on the case of two groups for simplicity of exposition, but it is straightforward to
extend all of our definitions to the case of more than two groups.

3As we will discuss in more detail below, the assumption that the group provides no addi-
tional information beyond σ does not restrict the generality of the model, since we can always
consider instances in which people of different groups never have the same feature vector σ,
and hence σ implicitly conveys perfect information about a person’s group.
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tion). Thus, the rule is specified by values Xσb: a fraction Xσb of all people with

feature vector σ are assigned to bin b. Note that the rule does not have access to

the group t of the person being considered, only their feature vector σ. (As we

will see, this does not mean that the rule is incapable of exhibiting bias between

the two groups.) In summary, a risk assignment is specified by a set of bins,

a score for each bin, and values Xσb that define a mapping from people with

feature vectors to bins.

Fairness Properties for Risk Assignments. Within the model, we now express

the three conditions discussed at the outset, each reflecting a potentially differ-

ent notion of what it means for the risk assignment to be “fair.”

(A) Calibration within groups requires that for each group t, and each bin b with

associated score vb, the expected number of people from group t in b who

belong to the positive class should be a vb fraction of the expected number

of people from group t assigned to b.

(B) Balance for the negative class requires that the average score assigned to peo-

ple of group 1 who belong to the negative class should be the same as the

average score assigned to people of group 2 who belong to the negative

class. In other words, the assignment of scores shouldn’t be systematically

more inaccurate for negative instances in one group than the other.

(C) Balance for the positive class symmetrically requires that the average score

assigned to people of group 1 who belong to the positive class should be

the same as the average score assigned to people of group 2 who belong

to the positive class.
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Why Do These Conditions Correspond to Notions of Fairness? All of these

are natural conditions to impose on a risk assignment; and as indicated by the

discussion above, all of them have been proposed as versions of fairness. The

first one essentially asks that the scores mean what they claim to mean, even

when considered separately in each group. In particular, suppose a set of scores

lack the first property for some bin b, and these scores are given to a decision-

maker; then if people of two different groups both belong to bin b, the decision-

maker has a clear incentive to treat them differently, since the lack of calibration

within groups on bin b means that these people have different aggregate proba-

bilities of belonging to the positive class. Another way of stating the property of

calibration within groups is to say that, conditioned on the bin to which an indi-

vidual is assigned, the likelihood that the individual is a member of the positive

class is independent of the group to which the individual belongs. This means

we are justified in treating people with the same score comparably with respect

to the outcome, rather than treating people with the same score differently based

on the group they belong to.

The second and third ask that if two individuals in different groups exhibit

comparable future behavior (negative or positive), they should be treated com-

parably by the procedure. In other words, a violation of, say, the second con-

dition would correspond to the members of the negative class in one group

receiving consistently higher scores than the members of the negative class in

the other group, despite the fact that the members of the negative class in the

higher-scoring group have done nothing to warrant these higher scores.

We can also interpret some of the prior work around our earlier examples

through the lens of these conditions. For example, in the analysis of the COM-

23



PAS risk tool for criminal defendants, the critique by Angwin et al. focused on

the risk tool’s violation of conditions (B) and (C); the counter-arguments estab-

lished that it satisfies condition (A). While it is clearly crucial for a risk tool to

satisfy (A), it may still be important to know that it violates (B) and (C). Sim-

ilarly, to think in terms of the example of Internet advertising, with male and

female users as the two groups, condition (A) as before requires that our es-

timates of ad-click probability mean the same thing in aggregate for men and

women. Conditions (B) and (C) are distinct; condition (C), for example, says

that a female user who genuinely wants to see a given ad should be assigned

the same probability as a male user who wants to see the ad.

3.1.2 Determining What is Achievable: A Characterization

Theorem

When can conditions (A), (B), and (C) be simultaneously achieved? We begin

with two simple cases where it’s possible.

• Perfect prediction. Suppose that for each feature vector σ, we have either

pσ = 0 or pσ = 1. This means that we can achieve perfect prediction, since

we know each person’s class label (positive or negative) for certain. In this

case, we can assign all feature vectors σ with pσ = 0 to a bin b with score

vb = 0, and all σ with pσ = 1 to a bin b′ with score vb′ = 1. It is easy to

check that all three of the conditions (A), (B), and (C) are satisfied by this

risk assignment.

• Equal base rates. Suppose, alternately, that the two groups have the same

fraction of members in the positive class; that is, the average value of pσ is
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the same for the members of group 1 and group 2. (We can refer to this as

the base rate of the group with respect to the classification problem.) In this

case, we can create a single bin b with score equal to this average value of

pσ, and we can assign everyone to bin b. While this is not a particularly in-

formative risk assignment, it is again easy to check that it satisfies fairness

conditions (A), (B), and (C).

Our first main result establishes that these are in fact the only two cases in

which a risk assignment can achieve all three fairness guarantees simultane-

ously.

Theorem 3.1. Consider an instance of the problem in which there is a risk assignment

satisfying fairness conditions (A), (B), and (C). Then the instance must either allow for

perfect prediction (with pσ equal to 0 or 1 for all σ) or have equal base rates.

Thus, in every instance that is more complex than the two cases noted above,

there will be some natural fairness condition that is violated by any risk assign-

ment. Moreover, note that this result applies regardless of how the risk assign-

ment is computed; since our framework considers risk assignments to be arbi-

trary functions from feature vectors to bins labeled with probability estimates,

it applies independently of the method — algorithmic or otherwise — that is

used to construct the risk assignment.

The conclusions of the first theorem can be relaxed in a continuous fashion

when the fairness conditions are only approximate. In particular, for any ε > 0

we can define ε-approximate versions of each of conditions (A), (B), and (C)

(specified precisely in the next section), each of which requires that the corre-

sponding equalities between groups hold only to within an error of ε. For any
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δ > 0, we can also define a δ-approximate version of the equal base rates con-

dition (requiring that the base rates of the two groups be within an additive δ

of each other) and a δ-approximate version of the perfect prediction condition

(requiring that in each group, the average of the expected scores assigned to

members of the positive class is at least 1 − δ; by the calibration condition, this

can be shown to imply a complementary bound on the average of the expected

scores assigned to members of the negative class).

In these terms, our approximate version of Theorem 3.1 is the following.

Theorem 3.2. There is a continuous function f , with f(x) going to 0 as x goes to 0,

so that the following holds. For all ε > 0, and any instance of the problem with a risk

assignment satisfying the ε-approximate versions of fairness conditions (A), (B), and

(C), the instance must satisfy either the f(ε)-approximate version of perfect prediction

or the f(ε)-approximate version of equal base rates.

Thus, anything that approximately satisfies the fairness constraints must ap-

proximately look like one of the two simple cases identified above.

Finally, in connection to Theorem 3.1, we note that when the two groups

have equal base rates, then one can ask for the most accurate risk assignment

that satisfies all three fairness conditions (A), (B), and (C) simultaneously. Since

the risk assignment that gives the same score to everyone satisfies the three

conditions, we know that at least one such risk assignment exists; hence, it is

natural to seek to optimize over the set of all such assignments. We consider

this algorithmic question in Section 3.4.

To reflect a bit further on our main theorems and what they suggest, we note

that our intention in the present work isn’t to make a recommendation on how
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conflicts between different definitions of fairness should be handled. Nor is

our intention to analyze which definitions of fairness are violated in particular

applications or datasets. Rather, our point is to establish certain unavoidable

trade-offs between the definitions, regardless of the specific context and regard-

less of the method used to compute risk scores. Since each of the definitions

reflect (and have been proposed as) natural notions of what it should mean for

a risk score to be fair, these trade-offs suggest a striking implication: that outside

of narrowly delineated cases, any assignment of risk scores can in principle be

subject to natural criticisms on the grounds of bias. This is equally true whether

the risk score is determined by an algorithm or by a system of human decision-

makers.

Special Cases of the Model. Our main results, which place strong restrictions

on when the three fairness conditions can be simultaneously satisfied, have

more power when the underlying model of the input is more general, since it

means that the restrictions implied by the theorems apply in greater generality.

However, it is also useful to note certain special cases of our model, obtained by

limiting the flexibility of certain parameters in intuitive ways. The point is that

our results apply a fortiori to these more limited special cases.

First, we have already observed one natural special case of our model: cases

in which, for each feature vector σ, only members of one group (but not the

other) can exhibit σ. This means that σ contains perfect information about

group membership, and so it corresponds to instances in which risk assign-

ments would have the potential to use knowledge of an individual’s group

membership. Note that we can convert any instance of our problem into a new

instance that belongs to this special case as follows. For each feature vector σ,
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we create two new feature vectors σ(1) and σ(2); then, for each member of group

1 who had feature vector σ, we assign them σ(1), and for each member of group

2 who had feature vector σ, we assign them σ(2). The resulting instance has the

property that each feature vector is associated with members of only one group,

but it preserves the essential aspects of the original instance in other respects.

Second, we allow risk assignments in our model to split people with a given

feature vector σ over several bins. Our results also therefore apply to the natural

special case of the model with integral risk assignments, in which all people with

a given feature σ must go to the same bin.

Third, our model is a generalization of binary classification, which only al-

lows for 2 bins. Note that although binary classification does not explicitly as-

sign scores, we can consider the probability that an individual belongs to the

positive class given that they were assigned to a specific bin to be the score for

that bin. Thus, our results hold in the traditional binary classification setting as

well.

Data-Generating Processes. Finally, there is the question of where the data in

an instance of our problem comes from. Our results do not assume any partic-

ular process for generating the positive/negative class labels, feature vectors,

and group memberships; we simply assume that we are given such a collection

of values (regardless of where they came from), and then our results address the

existence or non-existence of certain risk assignments for these values.

This increases the generality of our results, since it means that they apply

to any process that produces data of the form described by our model. To give

an example of a natural generative model that would produce instances with
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the structure that we need, one could assume that each individual starts with a

“hidden” class label (positive or negative), and a feature vector σ is then prob-

abilistically generated for this individual from a distribution that can depend

on their class label and their group membership. (If feature vectors produced

for the two groups are disjoint from one another, then the requirement that the

value of pσ is independent of group membership given σ necessarily holds.)

Since a process with this structure produces instances from our model, our re-

sults apply to data that arises from such a generative process.

It is also interesting to note that the basic set-up of our model, with the pop-

ulation divided across a set of feature vectors for which race provides no addi-

tional information, is in fact a very close match to the information one gets from

the output of a well-calibrated risk tool. In this sense, one setting for our model

would be the problem of applying post-processing to the output of such a risk

tool to ensure additional fairness guarantees. Indeed, since much of the recent

controversy about fair risk scores has involved risk tools that are well-calibrated

but lack the other fairness conditions we consider, such an interpretation of the

model could be a useful way to think about how one might work with these

tools in the context of a broader system.

Further Related Work. Mounting concern over discrimination in machine

learning has led to a large body of new work seeking to better understand and

prevent it. Barocas and Selbst (2016) survey a range of ways in which data-

analysis algorithms can lead to discriminatory outcomes. We refer the reader

to Mehrabi et al. (2019) for a more complete survey of the area.

Broadly speaking, the technical literature considers both individual and group

29



definitions of fair decision-making. Individual notions of fairness, beginning

with Dwork et al. (2012), are concerned with the notion that similar individu-

als should be treated similarly (Ilvento, 2020; Bechavod et al., 2020). This line

of work has also influenced efforts to define fairness through counterfactuals,

comparing an individual’s treatment to what it would have been in some hypo-

thetical counterfactual world (Kusner et al., 2017; Russell et al., 2017; Chiappa,

2019).

In contrast, group-based definitions of fairness seek to impose the constraint

that some statistical property, such as error rates or selection rates, should not

differ across pre-defined subpopulations based on attributes like gender and

race (Kamiran and Calders, 2009; Calders and Verwer, 2012; Kamishima et al.,

2012; Hajian and Domingo-Ferrer, 2013; Hardt et al., 2016b; Zafar et al., 2017b;

Corbett-Davies et al., 2017). The work in this chapter and Chapter 4 closely

aligns with this body of literature.

In particular, we study the role of calibration in risk assessment, which are

often considered necessary for empirical risk analysis tools (Berk et al., 2018;

Crowson et al., 2016; Dieterich et al., 2016; Flores et al., 2016). In practical appli-

cations, uncalibrated probability estimates can be misleading in the sense that

the end user of these estimates has an incentive to mistrust (and therefore poten-

tially misuse) them. There are several post-processing methods for producing

calibrated outputs from classification algorithms. For example, Platt Scaling

(Platt, 1999) passes outputs through a learned sigmoid function, transforming

them into calibrated probabilities. Histogram Binning and Isotonic Regression

(Zadrozny and Elkan, 2001) learn a general monotonic function from outputs

to probabilities. See Niculescu-Mizil and Caruana (2005); Guo et al. (2017) for

30



empirical comparisons of these methods.

Beyond this theoretical work, a growing body of studies have sought to em-

pirically characterize bias in real-world algorithmic decision-making systems,

including those used for facial recognition (Buolamwini and Gebru, 2018; Raji

and Buolamwini, 2019), speech recognition (Koenecke et al., 2020), and health

risk prediction (Obermeyer and Mullainathan, 2019).

In response to growing interest in theoretical characterizations of fair

decision-making critical scholars have raised concerns that this focus on tech-

nical aspects of fair decision-making detract from underlying societal inequities

(Powles and Nissenbaum, 2018; Green, 2018). We respond to some of these con-

cerns in a recent attempt to articulate positive roles computing scholarship can

play in an effort to bring about social change (Abebe et al., 2020).

3.2 The Characterization Theorems

Starting with the notation and definitions from the previous section, we now

give a proof of Theorem 3.1.

Informal overview. Let us begin with a brief overview of the proof, before

going into a more detailed version of it. For this discussion, let Nt denote the

number of people in group t, and µt be the number of people in group t who

belong to the positive class.

Roughly speaking, the proof proceeds in two steps. First, consider a single

bin b. By the calibration condition, the expected total score given to the group-t
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people in bin b is equal to the expected number of group-t people in bin b who

belong to the positive class. Summing over all bins, we find that the total score

given to all people in group t (that is, the sum of the scores received by everyone

in group t) is equal to the total number of people in the positive class in group

t, which is µt.

Now, let x be the average score given to a member of the negative class, and

let y be the average score given to a member of the positive class. By the balance

conditions for the negative and positive classes, these values of x and y are the

same for both groups.

Given the values of x and y, the total number of people in the positive class

µt, and the total score given out to people in group t — which, as argued above,

is also µt — we can write the total score as

(N − µt)x+ µty = µt.

This defines a line for each group t in the two variables x and y, and hence we

obtain a system of two linear equations (one for each group) in the unknowns x

and y.

If all three conditions — calibration, and balance for the two classes — are

to be satisfied, then we must be at a set of parameters that represents a solution

to the system of two equations. If the base rates are equal, then µ1 = µ2 and

hence the two lines are the same; in this case, the system of equations is satisfied

by any choice of x and y. If the base rates are not equal, then the two lines are

distinct, and they intersect only at the point (x, y) = (0, 1), which implies perfect

prediction — an average score of 0 for members of the negative class and 1 for

members of the positive class. Thus, the three conditions can be simultaneously

satisfied if and only if we have equal base rates or perfect prediction.
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This concludes the overview of the proof; in the remainder of the section we

describe the argument at a more detailed level.

Definitions and notation. Recall from our notation in the previous section that

an atσ fraction of the people in group t have feature vector σ; we thus write

ntσ = atσNt for the number of people in group t with feature vector σ. Many

of the components of the risk assignment and its evaluation can be written in

terms of operations on a set of underlying matrices and vectors, which we begin

by specifying.

• First, let |σ| denote the number of feature vectors in the instance, and let

p ∈ R|σ| be a vector indexed by the possible feature vectors, with the coor-

dinate in position σ equal to pσ. For group t, let nt ∈ R|σ| also be a vector

indexed by the possible feature vectors, with the coordinate in position σ

equal to ntσ. Finally, it will be useful to have a representation of p as a

diagonal matrix; thus, let P be a |σ| × |σ| diagonal matrix with Pσσ = pσ.

• We now specify a risk assignment as follows. The risk assignment involves

a set ofB bins with associated scores; let v ∈ RB be a vector indexed by the

bins, with the coordinate in position b equal to the score vb of bin b. Let V be

a diagonal matrix version of v: it is aB×B matrix with Vbb = vb. Finally, let

X be the |σ|×B matrix ofXσb values, specifying the fraction of people with

feature vector σ who get mapped to bin b under the assignment procedure.

There is an important point to note about the Xσb values. If all of them are

equal to 0 or 1, this corresponds to a procedure in which all people with the same

feature vector σ get assigned to the same bin. When some of the Xσb values are
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not equal to 0 or 1, the people with vector σ are being divided among multiple

bins. In this case, there is an implicit randomization taking place with respect to

the positive and negative classes, and with respect to the two groups, which we

can think of as follows. Since the procedure cannot distinguish among people

with vector σ, in the case that it distributes these people across multiple bins, the

subset of people with vector σ who belong to the positive and negative classes,

and to the two groups, are divided up randomly across these bins in proportions

corresponding to Xσb. In particular, if there are ntσ group-t people with vector

σ, the expected number of these people who belong to the positive class and are

assigned to bin b is ntσpσXσb.

Let us now proceed with the proof of Theorem 3.1, starting with the assump-

tion that our risk assignment satisfies conditions (A), (B), and (C).

Calibration within groups. We begin by working out some useful expressions

in terms of the matrices and vectors defined above. We observe that n>t P is a

vector in R|σ| whose coordinate corresponding to feature vector σ equals the

number of people in group t who have feature vector σ and belong to the posi-

tive class. n>t X is a vector in RB whose coordinate corresponding to bin b equals

the expected number of people in group t assigned to bin b.

By further multiplying these vectors on the right, we get additional useful

quantities. Here are two in particular:

• n>t XV is a vector in RB whose coordinate corresponding to bin b equals

the expected sum of the scores assigned to all group-t people in bin b. That

is, using the subscript b to denote the coordinate corresponding to bin b,

we can write (n>t XV )b = vb(n
>
t X)b by the definition of the diagonal matrix
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V .

• n>t PX is a vector in RB whose coordinate corresponding to bin b equals the

expected number of group-t people in the positive class who are placed in

bin b.

Now, condition (A), that the risk assignment is calibrated within groups,

implies that the two vectors above are equal coordinate-wise, and so we have

the following equation for all t:

n>t PX = n>t XV (3.1)

Calibration condition (A) also has an implication for the total score received

by all people in group t. Suppose we multiply the two sides of (3.1) on the right

by the vector e ∈ RB whose coordinates are all 1, obtaining

n>t PXe = n>t XV e. (3.2)

The left-hand-side is the number of group-t people in the positive class. The

right-hand-side, which we can also write as n>t Xv, is equal to the sum of the

expected scores received by all group-t people. These two quantities are thus

the same, and we write their common value as µt.

Fairness to the positive and negative classes. We now want to write down

vector equations corresponding to the fairness conditions (B) and (C) for the

negative and positive classes. First, recall that for the B-dimensional vector

n>t PX , the coordinate corresponding to bin b equals the expected number of
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group-t people in the positive class who are placed in bin b. Thus, to com-

pute the sum of the expected scores received by all group-t people in the posi-

tive class, we simply need to take the inner product with the vector v, yielding

n>t PXv. Since µt is the total number of group-t people in the positive class, the

average of the expected scores received by a group-t person in the positive class

is the ratio
1

µt
n>t PXv. Thus, condition (C), that members of the positive class

should receive the same average score in each group, can be written

1

µ1

n>1 PXv =
1

µ2

n>2 PXv (3.3)

Applying strictly analogous reasoning but to the fractions 1 − pσ of people in

the negative class, we can write condition (B), that members of the negative

class should receive the same average score in each group, as

1

N1 − µ1

n>1 (I − P )Xv =
1

N2 − µ2

n>2 (I − P )Xv (3.4)

Using (3.1), we can rewrite (3.3) to get

1

µ1

n>1 XV v =
1

µ2

n>2 XV v (3.5)

Similarly, we can rewrite (3.4) as

1

N1 − µ1

(µ1 − n>1 XV v) =
1

N2 − µ2

(µ2 − n>2 XV v) (3.6)

The portion of the score received by the positive class. We think of the ratios

on the two sides of (3.3), and equivalently (3.5), as the average of the expected

scores received by a member of the positive class in group t: the numerator is the

sum of the expected scores received by the members of the positive class, and

the denominator is the size of the positive class. Let us denote this fraction by

γt; we note that this is the quantity y used in the informal overview of the proof
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at the start of the section. By (3.2), we can alternately think of the denominator

as the sum of the expected scores received by all group-t people. Hence, the two

sides of (3.3) and (3.5) can be viewed as representing the ratio of the sum of the

expected scores in the positive class of group t to the sum of the expected scores

in group t as a whole. (3.3) requires that γ1 = γ2; let us denote this common

value by γ.

Now, we observe that γ = 1 corresponds to a case in which the sum of the

expected scores in just the positive class of group t is equal to the sum of the

expected scores in all of group t. In this case, it must be that all members of the

negative class are assigned to bins of score 0. If any members of the positive

class were assigned to a bin of score 0, this would violate the calibration condi-

tion (A); hence all members of the positive class are assigned to bins of positive

score. Moreover, these bins of positive score contain no members of the nega-

tive class (since they’ve all been assigned to bins of score 0), and so again by the

calibration condition (A), the members of the positive class are all assigned to

bins of score 1. Finally, applying the calibration condition once more, it follows

that the members of the negative class all have feature vectors σ with pσ = 0 and

the members of the positive class all have feature vectors σ with pσ = 1. Hence,

when γ = 1 we have perfect prediction.

Finally, we use our definition of γt as
1

µt
n>t XV v, and the fact that γ1 = γ2 = γ

to write (3.6) as

1

N1 − µ1

(µ1 − γµ1) =
1

N2 − µ2

(µ2 − γµ2)

1

N1 − µ1

µ1(1− γ) =
1

N2 − µ2

µ2(1− γ)

µ1/N1

1− µ1/N1

(1− γ) =
µ2/N2

1− µ2/N2

(1− γ)
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Now, this last equality implies that one of two things must be the case. Either

1− γ = 0, in which case γ = 1 and we have perfect prediction; or

µ1/N1

1− µ1/N1

=
µ2/N2

1− µ2/N2

,

in which case µ1/N1 = µ2/N2 and we have equal base rates. This completes the

proof of Theorem 3.1.

Some Comments on the Connection to Statistical Parity. Earlier we noted

that conditions (B) and (C) — the balance conditions for the positive and nega-

tive classes — are quite different from the requirement of statistical parity, which

asserts that the average of the scores over all members of each group be the

same.

When the two groups have equal base rates, then the risk assignment that

gives the same score to everyone in the population achieves statistical parity

along with conditions (A), (B), and (C). But when the two groups do not have

equal base rates, it is immediate to show that statistical parity is inconsistent

with both the calibration condition (A) and with the conjunction of the two bal-

ance conditions (B) and (C). To see the inconsistency of statistical parity with

the calibration condition, we take Equation (3.1) from the proof above, sum the

coordinates of the vectors on both sides, and divide byNt, the number of people

in group t. Statistical parity requires that the right-hand sides of the resulting

equation be the same for t = 1, 2, while the assumption that the two groups

have unequal base rates implies that the left-hand sides of the equation must

be different for t = 1, 2. To see the inconsistency of statistical parity with the

two balance conditions (B) and (C), we simply observe that if the average score

assigned to the positive class and to the negative class are the same in the two
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groups, then the average of the scores over all members of the two groups can-

not be the same provided they do not contain the same proportion of positive-

class and negative-class members.

3.3 The Approximate Theorem

In this section we prove Theorem 3.2. First, we must first give a precise specifi-

cation of the approximate fairness conditions:

(1− ε)[n>t XV ]b ≤ [n>t PX]b ≤ (1− ε)[n>t XV ]b (A’)

(1− ε)
(

1

N2 − µ2

)
n>t (I − P )Xv ≤

(
1

N1 − µ1

)
n>t (I − P )Xv

≤ (1 + ε)

(
1

N2 − µ2

)
n>t (I − P )Xv (B’)

(1− ε)
(

1

µ2

)
n>t PXv ≤

(
1

µ1

)
n>t PXv ≤ (1 + ε)

(
1

µ2

)
n>t PXv (C’)

For (B’) and (C’), we also require that these hold when µ1 and µ2 are inter-

changed.

We also specify the approximate versions of perfect prediction and equal

base rates in terms of f(ε), which is a function that goes to 0 as ε goes to 0.

• Approximate perfect prediction. γ1 ≥ 1− f(ε) and γ2 ≥ 1− f(ε)

• Approximately equal base rates. |µ1/N1 − µ2/N2| ≤ f(ε)

A brief overview of the proof of Theorem 3.2 is as follows. It proceeds by

first establishing an approximate form of Equation (3.1) above, which implies

that the total expected score assigned in each group is approximately equal to

the total size of the positive class. This in turn makes it possible to formulate
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approximate forms of Equations (3.3) and (3.4). When the base rates are close to-

gether, the approximation is too loose to derive bounds on the predictive power;

but this is okay since in this case we have approximately equal base rates. Other-

wise, when the base rates differ significantly, we show that most of the expected

score must be assigned to the positive class, giving us approximately perfect

prediction.

The remainder of this section provides the full details of the proof.

Total scores and the number of people in the positive class. First, we will

show that the total score for each group is approximately µt, the number of

people in the positive class. Define µ̂t = n>t Xv. Using (A’), we have

µ̂t = n>t Xv

= n>t XV e

=
B∑
b=1

[n>t PX]b

≤ (1 + ε)
B∑
b=1

[n>t PX]b

= (1 + ε)n>t PXe

= (1 + ε)µt

Similarly, we can lower bound µ̂t as

µ̂t =
B∑
b=1

[n>t PX]b

≥ (1− ε)
B∑
b=1

[n>t PX]b

= (1− ε)µt
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Combining these, we have

(1− ε)µt ≤ µ̂t ≤ (1 + ε)µt. (3.7)

The portion of the score received by the positive class. We can use (C’) to

show that γ1 ≈ γ2. Recall that γt, the average of the expected scores assigned to

members of the positive class in group t, is defined as γt = 1
µt
ntPXv. Then, it

follows trivially from (C’) that

(1− ε)γ2 ≤ γ1 ≤ (1 + ε)γ2. (3.8)

The relationship between the base rates. We can apply this to (B’) to relate

µ1 and µ2, using the observation that the score not received by people of the

positive class must fall instead to people of the negative class. Examining the

left inequality of (B’), we have

(1− ε)
(

1

N2 − µ2

)
n>t (I − P )Xv = (1− ε)

(
1

N2 − µ2

)
(n>t Xv − n>t PXv)

= (1− ε)
(

1

N2 − µ2

)
(µ̂2 − γ2µ2)

≥ (1− ε)
(

1

N2 − µ2

)
((1− ε)µ2 − γ2µt)

= (1− ε)
(

µ2

N2 − µ2

)
(1− ε− γ2)

≥ (1− ε)
(

µ2

N2 − µ2

)(
1− ε− γ1

1− ε

)
= (1− 2ε+ ε2 − γ1)

(
µ2

N2 − µ2

)
Thus, the left inequality of (B’) becomes

(1− 2ε+ ε2 − γ1)

(
µ2

N2 − µ2

)
≤
(

1

N1 − µ1

)
n>t (I − P )Xv (3.9)

By definition, µ̂1 = n>t Xv and γtµt = n>t PXv, so this becomes

(1− 2ε+ ε2 − γ1)

(
µ2

N2 − µ2

)
≤
(

1

N1 − µ1

)
(µ̂1 − γ1µ1) (3.10)
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If the base rates differ. Let ρ1 and ρ2 be the respective base rates, i.e. ρ1 =

µ1/N1 and ρ2 = µ2/N2. Assume that ρ1 ≤ ρ2 (otherwise we can switch µ1 and

µ2 in the above analysis), and assume towards contradiction that the base rates

differ by at least
√
ε, meaning ρ1 +

√
ε < ρ2. Using (3.10),

ρ1 +
√
ε

1− ρ1 −
√
ε
≤ ρ2

1− ρ2

≤
(

1 + ε− γ1

1− 2ε+ ε2 − γ1

)(
ρ1

1− ρ1

)
(ρ1 +

√
ε)(1− ρ1)(1− 2ε+ ε2 − γ1) ≤ ρ1(1− ρ1 −

√
ε)(1 + ε− γ1)

(ρ1 +
√
ε)(1− ρ1)(1− 2ε)− ρ1(1− ρ1 −

√
ε)(1 + ε)

≤ γ1

[
(ρ1 +

√
ε)(1− ρ1)− ρ1(1− ρ1 −

√
ε)
]

ρ1[(1− ρ1)(1− 2ε)− (1− ρ1 −
√
ε)(1 + ε)] +

√
ε(1− ρ1)(1− 2ε)

≤ γ1[
√
ε(1− ρ1) +

√
ερ1]

ρ1(−2ε+ 2ερ1 − ε+ ερ1 +
√
ε+ ε

√
ε) +

√
ε(1− 2ε− ρ1 + 2ερ1) ≤ γ1

√
ε

ρ1(−3ε+ 3ερ1 +
√
ε+ ε

√
ε−
√
ε+ 2ε

√
ε) +

√
ε(1− 2ε) ≤ γ1

√
ε

ερ1(−3 + 3ρ1 + 3
√
ε) +

√
ε(1− 2ε) ≤ γ1

√
ε

3ερ1(−1 + ρ1) +
√
ε(1− 2ε) ≤ γ1

√
ε

1− 2ε− 3
√
ερ1(1− ρ1) ≤ γ1

1−
√
ε

(
2
√
ε+

3

4

)
≤ γ1

Recall that γ2 ≥ γ1(1− ε), so

γ2 ≥ (1− ε)γ1

≥ (1− ε)
(

1−
√
ε

(
2
√
ε+

3

4

))
≥ 1− ε−

√
ε

(
2
√
ε+

3

4

)
= 1−

√
ε

(
3
√
ε+

3

4

)
Let f(ε) =

√
εmax(1, 3

√
ε + 3/4). Note that we assumed that ρ1 and ρ2 differ

by an additive
√
ε ≤ f(ε). Therefore if the ε-fairness conditions are met and the
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base rates are not within an additive f(ε), then γ1 ≥ 1− f(ε) and γ2 ≥ 1− f(ε).

This completes the proof of Theorem 3.2.

3.4 Reducing Loss with Equal Base Rates

In a risk assignment, we would like as much of the score as possible to be as-

signed to members of the positive class. With this in mind, if an individual

receives a score of v, we define their individual loss to be v if they belong to the

negative class, and 1− v if they belong to the positive class. The loss of the risk

assignment in group t is then the sum of the expected individual losses to each

member of group t. In terms of the matrix-vector products used in the proof of

Theorem 3.1, one can show that the loss for group t may be written as

`t(X) = n>t (I − P )Xv + (µt − n>t PXv)

= 2(µt − n>t PXv),

and the total loss is just the weighted sum of the losses for each group.

Now, let us say that a fair assignment is one that satisfies our three conditions

(A), (B), and (C). As noted above, when the base rates in the two groups are

equal, the set of fair assignments is non-empty, since the calibrated risk assign-

ment that places everyone in a single bin is fair. We can therefore ask, in the case

of equal base rates, whether there exists a fair assignment whose loss is strictly

less than that of the trivial one-bin assignment. It is not hard to show that this is

possible if and only if there is any assignment using more than one bin; we will

call such an assignment a non-trivial assignment.

Note that the assignment that minimizes loss is simply the one that assigns
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each σ to a separate bin with a score of pσ, meaning X is the identity matrix.

While this assignment, which we refer to as the identity assignment I , is well-

calibrated, it may violate fairness conditions (B) and (C). It is not hard to show

that the loss for any other assignment is strictly greater than the loss for I . As a

result, unless the identity assignment happens to be fair, every fair assignment

must have larger loss than that of I , forcing a tradeoff between performance and

fairness.

3.4.1 Characterization of Well-Calibrated Solutions

To better understand the space of feasible solutions, suppose we drop the fair-

ness conditions (B) and (C) for now and study risk assignments that are simply

well-calibrated, satisfying (A). As in the proof of Theorem 3.1, we write γt for

the average of the expected scores assigned to members of the positive class in

group t, and we define the fairness difference to be γ1 − γ2. If this is nonnegative,

we say the risk assignment weakly favors group 1; if it is nonpositive, it weakly

favors group 2. Since a risk assignment is fair if and only if γ1 = γ2, it is fair if

and only if the fairness difference is 0.

We wish to characterize when non-trivial fair risk assignments are possible.

First, we observe that without the fairness requirements, the set of possible fair-

ness differences under well-calibrated assignments is an interval.

Lemma 3.3. If group 1 and group 2 have equal base rates, then for any two non-trivial

well-calibrated risk assignments with fairness differences d1 and d2 and for any d3 ∈

[d1, d2], there exists a non-trivial well-calibrated risk assignment with fairness difference

d3.
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Proof. The basic idea is that we can effectively take convex combinations of well-

calibrated assignments to produce any well-calibrated assignment “in between”

them. We carry this out as follows.

Let X(1) and X(2) be the allocation matrices for assignments with fairness

differences d1 and d2 respectively, where d1 < d2. Choose λ such that λd1 + (1−

λ)d2 = d3, meaning λ = (d2 − d3)/(d2 − d1). Then, X(3) = [λX(1) (1− λ)X(2)] is

a nontrivial well-calibrated assignment with fairness difference d3.

First, we observe that X(3) is a valid assignment because each row sums to 1

(meaning everyone from every σ gets assigned to a bin), since each row of λX(1)

sums to λ and each row of (1− λ)X(2) sums to (1− λ). Moreover, it is nontrivial

because every nonempty bin created by X(1) and X(2) is a nonempty bin under

X(3).

Let v(1) and v(2) be the respective bin labels for assignments X(1) and X(2).

Define v(3) =

v(1)

v(2)

.

Finally, let V (3) = diag(v(3)). Define V (1) and V (2) analogously. Note that

V (3) =

V (1) 0

0 V (2)

.
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We observe that X(3) is calibrated because

n>t PX
(3) = n>t P [λX(1) (1− λ)X(2)]

= [λn>t PX
(1) (1− λ)n>t PX

(2)]

= [λn>t X
(1)V (1) (1− λ)n>t X

(2)V (2)]

= n>t [λX(1) (1− λ)X(2)]V (3)

= n>t X
(3)V (3)

Finally, we show that the fairness difference is d3. Let γ(1)
1 and γ

(1)
2 be the

portions of the total expected score received by the positive class from each

group respectively. Define γ(2)
1 , γ

(2)
2 , γ

(3)
1 , γ

(3)
2 similarly.

γ
(3)
1 − γ

(3)
2 =

1

µ
n>1 PX

(3)v(3) − 1

µ
n>2 PX

(3)v(3)

=
1

µ
(n>1 − n>2 )PX(3)v(3)

=
1

µ
(n>1 − n>2 )P [λX(1)v(1) (1− λ)X(2)v(2)]

=
1

µ
(λ(n>1 − n>2 )PX(1)v(1) + (1− λ)(n>1 − n>2 )X(2)v(2)])

= λ(γ
(1)
1 − γ

(1)
2 ) + (1− λ)(γ

(2)
1 − γ

(2)
2 )

= λd1 + (1− λ)d2

= d3

Corollary 3.4. There exists a non-trivial fair assignment if and only if there exist non-

trivial well-calibrated assignments X(1) and X(2) such that X(1) weakly favors group 1

and X(2) weakly favors group 2.

Proof. If there is a non-trivial fair assignment, then it weakly favors both group

1 and group 2, proving one direction.
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To prove the other direction, observe that the fairness differences d1 and d2

of X(1) and X(2) are nonnegative and nonpositive respectively. Since the set of

fairness differences achievable by non-trivial well-calibrated assignments is an

interval by Lemma 3.3, there exists a non-trivial well-calibrated assignment with

fairness difference 0, meaning there exists a non-trivial fair assignment.

It is an open question whether there is a polynomial-time algorithm to find

a fair assignment of minimum loss, or even to determine whether a non-trivial

fair solution exists.

3.4.2 NP-Completeness of Non-Trivial Integral Fair Risk As-

signments

As discussed in the introduction, risk assignments in our model are allowed to

split people with a given feature vector σ over several bins; however, it is also

of interest to consider the special case of integral risk assignments, in which all

people with a given feature σ must go to the same bin. For the case of equal base

rates, we can show that determining whether there is a non-trivial integral fair

assignment is NP-complete. The proof uses a reduction from the Subset Sum

problem and is given Appendix A.

The basic idea of the reduction is as follows. We have an instance of Subset

Sum with numbers w1, . . . , wm and a target number T ; the question is whether

there is a subset of the wi’s that sums to T . As before, γt denotes the average of

the expected scores received by members of the positive class in group t. We first

ensure that there is exactly one non-trivial way to allocate the people of group

47



1, allowing us to control γ1. The fairness conditions then require that γ2 = γ1,

which we can use to encode the target value in the instance of Subset Sum. For

every input number wi in the Subset Sum instance, we create pσ2i−1
and pσ2i ,

close to each other in value and far from all other pσ values, such that grouping

σ2i−1 and σ2i together into a bin corresponds to choosing wi for the subset, while

not grouping them corresponds to not taking wi. This ensures that group 2 can

be assigned with the correct value of γ2 if and only if there is a solution to the

Subset Sum instance.

3.5 Conclusion

In this chapter we have formalized three fundamental conditions for risk as-

signments to individuals, each of which has been proposed as a basic measure

of what it means for the risk assignment to be fair. Our main results show that

except in highly constrained special cases, it is not possible to satisfy these three

constraints simultaneously; and moreover, a version of this fact holds in an ap-

proximate sense as well.

Since these results hold regardless of the method used to compute the risk as-

signment, it can be phrased in fairly clean terms in a number of domains where

the trade-offs among these conditions do not appear to be well-understood. To

take one simple example, suppose we want to determine the risk that a person

is a carrier for a disease X , and suppose that a higher fraction of women than

men are carriers. Then our results imply that in any test designed to estimate the

probability that someone is a carrier of X , at least one of the following undesir-

able properties must hold: (a) the test’s probability estimates are systematically
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skewed upward or downward for at least one gender; or (b) the test assigns a

higher average risk estimate to healthy people (non-carriers) in one gender than

the other; or (c) the test assigns a higher average risk estimate to carriers of the

disease in one gender than the other. The point is that this trade-off among (a),

(b), and (c) is not a fact about medicine; it is simply a fact about risk estimates

when the base rates differ between two groups.

Finally, we note that our results suggest a number of interesting directions

for further work. First, when the base rates between the two underlying groups

are equal, our results do not resolve the computational tractability of finding the

most accurate risk assignment, subject to our three fairness conditions, when

the people with a given feature vector can be split across multiple bins. (Our

NP-completeness result applies only to the case in which everyone with a given

feature vector must be assigned to the same bin.) Second, there may be a num-

ber of settings in which the cost (social or otherwise) of false positives may differ

greatly from the cost of false negatives. In such cases, we could imagine search-

ing for risk assignments that satisfy the calibration condition together with only

one of the two balance conditions, corresponding to the class for whom errors

are more costly. Determining when two of our three conditions can be simul-

taneously satisfied in this way is an interesting open question. More broadly,

determining how the trade-offs discussed here can be incorporated into broader

families of proposed fairness conditions suggests interesting avenues for future

research.
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CHAPTER 4

ON FAIRNESS AND CALIBRATION

Recently, there has been growing concern about errors of machine learning

algorithms in sensitive domains – including criminal justice, online advertising,

and medical testing (Executive Office of the President, 2016) – which may sys-

tematically discriminate against particular groups of people (Barocas and Selbst,

2016; Berk et al., 2018; Chouldechova, 2017).

A recent high-profile example of these concerns was raised by the news or-

ganization ProPublica, who studied a risk-assessment tool that is widely used in

the criminal justice system. This tool assigns to each criminal defendant an es-

timated probability that they will commit a future crime. ProPublica found that

the risk estimates assigned to defendants who did not commit future crimes

were on average higher among African-American defendants than Caucasian

defendants (Angwin et al., 2016). This is a form of false-positive error, and in

this case it disproportionately affected African-American defendants. To miti-

gate issues such as these, the machine learning community has proposed differ-

ent frameworks that attempt to quantify fairness in classification (Barocas and

Selbst, 2016; Berk et al., 2018; Chouldechova, 2017; Hardt et al., 2016b; Kleinberg

et al., 2017; Woodworth et al., 2017; Zafar et al., 2017a). A recent and particularly

noteworthy framework is Equalized Odds (Hardt et al., 2016b) (also referred to

as Disparate Mistreatment (Zafar et al., 2017a)),1 which constrains classification

algorithms such that no error type (false-positive or false-negative) dispropor-

tionately affects any population subgroup. This notion of non-discrimination is

feasible in many settings, and researchers have developed tractable algorithms

1For the remainder of the chapter, we will use Equalized Odds to refer to this notion of non-
discrimination.
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for achieving it (Hardt et al., 2016b; Goh et al., 2016; Zafar et al., 2017a; Wood-

worth et al., 2017).

When risk tools are used in practice, a key goal is that they are calibrated: if

we look at the set of people who receive a predicted probability of p, we would

like a p fraction of the members of this set to be positive instances of the clas-

sification problem (Dawid, 1982). Moreover, if we are concerned about fairness

between two groups G1 and G2 (e.g. African-American defendants and white

defendants) then we would like this calibration condition to hold simultane-

ously for the set of people within each of these groups as well (Flores et al.,

2016).

Calibration is a crucial condition for risk tools in many settings. If a risk tool

for evaluating defendants were not calibrated with respect to groups defined by

race, for example, then a probability estimate of p could carry different meaning

for African-American and white defendants, and hence the tool would have the

unintended and highly undesirable consequence of incentivizing judges to take

race into account when interpreting its predictions.

Despite the importance of calibration as a property, our understanding of

how it interacts with other fairness properties is limited. We know from recent

work that, except in the most constrained cases, it is impossible to achieve cal-

ibration while also satisfying Equalized Odds (Kleinberg et al., 2017; Choulde-

chova, 2017). However, we do not know how best to achieve relaxations of these

guarantees that are feasible in practice.

Our goal is to further investigate the relationship between calibration and

error rates. We show that even if the Equalized Odds conditions are relaxed

51



substantially – requiring only that weighted sums of the group error rates

match – it is still problematic to also enforce calibration. We provide neces-

sary and sufficient conditions under which this calibrated relaxation is fea-

sible. When feasible, it has a unique optimal solution that can be achieved

through post-processing of existing classifiers. Moreover, we provide a simple

post-processing algorithm to find this solution: withholding predictive infor-

mation for randomly chosen inputs to achieve parity and preserve calibration.

However, this simple post-processing method is fundamentally unsatisfactory:

although the post-processed predictions of our information-withholding algo-

rithm are “fair” in expectation, most practitioners would object to the fact that a

non-trivial portion of the individual predictions are withheld as a result of coin

tosses – especially in sensitive settings such as health care or criminal justice.

The optimality of this algorithm thus has troubling implications and shows that

calibration and error-rate fairness are inherently at odds (even beyond the initial

results by Chouldechova (2017) and Kleinberg et al. (2017)).

Finally, we evaluate these theoretical findings empirically, comparing cali-

brated notions of non-discrimination against the (uncalibrated) Equalized Odds

framework on several datasets. These experiments further support our conclu-

sion that calibration and error-rate constraints are in most cases mutually in-

compatible goals. In practical settings, it may be advisable to choose only one

of these goals rather than attempting to achieve some relaxed notion of both.

4.1 Problem Setup

The setup of our framework most follows the Equalized Odds framework (Hardt

et al., 2016b; Zafar et al., 2017a); however, we extend their framework for use
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with probabilistic classifiers. Let P ⊂ Rk × {0, 1} be the input space of a binary

classification task. In our criminal justice example, (x, y) ∼ P represents a per-

son, with x representing the individual’s history and y representing whether or

not the person will commit another crime. Additionally, we assume the pres-

ence of two groups G1, G2 ⊂ P , which represent disjoint population subsets,

such as different races. We assume that the groups have different base rates

µt, or probabilities of belonging to the positive class: µ1 = Pr(x,y)∼G1 [y = 1] 6=

Pr(x,y)∼G2 [y = 1] = µ2.

Finally, let h1, h2 : Rk → [0, 1] be binary classifiers, where h1 classifies sam-

ples from G1 and h2 classifies samples from G2.2 Each classifier outputs the

probability that a given sample x belongs to the positive class. The notion of

Equalized Odds non-discrimination is based on the false-positive and false-

negative rates for each group, which we generalize here for use with proba-

bilistic classifiers:

Definition 4.1. The generalized false-positive rate of classifier ht for group Gt is

cfp(ht) = E(x,y)∼Gt
[
ht(x) | y= 0

]
. Similarly, the generalized false-negative rate of

classifier ht is cfn(ht) = E(x,y)∼Gt
[
(1− ht(x)) | y=1

]
.

If the classifier were to output either 0 or 1, this represents the standard no-

tions of false-positive and false-negative rates. We now define the Equalized

Odds framework (generalized for probabilistic classifiers), which aims to en-

sure that errors of a given type are not biased against any group.

Definition 4.2 (Probabilistic Equalized Odds). Classifiers h1 and h2 exhibit Equal-

ized Odds for groups G1 and G2 if cfp(h1) = cfp(h2) and cfn(h1) = cfn(h2).
2In practice, h1 and h2 can be trained jointly (i.e. they are the same classifier).
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Calibration Constraints. As stated in the introduction, these two conditions

do not necessarily prevent discrimination if the classifier predictions do not rep-

resent well-calibrated probabilities. Recall that calibration intuitively says that

probabilities should carry semantic meaning: if there are 100 people in G1 for

whom h1(x) = 0.6, then we expect 60 of them to belong to the positive class.

Definition 4.3. A classifier ht is perfectly calibrated if ∀p ∈ [0, 1], Pr(x,y)∼Gt
[
y=1 |

ht(x)=p
]

= p.

It is commonly accepted amongst practitioners that both classifiers h1 and h2

should be calibrated with respect to groups G1 and G2 to prevent discrimination

(Berk et al., 2018; Crowson et al., 2016; Dieterich et al., 2016; Flores et al., 2016).

Intuitively, this prevents the probability scores from carrying group-specific

information. Unfortunately, Kleinberg et al. (2017) (as well as Chouldechova

(2017), in a binary setting) prove that a classifier cannot achieve both calibration

and Equalized Odds, even in an approximate sense, except in the most trivial of

cases.

4.1.1 Geometric Characterization of Constraints

We now will characterize the calibration and error-rate constraints with sim-

ple geometric intuitions. Throughout the rest of this chapter, all of our results

can be easily derived from this interpretation. We begin by defining the re-

gion of classifiers which are trivial, or those that output a constant value for

all inputs (i.e. hc(x) = c, where 0 ≤ c ≤ 1 is a constant). We can visualize

these classifiers on a graph with generalized false-positive rates on one axis

and generalized false-negatives on the other. It follows from the definitions
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of generalized false-positive/false-negative rates and calibration that all trivial

classifiers h lie on the diagonal defined by cfp(h) + cfn(h) = 1 (Figure 4.1a).

Therefore, all classifiers that are “better than random” must lie below this diag-

onal in false-positive/false-negative space (the gray triangle in the figure). Any

classifier that lies above the diagonal performs “worse than random,” as we

can find a point on the trivial classifier diagonal with lower false-positive and

false-negative rates.

Now we will characterize the set of calibrated classifiers for groups G1 and

G2, which we denote as H∗1 and H∗2. Kleinberg et al. show that the general-

ized false-positive and false-negative rates of a calibrated classifier are linearly

related by the base rate of the group:3

cfn(ht) = (1− µt)/µt cfp(ht). (4.1)

In other words, h1 lies on a line with slope (1 − µ1)/µ1 and h2 lies on a line

with slope (1 − µ2)/µ2 (Figure 4.1a). The lower endpoint of each line is the

perfect classifier, which assigns the correct prediction with complete certainty to

every input. The upper endpoint is a trivial classifier, as no calibrated classifier

can perform “worse than random” (see Lemma B.5 in Appendix B.2). The only

trivial classifier that satisfies the calibration condition for a group Gt is the one

that outputs the base rate µt. We will refer to hµ1 and hµ2 as the trivial classifiers,

calibrated for groups G1 and G2 respectively. It follows from the definitions that

cfp(h
µ1) = µ1 and cfn(hµ1) = 1− µ1, and likewise for hµ2 .

Finally, it is worth noting that for calibrated classifiers, a lower false-positive

rate necessarily corresponds to a lower false-negative rate and vice-versa. In

3Throughout this chapter we will treat the calibration constraint as holding exactly; however,
our results generalize to approximate settings as well. See Appendix B for more details.
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other words, for a given base rate, a “better” calibrated classifier lies closer to

the origin on the line of calibrated classifiers.

Impossibility of Equalized Odds with Calibration. With this geometric intu-

ition, we can provide a simplified proof of the main impossibility result from

Kleinberg et al. (2017):

Theorem (Impossibility Result (Kleinberg et al., 2017)). Let h1 and h2 be classi-

fiers for groups G1 and G2 with µ1 6= µ2. h1 and h2 satisfy the Equalized Odds and

calibration conditions if and only if h1 and h2 are perfect predictors.

Intuitively, the three conditions define a set of classifiers which is overcon-

strained. Equalized Odds stipulates that the classifiers h1 and h2 must lie on the

same coordinate in the false-positive/false-negative plane. As h1 must lie on

the blue line of calibrated classifiers for H∗1 and h2 on the red line H∗2 they can

only satisfy EO at the unique intersection point — the origin (and location of

the perfect classifier). This implies that unless the two classifiers achieve perfect

accuracy, we must relax the Equalized Odds conditions if we want to maintain

calibration.

4.2 Relaxing Equalized Odds to Preserve Calibration

In this section, we show that a substantially simplified notion of Equalized Odds

is compatible with calibration. We introduce a general relaxation that seeks to

satisfy a single equal-cost constraint while maintaining calibration for each group

Gt. We begin with the observation that Equalized Odds sets constraints to equal-

ize false-positives cfp(ht) and false-negatives cfn(ht). To capture and generalize
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this, we define a cost function gt to be a linear function in cfp(ht) and cfn(ht) with

arbitrary dependence on the group’s base rate µt. More formally, a cost function

for group Gt is

gt(ht) = atcfp(ht) + btcfn(ht) (4.2)

where at and bt are non-negative constants that are specific to each group (and

thus may depend on µt): see Figure 4.1d. We also make the assumption that

for any µt, at least one of at and bt is nonzero, meaning gt(ht) = 0 if and only if

cfp(ht) = cfn(ht) = 0.4 This class of cost functions encompasses a variety of sce-

4By calibration, we cannot have one of cfp(ht) = 0 or cfn(ht) = 0 without the other, see
Figure 4.1a.
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narios. As an example, imagine an application in which the equal false-positive

condition is essential but not the false-negative condition. Such a scenario may

arise in our recidivism-prediction example, if we require that non-repeat offend-

ers of any race are not disproportionately labeled as high risk. If we plot the set

of calibrated classifiers H∗1 and H∗2 on the false-positive/false-negative plane,

we can see that ensuring the false-positive condition requires finding classifiers

h1 ∈ H∗1 and h2 ∈ H∗2 that fall on the same vertical line (Figure 4.1b). Conversely,

if we instead choose to satisfy only the false-negative condition, we would find

classifiers h1 and h2 that fall on the same horizontal (Figure 4.1c). Finally, if

both false-positive and false-negative errors incur a negative cost on the indi-

vidual, we may choose to equalize a weighted combination of the error rates

(Berk, 2016; Berk et al., 2018; Chouldechova, 2017), which can be graphically

described by the classifiers lying on a convex and negatively-sloped level set

(Figure 4.1d). With these definitions, we can formally define our relaxation:

Definition 4.4 (Relaxed Equalized Odds with Calibration). Given a cost function

gt of the form in (4.2), classifiers h1 and h2 achieve Relaxed Equalized Odds with

Calibration for groups G1 and G2 if both classifiers are calibrated and satisfy the con-

straint g1(h1) = g2(h2).

It is worth noting that, for calibrated classifiers, an increase in cost strictly

corresponds to an increase in both the false-negative and false-positive rate.

This can be interpreted graphically, as the level-order cost curves lie further

away from the origin as cost increases (Figure 4.2a). In other words, the cost

function can always be used as a proxy for either error rate.5

5This holds even for approximately calibrated classifiers — see Appendix B.3.
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Feasibility. It is easy to see that Definition 4.4 is always satisfiable – in Fig-

ures 4.1b, 4.1c, and 4.1d we see that there are many such solutions that would

lie on a given level-order cost curve while maintaining calibration, including

the case in which both classifiers are perfect. In practice, however, not all clas-

sifiers are achievable. For the rest of the chapter, we will assume that we have

access to “optimal” (but possibly discriminatory) calibrated classifiers h1 and

h2 such that, due to whatever limitations there are on the predictability of the

task, we are unable to find other classifiers that have lower cost with respect to

gt. We allow h1 and h2 to be learned in any way, as long as they are calibrated.

Without loss of generality, for the remainder of the chapter, we will assume that

g1(h1) ≥ g2(h2).

Since by assumption we have no way to find a classifier for G1 with lower

cost than h1, our goal is therefore to find a classifier h̃2 with cost equal to h1. This

pair of classifiers would represent the lowest cost (and therefore optimal) set of

classifiers that satisfies calibration and the equal cost constraint. For a given

base rate µt and value of the cost function gt, a calibrated classifier’s position

in the generalized false-positive/false-negative plane is uniquely determined

(Figure 4.2a). This is because each level-order curve of the cost function gt has

negative slope in this plane, and each level order curve only intersects a group’s

calibrated classifier line once. In other words, there is a unique solution in the

false-positive/false-negative plane for classifier h̃2 (Figure 4.2b).

Consider the range of values that gt can take. As noted above, gt(ht) ≥ 0,

with equality if and only if ht is the perfect classifier. On the other hand, the

trivial classifier (again, which outputs the constant µt for all inputs) is the cali-

brated classifier that achieves maximum cost for any gt (see Lemma B.5 in Ap-
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pendix B.2). As a result, the cost of a classifier for group Gt is between 0 and

gt(h
µt). This naturally leads to a characterization of feasibility: Definition 4.4

can be achieved if and only if h1 incurs less cost than group G2’s trivial classifier

hµ2 ; i.e. if g1(h1) ≤ g2(hµ2). This can be seen graphically in Figure 4.2c, in which

the level-order curve for g1(h1) does not intersect the set of calibrated classifiers

for G2. Since, by assumption, we cannot find a calibrated classifier for G1 with

strictly smaller cost than h1, there is no feasible solution. On the other hand, if

h1 incurs less cost than hµ2 , then we will show feasibility by construction with a

simple algorithm.

An Algorithm. While it may be possible to encode the constraints of Defini-

tion 4.4 into the training procedure of h1 and h2, it is not immediately obvious

how to do so. Even naturally probabilistic algorithms, such as logistic regres-

sion, can become uncalibrated in the presence of optimization constraints (as is

the case in Zafar et al. (2017a)). It is not straightforward to encode the calibration

constraint if the probabilities are assumed to be continuous, and post-processing

calibration methods (Platt, 1999; Zadrozny and Elkan, 2001) would break equal-

cost constraints by modifying classifier scores. Therefore, we look to achieve

the calibrated Equalized Odds relaxation by post-processing existing calibrated

classifiers.

Again, given h1 and h2 with g1(h1) ≥ g2(h2), we want to arrive at a cali-

brated classifier h̃2 for groupG2 such that g1(h1) = g2(h̃2). Recall that, under our

assumptions, this would be the best possible solution with respect to classifier

cost. We show that this cost constraint can be achieved by withholding predic-

tive information for a randomly chosen subset of group G2. In other words,

rather than always returning h2(x) for all samples, we will occasionally return
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the group’s mean probability (i.e. the output of the trivial classifier hµ2). In

Lemma B.6 in Appendix B.2, we show that if

h̃2(x) =


hµ2(x) = µ2 with probability α

h2(x) with probability 1− α
(4.3)

then the cost of h̃2 is a linear interpolation between the costs of h2 and hµ2 (Fig-

ure 4.2d). More formally, we have that g2(h̃2) = (1 − α)g2(h2) + αg2(hµ2)),

and thus setting α = g1(h1)−g2(h2)
g2(hµ2 )−g2(h2)

ensures that g2(h̃2) = g1(h1) as desired

(Figure 4.2b). Moreover, this randomization preserves calibration (see Ap-

pendix B.4). Algorithm 1 summarizes this method.

Algorithm 1 Achieving Calibration and an Equal-Cost Constraint via Informa-
tion Withholding

Input: classifiers h1 and h2 s.t. g2(h2) ≤ g1(h1) ≤ g2(hµ2), holdout set Pvalid.

• Determine base rate µ2 of G2 (using Pvalid) to produce trivial classifier
hµ2 .

• Construct h̃2 using with α = g1(h1)−g2(h2)
g2(hµ2 )−g2(h2)

, where α is the interpolation
parameter.

return h1, h̃2 — which are calibrated and satisfy g1(h1) = g2(h̃2).

Implications. In a certain sense, Algorithm 1 is an “optimal” method because

it arrives at the unique false-negative/false-positive solution for h̃2, where h̃2

is calibrated and has cost equal to h1. Therefore (by our assumptions) we can

find no better classifiers that satisfy Definition 4.4. This simple result has strong

consequences, as the tradeoffs to satisfy both calibration and the equal-cost con-

straint are often unsatisfactory — both intuitively and experimentally (as we

will show in Section 4.3).

We find two primary objections to this solution. First, it equalizes costs
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simply by making a classifier strictly worse for one of the groups. Second, it

achieves this cost increase by withholding information on a randomly chosen

population subset, making the outcome inequitable within the group (as mea-

sured by a standard measure of inequality like the Gini coefficient). Due to the

optimality of the algorithm, the former of these issues is unavoidable in any

solution that satisfies Definition 4.4. The latter, however, is slightly more sub-

tle, and brings up the question of individual fairness (what guarantees we would

like an algorithm to make with respect to each individual) and how it interacts

with group fairness (population-level guarantees). While this certainly is an im-

portant issue for future work, in this particular setting, even if one could find

another algorithm that distributes the burden of additional cost more equitably,

any algorithm will make at least as many false-positive/false-negative errors as

Algorithm 1, and these misclassifications will always be tragic to the individ-

uals whom they affect. The performance loss across the entire group is often

significant enough to make this combination of constraints somewhat worrying

to use in practice, regardless of the algorithm.

Impossibility of Satisfying Multiple Equal-Cost Constraints. It is natural to

argue there might be multiple cost functions that we would like to equalize

across groups. However, satisfying more than one distinct equal-cost constraint

(i.e. different curves in the F.P./F.N. plane) is infeasible.

Theorem 4.5 (Generalized impossibility result). Let h1 and h2 be calibrated clas-

sifiers for G1 and G2 with equal cost with respect to gt. If µ1 6= µ2, and if h1 and h2

also have equal cost with respect to a different cost function g′t, then h1 and h2 must be

perfect classifiers.
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Figure 4.3: Generalized F.P. and F.N. rates for two groups under Equalized Odds
and the calibrated relaxation. Diamonds represent post-processed classifiers.
Points on the Equalized Odds (trained) graph represent classifiers achieved by
modifying constraint hyperparameters.

(Proof in Appendix B.5). Note that this is a generalization of the impossibil-

ity result of Kleinberg et al. (2017). Furthermore, we show in Theorem B.11 (in

Appendix B.5) that this holds in an approximate sense: if calibration and mul-

tiple distinct equal-cost constraints are approximately achieved by some classi-

fier, then that classifier must have approximately zero generalized false-positive

and false-negative rates.

4.3 Experiments

In light of these findings, our goal is to understand the impact of imposing cal-

ibration and an equal-cost constraint on real-world datasets. We will empir-

ically show that, in many cases, this will result in performance degradation,
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while simultaneously increasing other notions of disparity. We perform ex-

periments on three datasets: an income-prediction, a health-prediction, and a

criminal recidivism dataset. For each task, we choose a cost function within

our framework that is appropriate for the given scenario. We begin with two

calibrated classifiers h1 and h2 for groups G1 and G2. We assume that these

classifiers cannot be significantly improved without more training data or fea-

tures. We then derive h̃2 to equalize the costs while maintaining calibration.

The original classifiers are trained on a portion of the data, and then the new

classifiers are derived using a separate holdout set. To compare against the (un-

calibrated) Equalized Odds framework, we derive F.P./F.N. matching classifiers

using the post-processing method of Hardt et al. (2016b) (EO-Derived). On the

criminal recidivism dataset, we additionally learn classifiers that directly en-

code the Equalized Odds constraints, using the methods of Zafar et al. (2017a)

(EO-Trained). (See Appendix B.6 for detailed training and post-processing pro-

cedures.) We visualize model error rates on the generalized F.P. and F.N. plane.

Additionally, we plot the calibrated classifier lines for G1 and G2 to visualize

model calibration.

Income Prediction. The Adult Dataset from UCI Machine Learning Repos-

itory (Lichman, 2013) contains 14 demographic and occupational features for

various people, with the goal of predicting whether a person’s income is above

$50, 000. In this scenario, we seek to achieve predictions with equalized cost

across genders (G1 represents women and G2 represents men). We model a

scenario where the primary concern is ensuring equal generalized F.N. rates

across genders, which would, for example, help job recruiters prevent gender

discrimination in the form of underestimated salaries. Thus, we choose our cost
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constraint to require equal generalized F.N. rates across groups. In Figure 4.3a,

we see that the original classifiers h1 and h2 approximately lie on the line of

calibrated classifiers. In the left plot (EO-Derived), we see that it is possible to

(approximately) match both error rates of the classifiers at the cost of heo1 deviat-

ing from the set of calibrated classifiers. In the right plot, we see that it is feasible

to equalize the generalized F.N. rates while maintaining calibration. h1 and h̃2

lie on the same level-order curve of gt (represented by the dashed-gray line), and

simultaneously remain on the “line” of calibrated classifiers. It is worth noting

that achieving either notion of non-discrimination requires some cost to at least

one of the groups. However, maintaining calibration further increases the dif-

ference in F.P. rates between groups. In some sense, the calibrated framework

trades off one notion of disparity for another while simultaneously increasing

the overall error rates.

Health Prediction. The Heart Dataset from the UCI Machine Learning Repos-

itory contains 14 processed features from 906 adults in 4 geographical locations.

The goal of this dataset is to accurately predict whether or not an individ-

ual has a heart condition. In this scenario, we would like to reduce disparity

between middle-aged adults (G1) and seniors (G2). In this scenario, we con-

sider F.P. and F.N. to both be undesirable. A false prediction of a heart condi-

tion could result in unnecessary medical attention, while false negatives incur

cost from delayed treatment. We therefore utilize the following cost function

gt(ht) = rfpht(x) (1− y) + rfn (1− ht(x)) y, which essentially assigns a weight to

both F.N. and F.P. predictions. In our experiments, we set rfp = 1 and rfn = 3.

In the right plot of Figure 4.3b, we can see that the level-order curves of the cost

function form a curved line in the generalized F.P./F.N. plane. Because our orig-
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inal classifiers lie approximately on the same level-order curve, little change is

required to equalize the costs of h1 and h̃2 while maintaining calibration. This is

the only experiment in which the calibrated framework incurs little additional

cost, and therefore could be considered a viable option. However, it is worth

noting that, in this example, the equal-cost constraint does not explicitly match

either of the error types, and therefore the two groups will in expectation expe-

rience different types of errors. In the left plot of Figure 4.3b (EO-Derived), we

see that it is alternatively feasible to explicitly match both the F.P. and F.N. rates

while sacrificing calibration.

Criminal Recidivism Prediction. Finally, we examine the frameworks in the

context of our motivating example: criminal recidivism. As mentioned in the

introduction, African Americans (G1) receive a disproportionate number of F.P.

predictions as compared with Caucasians (G2) when automated risk tools are

used in practice. Therefore, we aim to equalize the generalized F.P. rate. In

this experiment, we modify the predictions made by the COMPAS tool (Di-

eterich et al., 2016), a risk-assessment tool used in practice by the American

legal system. Additionally, we also see if it is possible to improve the classifiers

with training-time Equalized Odds constraints using the methods of Zafar et al.

(2017a) (EO-Trained). In Figure 4.3c, we first observe that the original classifiers

h1 and h2 have large generalized F.P. and F.N. rates. Both methods of achieving

Equalized Odds — training constraints (left plot) and post-processing (middle

plot) match the error rates while sacrificing calibration. However, we observe

that, assuming h1 and h2 cannot be improved, it is infeasible to achieve the cal-

ibrated relaxation (Figure 4.3c right). This is an example where matching the

F.P. rate of h1 would require a classifier worse than the trivial classifier hµ2 . This
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example therefore represents an instance in which calibration is completely in-

compatible with any error-rate constraints. If the primary concern of criminal

justice practitioners is calibration (Dieterich et al., 2016; Flores et al., 2016), then

there will inherently be discrimination in the form of F.P. and F.N. rates. How-

ever, if the Equalized Odds framework is adopted, the miscalibrated risk scores

inherently cause discrimination to one group, as argued in the introduction.

Therefore, the most meaningful change in such a setting would be an improve-

ment to h2 (the classifier for African Americans) either through the collection of

more data or the use of more salient features. A reduction in overall error to the

group with higher cost will naturally lead to less error-rate disparity.

4.4 Discussion and Conclusion

We have observed cases in which calibration and relaxed Equalized Odds are

compatible and cases where they are not. When it is feasible, the penalty of

equalizing cost is amplified if the base rates between groups differ significantly.

This is expected, as base rate differences are what give rise to cost-disparity

in the calibrated setting. Seeking equality with respect to a single error rate

(e.g. false-negatives, as in the income prediction experiment) will necessarily

increase disparity with respect to the other error. This may be tolerable (in the

income prediction case, some employees will end up over-paid) but could also

be highly problematic (e.g. in criminal justice settings). Finally, we have ob-

served that the calibrated relaxation is infeasible when the best (discriminatory)

classifiers are not far from the trivial classifiers (leaving little room for interpo-

lation). In such settings, we see that calibration is completely incompatible with

an equalized error constraint.

67



In summary, we conclude that maintaining cost parity and calibration is de-

sirable yet often difficult in practice. Although we provide an algorithm to effec-

tively find the unique feasible solution to both constraints, it is inherently based

on randomly exchanging the predictions of the better classifier with the trivial

base rate. Even if fairness is reached in expectation, for an individual case, it

may be hard to accept that occasionally consequential decisions are made by

randomly withholding predictive information, irrespective of a particular per-

son’s feature representation. In this chapter we argue that, as long as calibration

is required, no lower-error solution can be achieved.
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CHAPTER 5

THE EXTERNALITIES OF EXPLORATION AND HOW DATA DIVERSITY

HELPS EXPLOITATION

Online learning algorithms are a key tool in web search and content opti-

mization, adaptively learning what users want to see. In a typical application,

each time a user arrives, the algorithm chooses among various content presen-

tation options (e.g., news articles to display), the chosen content is presented to

the user, and an outcome (e.g., a click) is observed. Such algorithms must bal-

ance exploration (making potentially suboptimal decisions now for the sake of

acquiring information that will improve decisions in the future) and exploitation

(using information collected in the past to make better decisions now). Explo-

ration could degrade the experience of a current user, but improves user ex-

perience in the long run. This exploration-exploitation tradeoff is commonly

studied in the online learning framework of multi-armed bandits (Bubeck and

Cesa-Bianchi, 2012).

Concerns have been raised about whether exploration in such scenarios

could be unfair, in the sense that some individuals or groups may experience

too much of the downside of exploration without sufficient upside (Bird et al.,

2016). We formally study these concerns in the linear contextual bandits model (Li

et al., 2010; Chu et al., 2011), a standard variant of multi-armed bandits appro-

priate for content personalization scenarios. We focus on externalities arising

due to exploration, that is, undesirable side effects that the presence of one party

may impose on another.

We first examine the effects of exploration at a group level. We introduce

the notion of a group externality in an online learning system, quantifying how
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much the presence of one population (which we dub the majority) impacts the

rewards of another (the minority). We show that this impact can be negative,

and that, in a particular precise sense, no algorithm can avoid it. This cannot

be explained by the absence of suitably good policies since our adoption of the

linear contextual bandits framework implies the existence of a feasible policy

that is simultaneously optimal for everyone. Instead, the problem is inherent to

the process of exploration. We come to a surprising conclusion that more data

can sometimes lead to worse outcomes for the users of an explore-exploit-based

system.

We next turn to the effect of exploration at an individual level. We inter-

pret exploration as a potential externality imposed on the current user by future

users of the system. Indeed, it is only for the sake of the future users that the

algorithm would forego the action that currently looks optimal. To avoid this

externality, one may use the greedy algorithm that always chooses the action

that appears optimal according to current estimates of the problem parameters.

While this greedy algorithm performs poorly in the worst case, it tends to work

well in many applications and experiments.1

In a new line of work, Bastani et al. (2020) and Kannan et al. (2018) ana-

lyzed conditions under which inherent diversity in the data makes explicit ex-

ploration unnecessary. Kannan et al. (2018) proved that the greedy algorithm

achieves a regret rate of Õ(
√
T ) in expectation over small perturbations of the

context vectors (which ensure sufficient data diversity). This is the best rate that

can be achieved in the worst case (i.e., for all problem instances, without data

1Both positive and negative findings are folklore. One way to precisely state the negative
result is that the greedy algorithm incurs constant per-round regret with constant probability;
while results of this form have likely been known for decades, Mansour et al. (2018, Corollary
A.2(b)) proved this for a wide variety of scenarios. Very recently, the good empirical perfor-
mance has been confirmed by state-of-art experiments in Bietti et al. (2018).

70



diversity assumptions), but it leaves open the possibilities that (i) another al-

gorithm may perform much better than the greedy algorithm on some problem

instances, or (ii) the greedy algorithm may perform much better than worst case

under the diversity conditions. We expand on this line of work. We prove that

under the same diversity conditions, the greedy algorithm almost matches the

best possible Bayesian regret rate of any algorithm on the same problem instance.

This could be as low as polylog(T ) for some instances, and, as we prove, at most

Õ(T 1/3) whenever the diversity conditions hold.

Returning to group-level effects, we show that under the same diversity con-

ditions, the negative group externalities imposed by the majority essentially

vanish if one runs the greedy algorithm. Together, our results illustrate a sharp

contrast between the high individual and group externalities that exist in the

worst case, and the ability to remove all externalities if the data is sufficiently

diverse.

Additional motivation. Whether and when explicit exploration is necessary

is an important concern in the study of the exploration-exploitation tradeoff.

Fairness considerations aside, explicit exploration is expensive. It is wasteful

and risky in the short term, it adds a layer of complexity to algorithm design

(Langford and Zhang, 2007; Agarwal et al., 2014), and its adoption at scale tends

to require substantial systems support and buy-in from management (Agarwal

et al., 2016, 2017). A system based on the greedy algorithm would typically be

cheaper to design and deploy.

Further, explicit exploration can run into incentive issues in applications

such as recommender systems. Essentially, when it is up to the users which

products or experiences to choose and the algorithm can only issue recommen-
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dations and ratings, an explore-exploit algorithm needs to provide incentives to

explore for the sake of the future users (Kremer et al., 2014; Frazier et al., 2014;

Che and Hörner, 2018; Mansour et al., 2015; Papanastasiou et al., 2018). Such

incentive guarantees tend to come at the cost of decreased performance, and

rely on assumptions about human behavior. The greedy algorithm avoids this

problem as it is inherently consistent with the users’ incentives.

Additional related work. Our research draws inspiration from the growing

body of work on fairness in machine learning (e.g., Dwork et al., 2012; Hardt

et al., 2016b; Kleinberg et al., 2017; Chouldechova, 2017). Several other authors

have studied fairness in the context of the contextual bandits framework. Our

work differs from the line of research on meritocratic fairness in online learning

(Kearns et al., 2017; Liu et al., 2017; Joseph et al., 2016), which considers the allo-

cation of limited resources such as bank loans and requires that nobody should

be passed over in favor of a less qualified applicant. We study a fundamentally

different scenario in which there are no allocation constraints and we would like

to serve each user the best content possible. Our work also differs from that of

Celis and Vishnoi (2017), who studied an alternative notion of fairness in the

context of news recommendations. According to this notion, all users should

have approximately the same probability of seeing a particular type of content

(e.g., Republican-leaning articles), regardless of their individual preferences, in

order to mitigate the possibility of discriminatory personalization.

The data diversity conditions in Kannan et al. (2018) and this chapter are in-

spired by the smoothed analysis framework of Spielman and Teng (2004), who

proved that the expected running time of the simplex algorithm is polynomial

for perturbations of any initial problem instance (whereas the worst-case run-
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ning time has long been known to be exponential). Such disparity implies that

very bad problem instances are brittle. We find a similar disparity for the greedy

algorithm in our setting.

Our results on group externalities. A typical goal in online learning is to

minimize regret, the (expected) difference between the cumulative reward that

would have been obtained had the optimal policy been followed at every round

and the cumulative reward obtained by the algorithm. We define a correspond-

ing notion of minority regret, the portion of the regret experienced by the minor-

ity. Since online learning algorithms update their behavior based on the history

of their observations, minority regret is influenced by the entire population on

which an algorithm is run. If the minority regret is much higher when a partic-

ular algorithm is run on the full population than it is when the same algorithm

is run on the minority alone, we can view the majority as imposing a negative

externality on the minority; the minority population would achieve a higher

cumulative reward if the majority were not present. Asking whether this can

ever happen amounts to asking whether access to more data points can ever

lead an explore-exploit algorithm to make inferior decisions. One might think

that more data should always lead to better decisions and therefore better out-

comes for the users. Surprisingly, we show that this is not the case, even with a

standard algorithm.

Consider LinUCB (Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al.,

2011), a standard algorithm for linear contextual bandits that is based on the

principle of “optimism under uncertainty.” We provide a specific problem in-

stance on which, after observing T users, LinUCB would have a minority regret

of Ω(
√
T ) if run on the full population, but only constant minority regret if run
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on the minority alone. While stylized, this example is motivated by the problem

of providing driving directions to different populations of users, about which

fairness concerns have been raised (Bird et al., 2016). Further, the situation is re-

versed on a slight variation of this example: LinUCB obtains constant minority

regret when run on the full population and Ω(
√
T ) on the minority alone. That

is, group externalities can be large and positive in some cases, and large and

negative in others.

Although these regret rates are specific to LinUCB, we show that this phe-

nomenon is, in some sense, unavoidable. Consider the minority regret of Lin-

UCB when run on the full population and the minority regret that LinUCB

would incur if run on the minority alone. We know that one may be much

smaller or larger than the other. We ask whether any algorithm could achieve

the minimum of the two on every problem instance. Using a variation of the

same problem instance, we prove that this is impossible; in fact, no algorithm

could simultaneously approximate both up to any o(
√
T ) factor. In other words,

an externality-free algorithm would sometimes “leave money on the table.”

In terms of techniques, we rely on the special structure of our example,

which can be viewed as an instance of the sleeping bandits problem (Klein-

berg et al., 2010). This simplifies the behavior and analysis of LinUCB, allow-

ing us to obtain the O(1) upper bounds. The lower bounds are obtained using

KL-divergence techniques to show that the two variants of our example are es-

sentially indistinguishable, and an algorithm that performs well on one must

obtain Ω(
√
T ) regret on the other.
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Our results on the greedy algorithm. We consider a version of linear contex-

tual bandits in which the latent weight vector θ is drawn from a known prior. In

each round, an algorithm is presented several actions to choose from, each rep-

resented by a context vector. The expected reward of an action is a linear product

of θ and the corresponding context vector. The tuple of context vectors is drawn

independently from a fixed distribution. In the spirit of smoothed analysis, we

assume that this distribution has a small amount of jitter. Formally, the tuple of

context vectors is drawn from some fixed distribution, and then a small pertur-

bation—small-variance Gaussian noise—is added independently to each coordi-

nate of each context vector. This ensures arriving contexts are diverse. We are

interested in Bayesian regret, i.e., regret in expectation over the Bayesian prior.

Following the literature, we are primarily interested in the dependence on the

time horizon T .

We focus on a batched version of the greedy algorithm, in which new data

arrives to the algorithm’s optimization routine in small batches, rather than ev-

ery round. This is well-motivated from a practical perspective—in high-volume

applications data usually arrives to the “learner” only after a substantial delay

(Agarwal et al., 2016, 2017)—and is essential for our analysis.

Our main result is that the greedy algorithm matches the Bayesian regret

of any algorithm up to polylogarithmic factors, for each problem instance, fix-

ing the Bayesian prior and the context distribution. We also prove that Lin-

UCB achieves regret Õ(T 1/3) for each realization of θ. This implies a worst-case

Bayesian regret of Õ(T 1/3) for the greedy algorithm under the perturbation as-

sumption.

Our results hold for both natural versions of the batched greedy algorithm,
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Bayesian and frequentist, henceforth called BatchBayesGreedy and BatchFreq-

Greedy. In BatchBayesGreedy, the chosen action maximizes expected reward

according to the Bayesian posterior. BatchFreqGreedy estimates θ using ordi-

nary least squares regression and chooses the best action according to this es-

timate. The results for BatchFreqGreedy come with additive polylogarithmic

factors, but are stronger in that the algorithm does not need to know the prior.

Further, the Õ(T 1/3) regret bound for BatchFreqGreedy is approximately prior-

independent, in the sense that it applies even to very concentrated priors such

as independent Gaussians with standard deviation on the order of T−2/3.

The key insight in our analysis of BatchBayesGreedy is that any (perturbed)

data can be used to simulate any other data, with some discount factor. The

analysis of BatchFreqGreedy requires an additional layer of complexity. We con-

sider a hypothetical algorithm that receives the same data as BatchFreqGreedy,

but chooses actions based on the Bayesian-greedy selection rule. We analyze

this hypothetical algorithm using the same technique as BatchBayesGreedy, and

then upper bound the difference in Bayesian regret between the hypothetical al-

gorithm and BatchFreqGreedy.

Our analyses extend to group externalities and (Bayesian) minority regret. In

particular, we circumvent the impossibility result mentioned above. We prove

that both BatchBayesGreedy and BatchFreqGreedy match the Bayesian minority

regret of any algorithm run on either the full population or the minority alone,

up to polylogarithmic factors

Detailed comparison with prior work. We substantially improve over the

Õ(
√
T ) worst-case regret bound from Kannan et al. (2018), at the cost of some
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additional assumptions. First, we consider Bayesian regret, whereas their regret

bound is for each realization of θ.2 Second, they allow the context vectors to be

chosen by an adversary before the perturbation is applied. Third, they extend

their analysis to a somewhat more general model, in which there is a separate

latent weight vector for every action (which amounts to a more restrictive model

of perturbations). However, this extension relies on the greedy algorithm being

initialized with a substantial amount of data. The results of Kannan et al. (2018)

do not appear to have implications on group externalities.

Bastani et al. (2020) show that the greedy algorithm achieves logarithmic

regret in an alternative linear contextual bandits setting that is incomparable to

ours in several important ways. They consider two-action instances where the

actions share a common context vector in each round, but are parameterized by

different latent vectors. They ensure data diversity via a strong assumption on

the context distribution. This assumption does not follow from our perturbation

conditions; among other things, it implies that each action is the best action in

a constant fraction of rounds. Further, they assume a version of Tsybakov’s

margin condition, which is known to substantially reduce regret rates in bandit

problems (e.g., see Rigollet and Zeevi, 2010).

5.1 Preliminaries

We consider the model of linear contextual bandits (Li et al., 2010; Chu et al., 2011).

Formally, there is a learner who serves a sequence of users over T rounds, where

T is the (known) time horizon. For the user who arrives in round t there are (at

2Equivalently, they allow point priors, whereas our priors must have variance T−O(1).
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most) K actions available, with each action a ∈ {1, . . . , K} associated with a

context vector xa,t ∈ Rd. Each context vector may contain a mix of features of the

action, features of the user, and features of both. We assume that the tuple of

context vectors for each round t is drawn independently from a fixed distribu-

tion. The learner observes the set of contexts and selects an action at for the user.

The user then experiences a reward rt which is visible to the learner. We assume

that the expected reward is linear in the chosen context vector. More precisely,

we let ra,t be the reward of action a if this action is chosen in round t (so that

rt = rat,t), and assume that there exists an unknown vector θ ∈ Rd such that

E [ra,t | xa,t] = θ>xa,t for any round t and action a. Throughout most of the chap-

ter, the realized rewards are either in {0, 1} or are the expectation plus indepen-

dent Gaussian noise of variance at most 1. We sometimes consider a Bayesian

version, in which the latent vector θ is initially drawn from some known priorP .

A standard goal for the learner is to maximize the expected total reward over

T rounds, or
∑T

t=1 θ
>xa,t. This is equivalent to minimizing the learner’s regret,

defined as

Regret(T ) =
∑T

t=1 θ
>x∗t − θ>xat,t (5.1)

where x∗t = arg maxx∈{x1,t,··· ,xK,t} θ
>x denotes the context vector associated with

the best action at round t. We are mainly interested in expected regret, where the

expectation is taken over the context vectors, the rewards, and the algorithm’s

random seed, and Bayesian regret, where the expectation is taken over all of the

above and the prior over θ.

We introduce some notation in order to describe and analyze algorithms in

this model. We write xt for xat,t, the context vector chosen at time t. Let Xt ∈

Rt×d be the context matrix at time t, a matrix whose rows are vectors x1 , . . . , xt ∈
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Rd. A d × d matrix Zt :=
∑t

τ=1 xτx
>
τ = X>t Xt, called the empirical covariance

matrix, is an important concept in some of the prior work on linear contextual

bandits (e.g., Abbasi-Yadkori et al., 2011; Kannan et al., 2018), as well as in this

chapter.

Optimism under uncertainty. Optimism under uncertainty is a common

paradigm in problems with an explore-exploit tradeoff (Bubeck and Cesa-

Bianchi, 2012). The idea is to evaluate each action “optimistically”—assuming

the best-case scenario for this action—and then choose an action with the best

optimistic evaluation. When applied to the basic multi-armed bandit setting, it

leads to a well-known algorithm called UCB1 (Auer et al., 2002), which chooses

the action with the highest upper confidence bound (henceforth, UCB) on its

mean reward. The UCB is computed as the sample average of the reward for

this action plus a term which captures the amount of uncertainty.

Optimism under uncertainty has been extended to linear contextual bandits

in the LinUCB algorithm (Chu et al., 2011; Abbasi-Yadkori et al., 2011). The

high-level idea is to compute a confidence region Θt ⊂ Rd in each round t such

that θ ∈ Θt with high probability, and choose an action a which maximizes the

optimistic reward estimate supθ∈Θt x
>
a,tθ. Concretely, one uses regression to form

an empirical estimate θ̂t for θ. Concentration techniques lead to high-probability

bounds of the form |x>(θ−θ̂t)| ≤ f(t)
√
x>Z−1

t x, where the interval width function

f(t) may depend on hyperparameters and features of the instance. LinUCB

simply chooses an action

aLinUCBt := arg max
a

x>a,tθ̂t + f(t)
√
x>a,tZ

−1
t xa,t. (5.2)
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Among other results, Abbasi-Yadkori et al. (2011) use

f(t) = S +
√
dc0 log(T + tTL2), (5.3)

where L and S are known upper bounds on ‖xa,t‖2 and ‖θ‖2, respectively, and

c0 is a parameter. For any c0 ≥ 1, they obtain regret Õ(dS
√
c0K T ), with only a

polylog dependence on TL/d.

5.2 Group Externality of Exploration

In this section, we study the externalities of exploration at a group level, quanti-

fying how much the presence of one population impacts the rewards of another

in an online learning system. We consider linear contextual bandits in a setting

in which there are two underlying user populations, called the majority and the

minority. The user who arrives at round t is assumed to come from the major-

ity population with some fixed probability and the minority population other-

wise, and the population from which the user comes is known to the learner.

The tuple of context vectors at time t is then drawn independently from a fixed

group-specific distribution.

We assume there is a single hidden vector θ, and that the distribution of

rewards conditioned on the chosen context vector is the same for both groups.

Only the distribution over tuples of available context vectors differs between

groups. This implies that externalities cannot be explained by the absence of a

good policy, since there always exists a policy that is simultaneously optimal for

everyone. This allows us to focus only on externalities inherent to the process

of exploration.
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We define the minority regret to be the regret experienced by the minority.

The group externality imposed on the minority by the majority is then the differ-

ence between the minority regret of an algorithm run on the minority alone and

the minority regret of the same algorithm run on the full population. A nega-

tive group externality implies that the minority is worse off due to the presence

of the majority. It is generally more meaningful to bound the multiplicative

difference between the minority regret obtained with and without the majority

present. Several of our results have this form.

We first ask whether large group externalities can exist. We show that on

a simple toy example, a large negative group externality arises under LinUCB,

while a slight variant of this example leads to a large positive externality. Put

another way, more available data can lead to either better or worse outcomes for

the users of a system. We show that this general phenomenon is unavoidable.

That is, no algorithm can simultaneously approximate the minority regret of

LinUCB run on the full population and LinUCB run on the minority alone, up

to any o(
√
T ) multiplicative factor.

5.2.1 Two-Bridge Instance

We consider a toy example, motivated by a scenario in which a learner is choos-

ing driving routes for two groups of users. Each user starts at point A, B, or C,

and wants to get to the same destination, point D, which requires taking one of

two bridges, as shown in Figure 5.1. The travel costs for each of the two bridges

are unknown. For simplicity, assume all other edges are known to have 0 cost.

Suppose that 95% of users are in the majority group. All of these users start
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at point A and have access only to the top bridge. The other 5% are in the

minority. Of these users, 95% start at point C, from which they have access only

to the bottom bridge. The remaining 5% of the minority users start at point B,

and have access to both bridges.

A

B

C

D

θ1

θ2

Figure 5.1: Visual illustration of the two-bridge instance.

Consider the behavior of an algorithm that follows the principle of optimism

under uncertainty. If run on the full user population, it will quickly collect many

observations of the commute time for the top bridge since all users in the ma-

jority group must travel over the top bridge. It will collect relatively fewer ob-

servations of the commute time over the bottom bridge. Therefore, when the al-

gorithm is faced with a member of the minority population who starts at point

B, the algorithm will likely send this user over the bottom bridge in order to

collect more data and improve its estimate.

If the same algorithm is instead run on the minority alone, it will quickly col-

lect many more observations of the commute time for the bottom bridge relative

to the top. Now when the algorithm is faced with a user who starts at point B,

it will likely send her over the top bridge.

Which is better depends on which bridge has the longer commute time. If

the top bridge is the better option, then the presence of the majority imposes a

negative externality on the minority. If not, then the presence of the majority

helps. These two scenarios may be difficult to distinguish.
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This toy example can be formalized in the linear contextual bandits frame-

work. There are two underlying actions (the two bridges), but these actions are

not always available. To capture this, we define a parameter vector θ in [0, 1]2,

with the two coordinates θ1 and θ2 representing the expected rewards for taking

the top and bottom bridge respectively. (Though we motivated the example in

terms of costs, it can be expressed equivalently in terms of rewards.) There are

two possible context vectors: [1 0]> and [0 1]>. A user has available an action

with context vector [1 0]> if and only if she has access to the top bridge. Simi-

larly, she has available an action with context vector [0 1]> if and only if she has

access to the bottom bridge. The instance can then be formalized as follows.

Definition 5.1 (Two-Bridge Instance). The two-bridge instance is an instance of

linear contextual bandits. On each round t, the user who arrives is from the majority

population with probability 0.95, in which case x1,t = x2,t = [1 0]>. Otherwise, the

user is in the minority. In this case, with probability 0.95, x1,t = x2,t = [0 1]> (based

on Figure 5.1, we call these C rounds), while with probability 0.05, x1,t = [1 0]> and

x2,t = [0 1]> (B rounds). We consider two values for the hidden parameter vector θ,

θ(0) = [1/2 1/2− ε]> and θ(1) = [1/2− ε 1/2]> where ε = 1/
√
T .

5.2.2 Performance of LinUCB

We start by analyzing the performance of LinUCB on the two-bridge instance.

Our main result formalizes the intuition above, showing that when θ = θ(0) (that

is, the top bridge is better) the majority imposes a large negative group exter-

nality on the minority, while the majority imposes a large positive externality
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when θ = θ(1). We assume rewards are 1-subgaussian.3

Theorem 5.2. Consider LinUCB with any interval width function f satisfying f(t) ≥

2
√

log(T ).4 On the two-bridge instance, assuming 1-subgaussian noise on the rewards,

when θ = θ(0), LinUCB achieves expected minority regret O(1) when run on the mi-

nority alone, but Ω(
√
T ) when run on the full population. In contrast, when θ = θ(1),

LinUCB achieves expected minority regret O(1) when run on the full population, but

Ω(
√
T ) when run on the minority alone.

We omit the proofs of the Ω(
√
T ) lower bounds, which both follow a simi-

lar structure to the one used in the proof of the general impossibility result in

Section 5.2.3; in fact, both of these lower bounds could be stated as an immedi-

ate corollary of Theorem 5.4. Essentially, an argument based on KL-divergence

shows that it is difficult to distinguish between the case in which θ = θ(0) and

the case in which θ = θ(1), and therefore LinUCB must choose similar actions in

these two cases.

To prove the O(1) upper bounds, we make heavy use of the special structure

of the two-bridge instance, which significantly simplifies the analysis of Lin-

UCB. We exploit the fact that the only context vectors available to the learner

are the basis vectors [1 0]> and [0 1]>, which essentially makes this an instance of

sleeping bandits (Kleinberg et al., 2010). In this special case, the covariance ma-

trix Zt is always diagonal, which simplifies Equation (5.2) and leads to LinUCB

choosing the ith basis, where i maximizes (θ̂t)i + f(t)/
√

(Zt)ii and (Zt)ii is sim-

ply the number of times that this basis vector was already chosen. Additionally,

3A random variable X is called σ-subgaussian if E[eσX
2

] < ∞. A special case is Gaussians
with variance σ2.

4For instance, the interval width function in Equation (5.3) satisfies this condition whenever
dc0 ≥ 4, so one can either set c0 ≥ 2, or add two more dimensions to the problem instance (and
set θ3 = θ4 = 0).
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in this setting (θ̂t)i is just the average reward observed for the ith basis vector,

allowing us to bound the difference between each (θ̂t)i and θi using standard

concentration techniques. Using this, we show that with high probability, after

a logarithmic number of rounds—during which the learner can amass at most

O(1) regret since the worst-case regret on any round is ε = 1/
√
T—the proba-

bility that LinUCB chooses the wrong action on a B round is small (O(1/
√
T )).

This leads to constant regret on expectation.

The proof makes use of the following concentration bound:

Lemma 5.3. Let Ct be the number of C rounds observed in the first t minority rounds

in the two-bridge instance. For any δ ∈ (0, 1), with probability at least 1− δ, Ct ≥ 0.9t

for all t ≥ 760 log(T/δ).

Proof. We apply the following form of the Chernoff bound:

Pr [Ct ≤ (1− γ)E [Ct]] ≤ exp

(
−γ

2

2
E [Ct]

)
.

Setting γ = 1/19, we get

Pr

[
Ct ≤

9

10
t

]
= Pr

[
Ct ≤

(
1− 1

19

)
19

20
t

]
≤ exp

(
−(1/19)2

2

19

20
t

)
= exp

(
− t

760

)
≤ δ

T

for t ≥ 760 log(T/δ). Applying a union bound over all T rounds, we have Ct ≥

0.9t for all t ≥ 760 log(T/δ) with probability at least 1− δ.

Proof of Theorem 5.2. Now, consider LinUCB run on the minority population

alone on the two-bridge instance with θ = θ(0). Since we are considering run-

ning LinUCB on the minority only, majority rounds are irrelevant, so through-

out this proof we abuse notation and use t ∈ {1, · · · , T0} for some T0 ≤ T to
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index minority rounds. T is still the total number of (minority plus majority)

rounds.

This proof heavily exploits the special structure of the two-bridge instance

to simplify the analysis of LinUCB. In particular, we exploit the fact that the

only contexts ever available are the basis vectors [1 0]> and [0 1]>. This implies

that the covariance matrix Zt is always diagonal, which greatly simplifies the

expression for the chosen action in Equation (5.2). The optimistic estimate of

the reward for choosing the ith basis vector is simply

UCBt
i := (θ̂t)i + f(t)/

√
(Zt)ii. (5.4)

Additionally, in this special case, (Zt)ii is simply the number of times that the ith

basis vector was chosen over the first t minority rounds, and (θ̂t)i is the average

reward observed over the (Zt)ii rounds on which it was chosen.

Using this fact, we can apply concentration bounds to bound the difference

between each (θ̂t)i and θi. Since rewards were assumed to be 1-subgaussian,

Lemma C.8 and a union bound give us that for any δ1, for any t, with probability

at least 1− 4δ1, for all i ∈ {1, 2},∣∣∣θi − (θ̂t)i

∣∣∣ ≤√2 log( 1
δ1

)/(Zt)ii (5.5)

Let Bt and Ct be the number of B and C rounds respectively before round

t. By Lemma 5.3, for any δ2, with probability 1 − δ2, Ct ≥ 9Bt when t ≥

760 log(T/δ2). Suppose this is the case. Since it is only possible to choose [1 0] on

B rounds, we have (Zt)11 ≤ BT . Similarly, since the algorithm can only choose

[0 1] on every C round, (Zt)22 ≥ CT ≥ 9BT . Fixing δ1 = 1/
√
T and using the

assumption that f(t) ≥ 2
√

log(T ), Equations (5.4) and (5.5) then imply that for
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any t ≥ 760 log(T/δ2), with probability at least 1− 2δ1 = 1− 2
√
T ,

UCBt
1 ≥ θ1 −

√
2 log(

√
T )

(Zt)11

+
f(t)√
(Zt)11

≥ 1

2
+

1

2

f(t)√
Bt

,

and similarly,

UCBt
2 ≤ θ2 +

√
2 log(

√
T )

(Zt)22

+
f(t)√
(Zt)22

≤ 1

2
− ε+

3

2

f(t)√
CT
≤ 1

2
+

1

2

f(t)√
BT

≤ UCBt
1.

This shows that with probability at least 1 − δ2, after the first 760 log(T/δ2)

rounds, LinUCB picks [1 0]> on each B round with probability at least 1 − 2δ1,

leading to zero regret on that round. To turn this into a bound on expected

regret, first note that with at most δ2 probability, the argument above fails to

hold, in which case the minority regret is still bounded by εBT ≤ εT . When

the argument above holds, LinUCB may suffer up to ε regret on each of the

first 760 log(T/δ2) minority rounds. On each additional round, there is a failure

probability of 2δ1, and in this case LinUCB again suffers regret of at most ε.

Putting this together and setting δ2 = 1/
√
T , we get that the expected regret is

bounded by δ2εT + 760 log(T/δ2)ε+ 4δ1εT = O(1).

5.2.3 An Impossibility Result

It is natural to ask whether it is possible to design an algorithm that can dis-

tinguish between the two scenarios analyzed above, obtaining minority regret

that is close to the best of LinUCB run on the minority alone and LinUCB run

on the full population on any problem instance. In this section, we show that

the answer is no. In particular, we prove that on the two-bridge instance, if

Pr[θ = θ(0)] = Pr[θ = θ(1)] = 1/2, then any algorithm must suffer Ω(
√
T ) regret
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on expectation (and therefore Ω(
√
T ) minority regret, since all regret is incurred

by minority users).

To prove this result, we begin by formalizing the idea that it is hard to distin-

guish between the case in which θ = θ(0) and the case in which θ = θ(1). To do so,

we bound the KL-divergence between the joint distributions over the sequences

of context vectors, actions taken by the given algorithm, and the given algo-

rithm’s rewards that are induced by the two choices of θ. By applying the high-

probability Pinsker lemma (Tsybakov, 2009), we show that a low KL-divergence

between these distributions implies that the algorithm must be likely either to

choose the top bridge on B rounds more than half the time when the bottom

bridge is better or to choose the bottom bridge on B rounds more than half the

time when the top bridge is better, either of which would lead to high (Ω(
√
T ))

regret as long as the number ofB rounds is sufficiently large. To finish the proof,

we use a simple Chernoff bound to show that the number of B rounds is large

with high probability.

To derive the KL-divergence bound, we make use of the assumption that the

realized rewards rt at each round are either 0 or 1. This assumption is not strictly

necessary. An analogous argument could be made, for instance, for real-valued

rewards with Gaussian noise.

Theorem 5.4. On the two-bridge instance with realized rewards rt ∈ {0, 1}, any algo-

rithm must incur Ω(
√
T ) minority regret in expectation when Pr[θ = θ(0)] = Pr[θ =

θ(1)] = 1
2
.

Note that “any algorithm” here includes algorithms run on the minority

alone, essentially ignoring data from the majority. Theorems 5.2 and 5.4 im-

mediately imply the following corollary.
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Corollary 5.5. No algorithm can simultaneously approximate the minority regret of

both LinUCB run on the minority and LinUCB run on the full population up to any

o(
√
T ) multiplicative factor.

Proof of Theorem 5.4. Fix any algorithm A. We will first derive an Ω(
√
T ) lower

bound on the expected regret of A conditioned on the number of B rounds, BT ,

being large. To complete the proof, we then show that BT is large with high

probability.

Let ht = {(x1,τ , x2,τ , aτ , rτ )}tτ=1 be a history of all context vectors, chosen ac-

tions, and rewards up to round t, with h0 = ∅. Running A on the two-bridge

instance with θ = θ(0) induces a distribution over histories hT . Let P denote

the conditional distribution of these histories, conditioned on the event that

BT ≥ T/800. That is, we define

P (hT ) := Pr
[
hT
∣∣θ = θ(0), BT ≥ T/800

]
.

Similarly, we define

Q(hT ) := Pr
[
hT
∣∣θ = θ(1), BT ≥ T/800

]
.

We first show that KL(P (hT ) ||Q(hT )) is upper bounded a constant that does

not depend on T . By the chain rule for KL divergences, since rt is independent

of any previous contexts, actions, or rewards conditioned on xt,

KL(P (hT ) ||Q(hT ))

=
T∑
t=1

Eht−1∼P [KL(P ((x1,t, x2,t, at) | ht−1) ||Q((x1,t, x2,t, at) | ht−1))]

+
T∑
t=1

E(x1,t,x2,t,at)∼P [KL(P (rt | x1,t, x2,t, at) ||Q(rt | (x1,t, x2,t, at)))].
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Since the choice of context vectors available at time t is independent of the value

of the parameter θ and Amay only base its choices on the observed history and

current choice of contexts, it is always the case that P ((x1,t, x2,t, at) | ht−1) =

Q((x1,t, x2,t, at) | ht−1), so the first sum in this expression is equal to 0.

To bound the second sum, we make use of the assumption that

rt ∈ {0, 1} for all t.5 Lemma C.10 then tells us that for any round t,

KL(P (rt | x1,t, x2,t, at) ||Q(rt | x1,t, x2,t, at)) ≤ 7ε2/2 since the probability of get-

ting reward 1 conditioned on a chosen context is always either 1/2 or 1/2 − ε.

Putting this together, we get that

KL(P (hT ) ||Q(hT )) ≤ 7ε2T

2
=

7

2
.

Now, let E be the event that the algorithm A chooses arm 2 on at least half

of the B rounds, conditioned on BT ≥ T/800. If E occurs when θ = θ(0), the

regret ofA is at least BT ε/2, which is on the order of
√
T when BT ≥ T/800. If E

does not occur (i.e., E occurs) when θ = θ(1), A again has regret at least BT ε/2.

We will use the bound on KL divergence to show that one of these bad cases

happens with high probability.

By Lemma C.9,

P (E) +Q(E) ≥ 1

2
e−KL(P (hT ) ||Q(hT )) ≥ 1

2
e−7/2.

5If we instead assumed rewards had Gaussian noise with variance σ2, we would have
KL(Pt(rt | x1,t, x2,t, at) ||Qt(rt | x1,t, x2,t, at)) = ε2/(2σ2), and the proof would still go through.
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Let R be the regret of A. We then have that

E
[
R

∣∣∣∣BT ≥
T

800

]
=

1

2
E
[
R

∣∣∣∣θ = θ(0), BT ≥
T

800

]
+

1

2
E
[
R

∣∣∣∣θ = θ(1), BT ≥
T

800

]
≥ 1

2
Pr

[
E

∣∣∣∣θ = θ(0), BT ≥
T

800

]
E
[
R

∣∣∣∣E, θ = θ(0), BT ≥
T

800

]
+

1

2
Pr

[
E

∣∣∣∣θ = θ(1), BT ≥
T

800

]
E
[
R

∣∣∣∣E, θ = θ(0), BT ≥
T

800

]
≥ 1

2

(
P (E) +Q(E)

) √T
1600

≥
√
Te−

7
2

6400
.

It remains to bound the probability that BT ≥ T/800. By a Chernoff bound,

Pr

[
BT ≤

T

800

]
= Pr

[
BT ≤

E [BT ]

2

]
≤ exp

(
−E [BT ]

8

)
= exp

(
− T

3200

)
.

Thus, for any δ ∈ (0, 1), if T ≥ 3200 log(1/δ), then with probability at least 1− δ,

BT ≥ T/800. In particular, let δ = 1/2. Then if T ≥ 3200 log 2, we have

E[R] ≥ Pr

[
BT ≥

T

800

]
E
[
R

∣∣∣∣BT ≥
T

800

]
≥
(

1

2

)(√
Te−

7
2

6400

)
.

This completes the proof that the regret ofA is Ω(
√
T ) on this problem instance.

5.3 Greedy Algorithms and LinUCB with Perturbed Contexts

We now turn our attention to externalities at an individual level. We interpret

exploration as a potential externality imposed on the current user of a system

by future users, since the current user would prefer the learner to take the action

that appears optimal. One could avoid such externalities by running the greedy

algorithm, which does just that, but it is well known that the greedy algorithm

91



performs poorly in the worst case. In this section, we build on a recent line of

work analyzing the conditions under which inherent data diversity leads the

greedy algorithm to perform well.

We analyze the expected performance of the greedy algorithm under small

random perturbations of the context vectors. We focus on greedy algorithms

that consume new data in batches, rather than every round. We consider both

Bayesian and frequentist versions, BatchBayesGreedy and BatchFreqGreedy.

Our main result is that for any specific problem instance, both algorithms match

the Bayesian regret of any algorithm on that particular instance up to polylog-

arithmic factors. We also prove that under the same perturbation assumptions,

LinUCB achieves regret Õ(T 1/3) for each realization of θ, which implies a worst-

case Bayesian regret of Õ(T 1/3) for the greedy algorithms. Finally, we repurpose

our analysis to derive a positive result in the group setting, implying that the

impossibility result of Section 5.2.3 breaks down when the data is sufficiently

diverse.

Setting and notation. We consider a Bayesian version of linear contextual ban-

dits, with θ drawn from a known multivariate Gaussian prior P = N (θ,Σ), with

θ ∈ Rd and invertible Σ ∈ Rd×d.

To capture the idea of data diversity, we assume the context vectors on each

round t are generated using the following perturbed context generation process:

First, a tuple (µ1,t , . . . , µK,t) of mean context vectors is drawn independently

from some fixed distribution Dµ over (R ∪ {⊥})K , where µa,t =⊥ means action

a is not available. For each available action a, the context vector is then xa,t =

µa,t+εa,t, where εa,t is a vector of random noise. Each component of εa,t is drawn
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independently from a zero-mean Gaussian with standard deviation ρ. We refer

to ρ as the perturbation size. In general, our regret bounds deteriorate if ρ is very

small. Together we refer to a distribution Dµ, prior P , and perturbation size ρ

as a problem instance.

We make several technical assumptions. First, the distribution Dµ is such

that each context vector has bounded 2-norm, i.e., ‖µa,t‖2 ≤ 1. It can be arbitrary

otherwise. Second, the perturbation size needs to be sufficiently small, ρ ≤

1/
√
d. Third, the realized reward ra,t for each action a and round t is ra,t =

x>a,tθ + ηa,t, the mean reward x>a,tθ plus standard Gaussian noise ηa,t ∼ N (0, 1).6

The history up to round t is denoted by the tuple ht = ((x1, r1) , . . . , (xt, rt)).

The greedy algorithms. For the batch version of the greedy algorithm, time is

divided in batches of Y consecutive rounds each. When forming its estimate of

the optimal action at round t, the algorithm may only use the history up to the

last round of the previous batch, denoted t0.

BatchBayesGreedy forms a posterior over θ using prior P and history ht0 .

In round t it chooses the action that maximizes reward in expectation over this

posterior. This is equivalent to choosing

at = arg max
a

x>a,t θ
bay
t , where θbay

t := E[θ | ht0 ] . (5.6)

BatchFreqGreedy does not rely on any knowledge of the prior. It chooses the

best action according to the least squares estimate of θ, denoted θfre
t , computed

6Our analysis can be easily extended to handle reward noise of fixed variance, i.e., ηa,t ∼
N (0, σ2). BatchFreqGreedy would not need to know σ. BatchBayesGreedy would need to know
either Σ and σ or just Σ/ σ2.
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with respect to history ht0 :

at = arg maxa x
>
a,t θ

fre
t , where θfre

t = arg minθ′
∑t0

τ=1((θ′)>xτ − rτ )2. (5.7)

5.3.1 Main Results

We first state our main results before describing the intuition behind them. We

state each theorem in terms of the main relevant parameters T , K, d, Y , and ρ.

First, we prove that in expectation over the random perturbations, both greedy

algorithms favorably compare to any other algorithm.

Theorem 5.6. With perturbed context generation, there is some Y0 = polylog(d, T )/ρ2

such that with batch duration Y ≥ Y0, the following holds. Fix any bandit algorithm,

and let R0(T ) be its Bayesian regret on a particular problem instance. Then on that

same instance,

(a) BatchBayesGreedy has Bayesian regret at most Y ·R0(T/Y ) + Õ(1/T ),

(b) BatchFreqGreedy has Bayesian regret at most Y ·R0(T/Y ) + Õ(
√
d/ρ2).

Our next result asserts that the Bayesian regret for LinUCB and both greedy

algorithms is on the order of (at most) T 1/3. This result requires additional tech-

nical assumptions.

Theorem 5.7. Assume that the maximal eigenvalue of the covariance matrix Σ of the

priorP is at most 1,7 and the mean vector satisfies ‖θ‖2 ≥ 1+
√

3 log T . With perturbed

context generation,

(a) With appropriate parameter settings, LinUCB has Bayesian regret Õ(d2K2/3 T 1/3/ρ2).
7In particular, if P is independent across the coordinates of θ, then the variance in each coor-

dinate is at most 1.
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(b) If Y ≥ Y0 as in Theorem 5.6, then both BatchBayesGreedy and BatchFreq-

Greedy have Bayesian regret at most Õ(d2K2/3 T 1/3/ρ2).

The assumption ‖θ‖2 ≥ 1 +
√

3 log T in Theorem 5.7 can be replaced with

d ≥ log T/ log log T . We use Theorem 5.7(b) to derive an “approximately prior-

independent” result for BatchFreqGreedy. (For clarity, we state it for indepen-

dent priors.) The bound in Theorem 5.7(b) deteriorates if P gets very sharp, but

it suffices if P has standard deviation on the order of (at least) T−2/3.

Corollary 5.8. Assume that the prior P is independent over the components of θ,

with variance κ2 ≤ 1 in each component. Suppose the mean vector satisfies ‖θ‖2 ≥

1 +
√

3 log T . With perturbed context generation, if Y ≥ Y0 as in Theorem 5.6, then

BatchFreqGreedy has Bayesian regret at most Õ(d2K2/3 T 1/3/ρ2) as long as κ ≥ T−2/3.

Finally, we derive a positive result on group externalities. We find that with

perturbed context generation, the minority Bayesian regret of the greedy algo-

rithms (i.e., the Bayesian regret incurred on minority rounds) is small compared

to the minority Bayesian regret of any algorithm, whether run on the full pop-

ulation or on the minority alone. This sidesteps the impossibility result of Sec-

tion 5.2.3.

Theorem 5.9. Assume Y ≥ Y0 as in Theorem 5.6 and perturbed context generation.

Fix any bandit algorithm and instance, and let Rmin(T ) be the minimum of its minority

Bayesian regrets when it is only run over minority rounds or when it is run over the

full population. Both greedy algorithms run on the full population achieve minority

Bayesian regret at most Y ·Rmin(T ) + Õ(
√
d/ρ2).
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5.3.2 Key Techniques

The key idea behind our approach is to show that, with perturbed context gener-

ation, BatchBayesGreedy collects data that is informative enough to “simulate”

the history of contexts and rewards from the run of any other algorithm ALG

over fewer rounds. This implies that it remains competitive with ALG since it

has at least as much information and makes myopically optimal decisions.

We use the same technique to prove a similar simulation result for Batch-

FreqGreedy. To treat both algorithms at once, we define a template that unifies

them. A bandit algorithm is called batch-greedy-style if it divides the timeline in

batches of Y consecutive rounds each, in each round t chooses some estimate θt

of θ, based only on the data from the previous batches, and then chooses the best

action according to this estimate, so that at = arg maxa θ
>
t xa,t. For a batch that

starts at round t0 + 1, the batch history is the tuple ((xt0+τ , rt0+τ ) : τ ∈ [Y ]), and

the batch context matrix is the matrix X whose rows are vectors (xt0+τ : τ ∈ [Y ]);

here [Y ] = {1, · · · , Y }. Similarly to the “empirical covariance matrix”, we define

the batch covariance matrix as X>X .

Let us formulate what we mean by “simulation”. We want to use the data

collected from a single batch in order to simulate the reward for any one context

x. More formally, we are interested in the randomized function that takes a con-

text x and outputs an independent random sample from N (θ>x, 1). We denote

it Rewθ(·); this is the realized reward for an action with context vector x.

Definition 5.10. Consider batch B in the execution of a batch-greedy-style algorithm.

Batch history hB can simulate Rewθ() up to radius R > 0 if there exists a function

g : {context vectors} × {batch histories hB} → R such that g(x, hB) is identically
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distributed to Rewθ(x) conditional on the batch context matrix, for all θ and all context

vectors x ∈ Rd with ‖x‖2 ≤ R.

Let us comment on how it may be possible to simulate Rewθ(x). For intuition,

suppose that x = 1
2
x1+ 1

2
x2. Then (1

2
r1+ 1

2
r2+ξ) is distributed asN (θ>x, 1) if ξ is

drawn independently fromN (0, 1
2
). Thus, we can define g(x, h) = 1

2
r1 + 1

2
r2 + ξ

in Definition 5.10. We generalize this idea and show that a batch history can

simulate Rewθ as long as the batch covariance matrix has a sufficiently large

minimum eigenvalue, which holds with high probability when the batch size

is large.

Lemma 5.11. With perturbed context generation, there is some Y0 = polylog(d, T )/ρ2

and R = O(ρ
√
d log(TKd)) such that with probability at least 1 − T−2 any batch

history from a batch-greedy-style algorithm can simulate Rewθ() up to radius R, as long

as Y ≥ Y0.

If the batch history of an algorithm can simulate Rewθ, the algorithm has

enough information to simulate the outcome of a fresh round of any other algo-

rithm ALG. Eventually, this allows us to use a coupling argument in which we

couple a run of BatchBayesGreedy with a slowed-down run of ALG, and prove

that the former accumulates at least as much information as the latter, and there-

fore the Bayesian-greedy action choice is, in expectation, at least as good as that

of ALG. This leads to Theorem 5.6(a). We extend this argument to a scenario

in which both the greedy algorithm and ALG measure regret over a randomly

chosen subset of the rounds, which leads to Theorem 5.9.

To extend these results to BatchFreqGreedy, we consider a hypothetical algo-

rithm that receives the same data as BatchFreqGreedy, but chooses actions based
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on the (batched) Bayesian-greedy selection rule. We analyze this hypothetical

algorithm using the same technique as above, and then argue that its Bayesian

regret cannot be much smaller than that of BatchFreqGreedy. Intuitively, this is

because the two algorithms form almost identical estimates of θ, differing only

in the fact that the hypothetical algorithm uses the P as well as the data. We

show that this difference amounts to effects on the order of 1/t, which add up

to a maximal difference of O(log T ) in Bayesian regret.

5.4 Analysis: LinUCB with Perturbed Contexts

In this section, we prove Theorem 5.7(a), a Bayesian regret bound for the Lin-

UCB algorithm under perturbed context generation. We focus on a version of

LinUCB from Abbasi-Yadkori et al. (2011), as defined in (5.3) on page 80.

Recall that the interval width function in (5.3) is parameterized by numbers

L, S, c0. We use

L ≥ 1 + ρ
√

2d log(2T 3Kd),

S ≥ ‖θ‖2 +
√

3d log T (and S < T ) (5.8)

c0 = 1.

Recall that ρ denotes perturbation size, and θ = E [θ], the prior means of the

latent vector θ.

Remark 5.12. Ideally we would like to set L, S according to (5.8) with equalities. We

consider a more permissive version with inequalities so as to not require the exact knowl-

edge of ρ and ‖θ‖2.
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While the original result in Abbasi-Yadkori et al. (2011) requires ‖xa,t‖2 ≤ L and

‖θ‖2 ≤ S, in our setting this only happens with high probability.

We prove the following theorem (which implies Theorem 5.7(a)):

Theorem 5.13. Assume perturbed context generation. Further, suppose that the max-

imal eigenvalue of the covariance matrix Σ of the prior P is at most 1, and the mean

vector satisfies ‖θ‖2 ≥ 1 +
√

3 log T . The version of LinUCB with interval width func-

tion (5.3) and parameters given by (5.8) has Bayesian regret at most

T 1/3
(
d2 S (K2/ρ)1/3

)
· polylog(TKLd). (5.9)

Remark 5.14. The theorem also holds if the assumption on ‖θ‖2 is replaced with d ≥
log T

log log T
. The only change in the analysis is that in the concluding steps (Section 5.4.2),

we use Lemma 5.17(b) instead of Lemma 5.17(a).

On a high level, our analysis proceeds as follows. We massage algorithm’s

regret so as to elucidate the dependence on the number of rounds with small

“gap” between the best and second-best action, call it N . This step does not rely

on perturbed context generation, and makes use of the analysis from Abbasi-

Yadkori et al. (2011). The crux is that we derive a much stronger upper-bound

on E [N ] under perturbed context generation. The analysis relies on some non-

trivial technicalities on bounding the deviations from the “high-probability” be-

havior, which are gathered in Section 5.4.1.

We reuse the analysis in Abbasi-Yadkori et al. (2011) via the following

lemma.8 To state this lemma, define the instantaneous regret at time t as
8Lemma 5.15(a) is implicit in the proof of Theorem 3 from Abbasi-Yadkori et al. (2011), and

Lemma 5.15(b) is asserted by Abbasi-Yadkori et al. (2011, Lemma 10).
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Rt = θ>x∗t − θ>xat,t, and let

βT =
(√

d log (T (1 + TL2)) + S
)2

.

Lemma 5.15 (Abbasi-Yadkori et al. (2011)). Consider a problem instance with re-

ward noise N (0, 1) and a specific realization of latent vector θ and contexts xa,t. Con-

sider LinUCB with parameters L, S, c0 that satisfy ‖xa,t‖2 ≤ L, ‖θ‖2 ≤ S, and c0 = 1.

Then

(a) with probability at least 1 − 1
T

(over the randomness in the rewards) it holds

that ∑T
t=1 R

2
t ≤ 16βT log(det(Zt + I)),

where Zt =
∑t

τ=1 xτx
>
τ ∈ Rd×d is the “empirical covariance matrix” at time t.

(b) det(Zt + I) ≤ (1 + tL2/d)d.

The following lemma captures the essence of the proof of Theorem 5.13.

From here on, we assume perturbed context generation. In particular, reward

noise is N (0, 1).

Lemma 5.16. Suppose parameter L is set as in (5.8). Consider a problem instance with

a specific realization of θ such that ‖θ‖2 ≤ S. Then for any γ > 0,

E [Regret(T )] ≤ ‖θ‖−1/3
2

(
1

2
√
π

+ 16βT d log(1 + TL2/d)

)(
TK2

ρ

)1/3

+ Õ (1) .

Proof. We will prove that for any γ > 0,

E [Regret(T )] ≤ T · γ2K2

2ρ‖θ‖2

√
π

+
1

γ
16βT d log(1 + TL2/d) + Õ(1). (5.10)

The Lemma easily follows by setting γ = (TK2/(ρ‖θ‖2))−1/3.
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Fix some γ > 0. We distinguish between rounds t with Rt < γ and those

with Rt ≥ γ:

Regret(T ) =
T∑
t=1

Rt ≤
∑
t∈Tγ

Rt +
T∑
t=1

R2
t

γ
≤ γ|Tγ|+

1

γ

T∑
t=1

R2
t , (5.11)

where Tγ = {t : Rt ∈ (0, γ)}.

We use Lemma 5.15 to upper-bound the second summand in (5.11). To this

end, we condition on the event that every component of every perturbation

εa,t has absolute value at most
√

2 log 2T 3Kd; denote this event by U . This im-

plies ‖xa,t‖2 ≤ L for all actions a and all rounds t. By Lemma C.4, U is a high-

probability event: Pr[U ] ≥ 1− 1
T 2 . Now we are ready to apply Lemma 5.15:

E
[∑T

t=1R
2
t | U

]
≤ 16 d βT log(1 + tL2/d). (5.12)

To plug this into (5.11), we need to account for the low-probability event Ū . We

need to be careful because Rt could, with low probability, be arbitrarily large.

By Lemma 5.18 with ` = 0,

E
[
Rt | Ū

]
≤ 2

[
‖θ‖2

(
1 + ρ(1 +

√
2 logK) +

√
2 log(2T 3Kd)

)]
E
[
Regret(T ) | Ū

]
Pr[Ū ] =

∑T
t=1 E

[
Rt | Ū

]
/T 2 < Õ(1).

E [Regret(T ) | U ] Pr[U ] ≤ γ E [ |Tγ| ] + 1
γ
E
[∑T

t=1R
2
t | U

]
(by (5.11))

Putting this together and using (5.12), we obtain:

E [Regret(T )] ≤ γ E [ |Tγ| ] +
16

γ
d βT log(1 + tL2/d) + Õ(1). (5.13)

To obtain (5.10), we analyze the first summand in (5.13). Let ∆t be the “gap”

at time t: the difference in expected rewards between the best and second-best

actions at time t (where “best” and “second-best” is according to expected re-

wards). Here, we’re taking expectations after the perturbations are applied, so
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the only randomness comes from the noisy rewards. Consider the set of rounds

with small gap, Gγ := {t : ∆t < γ}. Notice that rt ∈ (0, γ) implies ∆t < γ, so

|Tγ| ≤ |Gγ|.

In what follows we prove an upper bound on E [|Gγ|]. This is the step where

perturbed context generation is truly used. For any two arms a1 and a2, the gap

between their expected rewards is

θ>(xa1,t − xa2,t) = θ>(µa1,t − µa2,t) + θ>(εa1,t − εa2,t).

Therefore, the probability that the gap between those arms is smaller than γ is

Pr
[
|θ>(µa1,t − µa2,t) + θ>(εa1,t − εa2,t)| ≤ γ

]
= Pr

[
−γ − θ>(µa1,t − µa2,t) ≤ θ>(εa1,t − εa2,t) ≤ γ − θ>(µa1,t − µa2,t)

]
Since θ>εa1,t and θ>εa2,t are both distributed as N (0, ρ2‖θ‖2

2), their difference is

N (0, 2ρ2‖θ‖2
2). The maximum value that the Gaussian measure takes is 1

2ρ‖θ‖2
√
π

,

and the measure in any interval of width 2γ is therefore at most γ
ρ‖θ‖2

√
π

. This

gives us the bound

Pr
[
|θ>(µa1,t − µa2,t) + θ>(εa1,t − εa2,t)| ≤ γ

]
≤ γ

ρ‖θ‖2

√
π
.

Union-bounding over all
(
K
2

)
pairs of actions, we have

Pr[∆t ≤ γ] ≤ Pr

 ⋃
a1,a2∈[K]

|θ>(xa1,t − xa2,t)| ≤ γ

 ≤ K2

2

γ

ρ‖θ‖2

√
π
.

E [ |Gγ| ] =
T∑
t=1

Pr[∆t ≤ γ] ≤ T · K
2

2

γ

ρ‖θ‖2

√
π
.

Plugging this into (5.13) (recalling that |Tγ| ≤ |Gγ|) completes the proof.
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5.4.1 Bounding the Deviations

We make use of two results that bound deviations from the “high-probability”

behavior, one on ‖θ‖2 and another on instantaneous regret. First, we prove

high-probability upper and lower bounds on ‖θ‖2 under the conditions in The-

orem 5.13. Essentially, these bounds allow us to use Lemma 5.16.

Lemma 5.17. Assume the latent vector θ comes from a multivariate Gaussian, θ ∼

N (θ,Σ), here the covariate matrix Σ satisfies λmax(Σ) ≤ 1.

(a) If ‖θ‖2 ≥ 1 +
√

3 log T , then for sufficiently large T , with probability at least

1− 2
T

,

1
2 log T

≤ ‖θ‖2 ≤ ‖θ‖2 +
√

3d log T . (5.14)

(b) Same conclusion if d ≥ log T
log log T

.

Proof. We consider two cases, based on whether d ≥ log T/ log log T . We need

both cases to prove part (a), and we obtain part (b) as an interesting by-product.

We repeatedly use Lemma C.7, a concentration inequality for χ2 random vari-

ables, to show concentration on the Gaussian norm.

Case 1: d ≥ log T/ log log T .

Since the Gaussian measure is decreasing in distance from 0, the Pr [‖θ‖2 ≤ c] ≤

Pr
[
‖θ − θ‖2 ≤ c

]
for any c. In other words, the norm of a Gaussian is most likely

to be small when its mean is 0. LetX = Σ−1/2(θ−θ). Note thatX has distribution

N (0, I), and therefore ‖X‖2
2 has χ2 distribution with d degrees of freedom. We
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can bound this as

Pr

[
‖θ − θ‖2 ≤

1

2 log T

]
= Pr

[
‖Σ−1/2X‖2 ≤

1

2 log T

]
≤ Pr

[√
λmax(Σ)‖X‖2 ≤

1

2 log T

]
≤ Pr

[
‖X‖2 ≤

1

2 log T

]
= Pr

[
‖X‖2

2 ≤
1

4(log T )2

]
≤
(

1

4d(log T )2
e1−1/((4 log T )2d)

)d/2
(By Lemma C.7)

≤
(

log log T

(log T )3

)log T/(2 log log T )

(d ≥ log T/ log log T )

=
T log log log T/(2 log log T )

T 3/2

≤ T−1

Similarly, we can show

Pr
[
‖θ − θ‖2 ≥

√
d log T

]
= Pr

[
‖Σ−1/2X‖2 ≥

√
d log T

]
≤ Pr

[√
λmax(Σ)‖X‖2 ≥

√
d log T

]
≤ Pr

[
‖X‖2 ≥

√
d log T

]
= Pr

[
‖X‖2

2 ≥ d log T
]

≤
(
log Te1−log T

)d/2 (By Lemma C.7)

≤ (exp (1 + log log T − log T ))log T/(2 log log T )

(d ≥ log T/ log log T )

= T (1+log log T−log T )/(2 log log T )

≤ T−1 (For log T > 1 + 3 log log T )

By the triangle inequality,

‖θ‖2 − ‖θ − θ‖2 ≤ ‖θ‖2 ≤ ‖θ‖2 + ‖θ − θ‖2.
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Thus, in this case, 1
2 log T

≤ ‖θ‖2 ≤ ‖θ‖2 +
√
d log T with probability at least

1− 2T−1.

Case 2: ‖θ‖2 ≥ 1 +
√

3 log T and d < log T/ log log T .

For this part of the proof, we just need that d < log T , which it is by assumption.

Using the triangle inequality, if ‖θ‖2 is large, it suffices to show that ‖θ − θ‖2 is

small with high probability. Again, let X = Σ−1/2(θ − θ). Then,

Pr
[
‖θ − θ‖2 ≥

√
3 log T

]
= Pr

[
‖Σ1/2X‖2 ≥

√
3 log T

]
≥ Pr

[√
λmax(Σ)‖X‖2 ≥

√
3 log T

]
= Pr

[
‖X‖2 ≥

√
3 log T√
λmax(Σ)

]

≥ Pr
[
‖X‖2 ≥

√
3 log T

]
= Pr

[
‖X‖2

2 ≥ 3 log T
]

By Lemma C.7,

Pr
[
‖X‖2

2 ≥ 3 log T
]
≤
(

3 log T

d
e1− 3 log T

d

)d/2
=

(
T−3/de

3 log T

d

)d/2
= T−1

(
T−1/de

3 log T

d

)d/2
≤ T−1 (for sufficiently large T )

Because ‖θ‖2 ≥ 1 +
√

3 log T , 1 ≤ ‖θ‖2 ≤ ‖θ‖2 +
√

3 log T with probability at least

1− T−1.

Next, we show how to upper-bound expected instantaneous regret in the

worst case.9

9We state and prove this result in a slightly more general version which we use to support
Section 5.3. For the sake of this section, a special case of ` = 0 suffices.
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Lemma 5.18. Fix round t and parameter ` > 0. For any θ, conditioned on any history

ht−1 and the event that ‖εa,t‖∞ ≥ ` for each arm a, the expected instantaneous regret

of any algorithm at round t is at most

2 ‖θ‖2

(
1 + ρ(2 +

√
2 logK) + `

)
.

Proof. The expected regret at round t is upper-bounded by the reward difference

between the best arm x∗t and the worst arm x†t , which is

θ>(x∗t − x
†
t).

Note that x∗t = µ∗t + ε∗t and x†t = µ†t + ε†t . Then, this is

θ>(x∗t − x
†
t) = θ>(µ∗t − µ

†
t) + θ>(ε∗t − ε

†
t)

≤ 2‖θ‖2 + θ>(ε∗t − ε
†
t)

since ‖µa,t‖2 ≤ 1. Next, note that

θ>ε∗t ≤ max
a
θ>εa,t

and

θ>ε†t ≥ min
a
θ>εa,t.

Since εa,t has symmetry about the origin conditioned on the event that at least

one component of one of the perturbations has absolute value at least `, i.e. v

and −v have equal likelihood, maxa θ
>εa,t and −mina θ

>εa,t are identically dis-

tributed. Let E`,t be the event that at least one of the components of one of the

perturbations has absolute value at least `. This means for any choice µa,t for all

a,

E
[
θ>(x∗t − x

†
t) | E`,t

]
≤ 2‖θ‖2 + 2E

[
max
a
θ>εa,t | E`,t

]
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where the expectation is taken over the perturbations at time t.

Without loss of generality, let (εa′,t)j be the component such that |(εa′,t)j| ≥ `.

Then, all other components have distribution N (0, ρ2). Then,

E
[
max
a
θ>εa,t | E`,t

]
= E

[
max
a
θ>εa,t | |(εa′,t)j| ≥ `

]
= E

[
max(θ>εa′,t,max

a6=a′
θ>εa,t) | |(εa′,t)j| ≥ `

]
≤ E

[
max

(
|θj(εa′,t)j|+

∑
i 6=j

θi(εa′,t)i,max
a6=a′

θ>εa,t

)
| |(εa′,t)j| ≥ `

]

Let (ε̃a,t)i = 0 if a = a′ and i = j, and (εa,t)i otherwise. In other words, we

simply zero out the component (εa′,t)j . Then, this is

E
[
max

(
|θj(εa′,t)j|+ θ>ε̃a′,t,max

a6=a′
θ>ε̃a,t

)
| |(εa′,t)j| ≥ `

]
≤ E

[
max
a

(
|θj(εa′,t)j|+ θ>ε̃a,t

)
| |(εa′,t)j| ≥ `

]
= E

[
|θj(εa′,t)j|+ max

a

(
θ>ε̃a,t

)
| |(εa′,t)j| ≥ `

]
= E [|θj(εa′,t)j| | |(εa′,t)j| ≥ `] + E

[
max
a

(
θ>ε̃a,t

)]
≤ E [|θj(εa′,t)j| | |(εa′,t)j| ≥ `] + ρ‖θ‖2

√
2 logK

because by Lemma C.5,

E
[
max
a
θ>ε̃a,t

]
≤ E

[
max
a
θ>εa,t

]
≤ ρ‖θ‖2

√
2 logK

Next, note that by symmetry and since θj ≤ ‖θ‖2,

E [|θj(εa′,t)j| | |(εa′,t)j| ≥ `] ≤ ‖θ‖2 E [(εa′,t)j | (εa′,t)j ≥ `] .

By Lemma C.1,

E [(εa′,t)j | (εa′,t)j ≥ `] ≤ max(2ρ, `+ ρ) ≤ 2ρ+ `
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Putting this all together, the expected instantaneous regret is bounded by

2
(
‖θ‖2

(
1 + ρ(2 +

√
2 logK) + `

))
,

proving the lemma.

5.4.2 Finishing the Proof of Theorem 5.13.

We focus on the “nice event” that (5.14) holds, denote it E for brevity. In partic-

ular, note that it implies ‖θ‖2 ≤ S. Lemma 5.16 guarantees that expected regret

under this event, E [Regret(T ) | E ], is upper-bounded by the expression (5.9) in

the theorem statement.

In what follows we use Lemma 5.17(a) and Lemma 5.18 guarantee that if E

fails, then the corresponding contribution to expected regret is small. Indeed,

Lemma 5.18 with ` = 0 implies that

E
[
Rt | Ē

]
≤ BT ‖θ‖2 for each round t,

where B = 1 + ρ(2 +
√

2 logK) is the “blow-up factor”. Since (5.14) fails with

probability at most 2
T

by Lemma 5.17(a), we have

E
[
Regret(T ) | Ē

]
Pr[Ē ] ≤ 2B

T
E
[
‖θ‖2 | Ē

]
≤ 2B

T
E
[
‖θ‖2 | ‖θ‖2 ≥ 1

2 log T

]
≤ O

(
B
T

) (
‖θ‖2 + d log T

)
≤ O(1).

The antecedent inequality follows by Lemma C.2 with α = 1
2 log T

, using the

assumption that λmax(Σ) ≤ 1. The theorem follows.
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5.5 Analysis: Greedy Algorithms with Perturbed Contexts

We present the proofs for our results on greedy algorithms in Section 5.3.10 This

section is structured as follows. In Section 5.5.1, we quantify the diversity of

data collected by batch-greedy-style algorithms, assuming perturbed context

generation. In Section 5.5.2, we show that a sufficiently “diverse” batch history

suffices to simulate the reward for any given context vector, in the sense of Def-

inition 5.10. Jointly, these two subsections imply that batch history generated

by a batch-greedy-style algorithm can simulate rewards with high probability,

as long as the batch size is sufficiently large. Section 5.5.3 builds on this foun-

dation to derive regret bounds for BatchBayesGreedy. The crux is that the his-

tory collected by BatchBayesGreedy suffices to simulate a “slowed-down” run

of any other algorithm. This analysis extends to a version of BatchFreqGreedy

equipped with a Bayesian-greedy prediction rule (and tracks the performance

of the prediction rule). Finally, Section 5.5.4 derives the regret bounds for Batch-

FreqGreedy, by comparing the prediction-rule version of BatchFreqGreedy with

BatchFreqGreedy itself. To derive the results on group externalities, we present

all our analysis in Sections 5.5.3 and 5.5.4 in a more general framework in which

only the minority rounds are counted for regret.

Preliminaries. We assume perturbed context generation in this section, with-

out further mention.
10That is, all results in Section 5.3 except the regret bound for LinUCB (Theorem 5.7(a)), which

is proved in Section 5.4.
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Throughout, we will use the following parameters as a shorthand:

δR = T−2

R̂ = ρ
√

2 log(2TKd/δR)

R = 1 + R̂
√
d.

Recall that ρ denotes perturbation size, and d is the dimension. The meaning

of R̂ and R is that they are high-probability upper bounds on the perturbations

and the contexts, respectively. More formally, by Lemma C.5 we have:

Pr
[
‖εa,t‖∞ ≤ R̂ : for all arms a and all rounds t

]
≤ δR (5.15)

Pr [‖xa,t‖2 ≤ R : for all arms a and all rounds t ] ≤ δR (5.16)

Let us recap some of the key definitions from Section 5.3.2. We consider

batch-greedy-style algorithms, a template that unifies BatchBayesGreedy and

BatchFreqGreedy. A bandit algorithm is called batch-greedy-style if it divides the

timeline in batches of Y consecutive rounds each, in each round t chooses some

estimate θt of θ, based only on the data from the previous batches, and then

chooses the best action according to this estimate, so that at = arg maxa θ
>
t xa,t.

For a batch B that starts at round t0 + 1, the batch history hB is the tuple

((xt0+τ , rt0+τ ) : τ ∈ [Y ]), and the batch context matrix XB is the matrix whose

rows are vectors (xt0+τ : τ ∈ [Y ]). Here and elsewhere, [Y ] = {1, · · · , Y }. The

batch covariance matrix is defined as

ZB := X>B XB =

t0+Y∑
t=t0+1

xt x
>
t . (5.17)
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5.5.1 Data Diversity under Perturbations

We are interested in the diversity of data collected by batch-greedy-style algo-

rithms, assuming perturbed context generation. Informally, the observed con-

texts x1, x2, . . . should cover all directions in order to enable good estimation of

the latent vector θ. Following Kannan et al. (2018), we quantify data diversity

via the minimal eigenvalue of the empirical covariance matrix Zt. More pre-

cisely, we are interested in proving that λmin(Zt) is sufficiently large. We adapt

some tools from Kannan et al. (2018), and then derive some improvements for

batch-greedy-style algorithms.

Tools from Kannan et al. (2018)

Kannan et al. (2018) prove that λmin(Zt) grows linearly in time t, assuming t is

sufficiently large.

Lemma 5.19 (Kannan et al. (2018)). Fix any batch-greedy-style algorithm. Consider

round t ≥ τ0, where τ0 = 160R
2

ρ2
log 2d

δ
· log T . Then for any realization of θ, with

probability 1− δ

λmin(Zt) ≥
ρ2t

32 log T
.

Proof. The claimed conclusion follows from an argument inside the proof of

Lemma B.1 from Kannan et al. (2018), plugging in λ0 = ρ2

2 log T
. This argument

applies for any t ≥ τ ′0, where τ ′0 = max
(

32 log 2
δ
, 160R

2

ρ2
log 2d

δ
· log T

)
. We ob-

serve that τ ′0 = τ0 since R ≥ ρ.
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Recall that Zt is the sum Zt :=
∑t

τ=1 xτx
>
τ . A key step in the proof of

Lemma 5.19 zeroes in on the expected contribution of a single round. We use

this tool separately in the proof of Lemma 5.22.

Lemma 5.20 (Kannan et al. (2018)). Fix any batch-greedy-style algorithm, and the

latent vector θ. Assume T ≥ 4K. Condition on the event that all perturbations εa,t are

upper-bounded by R̂, denote it with E . Then with probability at least 1
4
,

λmin

(
E
[
xtx
>
t | ht−1, E

])
≥ ρ2

2 log T
.

Proof. The proof is easily assembled from several pieces in the analysis in Kan-

nan et al. (2018). Let θ̂t be the algorithm’s estimate for θ at time t. As in Kannan

et al. (2018), define

ĉa,t = max
a′ 6=a

θ̂>t xa′,t,

where ĉa,t depends on all perturbations other than the perturbation for xa,t. Let

us say that ĉa,t is “good” for arm a if

ĉa,t ≤ θ̂>t µa,t + ρ
√

2 log T‖θ̂t‖2.

First we argue that

Pr [ĉa,t is good for a | at = t, E ] ≥ 1
4
. (5.18)

Indeed, in the proof of their Lemma 3.4, Kannan et al. (2018) show that for

any round, conditioned on E , if the probability that arm a was chosen over the

randomness of the perturbation is at least 2/T , then the round is good for a

with probability at least 1
2
. Let Bt be the set of arms at round t with probability

at most 2/T of being chosen over the randomness of the perturbation. Then,

Pr
ε∼N (0,ρ2I)

[at ∈ Bt] ≤
∑
a∈BT

Pr
ε∼N (0,ρ2I)

[at = a] ≤ 2
T
|Bt| ≤ 2K

T
≤ 1

2
.
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Since by assumption T ≥ 4K, (5.18) follows.

Second, we argue that

λmin

(
E
[
xa,tx

>
a,t | at = a, ĉa,t is good

])
≥ ρ2

2 log T
(5.19)

This is where we use conditioning on the event {εa,t ≤ R̂}. We plug in r =

ρ
√

2 log T and λ0 = ρ2

2 log T
into Lemma 3.2 of Kannan et al. (2018). This lemma

applies because with these parameters, the perturbed distribution of context

arrivals satisfies the (ρ
√

2 log T , ρ2/(2 log T ))-diversity condition from Kannan

et al. (2018). The latter is by Lemma 3.6 of Kannan et al. (2018). This completes

the proof of (5.19). The lemma follows from (5.18) and (5.19).

Let θfre
t be the BatchFreqGreedy estimate for θ at time t, as defined in (5.7).

We are interested in quantifying how the quality of this estimate improves over

time. Kannan et al. (2018) prove, essentially, that the distance between θfre
t and

θ scales as
√
t/λmin(Zt).

Lemma 5.21 (Kannan et al. (2018)). Consider any round t in the execution of Batch-

FreqGreedy. Let t0 be the last round of the previous batch. For any θ and any δ > 0,

with probability 1− δ,

‖θ − θfre
t ‖2 ≤

√
t0 · 2dR log d

δ

λmin(Zt0)
.

Some improvements We focus on the batch covariance matrix ZB of a given

batch in a batch-greedy-style algorithm. We would like to prove that λmin(ZB)

is sufficiently large with high probability, as long as the batch size Y is large

enough. The analysis from Kannan et al. (2018) (a version of Lemma 5.19) would
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apply, but only as long as the batch size is least as large as the τ0 from the state-

ment of Lemma 5.19. We derive a more efficient version, essentially shaving off

a factor of 8.11

Lemma 5.22. Fix a batch-greedy-style algorithm and any batch B in the execution of

this algorithm. Fix δ > 0 and assume that the batch size Y is at least

Y0 := (R
ρ

)2 8e2

(e−1)2

(
1 + log 2d

δ

)
log(T ) + 4e

e−1
log 2

δ
. (5.20)

Condition on the event that all perturbations in this batch are upper-bounded by R̂,

more formally:

EB = {‖εa,t‖∞ ≤ R̂ : for all arms a and all rounds t in B}.

Further, condition on the latent vector θ and the history h before batch B. Then

Pr
[
λmin(ZB) ≥ R2 | EB, h, θ

]
≥ 1− δ. (5.21)

The probability in (5.21) is over the randomness in context arrivals and rewards in batch

B.

The improvement over Lemma 5.19 comes from two sources: we use a tail

bound on the sum of geometric random variables instead of a Chernoff bound

on a binomial random variable, and we derive a tighter application of the eigen-

value concentration inequality of Tropp (2012).

Proof. Let t0 be the last round before batch B. Recalling (5.17), let

WB =

t0+Y∑
t=t0+1

E
[
xtx
>
t | ht−1

]
11Essentially, the factor of 160 in Lemma 5.19 is replaced with factor 8e2

(e−1)2 < 20.022 in (5.20).

114



be a similar sum over the expected per-round covariance matrices. Assume

Y ≥ Y0

The proof proceeds in two steps: first we lower-bound λmin(ZB), and then

we show that it implies (5.21). Denoting m = R2 e
e−1

(1 + log 2d
δ

), we claim that

Pr [λmin(WB) < m | EB, h] ≤ δ
2
. (5.22)

To prove this, observe that WB’s minimum eigenvalue increases by at least

λ0 = ρ2/(2 log T ) with probability at least 1/4 each round by Lemma 5.20, where

the randomness is over the history, i.e., the sequence of (context, reward) pairs.

If we want it to go up to m, this should take 4m/λ0 rounds in expectation. How-

ever, we need it to go to m with high probability. Notice that this is dominated

by the sum of m/λ0 geometric random variables with parameter 1
4
. We’ll use

the following bound from Janson (2018): for X =
∑n

i=1 Xi where Xi ∼ Geom(p)

and any c ≥ 1,

Pr[X ≥ cE [X]] ≤ exp (−n(c− 1− log c)) .

Because we want the minimum eigenvalue of WB to be m, we need n = m/λ0,

so E [X] = 4m/λ0. Choose c =
(
1 + λ0

m
log 2

δ

)
e
e−1

. By Corollary C.15,

c− 1− log c ≥ e−1
e
· c− 1 = λ0

m
log 2

δ
.

Therefore,

Pr [X ≥ cE [X]] ≤ exp
(
−n · λ0

m
log 2

δ

)
=
(
δ
2

)n·λ0/m = δ
2

Thus, with probability 1− δ
2
, λmin(WB) ≥ m as long as the batch size Y is at least

e

e− 1

(
1 +

λ0

m
log

2

δ

)
· E [X] =

4e

e− 1

(
m

λ0

+ log
2

δ

)
= Y0.

This completes the proof of (5.22).
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To derive (5.21) from (5.22), we proceed as follows. Consider the event

E =
{
λmin(ZB) ≤ R2 and λmin(WB) ≥ m

}
.

Letting α = 1 − R2/m and rewriting R2 as (1 − α)m, we use a concentration

inequality from Tropp (2012) to guarantee that

Pr[E | EB, h] ≤ d
(
eα(1− α)1−α)−m/R2

.

Then, using the fact that xx ≥ e−1/e for all x > 0, we have

Pr[E | EB, h] ≤ d
(
e1−R2/m−1/e

)−m/R2

= d e−(m−R2−m/e)/R2

= d exp

(
−
(
e−1
e

)
m

R2
+ 1

)
≤ δ

2
,

since m ≥ e
e−1

R2
(
1 + log 2d

δ

)
. Finally, observe that, omitting the conditioning on

EB, h, we have:

Pr
[
λmin(ZB) ≤ R2

]
≤ Pr [E ] + Pr [λmin(WB) < m] ≤ δ

2
+ δ

2
= δ.

5.5.2 Reward Simulation with a Diverse Batch History

We consider reward simulation with a batch history, in the sense of Defini-

tion 5.10. We show that a sufficiently “diverse” batch history suffices to sim-

ulate the reward for any given context vector. Coupled with the results of Sec-

tion 5.5.1, it follows that batch history generated by a batch-greedy-style algo-

rithm can simulate rewards as long as the batch size is sufficiently large.

Let us recap the definition of reward simulation (Definition 5.10). Let Rewθ(·)

be a randomized function that takes a context x and outputs an independent
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random sample from N (θ>x, 1). In other words, this is the realized reward for

an action with context vector x.

Definition 5.23. Consider batch B in the execution of a batch-greedy-style algorithm.

Batch history hB can simulate Rewθ() up to radius R > 0 if there exists a function

g : {context vectors} × {batch histories hB} → R such that g(x, hB) is identically

distributed to Rewθ(x) conditional on the batch context matrix, for all θ and all context

vectors x ∈ Rd with ‖x‖2 ≤ R.

Note that we do not require the function g to be efficiently computable. We

do not require algorithms to compute g; a mere existence of such function suf-

fices for our analysis.

The result in this subsection does not rely on the “greedy” property. Instead,

it applies to all “batch-style” algorithms, defined as follows: time is divided

in batches of Y consecutive rounds each, and the action at each round t only

depends on the history up to the previous batch. The data diversity condition

is formalized as {λmin(ZB) ≥ R2}; recall that it is a high-probability event, in a

precise sense defined in Lemma 5.22. The result is stated as follows:

Lemma 5.24. Fix a batch-style algorithm and any batch B in the execution of this

algorithm. Assume the batch covariance matrix ZB satisfies λmin(ZB) ≥ R2. Then

batch history hB can simulate Rewθ up to radius R.

Proof. Let us construct a suitable function g for Definition 5.23. Fix a context

vector x ∈ Rd with ‖x‖2 ≤ R. Let rB be the vector of realized rewards in batch

B, i.e., rB = (rt : rounds t in B) ∈ RY . Define

g(x, hB) = w>B rB +N
(
0, 1− ‖wB‖2

2

)
,where wB = XB Z

−1
B x ∈ RY . (5.23)
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Recall that the variance of the reward noise is 1. (We can also handle a more

general version in which the variance of the reward noise is σ2. Then the noise

variance in (5.23) should be σ2 (1 − ‖wB‖2
2), with essentially no modifications

throughout the rest of the proof.)

Note that wB is well-defined: indeed, ZB is invertible since λmin(ZB) ≥ R2 >

0. In the rest of the proof we show that g is as needed for Definition 5.23.

First, we will show that for any x ∈ Rd such that ‖x‖2 ≤ R, the weights

wB ∈ Rt as defined above satisfy X>BwB = x and ‖wB‖2 ≤ 1. Then, we’ll show

that if each rτ ∼ N (θ>xτ , 1), then r>BwB +N (0, 1− ‖wB‖2
2) ∼ N (θ>x, 1).

Trivially, we have

X>BwB = X>BXB(X>BXB)−1x = x

as desired. We must now show that ‖wB‖2
2 ≤ 1. Note that

‖wB‖2
2 = w>BwB = w>BXBZ

−1
B x = x>Z−1

B x = ‖x‖2
Z−1
B

where ‖v‖2
M simply denotes v>Mv. Thus, it is sufficient to show that ‖x‖2

Z−1
B

≤ 1.

Since ‖x‖2 ≤ R and λmin (ZB) ≥ R2, we have by Lemma C.11

ZB � R2I � xx>.

By Lemma C.12, we have

I � Z
−1/2
B xx>Z

−1/2
B .

Let z = Z
−1/2
B x, so I � zz>. Again by Lemma C.11, λmax(zz>) = z>z. This

means that

1 ≥ z>z = (Z
−1/2
B x)>Z

−1/2
B x = x>Z−1

B x = ‖x‖2
Z−1
B

= ‖wB‖2
2
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as desired. Finally, observe that

r>BwB = (XBθ + η)>wB = θ>X>BwB + η>wB = θ>x+ η>wB

where η ∼ N (0, I) is the noise vector. Notice that η>wB ∼ N (0, ‖wB‖2), and

therefore, η>wB +N (0, 1− ‖wB‖2
2) ∼ N (0, 1). Putting this all together, we have

r>BwB +N (0, 1− ‖wB‖2
2) ∼ N (θ>x, 1)

and therefore D can simulate E for any x up to radius R.

5.5.3 Regret Bounds for BatchBayesGreedy

We apply the tools from Sections 5.5.1 and 5.5.2 to derive regret bounds for

BatchBayesGreedy. On a high level, we prove that the history collected by

BatchBayesGreedy suffices to simulate a “slowed-down” run of any other al-

gorithm ALG0. Therefore, when it comes to choosing the next action, Batch-

BayesGreedy has at least as much information as ALG0, so its Bayesian-greedy

choice cannot be worse than the choice made by ALG0.

Our analysis extends to a more general scenario which is useful for the anal-

ysis of BatchFreqGreedy. We formulate and prove our results for this scenario

directly. We consider an extended bandit model which separates data collection

and reward collection. Each round t proceeds as follows: the algorithm ob-

serves available actions and the context vectors for these actions, then it chooses

two actions, at and a′t, and observes the reward for the former but not the lat-

ter. We refer to a′t as the “prediction” at round t. We will refer to an algorithm

in this model as a bandit algorithm (which chooses actions at) with “prediction

rule” that chooses the predictions a′t. More specifically, we will be interested in
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an arbitrary batch-greedy-style algorithm with prediction rule given by Batch-

BayesGreedy, as per (5.6). We assume this prediction rule henceforth. We are

interested in prediction regret: a version of regret (5.1) if actions at are replaced

with predictions a′t:

PReg(T ) =
∑T

t=1 θ
>x∗t − θ>xa′t,t (5.24)

where x∗t is the context vector of the best action at round t, as in (5.1). More

precisely, we are interested in Bayesian prediction regret, the expectation of (5.24)

over everything: the context vectors, the rewards, the algorithm’s random seed,

and the prior over θ.

We use essentially the same analysis to derive implications on group exter-

nalities. For this purpose, we consider a further generalization in which regret

is restricted to rounds that correspond to a particular population. Formally, let

T ⊆ N be a randomly chosen subset of the rounds where Pr[t ∈ T ] is a constant

and rounds are chosen to be in T independently of one another. We allow for

the possibility that the underlying context distribution differs for rounds in T

compared to rounds in [T ]\T . More precisely, we allow the event {t ∈ T } be

correlated with the context tuple at round t. Similar to the definition of minority

regret, we define T -restricted regret (resp., prediction regret) in T rounds to be

the portion of regret (resp., prediction regret) that corresponds to T -rounds:

RT (T ) =
∑

t≤T, t∈T θ
>x∗t − θ>xat,t. (5.25)

PRegT (T ) =
∑

t≤T, t∈T θ
>x∗t − θ>xa′t,t. (5.26)

T -restricted Bayesian (prediction) regret is defined as an expectation over every-

thing.

Thus, the main theorem of this subsection is formulated as follows:
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Theorem 5.25. Consider perturbed context generation. Let ALG be an arbitrary batch-

greedy-style algorithm whose batch size is at least Y0 from (5.20). Fix any bandit algo-

rithm ALG0, and let RT0 (T ) be the T -restricted regret of this algorithm on a particular

problem instance I. Then on the same instance, ALG has T -restricted Bayesian predic-

tion regret

E
[
PRegT (T )

]
≤ Y · E

[
RT0 (T/Y )

]
+ Õ(1/T ). (5.27)

Proof sketch. We use a t-round history of ALG to simulate a (t/Y )-round his-

tory of ALG0. More specifically, we use each batch in the history of ALG to simu-

late one round of ALG0. We prove that the simulated history of ALG0 has exactly

the same distribution as the actual history, for any θ. Since ALG predicts the

Bayesian-optimal action given the history (up to the previous batch), this action

is at least as good (in expectation over the prior) as the one chosen by ALG0 after

t/Y rounds. The detailed proof is deferred to Section 5.5.3.

Implications. As a corollary of this theorem, we obtain regret bounds for

BatchBayesGreedy in Theorem 5.6 and Theorem 5.7. We take T to be the set

of all rounds, i.e., Pr[t ∈ T ] = 1, and ALG to be BatchBayesGreedy. For Theo-

rem 5.7(b), we take ALG0 to be LinUCB. Thus:

Corollary 5.26. In the setting of Theorem 5.25, BatchBayesGreedy has Bayesian

regret at most Y · E [R0(T/Y )] + Õ(1/T ) on problem instance I. Further, un-

der the assumptions of Theorem 5.7, BatchBayesGreedy has Bayesian regret at most

Õ(d2K2/3 T 1/3/ρ2) on all instances.
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We also obtain a similar regret bound on the Bayesian prediction regret of

BatchFreqGreedy, which is essential for Section 5.5.4.

Corollary 5.27. In the setting of Theorem 5.25, BatchFreqGreedy has Bayesian predic-

tion regret (5.27).

To derive Theorem 5.9 for BatchBayesGreedy, we take T to be the set of all

minority rounds, and apply Theorem 5.25 twice: first when ALG0 is run over the

minority rounds only (and can behave arbitrarily on the rest), and then when

ALG0 is run over full population.

Proof of Theorem 5.25

We condition on the event that all perturbations are bounded by R̂, more pre-

cisely, on the event

E1 =
{
‖εa,t‖∞ ≤ R̂ : for all arms a and all rounds t

}
. (5.28)

Recall that E1 is a high-probability event, by (5.15). We also condition on the

event

E2 =
{
λmin(ZB) ≥ R2 : for each batch B,

}
where ZB is the batch covariance matrix, as usual. Conditioned on E1, this too

is a high-probability event by Lemma 5.22 plugging in δ/T and taking a union

bound over all batches.

We will prove that ALG satisfies

E
[
PRegT (T ) | E1, E2

]
≤ Y · E

[
RT0 (dT/Y e) | E1, E2

]
, (5.29)
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where the expectation is taken over everything: the context vectors, the rewards,

the algorithm’s random seed, and the prior over θ. Then we take care of the

“failure event” E1 ∩ E2.

History simulation. Before we prove (5.29), let us argue about using the his-

tory of ALG to simulate a (shorter) run of ALG0. Fix round t. We use a t-round

history of ALG to simulate a bt/Y c-round run of ALG0, where Y is the batch size

in ALG. Stating this formally requires some notation. Let At be the set of actions

available in round t, and let cont = (xa,t : a ∈ At) be the corresponding tuple

of contexts. Let CON be the set of all possible context tuples, more precisely, the

set of all finite subsets of Rd. Let ht and h0
t denote, resp., the t-round history of

ALG and ALG0. LetHt denote the set of all possible t-round histories. Note that ht

and h0
t are random variables which take values on Ht. We want to use history

ht to simulate history h0
bt/Y c. Thus, the simulation result is stated as follows:

Lemma 5.28. Fix round t and let σ = (con1 , . . . , conbt/Y c) be the sequence of context

arrivals up to and including round bt/Y c. Then there exists a “simulation function”

sim = simt : Ht × CONbt/Y c → Hbt/Y c

such that the simulated history sim(ht, σ) is distributed identically to h0
bt/Y c, condi-

tional on sequence σ, latent vector θ, and events E1, E2.

Proof. Throughout this proof, condition on events E1 and E2. Generically,

sim(ht, σ) outputs a sequence of pairs {(xτ , rτ )}bt/Y cτ=1 , where xτ is a context vector

and rτ is a simulated reward for this context vector. We define sim(ht, σ) by in-

duction on τ with base case τ = 0. Throughout, we maintain a run of algorithm

ALG0. For each step τ ≥ 1, suppose ALG0 is simulated up to round τ − 1, and
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the corresponding history is recorded as ((x1, r1) , . . . , (xτ−1, rτ−1)). Simulate

the next round in the execution of ALG0 by presenting it with the action set Aτ

and the corresponding context tuple conτ . Let xτ be the context vector chosen

by ALG0. The corresponding reward rτ is constructed using the τ -th batch in ht,

denote it with B. By Lemmas 5.22 and 5.24, the batch history hB can simulate a

single reward, in the sense of Definition 5.23. In particular, there exists a func-

tion g(x, hB) with the required properties (recall that it is explicitly defined in

(5.23)). Thus, we define rτ = g(xτ , hB), and return rτ as a reward to ALG0. This

completes the construction of sim(ht, σ). The distribution property of sim(ht, σ)

is immediate from the construction.

Proof of Equation (5.29). We argue for each batch separately, and then aggregate

over all batches in the very end. Fix batch B, and let t0 = t0(B) be the last round

in this batch. Let τ = 1 + t0/Y , and consider the context vector x0
τ chosen by

ALG0 in round τ . This context vector is a randomized function f of the current

context tuple conτ and the history h0
τ−1:

x0
τ = f(conτ ;h

0
τ−1).

By Lemma 5.28, letting σ = (con1 , . . . , conbt/Y c), it holds that

E
[
x0
τ · θ | σ, θ, E1, E2

]
= E [f(conτ ; sim(ht0 , σ)) · θ | σ, θ, E1, E2] (5.30)

Let t be some round in the next batch afterB, and let x′t = xa′t,t, be the context

vector predicted by ALG in round t. Recall that x′t is a Bayesian-greedy choice

from the context tuple cont, based on history ht0 . Observe that the Bayesian-

greedy action choice from a given context tuple based on history ht0 cannot be

worse, in terms of the Bayesian-expected reward, than any other choice from
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the same context tuple and based on the same history. Using (5.30), we obtain:

E [x′t · θ | cont = con, E1, E2] ≥ E
[
x0
τ · θ | conτ = con, E1, E2

]
, (5.31)

for any given context tuple con ∈ CON that has a non-zero arrival probability

given E1 ∩ E2.

Given cont = con, the event t ∈ T is independent of everything else. Like-

wise, given conτ = con, the event τ ∈ T is independent of everything else. It

follows that

E [x′t · θ | cont = con, t ∈ T , E1, E2] ≥ E
[
x0
τ · θ | conτ = con, τ ∈ T , E1, E2

]
,

(5.32)

for any given context tuple con ∈ CON that has a non-zero arrival probability

given E1 ∩ E2.

Observe that cont and conτ have the same distribution, even conditioned on

event E1 ∩ E2. (This is because the definitions of E1 and E2 treat all rounds in the

same batch in exactly the same way.) Therefore, we can integrate (5.32) over the

context tuples con:

E [x′t · θ | t ∈ T , E1, E2] ≥ E
[
x0
τ · θ | τ ∈ T , E1, E2

]
, (5.33)

Now, let us sum up (5.33) over all rounds t in the next batch after B, denote it

next(B).

∑
t∈next(B)

E [x′t · θ | t ∈ T , E1, E2] ≥ Y · E
[
x0
τ · θ | τ ∈ T , E1, E2

]
. (5.34)

Note that the right-hand side of (5.33) stays the same for all t, hence the factor of

Y on the right-hand side of (5.34). This completes our analysis of a single batch

B.
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We obtain (5.29) by over all batches B. Here it is essential that the expec-

tation E
[
1{t∈T } θ

>x∗t
]

does not depend on round t, and therefore the “regret

benchmark” θ>x∗t cancels out from (5.29). In particular, it is essential that the

context tuples cont are identically distributed across rounds.

Proof of Theorem 5.25 given Equation (5.29). We must take care of the low-

probability failure events E1 and E2. Specifically, we need to upper-bound the

expression

Eθ∼P
[
PRegT (T ) | E1 ∪ E2

]
· Pr[E1 ∪ E2].

For ease of exposition, we focus on the special case Pr [t ∈ T ] = 1; the general

case is treated similarly. We know that Pr[E1 ∪ E2] ≤ δ + δR. Lemma 5.18 with

` = R̂ gives us that the instantaneous regret of every round is at most

2Eθ∼(P | ht−1)

[
‖θ‖2

(
1 + ρ(2 +

√
2 logK) + R̂

)]
≤ 2

[(
‖θ‖2 +

√
dλmax(Σ)

)(
1 + ρ(2 +

√
2 logK) + R̂

)]
by Lemma C.6. Letting δ = δR = 1

T 2 , we verify that our definition of Y means

that Lemma 5.22 indeed holds with probability at least 1−T−2. Using (5.29), the

Bayesian prediction regret of ALG is

Eθ∼P
[
PRegT (T )

]
≤ Y Eθ∼P

[
RT0
(
T
Y

)]
+ 2T (δ + δR)

[(
‖θ‖2 +

√
dλmax(Σ)

)(
1 + ρ(2 +

√
2 logK) + R̂

)]
≤ Y Eθ∼P

[
RT0
(
T
Y

)]
+ Õ

(
1
T

)
.

This completes the proof of Theorem 5.25.
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5.5.4 Regret Bounds for BatchFreqGreedy

To analyze BatchFreqGreedy, we show that its Bayesian regret is not too dif-

ferent from its Bayesian prediction regret, and use Corollary 5.27 to bound the

latter. As in the previous subsection, we state this result in more generality for

the sake of group externality implications: we consider T -restricted (prediction)

regret, exactly as before.

Theorem 5.29. Assuming perturbed context generation, BatchFreqGreedy satisfies

∣∣ E [RT (T )− PRegT (T )
] ∣∣ ≤ Õ

(√
d

ρ2

)(√
λmax(Σ) +

1√
λmin(Σ)

)
,

where Σ is the covariance matrix of the prior and ρ is the perturbation size.

Taking T to be the set of all contexts, and using Corollary 5.27, we obtain

Bayesian regret bounds for BatchFreqGreedy in Theorem 5.6 and Theorem 5.7.

To derive Theorem 5.9 for BatchFreqGreedy, we take T to be the set of all mi-

nority rounds.

The remainder of this section is dedicated to proving Theorem 5.29. On a

high level, the idea is as follows. As in the proof of Theorem 5.25, we condition

on the high-probability event (5.28) that perturbations are bounded. Specifically,

we prove that

∣∣ E [RT (T )− PRegT (T ) | E1

] ∣∣ ≤ Õ

(√
d

ρ2

)(√
λmax(Σ) +

1√
λmin(Σ)

)
. (5.35)

To prove this statement, we fix round t and compare the action at taken by

BatchFreqGreedy and the predicted action a′t. We observe that the difference

in rewards between these two actions can be upper-bounded in terms of θbay
t −

θfre
t , the difference in the θ estimates with and without knowledge of the prior.
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(Recall (5.6) and (5.7) for definitions.) Specifically, we show that

E
[
θ>(xat,t − xa′t,t) | E1

]
≤ 2REθ∼P

[
‖θbay

t − θfre
t ‖2

]
. (5.36)

The crux of the proof is to show that the difference ‖θbay
t −θfre

t ‖2 is small, namely

E
[
‖θbay

t − θfre
t ‖2 | E1

]
= Õ(1/t), (5.37)

ignoring other parameters. Thus, summing over all rounds, we get

E
[
RT (T )− PRegT (T ) | E1

]
≤ O(log T ) = Õ(1).

Proof of (5.35). Let Rt and PRegt be, resp., instantaneous regret and instanta-

neous prediction regret at time t. Then

Eθ∼P
[
RT (T )− PRegT (T )

]
=
∑
t∈T

Eθ∼P
[
Rt − PRegt

]
. (5.38)

Thus, it suffices to bound the differences in instantaneous regret.

Recall that at time t, the chosen action for BatchFreqGreedy and the pre-

dicted action are, resp.,

at = arg max
a∈A

x>a,tθ
fre
t

a′t = arg max
a∈A

x>a,tθ
bay
t .

Letting t0− 1 = bt/Y c be the last round in the previous batch, we can formulate

θfre
t and θ

bay
t as

θfre
t = (Zt0−1)−1X>t0−1r1:t0−1

θ
bay
t = (Zt0−1 + Σ−1)−1(X>t0−1r1:t0−1 + Σ−1θ).

Therefore, we have

Eθ∼P | ht−1

[
Rt − PRegt

]
= Eθ∼P | ht−1

[
(xa′t,t − xat,t)

>θ
bay
t

]
= (xa′t,t − xat,t)

>θ
bay
t ,
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since the mean of the posterior distribution is exactly θbay
t , and θ

bay
t is determin-

istic given ht−1. Taking expectation over ht−1, we have

Eθ∼P
[
Rt − PRegt

]
= Eθ∼P

[
(xa′t,t − xat,t)

>θ
bay
t

]
.

For any fixed θ
bay
t and θfre

t , since BatchFreqGreedy chose at over a′t, it must be

the case that

x>at,tθ
fre
t ≥ x>a′t,tθ

fre
t . (5.39)

Therefore,

(xa′t,t − xat,t)
>θ

bay
t = (xa′t,t − xat,t)

>θfre
t + (xa′t,t − xat,t)

>(θ
bay
t − θfre

t )

≤ (xa′t,t − xat,t)
>(θ

bay
t − θfre

t ) (By (5.39))

≤ (‖xa′t,t‖2 + ‖xat,t‖2)‖θbay
t − θfre

t ‖2

≤ 2R‖θbay
t − θfre

t ‖2

(5.36) follows.

The crux is to prove (5.37): to bound the expected distance between the Fre-

quentist and Bayesian estimates for θ. By expanding their definitions, we have

θ
bay
t − θfre

t

= (Zt0−1 + Σ−1)−1(X>t0−1r1:t0−1 + Σ−1θ)− Z−1
t0−1X

>
t0−1r1:t0−1

= (Zt0−1 + Σ−1)−1
[
X>t0−1r1:t0−1 + Σ−1θ − (Zt0−1 + Σ−1)Z−1

t0−1X
>
t0−1r1:t0−1

]
= (Zt0−1 + Σ−1)−1

[
X>t0−1r1:t0−1 + Σ−1θ −X>t0−1r1:t0−1 − Σ−1Z−1

t0−1X
>
t0−1r1:t0−1

]
= (Zt0−1 + Σ−1)−1

[
Σ−1θ − Σ−1Z−1

t0−1X
>
t0−1r1:t0−1

]
= (Zt0−1 + Σ−1)−1Σ−1

(
θ − θfre

t

)
.
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Next, note that

‖(Zt0−1 + Σ−1)−1Σ−1(θ − θfre
t )‖2

≤ ‖(Zt0−1 + Σ−1)−1‖2 ‖Σ−1(θ − θfre
t )‖2

≤ ‖(Zt0−1 + Σ)−1‖2

(
‖Σ−1(θ − θ)‖2 + ‖Σ−1‖2 ‖θ − θfre

t ‖2

)
.

By Lemma C.13, λmin (Zt0−1 + Σ) ≥ λmin (Zt0−1). Therefore,

‖(Zt0−1 + Σ)−1‖2 ≤
1

λmin (Zt0−1)
,

giving us

‖θbay
t − θfre

t ‖2 ≤
‖Σ−1(θ − θ)‖2 + ‖Σ−1‖2 ‖θ − θfre

t ‖2

λmin(Zt0−1)

≤ ‖Σ
−1/2‖2‖Σ−1/2(θ − θ)‖2 + ‖Σ−1/2‖2 ‖θ − θfre

t ‖2

λmin(Zt0−1)

=

(
‖Σ−1/2(θ − θ)‖2 +

√
λmin(Σ)‖θ − θfre

t ‖2

)
√
λmin(Σ)λmin(Zt0−1)

.

Next, recall that for

t0 − 1 ≥ tmin(δ) := 160R
2

ρ2
log 2d

δ
· log T

the following bounds hold, each with probability at least 1− δ:

1

λmin (Zt0−1)
≤ 32 log T

ρ2(t0 − 1)
(Lemma 5.19)

‖θ − θfre
t ‖2 ≤

√
2dR(t0 − 1) log(d/δ)

λmin(Zt0−1)
(Lemma 5.21)

Therefore, fixing t0 ≥ 1 + tmin(δ/2), with probability at least 1− δ we have

‖θbay
t − θfre

t ‖2

≤ 32 log T

ρ2(t0 − 1)
√
λmin(Σ)

(
‖Σ−1/2(θ − θ)‖2 +

64
√
dR log(2d/δ) · log T

ρ2
√
t0 − 1

)
. (5.40)
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Note that the high-probability events we need are deterministic given ht0−1,

and therefore are independent of the perturbations at time t. This means that

Lemma 5.18 applies, with ` = 0: conditioned on any ht0−1, the expected regret

for round t is upper-bounded by 2‖θ‖2(1 + ρ(1 +
√

2 logK)). In particular, this

holds for any ht0−1 not satisfying the high probability events from Lemmas 5.19

and 5.21. Therefore, for all t ≥ tmin(δ),

Eθ∼P
[
‖θbay

t − θfre
t ‖2

]
≤ Eθ∼P

[
(1− δ) 32 log T

ρ2(t0 − 1)
√
λmin(Σ)

·

(
‖Σ−1/2(θ − θ)‖2 +

64
√
dR log(2d/δ) · log T

ρ2
√
t0 − 1

)

+ δ · 2‖θ‖2(1 + ρ(2 +
√

2 logK))

]

≤ 32 log T

ρ2(t0 − 1)
√
λmin(Σ)

(
Eθ∼P

[
‖Σ−1/2(θ − θ)‖2

]
+

64
√
dR log(2d/δ) · log T

ρ2
√
t0 − 1

)

+ δ · 2(‖θ‖2 + Eθ∼P
[
‖θ − θ‖2

]
)(1 + ρ(2 +

√
2 logK)).

Because θ ∼ N (θ,Σ), we have Σ−1/2(θ − θ) ∼ N (0, I). By Lemma C.6,

Eθ∼P
[
‖Σ−1/2(θ − θ)‖2

]
≤
√
d and Eθ∼P

[
‖θ − θ‖2

]
≤
√
dλmax(Σ).

This means

Eθ∼P
[
‖θbay

t − θfre
t ‖2

]
≤ 32

√
d log T

ρ2(t0 − 1)
√
λmin(Σ)

(
1 +

64
√
R log(2d/δ) · log T

ρ2
√
t0 − 1

)

+ δ · 2(‖θ‖2 +
√
dλmax(Σ))(1 + ρ(2 +

√
2 logK)).

Since t0 = Ω(t), for sufficiently small δ, this proves (5.37).

We need to do a careful computation to complete the proof of (5.35). We

know from (5.36) that

Eθ∼P
[
RT (T )− PRegT (T )

]
≤

T∑
t=1

2REθ∼P
[
‖θbay

t − θfre
t ‖2

]
.
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Choosing δ = T−2, we find that

T∑
t=tmin(T−2)

δ · 2(‖θ‖2 +
√
dλmax(Σ))(1 + ρ(2 +

√
2 logK)) = Õ(1),

so this term vanishes. Furthermore,
T∑

t=tmin(T−2)

2R
32
√
d log T

ρ2(t0 − 1)
√
λmin(Σ)

(
1 +

64
√
R log(2d/δ) · log T

ρ2
√
t0 − 1

)

= Õ

(
R
√
d

ρ2
√
λmin(Σ)

)

since t0 ≥ t − Y , and
∑T

t=1 1/t = O(log T ). Using the fact that R = Õ(1) (since

by assumption ρ ≤ d−1/2), this is simply

Õ

( √
d

ρ2
√
λmin(Σ)

)
.

Finally, we note that on the first tmin(T−2) = Õ(1/ρ2) rounds, the regret bound

from Lemma 5.18 with ` = 0 applies, so the total regret difference is at most

Eθ∼P
[
RT (T )− PRegT (T )

]
≤

tmin(T−2)∑
t=1

Eθ∼P
[
Rt − PRegt

]
+

T∑
t=tmin(T−2)

2REθ∼P
[
‖θbay

t − θfre
t ‖2

]
,

≤ tmin(T−2) · 2(‖θ‖2 +
√
dλmax(Σ))(1 + ρ(2 +

√
2 logK)) + Õ

( √
d

ρ2
√
λmin(Σ)

)

= Õ

(√
dλmax(Σ)

ρ2

)
+ Õ

( √
d

ρ2
√
λmin(Σ)

)
,

which implies (5.35).

Completing the proof of Theorem 5.29 given (5.35). By Theorem 5.29, this

holds whenever all perturbations are bounded by R̂, which happens with prob-

ability at least 1− δR. When the bound fail, the total regret is at most

2
[(
‖θ‖2 +

√
dλmax(Σ)

)(
1 + ρ(2 +

√
2 logK) + R̂

)]
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by Lemma 5.18 (with ` = R̂) and Lemma C.6. Since δR = T−2, the contribution

of regret when the high-probability bound fails is Õ(1/T ) ≤ Õ(1).
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Part III

Models of Behavior
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CHAPTER 6

OVERVIEW OF Part III

In Part III, we integrate models of behavior into our study of the impacts of algo-

rithmic decision-making. We study the effects of behavioral biases and strategic

behavior on theoretical models of decision-making.

In Chapter 7, we analyze a model of selection where a decision-maker dis-

criminates against a subset of the population due to implicit bias. Under this

model, we consider the effects of the Rooney Rule, the requirement that the

decision-maker select at least one member from the disadvantaged population.

We find that not only does the Rooney Rule increase diversity in selection, for

certain parameterizations, it also improves the decision-maker’s utility.

Chapter 8 considers the setting where a decision-maker wants to evaluate

a decision subject, who can behave strategically in order to receive a more fa-

vorable evaluation. We study the types of decision rules that are robust to this

strategic behavior. In particular, we assume the decision-maker has preferences

over which actions decision subjects take, and we characterize evaluation rules

that incentivize the desired actions. We find that linear mechanisms suffice in

this setting, and we show that optimizing evaluation rules over data subject to

the constraint that they incentivize desirable behaviors is computationally hard.

In Chapter 9, we take a broader view of the competitive effects that arise

when multiple decision-makers must simultaneously decide whether or not to

deploy an algorithm. We theoretically characterize the problem of algorithmic

monoculture, where the use of a common algorithm by multiple decision-makers

results in worse social welfare than a world where the algorithm does not exist,
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even though decision-makers can rationally choose whether or not to deploy

the algorithm. Our results suggest caution when standardizing decisions via

algorithm, even when it may appear that an algorithm is more accurate than

the human decision-makers it replaces.
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CHAPTER 7

SELECTION PROBLEMS IN THE PRESENCE OF IMPLICIT BIAS

Over the past two decades, the notion of implicit bias (Greenwald and Ba-

naji, 1995) has come to provide on important perspective on the nature of dis-

crimination. Research on implicit bias argues that unconscious attitudes toward

members of different demographic groups — for example, defined by gender,

race, ethnicity, national origin, sexual orientation, and other characteristics —

can have a non-trivial impact on the way in which we evaluate members of

these groups; and this in turn may affect outcomes in employment (Bertrand

and Mullainathan, 2004; Bohnet et al., 2016; Uhlmann and Cohen, 2005), edu-

cation (van den Bergh et al., 2010), law (Greenwald and Krieger, 2006; Jolls and

Sunstein, 2006), medicine (Green et al., 2007), and other societal institutions.

In the context of a process like hiring, implicit bias thus shifts the question

of bias and discrimination to be not just about identifying bad actors who are

intentionally discriminating, but also about the tendency of all of us to reach

discriminatory conclusions based on the unconscious application of stereotypes.

An understanding of these issues also helps inform the design of interventions

to mitigate implicit bias — when essentially all of us have a latent tendency

toward low-level discrimination, a set of broader practices may be needed to

guide the process toward the desired outcome.

A basic mechanism: The Rooney Rule. One of the most basic and widely

adopted mechanisms in practice for addressing implicit bias in hiring and selec-

tion is the Rooney Rule (Collins, 2007), which, roughly speaking, requires that in

recruiting for a job opening, one of the candidates interviewed must come from

an underrepresented group. The Rooney Rule is named for a protocol adopted
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by the National Football League (NFL) in 2002 in response to widespread con-

cern over the low representation of African-Americans in head coaching posi-

tions; it required that when a team is searching for a new head coach, at least

one minority candidate must be interviewed for the position. Empirical analy-

sis suggests that the Rooney Rule (and policies like it) have positively impacted

diversity with little or no negative consequences for performance (DuBois, 2017;

DuBois and Schanzenbach, 2017).

Subsequently the Rooney Rule has become a guideline adopted in many ar-

eas of business (Cavicchia, 2015); for example, in 2015 then-President Obama

exhorted leading tech firms to use the Rooney Rule for hiring executives, and

in recent years companies including Amazon, Facebook, Microsoft, and Pin-

terest have adopted a version of the Rooney Rule requiring that at least one

candidate interviewed must be a woman or a member of an underrepresented

minority group (Passariello, 2016). In 2017, a much-awaited set of recommen-

dations made by Eric Holder and colleagues to address workplace bias at Uber

advocated for the use of the Rooney Rule as one of its key points (Covington

and Burling, 2017; Shaban, 2017).

The Rooney Rule is the subject of ongoing debate, and one crucial aspect of

this debate is the following tension. On one side is the argument that implicit (or

explicit) bias is preventing deserving candidates from underrepresented groups

from being fairly considered, and the Rooney Rule is providing a force that

counter-balances and partially offsets the consequences of this underlying bias.

On the other side is the concern that if a job search process produces a short-

list of top candidates all from the majority group, it may be because these are

genuinely the strongest candidates despite the underlying bias — particularly
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if there is a shortage of available candidates from other groups. In this case,

wholesale use of the Rooney Rule may lead firms to consider weaker candi-

dates from underrepresented groups, which works against the elimination of

unconscious stereotypes. Of course, there are other reasons to seek diversity

in recruiting that may involve broader considerations or longer time horizons

than just the specific applicants being evaluated; but even these lines of argu-

ment generally incorporate the more local question of the effect on the set of

applicants.

Given the widespread consideration of the Rooney Rule from both legal and

empirical perspectives (Collins, 2007), it is striking that prior work has not at-

tempted to formalize the inherently mathematical question that forms a crucial

ingredient in these debates: given some estimates of the extent of bias and the

prevalence of available minority candidates, does the expected quality of the

candidates being interviewed by a hiring committee go up or down when the

Rooney Rule is implemented? When the bias is large and there are many mi-

nority candidates, it is quite possible that a hiring committee’s bias has caused

it to choose a weaker candidate over a stronger minority one, and the Rooney

Rule may be strengthening the pool of interviewees by reversing this decision

and swapping the stronger minority candidate in. But when the bias is small or

there are few minority candidates, the Rule might be reversing a decision that

in fact chose the stronger applicant.

In this chapter, we propose a formalization of this family of questions, via a

simplified model of selection with implicit bias, and we give a tight analysis of

the consequences of using the Rooney Rule in this setting. In particular, when

selecting for a fixed number of slots, we identify a sharp threshold on the effec-
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tiveness of the Rooney Rule in our model that depends on three parameters: not

just the extent of bias and the prevalence of available minority candidates, but

a third quantity as well — essentially, a parameter governing the distribution of

candidates’ expected future job performance. We emphasize that our model is

deliberately stylized, to abstract the trade-offs as cleanly as possible. Moreover,

in interpreting these results, we emphasize a point noted above, that there are

other reasons to consider using the Rooney Rule beyond the issues that moti-

vate this particular formulation; but an understanding of the trade-offs in our

model seems informative in any broader debate about such hiring and selection

measures.

7.1 Overview and Summary of Results

We now describe the basic ingredients of our model, followed by a summary of

the main results.

7.1.1 A Model of Selection with Implicit Bias

Our model is based on the following scenario. Suppose that a hiring committee

is trying to fill an open job position, and it would like to choose the k ≥ 2 best

candidates as finalists to interview from among a large set of applicants. We will

think of k as a small constant, and indeed most of the subtlety of the question

already arises for the case k = 2, when just two finalists must be selected.
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X-candidates and Y -candidates. The set of all applicants is partitioned into

two groups X and Y , where we think of Y as the majority group, and X as a

minority group within the domain that may be subject to bias. For some positive

real number α ≤ 1 and a natural number n, there are n applicants from group

Y and αn applicants from group X . If a candidate i belongs to X , we will

refer to them as an X-candidate, and if i belongs to Y , we will refer to them

as a Y -candidate. (The reader is welcome, for example, to think of the setting of

academic hiring, with X as candidates from a group that is underrepresented in

the field, but the formulation is general.)

Each candidate i has a (hidden) numerical value that we call their potential,

representing their future performance over the course of their career. For exam-

ple, in faculty hiring, we might think of the potential of each applicant in terms

of some numerical proxy like their future lifetime citation count (with the caveat

that any numerical measure will of course be an imperfect representation). Or

in hiring executives, the potential of each applicant could be some measure of

the revenue they will bring to the firm.

We assume that there is a common distribution Z that these numerical po-

tentials come from: each potential is an independent draw from Z. (Thus, the

applicants can have widely differing values for their numerical potentials; they

just arise as draws from a common distribution.) For notational purposes, when

i is an X-candidate, we write their potential as Xi, and when j is a Y -candidate,

we write their potential as Yj . We note an important modeling decision in this

formulation: we are assuming that all Xi and all Yj values come from this same

distribution Z. While it is also of interest to consider the case in which the nu-

merical potentials of the two groups X and Y are drawn from different group-
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specific distributions, we focus on the case of identical distributions for two

reasons. First, there are many settings where differences between the underly-

ing distributions for different groups appear to be small compared to the bias-

related effects we are seeking to measure; and second, in any formal analysis

of bias between groups, the setting in which the groups begin with identical

distributions is arguably the first fundamental special case that needs to be un-

derstood.

In the domains that we are considering — hiring executives, faculty mem-

bers, athletes, performers — there is a natural functional form for the distribu-

tion Z of potentials, and this is the family of power laws (also known as Pareto

distributions), with Pr [Z ≥ t] = t−(1+δ) and support [1,∞) for a fixed δ > 0. Ex-

tensive empirical work has argued that the distribution of individual output in

a wide range of creative professions can be approximated by power law distri-

butions with small positive values of δ (Clauset et al., 2009). For example, the

distribution of lifetime citation counts is well-approximated by a power law, as

are the lifetime downloads, views, or sales by performers, authors, and other

artists. In the Section 7.3, we also consider the case in which the potentials are

drawn from a distribution with bounded support, but for most of the chapter

we will focus on power laws.

Selection with Bias. Given the set of applicants, the hiring committee would

like to choose k finalists to interview. The utility achieved by the committee is

the sum of the potentials of the k finalists it chooses; the committee’s goal is to

maximize its utility.1

1Since our goal is to model processes like the Rooney Rule, which apply to the selection of
finalists for interviewing, rather than to the hiring decision itself, we treat the choice of k finalists
as the endpoint rather than modeling the interviews that subsequently ensue.
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If the committee could exactly evaluate the potential of each applicant, then

it would have a straightforward way to maximize the utility of the set of final-

ists: simply sort all applicants by potential, and choose the top k as finalists.

The key feature of the situation we would like to capture, however, is that the

committee is biased in its evaluations; we look for a model that incorporates

this bias as cleanly as possible.

Empirical work in some of our core motivating settings — such as the eval-

uation of scientists and faculty candidates — indicates that evaluation com-

mittees often systematically downweight female and minority candidates of a

given level of achievement, both in head-to-head comparisons and in ranking

using numerical scores (Wenneras and Wold, 1997). It is thus natural to model

the hiring committee’s evaluations as follows: they correctly estimate the po-

tential of a Y -applicant j at the true value Yj , but they estimate the potential

of an X-applicant i at a reduced value X̃i < Xi. They then rank candidates by

these values {Yj} and {X̃i}, and they choose the top k according to this biased

ranking.

For most of the chapter, we focus on the case of multiplicative bias, in which

X̃i = Xi/β for a bias parameter2 β > 1. This is a reasonable approximation

to empirical data from human-subject studies (Wenneras and Wold, 1997); and

moreover, for power law distributions this multiplicative form is in a strong

sense the “right” parametrization of the bias, since biases that grow either faster

or slower than multiplicatively have a very simple asymptotic behavior in the

power law case.

In this aspect of the model, as in others, we seek the cleanest formulation

2When β = 1, the ranking has no bias.
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that exposes the key underlying issues; for example, it would be an interesting

extension to consider versions in which the estimates for each individual are

perturbed by random noise. A line of previous work (Braverman and Mossel,

2009; Feige et al., 1994; Fu and Lu, 2012) has analyzed models of ranking un-

der noisy perturbations; while our scenario is quite different in that the entities

being ranked are partitioned into a fixed set of groups with potentially differ-

ent levels of bias and noise, it would be natural to see if these techniques could

potentially be extended to handle noise in the context of implicit bias.

7.1.2 Main Questions and Results

This then is the basic model in which we analyze interventions with the struc-

ture of the Rooney Rule: (i) a set of n Y -applicants and αn X-applicants each

have an independent future potential drawn from a power law distribution; (ii)

a hiring committee ranks the applicants according to a sorted order in which

each X-applicant’s potential is divided down by β > 1, and chooses the top k in

this ordering as finalists; and (iii) the hiring committee’s utility is the sum of the

potentials of the k finalists.

Qualitatively, the motivation for the Rooney Rule in such settings is that

hiring committees are either unwilling or unable to reasonably correct for their

bias in performing such rankings, and therefore cannot be relied on to interview

X-candidates on their own. The difficulty in removing this skew from such

evaluations is a signature aspect of phenomena around implicit bias.

The decision to impose the Rooney Rule is made at the outset, before the

actual values of the potentials {Yj} and {X̃i} are materialized. All that is known
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Figure 7.1: Fixing k = 2, the (α, β, δ) values for which the Rooney Rule produces
a positive expected change for sufficiently large n lie above a surface (depicted
in the figure) defined by the function φ2(α, β, δ) = 1.

at the point of this initial decision to use the Rule or not are the parameters of

the domain: the bias β, the relative abundance of X-candidates α, the power

law exponent 1 + δ, and the number of finalists to be chosen k. The question

is: as a function of these parameters, will the use of the Rooney Rule produce

a positive or negative expected change in utility, where the expectation is taken

over the random draws of applicant values? We note that one could instead ask

about the probability that the Rooney Rule produces a positive change in utility

as opposed to the expected change; in fact, our techniques naturally extend to

characterize not only the expected change, but the probability that this change

is positive, as we will show in Section 7.2.

Our model lets us make precise the trade-off in utility that underpins the

use of the Rooney Rule. If the committee selects an X-candidate on its own —
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even using its biased ranking — then their choice already satisfies the condi-

tions of the Rule. But if all k finalists are Y -candidates, then the Rooney Rule

requires that the committee replace the lowest-ranked of these finalists j with

the highest-rankedX-candidate i. Because iwas not already a finalist, we know

that X̃i = Xi/β < Yj . But to see whether this yields a positive change in utility,

we need to understand which of Xi or Yj has a larger expected value, condi-

tional on the information contained in the committee’s decision, that Xi/β < Yj .

Our main result is an exact characterization of when the Rooney Rule pro-

duces a positive expected change in terms of the four underlying parameters,

showing that it non-trivially depends on all four. For the following theorem,

and for the remainder of the chapter, we assume 0 < α ≤ 1, β > 1, and δ > 0.

We begin with the case where k = 2.

Theorem 7.1. For k = 2 and sufficiently large n, the Rooney Rule produces a positive

expected change if and only if φ2(α, β, δ) > 1 where

φ2(α, β, δ) =
α1/(1+δ)

[
1− (1 + c−1)−δ/(1+δ)

[
1 + δ

1+δ
(1 + c)−1

]]
δ

1+δ
(1 + c)−1−δ/(1+δ)

(7.1)

and c = αβ−(1+δ). Moreover, φ2(α, β, δ) is increasing in β, so for fixed α and δ there

exists β∗ such that φ2(α, β, δ) > 1 if and only if β > β∗.

Thus, we have an explicit characterization for when the Rooney Rule pro-

duces positive expected change. The following theorem extends this to larger

values of k.

Theorem 7.2. There is an explicit function φk(α, β, δ) such that the Rooney Rule pro-

duces a positive expected change, for n sufficiently large and k = O(lnn), if and only if

φk(α, β, δ) > 1.
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Interestingly, even for larger values of k, there are parts of the parameter

space for which the Rooney Rule produces a positive expected change and parts

for which the Rooney Rule produces a negative expected change, independent

of the number of applicants n.

Figure 7.1 depicts a view of the function φ2, by showing the points in three-

dimensional (α, β, δ) space for which φ takes the value 1. The values for which

the Rooney Rule produces a positive expected change for sufficiently large n lie

above this surface.

The surface in Figure 7.1 is fairly complex, and it displays unexpected non-

monotonic behavior. For example, on certain regions of fixed (α, β), it is non-

monotonic in δ, a fact which is not a priori obvious: there are choices of α and

β for which the Rooney Rule produces a positive expected change at certain

“intermediate” values of δ, but not at values of δ that are sufficiently smaller

or sufficiently larger. Moreover, there exist (α, δ) pairs above which the surface

does not exist. (One example in Figure 7.1 occurs at α ≈ 0.3 and δ ≈ 3). Charac-

terizing the function φ and its level set φ = 1 is challenging, and it is noteworthy

that the complexity of this function is arising from our relatively bare-bones for-

mulation of the trade-off in the Rooney Rule; this suggests the function and its

properties are capturing something inherent in the process of biased selection.

One monotonocity result we are able to establish for the function φ is the

following, showing that for fixed (α, β, δ), increasing the number of positions

can’t make the Rooney Rule go from beneficial to harmful.

Theorem 7.3. For sufficiently large n and k = O(lnn), if the Rooney Rule produces

a positive expected change at a given number of finalists k, it also produces a positive

expected change when there are k + 1 finalists (at the same (α, β, δ)).
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We prove these theorems through an analysis of the order statistics of the un-

derlying power law distribution. Specifically, if we draw m samples from the

power law Z and sort them in ascending order from lowest to highest, then

the `th item in the sorted list is a random variable denoted Z(`:m). To ana-

lyze the effect of the Rooney Rule, we are comparing Y(n−k+1:n) with X(αn:αn).

Crucially, we are concerned with their expected values conditional on the fact

that the committee chose the kth-ranked Y -candidate over the top-ranked X-

candidate, implying as noted above that X(αn:αn)/β < Y(n−k+1:n). The cru-

cial comparison is therefore between E
[
Y(n−k+1:n)|X(αn:αn) < βY(n−k+1:n)

]
and

E
[
X(αn:αn)|X(αn:αn) < βY(n−k+1:n)

]
. Order statistics conditional on this type of

side information turn out to behave in complex ways, and hence the core of the

analysis is in dealing with these types of conditional order statistics for power

law distributions.

More generally, given the ubiquity of power law distributions (Clauset et al.,

2009), we find it surprising how little is known about how their order statistics

behave qualitatively. In this respect, the techniques we provide may prove to

be independently useful in other applications. For example, we develop a tight

asymptotic characterization of the expectations of order statistics from a power

law distribution that to our knowledge is novel.

We also note that although our results are expressed for sufficiently large n,

the convergence to the asymptotic behavior happens very quickly as n grows; to

handle fixed values of n, we need only modify the bounds by correction terms

that grow like
(

1±O
(

(lnn)2

n

))
. In particular, the errors in the asymptotic anal-

ysis are small once n reaches 50, which is reasonable for settings in which a job

opening receives many applications.
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Estimating the level of bias β. The analysis techniques we develop for prov-

ing Theorem 7.2 can also be used for related problems in this model. A specific

question we are able to address is the problem of estimating the amount of bias

from a history of hiring decisions.

In particular, suppose that over m years the hiring committee makes one

offer per year; in N of the m years this offer goes to an X-candidate, and in

m − N of the m years this offer goes to a Y -candidate. Which value of the bias

parameter β maximizes the probability of this sequence of observations?

We provide a tight characterization of the solution to this question, finding

again that it depends not only on α (in this case, the sequence of α values for

each year), but also on the power law exponent 1 + δ. The solution has a quali-

tatively natural structure, and produces β = 1 (corresponding to no bias) as the

estimate when the fraction of X-candidates hired over the m years is equal to

the expected number that would be hired under random selection.

Generalizations to other distributions. Finally, in Section 7.3 we consider

how to adapt our approach for classes of distributions other than power laws.

A different category of distributions that can be motivated by the considera-

tions discussed here is the set of bounded distributions, which take values only

over a finite interval. Just as power laws are characteristic of the performance of

employees in certain professions, bounded distributions are appropriate when

there are absolute constraints on the maximum effect a single employee can

have.

Moreover, bounded distributions are also of interest because they contain

the uniform distribution on [0, 1] as a special case. We can think of this special
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case as describing an instance in which each candidate is associated with their

quantile (between 0 and 1) in a ranking of the entire population, and the bias

then operates on this quantile value, reducing it in the case of X-candidates.

For bounded distributions, we can handle much more general forms for

the bias — essentially, any function that reduces the values Xi strictly below

the maximum of the distribution (for instance, a bias that always prefers a Y -

candidate to an X-candidate when they are within some ε of each other). When

k = 2 and there are equal numbers of X-candidates and Y -candidates, we show

that for any bounded distribution and any such bias, the Rooney Rule produces

a positive expected change in utility for all sufficiently large n.

7.1.3 An Illustrative Special Case: Infinite Bias

To illustrate some of the basic considerations that go into our analysis and its in-

terpretation, we begin with a simple special case that we can think of as “infinite

bias” — the committee deterministically ranks every Y -candidate above every

X-candidate. This case already exhibits structurally rich behavior, although the

complexity is enormously less than the case of general β. We also focus here on

k = 2. In terms of Figure 7.1, we can visualize the infinite bias case as if we are

looking down at the plot from infinitely high up; thus, reasoning about infinite

bias amounts to determining which parts of the (α, δ) plane are covered by the

surface φ2(α, β, δ) = 1.

With infinite bias, the committee is guaranteed to choose the two highest-

ranked Y -candidates in the absence of an intervention; with the Rooney Rule,

the committee will choose the highest-ranked Y -candidate and the highest-
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ranked X-candidate. As we discuss in the next section, for power law distri-

butions with exponent 1 + δ, if z∗ is the expected maximum of n draws from

the distribution, then (i) the expected value of the second-largest of the n draws

is δ
(1+δ)

z∗; and (ii) the expected maximum of αn draws from the distribution is

asymptotically α1/(1+δ)z∗.

This lets us directly evaluate the utility consequences of the intervention.

If there is no intervention, the utility of the committee’s decision will be(
1 + δ

1+δ

)
z∗, and if the Rooney Rule is used, the utility of the committee’s deci-

sion will be (1 + α1/(1+δ))z∗. Thus, the Rooney Rule produces positive expected

change in utility if and only if α1/(1+δ) > δ
(1+δ)

; that is, if and only if α >
(

δ
1+δ

)1+δ.

In addition to providing a simple closed-form expression for when to use the

Rooney Rule in this setting, the condition itself leads to some counter-intuitive

consequences. In particular, the closed-form expression for the condition makes

it clear that for every α > 0, there exists a sufficiently small δ > 0 so that when the

distribution of applicant potentials is a power law with exponent 1 + δ, using

the Rooney Rule produces the higher expected utility. In other words, with a

power law exponent close to 1, it’s a better strategy to commit one of the two

offers to the X-candidates, even though they form an extremely small fraction

of the population.

This appears to come perilously close to contradicting the following argu-

ment. We can arbitrarily divide the Y -candidates into two sets A and B of n/2

each; and if α < 1/2, each of A and B is larger than the set of all X-candidates.

Let a∗ be the top candidate in A and b∗ be the top candidate in B. Each of a∗ and

b∗ has at least the expected value of the top X-candidate, and moreover, one of

them is the top Y -candidate overall. So how can it be that choosing a∗ and b∗
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fails to improve on the result of using the Rooney Rule?

The resolution is to notice that using the Rooney Rule still involves hiring

the top Y -candidate. So it’s not that the Rooney Rule chooses one of a∗ or b∗

at random, together with the top X-candidate. Rather, it chooses the better of

a∗ and b∗, along with the top X-candidate. The real point is that power law

distributions have so much probability in the tail of the distribution that the

best person among a set of αn can easily have a higher expected value than the

second-best person among a set of n, even when α is quite small. This is a key

property of power law distributions that helps explain what’s happening both

in this example and in our analysis.

7.1.4 A Non-Monotonicity Effect

As noted above, much of the complexity in the analysis arises from working

with expected values of random variables conditioned on the outcomes of cer-

tain biased comparisons. One might hope that expected values conditional on

these types of comparisons had tractable properties that facilitated the analysis,

but this is not the case; in fact, these conditional expectations exhibit some com-

plicated and fairly counter-intuitive behavior. To familiarize the reader with

some of these phenomena — both as preparation for the subsequent sections,

but also as an interesting end in itself — we offer the following example.

Much of our analysis involves quantities like E [X|X > βY ] — the condi-

tional expectation of X , given that it exceeds some other random variable Y

multiplied by a bias parameter. (We will also be analyzing the version in which

the inequality goes in the other direction, but we’ll focus on the current expres-
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sion for now.) If we choose X and Y as independent random variables both

drawn from a distribution Z, and then view the conditional expectation as a

function just of the bias parameter β, what can we say about the properties of

this function f(β) = E [X|X > βY ]?

Intuitively we’d expect f(β) to be monotonically increasing in β — indeed,

as β increases, we’re putting a stricter lower bound on X , and so this ought to

raise the conditional expectation of X .

The surprise is that this is not true in general; we can construct independent

random variables X and Y for which f(β) is not monotonically increasing. In

fact, the random variables are very simple: we can have each of X and Y take

values independently and uniformly from the finite set {1, 5, 9, 13}. Now, the

event X > 2Y consists of four possible pairs of (X, Y ) values: (5,1), (9,1), (13,1),

and (13,5). Thus, f(2) = E [X|X > 2Y ] = 10. In contrast, the event X > 3Y

consists of three possible pairs of (X, Y ) values: (5,1), (9,1), and (13,1). Thus,

f(3) = 9, which is a smaller value, despite the fact that X is required to be a

larger multiple of Y .

The surprising content of this example has a fairly sharp formulation in

terms of a story about recruiting. Suppose that two academic departments, De-

partment A and Department B, both engage in hiring each year. In our styl-

ized setting, each interviews one X-candidate and one Y -candidate each year,

and hires one of them. Each candidate comes from the uniform distribution on

{1, 5, 9, 13}. Departments A and B are both biased in their hiring: A only hires

the X-candidate in a given year if they’re more than twice as good as the Y -

candidate, while B only hires the X-candidate in a given year if they’re more

than three times as good as the Y -candidate.
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Clearly this bias hurts the average quality of both departments, B more so

than A. But you might intuitively expect that at least if you looked at the X-

candidates that B has actually hired, they’d be of higher average quality than

the X-candidates that A has hired — simply because they had to pass through

a stronger filter to get hired. In fact, however, this isn’t the case: despite the

fact that B imposes a stronger filter, the calculations performed above for this

example show that the average quality of the X-candidates B hires is 9, while

the average quality of the X-candidates A hires is 10.

This non-monotonicity property shows that the conditional expectations we

work with in the analysis can be pathologically behaved for arbitrary (even rel-

atively simple) distributions. However, we will see that with power law distri-

butions we are able — with some work — to avoid these difficulties; and part of

our analysis will include a set of explicit monotonicity results.

7.2 Biased Selection with Power Law Distributions

Recall that for a random variable Z, we use Z(`:m) to denote the `th order statistic

in m draws from Z: the value in position ` when we sort m independent draws

from Z from lowest to highest. Recall also that when selecting k finalists, the

Rooney Rule improves expected utility exactly when

E
[
X(αn:αn) − Y(n−k+1:n) | X(αn:αn) < βY(n−k+1:n)

]
> 0.

Using linearity of expectation and the fact that Pr [A|B] Pr [B] = Pr
[
A · 1{B}

]
,

this is equivalent to

E
[
X(αn:αn) · 1{X(αn:αn)<βY(n−k+1:n)}

]
E
[
Y(n−k+1:n) · 1{X(αn:αn)<βY(n−k+1:n)}

] > 1. (7.2)
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We will show an asymptotically tight characterization of the tuples of parame-

ters (k, α, β, δ) for which this condition holds, up to an error term on the order of

O
(

(lnn)2

n

)
. In order to better understand the terms in (7.2), we begin with some

necessary background.

7.2.1 Preliminaries

Fact 7.4. Let f(p:m) and F(p:m) be, respectively, the probability density function and

cumulative distribution function of the pth order statistic out ofm draws from the power

law distribution with parameter δ. Using definitions from David and Nagaraja (2005),

f(p:m)(x) = (1 + δ)(m− p+ 1)

(
m

p− 1

)(
1− x−(1+δ)

)p−1 (
x−(1+δ)

)m−p+1
x−1

and

F(p:m)(x) =
m∑
j=p

(
m

j

)(
1− x−(1+δ)

)j (
x−(1+δ)

)m−j
.

Definition 7.5. We will make extensive use of the Gamma function:

Γ(a) =

∫ ∞
0

ta−1e−t dt.

Γ(·) is considered the continuous relaxation of the factorial, and it satisfies

Γ(a+ 1) = aΓ(a).

If a is a positive integer, Γ(a + 1) = a!. Furthermore, Γ(a) > 1 for 0 < a < 1 and

Γ(a) < 1 for 1 < a < 2.

7.2.2 The Case where k = 2

For simplicity, we begin with the case where we’re selecting k = 2 finalists. In

this section, we will make several approximations, growing tight with large n,
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that we treat formally in Appendices D.1 and D.2. This section is intended to

demonstrate the techniques needed to understand the condition (7.2). In the

case where k = 2, the Rooney Rule increases expected utility if and only if

E
[
X(αn:αn) · 1{X(αn:αn)<βY(n−1:n)}

]
E
[
Y(n−1:n) · 1{X(αn:αn)<βY(n−1:n)}

] > 1. (7.3)

Theorems D.1 and D.2 in Appendix D.2 give tight approximations to these

quantities; here, we provide an outline for how to find them. For the sake of

exposition, we’ll only show this for the denominator in this section, which is

slightly simpler to approximate. We begin with

E
[
Y(n−1:n) · 1{X(αn:αn)<βY(n−1:n)}

]
=

∫ ∞
1

yf(n−1:n)(y)F(αn:αn)(βy) dy.

Letting c = αβ−(1+δ), we can use Lemma D.14 and some manipulation to ap-

proximate this by

(1 + δ)n(n− 1)

∫ ∞
1

(
1− y−(1+δ)

)n(1+c)−2 (
y−(1+δ)

)2
dy.

Conveniently, the function being integrated is (up to a constant factor) y ·

f(n(1+c)−1:n(1+c))(y), i.e. y times the probability density function of the second-

highest order statistic from n(1 + c) samples. Since

E
[
Z(n(1+c)−1:n(1+c))

]
=

∫ ∞
1

zf(n(1+c)−1:n(1+c))(z) dz

= (1 + δ)n(1 + c)(n(1 + c)− 1)

∫ ∞
1

(
1− z−(1+δ)

)n(1+c)−2 (
z−(1+δ)

)2
dz,

we have

E
[
Y(n−1:n) · 1{X(αn:αn)<βY(n−1:n)}

]
≈ 1

(1 + c)2
E
[
Z(n(1+c)−1:n(1+c))

]
.

Then, we can use Lemmas D.22 and D.23 to get E
[
Z(n(1+c)−1:n(1+c))

]
≈ (1 +

c)1/(1+δ)E
[
Y(n−1:n)

]
, meaning that

E
[
Y(n−1:n) · 1{X(αn:αn)<βY(n−1:n)}

]
≈ (1 + c)−(1+δ/(1+δ))E

[
Y(n−1:n)

]
. (7.4)
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For the numerator of (7.3), a slightly more involved calculation yields

E
[
X(αn:αn) · 1{X(αn:αn)<βY(n−1:n)}

]
≈ E

[
X(αn:αn)

] [
1− (1 + c−1)−δ/(1+δ)

[
1 +

δ

1 + δ
(1 + c)−1

]]
. (7.5)

By Lemmas D.22 and D.23, E
[
X(αn:αn)

]
≈ Γ

(
δ

1+δ

)
(αn)1/(1+δ) and

E
[
Y(n−1:n)

]
≈ Γ

(
1 + δ

1+δ

)
n1/(1+δ). Recall that, up to the approximations we

made, the Rooney Rule improves utility in expectation if and only if the ratio

between (7.5) and (7.4) is larger than 1. Therefore, the following theorem holds:

Theorem 7.6. For sufficiently large n, the Rooney Rule with k = 2 improves utility in

expectation if and only if

α1/(1+δ)
[
1− (1 + c−1)−δ/(1+δ)

[
1 + δ

1+δ
(1 + c)−1

]]
δ

1+δ
(1 + c)−1−δ/(1+δ)

> 1. (7.6)

where c = αβ−(1+δ).

Note that in the limit as β → ∞, c → 0, and the entire expression goes to

α1/(1+δ)(1 + δ)/δ, as noted in Section 7.1.3. Although the full expression in the

statement of Theorem 7.6 is fairly complex, it can be directly evaluated, giving

a tight characterization of when the Rule yields increased utility in expectation.

With this result, we could ask for a fixed α and δ how to characterize the

set of β such that the condition in (7.6) holds. In fact, we can show that this

expression is monotonically increasing in β.

Theorem 7.7. The left hand side of (7.6) is decreasing in c and therefore increasing in

β. Hence for fixed α and δ there exists β∗ such that (7.6) holds if and only if β > β∗.

Non-monotonicity in δ. From Theorem 7.6, we can gain some intuition for

the non-monotonicity in δ shown in Figure 7.1. For α < e−1, we can show
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that even with infinite bias, the Rooney Rule has a negative effect on utility for

sufficiently large δ. Intuitively, this is because the condition for positive change

with infinite bias is α >
(

δ
1+δ

)1+δ, which can be written as α >
(
1− 1

d

)d for

d = 1 + δ. Since this converges to e−1 from below, for sufficiently large δ and

α < e−1, we have α <
(

δ
1+δ

)1+δ. On the other hand, as δ → 0, the Rooney

Rule has a more negative effect on utility. For instance, φ2(.3, 10, 1) > 1 but

φ2(.3, 10, .5) < 1. Intuitively, this non-monotonicity arises from the fact that for

large δ and small α, the Rooney Rule always has a negative impact on utility,

while for very small δ, samples are very far from each other, meaning that the

bias has less effect on the ranking.

7.2.3 The General Case

We can extend these techniques to handle larger values of k. For k ∈ [n], we

define

rk(α, β, δ) =
E
[
X(αn:αn) | X(αn:αn) < βY(n−k+1:n)

]
E
[
Y(n−k+1:n) | X(αn:αn) < βY(n−k+1:n)

]
=

E
[
X(αn:αn) · 1{X(αn:αn)<βY(n−k+1:n)}

]
E
[
Y(n−k+1:n) · 1{X(αn:αn)<βY(n−k+1:n)}

] .
We can see that the Rooney Rule improves expected utility when selecting k

candidates if and only if rk > 1. While rk depends on n, we will show that it is

a very weak dependence: for small k, as n increases, rk converges to a function

of (α, β, δ, k) up to a 1 +O((lnn)2/n) multiplicative factor. To make this precise,

we define the following notion of asymptotic equivalence:

Definition 7.8. For nonnegative functions f(n) and g(n), define

f(n) ∼∼∼ g(n)
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if and only if there exist a > 0 and n0 > 0 such that

f(n)

g(n)
≤ 1 +

a(lnn)2

n
and

g(n)

f(n)
≤ 1 +

a(lnn)2

n

for all n ≥ n0. In other words, f(n) = g(n)
(

1±O
(

(lnn)2

n

))
. When being explicit

about a and n0, we’ll write f(n) ∼∼∼a;n0
g(n).

Appendix D.3 contains a series of lemmas establishing how to rigorously

manipulate equivalences of this form. Now, we formally define a tight approxi-

mation to rk, which serves as an expanded restatement of Theorem 7.2 from the

introduction.

Theorem 7.9. For k ∈ [n], define

φk(α, β, δ)

=
α1/(1+δ)cδ/(1+δ)(1 + c)k−1(k−1− 1

1+δ

k−1

)
[

(1 + c−1)δ/(1+δ) −
k−1∑
j=0

(
j − 1

1+δ

j

)
(1 + c)−j

]
(7.7)

where c = αβ−(1+δ). Note that φk does not depend on n. When (α, β, δ) are fixed, we

will simply write this as φk. For k ≤ ((1− c2) lnn)/2, we have

rk ∼∼∼ φk,

and therefore the Rooney Rule improves expected utility for sufficiently large n if and

only if φk > 1.

This condition tightly characterizes when the Rooney Rule improves ex-

pected utility, and its asymptotic nature in n becomes accurate even for moder-

ately small n: for example, when n = 50, the error between rk and φk is around

1% for reasonable choices of (α, β, δ).
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Increasing k. Consider the scenario in which we’re selecting k candidates, and

for the given parameter values, the Rooney Rule improves our expected utility.

If we were to instead select k + 1 candidates, should we still be reserving a spot

for an X-candidate? Intuitively, as k increases, the Rule is less likely to change

our selections, since we’re more likely to have already chosen an X-candidate;

however, it is not a priori obvious whether increasing k should make it better for

us to use the Rooney Rule (because we have more slots, so we’re losing less by

reserving one) or worse (because as we take more candidates, we stop needing

a reserved slot).

In fact, we can apply Theorem 7.9 to understand how rk changes with k.

The following theorem, proven in Appendix D.2, is an expanded restatement

of Theorem 7.3, showing that if the Rooney Rule yields an improvement in ex-

pected quality when selecting k candidates, it will do so when selecting k + 1

candidates as well.

Theorem 7.10. For k ≤ ((1 − c2) lnn)/2, we have φk+1 > φk, and therefore for

sufficiently large n, we have rk+1 > rk.

Finally, using these techniques, we can provide a tight characterization of

the probability that the Rooney Rule produces a positive change. Specifically,

we find the probability that the Rooney Rule has a positive effect conditioned

on the event that it changes the outcome.

Theorem 7.11.

Pr
[
X(αn:αn) > Y(n−k+1:n) | X(αn:αn) < βY(n−k+1:n)

] ∼∼∼ 1−
(

1 + αβ−(1+δ)

1 + α

)k
.

To determine whether the Rooney Rule is more likely than not to produce
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a positive effect (conditioned on changing the outcome), we can compare the

right-hand side to 1/2.

Note that in the case of infinite bias, the right-hand side becomes 1−(1+α)−k,

and thus, the Rooney Rule produces positive change with probability at least

1/2 if and only if α ≥ k
√

2 − 1. It is interesting to observe that this means with

infinite bias, the condition is independent of δ; in contrast, when considering

the effect on the expected value with infinite bias, as we did in Section 7.1.3, the

expected change in utility due to the Rooney Rule did depend on δ.

7.2.4 Maximum Likelihood Estimation of β

The techniques established thus far make it possible to answer other related

questions, including the following type of question that we consider in this sec-

tion: “Given some historical data on past selections, can we estimate the bias

present in the data?” For example, suppose that for the last m years, a firm has

selected one candidate for each year i out of a pool of αini X-candidates and ni

Y -candidates. If all applicants are assumed to come from the same underlying

distribution, then it is easy to see that the expected number of X-selections (in

the absence of bias) should be
m∑
i=1

αi
1 + αi

,

regardless of what distribution the applicants come from. However, if there

is bias in the selection procedure, then this quantity now depends on the bias

model and parameters of the distribution. In particular, in our model, we can

use Theorem D.3 to get

Pr
[
X(αn:αn) < βY(n:n)

] ∼∼∼ 1

1 + αβ−(1+δ)
.
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This gives us the following approximation for the likelihood of the data D =

(M1, . . . ,Mm) given β, where Mi is 1 if an X-candidate was selected in year i

and 0 otherwise:

m∏
i=1

(1−Mi) ·
1

1 + αiβ−(1+δ)
+Mi ·

αiβ
−(1+δ)

1 + αiβ−(1+δ)
.

Taking logarithms, this is

∑
i:Mi=1

log(αiβ
−(1+δ))−

m∑
i=1

log(1 + αiβ
−(1+δ)),

and maximizing this is equivalent to maximizing

∑
i:Mi=1

log(β−(1+δ))−
m∑
i=1

log(1+αiβ
−(1+δ)) = N log(β−(1+δ))−

m∑
i=1

log(1+αiβ
−(1+δ))

where N is the number of X-candidates selected. Taking the derivative with

respect to β, we get

−(1 + δ)Nβ−1 + (1 + δ)
m∑
i=1

αiβ
−(2+δ)

1 + αiβ−(1+δ)
.

Setting this equal to 0 and canceling common terms, we have

m∑
i=1

1

1 + α−1
i β1+δ

= N

Since each 1/(1 + α−1
i β1+δ) is strictly monotonically decreasing in β, there is

a unique β̂ for which equality holds, meaning that the likelihood is uniquely

maximized by β̂, up to the 1 ± O((lnn)2/n) approximation we made for

Pr
[
X(αn:αn) < βY(n:n)

]
. In the special case where αi = α for i = 1, . . . ,m, then

the solution is given by

β̂ =
((m

N
− 1
)
α
)1/(1+δ)

.
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7.3 Biased Selection with Bounded Distributions

In this section, we consider a model in which applicants come from a distribu-

tion with bounded support. Qualitatively, one would expect different results

here from those with power law distributions because in a model with bounded

distributions, we expect that for large n, the top order statistics of any distri-

bution will concentrate around the maximum of that distribution. As a result,

when there is even a small amount of bias against one population, for large n

the probability that any of the samples with the highest perceived quality come

from that population goes to 0. This means that the Rooney Rule has an effect

with high probability, and the effect is positive if the unconditional expectation

of the top X-candidate is larger than the unconditional expectation of the Y -

candidate that it replaces.

We focus on the case when α = 1, meaning we have equal numbers of appli-

cants from both populations. We use the same order statistic notation as before.

While all of our previous results have modeled the bias as a multiplicative factor

β, we can in fact show that in the bounded distribution setting, for any model

of bias X̃(k:n) = b(X(k:n)) such that b(x) < T for x ≥ 0, where T is strictly less

than the maximum of the distribution, the Rooney Rule increases expected util-

ity. Unlike in the previous section the following theorem and analysis are by

no means a tight characterization; instead, this is an existence proof that for

bounded distributions, there is always a large enough n such that the Rooney

Rule improves utility in expectation. We prove our results for continuous dis-

tributions with support [0, 1], but a simple scaling argument shows that this

extends to any continuous distribution with bounded nonnegative support –

specifically, we scale a distribution such that infx:f(x)>0 = 0 and supx:f(x)>0 = 1.
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Theorem 7.12. If f is a continuous probability density function on [0, 1] such that

supx:f(x)>0 = 1 and X̃(n:n) = b(X(n:n)) is never more than T < 1, then for large enough

n,

E
[
X(n:n) − Y(n−1:n) | b(X(n:n)) < Y(n−1:n)

]
> 0.

While we the defer the full proof to Appendix D.5, the strategy for the proof

is as follows:

1. With high probability, X(n:n) and Y(n−1:n) are both large.

2. Whenever X(n:n) and Y(n−1:n) are large, X(n:n) is significantly larger than

Y(n−1:n).

3. The gain from switching from Y(n−1:n) to X(n:n) when X(n:n) and Y(n−1:n) are

both large outweighs the loss when at least one of them is not large.

7.4 Conclusion

In this work we have presented a model for implicit bias in a selection prob-

lem motivated by settings including hiring and admissions, and we analyzed

the Rooney Rule, which can improve the quality of the resulting choices. For

one of the most natural settings of the problem, when candidates are drawn

from a power-law distribution, we found a tight characterization of the condi-

tions under which the Rooney Rule improves the quality of the outcome. In the

process, we identified a number of counter-intuitive effects at work, which we

believe may also help provide insight into how we can reason about implicit

bias. Our techniques also provided a natural solution to an inference problem

164



in which we estimate parameters of a biased decision-making process. Finally,

we performed a similar type of analysis on general bounded distributions.

There are a number of further directions in which these issues could be in-

vestigated. One intriguing direction is to consider the possible connections to

the theory of optimal delegation (see e.g. Alonso and Matouschek (2008)).3 In

the study of delegation, a principal wants a task carried out, but this task can

only be performed by an agent who may have a utility function that is differ-

ent from the principal’s. In an important family of these models, the principal’s

only recourse is to impose a restriction on the set of possible actions taken by

the agent, creating a more constrained task for the agent to perform, in a way

that can potentially improve the quality of the eventual outcome from the prin-

cipal’s perspective. Our analysis of the Rooney Rule can be viewed as taking

place from the point of view of a principal who is trying to recruit k candi-

dates, but where the process must be delegated to an agent whose utilities for

X-candidates and Y -candidates are different from the principal’s, and who is

the only party able to evaluate these candidates’ potentials. The Rooney Rule,

requiring that the agent select at least oneX-candidate, is an example of a mech-

anism that the principal could impose to restrict the agent’s set of possible ac-

tions, potentially improving the quality of the selected candidates as measured

by the principal. More generally, it is interesting to ask whether there are other

contexts where such a link between delegation and this type of biased selection

provides insight.

Our framework also makes it possible to naturally explore extensions of the

basic model. First, the model can be generalized to include noisy observations,

potentially with a different level of noise for each group. It would also be inter-

3We thank Ilya Segal for suggesting this connection to us.
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esting to analyze generalizations of the Rooney Rule; for example, if we were

to define the `th-order Rooney Rule to be the requirement that at least ` of k final-

ists must be from an underrepresented group, we could ask which ` produces

the greatest increase in utility for a given set of parameters. Finally, we could

benefit from a deeper understanding of the function φ that appears in our main

theorems. For example, while we showed in Theorem 7.3 that φ is monotone

in β for k = 2, Figure 7.1 shows that φ is clearly not monotone in δ. A better

understanding of the function φ may lead to new insights into our model and

into the phenomena it seeks to capture.
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CHAPTER 8

HOW DO CLASSIFIERS INDUCE AGENTS TO BEHAVE

STRATEGICALLY?

One of the fundamental insights in the economics of information is the way

in which assessing people (students, job applicants, employees) can serve two

purposes simultaneously: it can identify the strongest performers, and it can

also motivate people to invest effort in improving their performance (Spence,

1973). This principle has only grown in importance with the rise in algorithmic

methods for predicting individual performance across a wide range of domains,

including education, employment, and finance.

A key challenge is that we do not generally have access to the true underly-

ing properties that we need for an assessment; rather, they are encoded by an

intermediate layer of features, so that the true properties determine the features,

and the features then determine our assessment. Standardized testing in edu-

cation is a canonical example, in which a test score serves as a proxy feature for

a student’s level of learning, mastery of material, and perhaps other properties

we are seeking to evaluate as well. In this case, as in many others, the quantity

we wish to measure is unobservable, or at the very least, difficult to accurately

measure; the observed feature is a construct interposed between the decision

rule and the intended quantity.

This role that features play, as a kind of necessary interface between the un-

derlying attributes and the decisions that depend on them, leads to a number of

challenges. In particular, when an individual invests effort to perform better on

a measure designed by an evaluator, there is a basic tension between effort in-

vested to raise the true underlying attributes that the evaluator cares about, and
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effort that may serve to improve the proxy features without actually improving

the underlying attributes. This tension appears in many contexts — it is the

problem of gaming the evaluation rule, and it underlies the formulation of Good-

hart’s Law, widely known in the economics literature, which states that once a

proxy measure becomes a goal in itself, it is no longer a useful measure (Hardt

et al., 2016a). This principle also underpins concerns about strategic gaming of

evaluations in search engine rankings (Davis, 2006), credit scoring (Bambauer

and Zarsky, 2018; Foust and Pressman, 2008), academic paper visibility (Beel

et al., 2009), reputation management (Zarsky, 2008), and many other domains.

While the results we present here are not unique to the context of classifiers and

machine learning, concerns over strategic behavior are especially salient in the

context of the algorithmically “scored society” (Citron and Pasquale, 2014).

Incentivizing a designated effort investment. These considerations are at the

heart of the following class of design problems, illustrated schematically in Fig-

ure 8.1. An evaluator creates a decision rule for assessing an agent in terms of

a set of features, and this leads the agent to make choices about how to invest

effort across their actions to improve these features. In many settings, the eval-

uator views some forms of agent effort as valuable and others as wasteful or

undesirable. For example, if the agent is a student and the evaluator is con-

structing a standardized test, then the evaluator would likely view it as a good

outcome if the existence of the test causes the student to study and learn the

material, but a bad outcome if the existence of the test causes the student to

spend a huge amount of effort learning idiosyncratic test-taking heuristics spe-

cific to the format of the test, or to spend effort on cheating. Similarly, a job

applicant (the agent) could prepare for a job interview given by a potential em-

ployer (the evaluator) either by preparing for and learning material that would
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directly improve their job performance (a good outcome for both the agent and

the evaluator), or by superficially memorizing answers to questions that they

find on-line (a less desirable outcome).

Thus, to view an agent’s effort in improving their features as necessarily a

form of “gaming” is to miss an important subtlety: some forms of effort cor-

respond intuitively to gaming, while others correspond to self-improvement.

If we think of the evaluator as having an opinion on which forms of agent ef-

fort they would like to promote, then from the evaluator’s point of view, some

decision rules work better than others in creating appropriate incentives: they

would like to create a decision rule whose incentives lead the agent to invest in

forms of effort that the evaluator considers valuable.

These concerns have long been discussed in the education literature sur-

rounding the issue of high-stakes standardized testing. In his book “Measuring

Up,” Daniel Koretz writes,

Test preparation has been the focus of intense argument for many

years, and all sorts of different terms have been used to describe

both good and bad forms. . . I think it’s best to. . . distinguish between

seven different types of test preparation: Working more effectively;

Teaching more; Working harder; Reallocation; Alignment; Coaching;

Cheating. The first three are what proponents of high-stakes testing

want to see (Koretz, 2008).

Because teachers are evaluated based on their students’ performance on a test,

they change their behavior in order to improve their outcomes. As Koretz notes,

this can incentivize the investment of both productive and unproductive forms
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Agent’s
effort

investment

Features
F1 = ...
F2 = ...
F3 = ...
...

Evaluator’s
decision rule

Outcome

Figure 8.1: The basic framework: an agent chooses how to invest effort to im-
prove the values of certain features, and an evaluator chooses a decision rule
that creates indirect incentives favoring certain investments of effort over oth-
ers.

of effort.

What are the design principles that could help in creating a decision that in-

centives the kinds of effort that the evaluator wants to promote? Keeping the

evaluation rule and the features secret, so as to make them harder to game, is

generally not viewed as a robust solution, since information about the evalua-

tion process tends to leak out simply by observing the decisions being made,

and secrecy can create inequalities between insiders who know how the sys-

tem works and outsiders who don’t. Nor should the goal be simply to create

a decision rule that cannot be affected at all by an agent’s behavior; while this

eliminates the risk of gaming, it also eliminates the opportunity for the decision

rule to incentivize behavior that the evaluator views as valuable.

If there were no intermediate features, and the evaluator could completely

observe an agent’s choices about how they spread their effort across different

actions, then the evaluator could simply reward exactly the actions they want

to incentivize. But when the actions taken by an individual are hidden, and

can be perceived only through an intermediate layer of proxy features, then the

evaluator cannot necessarily tell whether these features are the result of effort

they intended to promote (improving the underlying attribute that the feature is
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intended to measure) or effort from other actions that also affect the feature. In

the presence of these constraints, can one design evaluation rules that nonethe-

less incentivize the intended set of behaviors?

To return to our stylized example involving students as agents and teachers

as evaluators, a teacher can choose among many possible grading schemes to

announce to their class; each corresponds to a candidate decision rule, and each

could potentially incentivize different forms of effort on the part of the students.

For example, the teacher could announce that a certain percentage of the total

course grade depends on homework scores, and the remaining percentage de-

pends on exam scores. In this context, the homework and the exam scores are

the features that the teacher is able to observe, and the students have various

actions at their disposal — studying to learn material, cheating, or other strate-

gies — that can improve these feature values. How does the way in which the

teacher balances the percentage weights on the different forms of coursework

— producing different possible decision rules — affect the decisions students

make about effort? As we will see in the next section, the model we develop

here suggests some delicate ways in which choices about a decision rule can in

principle have significant effects on agents’ decisions about effort allocation.

These effects are not unique to the classroom setting. To take an example

from a very different domain, consider a restaurant trying to improve its visi-

bility on a review-based platform (e.g. Yelp). Here we can think of the platform

as the evaluator constructing a decision rule and the restaurant as the agent: the

platform determines a restaurant’s rank based on both the quality of reviews

and the number of users who physically visit it, both of which are meant to

serve as proxies for its overall quality. The restaurant can individually game ei-
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ther of these metrics by paying people to write positive reviews or to physically

check in to their location, but improving the quality of the restaurant will ulti-

mately improve both simultaneously. Thus, the platform may wish to consider

both metrics, rating and popularity, in some balanced way in order to increase

the restaurant’s incentive to improve.

Designing evaluation rules. In this chapter, we develop a model for this pro-

cess of incentivizing effort, when actions can only be measured through inter-

mediate features. We cast our model as an interaction between an evaluator who

is performing an assessment, and an agent who wants to score well on this as-

sessment. An instance of the problem consists of a set of actions in which the

agent can invest chosen amounts of effort, and a set of functions determining

how the levels of effort spent on these actions translate into the values of fea-

tures that are observable to the evaluator.

The evaluator’s design task is to create an evaluation rule that takes the fea-

ture values as input, and produces a numerical score as output. (Crucially, the

evaluation rule is not a function of the agent’s level of effort in the actions, only

of the feature values.) The agent’s goal is to achieve a high score, and to do this,

they will optimize how they allocate their effort across actions. The evaluator’s

goal is to induce a specific effort profile from the agent — specifying a level of

effort devoted to each action — and the evaluator seeks an evaluation rule that

causes the agent to decide on this effort profile. Again, Figure 8.1 gives a basic

view of this pipeline of activities.

Our main result is a characterization of the instances for which the eval-

uator can create an evaluation rule inducing a specified effort profile, and a
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polynomial-time algorithm to construct such a rule when it is feasible. As part

of our characterization, we find that if there is any evaluation rule, monotone

in the feature values, that induces the intended effort profile, then in fact there

is one that is linear in the feature values; and we show how to compute a set of

coefficients achieving such a rule. Additionally, we provide a tight characteri-

zation of which actions can be jointly incentivized.

The crux of our characterization is to consider how an agent is able to “con-

vert” effort from one action to another, or more generally from one set of actions

to another set of actions. If it is possible to reallocate effort spent on actions the

evaluator is trying to incentivize to actions the evaluator isn’t trying to incen-

tivize, in a way that improves the agent’s feature values, then it is relatively easy

to see that the evaluator won’t be able to design a decision rule that incentivizes

their desired effort profile: any incentives toward the evaluator’s desired effort

profile will be undercut by the fact that this effort can be converted away into

other undesired forms of effort in a way that improves the agent’s outcome. The

heart of the result is the converse, providing an if-and-only-if characterization:

when such a conversion by the agent isn’t possible, then we can use the ab-

sence of this conversion to construct an explicit decision rule that incentivizes

precisely the effort profile that the evaluator is seeking.

Building on our main result, we consider a set of further questions as well.

In particular, we discuss characterizations of the set of all linear evaluation

rules that can incentivize a family of allowed effort profiles, identifying tractable

structure for this set in special cases, but greater complexity in general. And we

consider the problem of choosing an evaluation rule to optimize over a given

set of effort profiles, again identifying tractable special cases and computational
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hardness in general.

Further Related Work. Our work is most closely related to the principal-agent

literature from economics: an evaluator (the principal) wants to set a policy (the

evaluation rule) that accounts for the agent’s strategic responses. Our main re-

sult has some similarities, as well as some key differences, relative to a classi-

cal economic formulation in principal-agent models (Grossman and Hart, 1983;

Holmström and Milgrom, 1987, 1991; Hermalin and Katz, 1991). We explore this

connection in further detail in Section 8.1.4.

A number of more recent models in the economics literature consider set-

tings in which strategic agents are scored to incentivize desirable behavior.

These models include elements like intermediaries who perform the scor-

ing (Ball, 2020; Boleslavsky and Kim, 2018), ratings that depend effort exerted

over multiple time periods (Holmström, 1999; Hörner and Lambert, 2020; Fong

and Li, 2016), binary certification (Zapechelnyuk, 2020; Perez-Richet and Skreta,

2018), and the role of randomness (Rodina and Farragut, 2016). In most of these

models, the primary obstacle to the observation of effort is noise; in contrast,

uncertainty in our model stems from the confounding of multiple actions in ob-

served features. It would be an interesting subject for future work to combine

these sources of uncertainty.

This chapter also ties into two related threads in the economics literature: in-

formation design and Bayesian persuasion. Information design concerns the be-

havior of an agent who controls the information revealed to other agents (Berge-

mann and Morris, 2019; Taneva, 2019). A special case of information design

is Bayesian persuasion (Kamenica and Gentzkow, 2011; Bergemann and Mor-
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ris, 2019; Kamenica, 2019), where a principal chooses how to reveal informa-

tion about an agent or item in order to maximize their utility. Boleslavsky and

Kim (2018) extend this model to consider the issue of moral hazard here, where

agents under evaluation change their effort investment in response to the scores

given by a principal, who is in turn trying to convince a consumer that the

agents are high-quality. Because the information scheme is fixed in our model,

it lies closer to mechanism design than information design; however, we might

extend this model to incorporate elements of information design by allowing

the evaluator to modify the mapping from actions to features.

In the computer science literature, a growing body of work seeks to charac-

terize the interaction between a decision-making rule and the strategic agents it

governs. This was initially formulated as a zero-sum game (Dalvi et al., 2004),

e.g. in the case of spam detection, and more recently in terms of Stackelberg

competitions, in which the evaluator publishes a rule and the agent may re-

spond by manipulating their features strategically (Hardt et al., 2016a; Brückner

and Scheffer, 2011; Dong et al., 2018; Hu et al., 2019; Milli et al., 2019). This body

of work is different from our approach in a crucial respect, in that it tends to

assume that all forms of strategic behavior from the agent are undesirable; in

our model, on the other hand, we assume that there are certain behaviors that

the evaluator wants to incentivize.

There is also work on strategyproof linear regression (Chen et al., 2018; Cum-

mings et al., 2015; Dekel et al., 2010). The setup of these models is also quite

different from ours – typically, the strategic agents submit (x, y) pairs where x

is fixed and y can be chosen strategically, and the evaluator’s goal is to perform

linear regression in a way that incentivizes truthful reporting of y. In our set-
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ting, on the other hand, agents strategically generate their features x, and the

evaluator rewards them in some way based on those features.

Work exploring other aspects of how evaluation rules lead to investment of

effort can be found in the economics literature, particularly in the contexts of hir-

ing (Fryer Jr and Loury, 2013; Hu and Chen, 2018) and affirmative action (Coate

and Loury, 1993). While these models tend to focus on decisions regarding skill

acquisition, they broadly consider the investment incentives created by evalu-

ation. Similar ideas can also be found in the Science and Technology Studies

literature (Ziewitz, 2019), considering how organizations respond to guidelines

and regulations.

As noted above, principal-agent mechanism design problems in which the

principal cannot directly observe the agent’s actions have been studied in the

economics literature (Arrow, 1963; Pauly, 1968; Arrow, 1968), and include work

on the notion of moral hazard. Insurance markets are canonical examples in

this domain: the agent reduces their liability by purchasing insurance, and this

may lead them to act more recklessly and decrease welfare. The principal can-

not directly observe how carefully the agent is acting, only whether the agent

makes any insurance claims. These models provide some inspiration for ours;

in particular, they are often formalized such that the agent’s actions are “effort

variables” which, at some cost to the agent, increase the agent’s level of “pro-

duction” (Laffont and Martimort, 2009). This could be, for example, acting in

more healthy ways or driving more carefully in the cases of health and car in-

surance respectively. Note, however, that in the insurance case, the agent and

the principal have aligned incentives in that both prefer that the agent doesn’t

— e.g., in the case of car insurance — get into an accident. In our model, we
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make no such assumptions: the agent may have no incentive at all to invest

in the evaluator’s intended forms of effort beyond the utility derived from the

mechanism. The types of scenarios considered in insurance markets can be gen-

eralized to domains like share-cropping (Cheung, 1969; Stiglitz, 1974), corporate

liability (Jensen and Meckling, 1976), and theories of agency (Ross, 1973). Kerr

(1975) provides a detailed list of such instances in his classic paper “On the folly

of rewarding A, while hoping for B.”

Concerns over strategic behavior also manifest in ways that do not necessar-

ily map to intuitive notions of gaming, but instead where the evaluator does not

want to incentivize the agent to take actions that might be counter to their inter-

ests. For example, Virginia Eubanks (2018a) considers a case of risk assessment

in the child welfare system; when a risk tool includes features about a family’s

history of interaction with public services, including aid such as food stamps

and public housing, she argues that it has the potential to incentivize families to

avoid such services for fear of being labeled high risk. This too would be a case

in which the structure and implementation of an evaluation rule can incentivize

potentially undesirable actions in agents, and would be interesting to formalize

in the language of our model.

Organization of the remainder of the chapter. Section 8.1 contains all the def-

initions and technical motivation leading up to the formulation and statement

of our two main results, Theorems 8.3 and 8.5. Sections 8.2 and 8.3 contain the

proofs of these two results, respectively, and Section 8.4 considers further exten-

sions.
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8.1 Model and Overview of Results

8.1.1 A Formal Model of Effort Investment

Here, we develop a formal model of an agent’s investment of effort. There arem

actions the agent can take, and they must decide to allocate an amount of effort

xj to each action j. We’ll assume the agent has some budgetB of effort to invest,

so
∑m

j=1 xj ≤ B, and we’ll call this investment of effort x = (x1, x2, . . . , xm) an

effort profile.1

The evaluator cannot directly observe the agent’s effort profile, but instead

observes features F1, . . . , Fn derived from the agent’s effort profile. The value

of each Fi grows monotonically in the effort the agent invests in certain actions

according to an effort conversion function fi(·):

Fi = fi

(
m∑
j=1

αjixj

)
, (8.1)

where each fi(·) is nonnegative, smooth, weakly concave (i.e., actions provide

diminishing returns), and strictly increasing. We assume αji ≥ 0, meaning that

effort results in more favorable outcomes.

We might instead model the agent as incurring a fixed cost c per unit effort

with no budget. In fact, this formulation is in a sense equivalent: for every cost

c, there exists a budget B such that an agent with cost c behaves identically to

an agent with fixed budget B (and no cost). For clarity, we will deal only with

the budgeted case, but our results will extend to the case where effort comes at

a linear cost.
1Instead of a fixed budget, we might consider an alternate model in which effort comes at a

cost; we discuss the relationship between that model and the one presented here later.
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We represent these parameters of the problem using a bipartite graph with

the actions x1, x2, . . . , xm on the left, the features F1, . . . , Fn on the right, and an

edge of weight αji whenever αji > 0, so that effort spent on action j contributes

to the value of feature Fi. We call this graph, along with the associated parame-

ters (the matrix α ∈ Rm×n with entries αji; functions fi : R→ R for i ∈ {1, ..., n};

and a budget B), the effort graph G. Figure 8.2 shows some examples of what G

might look like.

x1

...

xj

...

xm

F1

F2

...

Fn

H

α11

αj1

αj2

αm2

αmn

(a) General model

x1

x2

x3

FT

FW

H
α2T
α2W

α1T

α3W

βT

βW

(b) The classroom setting

Figure 8.2: The conversion of effort to feature values can be represented using
a weighted bipartite graph, where effort xj spent on action j has an edge of
weight αji to feature Fi.

The evaluator combines the features generated by the effort using some

mechanism M to produce an output H , which is the agent’s utility. M is simply

a function of the n feature values. In a classification setting, for example, H may

be binary (whether or not the agent is classified as positive or negative), or a

continuous value (the probability that the agent receives a positive outcome).

Because all features are increasing in the amount of effort invested by the agent

— in particular, including the kinds of effort we want to incentivize — we’ll re-

strict our attention to the class of monotone mechanisms, meaning that if agent

X has larger values in all features than agent Y , then X’s outcome should be at

least as good as that of Y . Formally, we write this as follows:
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Definition 8.1. A monotone mechanism M on features Fi is a mapping Rn → R

such that for F, F ′ ∈ Rn with F ′i ≥ Fi for all i ∈ {1, ..., n}, M(F ′) ≥ M(F ). Also,

for any F , there exists i ∈ {1, ..., n} such that strictly increasing Fi strictly increases

M(F ).

The second of these conditions implies that it is strictly optimal for an agent

to invest all of its budget. The agent’s utility is simply its outcome H . Thus,

for a mechanism M , the agent’s optimal strategy is to invest effort to maximize

M(F ) subject to the constraints that
∑m

j=1 xj ≤ B and xj ≥ 0 for all j. (Recall

that in this phrasing, the vector F of feature values is determined from the effort

value xi via the functions Fi = fi

(∑m
j=1 αjixj

)
.) We can write the agent’s search

for an optimal strategy succinctly as the following optimization problem:

x∗ = arg max
x∈Rm

M(F ) s.t.
m∑
j=1

xj ≤ B (8.2)

x ≥ 0

where each component Fi of F is defined as in (8.1). Throughout this chapter,

we’ll assume that agents behave rationally and optimally, though it would be an

interesting subject for future work to consider extensions of this model where

agents suffer from behavioral biases. We also note that this is where we make

use of the concavity of the functions fi, since for arbitrary fi the agent wouldn’t

necessarily be able to efficiently solve this optimization problem.

8.1.2 Returning to the classroom example

To illustrate the use of this model, consider the effort graph shown in Fig-

ure 8.2b, encoding the classroom example described in the introduction. There
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are two pieces of graded work for the class (a test FT and homework FW ), and

the student can study the material (x2) to improve their scores on both of these.

They can also cheat on the test (x1) and look up homework answers on-line (x3).

Their combined effort α1Tx1 + α2Tx2 contributes to their score on the test, and

their combined effort α2Wx2+α3Wx3 contributes to their score on the homework.

To fully specify the effort graph, we would have to provide a budget B and ef-

fort conversion functions fT and fW ; we leave these uninstantiated, as our main

conclusions from this example will not depend on them.

From these scores, the teacher must decide on a student’s final grade H .

For simplicity, we’ll assume the grading scheme is simply a linear combination,

meaning H = βTFT + βWFW for some real numbers βT , βW ≥ 0.

The teacher’s objective is to incentivize the student to learn the material;

thus, they want to set βT and βW such that the student invests their entire bud-

get into x2. Of course, this may not be possible. For example, if α1T and α3W

are significantly larger than α2T and α2W respectively, so that it is much easier to

cheat on the test and copy homework answers than to study, the student would

maximize their utility by investing all of their effort into these undesirable ac-

tivities.

In fact, we can make this precise as follows. For any unit of effort invested in

action 2, the student could instead invest α2T

α1T
and α2W

α3W
units of effort into actions

1 and 3 respectively without changing the values of FT and FW . Moreover, if

α2T

α1T
+ α2W

α3W
< 1, then this substitution strictly reduces the sum x1 + x2 + x3,

leaving additional effort available (relative to the budget constraint) for raising

the values of FT and FW . It follows that in any solution with x2 > 0, there is a

way to strictly improve it through this substitution. Thus, under this condition,
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the teacher cannot incentivize the student to only study. This is precisely the

type of “conversion” of effort that we discussed briefly in the previous section,

from the evaluator’s preferred action (2) to other actions (1 and 3)

When α2T

α1T
+ α2W

α3W
≥ 1, on the other hand, a consequence of our results is

that that no matter what fT , fW and B are, there exist some βT , βW that the

teacher can choose to incentivize the student to invest all their effort into study-

ing. This may be somewhat surprising – for instance, consider the case where

α1T = α3W = 3 and α2T = α2W = 2, meaning that the best way for the student

to maximize their score on each piece of graded work individually is to invest

undesirable effort instead of studying. Even so, it turns out that the student

can still be incentivized to put all of their effort into studying by appropriately

balancing the weight placed on the two pieces of graded work.

This example illustrates several points that will be useful in what follows.

First, it makes concrete the basic obstacle against incentivizing a particular ac-

tion: the possibility that effort can be “swapped out” at a favorable exchange

rate towards other actions. Second, it shows a particular kind of reason why it

might be possible to incentivize a designated action j: if investing effort xj im-

proves multiple features simultaneously, the agent might select it even if it is not

the most efficient way to increase any one feature individually. This notion of

activities that “transfer” across different forms of evaluation, versus activities

that fail to transfer, arises in the education literature on testing (Koretz et al.,

1991), and our model shows how such effects can lead to valuable incentives.
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8.1.3 Stating the main results

In our example, it turned out that a linear grading scheme was sufficient for the

teacher to incentivize the student to study. We formalize such mechanisms as

follows.

Definition 8.2. A linear mechanism M : Rn → R is the mapping M(F ) = β>F =∑n
i=1 βiFi for some β ∈ Rn such that βi ≥ 0 for all i ∈ {1, ..., n} and

∑n
i=1 βi > 0.

Note that we don’t require
∑n

i=1 βi to be anything in particular; the agent’s

optimal behavior is invariant to scaling β, so we can normalize β to sum to

any intended quantity without affecting the properties of the mechanism. We

rule out the mechanism in which all βi are equal to 0, as it is not a monotone

mechanism.

We will say that a mechanism M incentivizes effort profile x if x is an optimal

response to M . Ultimately, our main result will be to prove the following the-

orem, characterizing when a given effort profile can be incentivized. First, we

need to define the support of x as

S(x) , {j | xj > 0}. (8.3)

With this, we can state the theorem.

Theorem 8.3. For an effort graph G and an effort profile x∗, the following are equiva-

lent:

1. There exists a linear mechanism that incentivizes x∗.

2. There exists a monotone mechanism that incentivizes x∗.

3. For all x such that S(x) ⊆ S(x∗), there exists a linear mechanism that incen-

tivizes x.
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Furthermore, there is a polynomial time algorithm that decides the incentivizability of

x∗ and provides a linear mechanism β to incentivize x∗ whenever such β exists.

When there exists a monotone mechanism incentivizing x∗, we’ll call both

x∗ and S(x∗) incentivizable.2 Informally, when x∗ is not incentivizable, this algo-

rithm finds a succinct “obstacle” to any solution with support S(x∗), meaning

no x such that S(x) = S(x∗) is incentivizable. The following corollary is a direct

consequence of Theorem 8.3. (We use the notation [m] to represent {1, 2, . . . ,m}.)

Corollary 8.4. For a set S ⊆ [m], some x such that S(x) = S is incentivizable if and

only if all x with S(x) = S are incentivizable.

In Section 8.2, we’ll prove Theorem 8.3. The proof we give is constructive,

and it establishes the algorithmic result.

Optimizing over effort profiles. It may be the case that the evaluator doesn’t

have a single specific effort profile by the agent that they want to incentivize;

instead, they may have an objective function defined on effort profiles, and they

would like to maximize this objective function over effort profiles that are in-

centivizable. In other words, the goal is to choose an evaluation rule so that the

resulting effort profile it induces performs as well as possible according to the

objective function.

In Section 8.3, we consider the following formulation for such optimization

problems. We assume that the evaluator wants to maximize a concave function

g : Rm → R over the space of effort profiles, subject to the constraint that the

agent only invests effort in a subset D ⊆ [m] of actions. To accomplish this, the

2A closely related notion in the principal-agent literature is that of an implementable action.
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evaluator selects an evaluation rule so as to incentivize an effort profile x∗ with

g(x∗) as large as possible. This is what we will mean by optimizing g over the

space of effort profiles. In this setting, we show the following results, which we

prove in Section 8.3.

Theorem 8.5. Let g be a concave function over the space of effort profiles, and let D be

the set of actions in which the evaluator is willing to allow investment by the agent.

1. If there exists an x∗ such that S(x∗) = D and x∗ is incentivizable, then any

concave function g can be maximized over the space of effort profiles in polynomial

time.

2. If |D| is constant, then any concave function g can be maximized over the space

of effort profiles in polynomial time.

3. In general, there exist concave functions g that are NP-hard to maximize over the

space of effort profiles subject to the incentivizability condition.

In summary, we establish that it is computationally hard to maximize even

concave objectives in general, although as long as the number of distinct ac-

tions the evaluator is willing to incentivize is small, concave objectives can be

efficiently maximized.

The above results characterize optimization over effort profiles; instead, the

evaluator may wish to optimize over the space of mechanisms (e.g., to fit to a

dataset). We consider the feasibility of such optimization in Section 8.4, showing

that the set of linear mechanisms incentivizing particular actions can be highly

nonconvex, making optimization hard in general.
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8.1.4 Principal-Agent Models and Linear Contracts

Now that we have specified the formalism, we are in a position to compare

our model with well-studied principal-agent models in economics to see how

our results and techniques relate to those from prior work. In the standard

principal-agent setting, the principal’s objective is to incentivize an agent to in-

vest effort in some particular way (Ross, 1973; Grossman and Hart, 1983). Cru-

cially, the principal cannot observe the agent’s action – only some outcome that

is influenced by the agent’s action. Thus, while the principal cannot directly

reward the agent based on the action it takes, it can instead provide rewards

based on outcomes that are more likely under desirable actions.

To our knowledge, this framework has yet to be applied to settings based

on machine-learning classifiers as we do here; and yet, principal-agent models

fit quite naturally in this context. A decision-maker wants to evaluate an agent,

which it can only observe indirectly through features. These features, in turn,

reflect the actions taken by the agent. In this context, the principal offers a “con-

tract” by specifying an evaluation rule, to which the agent responds strategically

by investing its effort so as to improve its evaluation. So far, this is in keeping

with the abstract principal-agent framework (Ross, 1973; Grossman and Hart,

1983).

Moreover, some of the key results we derive echo known results from pre-

vious models, though they also differ in important respects. Linear contracts,

in particular, are often necessary or optimal in principal-agent contexts for a va-

riety of reasons. In modeling bidding for government contracts, for example,

payment schemes are linear in practice for the sake of simplicity, even though

optimal contracts may be nonlinear (McAfee and McMillan, 1986). In other
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models, contracts are naturally linear because agents maximize reward in ex-

pectation over outcomes generated stochastically from their actions (Grossman

and Hart, 1983).

Even when they aren’t necessitated by practical considerations or modeling

choices, linear contracts have been shown to be optimal in their own right in

some principal-agent models. Holmström and Milgrom (1987, 1991) consider

the interplay between incentives and risk aversion and characterize optimal

mechanisms in this setting, finding that under a particular form of risk aver-

sion (exponential utility), linear contracts optimally elicit desired behavior. Our

models do not incorporate a corresponding notion of risk aversion, and the role

of linear mechanisms in our work arises for fundamentally different reasons.

Hermalin and Katz (1991) provide a model more similar to ours, in which

observations result stochastically from agents’ actions. Drawing on basic op-

timization results that we use here as well (in particular, duality and Farkas’

Lemma), they characterize actions as “implementable” based on whether they

can be in some sense replaced by other actions at lower cost to the agent. At a

high level, we will rely on a similar strategy to prove Theorem 8.3.

There are, however, some further fundamental differences between the

principal-agent models arising from the work of Hermalin and Katz and the

questions and results we pursue here. In particular, the canonical models

of principal-agent interaction in economics typically only have the expressive

power to to incentivize a single action, which stochastically produces a single

observed outcome. This basic difference leads to a set of important distinctions

for the modeling goals we have: because our goal is to incentivize investment

over multiple activities given a multi-dimensional feature vector, with the chal-
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lenge that different mixtures of activities can deterministically produce the same

feature vector, our model cannot be captured by these earlier formalisms.

An important assumption in our model, and in many principal-agent mod-

els in general, is that the principal knows how the agent’s effort affects obser-

vations. Recent work has sought to relax this assumption, finding that linear

contracts are optimal even when the principal has incomplete knowledge of the

agent’s cost structure (Carroll, 2015). It would be an interesting subject for fu-

ture work to extend our model so that the principal does not know or needs to

learn the agent’s cost structure.

8.2 Incentivizing Particular Effort Profiles

In this section, we develop a tight characterization of which effort profiles can be

incentivized and find linear mechanisms that do so. For simplicity, we’ll begin

with the special case where the effort profile to be incentivized is x∗ = B · ej ,

with ej representing the unit vector in coordinate j — that is, the entire budget

is invested in effort on action j. Then, we’ll apply the insights from this case to

the general case.

The special case where |S(x∗)| = 1. Recall that in the classroom example, the

tipping point for when the intended effort profile could be incentivized hinged

on the question of substitutability: the rate at which undesirable effort could be

substituted for the intended effort. We’ll characterize this rate as the solution to

a linear program. In an effort graph G, recall that α ∈ Rm×n is the matrix with

entries αji. Let α̃j ∈ Rn be the jth row of α. Then, we’ll define the substitutabil-
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ity of xj to be

κj , min
y∈Rm

y>1 s.t. α>y ≥ α̃j (8.4)

y ≥ 0

Intuitively, y is a redistribution of effort out of action j that weakly increases all

feature values. Note that κj ≤ 1 because the solution y = ej (the vector with 1

in the jth position and 0 elsewhere) is feasible and has value 1. In Lemma 8.6,

we’ll use this notion of substitutability to show that whenever κj < 1, the agent

will at optimality put no effort into action j. Conversely, in Lemma 8.7, we’ll

show that the when κj = 1, there exists a linear mechanism β incentivizing the

solution x∗ = B · ej .

It might seem odd that this characterization depends only on κj , which is

independent of both the budget B and effort conversion functions fi; however,

the particular mechanisms that incentivize x∗ will depend on these. This will

also be true in the general case: whether or not a particular effort profile can be

incentivized will not depend on B or fi, but the exact mechanisms that do so

will.

Lemma 8.6. If κj < 1, then in any monotone mechanism M , x∗j = 0.

Proof. Intuitively, this is an argument formalizing substitution: if κj < 1, replac-

ing each unit of effort on action j with yk units of effort (where y comes from

the optimal solution to (8.4)) on each action k for k ∈ [m] weakly increases all of

the feature values Fi while making the budget constraint slack. Therefore, any

solution with xj > 0 cannot be optimal.

In more detail, consider any solution x with xj > 0. We’ll begin by showing

that the agent’s utility is at least as high in the solution x′ with x′k = xk + ykxj
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for all k 6= j and x′j = yjxj , where y is an optimal solution to the linear program

in (8.4). Note that yj ≤ κj < 1, so x′ is different from x.

We know from the constraint on (8.4) that α>y ≥ α̃j , and therefore

m∑
k=1

αkiyk ≥ αji (8.5)

for all i. Then, by (8.5),

fi

(
m∑
k=1

αkixk

)
≤ fi

(∑
k 6=j

αkixk + xj

m∑
k=1

αkiyk

)
= fi

(
m∑
k=1

αkix
′
k

)

Thus, the value of each feature weakly increases from x to x′, so in any mono-

tone mechanism M , the agent’s utility for x′ is at least as high as it is for x.

Moreover, the budget constraint on x′ isn’t tight, since

m∑
k=1

x′k =
∑
k 6=j

(xk + ykxj) + yjxj =
∑
k 6=j

xk + xj

m∑
k=1

yk <
m∑
k=1

xk ≤ B.

By the definition of a monotone mechanism, no solution for which the budget

constraint isn’t tight can be optimal, meaning x′ is not optimal. This implies that

x is not optimal.

Thus, κj < 1 implies that xj = 0 in any optimal solution. All that remains to

show in this special case is the converse: if κj = 1, there exists β that incentivizes

the effort profile x∗ = B · ej . To do so, define A(x) ∈ Rm×n to be the matrix with

entries [A(x)]ji = αjif
′
i([α

>x]i), and define aj(x) ∈ Rn to be the jth row of A(x).

Then, we can define the polytope

Lj , {β | A(x∗)β ≤ β>aj(x
∗) · 1}. (8.6)

By construction, Lj is the set of linear mechanisms that incentivize x∗. This
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is because for all k ∈ [m], every β ∈ Lj satisfies

[A(x∗)β]k ≤ β>aj(x
∗)

⇐⇒
n∑
i=1

αkiβif
′
i([α

>x∗]i) ≤
n∑
i=1

αjiβif
′
i([α

>x∗]i)⇐⇒
∂H

∂xk

∣∣∣∣
x∗
≤ ∂H

∂xj

∣∣∣∣
x∗

By Lemma E.1 in Appendix E.1, this implies that x∗ is an optimal agent response

to any β ∈ Lj . To complete the proof of this special case of Theorem 8.3, it

suffices to show that Lj is non-empty, which we do via linear programming

duality.

Lemma 8.7. If κj = 1, then Lj is non-empty.

Proof. Consider the following linear program.

max
β∈Rn

β>aj(x
∗) s.t. A(x∗)β ≤ 1 (8.7)

β ≥ 0

Clearly, if (8.7) has value at least 1, then Lj is non-empty because any β achiev-

ing the optimum is in Lj by (8.6). The dual of (8.7) is

min
y∈Rm

y>1 s.t. A(x∗)>y ≥ aj(x
∗) (8.8)

y ≥ 0

We can simplify the constraints on (8.8): for all i,

[A(x∗)>y]i ≥ [aj(x
∗)]i

⇐⇒
m∑
k=1

αkiykf
′
i([α

>x∗]i) ≥ αjif
′
i([α

>x∗]i)

⇐⇒
m∑
k=1

αkiyk ≥ αji

Thus, (8.8) is equivalent to (8.4), which has value κj = 1 by assumption. By

duality, (8.7) also has value κj = 1, meaning Lj is non-empty.

191



We have shown that if κj = 1, then any β ∈ Lj incentivizes x∗. Otherwise, by

Lemma 8.6, there are no monotone mechanisms that incentivize x∗. Next, we’ll

generalize these ideas to prove Theorem 8.3.

The general case. We’ll proceed by defining the analogue of κj in the case

where the effort profile to be incentivized has support on more than one com-

ponent. Drawing upon the reasoning in Lemmas 8.6 and 8.7, we’ll prove Theo-

rem 8.3.

Consider an arbitrary effort profile x∗ such that
∑m

i=1 x
∗
j = B, and let S(x∗)

be the support of x∗. Let αS be α with the rows not indexed by S zeroed out,

i.e., [αS]ji = αji if j ∈ S and 0 otherwise. Let 1S be the vector with a 1 for every

j ∈ S and 0 everywhere else, so 1S =
∑

j∈S ej . Similarly to how we defined κj ,

define

κS , min
y∈Rm,z∈Rm

y>1 s.t. α>y ≥ α>S z (8.9)

z>1S ≥ 1

y, z ≥ 0

Intuitively, we can think of the effort given by z as being substituted out and

replaced by y. Note that κS ≤ minj∈S κj , because the special case where zj = 1

yields (8.4). In a generalization of Lemma 8.6, we’ll show that κS < 1 implies

that no optimal solution has xj > 0 for all j ∈ S. Lemma 8.6 formalized an

argument based on substitutability, in which the effort invested in a particular

action could be moved to other actions while only improving the agent’s utility.

We generalize this to the case when effort invested on a subset of the actions can

be replaced by moving that effort elsewhere.
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Lemma 8.8. For any S ⊆ [m], if κS < 1, then any effort profile x such that xj > 0 for

all j ∈ S cannot be optimal.

Proof. The following proof builds on that of Lemma 8.6. Let y and z be optimal

solutions to (8.9). We know that for all i,

m∑
j=1

αjiyj ≥
∑
j∈S

αjizj (8.10)

Let c , minj∈S xj/zj . Note that c > 0 because by assumption, xj > 0 for all

j ∈ S. It is well-defined because z>1S ≥ 1 and z ≥ 0, so zj is strictly positive for

some j ∈ S. By this definition, xj − czj ≥ 0 for all j ∈ S.

We’ll again define another solution x′ with utility at least as high as x, but

with the budget constraint slack. For all i,

[α>x]i =
m∑
j=1

αjixj

=
∑
j /∈S

αjixj +
∑
j∈S

αjixj

=
∑
j /∈S

αjixj +
∑
j∈S

αji(xj − czj) + c
∑
j∈S

αjizj

≤
∑
j /∈S

αjixj +
∑
j∈S

αji(xj − czj) + c
m∑
j=1

αjiyj (By (8.10))

=
∑
j /∈S

αji(xj + cyj) +
∑
j∈S

αji(xj + c(yj − zj))

, [α>x′]i,

where we have defined

x′j ,


xj + cyj j /∈ S

xj + c(yj − zj) z ∈ S
.
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Because xj−czj ≥ 0 for all j ∈ S, x′ is a valid effort profile. Since fi is increasing,

fi([α
>x]i) ≤ fi([α

>x′]i). However,

m∑
i=1

x′j =
∑
j /∈S

xj + cyj +
∑
j∈S

xj + c(yj − zj) = x>1 + c(y>1− z>1S)

≤ x>1 + c(κS − 1) < B

Thus, the budget constraint for x′ is not tight, and so for any monotone mecha-

nism, there exists a solution x′′ which is strictly better than x′ and x, meaning x

is not optimal.

Lemma 8.8 tells us which subsets of variables definitely can’t be jointly in-

centivized. However, given a subset of variables, it doesn’t a priori tell us if

these variables can be jointly incentivized, and if so, which particular effort pro-

files on these variables are incentivizable. In fact, we’ll show that any x∗ such

that κS(x∗) = 1 is incentivizable.

Lemma 8.9. Define

L(x) ,

{
β | A(x)β ≤ 1

B
x>A(x)β · 1

}
(8.11)

If κS(x∗) = 1, then L(x∗) is the set of linear mechanisms that incentivize x∗, and L(x∗)

is non-empty.

Proof. Let S = S(x∗). We know that for any z such that z>1S ≥ 1,

κS ≤ κS(z) , min
y∈Rm

y>1 s.t. α>y ≥ α>S z (8.12)

y ≥ 0

because we’ve just written (8.9) without allowing for optimization over z.

Therefore, if κS = 1, then κS(z) = 1 for any z. We can write each constraint
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[α>y]i ≥ [α>S z]i as

[α>y]i ≥ [α>S z]i ⇐⇒
m∑
j=1

αjiyj ≥
∑
j∈S

αjizj

⇐⇒
m∑
j=1

αjif
′
i([α

>x∗]i)yj ≥
∑
j∈S

αjif
′
i([α

>x∗]i)zj

⇐⇒
m∑
j=1

[A(x∗)]>jiyj ≥
∑
j∈S

[A(x∗)]jizj

Thus, (8.12) is equivalent to the following optimization, where similarly to the

definition of αS , we define AS(x) to be A(x) with all rows j /∈ S zeroed out.

κS(z) = min
y∈Rm

y>1 s.t. A(x∗)>y ≥ AS(x∗)>z (8.13)

y ≥ 0

The dual of (8.13) is

η(z) , max
β∈Rn

β>(AS(x∗)>z) s.t. A(x∗)β ≤ 1 (8.14)

β ≥ 0

Thus, (8.14) has value η(z) = κS(z) = 1. Recall that

L(x∗) = {β | A(x∗)β ≤ 1

B
x∗>A(x∗)β · 1}.

Clearly, L(x∗) is non-empty because plugging in z = x∗

B
, (8.14) has value η(z) =

1, meaning there exists β such that for all j,

η

(
x∗

B

)
=

1

B
β>(AS(x∗)>x∗) = 1 ≥ [A(x∗)β]j (8.15)

We’ll show that β incentivizes the agent to invest x∗ if and only if β ∈ L(x∗).

Note that (8.15) is true if and only if

∂H

∂xj

∣∣∣∣
x∗
≤
∑
k∈S

x∗k
B

∂H

∂xk

∣∣∣∣
x∗
. (∀j ∈ [m])
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The right hand side is the convex combination of the partial derivatives of H

with respect to each of the k ∈ S. Since this convex combination is at least as

large as each partial in the combination, it must be the case that all of these

partials on the right hand side are equal to one another. In other words, this is

true if and only if ∂H
∂xj

∣∣∣
x∗

= ∂H
∂xj′

∣∣∣
x∗

for all j, j′ ∈ S.

By Lemma E.1 in Appendix E.1, this is true if and only if x∗ is an optimal

effort profile, meaning L(x∗) is exactly the set of linear mechanisms that incen-

tivize x∗.

Thus, we’ve shown Theorem 8.3: for any target effort profile x∗, either

κS(x∗) = 1, in which case any β ∈ L(x∗) incentivizes x∗, or κS(x∗) < 1, in which

case no monotone mechanism incentivizes x∗ by Lemma 8.8.

8.3 Optimizing other Objectives

So far, we have given a tight characterization of which effort profiles can be

incentivized. Moreover, we have shown that whenever an effort profile can be

incentivized, we can compute a set of linear mechanisms that do so. However,

this still leaves room for the evaluator to optimize over other preferences. For

instance, perhaps profiles that distribute effort among many activities are more

desirable, or perhaps the evaluator has a more complex utility function over the

agent’s effort profile.

In this section, we consider the feasibility of such optimization subject to the

constraints imposed by incentivizability. We show that optimization over effort

profiles is possible in particular instances, but in general, it is computationally
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hard to optimize even simple objectives over incentivizable effort profiles.

Incentivizing a subset of variables. For the remainder of this section, we will

assume that the evaluator has a set of designated actions D ⊆ [m], and they

want to incentivize the agent to only invest in actions in D. Recall that a set of

actions S is incentivizable if and only if κS = 1, where κS is defined in (8.9). We

define the set system

FD = {S ⊆ D | κS = 1} (8.16)

By Theorem 8.3, FD gives the sets of actions that can be jointly incentivized.

As we will show, a consequence of our results from Section 8.2 is that FD is

downward-closed, meaning that if S ∈ FD, then S ′ ∈ FD for any S ′ ⊆ S.

We begin by characterizing when it is feasible to incentivize some x such that

S(x) ⊆ D. As the following lemma shows, this can be done if and only if some

individual j ∈ D is incentivizable on its own.

Lemma 8.10. It is possible to incentivize effort in a subset of a designated set of actions

D ⊆ [m] if and only if maxj∈D κj = 1.

Proof. The set system FD is downward closed, since κS∪{j} = 1 implies κS = 1

for all S, j. This is because any solution to (8.9) for S is a solution to (8.9) for

S ∪ {j}, so κS ≥ κS∪{j}. Therefore, if x is such that S(x) ⊆ D is incentivizable,

meaning κS(x) = 1, then κj = 1 for all j ∈ S(x). If κj < 1 for all j ∈ D, then no x

such that S(x) ⊆ D is incentivizable.

Thus, there exists an incentivizable x such that S(x) ⊆ D if and only if there

is some j ∈ D such that the agent can be incentivized to invest all of its budget

into xj .
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Objectives over effort profiles. In the remainder of this section, we prove The-

orem 8.5. Lemma 8.10 shows that if the evaluator wants the agent to only invest

effort into a subset D of actions, one solution might be to simply incentivize

them to invest all of their effort into a single j ∈ D. However, this might not be

a satisfactory solution — the evaluator may want the agent to engage in a di-

verse set of actions, or to invest at least some amount in each designated action.

Thus, the evaluator may have some other objective beyond simply incentivizing

the designated actions D.

We formalize this as follows: suppose the evaluator has some objective g :

Rm → R over the agent’s effort profile x, and wants to pick the x that maximizes

g subject to the constraint that x is incentivizable and S(x) ⊆ D. Formally, this

is

arg max
x∈Rm

g(x) s.t. κS(x) = 1 (8.17)

S(x) ⊆ D

To make this more tractable, we assume that g is concave, as it will in general

be hard to optimize arbitrary non-concave functions. We will begin by showing

that this optimization problem is feasible when κD = 1, or equivalently, when

D ∈ FD. We will extend this to show that when |D| is small, (8.17) can can

be solved. In general, however, we will show that due to the incentivizability

constraint, this is computationally hard.

First, we consider the case where κD = 1. Here, it is possible to find a mech-

anism to maximize g(x) because any x in the simplex {x |
∑

j∈D xj = B} is

incentivizable by Theorem 8.3. Thus, the evaluator could simply maximize g

over this simplex to get some effort profile x∗ and find a linear mechanism β to
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incentivize x∗. Extending this idea, if κD < 1 but |D| is small, the evaluator can

simply enumerate all subsets S ⊆ D such that κS = 1, optimize g over each one

separately, and pick the optimal x∗ out of all these candidates.

However, in general, it is NP-hard to optimize a number of natural objectives

over the set of incentivizable effort profiles if κD < 1. From Theorem 8.3, we

know that incentivizable effort profiles x can be described by their support S(x),

which must satisfy κS(x) = 1. The following lemma shows that this constraint on

x makes it difficult to optimize even simple functions because the family of sets

FD = {S ⊆ D | κS = 1} can be used to encode the set of independent sets of an

arbitrary graph. Using this fact, we can show that there exist concave objectives

g that are NP-hard to optimize subject to the incentivizability constraint.

Lemma 8.11. Given a graph G = (V,E), there exists an effort graph G′ and a set of

designated actions D such that S ⊆ D is an independent set of G if and only if κS = 1

in G′.

Proof. We construct a designated action for each v ∈ V , so D = V . We also

construct an undesirable action for each e ∈ E, so the total number of actions is

m = |V | + |E|. For ease of indexing, we’ll refer to the designated actions as xv

for v ∈ V and the remaining actions as xe for e ∈ E.

We construct a feature Fv for each vertex v ∈ V . Then, let αv,v = 3 for all

v ∈ V and αe,v = 2 for all v ∈ V . For each e ∈ E, this creates the gadget shown

in Figure 8.3.

First, we’ll show that if (u, v) ∈ E, then any S ⊆ D containing both u and

v has κS < 1. Recall the definition of κS in (8.9). Consider the solution with

zu = zv = 1
2

and ye = 2
3
. This is feasible, so κS ≤ 2

3
< 1. By the contrapositive,
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Figure 8.3: Gadget to encode independent sets

if κS = 1 (meaning S is incentivizable), S cannot contain any u, v such that

(u, v) ∈ E, meaning S forms an independent set in G.

To show the other direction, consider any independent set S in G. By con-

struction, S ⊆ D because D = V . Then, in the optimal solution (y, z) to (8.9),

we will show that yu = zu for all u ∈ S, meaning κS = y>1 ≥ 1. To do

so, consider the constraint [α>y]u ≥ [α>S z]u for any u ∈ S. This is simply

3yu + 2
∑

e=(u,v)∈E ye ≥ 3zu. Because S is an independent set, zv = 0 for any v

such that (u, v) ∈ E, so this is the only constraint in which any such ye appears.

Therefore, it is strictly optimal to choose yu = zu and ye = 0 for all e = (u, v) ∈ E.

As a result, yu = zu for all u ∈ S, meaning κS ≥
∑

u∈S yu =
∑

u∈S zu ≥ 1 by the

constraint z>1S ≥ 1.

Thus, if the evaluator wants to find an incentivizable effort profile x such

that S(x) ⊆ D (the agent only invests effort in designated actions), maximizing

an objective like g(x) = ‖x‖0 (the number of actions with non-zero effort) is NP-

hard, due to a reduction from the maximum independent set problem. Note

that ‖x‖0 is concave for nonnegative x.

Moreover, other simple and natural objectives are hard to optimize as well.

Using a construction similar to the one in Figure 8.3, we can create effort graphs

with a set of designated actions D in which S ⊆ D is incentivizable if and only
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if |S| ≤ k, meaning ‖x‖0 ≤ k. This is known to make optimizing even sim-

ple quadratic functions (e.g. ‖Ax − y‖2 for some matrix A and vector y) NP-

hard (Natarajan, 1995). In general, then, it is difficult to find the optimal agent

effort profile subject to the incentivizability constraint.

8.4 The Structure of the Space of Linear Mechanisms

Thus far, we have seen how to construct linear mechanisms that incentivize par-

ticular effort profiles, finding that the mechanisms that do so form a polytope.

Suppose that the evaluator doesn’t have a particular effort profile that they want

to incentivize, but instead wants the agent to only invest effort in a subset of in-

tended actions D ⊆ [m]. Generalizing the definition of L(x∗) as the set of linear

mechanisms incentivizing x∗, we define L(D) to be the set of linear mechanisms

incentivizing any x such that S(x) ⊆ D.3 In the remainder of this section, we

give structural results characterizing L(D), showing that in general it can be

highly nonconvex, indicating the richness of the solution space of this problem.

In the simplest case where |D| = 1, meaning the evaluator wants to incen-

tivize a single action, we know by (8.6) that L(D) is simply a polytope. This

makes it possible for the evaluator to completely characterize L(D) and even

maximize any concave objective over it.

However, in general, L(D) can display nonconvexities in several ways. Fig-

ure 8.3 gives an example such that if the evaluator only wants to incentivize xu

and xv, then L(D) = {β | ‖β‖0 = 1}, meaning β has exactly one nonzero entry.

This can be generalized to an example where L(D) = {β | ‖β‖0 ≤ k} for any k,

3With this notation, we could write Lj as defined in Section 8.2 as L({j}).
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which amounts to a nonconvex sparsity constraint.

This form of nonconvexity arises because we’re considering mechanisms

that incentivize x such that S(x) ⊆ D. In particular, if S and S ′ are disjoint

subsets of D, then we wouldn’t necessarily expect the union of L(S) and L(S ′)

to be convex. However, we might hope that if each L(S) for S ⊆ D is convex or

can be written as the union of convex sets, then L(D) could also be written as

the union of convex sets.

x1

x2

x3

x4

F1

F2

F3

H

1

2
1

1
2

β1
β2

β3

Figure 8.4: Non-convexity of L∗(D)

Unfortunately, this isn’t the case. Let L∗(D) be the set of mechanisms incen-

tivizing x such such that S(x) = D (as opposed to S(x) ⊆ D). L∗(D) may still be

nonconvex, depending on the particular effort conversion functions f(·). Con-

sider the effort graph shown in Figure 8.4 with B = 1, f1(y) = f2(y) = 1 − e−y

and f3(y) = 1 − e−2y. Let D = {1, 3}. To incentivize x1 > 0 and x3 > 0 simulta-

neously with x2 = x4 = 0, it must be the case that

∂H

∂x1

∣∣∣∣
x

= β1f
′
1(x1) = β2f

′
2(x3) + β3f

′
3(x3) =

∂H

∂x3

∣∣∣∣
x

.

To incentivize x2 = x4 = 0, we must also have

∂H

∂x2

∣∣∣∣
x

= 2β2f
′
2(x3) ≤ β2f

′
2(x3) + β3f

′
3(x3) =

∂H

∂x3

∣∣∣∣
x

∂H

∂x4

∣∣∣∣
x

= 2β3f
′
3(x3) ≤ β2f

′
2(x3) + β3f

′
3(x3) =

∂H

∂x3

∣∣∣∣
x
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This is only possible if β2f
′
2(x3) = β3f

′
3(x3), meaning β incentivizes x such that

S(x) = {1, 3} if and only if

β1f
′
1(x1) = β2f

′
2(x3) + β3f

′
3(x3) (8.18)

β2f
′
2(x3) = β3f

′
3(x3) (8.19)

Combining (8.18) and (8.19), we get β1f
′
1(x1) = 2β2f

′
2(x3), implying

β1f
′
1(x1) = 2β2f

′
2(x3)

β′1e
−x1 = 2β2e

−x3 (8.20)

β2 =
β1e

x3−x1

2
(8.21)

Similarly, we can derive

β3 =
β1e

2x3−x1

4
(8.22)

We’ll show non-convexity by giving two linear mechanisms β and β′ that

both incentivize an x such that S(x) = {1, 3}, but β′′ = 1
2
(β + β′) does not

incentivize such an x.

Let β and β′ incentivize x = [1/3 0 2/3 0]> and x′ = [2/3 0 1/3 0]> respectively.

Without loss of generality, we can set β1 = β′1 = 1. Using (8.21) and (8.22), we

get

β =

[
1 e1/3

2
e
4

]>
β′ =

[
1 e−1/3

2
1
4

]>
Then, let β′′ = 1

2
(β + β′). If β′′ incentivizes x∗ such that S(x∗) = {1, 3}, then
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by (8.19), it must be the case that

β′′2f
′
2(x∗3) = β′′3f

′
3(x∗3)

β′′2e
−x∗3 = 2β′′3e

−2x∗3

ex
∗
3 =

2β′′3
β′′2

x∗3 = log

(
e+ 1

e1/3 + e−1/3

)
≈ 0.566

On the other hand, by (8.20), we must also have

β′′1f
′
1(x∗1) = 2β′′2e

−x∗3

e−x
∗
1 =

e1/3 + e−1/3

2
exp

(
− log

(
e+ 1

e1/3 + e−1/3

))
e−x

∗
1 =

e1/3 + e−1/3

2
· e

1/3 + e−1/3

e+ 1

x∗1 = − log

(
(e1/3 + e−1/3)2

2(e+ 1)

)
≈ 0.511

Such a solution would fail to respect the budget constraint (since x∗1 + x∗3 > 1 =

B), meaning β′′ cannot incentivize x∗ such that S(x∗) = {1, 3}. In fact, the above

analysis shows that for any x∗ incentivized by β′′, S(x∗) must include either 2

or 4 because β′′ incentivizes neither x∗1 = 1 nor x∗3 = 1, meaning the only way to

use the entire budget is to set x∗2 > 0 or x∗4 > 0. Thus, despite the fact that both

β and β′ incentivize effort profiles with support {1, 3}, a convex combination of

them does not. As a result, the set of linear mechanisms incentivizing a subset

of actions may in general exhibit complex structures that don’t lend themselves

to simple characterization.

We visualize this nonconvexity in Figure 8.5, where for clarity we modify

the effort graph in Figure 8.4 by setting α22 = 0. The yellow region corresponds

to (β2, β3) values such that β = (1 β2 β3)> incentivizes x such that S(x) = {1, 3}.

Note that the upper left edge of this region is slightly curved, producing the
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non-convexity. As a result, the set of linear mechanisms incentivizing a subset

of actions may in general exhibit complex structures that don’t lend themselves

to simple characterization.

Figure 8.5: Non-convexity in (β2, β3) pairs

Implications for optimization. The complexity of L(D) has immediate hard-

ness implications for optimizing objectives over the space of linear mechanisms.

For example, mechanisms that distribute weight on multiple features may be

preferable because in practice, measuring multiple distinct features may lead to

less noisy evaluations. We might also consider the case where the evaluator has

historical data A ∈ Rr×n and y ∈ Rr, where each row of A contains the features

F of some individual and each entry of y contains their measured outcome of

some sort. Then, in the absence of strategic considerations, the evaluator could

just choose β that minimizes squared error ‖Aβ − y‖2 between the scores given

by the mechanism and the outcomes y in the dataset. As noted above, there are

examples for which L(D) = {β | ‖β‖0 ≤ k}, which is known to make mini-

mizing squared error NP-hard (Natarajan, 1995). However, in the special case
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when D = {j} (there’s only one action the evaluator wants to incentivize), then

if κj = 1, the set of linear mechanisms incentivizing x∗ = B · ej is just the con-

vex polytope Lj defined in (8.6). Thus, it is possible to maximize any concave

objective over this set.

8.5 Conclusion

Strategic behavior is a major challenge in designing simple and transparent

evaluation mechanisms. In this chapter, we have developed a model in which

strategic behavior can be directed toward specified actions through appropriate

designs.

Our results leave open a number of interesting questions. All of our analy-

sis has been for the case in which an evaluator designs a mechanism optimized

for the parameters of a single agent (or for a group of agents who all have the

same parameters). Extending this reasoning to consider the incentives of a het-

erogeneous group of agents, where the parameters differ across members of the

group, is a natural further direction. In addition, we have assumed through-

out that agents behave rationally, in that they perfectly optimize their allocation

of effort. But it would also be interesting to consider agents with potential bi-

ases that reflect human behavioral principles, resulting in sub-optimal behavior

that follows certain structured properties. Finally, although we have shown that

linear mechanisms suffice whenever a monotone mechanism can incentivize in-

tended behavior, if the output of the mechanisms is constrained in some way

(e.g. binary classification), it is an open question to determine what types of

mechanisms are appropriate.
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CHAPTER 9

ALGORITHMIC MONOCULTURE AND SOCIAL WELFARE

The rise of algorithms used to shape societal choices has been accompanied

by concerns over monoculture—the notion that choices and preferences will be-

come homogeneous in the face of algorithmic curation. One of many canonical

articulations of this concern was expressed in the New York Times by Farhad

Manjoo, who wrote, “Despite the barrage of choice, more of us are enjoying

more of the same songs, movies and TV shows” (Manjoo, 2019). Because of al-

gorithmic curation, trained on collective social feedback (Salganik et al., 2006),

our choices are converging.

When we move from the influence of algorithms on media consumption and

entertainment to their influence on high-stakes screening decisions about whom

to offer a job or whom to offer a loan, the concerns about algorithmic monocul-

ture become even starker. Even if algorithms are more accurate on a case-by-

case basis, a world in which everyone uses the same algorithm is susceptible to

correlated failures when the algorithm finds itself in adverse conditions. This

type of concern invokes an analogy to agriculture, where monoculture makes

crops susceptible to the attack of a single pathogen (Power and Follett, 1987); the

analogy has become a mainstay of the computer security literature (Birman and

Schneider, 2009), and it has recently become a source of concern about screening

decisions for jobs or loans as well. Discussing the post-recession financial sys-

tem, Citron and Pasquale (2014) write, “Like monocultural-farming technology

vulnerable to one unanticipated bug, the converging methods of credit assess-

ment failed spectacularly when macroeconomic conditions changed.”

The narrative around algorithmic monoculture thus suggests a trade-off: in
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“normal” conditions, a more accurate algorithm will improve the average qual-

ity of screening decisions, but when conditions change through an unexpected

shock, the results can be dramatically worse. But is this trade-off genuine? In

the absence of shocks, does monocultural convergence on a single, more accu-

rate screening algorithm necessarily lead to better average outcomes?

In this chapter, we show that algorithmic monoculture poses risks even in

the absence of shocks. We investigate a model involving minimal assumptions,

in which two competing firms can either use their own independent heuristics

to perform screening decisions or they can use a more accurate algorithm that

is accessible to both of them. (Again, we think of screening job applicants or

loan applicants as a motivating scenario.) We find that even though it would

be rational for each firm in isolation to adopt the algorithm, it is possible for

the use of the algorithm by both firms to result in decisions that are worse on

average. This in turn leads, in the language of game theory, to a type of “Braess’

paradox” (Braess, 1968) for screening algorithms: the introduction of a more

accurate algorithm can drive the firms into a unique equilibrium that is worse

for society than the one that was present before the algorithm existed.

Note that the harm here is to overall performance. Another common con-

cern about algorithmic monoculture in screening decisions is the harm it can

cause to specific individuals: if all employers or lenders use the same algorithm

for their screening decisions, then particular applicants might find themselves

locked out of the market when this shared algorithm doesn’t like their applica-

tion for some reason. While this is clearly also a significant concern, our results

show that it would be a mistake to view the harm to particular applicants as

necessarily balanced against the gains in overall accuracy — rather, it is possi-
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ble for algorithmic monoculture to cause harm not just to particular applicants

but also to the average quality of decisions as well.

Our results thus have a counterintuitive flavor to them: if an algorithm is

clearly more accurate than the alternatives when one entity uses it, why does

the accuracy become worse than the alternatives when multiple entities use it?

The analysis relies on deriving some novel probabilistic properties of rankings,

establishing that when we are constructing a ranking from a probability dis-

tribution representing a “noisy” version of a true ordering, we can sometimes

achieve less error through an incremental construction of the ranking — build-

ing it one element at a time — than we can by constructing it in a single draw

from the distribution. We now set up the basic model, and then frame the prob-

abilistic questions that underpin its analysis.

Figure 9.1: Ranking candidates by algorithmically generated scores
(Source: https://business.linkedin.com/talent-solutions/blog/recruiting-
strategy/2018/the-new-way-companies-are-evaluating-candidates-soft-skills-
and-discovering-high-potential-talent)
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9.1 Algorithmic hiring as a case study

To instantiate the ideas introduced thus far, we’ll focus on the case of algorith-

mic hiring, where recruiters make decisions based in part on scores or recom-

mendations provided by data-driven algorithms. In this setting, we’ll propose

and analyze a stylized model of algorithmic hiring with which we can begin to

investigate the effects of algorithmic monoculture.

Informally, we can think of a simplified hiring process as follows: rank all

of the candidates (see Figure 9.1) and select the first available one. We sup-

pose that each firm has two options to form this ranking: either develop their

own, private ranking (which we will refer to as using a “human evaluator”), or

use an algorithmically produced ranking. We assume that there is a single ven-

dor of algorithmic rankings, so all firms choosing to use the algorithm receive

the same ranking. The firms proceed sequentially, each hiring their favorite re-

maining candidate according to the ranking they’re using—human-generated

or algorithmic. Thus, the we can frame the effects of monoculture as follows:

are firms better off using the more accurate, common algorithm, or should they

instead employ their own less accurate, but private, evaluations?

In what follows, we’ll introduce a formal model of evaluation and selection,

using it to analyze a setting in which firms seek to hire candidates.

9.1.1 Modeling ranking

More formally, we model the n candidates as having intrinsic values x1, . . . , xn,

where any employer would derive utility xi from hiring candidate i. Through-
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out the chapter, we assume without loss of generality that x1 > x2 > · · · > xn.

These values, however, are unknown to the employer; instead, they must use

some noisy procedure to rank the candidates. We model such a procedure as a

randomized mechanism R that takes in the true candidate values and draws a

permutation π over those candidates from some distribution. Our main results

hold for families of distributions over permutations as defined below:

Definition 9.1 (Noisy permutation family). A noisy permutation family Fθ is a

family of distributions over permutations that satisfies the following conditions for any

θ > 0 and set of candidates x:

1. (Differentiability) For any permutation π, PrFθ [π] is continuous and differen-

tiable in θ.

2. (Asymptotic optimality) For the true ranking π∗, limθ→∞ PrFθ [π
∗] = 1.

3. (Monotonicity) For any (possibly empty) S ⊂ x, let π(−S) be the partial ranking

produced by removing the items in S from π. Let π(−S)
1 denote the value of the

top-ranked candidate according to π(−S). For any θ′ > θ,

EFθ′
[
π

(−S)
1

]
≥ EFθ

[
π

(−S)
1

]
. (9.1)

Moreover, for S = ∅, (9.1) holds with strict inequality.

θ serves as an “accuracy parameter”: for large θ, the noisy ranking converges

to the true ranking over candidates. The monotonicity condition states that a

higher value of θ leads to a better first choice, even if some of the candidates are

removed after ranking. Removal after ranking (as opposed to before) is impor-

tant because some of the ranking models we will consider later do not satisfy In-

dependence of Irrelevant Alternatives. Examples of noisy permutation families
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include Random Utility Models (Thurstone, 1927) and the Mallows Model (Mal-

lows, 1957), both of which we will discuss in detail later.

As an objective function to evaluate the effects of different approaches to

ranking and selection, we’ll consider each individual employer’s utility as well

as the sum of employers’ utilities. We think of this latter sum as the social welfare,

since it represents the total quality of the applicants who are hired by any firm.

(For example, if all firms deterministically used the correct ranking, then the

top applicants would be the ones hired, leading to the highest possible social

welfare.)

9.1.2 Modeling selection

Each firm in our model has access to the same underlying pool of n candidates,

which they rank using a randomized mechanism R to get a permutation π as

described above. Then, in a random order, each firm hires the highest-ranked

remaining candidate according to their ranking. Thus, if two firms both rank

candidate i first, only one of them can hire i; the other must hire the next avail-

able candidate according to their ranking. In our model, candidates automati-

cally accept the offer they get from a firm. For the sake of simplicity, throughout

this chapter, we restrict ourselves to the case where there are two firms hiring

one candidate each, although our model readily generalizes to more complex

cases.

As described earlier, each firm can choose to use either a private “human

evaluator” or an algorithmically generated ranking as its randomized mecha-

nism R. We assume that both candidate mechanisms come from a noisy per-
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mutation family Fθ, with differing values of the accuracy parameter θ: human

evaluators all have the same accuracy θH , and the algorithm has accuracy θA.

However, while the human evaluator produces a ranking independent of any

other firm, the algorithmically generated ranking is identical for all firms who

choose to use it. In other words, if two firms choose to use the algorithmically

generated ranking, they will both receive the same permutation π.

The choice of which ranking mechanism to use leads to a game-theoretic

setting: both firms know the accuracy parameters of the human evaluators (θH)

and the algorithm (θA), and they must decide whether to use a human evaluator

or the algorithm. This choice introduces a subtlety: for many ranking models, a

firm’s rational behavior depends not only on the accuracy of the ranking mech-

anism, but also on the underlying candidate values x1, . . . , xn. Thus, to fully

specify a firm’s behavior, we assume that x1, . . . , xn are drawn from a known

joint distribution D. Our main results will hold for any D, meaning they apply

even when the candidate values (but not their identities) are deterministically

known.

9.1.3 Stating the main result

Our main result is a pair of intuitive conditions under which a Braess’ Paradox-

style result occurs—in other words, conditions under which there are accuracy

parameters for which both firms rationally choose to use the algorithmic rank-

ing, but social welfare (and each individual firm’s utility) would be higher if

both firms used independent human evaluators. Recall that the two firms hire

in a random order. For a permutation π, let πi denote the value of the ith-ranked
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candidate according to π.

We first state the two conditions, and then the theorem based on them.

Definition 9.2 (Preference for the first position.). A candidate distribution D and

noisy permutation familyFθ exhibits a preference for the first position if for all θ > 0,

if π, σ ∼ Fθ,

E [π1 − π2 | π1 6= σ1] > 0.

In other words, for any θ > 0, suppose we draw two permutations π and σ

independently from Fθ, and suppose that the first-ranked candidates differ in

π and σ. Then the expected value of the first-ranked candidate in π is strictly

greater than the expected value of the second-ranked candidate in π.

Definition 9.3 (Preference for weaker competition.). A candidate distribution D

and noisy permutation family Fθ, exhibits a preference for weaker competition if

the following holds: for all θ1 > θ2, σ ∼ Fθ1 and π, τ ∼ Fθ2 ,

E
[
π

(−{σ1})
1

]
< E

[
π

(−{τ1})
1

]
.

Intuitively, suppose we have a higher accuracy parameter θ1 and a lower

accuracy parameter θ2 < θ1; we draw a permutation π from Fθ2 ; and we then

derive two permutations from π: π(−{σ1}) obtained by deleting the first-ranked

element of a permutation σ drawn from the more accurate distribution Fθ1 , and

π(−{τ1}) obtained by deleting the first-ranked element of a permutation τ drawn

from the less accurate distribution Fθ2 .

214



Then the expected value of the first-ranked candidate in π(−{τ1}) is strictly

greater than the expected value of the first-ranked candidate in π(−{σ1}) — that

is, when a random candidate is removed from π, the best remaining candidate

is better in expectation when the randomly removed candidate is chosen based

on a noisier ranking.

Using these two conditions, we can state our theorem.

Theorem 9.4. Suppose that a given candidate distribution D and noisy permutation

family Fθ satisfy Definition 9.2 (preference for the first position) and Definition 9.3

(preference for weaker competition).

Then, for any θH , there exists θA > θH such that using the algorithmic ranking is

a strictly dominant strategy for both firms, but social welfare would be higher if both

firms used human evaluators.

9.1.4 A Preference for Independence

Before we prove Theorem 9.4, we provide some intuition for the two conditions

in Definitions 9.2 and 9.3. The second condition essentially says that it is better

to have a worse competitor: the firm randomly selected to hire second is better

off if the firm that hires first uses a less accurate ranking (in this case, a human

evaluator instead of the algorithmic ranking).

The first condition states that when two identically distributed permutations

disagree on their first element, the first-ranked candidate according to either

permutation is still better, in expectation, than the second-ranked candidate ac-

cording to either permutation. In what follows, we’ll demonstrate that this con-
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dition implies that firms in our model rationally prefer to make decisions using

independent (but equally accurate) rankings.

To do so, we need to introduce some notation. Recall that the two firms

hire in a random order. Given a candidate distribution D, let Us(θA, θH) denote

the expected utility of the first firm to hire a candidate when using ranking s,

where s ∈ {A,H} is either the algorithmic ranking or the ranking generated

by a human evaluator respectively. Similarly, let Us1s2(θA, θH) be the expected

utility of the second firm to hire given that the first firm used strategy s1 and the

second firm uses strategy s2, where again s1, s2 ∈ {A,H}. Finally, let π, σ ∼ Fθ.

In what follows, we will show that for any θ,

E [π1 − π2 | π1 6= σ1] > 0⇐⇒ UAH(θ, θ) > UAA(θ, θ). (9.2)

In other words, whenever a ranking model meets Definition 9.2, the firm chosen

to select second will prefer to use an independent ranking mechanism from it’s

competitor, given that the ranking mechanisms are equally accurate.

First, we can write

UAH(θA, θH) = E
[
π1 · 1{π1 6=σ1} + π2 · 1{π1=σ1}

]
UAA(θA, θH) = E [σ2]

= E
[
σ2 · 1{π1 6=σ1} + σ2 · 1{π1=σ1}

]
Thus,

UAH(θA, θH)− UAA(θA, θH) = E
[
(π1 − σ2) · 1{π1 6=σ1} + (π2 − σ2) · 1{π1=σ1}

]
.

Conditioned on either π1 = σ1 or π1 6= σ1, π2 and σ2 are identically distributed

and therefore have equal expectations. As a result,

UAH(θA, θH)− UAA(θA, θH) = E
[
(π1 − π2) · 1{π1 6=σ1}

]
, (9.3)
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which implies (9.2). Thus, whenever a ranking model meets Definition 9.2, firms

rationally prefer independent assessments, all else equal.

To provide some intuition for what this preference for independence entails,

consider a setting where a hiring committee seeks to hire two candidates. They

meet, produce a ranking σ, and hire σ1 (the best candidate according to σ). Sup-

pose they have the option to either hire σ2 or reconvene the next day to form

an independent ranking π and hire the best remaining candidate according to

π; which option should they choose? It’s not immediately clear why one op-

tion should be better than the other. However, whenever Definition 9.2 is met,

the committee should prefer to reconvene and make their second hire according

to a new ranking π. After proving Theorem 9.4, we will provide natural rank-

ing models that meet Definition 9.2, implying that under these ranking models,

independent re-ranking can be beneficial.

9.1.5 Proving Theorem 9.4

With this intuition, we are ready to prove Theorem 9.4.

Proof of Theorem 9.4. For given values of θA and θH , using the algorithmic rank-

ing is a strictly dominant strategy as long as

UA(θA, θH) + UAA(θA, θH) > UH(θA, θH) + UAH(θA, θH) (9.4)

UA(θA, θH) + UHA(θA, θH) > UH(θA, θH) + UHH(θA, θH) (9.5)

Note that (9.5) is always true for θA > θH by the monotonicity assumption on

Fθ: UA(θA, θH) ≥ UH(θA, θH) because a more accurate ranking produces a top-

ranked candidate with higher expected value, and UHA(θA, θH) ≥ UHH(θA, θH)
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because this holds even conditioned on removing any candidate from the pool

(in this case, the candidate randomly selected by the firm that hires first). Cru-

cially, in (9.5), the first firm’s random selection is independent from the second

firm’s selection; the same logic could not be used to argue that (9.4) always

holds for θA ≥ θH . Moreover, when θA > θH , UA(θA, θH) > UH(θA, θH) by the

monotonicity assumption, meaning (9.5) holds.

Let Ws1s2(θA, θH) denote social welfare when the two firms employ strate-

gies s1, s2 ∈ {A,H}. Then, when both firms use the algorithmic ranking, social

welfare is

WAA(θA, θH) = UA(θA, θH) + UAA(θA, θH).

By (9.2), Definition 9.2 implies that for any θ, UAA(θ, θ) < UAH(θ, θ), implying

UA(θH , θH) + UAA(θH , θH) < UH(θH , θH) + UAH(θH , θH).

However, by the optimality assumption on Fθ in Definition 9.1, for sufficiently

large θ̂A,

UA(θ̂A, θH) + UAA(θ̂A, θH) > UH(θ̂A, θH) + UAH(θ̂A, θH).

Note that Us1(θA, θH) and Us1s2(θA, θH) are continuous with respect to θA for

any s1, s2 ∈ {A,H} since they are expectations over discrete distributions with

probabilities that are by assumption differentiable with respect to θA. Therefore,

by the Differentiability assumption onFθ from Definition 9.1, there is some θ∗A >

θH such that

UA(θ∗A, θH) + UAA(θ∗A, θH) = UH(θ∗A, θH) + UAH(θ∗A, θH), (9.6)

i.e., given that its competitor uses the algorithmic ranking, a firm is indifferent

between the two strategies. For such θ∗A, using the algorithmic ranking is still a
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weakly dominant strategy. By definition of WAA,

WAA(θ∗A, θH) = UH(θ∗A, θH) + UAH(θ∗A, θH).

If both firms had instead used human evaluators, social welfare would be

WHH(θ∗A, θH) = UH(θ∗A, θH) + UHH(θ∗A, θH).

By Definition 9.3, for σ ∼ FθA∗ and π, τ ∼ FθH ,

E
[
π

(−{σ1})
1

]
< E

[
π

(−{τ1})
1

]
.

Note that

UAH(θ∗A, θH) = E
[
π

(−{σ1})
1

]
UHH(θ∗A, θH) = E

[
π

(−{τ1})
1

]
Thus, Definition 9.3 implies that for θA∗ > θH , UHH(θ∗A, θH) > UAH(θ∗A, θH). As a

result for θA∗ > θH , using the algorithmic ranking is a weakly dominant strategy,

but

WHH(θ∗A, θH) = UH(θ∗A, θH) + UHH(θ∗A, θH)

> UH(θ∗A, θH) + UAH(θ∗A, θH)

= UA(θ∗A, θH) + UAA(θ∗A, θH)

= WAA(θ∗A, θH),

meaning social welfare would have been higher had both firms used human

evaluators.

We can show that this effect persists for a value θ′A such that using the al-

gorithmic ranking is a strictly dominant strategy. Intuitively, this is simply by
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slightly increasing θ∗A so the algorithmic ranking is strictly dominant. For fixed

θH , define

f(θA) = UA(θA, θH) + UAA(θA, θH)

g(θA) = UH(θA, θH) + UAH(θA, θH)

h(θA) = UH(θA, θH) + UHH(θA, θH)

Because (9.5) always holds for θA > θH , it suffices to show that there exists θ′A

such that g(θ′A) < f(θ′A) < h(θ′A). This is because g(θ′A) < f(θ′A) is equivalent

to (9.4) and f(θ′A) < h(θ′A) is equivalent to WAA(θ′A, θH) < WHH(θ′A, θH).

First, note that h(θA) is a constant, and by Definition 9.3, g(θA) < h(θA)

for all θA > θH . By the optimality assumption of Definition 9.1, there ex-

ists sufficiently large θ̂A such that f(θ̂A) > g(θ̂A). Recall that by definition of

θ∗A, f(θ∗A) = g(θ∗A). Both f and g are continuous by the Differentiability as-

sumption in Definition 9.1. Thus, there must exist some θ′A > θ∗A such that

g(θ′A) < f(θ′A) < h(θ′A). This means that for θ′A, using the algorithmic ranking is

a strictly dominant strategy, but social welfare would still be larger if both firms

used human evaluators.

9.2 Instantiating with Ranking Models

Thus far, we have described a general set of conditions under which algorith-

mic monoculture can lead to a reduction in social welfare. Under which ranking

models do these conditions hold? In the remainder of this chapter, we instan-

tiate the model with two well-studied ranking models: Random Utility Mod-

els (RUMs) (Thurstone, 1927) and the Mallows Model (Mallows, 1957). While
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RUMs do not always satisfy Definitions 9.2 and 9.3, they do under some real-

istic parameterizations, regardless of the candidate distribution D. Under the

Mallows Model, Definitions 9.2 and 9.3 are always met, meaning that for any

candidate distribution D and human evaluator accuracy θH , there exists an ac-

curacy parameter θA such that a common algorithmic ranking with accuracy θA

decreases social welfare.

Figure 9.2: UAH(θ, θ)−UAA(θ, θ) for three noise models with n candidates whose
utilities are drawn from a uniform distribution with unit variance for n = 3,
n = 5, and n = 15. Note that for n = 15, UAH(θ, θ)− UAA(θ, θ) < 0 for Laplacian
noise, meaning Definition 9.2 is not met.

9.2.1 Random Utility Models

In Random Utility Models, the underlying candidate values xi are perturbed

by independent and identically distributed noise εi ∼ E , and the perturbed

values are ranked to produce π. Originally conceived in the psychology lit-

erature (Thurstone, 1927), this model has been well-studied over nearly a cen-

tury, (Daniels, 1950; Block and Marschak, 1960; Joe, 2000; Yellott Jr, 1977; Manski,

1977; Strauss, 1979), including more recently in the computer science and ma-

chine learning literature (Azari Soufiani et al., 2012, 2013; Ragain and Ugander,

2016; Zhao et al., 2018; Makhijani and Ugander, 2019).

First, we must define a family of RUMs that satisfies the conditions of Def-
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Figure 9.3: Regions for different equilibria. When human evaluators are more
accurate than the algorithm, both firms decide to employ humans (HH). When
the algorithm is significantly more accurate, both firms use the algorithm (AA).
When the algorithm is slightly more accurate than human evaluators, two pos-
sible equilibria exist: (1) one firm uses the algorithm and the other employs a
human (AH), or (2) both decide whether to use the algorithm with some proba-
bility p. The shaded portion of the green AA region depicts where social welfare
is smaller at the AA equilibrium than it would be if both firms used human
evaluators.

inition 9.1. Assume without loss of generality that the noise distribution E has

unit variance. Then, consider the family of RUMs parameterized by θ in which

candidates are ranked according to xi + εi
θ

. By this definition, the standard de-

viation of the noise for a particular value of θ is simply 1/θ. Intuitively, larger

values of θ reduce the effect of the noise, making the ranking more accurate.

In Theorem F.1 in Appendix F.1, we show as long as the noise distribution E

has positive support on (−∞,∞), this definition of Fθ meets the differentiabil-

ity, asymptotic optimality, and monotonicity conditions in Definition 9.1. For

distributions with finite support, many of our results can be generalized by re-

laxing strict inequalities in Definition 9.1 and Theorem 9.4 to weak inequalities.
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Because RUMs are notoriously difficult to work with analytically, we restrict

ourselves to the case where n = 3, i.e., there are 3 candidates. Under this restric-

tion, we can show that for Gaussian and Laplacian noise distributions, Defini-

tion 9.2 and 9.3 — the two conditions of Theorem 9.4 — are met, regardless of

the candidate distribution D. We defer the proof to Appendix F.3.

Theorem 9.5. Let Fθ be the family of RUMs with either Gaussian or Laplacian noise

with standard deviation 1/θ. Then, for any candidate distribution D over 3 candidates,

the conditions of Theorem 9.4 are satisfied.

It might be tempting to generalize Theorem 9.5 to other distributions and

more candidates; however, certain noise and candidate distributions violate the

conditions of Theorem 9.4. Even for 3-candidate RUMs, there exist distribu-

tions for which each of the conditions is violated; we provide such examples in

Appendix F.2.

Moreover, while Gaussian and Laplacian distributions provably meet Def-

initions 9.2 and 9.3 with only 3 candidates, this doesn’t necessarily extend to

larger candidate sets. Figure 9.2 shows that Definition 9.2 can be violated under

a particular candidate distribution D for Laplacian noise with 15 candidates.

This challenges the intuition that independence is preferable—under some con-

ditions, it can actually better in expectation for a firm to use the same algorithmic

ranking as its competitor, even if an independent human evaluator is equally ac-

curate overall. Unlike Theorem 9.5, which applies for any candidate distribution

D, certain noise models may violate Definition 9.2 only for particular D. It is an

open question as to whether Theorem 9.5 can be extended to larger numbers of

candidates under Gaussian noise.

Finally, there exist noise distributions that violate Definition 9.2 for any can-
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didate distribution D. In particular, the RUM family defined by the Gumbel

distribution is well-known to be equivalent to the Plackett-Luce model of rank-

ing, which is generated by sequentially selecting candidate i with probability

exp(θxi)∑
j∈S exp(θxj)

, (9.7)

where S is the set of remaining candidates (Luce, 1959; Block and Marschak,

1960). Under the Plackett-Luce model, for any θ, UAH(θ, θ) = UAA(θ, θ). To

see this, suppose the firm that hires first selects candidate i∗. Then, the firm

that hires second gets each candidate i with probability given by (9.7) with S =

{1, . . . , n}\i∗. As a result, by (9.3), if π, σ ∼ Fθ,

E [π1 − π2 | π1 6= σ1] = 0

for any candidate distributionD, meaning the Plackett-Luce model never meets

Definition 9.2. Thus, under the Plackett-Luce model, monoculture has no

effect—the optimal strategy is always to use the best available ranking, regard-

less of competitors’ strategies.

Given the analytic intractability of most RUMs, it might appear that testing

the conditions of Theorem 9.4, especially for a particular noise and candidate

distributions, may not be possible; however, they can be efficiently tested via

simulation: as long as the noise distribution E and the candidate distribution D

can be sampled from, it is possible to test whether the conditions of Theorem 9.4

are satisfied. Thus, even if the conditions of Theorem 9.4 are not met for every

candidate distribution D, it is possible to efficiently determine whether they are

met for any particular D.

It is also interesting to ask about the magnitude of the negative impact pro-

duced by monoculture. Our model allows for the qualities of candidates to be ei-
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ther positive or negative (capturing the fact that a worker’s productivity can be

either more or less than their cost to the firm in wages); using this, we can con-

struct instances of the model in which the optimal social welfare is positive but

the welfare under the (unique) monocultural equilibrium implied by Theorem 1

is negative. This is a strong type of negative result, in which sub-optimality re-

verses the sign of the objective function, and it means that in general we cannot

compare the optimum and equilibrium by taking a ratio of two non-negative

quantities, as is standard in Price of Anarchy results. However, as a future direc-

tion, it would be interesting to explore such Price of Anarchy bounds in special

cases of the problem where structural assumptions on the input are sufficient to

guarantee that the welfare at both the social optimum and the equilibrium are

non-negative. As one simple example, if the qualities for three candidates are

drawn independently from a uniform distribution centered at 0, and the noise

distribution is Gaussian, then there exist parameters θA > θH such that expected

social welfare at the equilibrium where both firm use the algorithmic ranking is

non-negative, and approximately 4% less than it would be had both firms used

human evaluators instead.

9.2.2 The Mallows Model

The Mallows Model also appears frequently in the ranking literature (Das and

Li, 2014; Lu and Boutilier, 2011), and is much more analytically tractable than

RUMs. Under the Mallows Model, the likelihood of a permutation is related to

its distance from the true ranking π∗:

Pr[π] =
1

Z
φ−d(π,π∗), (9.8)
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where Z is a normalizing constant. In this model, φ > 1 is the accuracy parame-

ter: the larger φ is, the more likely the ranking procedure is to output a ranking

π that is close to the true ranking r. To instantiate this model, we need a notion

of distance d(·, ·) over permutations. For this, we’ll use Kendall tau distance, an-

other standard notion in the literature, which is simply the number of pairs of

elements in π that are incorrectly ordered (Kendall, 1938). In Appendix F.4, we

verify that the family of distributions Fθ given by the Mallows Model satisfies

Definition 9.1, defining θ = φ−1 (for consistency, so θ is well-defined on (0,∞)).

In contrast to RUMs, the Mallows Model always satisfies the conditions of

Theorem 9.4 for any candidate distributionD, which we prove in Appendix F.5.

Theorem 9.6. Let Fθ be the family of Mallows Model distributions with parameter

θ = φ − 1. Then, for any candidate distribution D, the conditions of Theorem 9.4 are

satisfied.

Figure 9.3 characterizes firms’ rational behavior at equilibrium in the (θH , θA)

plane under the Mallows Model. The decrease in social welfare found in Theo-

rem 9.6 is depicted by the shaded portion of the green region labeled AA, where

social welfare would be higher if both firms used human evaluators.

While the result of Theorem 9.6 is certainly stronger than that of Theorem 9.5,

in that it applies to all instances of the Mallows Model without restrictions, it

should be interpreted with some caution. The Mallows Model does not de-

pend on the underlying candidate values, so according to this model, monocul-

ture can produce arbitrarily large negative effects. While insensitivity to candi-

date values may not necessarily be reasonable in practice, our results hold for

any candidate distribution D. Thus, to the extent that the Mallows Model can

reasonably approximate ranking in particular contexts, our results imply that

226



monoculture can have negative welfare effects.

9.3 Models with Multiple Firms

Our main focus in this chapter has been on models with two competing firms.

However, it is also interesting to consider the case of more than two firms; we

will see that the complex and sometimes counterintuitive effects that we found

in the two-firm case are further enriched by additional phenomena. Primarily,

we will present the result of computational experiments with the model, ex-

posing some fundamental structural properties in the multi-firm problem for

which a formal analysis remains an intriguing open problem. For concreteness,

we will focus on a model in which rankings are drawn from the Mallows model.

As before, each firm must choose to order candidates according to either an in-

dependent, human-produced ranking or an algorithmic ranking common to all

firms who choose it. These rankings come from instances of the Mallows model

with accuracy parameters φH and φA respectively as defined in (9.8).

Braess’ Paradox for k > 2 firms. First, we ask whether the Braess’ Paradox

effect persists with k > 2 firms. We find that it is possible to construct instances

of the problem with k > 2 for which Braess’ Paradox occurs — using an algo-

rithmic evaluation is a dominant strategy, but social welfare would be higher

if all firms used human evaluators instead. Under the Mallows Model, sup-

pose n = 4, k = 3, φA = 2, φH = 1.75, and candidate qualities are drawn from

a uniform distribution on [0, 1]. We find via computation that at equilibrium,

each firm will rationally decide to use the algorithmic evaluator and experience
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utility ≈ .551, but if all firms instead used human evaluators, they would expe-

rience utility ≈ .552. Thus, Braess’ Paradox can occur for k > 2 firms. Proving

a generalization of Theorem 9.6, to show that Braess’ Paradox can occur for any

candidate distribution D and any value of φH for k > 2 firms remains an open

question.

Figure 9.4: Regions for different optimal strategy profiles, where each strategy
profile is a sequence of ‘A’ and ‘H’ representing the optimal strategies of each
firm sequentially. For this plot, there are 5 firms (k = 5) and 6 candidates (n = 6)
whose values are drawn from a uniform distribution. Note that when φA is
much larger than φH , all firms use the algorithmic ranking, but when φA is only
slightly larger than φH , only the first firm uses the algorithmic ranking.

Sequential decision-making. Since the equilibrium behaviors we are study-

ing take place in a model where firms make decisions in a random order, a

crucial first step is to characterize firms’ optimal behavior when making deci-

sions sequentially—that is, when firms hire in a fixed, known order as opposed

to a random order. In this context, consider the rational behavior of each firm:

given a distribution over candidate values, which ranking should each firm use?

Clearly, the first firm to make a selection should use the more accurate ranking
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mechanism; however, as shown previously, subsequent firms’ decisions are less

clear-cut. For a fixed number of firms, number of candidates, and distribution

over candidate values, we can explore the firms’ optimal strategies over the

possible space of (φH , φA) values.

An optimal choice of strategies for the k firms moving sequentially can be

written as a sequence of length k made up of the symbols A and H ; the ith

term in the sequence is equal to A if the ith firm to move sequentially uses the

algorithm as its optimal strategy (given the choices of the previous i− 1 firms),

and it is equal toH if the ith firm uses an independent human evaluation. We can

therefore represent the choice of optimal strategies, as the parameters (φH , φA)

vary, by a labeling of the (φH , φA)-plane: we label each point (φH , φA) with the

length-k sequence that specifies the optimal sequence of strategies.

We can make the following initial formal observation about these optimal

sequences:

Theorem 9.7. When φH ≥ φA, one optimal sequence is for all firms to chooseH . When

φH > φA, the unique optimal sequence is for all firms to choose H .

We prove this formally in Appendix F.6.1, but we provide a sketch here.

When φH ≥ φA, the first firm to move in sequence will simply use the more accu-

rate strategy, and hence will choose H . Now, proceeding by induction, suppose

that the first i firms have all chosen H , and consider the (i + 1)st firm to move

in sequence. Regardless of whether this firm chooses A or H , it will be making

a selection that is independent of the previous i selections, and hence it is op-

timal for it to choose H as well. Hence, by induction, it is an optimal solution

for all firms to choose H when φH ≥ φA. (This argument, slightly adapted, also

directly establishes that it is uniquely optimal for all firms to choose H when
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φH > φA.)

Beyond this observation, if we wish to extend to the case when φA > φH , the

mathematical analysis of this multi-firm model remains an open question; but

it is possible to determine optimal strategies computationally for each choice of

(φH , φA), and then to look at how these strategies vary over the (φH , φA)-plane.

Figure 9.4 shows the result of doing this — producing a labeling of the (φH , φA)-

plane as described above — for k = 5 firms and n = 6 candidates, with the

values of the candidates drawn from a uniform distribution.

We observe a number of interesting phenomena from this labeling of the

plane. First, the region where φH ≥ φA is labeled with the all-H sequence, re-

flecting the argument above; for the half-plane φA > φH , on the other hand, all

optimal sequences begin with A, since it is always optimal for the first firm to

use the more accurate method. The labeling of the half-plane φA > φH becomes

quite complex; in principle, any sequence over the binary alphabet {A,H} that

begins with A could be possible, and in fact we see that all 24 = 16 of these

sequences appear as labels in some portion of the plane. This means that the

sequential choice of optimal strategies for the firms can display arbitrary non-

monotonicities in the choice of algorithmic or human decisions, with firms al-

ternating between them; for example, even after the first firm chooses A and

the second chooses H , the third may choose A or H depending on the values

(φH , φA).

The boundaries of the regions labeled by different optimal sequences are

similarly complex; some of the regions (such asAAAHH) appear to be bounded,

while others (such as AHAHA and AHHAH) appear to only emerge for suffi-

ciently large values of φH .
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Perhaps the most intriguing observation about the arrangement of regions

is the following. Suppose we think of the sequences of symbols over {A,H} as

binary representations of numbers, with A corresponding to the binary digit 1

and H correspnding to the binary digit 0. (Thus, for example, AAAHH would

correspond to the number 16 + 8 + 4 = 28, while AHAHA would correspond

to the number 16 + 4 + 1 = 21.) The observation is then the following: if we

choose any vertical line φH = x (for a fixed x), and we follow it upward in the

plane, we encounter regions in increasing order of the numbers corresponding

to their labels, in this binary representation. (First HHHHH , then AHHHH ,

then AHHHA, then AHHAH , and so forth.)

We do not know a proof for this fact, or how generally it holds, but we can

verify it computationally for the regions of the (φH , φA)-plane mapped out in

Figure 9.4, as well as similar computational experiments not shown here for

other choices of k and n. This binary-counter property suggests a rich body of

additional structure to the optimal strategies in the k-firm case, and we leave it

as an open question to analyze this structure mathematically.

9.4 Conclusion

Concerns about monoculture in the use of algorithms have focused on the dan-

ger of unexpected, correlated shocks, and on the harm to particular individuals

who may fare poorly under the algorithm’s decision. Our work here shows

that concerns about algorithmic monoculture are in a sense more fundamental,

in that it is possible for monoculture to cause decisions of globally lower aver-

age quality, even in the absence of shocks. In addition to telling us something
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about the pervasiveness of the phenomenon, it also suggests that it might be

difficult to notice its negative effects even while they’re occurring — these ef-

fects can persist at low levels even without a shock-like disruption to call our

attention to them. Our results also make clear that algorithmic monoculture

in decision-making doesn’t always lead to adverse outcomes; rather, we given

natural conditions under which such outcomes become possible, and show that

these conditions hold in a wide range of standard models.

Our results suggest a number of natural directions for further work. To begin

with, we have noted earlier in the chapter that it would be interesting to give

more comprehensive quantitative bounds on the magnitude of monoculture’s

possible negative effects in decisions such as hiring — how much worse can the

quality of candidates be when selected with an equilibrium strategy involving

shared algorithms than with a socially optimal one? In formulating such ques-

tions, it will be important to take into account how the noise model for rankings

relates to the numerical qualities of the candidates.

We have also focused here on the case of two firms and a single shared al-

gorithm that is available to both. It would be natural to consider generaliza-

tions involving more firms and potentially more algorithms as well. With more

algorithms, we might see solutions in which firms cluster around different al-

gorithms of varying accuracies, as they balance the level of accuracy and the

amount of correlation in their decisions. It would also be interesting to explore

the ways in which correlations in firms’ decisions can be decomposed into con-

stituent parts, such as the use of standardized tests that form input features for

algorithms, and how quantifying these forms of correlation might help firms

assess their decisions.
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Finally, it will be interesting to consider how these types of results apply to

further domains. While the analysis presented here illustrates the consequences

of monoculture as applied to algorithmic hiring, our findings have potential

implications in a broader range of settings. Algorithmic monoculture not only

leads to a lack of heterogeneity in decision-making; by allowing valuable op-

tions to slip through the cracks — be they job candidates, potential hit songs, or

budding entrepreneurs — it reduces total social welfare, even when the individ-

ual decisions are more accurate on a case-by-case basis. These concerns extend

beyond the use of algorithms; whenever decision-makers rely on identical or

highly correlated evaluations, they miss out on hidden gems, and in this way

diminish the overall quality of their decisions.

233



Part IV

Application Domains
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CHAPTER 10

OVERVIEW OF Part IV

In Part IV, we apply some of the conceptual principles derived earlier in this

thesis to domains of social interest. We consider algorithmic hiring and expla-

nations in credit scoring.

Chapter 11 considers algorithmic pre-employment assessments, which are used

by many firms to determine which job applicants to interview. Taking a sample

of 18 vendors developing these tools, we empirically determine how they con-

ceive of and mitigate issues of bias and discrimination in their products. Based

on these findings, we analyze their practices from both computer science and le-

gal perspectives. We conclude with policy recommendations to promote more

robust protections against discrimination going forwards.

In Chapter 12, we explore the use of algorithmically-generated explana-

tions for adverse credit decisions. Traditionally, firms have provided feature-

highlighting explanations for this purpose. More recently, there have been pro-

posals to use counterfactual explanations for this task. We compare and contrast

these two styles of explanations, finding that neither can be automated without

a firm making a number of subjective choices, each of which transfers power

from the decision subject to the decision-maker.
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CHAPTER 11

MITIGATING BIAS IN ALGORITHMIC DECISION-MAKING:

EVALUATING CLAIMS AND PRACTICES

The study of algorithmic bias and fairness in machine learning has quickly

matured into a field of study in its own right, delivering a wide range of formal

definitions and quantitative metrics. As industry takes up these tools and ac-

companying terminology, promises of eliminating algorithmic bias using com-

putational methods have begun to proliferate. In some cases, however, rather

than forcing precision and specificity, the existence of formal definitions and

metrics has had the paradoxical result of giving undue credence to vague claims

about “de-biasing” and “fairness.”

In this chapter, we use algorithmic pre-employment assessment as a case

study to show how formal definitions of fairness allow us to ask focused ques-

tions about the meaning of “fair” and “unbiased” models. The hiring do-

main makes for an effective case study because of both its prevalence and its

long history of bias. We know from decades of audit studies that employers

tend to discriminate against women and ethnic minorities (Bertrand and Mul-

lainathan, 2004; Bendick et al., 1997; Bendick and Nunes, 2012; Johnson et al.,

2016), and a recent meta-analysis suggests that little has improved over the past

25 years (Quillian et al., 2017). Citing evidence that algorithms may help reduce

human biases (Houser, 2019; Kleinberg et al., 2018), advocates argue for the

adoption of algorithmic techniques in hiring (Chamorro-Prezumic and Akhtar,

2019; Cowgill, 2018), with a variety of computational metrics proposed to iden-

tify and prevent unfair behavior (Feldman et al., 2015). But to date, little is

known about how these methods are used in practice.
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One of the biggest obstacles to empirically characterizing industry practices

is the lack of publicly available information. Much technical work has focused

on using computational notions of equity and fairness to evaluate specific mod-

els or datasets (Angwin et al., 2016; Buolamwini and Gebru, 2018). Indeed,

when these models are available, we can and should investigate them to identify

potential problems. But what do we do when we have little or no access to mod-

els or the data they produce? Certain models may be completely inaccessible to

the public, whether for practical or legal reasons, and attempts to audit these

models by examining their training data or outputs might jeopardize users’ pri-

vacy. With algorithmic pre-employment assessments, we find that this is very

much the case: models, much less the sensitive employee data used to construct

them, are in general kept private. As such, the only information we can con-

sistently glean about industry practices is limited to what companies publicly

disclose. Despite this, one of the key findings of our work is that even without

access to models or data, we can still learn a considerable amount by investigat-

ing what corporations disclose about their practices for developing, validating,

and removing bias from these tools.

Documenting claims and evaluating practices. Following a review of firms

offering recruitment technologies, we identify 18 vendors of pre-employment

assessments. We document what each company has disclosed about its prac-

tices and consider the implications of these claims. In so doing, we develop an

understanding of industry attempts to mitigate bias and what critical issues are

unaddressed.

Prior work has sought to taxonomize the points at which bias can enter ma-

chine learning systems, noting that the choice of target variable or outcome
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to predict, the training data used, and labelling of examples are all potential

sources of disparities (Barocas and Selbst, 2016; Kleinberg et al., 2019). Follow-

ing these frameworks, we seek to understand how practitioners handle these

key decisions in the machine learning pipeline. In particular, we surface choices

and trade-offs vendors face with regard to the collection of data, the ability to

validate on representative populations, and the effects of discrimination law on

efforts to prevent bias. The heterogeneity we observe in vendors’ practices in-

dicates evolving industry norms that are sensitive to concerns of bias but lack

clear guidance on how to respond to these worries.

Of course, analyzing publicly available information has its limitations. We

are unable, for example, to identify issues that any particular model might raise

in practice. Nor can we be sure that vendors aren’t doing more behind the

scenes to ensure that their models are non-discriminatory. And while other

publicly accessible information (e.g., news articles and videos from conferences)

might offer further details about vendors’ practices, for the sake of consistent

comparison, we limit ourselves to statements on vendors’ websites. As such,

our analysis should not be viewed as exhaustive; however, as we will see, it is

still possible to draw meaningful conclusions and characterize industry trends

through our methods. One notable limitation we encounter is the lack of infor-

mation about the validity of these assessments. It is of paramount importance

to know the extent to which these tools actually work, but we cannot do so

without additional transparency from vendors.

We stress that our analysis is not intended as an exposé of industry prac-

tices. Many of the vendors we study exist precisely because they seek to pro-

vide a fairer alternative to traditional hiring practices. Our hope is that this
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work will paint a realistic picture of the landscape of algorithmic techniques in

pre-employment assessment and offer recommendations for their effective and

appropriate use.

Organization of the rest of the chapter. In Section 11.2, we systematically re-

view vendors of algorithmic screening tools and empirically characterize their

practices based on the claims that they make. We analyze these practices in de-

tail in Sections 11.3 and 11.4 from technical and legal perspectives, examining

ambiguities and particular causes for concern. We provide concluding thoughts

and recommendations in Section 11.5.

11.1 Background

Pre-employment assessments in the hiring pipeline. Hiring decisions are

among the most consequential that individuals face, determining key aspects of

their lives, including where they live and how much they earn. These decisions

are similarly impactful for employers, who face significant financial pressure

to make high-quality hires quickly and efficiently (Mariotti, 2017). As a result,

many employers seek tools with which to optimize their hiring processes.

Broadly speaking, there are four distinct stages of the hiring pipeline, though

the boundaries between them are not always rigid: sourcing, screening, inter-

viewing, and selection (Bogen and Rieke, 2018). Sourcing consists of building

a candidate pool, which is then screened to choose a subset to interview. Fi-

nally, after candidates are interviewed, selected candidates receive offers. We

will focus on screening, and in particular, pre-employment assessments that al-
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gorithmically evaluate candidates. This includes, for example, questionnaires

and video interviews that are analyzed automatically.

Prior work has considered the rise of algorithmic tools in the context of hir-

ing, highlighting the concerns that they raise for fairness. Bogen and Rieke

(2018) provide an overview of the various ways in which algorithms are be-

ing introduced into this pipeline, with a focus on their implications for equity.

Garr and Jackson (2019) survey a number of platforms designed to promote di-

versity and inclusion in hiring. Sanchez-Monedero et al. (2020) analyze some of

the vendors considered here from the perspective of UK law, addressing con-

cerns over both discrimination and data protection. Broadly considering the

use of data science in HR-related activities, Tambe et al. (2019) identify several

practical challenges to the use of algorithmic systems in hiring, and propose a

framework to help address them. Ajunwa (2020) provides a legal framework

to consider the problems algorithmic tools introduce and argues against subjec-

tive targets like “cultural fit.” Kim (2018, 2020) also raises legal concerns over

the use of algorithms in hiring in both advertising and screening contexts.

Scholars in the field of Industrial-Organizational (IO) Psychology have also

begun to grapple with the variety of new pre-employment assessment meth-

ods and sources of information enabled by algorithms and big data (Guzzo

et al., 2015). Chamorro-Premuzic et al. (2016) find that academic research has

been unable to keep pace with rapidly evolving technology, allowing vendors

to push the boundaries of assessments without rigorous independent research.

A 2013 report by the National Research Council summarizes a number of ethi-

cal issues that arise in pre-employment assessment, including the role of human

intervention, the provision of feedback to candidates, and the goal of hiring for
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“fit,” especially in light of modern data sources (National Research Council,

2013). And although proponents argue that pre-employment assessments can

push back against human biases (Chamorro-Prezumic and Akhtar, 2019), as-

sessments (especially data-driven algorithmic ones) run the risk of codifying

inequalities while providing a veneer of objectivity.

A history of equity concerns in assessment. Pre-employment assessments

date back to examinations for the Chinese civil service thousands of years

ago (Haney, 1982). In the early 1900’s, the idea that assessments could reveal

innate cognitive abilities gained traction in Western industrial and academic

circles, leading to the formation of Industrial Psychology as an academic disci-

pline (Munsterberg, 1998; Gerhardt, 1916; Kemble, 1916). During the two World

Wars, the U.S. government turned to these assessments in an attempt to quan-

tify soldiers’ abilities, paving the way for their widespread adoption in post-

war industry (Baritz, 1960; DuBois, 1970; Dunnette and Borman, 1979). Histor-

ically, these assessments were primarily behavioral or cognitive in nature, like

the Stanford-Binet IQ test (Terman, 1916), the Myers-Briggs type indicator (My-

ers, 1962), and the Big Five personality traits (Norman, 1963). IO Psychology

remains a prominent component of these modern assessment tools—many ven-

dors we examine employ IO psychologists who work with data scientists to

create and validate assessments.

Cognitive assessments have imposed adverse impacts on minority popu-

lations since their introduction into mainstream use (Tyler, 1947; Ruda and Al-

bright, 1968; National Research Council, 1989). Critics have long contended that

observed group differences in test outcomes indicated flaws in the tests them-

selves (Cravens, 1978), and a growing consensus has formed around the idea
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that while assessments do have some predictive validity, they often disadvan-

tage minorities despite the fact that minority candidates have similar real-world

job performance to their white counterparts (National Research Council, 1989).1

The American Psychological Association (APA) recognizes these concerns

as examples of “predictive bias” (when an assessment systematically over- or

under-predicts scores for a particular group) in its Principles for the Validation

and Use of Personnel Selection Procedures (Society for Industrial and Organi-

zational Psychology, 2018). The APA Principles consider several potential defi-

nitions of fairness, and while they encourage practitioners to identify and mit-

igate predictive bias, they explicitly reject the view that fairness requires equal

outcomes (Society for Industrial and Organizational Psychology, 2018). As we

will see, this focus on predictive bias over outcome-based definitions of fairness

forms interesting connections and contrasts with U.S. employment discrimina-

tion law.

A brief overview of U.S. employment discrimination law. Title VII of the

Civil Rights Act of 1964 forms the basis of regulatory oversight regarding dis-

crimination in employment. It prohibits discrimination with respect to a num-

ber of protected attributes (“race, color, religion, sex and national origin”), es-

tablishing the Equal Employment Opportunity Commission (EEOC) to ensure

compliance (U.S. Congress, 1964). The EEOC, in turn, issued the Uniform

Guidelines on Employment Selection Procedures in 1978 to set standards for

how employers can choose their employees.

1Disparities in assessment outcomes for minority populations are not limited to pre-
employment assessments. In the education literature, the adverse impact of assessments on
minorities is well-documented (Madaus and Clarke, 2001). This has led to a decades-long
line of literature seeking to measure and mitigate the observed disparities (see Hutchinson and
Mitchell (2019) for a survey).
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According to the Uniform Guidelines (Equal Employment Opportunity

Commission, 1978), the gold standard for pre-employment assessments is va-

lidity: the outcome of a test should say something meaningful about a candi-

date’s potential as an employee. The EEOC accepts three forms of evidence for

validity: criterion, content, and construct. Criterion validity refers to predictive

ability: do test scores correlate with meaningful job outcomes (e.g., sales num-

bers)? An assessment with content validity tests candidates in similar situations

to ones that they will encounter on the job (e.g., a coding interview). Finally,

assessments demonstrate construct validity if they test for some fundamental

characteristic (e.g., grit or leadership) required for good job performance.

When is an assessment legally considered discriminatory? Based on exist-

ing precedent, the Uniform Guidelines provide two avenues to challenge an as-

sessment: disparate treatment and disparate impact (Barocas and Selbst, 2016).

Disparate treatment is relatively straightforward—it is illegal to explicitly treat

candidates differently based on categories protected under Title VII (Equal Em-

ployment Opportunity Commission, 1978; U.S. Congress, 1964). Disparate im-

pact is more nuanced, and while we provide an overview of the process here,

we refer the reader to Barocas and Selbst (2016) for a more complete discussion.

Under the Uniform Guidelines, the rule of thumb to decide when a disparate

impact case can be brought against an employer is the “4/5 rule”: if the selection

rate for one protected group is less than 4/5 of that of the group with the high-

est selection rate, the employer may be at risk (Equal Employment Opportunity

Commission, 1978). If a significant disparity in selection rates is established, an

employer may defend itself by showing that its selection procedures are both

valid and necessary from a business perspective (Equal Employment Opportu-
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nity Commission, 1978). Even when a business necessity has been established,

an employer can be held liable if the plaintiff can produce an alternative se-

lection procedure with less adverse impact that the employer could have used

instead with little business cost (Equal Employment Opportunity Commission,

1978).2 Ultimately, both the APA Principles and the Uniform Guidelines agree

that validity is fundamental to a good assessment.3 And while validity can be

used as a defense against disparate selection rates, we will see that the Uni-

form Guidelines’ emphasis on outcome disparities and the 4/5 rule significantly

impacts vendors’ practices.

11.2 Empirical Findings

11.2.1 Methodology

Identifying companies offering algorithmic pre-employment assessments.

In order to get a broad overview of the emerging industry surrounding algorith-

mic pre-employment assessments, we conducted a systematic review of assess-

ment vendors with English-language websites. To identify relevant companies,

we consulted Crunchbase’s list of the top 300 start-ups (by funding amount)

under its “recruiting” category.4 Crunchbase offers information on public and

2It should be noted that this description is based on a particular (although the most common)
interpretation of Title VII. Some legal scholars contend that Title VII offers stronger protections
to minorities (Bornstein, 2018; Kim, 2016), and there is disagreement on how (or whether) to
operationalize the 4/5 rule through statistical tests (Shoben, 1978; Cohn, 1979b; Shoben, 1979;
Cohn, 1979a). In this chapter, we will not consider alternative interpretations of Title VII, nor
will we get into the specifics of how exactly to detect violations of the 4/5 rule.

3Many psychologists disagree with the specific conception of validity endorsed by the Uni-
form Guidelines (Mcdaniel et al., 2011; Salas, 2011; Biddle, 2008); however, there is broad agree-
ment that some form of validation is necessary.

4https://www.crunchbase.com/hub/recruiting-startups

244

https://www.crunchbase.com/hub/recruiting-startups


private companies, providing details on funding and other investment activ-

ity. While Crunchbase is not an exhaustive list of all companies working in an

industry, it is an often-used resource for tracking developments in start-up com-

panies. Companies can create profiles for themselves, subject to validation.5 We

supplemented this list with an inventory of relevant companies found in recent

reports by Upturn (Bogen and Rieke, 2018), a technology research and advocacy

firm focused on civil rights, and RedThread Research (Garr and Jackson, 2019), a

research and advisory firm specializing in new technologies for human resource

management. This resulted in 22 additional companies, for a combined total of

322. There was substantial overlap between the three sources considered.

Thirty-nine of these companies did not have English-language websites, so

we excluded them. Recall that the hiring pipeline has four primary stages

(sourcing, screening, interviewing, and selection); we ruled out vendors that do

not provide assessment services at the screening stage, leaving us with 45 ven-

dors. Note that this excluded companies that merely provide online job boards

or marketplaces like Monster.com and Upwork. Twenty-two of the remaining

vendors did not obviously use any predictive technology (e.g., coding inter-

view platforms that only evaluated correctness or rule-based screening) or did

not offer explicit assessments (e.g., scraping candidate information from other

sources), and an additional 5 did not provide enough information for us to make

concrete determinations, leaving us with 18 vendors in our sample. With these

18 vendors, in April 2019,6 we recorded administrative information available

on Crunchbase (approximate number of employees, location, and total fund-

ing) and undertook a review of their claims and practices, which we explain

5https://support.crunchbase.com/hc/en-us/articles/115011823988-Create-a-Crunchbase-
Profile

6Our empirical findings are specific to this moment in time; practices and documentation
may have changed since then.
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below.

Documenting vendors’ claims and practices. Based on prior frameworks in-

tended to interrogate machine learning pipelines for bias (Barocas and Selbst,

2016; Kleinberg et al., 2019), we ask the following questions of vendors:

• What types of assessments do they provide (e.g., questions, video inter-

views, or games)? [Features]

• What is the outcome or quality that these assessments aim to predict (e.g.,

sales revenue, annual review score, or grit)? [Target variable]

• What data are used to develop the assessment (e.g., the client’s or the ven-

dor’s own data)? [Training data]

• What information do they provide regarding validation processes (e.g.,

validation studies or whitepapers)? [Validation]

• What claims or guarantees (if any) are made regarding bias or fairness?

When applicable, how do they achieve these guarantees? [Fairness]

To answer these questions, we exhaustively searched the websites of each

company. This included following all internal links, downloading any reports

or whitepapers they provided, and watching webinars found on their websites.

Almost all vendors provided an option to request a demo; we avoided doing so

since our focus is on accessible and public information. Sometimes, company

websites were quite sparse on information, and we were unable to conclusively

answer all questions for all vendors.
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11.2.2 Findings

Figure 11.1: Description of the pymetrics process (screenshot from the pymetrics
website: https://www.pymetrics.com/employers/)

In our review, we found 18 vendors providing algorithmically driven pre-

employment assessments. Those that had available funding information on

Crunchbase (16 out of 18) ranged in funding from around $1 million to $93

million. Most vendors (14) had 50 or fewer employees, and half (9) were based

in the United States. 15 vendors were present in Crunchbase’s “Recruiting Star-

tups” list; the remaining vendors were taken from reports by Upturn (Bogen

and Rieke, 2018) and RedThread Research (Garr and Jackson, 2019). Many ven-

dors were present in all of these sources. Table 11.1 summarizes our findings.

Table G.1 in Appendix G.1 contains administrative information about the ven-

dors we included.

Assessment types. The types of assessments offered varied by vendor. The

most popular assessment types were questions (11 vendors), video interview

analysis (6 vendors), and gameplay (e.g., puzzles or video games) (6 vendors).

Note that many vendors offered multiple types of assessments. Question-based

assessments included personality tests, situational judgment tests, and other

formats. For video interviews, candidates were typically either asked to record

answers to particular questions or more free-form “video resumes” highlighting
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Vendor name
Assessment types
[Features]

Custom?
[Target &
Training
data]

Validation info
[Validation]

Adverse impact
[Fairness]

8 and Above phone, video S – bias mentioned
ActiView VR assessment C validation claimed bias mentioned
Assessment Innovation games, questions – – bias mentioned
Good&Co questions C, P multiple studies adverse impact
Harver games, questions S – –
HireVue games, questions, video C, P – 4/5 rule
impress.ai questions S – –
Knockri video S – bias mentioned
Koru questions S some description adverse impact
LaunchPad Recruits questions, video – – bias mentioned
myInterview video – – compliance
Plum.io questions, games S validation claimed bias mentioned
PredictiveHire questions C – 4/5 rule
pymetrics games C small case study 4/5 rule
Scoutible games C – –
Teamscope questions S, P – bias mentioned
ThriveMap questions C – bias mentioned
Yobs video C, S – adverse impact

Table 11.1: Examining the websites of vendors of algorithmic pre-employment
assessments, we answer a number of questions regarding their assessments in
relation to questions of fairness and bias. This involves exhaustively search-
ing their websites, downloading whitepapers they provide, and watching we-
binars they make available. This table presents our findings. The “Assessment
types” column gives the types of assessments each vendor offers. In the “Cus-
tom?” column, we consider the source of data used to build an assessment: C
denotes “custom” (uses employer data), S denotes “semi-custom” (qualitatively
tailored to employer without data) and P denotes “pre-built.” The “Validation?”
column contains information vendors publicly provided about their validation
processes. In the “Adverse impact” column, we recorded phrases found on ven-
dors’ websites addressing concerns over bias.

their strengths. These videos are then algorithmically analyzed by vendors.

Target variables and training data. Most of the vendors (15) offer custom or

customizable assessments, adapting the assessment to the client’s particular

data or job requirements. In practice, decisions about target variables and train-

ing data are made together based on where the data come from. Eight vendors
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build assessments based on data from the client’s past and current employees

(see Figure 11.1). Vendors in general leave it up to clients to determine what

outcomes they want to predict, including, for example, performance reviews,

sales numbers, and retention time. Other vendors who offer customizable as-

sessments without using client data either use human expertise to determine

which of a pre-determined set of competencies are most relevant to the partic-

ular job (the vendor’s analysis of a job role or a client’s knowledge of relevant

requirements) or don’t explicitly specify their prediction targets. In such cases,

the vendor provides an assessment that scores applicants on various compe-

tencies, which are then combined into a “fit” score based on a custom formula.

Thus, even among vendors who tailor their assessments to a client, they do so

in different ways.

Vendors who only offer pre-built assessments typically either provide as-

sessments designed for a particular job role (e.g., salesperson), or provide a

sort of “competency report” with scores on a number of cognitive or behavioral

traits (e.g., leadership, grit, teamwork). These assessments are closer in spirit to

traditional psychometric assessments like the Myers-Briggs Type Indicator or

Big Five Personality Test; however, unlike traditional assessments that rely on a

small number of questions, modern assessments may build psychographic pro-

files using machine learning to analyze rich data sources like a video interview

or gameplay.

Validation. Generally, vendors’ websites do not make clear whether vendors

validate their models, what validation methodologies they use, how they select

validation data, or how validation procedures might be tailored to the particu-
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Vendor Claim about bias

HireVue Provide “a highly valid, bias-mitigated assessment”

pymetrics “. . . the Pre-Hire assessment does not show bias
against women or minority respondents.”

PredictiveHire “AI bias is testable, hence fixable.”

Knockri “Knockri’s A.I. is unbiased because of its full spec-
trum database that ensures there’s no benchmark of
what the ‘ideal candidate’ looks like.”

Table 11.2: Examples of claims that vendors make about bias, taken from their
websites.

lar client. Good & Co.,7 notably, provides fairly rigorous validation studies of

the psychometric component of their assessment, as well as a detailed audit of

how the scores differ across demographic groups; however, they do not provide

similar documentation justifying the algorithmic techniques they use to recom-

mend candidates based on “culture fit.”

Accounting for bias. In total, while 15 of the vendors made at least abstract

references to “bias” (sometimes in the context of well-established human bias in

hiring), only 7 vendors explicitly discussed compliance or adverse impact with

respect to the assessments they offered. Three vendors explicitly mentioned

the 4/5 rule, and an additional 4 advertised “compliance” or claimed to control

adverse impact more generally. Several of these vendors claimed to test models

for bias, “fixing” it when it appeared. HireVue and pymetrics, in particular,

offered a detailed description of their overall approaches to de-biasing, which

involves removing features correlated with protected attributes when adverse

impact is detected. Other vendors (e.g., Knockri and PredictiveHire) claimed to

“fix” adverse impact when it is found without going into further detail.

7https://good.co/
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Among those that do make concrete claims, all vendors we examined specif-

ically focus on equality of outcomes and compliance with the 4/5 rule. Roughly

speaking, there are two ways in which vendors claim to achieve these goals:

naturally unbiased assessments and active algorithmic de-biasing. Typically,

vendors claiming to provide naturally unbiased assessments seek to measure

underlying cognitive or behavioral traits, so their assessments output a small

number of scores, one for each competency being measured. In this setting, a

naturally unbiased assessment in one that produces similar score distributions

across demographic groups. Koru, for instance, measures 7 traits (e.g., “grit”

and “presence”) and claims that “[i]n all panels since 2015, the Pre-Hire assess-

ment does not show bias against women or minority respondents” (Jarrett and

Croft, 2018).

Other vendors actively intervene in their learned models to remove biases.

One technique that we have observed across multiple vendors (e.g., HireVue,

pymetrics, PredictiveHire) is the following: build a model and test it for ad-

verse impact against various subgroups.8 As Bogen and Rieke (2018) also ob-

serve, if adverse impact is found, the model and/or data are modified to try to

remove it, and then the model is tested again for adverse impact. HireVue and

pymetrics downweight or remove features found to be highly correlated with

the protected attribute in question, noting that this can significantly reduce ad-

verse impact with little effect on the predictive accuracy of the assessment. This

is done prior to the model’s deployment on actual applicants, though some ven-

dors claim to periodically test and update models. In Section 11.4, we discuss

in depth these efforts to define and remove bias.

8pymetrics, for instance, open-sources the tests it uses: https://github.com/pymetrics/
audit-ai

251

https://github.com/pymetrics/audit-ai
https://github.com/pymetrics/audit-ai


11.3 Analysis of Technical Concerns

Our findings in Section 11.2 raise several technical challenges for the pre-

employment assessment process. In this section, we focus on two areas that

are particularly salient in the context of algorithmic hiring: data choices, where

vendors must decide where to draw data from and what outcomes to predict;

and the use of alternative assessment formats, like game- or video-based as-

sessments that rely on larger feature sets and more complex machine learning

tools than traditional question-based assessments.

11.3.1 Data Choices

Machine learning is often viewed as a process by which we predict a given out-

put from a given set of inputs. In reality, neither the inputs nor outputs are

fixed. Where do the data come from? What is the “right” outcome to predict?

These and others are crucial decisions in the machine learning pipeline, and can

create opportunities for bias to enter the process.

Custom assessments. Consider a hypothetical practitioner building a custom

assessment to identify the “best” candidates for her client. As is the case in many

domains, translating this to a feasible data-driven task forces our practitioner to

make certain compromises (Passi and Barocas, 2019). It quickly becomes clear

that she must operationalize “best” in some measurable way. What does the

client value? Sales numbers? Cultural fit? Retention? And, crucially, what data

does the client have? This is a nontrivial constraint: many companies don’t

maintain comprehensive and accessible data about employee performance, and
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thus, a practitioner may be forced to do the best she can with the limited data

that she is given (Tambe et al., 2019). Note that relying on the client’s data has

already forced the practitioner to only learn from the client’s existing employ-

ees; at the outset, at least, she has data on how those who weren’t hired would

have performed.

Once a target is identified, the practitioner needs a dataset on which to train

a model. Since she has performance data on previous employees, she needs

them to take the assessment so she can link their scores to their observed job

performance. How many employees’ data does she need in order to get an

accurate model? What if certain employees don’t want to or don’t have time to

take the assessment? Is the set of employees who respond representative of the

larger applicant pool who will ultimately be assessed?

Finally, the practitioner is in a position to actually build a model. Along

the way, however, she had to make several key choices, often based on factors

(like client data availability) outside her control. The choice of target variable is

particularly salient. Proxies like job evaluations, for instance, can exhibit biases

against minorities (Sidanius and Crane, 1989; Neumark et al., 1996; Riach and

Rich, 2002). Moreover, predicting the success of future employees based on cur-

rent employees inherently skews the task toward finding candidates resembling

those who have already been hired.

Some vendors go beyond trying to identify candidates who are generically

good, or even good for a particular client, and explicitly focus on finding can-

didates who “fit” with an existing employee or team. Both Good & Co. and

Teamscope provide these team-specific tools for employers, and Good & Co.

further advertises their assessments as a way to “[r]eplicate your top perform-

253



ers.”9 If models are localized to predict fit with particular teams, any role at

any company could in principle have its own tailor-made predictive model. But

when models are customized at such a small scale, it can be quite difficult to

determine what it means for such a model to be biased or discriminatory. Does

each team-specific model need to be audited for bias? How would a vendor go

about doing so?

And yet, while it is easy to criticize vendors for their choices, it’s not clear

that there are better alternatives. In practice, it is impossible to even define,

let alone collect data on, an objective measure of a “good” employee. Nor is it

always feasible to get completely representative data. Vendors and advocates

point out that many of the potentially problematic elements here (subjective

evaluations; biased historical samples; emphasis on fit) are equally present, if

not more so, in traditional human hiring practices (Chamorro-Prezumic and

Akhtar, 2019).

Customizable and pre-built assessments. Instead of building a new custom

assessment for each client, it may be tempting to instead offer a pre-built assess-

ment (perhaps specific to a particular job role) that has been validated across

data from a variety of clients. This approach has its advantages: it isn’t subject

to the idiosyncratic data of each client, and it can draw from a diverse range of

candidates and employees to learn a broad notion of what a “good” employee

looks like. Additionally, pre-built assessments may be attractive to clients with

too few existing employees to build a custom assessment.

Some vendors offer assessments that are mostly pre-built but somewhat cus-

9https://good.co/pro/
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tomizable. Koru and Plum.io, for example, provide pre-built assessments to

evaluate a fixed number of competencies. Experts then analyze the job descrip-

tion and role for a particular client and determine which competencies are most

important for the client’s needs. Thus, these vendors hope to get the best of

both worlds: assessments validated on large populations that are still flexible

enough to adapt to the specific requirements of each client. As shown in Fig-

ure 11.2, the firm 8 and Above profiles over 60 traits based on a video interview,

but also reports a single “Elev8” score tailored to the particular client.

Despite these benefits, pre-built assessments do have drawbacks. Individual

competencies like “grit” or “openness” are themselves constructs, and attempts

to measure them must rely on other psychometric assessments as “ground

truth.” Given that traits can be measured by multiple tests that don’t perfectly

correlate with one another (Rodriguez and Maeda, 2006), it may be difficult to

create an objective benchmark against which to compare an algorithmic assess-

ment. Furthermore, it is generally considered good practice to build and vali-

date assessments on a representative population for a particular job role (Soci-

ety for Industrial and Organizational Psychology, 2018), and both underlying

candidate pools and job specifics differ across locations, companies, and job

descriptions. Pre-built assessments must by nature be general, but as a con-

sequence, they may not adapt well to the client’s requirements.

Necessary trade-offs. This leads to an inherently challenging technical prob-

lem: on the one hand, more data is usually beneficial in creating and validating

an assessment; on the other hand, drawing upon data from related but some-

what different sources may lead to inaccurate conclusions. We can view this as

an instance of domain adaptation and the bias-variance tradeoff, well studied in
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Figure 11.2: Part of a sample candidate profile from 8 and Above, based on a 30-
second recorded video cover letter (screenshot from the 8 and Above website:
https://www.8andabove.com/p/profile/blueprint/643)

the statistics and machine learning literature (Ben-David et al., 2010; Friedman

et al., 2001). Pooling data from multiple companies or geographic locations may

reduce variance due to small sample sizes at a particular company, but comes

at the cost of biasing the outcomes away from the client’s specific needs. There

is no obvious answer or clear best practice here, and vendors and clients must

carefully consider the pros and cons of various assessment types. Larger clients

may be better positioned for vendors to build custom assessments based solely

on their data; smaller clients may turn to pre-built assessments, making the as-

sumption that the candidate pool and job role on which the assessment was

built is sufficiently similar to warrant generalizing its conclusions.

256

https://www.8andabove.com/p/profile/blueprint/643


11.3.2 Alternative Assessment Formats

Once an assessment has been built, it must be validated to verify that it performs

as expected. Psychologists have developed extensive standards to guide assess-

ment creators in this process (Society for Industrial and Organizational Psychol-

ogy, 2018); however, modern assessment vendors are pushing the boundaries

of assessment formats far beyond the pen-and-paper tests of old, often with

little regulatory oversight (Chamorro-Premuzic et al., 2016). Game- and video-

based assessments, in particular, are increasingly common. Vendors point to

an emerging line of literature showing that features derived from these modern

assessment formats correlate with job outcomes and personality traits (Kramer

and Ward, 2010; Grimmett, 2017) as evidence that these assessments contain

information that can be predictive of job outcomes, though they rarely release

rigorous validation studies of their own.

Technical challenges for alternative assessments. While there is evidence for

the predictive validity of alternative assessments, empirical correlation is no

substitute for theoretical justification. Historically, IO psychologists have de-

signed assessments based on their research-driven knowledge that certain traits

correlate with desirable outcomes. To some extent, machine learning attempts

to automate this process by discovering relationships (e.g., between actions in a

video game and personality traits) instead of quantifying known relationships.

Of course, machine learning can be used to unearth meaningful relationships.

But it may also find relationships that experts don’t understand. When the ex-

pert is unable to explain why, for example, the cadence of a candidate’s voice

indicates higher job performance, or why reaction time predicts employee reten-
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tion, should a vendor rely on these features? From a technical perspective, corre-

lations that cannot be theoretically justified may fail to generalize well or remain

stable over time, and, in light of such concerns, the APA Principles caution that

a practitioner should “establish a clear rationale for linking the resulting scores

to the criterion constructs of interest” (Society for Industrial and Organizational

Psychology, 2018). Yet when an algorithm takes in “millions of data points” for

each candidate (as advertised by pymetrics10), it may not be possible to provide

a qualitative justification for the inclusion of each feature.

Moreover, automated discovery of relationships makes it difficult for a criti-

cal expert to detect when the model makes indirect use of a proscribed charac-

teristic. Rich sources of data can easily encode properties that are illegal to use

in the hiring process. Facial analysis, in particular, has been heavily scrutinized

recently. A wave of studies has shown that several commercially available fa-

cial analysis techniques suffer from disparities in error rates across gender and

racial lines (Buolamwini and Gebru, 2018; Raji and Buolamwini, 2019; Rhue,

2018), and more broadly, evidence suggests that we may not be able to reli-

ably infer emotions from facial expressions, especially cross-culturally (Barrett

et al., 2019). Concerns have also been raised over the use of affect and emo-

tion recognition for those with disabilities, particularly in the context of em-

ployment (Fruchterman and Melllea, 2018; Guo et al., 2019; Hurley-Hanson and

Giannantonio, 2016).

Because it can be quite expensive and technically challenging to build fa-

cial analysis software in-house, vendors will often turn to third parties (e.g.,

Affectiva11) who provide facial analysis as a service. As a result, vendors lack

10https://perma.cc/3284-WTS8
11https://www.affectiva.com/
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the ability or resources to thoroughly audit the software they use. With these

concerns in mind, U.S. Senators Kamala Harris, Patty Murray, and Elizabeth

Warren recently wrote a letter to the EEOC asking for a report on the legality

and potential issues with the use of facial analysis in pre-employment assess-

ments (Harris et al., 2018). Even more recently, Illinois passed a law requiring

applicants to be notified and provide consent if their video interviews will be

analyzed by artificial intelligence (Assembly, 2019), though it’s not clear what

happens if an applicant refuses to consent.

While heightened publicity regarding racial disparities in facial analysis has

prompted many third-party vendors of this technology to respond by improv-

ing the performance of their tools on minority populations (Puri, 2018; Roach,

2018), it remains unclear what information facial analysis relies on to draw con-

clusions about candidates. Facial expressions may contain information about a

range of sensitive attributes from obvious ones like ethnicity, gender, and age

to more subtle traits like a candidate’s mental and physical health (Kramer and

Ward, 2010; Zhou et al., 2015).12 Given the opacity of the deep learning models

used for facial analysis, it can be difficult or even impossible to detect if a model

inadvertently learns proxies for prohibited features.

11.4 Algorithmic De-Biasing

Under Title VII, employers bear ultimate legal responsibility for their hiring de-

cisions. Employers, then, remain strongly motivated to mitigate their potential

liability against disparate impact claims. Vendors, in turn, are incentivized to

12As a general matter, the Americans with Disabilities Act prohibits employers from collecting
or considering information about candidates’ health (U.S. Congress, 1990).
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build demonstrably unbiased tools that help employers to avoid such liability.

As we have described, all vendors in our sample who made concrete claims

about de-biasing (including the two best-funded firms in our sample) did so

with reference to equality of outcomes and compliance with the 4/5 rule. In this

section, we explore the effects of this reliance on the stages of a typical disparate

impact lawsuit. We then explore technical approaches that have been proposed

to control outcome disparities, and their relationship to the law. Finally, we

describe some important consequences of the de-biasing strategies favored by

vendors.

11.4.1 Algorithmic De-Biasing and Disparate Impact Litigation

Recall the three steps in a disparate impact case. The plaintiff must first estab-

lish that the employer’s selection procedure generates a disparate impact. Once

established, the employer must then defend itself by justifying the disparate im-

pact by reference to some business necessity. In this case, an employer would

likely do so by establishing the validity of the model driving its hiring decisions.

Finally, the plaintiff may then challenge the proffered justification as faulty or

demonstrate that an alternative practice exists that would serve the employer’s

business objective equally well while reducing the disparate impact in its selec-

tion rates.

Note that disparate impact doctrine does not prohibit disparate impact al-

together; it renders employers liable for an unjustified or avoidable disparate im-

pact. Vendors’ choice to enforce the 4/5 rule might therefore seem overly cau-

tious: although employers could justify an assessment that has a disparate im-
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pact by demonstrating its validity (as we discuss in Section 2), vendors take

steps to ensure that employers are not placed in this position, because assess-

ments are prevented from having a disparate impact in the first place. One

possible explanation for adopting the 4/5 rule is that vendors might be catering

to employers’ aversion to legal risk.

As to the second step, the practical effect of vendors’ reliance on the 4/5 rule is

to obviate the need for an employer to demonstrate business necessity through

a legally rigorous validation process. According to the Uniform Guidelines, em-

ployers only need to validate their selection procedure if it has a disparate im-

pact. Of course, clients might still expect and even demand validation studies

from vendors, given their goal of selecting qualified candidates. As a conse-

quence, the choice of how to validate seems to become a business decision rather

than a legal imperative.

The final step in a disparate impact case raises yet another possible expla-

nation for vendors’ decisions to adopt the 4/5 rule as a constraint. Recall that,

at this stage, employers bear liability if they failed to adopt an alternative prac-

tice that could have minimized any business-justified disparity created by their

selection procedure, provided that such practices were not too costly. Employ-

ers therefore run significant legal risks if they do not take such steps. In turn,

should vendors have some way to minimize disparity without sacrificing the

accuracy of their assessments, failing to do so might place their clients in legal

jeopardy. A plaintiff could assert that this very possibility reveals that any evi-

dent disparate impact—even if justified by a validation study—was avoidable.

While the burden of identifying this alternative business practice rests with

the plaintiff, vendors may want to preempt this argument by taking affirmative
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steps to explore how to minimize disparate impact without imposing unwel-

come costs on the employer. In the past, such exploratory efforts might have

been costly and difficult, since discovering an alternative business practice that

is equally effective for the firm, while generating less disparity in selection rates,

was no easy task. Many modern assessments (e.g., those with a large number

of features) make some degree of exploration almost trivial, allowing vendors

to find a model that (nearly) maintains maximum accuracy while reducing dis-

parate impact.

In this way, the ready availability of algorithmic techniques might effectively

create a legal imperative to use them. If the adverse impact of a business-justified

model could be reduced through algorithmic de-biasing—without significantly

harming predictive ability, and at trivial cost—de-biasing itself might be con-

sidered an “alternative business practice,” and therefore render the employer

liable for not adopting it.

11.4.2 Methods to Control Outcome Disparities

Thus, for legal reasons, a vendor may choose to control outcome disparities

in strict adherence to the 4/5 rule. But this is not the end of the story; multiple

techniques exist to control outcome differences. Here, we explore both historical

and contemporary approaches in comparison with the de-biasing techniques we

observe.

The most straightforward approach to control outcome differences is known

as “within-group scoring,” under which scores are reported as a percentile with

respect to the particular group in question. Employers could then select candi-
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dates above a particular threshold for each group (top 10% from Group A, top

10% from Group B, etc.), which would naturally result in equal selection rates.

Recall that in the de-biasing reviewed above, vendors achieve (approximately)

equal selection rates by systematically removing features from the model that

contribute to a disparate impact. In so doing, they may lose useful information

contained in these features as well, undermining their ability to maintain an

accurate rank order within each group. In contrast, within-group scoring may

theoretically be the optimal way to equalize selection rates, since it preserves

rank order (Corbett-Davies et al., 2017; Lipton et al., 2018).

In fact, within-group scoring was used for the General Aptitude Test Battery

(GATB), a pre-employment assessment developed in the 1940s by the US Em-

ployment Service (USES), due to significant differences in score distributions

across ethnic groups. In particular, the USES reported results as within-group

percentile scores by ethnicity—black, Hispanic, and other (National Research

Council, 1989; Schuler et al., 1993). Commissioned to investigate the justifica-

tion for such a policy, a National Academy of Sciences study recommended

the continued use of within-group percentiles because without them, minority

applicants would suffer from “higher false-rejection rates” (National Research

Council, 1989).

In principle, within-group score reporting (also known as “race-norming”)

would satisfy the 4/5 rule; so why don’t vendors use it? In fact, within-group

reporting would likely be considered illegal today. In 1986 the Department of

Justice challenged its legality in the GATB, claiming that it constituted disparate

treatment (Schuler et al., 1993), and the practice was prohibited by the Civil

Rights Act of 1991 (U.S. Congress, 1991).
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This points to a longstanding tension between disparate treatment and dis-

parate impact: some techniques to control outcome disparities require the use

of protected attributes, which may be considered disparate treatment. To cir-

cumvent this, the vendors we observe engaging in algorithmic de-biasing take

into account protected attributes when building models, but ultimately produce

models that do not take protected attributes as input. In this way, individual

decisions do not exhibit disparate treatment, and yet, outcome disparities can

still be mitigated.

In fact, these techniques fit into a broader category of methods known as

Disparate Learning Processes (DLPs), a family of algorithms designed to pro-

duce decision rules that (approximately) equalize outcomes without engaging

in disparate treatment at the individual level (Lipton et al., 2018; Pedreshi et al.,

2008; Zafar et al., 2017b). There are slight differences between DLPs as found

in the computer science literature and vendors’ algorithmic de-biasing efforts:

DLPs typically work by imposing constraints that prevent outcome disparities

on the learning algorithm that produces the model; the algorithmic de-biasing

we observe, on the other hand, simply removes features correlated with pro-

tected attributes until outcomes are within a tolerable range. In spirit, however,

these techniques are ultimately quite related.

Similar connections exist to “fair representation” learning, where an “en-

coder” is built to process data by removing information about protected at-

tributes, including proxies and correlations (Zemel et al., 2013; Madras et al.,

2018; Edwards and Storkey, 2016). Thus, any model built on data processed

by the encoder would have approximately equal outcomes, since outputs of

the encoder contain very little information about protected attributes. As in
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DLPs, protected attributes are used only to create the encoder; after deploy-

ment, when the encoder processes any individual’s data, it does not have access

to protected attributes. We can think of some vendors’ practices as analogous

to building such an encoder—one that “processes” data by simply discarding

features highly correlated with protected attributes.

11.4.3 Limitations of Outcome-Based De-Biasing

Despite the perhaps good reasons vendors have to use the particular form of al-

gorithmic de-biasing discussed above, these techniques face important caveats

and consequences worth mentioning.

Outcome-based notions of bias are intimately tied to the datasets on which

they are evaluated. As both the EEOC Guidelines and APA Principles clearly

articulate, a representative sample is crucial for validation (Equal Employment

Opportunity Commission, 1978; Society for Industrial and Organizational Psy-

chology, 2018). The same holds true for claims regarding outcome disparities:

they may depend on whether the assessment is taken by recent college grads in

Michigan applying for sales positions or high school dropouts in New York ap-

plying for jobs stocking warehouses. Thus, when evaluating claims regarding

outcome disparities, it is critical to understand how vendors collect and main-

tain relevant, representative data.

While outcome disparities are important for vendors to consider, especially

in light of U.S. regulations, discrimination and the 4/5 rule should not be con-

flated. Vendors may find it necessary from a legal or business perspective to

build models that satisfy the 4/5 rule, but this is not a substitute for a critical
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analysis into the mechanisms by which bias and harm manifest in an assess-

ment. For example, differential validity, which occurs when an assessment is

better at ranking members of one group than another, should be a top-level

concern when examining an assessment (Society for Industrial and Organiza-

tional Psychology, 2018; Young, 2001). But because of the legal emphasis placed

on adverse impact, vendors have little incentive to structure their techniques

around it. Furthermore, it can be challenging to identify and mitigate outcome

disparities with respect to protected attributes employers typically don’t collect

(e.g., sexual orientation (Legislature, 1959)). In such cases, vendors may need to

consider alternative approaches to prevent discrimination.

More broadly, bias is not limited to the task of predicting outputs from

inputs; a critical, holistic examination of the entire assessment development

pipeline may surface deeper concerns. Where do inputs and outputs come from,

and what justification do they have? Are there features that shouldn’t be used?

This isn’t to say that some vendors are not already asking these questions; how-

ever, in the interest of forming industry standards surrounding algorithmic as-

sessments, the legal operationalization of the 4/5 rule as a definition of bias runs

the risk of downplaying the importance of examining a system as a whole.

Both the law and existing techniques focus on assessment outcomes as bi-

nary (screened in/out); however, some platforms actually rank candidates (ex-

plicitly, or implicitly by assigning numerical scores). While screening decisions

can ultimately be viewed as binary (a candidate is either interviewed or not),

there are a number of subtleties induced by ranking: a lower-ranked candidate

may only be interviewed after higher-ranked candidates, and their lower score

could unduly bias future decision-makers against them (Bogen and Rieke, 2018).
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There is no clear analog of the 4/5 rule for ranking; in practice, vendors may

choose a cut-off score and test for adverse impact via the 4/5 rule (Equal Employ-

ment Opportunity Commission, 1978; Baker et al., 2018). In the computer sci-

ence literature, there are ongoing efforts to define technical constraints on rank-

ings in the spirit of equal representation and the 4/5 rule (Celis et al., 2018; Yang

and Stoyanovich, 2017; Zehlike et al., 2017), and LinkedIn has adopted a similar

approach to encourage demographic diversity in its search results (Geyik et al.,

2019). However, none of these approaches has received any sort of consensus

or official endorsement.

From a policy perspective, the EEOC can and should clarify its position

on the use of algorithmic de-biasing techniques, which to our knowledge has

yet to be challenged in court. Legal scholars have begun to debate the legality

of “algorithmic affirmative action” in various contexts (Kroll et al., 2016; Bent,

2020; Hellman, 2020; Kim, 2017; Raub, 2018), but the debate is far from settled.

While existing guidelines can be argued to apply to ML-based assessments, the

de-biasing techniques described above do present new opportunities and chal-

lenges.

11.5 Discussion and Recommendations

In this chapter, we have presented an in-depth analysis into the bias-related

practices of vendors of algorithmic pre-employment assessments. Our findings

have implications not only for hiring pipelines, but more broadly for investiga-

tions into algorithmic and socio-technical systems. Given the proprietary and

sensitive nature of models built for actual clients, it is often infeasible for exter-
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nal researchers to perform a traditional audit; despite this, we are able to glean

valuable information by delving into vendors’ publicly available statements.

Broadly speaking, models result from the application of a vendor’s practices to

a real-world setting. Thus, by learning about these practices, we can draw con-

clusions and raise relevant questions about the resultant models. In doing so,

we can create a common vocabulary with which we can discuss and compare

practices. We found it useful to limit the scope of our inquiry in order to be able

to ask and answer concrete questions. Even just considering algorithms used in

the context of hiring, we found enough heterogeneity (as have previous reports

on the subject (Bogen and Rieke, 2018; Garr and Jackson, 2019)) that it was nec-

essary to further refine our focus to those used in pre-employment assessments.

While this did lead us to exclude a number of innovative and intriguing hiring

technologies (see, e.g., Textio13 or Jopwell14), it allowed us to make specific and

direct comparisons between vendors and get a more detailed understanding of

the technical challenges specific to assessments.

In analyzing models via practices, we observe that it is crucial to consider

technical systems in conjunction with the context surrounding their use and de-

ployment. It would be difficult to understand vendors’ design decisions with-

out paying attention to the relevant legal, historical, and social influences. More-

over, in order to push beyond hypothetical or anecdotal accounts of algorithmic

bias, we need to incorporate empirical evidence from the field.

Based on our findings, we summarize the following policy recommenda-

tions discussed throughout this chapter. We refer the reader to Raghavan and

13Textio (https://textio.com/) analyzes job descriptions for gender bias and makes sugges-
tions for alternative, gender-neutral framings.

14Jopwell (https://www.jopwell.com/) builds and maintains a network of Black, Latinx, and
Native American students and connects students these with employers.
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Barocas (2019) for further discussion of these recommendations.

1. Transparency is crucial to further our understanding of these systems.

While there are some exceptions, vendors in general are not particularly

forthcoming about their practices. Additional transparency is necessary

to craft effective policy and enable meaningful oversight.

2. Disparate impact is not the only indicator of bias. Vendors should also

monitor other metrics like differential validity.

3. Outcome-based measures of bias (including tests for disparate impact and

differential validity) are limited in their power. They require representa-

tive datasets for particular applicant pools and fail to critically examine

the appropriateness of individual predictors. Moreover, they depend on

access to protected attributes that are not always available.

4. We may need to reconsider legal standards of validity under the Uniform

Guidelines in light of machine learning. Because machine learning may

discover relationships that we do not understand, a statistically valid as-

sessment may inadvertently leverage ethically problematic correlations.

5. Algorithmic de-biasing techniques have significant implications for “alter-

native business practices,” since they automate the search for less discrim-

inatory alternatives. Vendors should explore these techniques to reduce

disparate impact, and the EEOC should offer clarity about how the law

applies.

Our work leads naturally to a range of questions, ranging from those that

seem quite technical (What is the effect of algorithmic de-biasing on model out-

puts? When should data from other sources be incorporated?) to socio-political
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(What additional regulatory constraints could improve the use of algorithms

in assessment? How can assessments promote the autonomy and dignity of

candidates?). Because the systems we examine are shaped by technical, legal,

political, and social forces, we believe that an interdisciplinary approach is nec-

essary to get a broader picture of both the problems they face and the potential

avenues for improvement.
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CHAPTER 12

THE HIDDEN ASSUMPTIONS BEHIND COUNTERFACTUAL

EXPLANATIONS AND PRINCIPAL REASONS

Calls for explanations have become a standard part of the push for algorith-

mic accountability. As algorithmic decision-making becomes ever more com-

plex and proliferates to more domains, explanations are increasingly seen as a

way to reconnect those algorithms to their human subjects: to respect the auton-

omy of people subject to automated decisions, to allow people to navigate the

rules that govern their lives, to help people recognize when they should con-

test decisions or object to the decision-making process, and to facilitate direct

oversight and regulation of algorithms (Wachter et al., 2018; Selbst and Barocas,

2018).

In this chapter, we examine two related approaches to explanation: the coun-

terfactual explanations that have been explored in recent computer science re-

search and which are gaining traction in industry, and the “principal reason”

approach drawn from United States credit laws. Collectively, we will call these

two approaches “feature-highlighting explanations.” At a high level, these ap-

proaches provide the subject of a decision with a set of factors that “explain”

the decision. Though they are distinct in operation and motivation, both meth-

ods highlight a certain subset of features that are deemed most deserving of

the decision subject’s attention. It is this property that underlies most of our

observations.

Other approaches to understanding the decisions of a model have focused

on building purposefully simple models that lend themselves to direct inspec-

tion, approximating complex models in simpler—and thus more practically
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inspectable—forms, and accounting for the relative importance of different fea-

tures in the model overall (rather than in a specific decision) (Selbst and Baro-

cas, 2018). While these are also useful, there are at least five reasons for the

growing popularity of feature-highlighting explanations. First, this approach

allows practitioners to abandon any constraints on model complexity–a con-

straint often seen as a barrier to improved model performance. Second, it allows

businesses to avoid disclosing models in their entirety, thereby protecting trade

secrets and businesses’ other proprietary interests, while limiting decision sub-

jects’ ability to game the model. Third, the approach promises a concrete justifi-

cation for a decision or concrete instructions for achieving a different outcome.

Fourth, this approach allows firms to automate the difficult task of generating

explanations for a model’s decisions, then communicating these explanations to

consumers. Fifth, this approach appears to generate explanations that comply

with legal requirements both in the United States and Europe.

Generating feature-highlighting explanations is far from straightforward,

however, and requires decision makers to make many consequential and sub-

jective choices along the way. Adopting methods to automate the process of

explaining specific decisions does not relieve decisions makers of the burden

and power to decide what they ultimately disclose to decision subjects. Fur-

thermore, useful explanations cannot be generated in isolation from the world

in which decision subjects will have to act. While feature-highlighting explana-

tions are typically inward-looking, determined by examining the model alone

and the data used to train it, the true difficulty a decision subject will face in

changing a feature is inevitably intertwined with her life circumstances, infor-

mation rarely available to decision makers.
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In this chapter, we demonstrate that the promised utility of factor-based ex-

planations rests on five key assumptions, easily overlooked, and sometimes

improper: (1) that a change in feature value clearly maps to an action in the

real world; (2) that features can be made commensurate by looking only at the

underlying distribution of feature values in the training data; (3) that explana-

tions can be offered without regard to decision-making in other areas of people’s

lives; (4) that the model generating decisions is monotonic and its potential out-

comes are binary; and (5) that explanations remain valid over the time period

necessary for a decision subject to change feature values.

The chapter then explores three tensions at the heart of feature-highlighting

explanations. First, while feature-highlighting explanations are designed to re-

spect or enhance the autonomy of decision subjects, the decision maker is put in

the position of having to make determinations about what is best for the deci-

sion subject; this is paternalism in the name of autonomy. Furthermore, the only

way for a decision maker to be sensitive to decision subjects’ needs and pref-

erences is to further intrude into their lives, gathering enough information to

respect their autonomy, while comprising the autonomy afforded by privacy in

the process. Second, partial disclosure puts the decision subject at the mercy of

the decision maker. The choice of what to disclose grants a great deal of power

to the decision maker. By granting such power to businesses, we invite them

to use that power for interests other than those of the decision subject. Finally,

attempts to overcome some of these challenges by providing decision subjects

a larger number and more diverse set of explanations or affording them the op-

portunity to explore the consequences of specific changes will eventually risk

revealing the model altogether. If these techniques fail to protect their intellec-
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tual property, firms are unlikely to adopt them.

12.1 What are feature-highlighting explanations?

Counterfactual explanations have begun to attract the interest of businesses,

regulators, and legal scholars, with many converging on the belief that such

explanations is the preferred approach to explaining machine learning mod-

els and their decisions. Principal-reason explanations are well established in

U.S. credit laws. Various business have well developed procedures for generat-

ing and issuing adverse action notices (AANs). Both methods aim to produce

explanations of a particular decision by highlighting factors deemed useful or

important. This section will describe both approaches, and how they are linked.

12.1.1 Counterfactual explanations

Recent proposals from computer scientists have focused on counterfactual ex-

planations (Martens and Provost, 2014; Wachter et al., 2018; Ustun et al., 2019;

Mothilal et al., 2020; Karimi et al., 2020; Hendricks et al., 2018; Grath et al.,

2018; Ribeiro et al., 2016; Lou et al., 2012; Dhurandhar et al., 2018). The goal of

counterfactual explanations is to provide actionable guidance—to explain how

things could have been different and provide a concrete set of steps a consumer

might take to achieve a different outcome in the future. Counterfactual explana-

tions are achieved by identifying the features that, if minimally changed, would

alter the output of the model.

In particular, an emerging theme in the computer science literature is to
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frame the search for such features as an optimization problem, seeking to find

the “nearest” hypothetical point that is classified differently from the point

currently in question (Wachter et al., 2018; Mothilal et al., 2020; Russell, 2019;

Karimi et al., 2020; Ustun et al., 2019). In casting the search for counterfactual

explanations as an optimization problem, a key challenge is to define a notion of

distance. Different features are rarely directly comparable because they are rep-

resented on numerical scales that do not meaningfully map onto one another.

We discuss this challenge more in Section 12.2.2.

Wachter et al. (2018) have also argued that counterfactual explanations could

satisfy the explanation requirements of the EU’s General Data Protection Reg-

ulation (GDPR). Over the last several years, lawyers and legal scholars have

debated whether certain provisions of the GDPR create a right to an expla-

nation of algorithmic decisions, and if it exists, whether and when it requires

an explanation of specific decisions or the model. (Kaminski, 2019; Selbst and

Powles, 2017; Brkan, 2019; Wachter et al., 2017; Edwards and Veale, 2017; Casey

et al., 2019; Mendoza and Bygrave, 2017; Malgieri and Comandé, 2017). The offi-

cial interpretation of the Article 29 Working Party—a government body charged

with creating official interpretations of European data protection law—has con-

cluded that the GDPR requires, at a minimum, explanations of specific deci-

sions (Article 29 Data Protection Working Party). Thus, part of the rationale to

employ counterfactual explanations is to satisfy the legal requirements of the

GDPR.
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12.1.2 Principal reason explanations

The other type of feature-highlighting explanation is what we call a “princi-

pal reason” explanation. The principal reason approach has a long history in

the United States, where the Fair Credit Reporting Act (FCRA) (Fair Credit Re-

porting Act, Public Law 91-508), Equal Credit Opportunity Act (ECOA) (Equal

Credit Opportunities Act, Public Law 93-495), and Regulation B (Regulation B)

require creditors—and others using credit information—to provide consumers

with reasons explaining their adverse decisions (e.g., consumers being given a

subprime interest rate, denied credit outright, or denied a job based on credit,

etc.) (Selbst and Barocas, 2018). Under ECOA and Regulation B, these decision

makers are required to issue adverse action notices (AANs) to such consumers.

Under FCRA, consumers are given a list of ”key factors” that negatively af-

fect their credit score. These notices must include a statement of no more than

four “specific reasons” for the adverse decision (Fair Credit Reporting Act, Pub-

lic Law 91-508; Regulation B).1 A Sample Form in the Appendix to the regu-

lation offers a non-exhaustive list of acceptable reasons, such as “income in-

sufficient for amount of credit requested,” “unable to verify income,” “length

of employment,” “poor credit performance with us,” “bankruptcy,” and “no

credit file” (Regulation B, Appx. C, (Sample Form)). Under the regulation, “no

factor that was a principal reason for adverse action may be excluded from disclo-

sure, [and t]he creditor must disclose the actual reasons for denial” (Regulation

B, § 1002.9(b)(2), emphasis added).

What counts as a principal reason is not well-defined in either the statutes or

regulation. The legislative history of ECOA indicates that consumer education

1The number four is not a hard limit under Regulation B, as it is under FCRA, but it is
observed in practice.

276



is a primary goal:

[R]ejected credit applicants will now be able to learn where and how

their credit status is deficient and this information should have a per-

vasive and valuable educational benefit. Instead of being told only

that they do not meet a particular creditor’s standards, consumers

particularly should benefit from knowing, for example, that the rea-

son for the denial is their short residence in the area, or their recent

change of employment, or their already over-extended financial sit-

uation (Senate Report No. 94-589, p. 4)

This would seem to suggest that counterfactual explanations, as currently

conceived, would serve the intended purpose of AANs. And indeed, some

scholars have suggested as much (Ustun et al., 2019). But this very ambiguity

also demonstrates that principal reasons are satisfied by a broader array of pos-

sible feature-highlighting explanations. For example, the Official Staff Interpre-

tation to Regulation B, originally published in 1985 (Federal Register), suggests

that two ways creditors can generate principal reasons:

One method is to identify the factors for which the applicant’s

score fell furthest below the average score for each of those factors

achieved by applicants whose total score was at or slightly above the

minimum passing score. Another method is to identify the factors

for which the applicant’s score fell furthest below the average score

for each of those factors achieved by all applicants (Regulation B,

Supplement I)
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Note that neither approach uses the decision boundary as the relevant point

of comparison. Instead, they compare the value of applicants’ features to

the average value of these features for the credit-receiving or general popula-

tion. When comparing an applicant against the credit-receiving population, the

lender might be able to generate a set of principal reasons that give a rough

approximation of the changes that the applicant would need to make to obtain

credit. Yet, because the point of comparison is not the decision boundary, but

rather the average value of each feature across the credit-receiving population,

there is no guarantee that a rejected applicant would have received the loan

even if the value of the proffered features had been equal to or greater than the

average value of the population. Indeed, the rejected applicant could have ex-

ceeded the average value of the population on the identified feature, while still

falling short on other features necessary to obtain credit. This problem would

be exacerbated when comparing the applicant to the general population, where

the average value of features would be lower, given that it includes failed appli-

cants along with those that had been successful. Though they are written into

the regulation, is it not clear that firms actually use these methods to generate

principal reasons.

We can also imagine a similar approach that measures an applicant against

the decision boundary or the maximum point on the response surface (i.e., “the

ideal, most creditworthy possible customer” (Hall et al., 2017))—evaluating

how far an applicant falls from either point along each feature. The decision

maker could then rank order features by the distance the applicant would need

to travel to reach either point, and generate an explanation by highlighting the

top four features. In effect, the applicant would learn the four features along

which she is most deficient.
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12.1.3 Different ways of respecting decision subject autonomy

There is no natural way to choose between these different approaches. Yet rarely

is the choice to use one method over another discussed explicitly, or, indeed,

even recognized as is a choice in the first place. These methods produce different

explanations and serve fundamentally different goals.

Focusing on features that are furthest from the average value of the features

in the credit-receiving or general population casts the problem of identifying

principal reasons as one of identifying extreme deficiencies that would seem to

rule out the applicant completely, rather than near-misses that applicants might

readily address before applying for credit again in the future. While the former

may strike us as a less attractive or sensible approach to explanation, there may

be good reason to favor an explanation that makes clear the features that were

held against an applicant. With the latter approach, while the applicant might

receive helpful advice, she might not learn that other features were viewed by

the model as a crucial mark against her.

Principal-reason explanations treat importance in terms of procedural jus-

tice: to respect the autonomy of a decision subject, the decision subject deserves

to know which factors dominated the decision (Tyler, 2006). In counterfac-

tual explanations, respect for autonomy means that decision subjects need to

know how choices affect outcomes, and thus how they can take actions that will

most effectively serve their interests in the future. The former operates more

like a justification for a decision—a rationale, with little immediate concern for

recourse—whereas the latter serves a more practical purpose—providing ex-

plicit guidance for achieving a different decision in the future. In keeping with

these differences, the principal reasons offered by creditors tend to be vaguer
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(“Income insufficient for amount of credit requested”), while counterfactual ex-

planations aim for precision (“Had you earned $5,000 more, your request for

credit would have been approved”).

12.1.4 A shared focus on subsets of features

Importantly, these methods all have one thing in common. None of them in-

volve disclosing the model in its entirety. They focus, instead, on disclosing a

limited set of features that are most deserving of a decision subject’s attention.

By design, they do not provide an exhaustive inventory of all the features that a

model considers. In practice, learned models can often consider a very large set

of features, and an explanation that suggests changes to each of those features

would be overwhelming. As a result, both the law (in the form of principal

reasons) and the emerging technical literature (in the form of counterfactual

explanations) seek to produce “sparse” explanations that present the decision

subject with only a small subset of features (Wachter et al., 2018). This fact is

what binds them together conceptually in a single group, and forms the core

point on which the chapter builds its discussion.

12.2 Feature-highlighting explanations in practice

The utility of feature-highlighting explanations to a decision subject relies on

several hidden assumptions. In this section, we identify five such assumptions,

explain why they might not be valid, and explore the consequences of that re-

alization. Some of these assumptions appear to be necessary to the utility of
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feature-highlighting explanations. Others may not be strictly necessary, but still

seem to underlie the great majority of work on counterfactual explanations so

far.

12.2.1 Features do not clearly map to actions

Feature-highlighting explanations often assume a clear and direct translation

from suggested changes in feature values to actions in the real world. In many

cases, this is a reasonable assumption: instructing someone to reduce their to-

tal lines of credit maps onto the obvious action of cancelling a credit card or

fully repaying—and thus dispensing with—a loan. In most of the contexts in

which existing scholarship considers the challenge of explaining the decisions

of a machine learning model, there is a clear correspondence between the fea-

ture values that one is told to change and the actions that one would take to

achieve those changes. The mapping can be so obvious as to go unquestioned—

as if there is never a situation in which one is unable to translate the necessary

changes in feature values into a set of concrete steps in the real world. And

yet, in many cases, we are only able to perform this mapping because we have

relevant domain knowledge and an implicit causal model in mind that relates

specific actions to predictable changes in feature values.

Even when the highlighted feature seems to refer to something rather con-

crete, the actions a decision subject can take to affect those features may not line

up with the features themselves. For example, a recommendation that someone

increase his income can lead a person to take one of several actions: he can seek

a new job, ask for a raise, or take on more hours. As Figure 12.1 illustrates, these
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actions are not as simple as “increase income” or “increase length of employ-

ment.”

But this example still assumes a relatively direct relationship. To act on ex-

planations that instruct us to change certain feature values, we need to know

what causes features to change value in the real world. This might not be ob-

vious; we may struggle to identify the actions that would cause a feature value

to change—or change in a predictable way. Consider a model that takes credit

score as an input, as in certain insurance pricing models (Kiviat, 2019). A coun-

terfactual explanation for a bad insurance quote might be to raise one’s credit

score. But figuring out how to raise one’s credit is itself famously unclear, so

this information is hard to know how to act on. In another example, as data

from alternative sources like social media are incorporated into credit scoring

models, we may receive explanations for adverse decisions that instruct us to

improve our “social media score” without providing meaningful guidance for

how to do so.

When we consider the gap between what needs to happen to feature values

to get a different decision from the model and what needs to happen in the real

world for a person to change these feature values, we can begin to recognize

some additional challenges with feature-highlighting explanations.

Consider the recent work on “actionable” explanations, which has focused

on avoiding explanations that tell people to make changes that are impossible,

placing the burden on decision makers to give advice that is sensitive to the

actual steps that decision subjects would need to take to achieve the change in

feature values (Ustun et al., 2019; Mothilal et al., 2020). Avoiding these potential

explanations is a matter of identifying the lack of any possible causal mecha-
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Decision resultDecision result

Decision
boundary

Possible
explanations

(1)

(2)

Length of employment

Income

Figure 12.1: A decision based on two features—income and length of
employment—will be explained by reference to one of the features, either the
shortest or longest distance from the boundary. But the explanations do not
map to the decision subject’s possible actions that can affect them. Point (1)
represents getting a higher-paying job, and point (2) represents waiting for a
raise.

nism that would have the necessary effect on the value of some feature. This

becomes clear if we compare mutable characteristics under one’s control (e.g.,

income) to (1) mutable characteristics once under one’s control that cannot be

undone (e.g., declaring bankruptcy), (2) mutable characteristics outside one’s

control (e.g., age), and (3) immutable characteristics (e.g., race). While it might

be helpful to know in advance that one should avoid declaring bankruptcy,

given its effects on future credit decisions, being told that you should not have

declared bankruptcy after the fact might not be a helpful explanation if the goal

is to provide actionable advice.

We can also recognize that “gaming” is another case of the disconnect be-

tween feature and action. When a decision maker instructs someone to change

certain features, the decision maker will often assume that the person will take
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a specific desirable sequence of actions because that is the causal mechanism

that the decision maker has in mind. But there are often many other ways to

change feature values that don’t require taking these steps. Opening a new line

of credit, for instance, can increase an individual’s overall available credit with-

out fundamentally changing their ability to pay off a loan. And yet, in recogniz-

ing this gap, we can also appreciate that feature-highlighting explanations leave

room—perhaps much needed room—for decision subjects to find strategies to

change feature values that decision-makers might not be able to anticipate in

advance or on their own.

This insight also alerts us to the possibility that actions may affect multiple

features simultaneously. As Figure 12.1 demonstrates, whether one increases

his income by finding a higher-paying job or waiting for his performance review

to get his raise, the action will affect both income and length of employment, a

separate feature in the model. In the case of a job change, length of employment

will be negatively affected. Thus, increasing income may not be enough to get

credit, which is why point (1) is on the left of the decision boundary. In the case

of waiting for a raise, a smaller increase in income might be needed than the ex-

planation would say, because length of employment increases at the same time.

This is why point (2) is on the right side of the decision boundary, despite not

increasing income as much as the explanation suggests. Highlighting certain

features as those that need to change to obtain a different decision implicitly

relies on the belief that everything else can be held constant while making these

changes. In reality, changes in the value of one feature may affect the value of

another feature, if the two features interact, thus changing the efficacy of the

explanation.
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Insisting that explanations exhibit sensitivity to these constraints is analo-

gous to insisting that explanations consider the causal mechanisms that allow

decision subjects to alter the value of specific features. Indeed, the only way

to ensure that the recommended change is even possible, to prevent gaming,

and to account for dependencies between features is to model the outcome of

interest using features that directly figure into the causal mechanism. The idea

that we can identify all such constraints in advance assumes that the actions

necessary to change specific feature values will always be self-evident.

12.2.2 Features cannot be made commensurate by looking only

at the distribution of the training data

Decision result

Decision boundary

Chosen
explanation

Feature 1

Fe
at

ur
e

2

(a) Before scaling

Scaling

Decision result

Decision boundary

Chosen
explanation

Feature 1
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at
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(b) After scaling

Figure 12.2: The counterfactual explanation depends on how axes are scaled.
Scaling of the Feature 1 axis by a factor of 2, the closest explanation changes to
highlight Feature 2 instead of Feature 1.

All feature-highlighting explanations rely on some notion of a distance

between the observed values for various features and some reference point,

whether the average person, maximum value, or the decision boundary. Re-

lying on distance requires normalizing features, because there needs to be a
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shared scale between features in order to meaningfully compare them. For ex-

ample, as discussed in Section 12.1.1, an increase in length of employment is not

commensurable with an increase in salary. Normalization attempts to capture

the fact that salaries may vary on the order of thousands or tens of thousands of

dollars, but length of employment varies at a numerically much smaller scale.

Several statistical techniques exist to address this problem, scaling features

so as to make them seemingly comparable, and different explanation techniques

will use different approaches. Following Wachter et al. (2018), the literature on

counterfactual explanations has mostly converged on a heuristic that finds the

Median Absolute Deviation (MAD) under an L1 distance norm (Russell, 2019;

Mothilal et al., 2020; Grath et al., 2018). Meanwhile, it is entirely unclear what

methods principal-reason explanations use—the regulations do not specify, and

it is never discussed in practice—but the nature of a distance metric requires

that something be used.

Functionally, the details of different normalization methods are not terribly

important for our purposes, but what they do is measure how spread out the

training data are for each feature. Most importantly, the normalization relies on

information contained entirely within the data. Different statistical techniques

will use ranges, standard deviations, or MAD, but in all methods, the axes are

scaled based entirely on the distribution of the data, not some external point of

reference.

The choice of how to normalize is extremely important because the ultimate

explanation is highly sensitive to scale. Figure 12.2 shows the effect of relative

scale. Doubling one axis relative to the other completely changes the explana-

tion on offer.
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When examined from the perspective of a decision subject who must take

some action in response to these explanations, normalization based simply of

the distribution of data is somewhat arbitrary. One decision maker might scale

the axes such that increasing income by $5,000 annually is equivalent to an ad-

ditional year on the job. But if the data were distributed differently, the result

could have been that $3,000 of additional income is equivalent to another year.

Similarly, a competing lender, using different training data, could conclude that

$10,000 of income corresponds to one year of work. Because normalization tech-

niques are inward-looking, they are agnostic as to the meaning and origin of the

data, and the scale is just an artifact of the data distribution.

What counts as “important” or “easiest to change” with respect to the data

is not necessarily what counts as important or easiest to change with respect

to the decision subject. Without an external point of reference to ground our

scales, the meaning of the relative difference in feature values is unclear. This is

an example of what Selbst et al. (2019) have called the “framing trap,” where an

attempt to solve an accountability problem ignores interactions with the outside

world.

Because we are concerned with decision subject’s menu of actions, the most

sensible external referent would be something akin to the cost of making the

required change, where cost can imply dollars spent, effort, or time. For coun-

terfactual explanations, those features that involve little cost to change, even if

they involve considerable change along a normalized numeric scale, may be

far more useful to highlight than those that would involve considerable cost to

change. Thinking this way forces us to think about the changes that would be

necessary to realize the recommendations offered by these explanations, and
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their difficulty. Telling someone to go find a new job seems like a much more

difficult demand than telling her to raise her income by $1,000, but that might

be what such a person is being told to do.

If, instead, the preferred approach is in line with generating principal rea-

sons, features that are costly or impossible to change may be precisely the ones

that should be highlighted. Knowing that one’s application for credit has been

rejected due to characteristics outside her control might be paramount if the goal

is to ensure some degree of procedural justice or to reveal when to contest the

decision (Mendoza and Bygrave, 2017; Wachter et al., 2018; Brkan, 2019). Given

its focus on identifying the features easiest to change, counterfactual explana-

tions might give a company engaged in intentional discrimination the oppor-

tunity to conceal that its decisions largely hinged on immutable characteristics

like race. Worse, such explanations might mislead the subjects of these decisions

into believing that their fate was determined by factors under their control.

Thinking about changes in terms of their real-world cost therefore helps to

translate numerical changes in feature values to real-world actions. This is true

whether we want to point out either what is easiest or most difficult to change.

Some works seek to account for the cost of actually manipulating those features

in practice by assuming domain knowledge or user input of these costs (Ustun

et al., 2019; Grath et al., 2018). Other formulations provide the option to solicit

user input (Mothilal et al., 2020), but in general it can be infeasible for the indi-

vidual to specify all of the relevant real-world constraints that affect the utility

of an explanation, and eliciting or estimating each individual’s conception of

cost is notoriously difficult. Humans struggle to articulate the costs they experi-

ence (Kahneman and Tversky, 1977), and the very notion of “cost” often suffers
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from difficulties pinning down what it measures (dollars spent, effort, time, etc)

and how to properly value intangibles (Frank, 2000).

Worse yet, the cost of making certain changes will not be consistent across

different people. Changes that might be rather inexpensive for one person to

make might be costly for another person to make. Thus, when we use expla-

nations to identify the easiest or most difficult features for someone to change

to achieve a different decision from a model, the explanation must be sensitive

not only to how these changes involve different costs, but how these costs vary

across the population. Different subsets of features may be appropriate for dif-

ferent people with different life circumstances. This complication cuts against

the very desirability of these explanations: the idea that we can automatically

determine what is easiest or hardest to change by examining what values are

closest or farthest from the decision boundary.

12.2.3 Features may be relevant to decision-making in multiple

domains

Feature-highlighting explanations may interact with facts about a person’s life

that are invisible to the model. The supposition of a counterfactual explanation

is that it is offering advice for the kinds of changes that it would be rational for a

person to make to achieve better results in future decisions. Some commentators

and scholars have cautioned that explanations should never encourage people

to take actions that are irrational or harmful (Hall et al., 2017; Eubanks, 2018b).

What they mean more specifically is that there may be some recommendations

that are indeed rational if the only goal is to obtain a positive decision from
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the model, but irrational with respect to other goals in a person’s life. It is not

possible to determine what would be a rational action in isolation.

An oft-cited common-sense example for this proposition is that an explana-

tion should never recommend that a person seek to make less money (e.g. Lip-

ton, 2018). While we believe it unrealistic that an actual credit model would

ever recommend such a thing, the example still holds value. It is self-evident

that no one would want to make less money, even if doing so would improve

their access to credit. Or consider an example that reverses this dependency: a

person contemplating applying to a new job for its superior health insurance is

unlikely to remain at his current job because an explanation for a failed credit

application told him to do so. In this case, acting on the recommendation would

impose an opportunity cost on the consumer by forcing him to forgo benefits in

other domains. When other aspects of one’s life depend on some of the same

features, explanations for how to get the desired outcome in one aspect of your

life may conflict with those in another.

We can reason about this the other way around as well. From the point of

view of a counterfactual explanation, an applicant might be best off trying to

change a number of other features besides income. Yet, from the perspective of

the applicant, increasing her income might have ancillary benefits in other parts

of her life that make this change more attractive—and indeed rational—than

those suggested by the explanation. Increasing her income would grant her

improved access not only to credit, but to improved quality of life, generally.

In the first case, a change in feature might benefit the decision subject in

one domain, while hurting her in others. In the second case, a change in a fea-

ture might benefit the decision subject in multiple domains, not just one. These
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spillovers—both negative and positive—complicate the process of determining

which features would be most useful to highlight in an explanation. Ideally,

feature-highlighting explanations would allow decision subjects to avoid nega-

tive spillovers and identify opportunities for positive spillover. But a decision

maker will lack information about the many other goals that a person might

have in her life and the features that are relevant in those domains.

This lack of information goes both ways, as well. By design, feature-

highlighting explanations do not offer an exhaustive inventory of all the fea-

tures that the model considers. Yet withheld features may still matter to the de-

cision to some degree. Decision subjects are only told what needs to change to

obtain a different result from the model in the future. But if other features need

to remain unchanged for the recommended changes to have their promised ef-

fect, this may cause problems.

Thus, due to other life goals, decision subjects may change undisclosed fea-

tures unless otherwise instructed. For example, if a counterfactual explanation

tells someone to increase their income and lower their debt, but fails to mention

that they should not reduce their length of employment, the person may have

no idea that they should avoid any career change while attempting to address

these other issues, stumbling accidentally into point (1) in Figure 12.1. Indeed,

the person might not even know that length of employment figured into the

credit decision in the first place. Or, as noted in Section 12.2.1, if no action lines

up exactly with that feature, she might be forced to take an action that changes

multiple features simultaneously.
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12.2.4 Models must have certain properties: monotonicity and

binary outcomes

The utility of feature-highlighting explanations tends to rely on two aspects of

underlying models: monotonicity and binary outcomes. The former is likely

necessary to their utility; the latter may not be.

When dealing with continuous variables, feature-highlighting explanations—

particularly counterfactual explanations—will often take the form of instructing

decision subjects to make changes in feature values in a specific direction and

by a specific amount: increase your length of employment by 1 year; decrease

your debt by $10,000; etc.

Decision subjects will not necessarily be able to alter the value of these fea-

tures through some sudden change. Instead, they may have to make incremen-

tal changes in the direction of the specified value. And despite their best efforts,

decision subjects might struggle to hit the specified feature value; their efforts

could move the value of these features in the right direction, but ultimately fail

to get the decision subject all the way there. Similarly, decision subjects might

lack precise control over the value of a feature, making it difficult to avoid over-

shooting the mark when they take some action.

This can pose serious problems for feature-highlighting explanations if the

features in the underlying model have not been subject to monotonicity con-

straints. A monotonicity constraint guarantees that as the value of the features

move in the recommended direction, the decision subject’s chances of success

consistently improves. Without monotonicity constraints, a model might learn

complex and even counter-intuitive relationships between certain features and
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an outcome of interest. For example, a model might learn that people who have

spent two to four years at their current job are good candidates for credit, while

those who have stayed five or more are not. Likewise, carrying more debt might

render applicants less attractive, until they start earning more income, at which

point additional debt might make them more attractive.

Unless the model exhibits monotonicity with respect to the highlighted fea-

tures, the decision subject might find herself in a worse position as she moves to-

ward the specified value or if she overshoots the mark. Explanations of models

that lack a monotonicity constraint will be brittle. Worse, because monotonicity

is intuitive, decision subjects are likely to assume that the property applies, even

if they have no formal understanding of the concept.

Separately, in the computer science literature, model explanations often as-

sume that outcomes are binary: did the applicant receive a loan or not? But

in reality, the creditor decides not only whether or not a loan is given, but also

the loan’s interest rate. A counterfactual explanation presented to the applicant

must necessarily account for this. Does the decision-maker choose a specific tar-

get interest rate when providing an explanation? What if the applicant is only

interested in a loan below a certain rate?

As before, we see that in order to provide a useful explanation, the decision-

maker needs to have relevant information about a particular individual’s life

circumstances. Alternative goals will require different explanations, which may

have nothing to do with each other. For example, consider a financially respon-

sible borrower who will only accept a loan at a sufficiently low interest rate

that she is confident that she would be able to make her monthly payments. If

she is told that she could qualify for a high-interest loan by increasing her in-
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come without reducing her debt, she learns nothing about how to qualify for

a low-interest loan; what it takes to obtain a high- or low-interest loan is not

necessarily related. Getting a low-interest loan might additionally require ei-

ther paying down her debt or opening up and using new credit lines, which in

effect raises her debt. There is no way to extrapolate from the counterfactual ex-

planation that gets her to a high-interest loan. Indeed, she may not even know

that the counterfactual explanation that tells her how to get a loan is specific to

a high-interest loan, instead seeing the interest rate on offer as the only option,

and concluding that she cannot get the loan.

Without explicitly accounting for the all the possible types of outcome and

the subject’s preferences for them, the decision-maker must make assumptions

and choices on behalf of the subject that significantly impact the usefulness of

the explanation given.

12.2.5 The validity of explanations may not remain stable over

time

Explanations occur at a single point in time, even though a person’s life circum-

stances can change over time. Likewise, a model may very well change over

time, as decision-makers retrain their models in light of new data—including

new behaviors induced by the explanations offered to prior decision subjects.

Individuals cannot in general instantaneously change the features suggested

by an explanation. Some features, like length of credit history, are inherently

time-dependent. Others changes may take varying degrees of time to imple-
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ment. Suppose, for instance, the decision subject could obtain credit either by

reducing their debt by $5,000 or by increasing the length of their credit history

by 6 months. If it would take 6 months to pay down this debt anyway, it would

seem unnecessary for them to do so instead of simply waiting 6 months to qual-

ify. On the other hand, if the subject needs credit immediately and is willing to

pay down the $5,000 right away, then we might view debt reduction as the right

feature to provide the subject in an explanation. Thus, the “right” explanation

to give a decision subject may depend heavily on temporal aspects of their life.

Meanwhile, models are often retrained to react to changes in the overall en-

vironment or borrowers’ behavioral patterns. Perhaps there is another reces-

sion. Perhaps lenders gain access to new data sources or otherwise figure out

how to better model borrowers’ behavior. Or borrowers might even change

their behavior en masse based on the very explanations that banks offer, as the

data distribution shifts over time (Liu et al., 2018). Any of these changes would

necessitate model retraining by the lender.

At the same time, rejected applicants may be acting on recommendations

that are frozen in time, despite ongoing changes made by lenders. Wachter et al.

(2018) have argued that the law should treat a counterfactual explanation as a

promise given to the rejected applicant rather than just an explanation. They

argue that if a rejected applicant makes the recommended changes, the promise

should be honored and credit granted, irrespective of the changes to the model

that have occurred in the meantime. Whether this is the right approach or not,

it is a recognition that without such a guarantee, counterfactual explanations

might not serve their purpose when one considers the time it takes to make the

suggested changes.
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12.3 Unavoidable tensions

We have argued so far that the need to disclose a limited subset of features in-

fuses feature-based explanations with subjective choices and creates a number

of challenges that makes their promise harder to realize in practice than advo-

cates of such techniques would have us believe. They also present a number

of unavoidable normative tensions. Decision-makers start with a great deal of

power over decision subjects, and the purpose of explanations—and the legal

requirements for them—is to restore some degree of power to the decision sub-

jects. Yet the fact that decision-makers must, by necessity, withhold information

creates three unavoidable tensions. First, in order to generate genuinely helpful

explanations, decision-makers must be both paternalistic and privacy-invasive.

That is, they must interfere with decision subjects’ autonomy to offer some back

to them. Second, while designed to restore power to decision subjects, partial

explanations grant a new kind of power to the decision maker, to use for good

or to abuse as desired. Finally, the additional transparency that might help over-

come some of the problems with feature-highlighting explanations render these

techniques anathema to the decision makers that we would want to use them.

12.3.1 The autonomy paradox

Feature-highlighting explanations are motivated by either the desire to make

recommendations to decision subjects or to justify the model’s decision. Both

these motivations are fundamentally justified by reference to the autonomy of a

decision subject. Recommendations appeal to an instrumental vision of auton-

omy, where information enables action. Justification, however, is more focused
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on a moral conception; the information is due because the subject deserves to

know. Both of these motivations are complicated by the need to withhold some

information.

It is worth recalling two predicates to our analysis. First, feature-

highlighting explanations are employed as an alternative to direct oversight or

audits of the model. We recognize that both can be deployed simultaneously,

but the purpose of this chapter is to examine the feature-highlighting explana-

tion as a tool separate from direct oversight; if employed in tandem, it is just as

worthwhile to ask what they might add. Second, disclosure of the entire model

is not practical. This is true both because of trade secret and gaming concerns,

but also because models with even a moderate number of features would over-

whelm the decision subject, defeating the very autonomy rationales that justify

this approach.

Ironically, respecting a decision subject’s autonomy requires making as-

sumptions about which information will be valuable to a given decision sub-

ject. The decision maker will not know how features correspond to actions in

the real world, and thus which features a decision subject could most readily

change. The decision maker does not know how features in its model inter-

act with features in the real world, and thus how features relate to each other.

The decision maker does not know how a change in the measured feature, or

the action required to make such a change, affects other aspects of a person’s

life positively or negatively. And assuming the decision maker could achieve

a general sense of these facts, they further do not know how they vary from

person to person. All this means that the choice of features to disclose can have

unintended effects for decision subjects, which would have been avoided with
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a different disclosure. Given the informational position of the decision maker,

there is simply no way to fully realize its commitment to respecting a decision

subject’s autonomy.

One might suggest that these problems can be solved with even more data.

If explaining a credit decision, the relevant factors might be affected by infor-

mation about a person’s health, family situation, or future educational plans. A

person’s choices about whether to look for a new job will be affected if they are

sick, have a new baby or aging relative to care for, or are saving to go back to

school. This information can directly or indirectly be mined from other sources

in the world, such as social media data. If a decision maker understands other

aspects of a person’s life that may interact with the decision, then it might be

able to offer explanations that are appropriate and tailored, or might be able to

focus on features that are relevant to decisions in multiple contexts. So perhaps

the answer is to collect it all.

Unfortunately, allowing a decision maker, such as a lender, to collect and

connect every bit of information about a person’s life is not really a solution.

Rather, it is a privacy disaster. Under every major theory of privacy this would

be impermissible (e.g. Solove, 2006; Cohen, 2012a; Nissenbaum, 2009), and be-

cause privacy is a fundamental aspect of autonomy (Cohen, 2012b; Reiman,

1976), this leads to an autonomy paradox. The problem is clearest through the

lens of Helen Nissenbaum’s theory of contextual integrity (Nissenbaum, 2009).

Contextual integrity argues that a privacy violation occurs where information

flows between actors in social context in ways that violate the informational

norms relative to that context. So in one sense, this solution—allowing lenders

in financial context to access social media information—is definitionally prob-
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lematic. A primary concern of contextual integrity is for social contexts to keep

operating as they should. If creditors have access to social media data, the worry

is that they will make credit determinations based on public friendships, for ex-

ample, and as a result people will have incentives to change or hide their social

relationships in order to get better credit (Packin and Lev-Aretz, 2016). This

will harm the social contexts in which friendships flourish for the sake of credit.

Ironically, then, while in Section 12.2 we argued that explanations would not be

useful unless the decision maker understood facts about people’s lives beyond

those considered in the model, contextual integrity would suggest that the fact

of decision makers knowing this information is itself harmful to autonomy.

But imagine a decision subject who, facing an adverse credit decision, is

shown the complete model and finds it overwhelming. Such a person may in-

stead prefer the counterfactual explanation, even if it involves disclosing all the

information necessary for the decision maker to offer an appropriately tailored

set of instructions. This exact scenario motivates much of the work on coun-

terfactual explanations, so we should not discount that a more informed expla-

nation can still be autonomy-enhancing on balance. In a sense, this tension is

reflective of a common concern in discussions of autonomy: When can giving

up information and agency be autonomy-enhancing? For example, if a person

hires an attorney, she outsources some important decisions, gives up very pri-

vate information, and often gets answer back that she cannot understand, but

it is her decision to do so for her own good. It is doubtful that anyone would

consider hiring a lawyer to be a loss of autonomy. At the same time, we would

immediately recognize that furnishing lenders with detailed information and

relinquishing control over decision-making is not an obvious mechanism for

enhancing one’s autonomy. Notably, there are no requirements that they act in
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your best interest, while such fiduciary obligations do apply to lawyers. (e.g.

Balkin, 2015; Khan and Pozen, 2019). This is a difficult tension to resolve, and

may depend on the relative power of and constraints upon the decision maker,

rather than the quality of the explanation.

12.3.2 The burden and power to choose

One of the reasons model explanations are so appealing is that they appear to

offer complete automation: whenever a decision is made, an explanation can

be provided without any further human intervention. But this veneer of mech-

anization belies the fact that feature-highlighting explanations cannot be com-

pletely formulaic. They require decisions about what to disclose and assump-

tions about the real world.

The need for partial disclosure grants new power to the decision maker. Of

course, a decision maker—by virtue of being one—has always had power over

the decision subject. But by attempting to return power to the decision subject

via an explanation that, for her own sake, cannot be a complete explanation, we

grant a new form of largely unanticipated power to the decision maker. Fur-

thermore, the requirement to make certain assumptions about the real world

also grants power to the decision maker. Whenever there is ambiguity in the in-

dividual’s preferences, the decision-maker has the power to resolve it however

they see fit. This leaves the decision-maker with significant room to maneu-

ver, the choice of when and where to further investigate, and more degrees of

freedom to make choices that promote their own welfare than we might realize.

This new power can be used for good or ill. Consider, for example, a de-
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cision maker providing a counterfactual explanation for why an individual did

not qualify for a loan. As discussed in Section 12.2.4, this decision (and therefore

explanation) is not simply binary—in its explanation, the decision maker must

give the decision subject a counterfactual that would result in a specific interest

rate. At best, it might allow the subject to choose their target interest rate. Al-

ternatively, it might—somewhat paternalistically—choose the interest rate that

it believes is “right” for this subject. More insidiously, it might choose the inter-

est rate that is likely to maximize its profit. Ultimately, the point is that in the

absence of standards or robust avenues for user input, the decision maker is left

with the power to make this decision on its own.

This power is not simply limited to the choice of outcome. As we have ar-

gued, many aspects of explanations are unspecified by the law or by technical

proposals, including what factors can be included in an explanation, what the

relative costs of various features are, and how to account for real-world depen-

dencies between them. The key point here is that left to their own devices,

decision makers are afforded a remarkable degree of power to pursue their own

welfare through these choices.

12.3.3 Too much transparency

Decision makers might seek out different ways to address the difficulty of tak-

ing decision subjects’ real-world circumstances into account when generating

counterfactual explanations. A number of recent papers propose presenting the

user with a diverse set of counterfactual explanations (Mothilal et al., 2020; Rus-

sell, 2019; Wachter et al., 2018), allowing the decision subject to choose among
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several possible ways to achieve a favorable outcome. This approach accepts

that decision makers may lack the capacity to ever fully account for the unique

constraints and preferences of decision subjects, instead providing a wide range

of possible paths to success from which the decision subjects can choose. Do-

ing so allows the decision subject to rely on knowledge of her own particular

circumstances in selecting among these.

Others have advocated in favor of interactive tools that allow decision sub-

jects to explore the effect of making changes to certain features (Citron and

Pasquale, 2014; Hildebrandt, 2006). Industry has even implemented some such

tools.2 This approach gives decision subjects greater freedom to explore the

space, using a deep understanding of their own constraints and preferences to

investigate the effect of certain adjustments.

Still other work adopts an entirely different approach, focusing instead on

finding ways for the decision maker to learn more about decision subjects. In

particular, there have been recent proposals to devise mechanisms for solicit-

ing input from decision subjects, allowing them to communicate whether they

find certain counterfactuals helpful, whether changes to certain features are

out of the question or less desirable, and what other preferences they might

hold (Mothilal et al., 2020).

These approaches could also work in concert, seeding decisions subjects

with an initial set of diverse explanations that could serve as starting points

for interactive exploration. In theory, this would have the benefit of helping to

ensure that decision subjects do not fail to explore the space sufficiently, con-

cluding their investigation after only making a small number of adjustments

2See, e.g., Credit Karma’s Credit Score Simulator: https://www.creditkarma.com/tools/
credit-score-simulator/
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from one initial starting point.

Unfortunately, each of these approaches runs the risk of revealing a sufficient

amount of information about the underlying model to reconstruct it (Tramèr

et al., 2016). As a result, while these approaches may be the most promising to

overcome certain difficulties, they create difficulties of their own. Firms con-

cerned with intellectual property and gaming are unlikely to afford decision

subjects extensive freedom to explore.

12.4 Conclusion

Feature-highlighting explanations have been embraced as a way to help deci-

sion makers avoid a number of difficult trade-offs, granting firms the capac-

ity to provide meaningful and useful explanations of machine-learned models

without having to compromise on model performance, while also respecting

concerns with trade secrecy, gaming, and legal compliance. Advocates have

championed this style of explanation as an elegant way to honor and enhance

decision subjects’ autonomy even as machine learning models grow in complex-

ity and ubiquity.

Yet as we have shown, these explanations lack a connection to the actions

required to change features. They fail to consider the cost of these actions, deci-

sion subjects’ preferences, and the effects of the necessary action on other parts

of decision subjects’ lives. Worse, attempts to correct these deficiencies under-

mine the very goals of explanation by violating decision subjects’ autonomy in

the name of enhancing it and granting more power to decision makers when

trying to return it to decision subjects.
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So what can be done? How can feature-highlighting explanations be useful,

while protecting the autonomy of decision subjects? Much more work is needed

to address the issues we have raised here, but we see three concrete avenues

worth exploring.

First, at an absolute minimum, given the power that these explanations grant

to decision makers, they should disclose the method by which they generate ex-

planations. Additionally, legal requirements for explanation and adverse action

notices should be amended to require this. Without understanding the method

of explanation, decision subjects have no hope of understanding how to effec-

tively realize their goals.

Second, we need to understand what actions people actually take when

confronted with feature-highlighting explanations—and which disclosures help

people act most effectively. Empirical research is essential to answer these ques-

tions. One obvious place to start such work is with longitudinal data docu-

menting the successful paths that previous decision subjects have taken to re-

ceive positive outcomes when starting from various circumstances. Another is

to engage directly with decision subjects to develop a richer account of their ev-

eryday strategies for responding to models and explanations of their decisions,

as Malte Ziewitz and Ranjit Singh have done over the past few years.3 This ap-

proach rests on the idea that explanations should focus on communicating what

had worked well for other people under seemingly similar conditions.

Third, the concerns about power imbalance created by counterfactual ex-

planations suggests that as they become more prominent, policy responses

centered around the concept of “information fiduciaries” should be consid-

3https://zwtz.org/restoring-credit/

304



ered (Balkin, 2015). These proposals are not universally accepted (Khan and

Pozen, 2019), and may not be an appropriate policy response in all contexts in-

volving decision made with data, but the concern raised in Section 12.3.2—that

someone has decision-making power over another person, yet that second per-

son must rely on the decision maker to act in her best interest—is precisely the

concern that motivates fiduciary duties in other spheres.

These proposals will only address some of the issues with feature-

highlighting explanations raised here. There is still more work to do, in com-

puter science, social science, and policy, if we want to understand when and

where feature-highlighting explanations can be useful to decision makers and

decision subjects alike.
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Part V

Conclusion and Future Work
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CHAPTER 13

FUTURE DIRECTIONS

The research presented in this thesis seeks to leverage the potential benefits of

formal, algorithmic decision making while highlighting and mitigating the risks

involved in so doing. Combining insights from a variety of fields including

computer science, economics, sociology, and legal studies, we hope to inform

ongoing work in theory, practice, and policy on the interface between algo-

rithms and society.

We conclude with a number of directions for future research, roughly di-

vided into the following categories: fairness in machine learning and mecha-

nism design (Finocchiaro et al., 2021); algorithmic discrimination; and trans-

parent and meaningful explanations. These topics, while not intended to be

exhaustive, encompass a wide range of potential and ongoing research areas

seeking to make algorithms work better for society.

13.1 Fairness in Machine Learning and Mechanism Design

As researchers, policy-makers, and practitioners increasingly turn their atten-

tion to issues of bias, fairness, and discrimination in algorithmic decision-

making, there has been a growing realization that the complexity of modern

decision-making systems makes it necessary to draw upon insights, tools, and

methods from a variety of technical fields. In a number of application domains,

like advertising, healthcare, and hiring, both machine learning and mechanism

design are crucial to the design and analysis of decision-making tools. In re-
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cent work, we survey the relationship between mechanism design and machine

learning with a particular focus on questions of fairness (Finocchiaro et al.,

2021). Building on this discussion, we highlight a few directions for future work.

Allocation and prediction. At a high level, much of the work on fairness in

mechanism design concerns the allocation of scarce resources; in contrast more

recent work on fair decision-making in machine learning settings focuses on

predictions (Finocchiaro et al., 2021). Increasingly, modern decision-making sys-

tems (for example, online advertising platforms) incorporate both allocative and

predictive elements. In such cases, what constitutes fair or equitable decision-

making implicates notions of fairness from each of these fields. Future research

is needed to fully integrate these ideas of fairness, with a particular eye towards

implementation feasibility in large, complex systems.

Accounting for preferences. In motivating settings like hiring and lending in

the literature on fair machine learning, we often assume that every decision sub-

ject has a known preference over outcomes (e.g., every applicant wants a job or a

loan). In settings like content delivery, however, a decision-maker typically does

not know the individual’s preferences. In such cases, the decision-maker must

learn to personalize decisions, and ideally, do so in a way that may be considered

fair. This question of fair personalization incorporates ideas from both machine

learning (What complexities are introduced by the process of learning?) and

mechanism design (How might we model and elicit individual preferences?),

and recent work seeks to develop frameworks to express ideas of fairness in

such settings (Celis and Vishnoi, 2017; Kim et al., 2020; Çapan et al., 2020).

308



Designing around behavior. A natural question to consider in mechanism de-

sign is the strategic response of participants. There has been a recent resurgence

of interest in strategic behavior in the machine learning setting (Dalvi et al.,

2004; Brückner and Scheffer, 2011; Hardt et al., 2016a; Milli et al., 2019; Hu et al.,

2019). In order to develop principles for the responsible deployment of algo-

rithmic decision-making systems, we must carefully consider the incentives the

produce. Not only will this make systems more robust to strategic behavior

and the disparities it might produce (Hu et al., 2019; Milli et al., 2019), it can

help ensure that decision-making systems do not produce perverse incentives

for participants (Eubanks, 2018a; Kleinberg and Raghavan, 2020; Barocas et al.,

2020). In particular, a growing line of work seeks to understand how to align

decision subjects’ incentives with actions that are in their own interests (Klein-

berg and Raghavan, 2020; Tang et al., 2021; Alon et al., 2020; Miller et al., 2020;

Haghtalab et al., 2020; Shavit et al., 2020).

13.2 Algorithmic Discrimination

Much of the recent technical work on bias in algorithmic decision-making cen-

ters around defining normative terms like “fairness” in quantitatively rigorous

ways. In parallel, a growing body of work in the legal literature seeks to un-

derstand how exiting antidiscrimination protections apply to machine learning

and algorithmic decision-making more broadly. There is a natural and emerg-

ing connection between these communities: while the law does not seek to pro-

vide prescriptive definitions of what fair decision-making should look like, it

does offer some clear guidance on what constitutes discriminatory behavior. A

central challenge for the future is the interpretation of existing laws in light of
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new technical tools like machine learning (Barocas and Selbst, 2016). This will

require innovation, both in terms of novel technical methods as well as new

legislation or the re-interpretation or clarification of existing legislation.

As it pertains to discrimination law, the work in this thesis (Chapter 11) per-

tains primarily to algorithmic discrimination in the context of hiring, which

has been the subject of recent work in the legal and computer science litera-

tures (Ajunwa, 2021, 2020; Bornstein, 2018; Cofone, 2018; Kim, 2016, 2017, 2018;

Harned and Wallach, 2019; Raghavan et al., 2020; Sanchez-Monedero et al.,

2020). Beyond employment, concerns over algorithmic discrimination manifest

in contexts like advertising (Lambrecht and Tucker, 2019; Blass, 2019; US De-

partment of Housing and Urban Development, 2018), finance (Gillis and Spiess,

2019; Morse and Pence, 2020; Tantri, 2020), education (Porter, 2020; Kizilcec and

Lee, Forthcoming), and housing (US Department of Housing and Urban Devel-

opment, 2019; Selbst, 2019).

Kleinberg et al. (2019) point out that algorithms have the potential to make

the detection of discrimination easier and more standardized; however, this is

not inevitable. Further work at the intersection of computer science and law

is needed to ensure that strong protections against discrimination apply to al-

gorithmic decision-making. From a technical perspective, we need new algo-

rithmic tools to diagnose and mitigate discrimination, particularly in complex,

modern decision-making systems that go beyond simple classification tasks

(Finocchiaro et al., 2021). Beyond our existing technical limitations, we need

further inquiry from legal and policy perspectives into the potential to impose

new regulatory frameworks to prevent discrimination. For example, algorithms

can be audited before their deployment, opening the door to new antidiscrimi-
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nation legislation (Kim, 2017; Wilson et al., 2021; New York City Council, 2020).

In prior work, we have provided policy recommendations in the context of algo-

rithmic discrimination in hiring (Raghavan and Barocas, 2019; Raghavan, 2020);

more generally, efforts to prevent algorithmic discrimination will require a nu-

anced understanding of both technical and legal constraints.

13.3 Transparent and Meaningful Explanations

A key step in ensuring that algorithms have positive societal impact is to deepen

our understanding of how to design transparent and explainable decision-

making systems. Lipton (2018) enumerates a number of goals and challenges

in the quest for interpretable models, and researchers continue to develop new

techniques to explain models or the decisions they produce (Ribeiro et al., 2016;

Caruana et al., 2020). We refer the reader to Gilpin et al. (2018); Carvalho et al.

(2019) for comprehensive surveys on this topic.

Beyond the development of new technical methods, further work is needed

to make models accessible to humans. One line of research seeks to standard-

ize the reporting of information about models and the data on which they are

trained (Gebru et al., 2018; Mitchell et al., 2019). As these efforts begin to see

more practical usage, further research is needed to determine how best to im-

plement or modify them in order to be useful to practitioners.

When algorithms are used to assist humans in making decisions, it is crucial

to ensure that algorithmic outputs are constructed and presented in such a way

that humans can readily use them. Do humans trust an algorithm’s outputs?

How can an algorithm express uncertainty? Can a human and algorithm op-
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erating together perform better than either in isolation? Building on literature

studying the effects like automation bias – the tendency for humans to defer to

automated decisions (Goddard et al., 2012) – recent work seeks to address ques-

tions like these (Stevenson, 2018; Chouldechova et al., 2018; Skeem et al., 2020;

De-Arteaga et al., 2020, 2021) from both theoretical and applied perspectives.

Finally, based on recent legal directives like the EU’s General Data Protec-

tion Regulation (GDPR), scholars have begun to consider the “right to expla-

nation” and how it might manifest in various algorithmic systems (Selbst and

Powles, 2017; Wachter et al., 2017; Kaminski, 2019). What constitutes a mean-

ingful explanation, and from a computational perspective, how do we provide

individuals with such explanations? Questions like these will require continued

collaboration at the interface between computer science and legal scholarship.
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Here, we present supplementary information, omitted proofs, and addi-

tional results for the work in this thesis. The correspondence between appen-

dices and chapters in this thesis is as follows:

App. Chap. Contents

A 3 A proof demonstrating that the integral risk assignment prob-
lem in Section 3.4.2 is NP-complete.

B 4 Additional theoretical results and details on experiments.
C 5 Supplementary lemmas and omitted proofs.
D 7 Supplementary lemmas and omitted proofs.
E 8 A characterization of strategic behavior in response to a linear

mechanism.
F 9 Supplementary lemmas, omitted proofs, and counterexam-

ples.
G 11 A table containing administrative information on vendors.

Table 1: Contents of appendices.
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APPENDIX A

INHERENT TRADE-OFFS IN THE FAIR DETERMINATION OF RISK

SCORES

A.1 NP-Completeness of Non-Trivial Integral Fair Risk As-

signments

We can reduce to the integral assignment problem, parameterized by a1σ, a2σ,

and pσ, from subset sum as follows.

Suppose we have an instance of the subset sum problem specified bym num-

bers w1, . . . , wm and a target T ; the goal is to determine whether a subset of the

wi add up to T . We create an instance of the integral assignment problem with

σ1, . . . , σ2m+2. a1,σi = 1/2 if i ∈ {2m+ 1, 2m+ 2} and 0 otherwise. a2,σi = 1/(2m)

if i ≤ 2m and 0 otherwise. We make the following definitions:

ŵi = wi/(Tm
4)

εi =
√
ŵi/2

pσ2i−1
= i/(m+ 1)− εi (1 ≤ i ≤ m)

pσ2i = i/(m+ 1) + εi (1 ≤ i ≤ m)

γ = 1/m
2m∑
i=1

p2
σi
− 1/m5

pσ2m+1 = (1−
√

2γ − 1)/2

pσ2m+2 = (1 +
√

2γ − 1)/2

With this definition, the subset sum instance has a solution if and only if the

integral assignment instance given by a1,σ, a2,σ, pσ1 , . . . , pσ2m+2 has a solution.
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Before we prove this, we need the following lemma.

Lemma A.1. For any z1, . . . , zk ∈ R,

k∑
i=1

z2
i −

1

k

(
m∑
i=1

zi

)2

=
1

k

k∑
i<j

(zi − zj)2

Proof.

k∑
i=1

z2
i −

1

k

(
m∑
i=1

zi

)2

=
k∑
i=1

z2
i −

1

k

(
k∑
i=1

z2
i + 2

k∑
i<j

zizj

)

=
k − 1

k

k∑
i=1

z2
i −

2

k

k∑
i<j

zizj

=
1

k

k∑
i<j

(z2
i + z2

j )−
2

k

k∑
i<j

zizj

=
1

k

k∑
i<j

z2
i − 2zizj + z2

j

=
1

k

k∑
i<j

(zi − zj)2

Now, we can prove that the integral assignment problem is NP-hard.

Proof. First, we observe that for any nontrivial solution to the integral assign-

ment instance, there must be two bins b 6= b′ such that Xσ2m+1,b = 1 and

Xσ2m+2,b′ = 1. In other words, the people with σ2m+1 and σ2m+2 must be split

up. If not, then all the people of group 1 would be in the same bin, meaning that

bin must be labeled with the base rate ρ1 = 1/2. In order to maintain fairness,

the same would have to be done for all the people of group 2, resulting in the

trivial solution. Moreover, b and b′ must be labeled (1±
√

2γ − 1)/2 respectively
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because those are the fraction of people of group 1 in those bins who belong to

the positive class.

This means that γ1 = 1/ρ·(a1,σ2m+1p
2
σ2m+1

+a1,σ2m+2p
2
σ2m+2

) = p2
σ2m+1

+p2
σ2m+2

= γ

as defined above. We know that a well-calibrated assignment is fair only if

γ1 = γ2, so we know γ2 = γ.

Next, we observe that ρ2 = ρ1 = 1/2 because all of the positive a2,σ’s are

1/(2m), so ρ2 is just the average of {pσ1 , . . . , pσ2m}, which is 1/2 by symmetry.

LetQ be the partition of [2m] corresponding to the assignment, meaning that

for a given q ∈ Q, there is a bin bq containing all people with σi such that i ∈ q.

The label on that bin is

vq =

∑
i∈q a2,σipσi∑
i∈q a2,σi

=
1/(2m)

∑
i∈q pσi

|q|/(2m)

=
1

|q|
∑
i∈q

pσi

Furthermore, bin bq contains
∑

i∈q a2,σipσi = 1/(2m)
∑

i∈q pσi positive fraction.

Using this, we can come up with an expression for γ2.

γ2 =
1

ρ

∑
q∈Q

(
vb ·

1

2m

∑
i∈q

pσi

)

=
1

m

∑
q∈Q

1

|q|

(∑
i∈q

pσi

)2

Setting this equal to γ, we have

1

m

∑
q∈Q

1

|q|

(∑
i∈q

pσi

)2

=
1

m

2m∑
i=1

p2
σi
− 1

m5

∑
q∈Q

1

|q|

(∑
i∈q

pσi

)2

=
2m∑
i=1

p2
σi
− 1

m4
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Subtracting both sides from
∑2m

i=1 p
2
σi

and using Lemma A.1, we have

∑
q∈Q

1

|q|
∑
i<j∈q

(pσi − pσj)2 =
1

m4
(A.1)

Thus, Q is a fair nontrivial assignment if and only if (A.1) holds.

Next, we show that there exists Q that satisfies (A.1) if and only if there there

exists some S ⊆ [m] such that
∑

i∈S ŵi = 1/m4.

Assume Q satisfies (A.1). Then, we first observe that any q ∈ Q must either

contain a single i, meaning it does not contribute to the left hand side of (A.1), or

q = {2i−1, 2i} for some i. To show this, observe that the closest two elements of

{pσ1 , . . . , pσ2m} not of the form {pσ2i−1
, pσ2i}must be some {pσ2i , pσ2i+1

}. However,
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we find that

(pσ2i+1
− pσ2i)2 =

(
i+ 1

m+ 1
− εi+1 −

(
i

m+ 1
+ εi

))2

=

(
1

m+ 1
− εi+1 − εi

)2

=

(
1

m+ 1
−
√
ŵi+1

2
−
√
ŵi
2

)2

≥

(
1

m+ 1
−
√

2

m4

)2

(ŵi ≤ 1/m4)

=

(
1

m+ 1
−
√

2

m2

)2

≥

(
1

2m
−
√

2

m2

)2

=

(
m− 2

√
2

2m2

)2

≥
( m

4m2

)2

=

(
1

4m

)2

=
1

16m2

If any q contains any j, k not of the form 2i− 1, 2i, then (A.1) will have a term on

the left hand side at least 1/m ·1/(16m2) = 1/(16m3) > 1/m4 for large enoughm,

and since there can be no negative terms on the left hand side, this immediately

makes it impossible for Q to satisfy (A.1).

Consider every 2i−1, 2i ∈ [2m]. Let qi = {2i−1, 2i}. As shown above, either

qi ∈ Q or {2i − 1} ∈ Q and {2i} ∈ Q. In the latter case, neither pσ2i−1
nor pσ2i

contributes to (A.1). If qi ∈ Q, then qi contributes 1/2(pσ2i−pσ2i−1
)2 = 1/2(2εi)

2 =

ŵi to the overall sum on the left hand side. Therefore, we can write the left hand
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side of (A.1) as

∑
q∈Q

1

|q|
∑
i<j∈q

(pσi − pσj)2 =
∑
qi∈Q

1

2
(pσ2i−pσ2i−1

)2 =
∑
qi∈Q

ŵi =
1

m4

Then, we can build a solution to the original subset sum instance as S = {i : qi ∈

Q}, giving us
∑

i∈S ŵi = 1
m4 . Multiplying both sides by Tm4, we get

∑
i∈S wi =

T , meaning S is a solution for the subset sum instance.

To prove the other direction, assume we have a solution S ⊆ [m] such that∑
i∈S wi = T . Dividing both sides by Tm4, we get

∑
i∈S ŵi = 1/m4. We build

a partition Q of 2m by starting with the empty set and adding qi = {2i − 1, 2i}

to Q if i ∈ S and {2i − 1} and {2i} to Q otherwise. Clearly, each element of

[2m] appears in Q at most once, making this a valid partition. Moreover, when

checking to see if (A.1) is satisfied (which is true if and only if Q is a fair assign-

ment), we can ignore all q ∈ Q such that |q| = 1 because they don’t contribute to

the left hand side. Since, we again have

∑
q∈Q

1

|q|
∑
i<j∈q

(pσi − pσj)2 =
∑
qi∈Q

1

2
(pσ2i−pσ2i−1

)2 =
∑
qi∈Q

ŵi =
1

m4

meaning Q is a fair assignment. This completes the reduction.

We have shown that the integral assignment problem is NP-hard, and it is

clearly in NP because given an integral assignment, we can verify in polynomial

time whether such an assignment satisfies the conditions (A), (B), and (C). Thus,

the integral assignment problem is NP-complete.
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APPENDIX B

ON FAIRNESS AND CALIBRATION

For simplicity, our focus thus far has been on classifiers that are perfectly cali-

brated. Here, we introduce an approximate notion of calibration, which we will

use in subsequent proofs.

Definition B.1. The calibration gap ε(ht) of a classifier ht with respect to a group Gt

is

ε(ht) =

∫ 1

0

∣∣∣ Pr
(x,y)∼Gt

[
y=1 | h(x)=p

]
− p
∣∣∣ Pr

(x,y)∼Gt

[
h(x) = p

]
dp. (B.1)

Thus, a classifier ht is perfectly calibrated if ε(ht) = 0.

A majority of this supplementary material is devoted to proving approxi-

mate versions of our major findings. In all cases, our results degrade smoothly

as the calibration condition is relaxed. In addition, we also provide extended

details on the experiments run in this chapter.

Note that we will use the notational abuse PrGt and EGt in place of Pr(x,y)∼Gt

and E(x,y)∼Gt .

B.1 Linearity of Calibrated Classifiers

In Section 4.1, we claim that the set of all calibrated classifiers H∗t for group Gt

form a line in the generalized false-positive/false-negative plane. The following

proof of this claim is adapted from Kleinberg et al. (2017).
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Lemma B.2. For a group Gt, if a classifier ht has ε(ht) ≤ δcal, then

∣∣µtcfn(ht)− (1− µt) cfp(ht)
∣∣ ≤ 2δcal.

where cfp(ht) and cfn(ht) are the generalized false-positive and false-negative and µt is

the base rate of group Gt.

Proof. First, note that

cfp(ht) = E
Gt

[
ht(x) | y=0

]
=

∫ 1

0

p Pr
Gt

[ht(x)=p | y=0] dp

=

∫ 1

0

p
1− PrGt [y=1 | ht(x)=p]

1− PrGt [y=1]
Pr
Gt

[ht(x)=p] dp

=
1

1− µt

∫ 1

0

p (1− Pr
Gt

[y=1 | ht(x)=p]) Pr
Gt

[ht(x)=p] dp (B.2)

Next, observe that∫ 1

0

p · Pr
Gt

[y=1 | ht(x)=p] · Pr
Gt

[ht(x)=p] dp

=

∫ 1

0

p(p+ Pr
Gt

[y=1 | ht(x)=p]− p) Pr
Gt

[ht(x)=p] dp

≤
∫ 1

0

(
p2 + |Pr

Gt
[y=1 | ht(x)=p]− p|

)
Pr
Gt

[ht(x)=p] dp

≤ E
Gt

[ht(x)2] + δcal

Similarly, ∫ 1

0

p · Pr
Gt

[y=1 | ht(x)=p] Pr
Gt

[ht(x)=p] dp

≥
∫ 1

0

(
p2 − |Pr

Gt
[y=1 | ht(x)=p]− p|

)
Pr
Gt

[ht(x)=p] dp

≥ E
Gt

[ht(x)2]− δcal
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Plugging these into (B.2), we have

1

1− µt
(E
Gt

[ht(x)]− E
Gt

[ht(x)2]− δcal) ≤ cfp(ht)

≤ 1

1− µt
(E
Gt

[ht(x)]− E
Gt

[ht(x)2] + δcal) (B.3)

We follow a similar procedure for cfn(ht):

cfn(ht) = E
Gt

[
1− ht(x) | y=0

]
=

∫ 1

0

(1− p) Pr
Gt

[ht(x)=p | y=0] dp

=

∫ 1

0

(1− p) PrGt [y=1 | ht(x)=p]

PrGt [y=1]
Pr
Gt

[ht(x)=p] dp.

=
1

µt

∫ 1

0

(1− p) (Pr
Gt

[y=1 | ht(x)=p]) Pr
Gt

[ht(x)=p] dp.

We use the fact that

(1− p)(Pr
Gt

[y=1 | ht(x)=p])

= (1− p)(p+ Pr
Gt

[y=1 | ht(x)=p]− p)

≤ p(1− p) + |Pr
Gt

[y=1 | ht(x)=p]− p|

and

(1− p)(Pr
Gt

[y=1 | ht(x)=p])

≥ p(1− p)− |Pr
Gt

[y=1 | ht(x)=p]− p|

to get

1

µt
(E
Gt

[ht(x)]− E
Gt

[ht(x)2]− δcal) ≤ cfn(ht)

≤ 1

µt
(E
Gt

[ht(x)]− E
Gt

[ht(x)2] + δcal) (B.4)
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Combining (B.3) and (B.4), we have

cfn(ht) ≤
1

µt
(E
Gt

[ht(x)]− E
Gt

[ht(x)2] + δcal)

=
1

µt
(E
Gt

[ht(x)]− E
Gt

[ht(x)2]− δcal + 2δcal)

≤ 1

µt
((1− µt) cfp(ht) + 2δcal)

=
1− µt
µt

cfp(ht) +
2δcal
µt

We can get a similar lower bound for cfn(ht) as

cfn(ht) ≥
1

µt
(E
Gt

[ht(x)]− E
Gt

[ht(x)2]− δcal)

≥ 1

µt
((1− µt) cfp(ht)− 2δcal)

=
1− µt
µt

cfp(ht)−
2δcal
µt

Multiplying these inequalities by µt completes this proof.

Corollary B.3. Let Ht be the set of perfectly calibrated classifiers for group Gt — i.e.

for any h∗t ∈ HT , we have ε(h∗t ) = 0. The generalized false-positive and false-negative

rates of h∗t are given by

cfp(h
∗
t ) =

1

1− µt

(
E
Gt

[ht(x)]− E
Gt

[ht(x)2]

)
(B.5)

cfn(h∗t ) =
1

µt

(
E
Gt

[ht(x)]− E
Gt

[ht(x)2]

)
(B.6)

Proof. This is a direct consequence of (B.3) and (B.4).

Corollary B.4. For a group Gt, any perfectly calibrated classifier h∗t satisfies

cfn(h∗t ) =
1− µt
µt

cfp(ht). (B.7)

In other words, all perfectly calibrated classifiers h∗t ∈ Ht for group Gt lie on

a line in the generalized false-positive/false-negative plane, where the slope of

the line is uniquely determined by the group’s base-rate µt.
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B.2 Cost Functions

We will prove a few claims about cost functions gt of the form given by (4.2) —

i.e.

gt(ht) = atcfp(ht) + btcfn(ht)

for some non-negative constants at and bt. First, we show that hµt is the cali-

brated classifier that maximizes gt.

Lemma B.5. For any cost function gt that follows the form of (4.2), the trivial classifier

hµt is the calibrated classifier for Gt with maximum cost.

Proof. Again, let gt be a cost function:

gt(h) = atcfp(ht) + btcfn(ht).

Using (B.5) and (B.6), we have that, for every classifier ht that is perfectly cali-

brated for group Gt,

gt(ht) = atcfp(ht) + btcfn(ht)

=

(
at

1− µt
+
bt
µt

)(
E
Gt

[ht(x)]− E
Gt

[
ht(x)2

])
=

(
at

1− µt
+
bt
µt

)(
µt − E

Gt

[
ht(x)2

])
.

The last equation holds because EGt [ht(x)] = µt for any calibrated classifier – a

fact which can easily be derived from Definition B.1.

We would like to find, hmax
t ∈ H∗t , the calibrated classifier with the highest
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weighted cost. Because
(

at
1−µt + bt

µt

)
and µt are non-negative constants, we have

hmax
t = arg max

h∈H∗t

[( at
1− µt

+
bt
µt

)(
µt − E

Gt

[
h(x)2

])]
= arg max

h∈H∗t

[
− E

Gt

[
h(x)2

]]
= arg min

h∈H∗t

[
E
Gt

[
h(x)2

]]
= arg min

h∈H∗t

[
E
Gt

[
h(x)2

]
− µ2

t

]
Thus, the calibrated classifier with minimum variance will have the highest cost.

This translates to a classifier that outputs the same probability for every sample.

By the calibration constraint, this constant must be equal to µt, so this classifier

must be the trivial classifier hµt — i.e. for all x

hmax
t (x) = hµt (x) = µt.

Next, we show that gt is linear under randomized interpolations.

Lemma B.6. Let h̃2 be the classifier derived from (4.3) with interpolation parameter

α ∈ [0, 1]. The cost of h̃2 is given by

g2(h̃2) = (1− α)g2(h2) + αg2(hµ2)

Proof. The cost of h̃2 can be calculated using linearity of expectation. Let B be a
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Bernoulli random variable with parameter α.

g2(h̃2) = a2cfp(h̃2) + b2cfn(h̃2)

= a2 E
G2

[
1− h̃2(x) | y=1

]
+ b2 E

G2

[
h̃2(x) | y=0

]
= a2 E

B,G2

[1− [(1−B)h2(x) +Bhµ2(x)] | y=1]

+ b2 E
B,G2

[[(1−B)h2(x) +Bhµ2(x)] | y=0]

= a2 E
B,G2

[(1−B) (1− h2(x)) | y=1] + a2 E
B,G2

[B (1− hµ2(x)) | y=1]

+ b2 E
B,G2

[(1−B)h2(x) | y=0] + b2 E
B,G2

[Bhµ2(x) | y=0]

= a2 E
B

[1−B] E
G2

[1− h2(x) | y=1] + a2 E
B

[B] E
G2

[1− hµ2(x) | y=1]

+ b2 E
B

[1−B] E
G2

[h2(x) | y=0] + b2 E
B

[B] E
G2

[hµ2(x) | y=0]

= a2(1− α)cfp(h2) + b2(1− α)cfn(h2) + a2(α)cfp(h
µ2) + b2(α)cfn(hµ2)

= (1− α)g2(h2) + αg2(hµ2).

B.3 Relationship Between Cost and Error

In Section 4.1, we claim that there is a tight connection between reducing any

cost function gt(ht) and reducing the generalized error rates cfp(ht) and cfn(ht)

for approximately calibrated classifiers. In other words, assuming we are ap-

proximately calibrated, improving cost will approximately improve our error

rates. We formalize this notion in this section:

Lemma B.7. Let ht be a classifier with ε(ht) = δcal and cost gt(ht). For any other

classifier h′t, if cfp(h′t) < cfp(ht)− 4δcal
1−µt or cfn(h′t) < cfn(ht)− 4δcal

µt
, then gt(h′t) < gt(ht)

or ε(ht) > δcal.
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Proof. First, assume that cfp(h′t) < cfp(ht)− 4δcal
1−µt . Then, there are two cases: either

cfn(h′t) < cfn(ht) or cfn(h′t) ≥ cfn(ht). In the first case, gt(h′t) < gt(ht) because

cfp(h
′
t) < cfp(ht) and cfn(h′t) < cfn(ht). In the second case, if ε(h′t) ≤ δcal, we can

use Lemma B.2 to get

cfp(h
′
t) ≥

µt
1− µt

cfn(h′t)−
2δcal

1− µt

≥ µt
1− µt

cfn(ht)−
2δcal

1− µt

≥ cfp(ht)−
4δcal

1− µt

Since this contradicts the initial assumption that cfp(h′t) < cfp(ht)− 4δcal
1−µt , it cannot

be the case that ε(h′t) ≤ δcal. This proves the lemma when cfp(h′t) < cfp(ht)− 4δcal
1−µt .

To prove the second part, we now assume that cfn(h′t) < cfn(ht) − 4δcal
µt

. We

again break this into two cases. If cfp(h′t) < cfp(ht), then gt(h
′
t) < gt(ht). If

cfp(h
′
t) ≥ cfp(ht), then under the assumption that ε(h′t) ≤ δcal, we can rearrange

Lemma B.2 to get

cfn(h′t) ≥
1− µt
µt

cfp(h
′
t)−

2δcal
µt

≥ 1− µt
µt

cfp(ht)−
2δcal
µt

≥ cfn(ht)−
4δcal
µt

Again, this contradicts the assumption that cfn(h′t) < cfn(ht)− 4δcal
µt

, so it cannot

be the case that ε(h′t) ≤ δcal. This completes the proof.

From this result we can derive a stronger claim for perfectly calibrated clas-

sifiers.

Lemma B.8. Let ht and h′t be perfectly calibrated classifiers with cost gt(ht) ≤ gt(h
′
t)

for some cost function gt. Then cfp(ht) ≤ cfp(h
′
t)
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B.4 Proof of Algorithm 1 Optimality and Approximate Opti-

mality

In Section 4.2, we claim that Algorithm 1 produces optimal non-discriminatory

classifiers in exact calibration scenarios, and near-optimal classifiers in approx-

imate calibration scenarios.

We begin with classifiers h1 and h2 be classifiers for groups G1 and G2, with

calibrations ε(h1) ≤ δcal and ε(h2) ≤ δcal. As before, assume that we cannot

strictly improve the cost of either h1 or h2 without worsening calibration: i.e.

h1 and h2 is gt and calibration. We will now show that Algorithm 1 produces

classifiers that are near-optimal with respect to both the false-positive and false-

negative rates among calibrated classifiers satisfying the equal-cost constraint.

First, we show that interpolation preserves approximate calibration:

Theorem B.9 (Approximate Optimality of Algorithm 1). Given h̃2, which is the

classifier produced by Algorithm 1, we have that ε(h̃2) ≤ (1− α) ε(h2), where α ∈ [0, 1]

is the interpolation parameter in (4.3).

Proof. We can calculate the calibration of h̃2(x) as follows:

ε(h̃2) = E
B,G2

∣∣∣Pr
G2

[
y=1 | h̃2(x)=p

]
− p
∣∣∣

=

∫ 1

0

∣∣∣Pr
G2

[
y=1 | h̃2(x)=p

]
− p
∣∣∣Pr
G2

[
h̃2(x)=p

]
dp

For p 6= µ2, |PrG2

[
y = 1 | h̃2(x) = p

]
− p| = |PrG2

[
y = 1 | h2(x) = p

]
− p| and

PrG2

[
h̃2(x)=p

]
= (1− α) PrG2

[
h2(x)=p

]
.

For p = µ2, let β = PrB,G2

[
B = 1 | h̃2(x) = p

]
/PrG2

[
h̃2(x) = p

]
. Note that

329



β ≥ α. Then,

Pr
G2

[
y=1 | h̃2(x)=p

]
= (1− β) Pr

G2

[
y=1 | h2(x)=p

]
+ β Pr

G2

[
y=1 | hµ2(x)=p

]
= (1− β) Pr

G2

[
y=1 | h2(x)=p

]
+ βp

because hµ2 is perfectly calibrated. Moreover, note that PrG2

[
h̃2(x) = p

]
=

PrG2

[
h2(x) = p

]
/(1 − β) Using this, we have |PrG2

[
y = 1 | h̃2(x) = p

]
−

p|PrG2

[
h̃2(x)=p

]
= |PrG2

[
y=1 | h2(x)=p

]
− p|PrG2

[
h2(x)=p

]
. Thus,

ε(h̃2) =

∫ 1

0

∣∣∣Pr
G2

[
y=1 | h̃2(x)=p

]
− p
∣∣∣Pr
G2

[
h̃2(x)=p

]
dp

≤
∫ 1

0

∣∣∣Pr
G2

[
y=1 | h2(x)=p

]
− p
∣∣∣Pr
G2

[
h2(x)=p

]
dp

= ε(h2)

Next, we observe that by Lemma B.7, for any classifiers h′1 and h′2 with

ε(h′1) ≤ δcal and ε(h′2) ≤ δcal satisfying the equal-cost constraint, it must be the

case that cfp(h′t) ≥ cfp(h̃t)− 4δcal
1−µt and cfn(h′t) ≥ cfp(h̃t)− 4δcal

µt
for t = 1, 2.

Thus, approximately calibrated classifiers will be approximately optimal.

From this result, it is easy to derive the optimality result for perfectly-calibrated

classifiers.

Theorem B.10 (Exact Optimality of Algorithm 1). Algorithm 1 produces the clas-

sifiers h1 and h̃2 that satisfy both perfect calibration and the equal-cost constraint with

the lowest possible generalized false positive and false negative rates.
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B.5 Proof of Impossibility and Approximate Impossibility

In this section, we prove that it is impossible to satisfy multiple equal-cost con-

straints while simultaneously satisfying calibration. We will first prove this in

an exact sense, and then show that the result holds approximately as well.

B.5.1 Exact Impossibility Theorem

Theorem 4.5 (Restated). Let h1 and h2 be calibrated classifiers for G1 and G2

with equal cost with respect to gt. If µ1 6= µ2, and if h1 and h2 have equal cost

with respect to g′t, then h1 and h2 must be perfect classifiers.

Proof. First, observe that the perfect classifier always satisfies any equal-cost

constraint simply because if cfp(t) = cfn(t) = 0, gt(ht) = 0. Moreover, the perfect

classifier is always calibrated.

For any classifier, as shown by Kleinberg et al. (2017), cfp(ht) and cfn(ht)

are linearly related by (B.7). Furthermore, each equal-cost constraint is linear

in cfp(ht) and cfn(ht). We define gt(ht) and g′t(ht) to be identical cost functions

if the equal-cost constraints that they impose are identical, meaning one con-

straint is satisfied if and only if the other is satisfied. If this is not the case, then

gt(ht) and g′t(ht) are distinct, meaning that the equal-cost constraints are linearly

independent for µ1 6= µ2. Moreover, these are also linearly independent from

the calibration constraints because by assumption, they both have nonzero co-

efficients for at least one of (cfp(h1), cfn(h1)) and (cfp(h2), cfn(h2)). As a result,

we have four linearly independent constraints (2 from calibration and at least

2 equal-cost constraints) on 4 variables (cfp(h1), cfn(h1), cfp(h2), cfn(h2)), mean-
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ing that these constraints yield a unique solution. From above, we know that

all the constraints are simultaneously satisfied when cfp(ht) = cfn(ht) = 0 for

t = 1, 2, meaning that the perfect classifier is the only classifier for which they

are simultaneously satisfied.

B.5.2 Approximate Impossibility Theorem

Now, we will show that this impossibility result holds in an approximate sense

— i.e., approximately satisfying the calibration and equal-cost constraints is

only possible if the classifiers approximately perfect.

Since the calibration and equal-cost constraints are all linear, let A be the

matrix that encodes them. With two equal-cost constraints gt and g′t,

A =



1 − µ1
1−µ1 0 0

0 0 1 − µ2
1−µ2

a1 b1 −a2 −b2

a′1 b′1 −a′2 −b′2


.

Note that the first two rows of A encode the calibration conditions — see (B.7).

The bottom two rows encode two equal-cost constraints. Furthermore, let

~q = [cfp(h1) cfn(h1) cfp(h2) cfn(h2)]> .

If all constraints are required to hold exactly, then we have A~q = 0. Consider the

case where the calibration and equal-cost constraints hold approximately.

Theorem B.11 (Generalized approximate impossibility result). Let h1 and h2 be

classifiers with calibration δcal and cost difference at most δcost with respect to distinct

cost functions gt and g′t. Furthermore, assume that every entry of A is rational with
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some common denominatorD and is upper bounded by some maximum valueM . Then,

there is a constant L that depends on D and M such that

cfp(ht) ≤ L ·max

{
2δcal

1− µ1

,
2δcal

1− µ2

, δcost

}
and

cfn(ht) ≤ L ·max

{
2δcal

1− µ1

,
2δcal

1− µ2

, δcost

}
for t = 1, 2.

Proof. By Lemma B.2,

∣∣µtcfn(ht)− (1− µt) cfp(ht)
∣∣ ≤ 2δcal.

Since the first two rows in A correspond to the calibration constraints, and the

second to correspond to the equal-cost constraints, it must be the case that

|A~q| ≤



2δcal
1−µ1
2δcal
1−µ2

δcost

δcost


,

i.e. the absolute value of each entry in A~q is bounded by the vector on the right

hand side. Let ~ν = [2δcal/(1 − µ1) 2δcal/(1 − µ2) δcost δcost]
>. Let ~s = sign(A~q),

and multiply the ith row of A by the ith entry of ~s to produce Â This allows us

to drop the absolute value, meaning we have

Â~q ≤ ~ν

Furthermore, since gt and g′t were assumed to be distinct, Â is invertible, so this

is equivalent to

~q ≤ Â−1~ν.
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Taking `∞ norms of both sides,

‖~q‖∞ ≤ ‖Â−1~ν‖∞ ≤ ‖Â−1‖∞‖~ν‖∞.

The (i, j) entry of Â−1 can be expressed as Âji/ det(Â), where Âji is the (j, i) co-

factor. Note that Âji is a 3×3 determinant, so it is the sum of 6 cubic polynomials

in entries of Â. However, since every 3× 3 submatrix of Â has at least one 0 en-

try, only 4 of those cubics can be nonnegative. By assumption, the maximum

value of any entry of Â is M , so |Âji| ≤ 4M3.

We can lower bound det(Â) by noting that since Â is not singular, its deter-

minant is nonzero. However, because the determinant can be expressed as a

4 × 4 polynomial, and each term has common denominator D by assumption,

| det(Â)| ≥ 1/D4. As a result, |Âji/ det(Â)| ≤ 4M3D4.

Let dij be the (i, j) entry of Â. We know that

‖Â−1‖∞ ≤ max
j

4∑
i=1

|dij| ≤ 16M3D4 = L

As a result,

‖~q‖∞ ≤ L‖ν‖∞

which proves the claim.

Note that Theorem B.11 is not intended to be a tight bound. It simply shows

that impossibility result degrades smoothly for approximate constraints.

B.6 Details on Experiments

Post-processing for Equalized Odds To derive classifiers that satisfy the

Equalized Odds notion of fairness, we use the method introduced by Hardt
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et al. (2016b). Essentially, the false-positive and false-negative constraints are

satisfied by randomly flipping some of the predictions of the original classifiers.

Let q(t)
n2p be the probability for group Gt of “flipping” a negative prediction to

positive, and q
(t)
p2n be that of flipping a positive prediction to negative. The de-

rived classifiers heo1 and heo2 essentially flip predictions according to these prob-

abilities:

heot (x) =


(1− ht(x))B

(t)
p2n + ht(x)

(
1−B(t)

p2n

)
ht(x) ≥ 0.5

(1− ht(x))B
(t)
n2p + ht(x)

(
1−B(t)

n2p

)
ht(x) < 0.5

where B(t)
n2p and B

(t)
p2n are Bernoulli random variables with expectations q(t)

n2p and

q
(t)
p2n respectively. Note that this is a probabilistic generalization of the derived

classifiers presented in Hardt et al. (2016b). If all outputs of ht were either 0 or 1

we would arrive at the original formulation.

We can find the best rates q(1)
n2p, q(1)

p2n, q(2)
n2p, and q

(2)
p2n through the following op-

timization problem:

min
q(1), q

(1)
p2n, q

(2)
n2p, q

(2)
p2n

L(heo1 ) + L(heo2 )

s.t. cfp(h
eo
1 ) = cfn(heo1 ),

cfp(h
eo
2 ) = cfn(heo2 )

where L represents the 0/1 loss of the classifier:

L(ht) = Pr
Gt

[ht(x) ≥ 0.5 | y=0] + Pr
Gt

[ht(x) < 0.5 | y=1] .

The two constraints enforce the Equalized Odds constraints. Hardt et al. (2016b)

show that this can be solved via a linear program.

Constrained-learning for Equalized Odds Zafar et al. (2017a) introduce a

method to achieve Equalized Odds (under the name Disparate Mistreatment) at
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training time using optimization constraints. The problem is set up at learning a

logistic classifier under the Equalized Odds constraints. While these constraints

make the problem non-convex, Zafar et al. (2017a) show how to formulate the

problem as a disciplined convex-concave program. Though this is generally in-

tractable, it can be solved in many instances. We refer the reader to Zafar et al.

(2017a) for details.

Training Procedure for Income Prediction. We train three models: a random

forest, a multi-layer perceptron, and a SVM with an RBF kernel. We convert

the categorical features into one-hot encodings. 10% of the data is reserved for

hyperparameter tuning and post-processing, and an additional 10% is saved for

final evaluation. The random forest and MLP are naturally probabilistic and

well calibrated. We use Platt scaling to calibrate the SVM. The hyperparameters

were tuned by grid search based on 3-fold cross validation. Figure 4.3a displays

the average false-positive and false-negative costs across all models.

Training Procedure for Health Prediction. We train a random forest and a

linear SVM on this dataset. We use the same dataset split and hyperparame-

ter selection as with Income Prediction. Figure 4.3b displays the average false-

positive and false-negative costs across all models.

Training Procedure for Recidivism Prediction. For the trained Equalized

Odds baseline we train a constrained logistic classifier using the method pro-

posed by Zafar et al. (2017a). We derive the post-processed classifiers (both for

Equalized Odds and its calibrated relaxation) from the original COMPAS clas-

sifier (Dieterich et al., 2016).
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APPENDIX C

THE EXTERNALITIES OF EXPLORATION AND HOW DATA DIVERSITY

HELPS EXPLOITATION

Throughout the chapter, we use a number of tools that are either known or

easily follow from something that is known. Here, we provide the proofs for

the sake of completeness.

C.1 (Sub)gaussians and Concentration

We rely on several known facts about Gaussian and subgaussian random vari-

ables. A random variable X is called σ-subgaussian, for some σ > 0, if

E[eσX
2
] < ∞. This includes variance-σ2 Gaussian random variables as a spe-

cial case.

Lemma C.1. If X ∼ N (0, σ2), then for any t ≥ 0,

E [X | X ≥ t] ≤


2σ t ≤ σ

t+ σ2

t
t > σ

Proof. We begin with

E [X | X ≥ t] =

1
σ
√

2π

∫∞
t
x exp (x2/(2σ2)) dx

Pr [X ≥ t]
. (C.1)

X can be represented as X = σY , where Y is a standard normal random vari-

able. Using a tail bound for the latter (from Cook (2009)),

Pr [X ≥ t] = Pr

[
Y ≥ t

σ

]
≥ 1√

2π

t/σ

(t/σ)2 + 1
exp

(
− t2

2σ2

)
.
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The numerator in (C.1) is

1

σ
√

2π

∫ ∞
t

x exp
(
x2/(2σ2)

)
dx = − 1

σ
√

2π
· σ2e−x

2/(2σ2)

∣∣∣∣∞
t

· e−t2/(2σ2)

=
σ√
2π

exp

(
− t2

2σ2

)
.

Combining, we have

E [X | X ≥ t] ≤
σ√
2π

exp
(
− t2

2σ2

)
1√
2π

t/σ
(t/σ)2+1

exp
(
− t2

2σ2

) =
σ2((t/σ)2 + 1)

t
= t+

σ2

t

For t ≤ σ, E [X | X ≥ t] ≤ E [X | X ≥ σ] ≤ 2σ by the above bound.

Lemma C.2. Suppose X ∼ N (0,Σ) is a Gaussian random vector with covariance

matrix Σ. Then

E [ ‖X‖2 | ‖X‖2 > α ] ≤ d

(
α +

λmax(Σ)

α

)
for any α ≥ 0.

Proof. Assume without loss of generality that Σ is diagonal, since the norm is

rotationally invariant. Observe that ‖X‖2 | ∀i Xi > α stochastically dominates

‖X‖2 | ‖X‖2 > α. (Geometrically, the latter conditioning shifts the probability

mass away from the origin.) Therefore,

E [ ‖X‖2 | ‖X‖2 > α ] ≤ E [ ‖X‖2 | ∀i Xi > α ]

= E
[∑d

i=1 Xi | ∀i Xi > α
]
≤
∑d

i=1

(
t+ λi(Σ)

α

)
by Lemma C.1, where λi(Σ) ≤ λmax(Σ) is the ith eigenvalue of Σ.

Fact C.3. If X is a σ-subgaussian random variable, then

Pr[|X − E [X] | > t] ≤ 2e−t
2/(2σ2).
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Lemma C.4. If X1, . . . , Xn are independent σ-subgaussian random variables, then

Pr

[
max
i
|Xi − E [Xi] | > σ

√
2 log

2n

δ

]
≤ δ.

Proof. For any Xi, we know from Fact C.3 that

Pr

[
|Xi − E [Xi] | > σ

√
2 log

2n

δ

]
≤ 2 exp

(
−

2σ2 log 2n
δ

2σ2

)
= 2 exp

(
− log

2n

δ

)
=
δ

n
.

A union bound completes the proof.

Lemma C.5. If X1, . . . , XK are independent zero-mean σ-subgaussian random vari-

ables, then

E [maxiXi] ≤ σ
√

2 logK.

Proof. Let X = maxXi. Since each Xi is σ-subgaussian, it follows that

E
[
eλXi

]
≤ exp

(
λ2σ2

2

)
.

Using Jensen’s inequality, we have

exp (λE [X]) ≤ E [exp (λX)] = E [max exp (λXi)] ≤
∑
i

E [exp (λXi)]

≤ K exp

(
λ2σ2

2

)
.

Rearranging, we have

E [X] ≤ logK

λ
+
λσ2

2
.

Setting λ =
√

2 logK
σ

, we have E [X] ≤ σ
√

2 logK as needed
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Lemma C.6. If θ ∼ N (θ,Σ) where θ ∈ Rd and Σ ∈ Rd×d, then E
[
‖θ − θ‖2

]
≤√

dλmax(Σ).

Proof. From Chandrasekaran et al. (2012), the expected norm of a standard nor-

mal d-dimensional Gaussian is at most
√
d. Using the fact that Σ−1/2(θ − θ) ∼

N (0, I), we have

E
[
‖θ − θ‖2

]
= E

[
‖Σ1/2Σ−1/2(θ − θ)‖2

]
≤ ‖Σ1/2‖2E

[
‖Σ−1/2(θ − θ)‖2

]
≤
√
dλmax(Σ)

Lemma C.7 (Lemma 2.2 in Dasgupta and Gupta (2003)). If X ∼ χ2(d), i.e., X =∑d
i=1X

2
i , whereX1 , . . . , Xd are independent standard Normal random variables, then

Pr [X ≤ βd] ≤ (βe1−β)d/2 for any β ∈ (0, 1),

Pr [X ≥ βd] ≤ (βe1−β)d/2 for any β > 1.

Lemma C.8 (Hoeffding bound). If X̄ = 1
n

∑n
i=1Xi, where the Xi’s are independent

σ-subgaussian random variables with zero mean, then

max
(
Pr
[
X̄ ≥ t

]
, Pr

[
X̄ ≤ −t

])
≤ exp

(
−nt

2

2σ2

)
for all t > 0,

max

(
Pr

[
X ≤ −σ

√
2
n

log 1
δ

]
, Pr

[
X ≥ σ

√
2
n

log 1
δ

])
≤ δ for all δ > 0.

C.2 KL-divergence

We use some basic facts about KL-divergence. Let us recap the definition: given

two distributions P,Q on the same finite outcome space Ω, KL-divergence from
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P to Q is

KL(P ||Q) := −
∑
ω∈Ω

P (ω) log Q(ω)
P (ω)

.

Lemma C.9 (High-probability Pinsker Inequality (Tsybakov, 2009)). For any

probability distributions P and Q over the same sample space and any arbitrary event

E,

P (E) +Q(E) ≥ 1
2
e−KL(P ||Q).

Lemma C.10. Let P andQ be Bernoulli distributions with means p ∈ [1/2−ε, 1/2+ε]

and q ∈ [1/2− ε, 1/2 + ε] respectively, with ε ≤ 1/4. Then KL(P ||Q) ≤ 7
3
ε2.

Proof. For any ε ≤ 1/4,

log

(
p(1− p)
q(1− q)

)
≤ log

(
1/4

1/4− ε2

)
≤ log

(
1

1− 4ε2

)
≤ 14 ε2

3
(By Lemma C.16)

KL(P ||Q) = p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
≤
(

1

2
+ ε

)
log

(
p(1− p)
q(1− q)

)
=

(
1

2
+ ε

)
14ε2

3
≤ 7ε2

2
.

C.3 Linear Algebra

We use several facts from linear algebra. In what follows, recall that λmin(M)

and λmax(M) denote the minimal and the maximal eigenvalues of matrix M ,

resp. For two matrices A,B, let us write B � A to mean that B − A is positive

semidefinite.

Lemma C.11. λmax(vv>) = ‖v‖2
2 for any v ∈ Rd.
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Proof. vv> has rank one, so it has one eigenvector with nonzero eigenvalue. v is

an eigenvector since (vv>)v = (v>v)v, and it has eigenvalue v>v = ‖v‖2
2. This is

the only nonzero eigenvalue, so λmax(vv>) = ‖v‖2
2.

Lemma C.12. For symmetric matrices A, B with B invertible,

B � A⇐⇒ I � B−1/2AB−1/2

Proof.

B � A⇐⇒ x>Bx ≥ x>Ax (∀x)

⇐⇒ x>(B − A)x ≥ 0 (∀x)

⇐⇒ x>B1/2(I −B−1/2AB−1/2)B1/2x ≥ 0 (∀x)

⇐⇒ x>(I −B−1/2AB−1/2)x ≥ 0 (∀x)

⇐⇒ I � B−1/2AB−1/2.

Lemma C.13. If A � 0 and B � 0, then λmin(A+B) ≥ λmin(A).

Proof.

λmin(A+B) = min
‖x‖2=1

x>(A+B)x

= min
‖x‖2=1

x>Ax+ x>Bx

≥ min
‖x‖2=1

x>Ax (because x>Bx ≥ 0)

= λmin(A)
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C.4 Logarithms

We use several variants of standard inequalities about logarithms.

Lemma C.14. x ≥ log(ex) for all x > 0.

Proof. This is true if and only if x− log(ex) ≥ 0 for x > 0. To show this, observe

that

1. At x = 1, this holds with equality.

2. At x = 1, the derivative is

d

dx
x− log(ex)

∣∣∣∣
x=1

= 1− 1

x

∣∣∣∣
x=1

= 0.

3. The entire function is convex for x > 0, since

d2

dx2
x− log(ex) =

d

dx
1− 1

x
=

1

x2
> 0.

This proves the lemma.

Corollary C.15. x− log x ≥ e−1
e
x.

Proof. Using Lemma C.14 and letting z = x/e,

x− log x =
e− 1

e
x+

1

e
x− log x =

e− 1

e
x+ z − log(ez) ≥ e− 1

e
x

Lemma C.16. log
(

1
1−x

)
≤ 7x

6
for any x ∈ [0, 1/4].
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Proof. First, we note that

d
dx

log
(

1
1−x

)
= 1− x(−(1− x)−2) · (−1) = 1

1−x =
∞∑
i=0

xi.

Integrating both sides, we have

log
(

1
1−x

)
= C +

∞∑
i=0

xi

i
,

for some constant C that does not depend on x. Taking x = 0 yields C = 0.

Therefore,

log

(
1

1− x

)
≤ x+

x2

2

∞∑
i=0

xi = x+
x2

2(1− x)
= x

(
1 +

x

2(1− x)

)
≤ 7x

6
.
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APPENDIX D

SELECTION PROBLEMS IN THE PRESENCE OF IMPLICIT BIAS

D.1 Missing Proofs for Section 7.2

Proof of Theorems 7.6 and 7.9. We can expand the statement in Theorem D.1 to

E
[
X(αn:αn) · 1{X(αn:αn)<βY(n−k+1:n)}

]
∼∼∼ E

[
X(αn:αn)

] [
1− (1 + c−1)−δ/(1+δ)

k−1∑
j=0

(
j − 1

1+δ

j

)
(1 + c)−j

]

∼∼∼ (αn)1/(1+δ)Γ

(
δ

1 + δ

)[
1− (1 + c−1)−δ/(1+δ)

k−1∑
j=0

(
j − 1

1+δ

j

)
(1 + c)−j

]
(By Lemma D.22)
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This gives us a ratio

rk(α, β, δ)

=
E
[
X(αn:αn) · 1{X(αn:αn)<βY(n−k+1:n)}

]
E
[
Y(n−k+1:n) · 1{X(αn:αn)<βY(n−k+1:n)}

]
∼∼∼

(αn)1/(1+δ)Γ
(

δ
1+δ

) [
1− (1 + c−1)−δ/(1+δ)

∑k−1
j=0

(j− 1
1+δ

j

)
(1 + c)−j

]
(1 + c)−(k−1/(1+δ))

Γ(k− 1
1+δ )

Γ(k)
n1/(1+δ)

(Using Theorem D.2)

=
α1/(1+δ)Γ(k)Γ

(
δ

1+δ

)
(1 + c)k−1/(1+δ)

Γ
(
k − 1

1+δ

)
·

[
1− (c−1(1 + c))−δ/(1+δ)

k−1∑
j=0

(
j − 1

1+δ

j

)
(1 + c)−j

]

=
α1/(1+δ)cδ/(1+δ)Γ(k)Γ

(
δ

1+δ

)
(1 + c)k−1

Γ
(
k − 1

1+δ

)
·

[
(1 + c−1)δ/(1+δ) −

k−1∑
j=0

(
j − 1

1+δ

j

)
(1 + c)−j

]

=
α1/(1+δ)cδ/(1+δ)(1 + c)k−1(k−1− 1

1+δ

k−1

)
[

(1 + c−1)δ/(1+δ) −
k−1∑
j=0

(
j − 1

1+δ

j

)
(1 + c)−j

]

Proof of Theorem 7.7. Since the only influence of β is through c and c is decreasing

in β, it is sufficient to show that

α1/(1+δ)
[
1− (1 + c−1)−δ/(1+δ)

[
1 + δ

1+δ
(1 + c)−1

]]
δ

1+δ
(1 + c)−1−δ/(1+δ)

is decreasing in c. Ignoring constants, this is

∝ cδ/(1+δ)(1 + c)

[
(1 + c−1)δ/(1+δ) − 1− δ

1 + δ
(1 + c)−1

]
= (1 + c)1+δ/(1+δ) − cδ/(1+δ)(1 + c)− δ

1 + δ
cδ/(1+δ)

= (1 + c)1+δ/(1+δ) − c1+δ/(1+δ) −
(

1 +
δ

1 + δ

)
cδ/(1+δ)
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This has derivative

δ

dc
(1 + c)1+δ/(1+δ) − c1+δ/(1+δ) −

(
1 +

δ

1 + δ

)
cδ/(1+δ)

=

(
1 +

δ

1 + δ

)
(1 + c)δ/(1+δ) −

(
1 +

δ

1 + δ

)
cδ/(1+δ)

+

(
δ

1 + δ

)(
1 +

δ

1 + δ

)
c−1/(1+δ),

which is negative if and only if

(1 + c)δ/(1+δ) < cδ/(1+δ) +
δ

1 + δ
c−1/(1+δ)

⇐⇒(1 + c)δ/(1+δ)c−δ/(1+δ) < 1 +
δ

1 + δ
c−1

⇐⇒(1 + c−1)δ/(1+δ) < 1 +
δ

1 + δ
c−1.

This is true by Lemma D.21, which proves the theorem.

Proof of Theorem 7.10. By Theorem 7.9,

φk(α, β, δ) =
α1/(1+δ)cδ/(1+δ)Γ(k)Γ

(
δ

1+δ

)
(1 + c)k−1

Γ
(
k − 1

1+δ

)
·

[
(1 + c−1)δ/(1+δ) −

k−1∑
j=0

(
j − 1

1+δ

j

)
(1 + c)−j

]

We use the fact that for a, b ∈ Z and s ∈ R

Γ(s− a+ 1)

Γ(s− b+ 1)
= (−1)b−a

Γ(b− s)
Γ(a− s)

.
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If the summation went to∞, it would be

∞∑
j=0

(
j − 1

1+δ

j

)
(1 + c)−j =

∞∑
j=0

(1 + c)−j
Γ
(
j + δ

1+δ

)
Γ
(

δ
1+δ

)
Γ(j + 1)

=
∞∑
j=0

(1 + c)−j(−1)j
Γ
(
1− δ

1+δ

)
Γ
(
−j + 1 + δ

1+δ

)
Γ(j + 1)

=
∞∑
j=0

(
− δ

1+δ

j

)
(−(1 + c)−1)j

= (1− (1 + c)−1)−δ/(1+δ)

= (1 + c−1)δ/(1+δ)

Therefore,

k−1∑
j=0

(
j − 1

1+δ

j

)
(1 + c)−j = (1 + c−1)δ/(1+δ) −

∞∑
j=k

(
j − 1

1+δ

j

)
(1 + c)−j.

Plugging this in,

φk(α, β, δ) =
α1/(1+δ)cδ/(1+δ)Γ(k)Γ

(
δ

1+δ

)
(1 + c)k−1

Γ
(
k − 1

1+δ

) ∞∑
j=k

(
j − 1

1+δ

j

)
(1 + c)−j

=
α1/(1+δ)cδ/(1+δ)Γ(k)Γ

(
δ

1+δ

)
Γ
(
k − 1

1+δ

)
(1 + c)

∞∑
j=0

(
j + k − 1

1+δ

j + k

)
(1 + c)−j
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With this, we can take

φk+1(α, β, δ)− φk(α, β, δ)

=
α1/(1+δ)cδ/(1+δ)Γ

(
δ

1+δ

)
(1 + c)

[
Γ(k + 1)

Γ
(
k + δ

1+δ

) ∞∑
j=0

(
j + k + 1− 1

1+δ

j + k + 1

)
(1 + c)−j

− Γ(k)

Γ
(
k − 1

1+δ

) ∞∑
j=0

(
j + k − 1

1+δ

j + k

)
(1 + c)−j

]

=
α1/(1+δ)cδ/(1+δ)Γ(k)Γ

(
δ

1+δ

)
Γ
(
k − 1

1+δ

)
(1 + c)

[
k

k − 1
1+δ

∞∑
j=0

(
j + k + 1− 1

1+δ

j + k + 1

)
(1 + c)−j

−
∞∑
j=0

(
j + k − 1

1+δ

j + k

)
(1 + c)−j

]

=
α1/(1+δ)cδ/(1+δ)Γ(k)Γ

(
δ

1+δ

)
Γ
(
k − 1

1+δ

)
(1 + c)

∞∑
j=0

(1 + c)−j

·

[
k

k − 1
1+δ

(
j + k + 1− 1

1+δ

j + k + 1

)
−
(
j + k − 1

1+δ

j + k

)]
Thus, to show that φk+1 > φk, it is sufficient to show that for j ≥ 0,

k

k − 1
1+δ

(
j + k + 1− 1

1+δ

j + k + 1

)
−
(
j + k − 1

1+δ

j + k

)
> 0

k

k − 1
1+δ

Γ
(
j + k + 1 + δ

1+δ

)
Γ(j + k + 2)Γ

(
δ

1+δ

) − Γ
(
j + k + δ

1+δ

)
Γ(j + k + 1)Γ

(
δ

1+δ

) > 0

k

k − 1
1+δ

j + k + δ
1+δ

j + k + 1
− 1 > 0 (Γ(x+ 1) = xΓ(x))

k − 1
1+δ

+ (j + 1)

k + (j + 1)
>
k − 1

1+δ

k

The last inequality holds by Lemma D.16. As a result a result, φk+1 > φk, prov-

ing the theorem.

Proof Theorem 7.11. We want to find

Pr
[
X(αn:αn) > Y(n−k+1:n) | X(αn:αn) < βY(n−k+1:n)

]
,

or equivalently,

Pr
[
X(αn:αn) < Y(n−k+1:n) | X(αn:αn) < βY(n−k+1:n)

]
.
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This can be written as

Pr
[
X(αn:αn) < Y(n−k+1:n) ∩X(αn:αn) < βY(n−k+1:n)

]
Pr
[
X(αn:αn) < βY(n−k+1:n)

] =
Pr
[
X(αn:αn) < Y(n−k+1:n)

]
Pr
[
X(αn:αn) < βY(n−k+1:n)

] .
(D.1)

By Theorem D.3, the numerator can be approximated by (1 + α)−k while the

denominator is approximately (1 + αβ−(1+δ))−k. Thus, we have

Pr
[
X(αn:αn) < Y(n−k+1:n) | X(αn:αn) < βY(n−k+1:n)

] ∼∼∼ (1 + αβ−(1+δ))k

(1 + α)k

=

(
1 + αβ−(1+δ)

1 + α

)k
,

and therefore

Pr
[
X(αn:αn) > Y(n−k+1:n) | X(αn:αn) < βY(n−k+1:n)

] ∼∼∼ 1−
(

1 + αβ−(1+δ)

1 + α

)k
.

D.2 Additional Theorems for Power Laws

Theorem D.1.

E
[
X(αn:αn) · 1{X(αn:αn)<βY(n−k+1:n)}

]
∼∼∼ E

[
X(αn:αn)

] [
1− (1 + c−1)−δ/(1+δ)

k−1∑
j=0

(
j − 1

1+δ

j

)
(1 + c)−j

]

where c = αβ−(1+δ).

Proof. First, observe that

E
[
X(αn:αn) · 1{X(αn:αn)<βY(n−k+1:n)}

]
= E

[
X(αn:αn)

]
− E

[
X(αn:αn) · 1{X(αn:αn)≥βY(n−k+1:n)}

]
.
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Next, we use the fact that

E
[
X(αn:αn) · 1{X(αn:αn)≥βY(n−k+1:n)}

]
=

∫ ∞
β

xf(αn:αn)(x)F(n−k+1:n)

(
x

β

)
dx.

We know that∫ ∞
β

xf(αn:αn)(x)F(n−k+1:n)

(
x

β

)
dx =

∫ ( αn
lnn)

1/(1+δ)

β

xf(αn:αn)(x)F(n−k+1:n)

(
x

β

)
dx

+

∫ ∞
( αn
lnn)

1/(1+δ)
xf(αn:αn)(x)F(n−k+1:n)

(
x

β

)
dx,

(D.2)

and ∫ ( αn
lnn)

1/(1+δ)

β

xf(αn:αn)(x)F(n−k+1:n)

(
x

β

)
dx

≤
( αn

lnn

)1/(1+δ)

F(αn:αn)

(( αn
lnn

)1/(1+δ)
)

≤
( αn

lnn

)1/(1+δ)

· 1

n

by Lemma D.18. The second term of (D.2) is

(1 + δ)αn

∫ ∞
( αn
lnn)

1/(1+δ)
(1− x−(1+δ))αn−1x−(1+δ)

k−1∑
j=0

(
n

j

)(
1−

(
x

β

)−(1+δ)
)n−j (

x

β

)−j(1+δ)

dx

= (1 + δ)αn
k−1∑
j=0

(
n

j

)
βj(1+δ)

∫ ∞
( αn
lnn)

1/(1+δ)
(1− x−(1+δ))αn−1

(
x−(1+δ)

)j+1

·

(
1−

(
x

β

)−(1+δ)
)n−j

dx

Next, we show that for x ≥
(
αn
lnn

)1/(1+δ),(
1−

(
x

β

)−(1+δ)
)n−j

∼∼∼ (1− x−(1+δ))β
1+δn−j.

351



We begin with(
1−

(
x

β

)−(1+δ)
)n−j

∼∼∼ (1− x−(1+δ))β
1+δ(n−j)

= (1− x−(1+δ))β
1+δn−j(1− x−(1+δ))−j(β

1+δ−1).

Note that (1− x−(1+δ))−j(β
1+δ−1) ≥ 1, and by Lemma D.17,

(1− x−(1+δ))−j(β
1+δ−1) = 1 + j(β1+δ − 1)x−(1+δ) +O

(
1

n

)
∼∼∼ 1.

because j ≤ lnn. Thus, (1 − x−(1+δ))β
1+δn−j(1 − x−(1+δ))−j(β

1+δ−1) ∼∼∼ (1 −

x−(1+δ))β
1+δn−j . Therefore, this becomes

(1 + δ)αn
k−1∑
j=0

(
n

j

)
βj(1+δ)

∫ ∞
( αn
lnn)

1/(1+δ)

(
1− x−(1+δ)

)β1+δn(1+c)−j−1 (
x−(1+δ)

)j+1
dx.

We’ll now try to relate the jth term in this summation to the order statistic

Z(β1+δn(1+c)−j:β1+δn(1+c)). We know that

E
[
Z(β1+δn(1+c)−j:β1+δn(1+c))

]
=

∫ ∞
1

zf(β1+δn(1+c)−j:β1+δn(1+c))(z) dz

= (1 + δ)(j + 1)

(
β1+δn(1 + c)

j + 1

)∫ ∞
1

(
1− z−(1+δ)

)β1+δn(1+c)−j−1 (
z−(1+δ)

)j+1
dz.

Using this, we have∫ ∞
( αn
lnn)

1/(1+δ)
xf(αn:αn)(x)F(n−k+1:n)

(
x

β

)
dx

∼∼∼
k−1∑
j=0

αnβj(1+δ)
(
n
j

)
(j + 1)

(
β1+δn(1+c)

j+1

) [E [Z(β1+δn(1+c)−j:β1+δn(1+c))

]
−
∫ ( αn

lnn)
1/(1+δ)

1

zf(β1+δn(1+c)−j:β1+δn(1+c))(z) dz


We’ll show that this last multiplicative term is approximately

E
[
Z(β1+δn(1+c)−j:β1+δn(1+c))

]
.
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Observe that∫ ( αn
lnn)

1/(1+δ)

1

zf(β1+δn(1+c)−j:β1+δn(1+c))(z) dz

≤
( αn

lnn

)1/(1+δ)
∫ ( αn

lnn)
1/(1+δ)

1

f(β1+δn(1+c)−j:β1+δn(1+c))(z) dz

=
( αn

lnn

)1/(1+δ)

F(β1+δn(1+c)−j:β1+δn(1+c))

(( αn
lnn

)1/(1+δ)
)

≤
( αn

lnn

)1/(1+δ)
√
k

n

by Lemma D.15. This means
k−1∑
j=0

αnβj(1+δ)
(
n
j

)
(j + 1)

(
β1+δn(1+c)

j+1

)E [Z(β1+δn(1+c)−j:β1+δn(1+c))

]
≥

k−1∑
j=0

αnβj(1+δ)
(
n
j

)
(j + 1)

(
β1+δn(1+c)

j+1

) [E [Z(β1+δn(1+c)−j:β1+δn(1+c))

]
−
( αn

lnn

)1/(1+δ)
√
k

n

]

∼∼∼
k−1∑
j=0

αnβj(1+δ)
(
n
j

)
(j + 1)

(
β1+δn(1+c)

j+1

)E [Z(β1+δn(1+c)−j:β1+δn(1+c))

]
(by Lemma D.19)

Next, we deal with the nβj(1+δ)
(
n
j

)
/((j + 1)

(
β1+δn(1+c)

j+1

)
) terms. These are

nβj(1+δ)
(
n
j

)
(j + 1)

(
β1+δn(1+c)

j+1

)
=

n(n− 1) · · · (n− j + 1)

β1+δn(1 + c)(β1+δn(1 + c)− 1) · · · (β1+δn(1 + c)− j + 1)
· nβj(1+δ)

β1+δn(1 + c)− j
.

(D.3)

Each term (n− `)/(β1+δn(1 + c)− `) is between 1/(β1+δ(1 + c)) and 1/(β1+δ(1 +

c)) · (1− `/n). This means

1

(β1+δ(1 + c))j
≥

j∏
`=0

n− `
β1+δn(1 + c)− `

≥
j∏
`=0

1

β1+δ(1 + c)

(
1− `

n

)
≥
(

1− j2

n

)
∼∼∼

1

(β1+δ(1 + c))j

353



since j ≤ k ≤ ((1− c2)/2) lnn. Multiplying by the second term in (D.3), which is

nβj(1+δ)

β1+δn(1 + c)− j
∼∼∼
β(j−1)(1+δ)

1 + c
,

we have
nβj(1+δ)

(
n
j

)
(j + 1)

(
β1+δn(1+c)

j+1

) ∼∼∼ 1

β1+δ(1 + c)j+1
.

As a result,∫ ∞
( αn
lnn)

1/(1+δ)
xf(αn:αn)(x)F(n−k+1:n)

(
x

β

)
dx

∼∼∼
k−1∑
j=0

α

β1+δ(1 + c)j+1
E
[
Z(β1+δn(1+c)−j:β1+δn(1+c))

]
=

k−1∑
j=0

c

(1 + c)j+1
E
[
Z(β1+δn(1+c)−j:β1+δn(1+c))

]
(D.4)

Finally, note that

E
[
Z(β1+δn(1+c)−j:β1+δn(1+c))

]
= E

[
Z(nβ1+δ(1+c):β1+δn(1+c))

] Γ(j + δ/(1 + δ))

Γ(δ/(1 + δ))Γ(j + 1)

∼∼∼ (β1+δn(1 + c))1/(1+δ) Γ(j + δ/(1 + δ))

Γ(j + 1)

= β(1 + c)1/(1+δ)n1/(1+δ) Γ(j + δ/(1 + δ))

Γ(j + 1)

=
β

α1/(1+δ)
(1 + c)1/(1+δ)(αn)1/(1+δ) Γ(j + δ/(1 + δ))

Γ(j + 1)

∼∼∼ c−1/(1+δ)(1 + c)1/(1+δ)E
[
X(αn:αn)

] Γ(j + δ/(1 + δ))

Γ(δ/(1 + δ))Γ(j + 1)

Substituting back to (D.4),∫ ∞
( αn
lnn)

1/(1+δ)
xf(αn:αn)(x)

∼∼∼ E
[
X(αn:αn)

]
cδ/(1+δ)

k−1∑
j=0

(1 + c)−(j+δ/(1+δ)) Γ(j + δ/(1 + δ))

Γ(δ/(1 + δ))Γ(j + 1)
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Going back to (D.2),

E
[
X(αn:αn) · 1{X(αn:αn)>βY(n−k+1:n)}

]
∼∼∼ E

[
X(αn:αn)

]
cδ/(1+δ)

k−1∑
j=0

(1 + c)−(j+δ/(1+δ)) Γ(j + δ/(1 + δ))

Γ(δ/(1 + δ))Γ(j + 1)

+

∫ ( αn
lnn)

1/(1+δ)

β

xf(αn:αn)(x)F(n−k+1:n)

(
x

β

)
dx

≤ E
[
X(αn:αn)

]
cδ/(1+δ)

k−1∑
j=0

(1 + c)−(j+δ/(1+δ)) Γ(j + δ/(1 + δ))

Γ(δ/(1 + δ))Γ(j + 1)

+
( αn

lnn

)1/(1+δ) (lnn)2

n

∼∼∼ E
[
X(αn:αn)

]
cδ/(1+δ)

k−1∑
j=0

(1 + c)−(j+δ/(1+δ)) Γ(j + δ/(1 + δ))

Γ(δ/(1 + δ))Γ(j + 1)

Therefore,

E
[
X(αn:αn) · 1{X(αn:αn)<βY(n−k+1:n)}

]
∼∼∼ E

[
X(αn:αn)

] [
1− cδ/(1+δ)

k−1∑
j=0

(1 + c)−(j+δ/(1+δ))
Γ
(
j + δ

1+δ

)
Γ
(

δ
1+δ

)
Γ(j + 1)

]
.

We can simplify this to

E
[
X(αn:αn) · 1{X(αn:αn)<βY(n−k+1:n)}

]
∼∼∼ E

[
X(αn:αn)

] [
1− (1 + c−1)−δ/(1+δ)

k−1∑
j=0

(1 + c)−j
Γ
(
j + δ

1+δ

)
Γ
(

δ
1+δ

)
Γ(j + 1)

]
.

Using the definition (
a

b

)
=

Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 1)
,

this is

E
[
X(αn:αn) · 1{X(αn:αn)<βY(n−k+1:n)}

]
∼∼∼ E

[
X(αn:αn)

] [
1− (1 + c−1)−δ/(1+δ)

k−1∑
j=0

(
j − 1

1+δ

j

)
(1 + c)−j

]
.
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Theorem D.2.

E
[
Y(n−k+1:n) · 1{X(αn:αn)<βY(n−k+1:n)}

]
∼∼∼ (1 + αβ−(1+δ))−(k−1/(1+δ))E

[
Y(n−k+1:n)

]
Proof. We begin with

E
[
Y(n−k+1:n) · 1{X(αn:αn)<βY(n−k+1:n)}

]
=

∫ ∞
1

yf(n−k+1:n)(y)F(αn:αn)(βy) dy.

Let c = αβ−(1+δ). Break this up into∫ ∞
1

yf(n−k+1:n)(y)F(αn:αn)(βy) dy =

∫ ( cn
lnn)

1/(1+δ)

1

yf(n−k+1:n)(y)F(αn:αn)(βy) dy

+

∫ ∞
( cn
lnn)

1/(1+δ)
yf(n−k+1:n)(y)F(αn:αn)(βy) dy.

(D.5)

The first term is∫ ( cn
lnn)

1/(1+δ)

1

yf(n−k+1:n)(y)F(αn:αn)(βy) dy

≤ F(αn:αn)

(
β
( cn

lnn

)1/(1+δ)
)∫ ( cn

lnn)
1/(1+δ)

1

yf(n−k+1:n)(y) dy

≤ F(αn:αn)

(
β
( cn

lnn

)1/(1+δ)
)
E
[
Y(n−k+1:n)

]
≤

E
[
Y(n−k+1:n)

]
n

by Lemma D.18.

For the second term in (D.5), we have∫ ∞
( cn
lnn)

1/(1+δ)
yf(n−k+1:n)(y)F(αn:αn)(βy) dy

= (1 + δ)k

(
n

k

)∫ ∞
( cn
lnn)

1/(1+δ)

(
1− y−(1+δ)

)n−k (
y−(1+δ)

)k (
1− (βy)−(1+δ)

)αn
dy

By Lemma D.14, for all y ≥ (cn/ lnn)1/(1+δ),

(
1− (βy)−(1+δ)

)αn ∼∼∼ (1− y−(1+δ)
)cn

.
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Therefore,∫ ∞
( cn
lnn)

1/(1+δ)
yf(n−k+1:n)(y)F(αn:αn)(βy) dy

∼∼∼ (1 + δ)k

(
n

k

)∫ ∞
( cn
lnn)

1/(1+δ)

(
1− y−(1+δ)

)n−k+cn (
y−(1+δ)

)k
dy

= (1 + δ)k

(
n

k

)∫ ∞
( cn
lnn)

1/(1+δ)

(
1− y−(1+δ)

)n(1+c)−k (
y−(1+δ)

)k
dy.

We’ll now try to relate this to the order statistic Z(n(1+c)−k+1:n(1+c)). We know that

E
[
Z(n(1+c)−k+1:n(1+c))

]
=

∫ ∞
1

zf(n(1+c)−k+1:n(1+c))(z) dz

= (1 + δ)k

(
n(1 + c)

k

)∫ ∞
1

(
1− z−(1+δ)

)n(1+c)−k (
z−(1+δ)

)k
dz.

Using this, we have∫ ∞
( cn
lnn)

1/(1+δ)
yf(n−k+1:n)(y)F(αn:αn)(βy) dy

∼∼∼
(
n
k

)(
n(1+c)
k

)
E [Z(n(1+c)−k+1:n(1+c))

]
−
∫ ( cn

lnn)
1/(1+δ)

1

yf(n(1+c)−k+1:n(1+c))(y) dy

 .
(D.6)

From here, we’ll show that the term being subtracted is only a
√

lnn
n

fraction of

E
[
Z(n(1+c)−k+1:n(1+c))

]
. To do so, note that

∫ ( cn
lnn)

1/(1+δ)

1

yf(n(1+c)−k+1:n(1+c))(y) dy

≤
( cn

lnn

)1/(1+δ)
∫ ( cn

lnn)
1/(1+δ)

1

f(n(1+c)−k+1:n(1+c))(y) dy

=
( cn

lnn

)1/(1+δ)

F(n(1+c)−k+1:n(1+c))

(( cn
lnn

)1/(1+δ)
)

≤
( cn

lnn

)1/(1+δ)
(√

k

n

)
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By Lemma D.13. Lemma D.19 gives us

E
[
Z(n(1+c)−k+1:n(1+c))

]
≥ E

[
Z(n(1+c)−k+1:n(1+c))

]
−
∫ ( cn

lnn)
1/(1+δ)

1

yf(n(1+c)−k+1:n(1+c))(y) dy

≥ E
[
Z(n(1+c)−k+1:n(1+c))

]
−
( cn

lnn

)1/(1+δ)
(√

k

n

)

≥ E
[
Z(n(1+c)−k+1:n(1+c))

](
1−
√
k

n

)
∼∼∼ E

[
Z(n(1+c)−k+1:n(1+c))

]
Combining with (D.6), Lemma D.9 yields∫ ∞

( cn
lnn)

1/(1+δ)
yf(n−k+1:n)(y)F(αn:αn)(βy) dy ∼∼∼

(
n
k

)(
n(1+c)
k

)E [Z(n(1+c)−k+1:n(1+c))

]
(D.7)

By Lemma D.20, (
n
k

)(
n(1+c)
k

) ∼∼∼ 1

(1 + c)k
.

Putting this into (D.7),∫ ∞
( cn
lnn)

1/(1+δ)
yf(n−k+1:n)(y)F(αn:αn)(βy) dy ∼∼∼

1

(1 + c)k
E
[
Z(n(1+c)−k+1:n(1+c))

]
.

Finally, note that

E
[
Z(n(1+c)−k+1:n(1+c))

]
= E

[
Z(n(1+c):n(1+c))

] Γ(k − 1/(1 + δ))

Γ(δ/(1 + δ))Γ(k)

∼∼∼ (n(1 + c))1/(1+δ) Γ(k − 1/(1 + δ))

Γ(k)

= (1 + c)1/(1+δ)n1/(1+δ) Γ(k − 1/(1 + δ))

Γ(k)

∼∼∼ (1 + c)1/(1+δ)E
[
Y(n:n)

] Γ(k − 1/(1 + δ))

Γ(δ/(1 + δ))Γ(k)

= (1 + c)1/(1+δ)E
[
Y(n−k+1:n)

]
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Substituting into (D.5),

E
[
Y(n−k+1:n) · 1{X(αn:αn)≤βY(n−k+1:n)}

]
∼∼∼ E

[
Y(n−k+1:n)

](
(1 + c)−(k−1/(1+δ)) +

1

n

)
∼∼∼ E

[
Y(n−k+1:n)

]
(1 + αβ−(1+δ))−(k−1/(1+δ))

since c = aβ−1(1+δ), proving the theorem.

Theorem D.3.

Pr
[
X(αn:αn) < βY(n−k+1:n)

] ∼∼∼ (1 + c)−k.

Proof. Begin with

Pr
[
X(αn:αn) < βY(n−k+1:n)

]
=

∫ ∞
1

f(n−k+1:n)(y)F(αn:αn)(βy) dy

=

∫ ( cn
lnn)

1/(1+δ)

1

f(n−k+1:n)(y)F(αn:αn)(βy) dy

+

∫ ∞
( cn
lnn)

1/(1+δ)
f(n−k+1:n)(y)F(αn:αn)(βy) dy (D.8)

Observe that∫ ( cn
lnn)

1/(1+δ)

1

f(n−k+1:n)(y)F(αn:αn)(βy) dy

≤ F(αn:αn)

(
β
( cn

lnn

)1/(1+δ)
)
F(n−k+1:n)

(( cn
lnn

)1/(1+δ)
)

≤ F(αn:αn)

(
β
( cn

lnn

)1/(1+δ)
)

≤
(

1− β−(1+δ)

(
lnn

cn

))αn
≤ exp

(
−αβ−(1+δ) lnn

cn

)
=

1

n

Next, we have∫ ∞
( cn
lnn)

1/(1+δ)
f(n−k+1:n)(y)F(αn:αn)(βy) dy

=

∫ ∞
( cn
lnn)

1/(1+δ)
(1− (βy)−(1+δ))αnf(n−k+1:n)(y) dy
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By Lemma D.14, for y ≥ (cn/ lnn)1/(1+δ),

(
1− (βy)−(1+δ)

)αn ∼∼∼ (1− y−(1+δ)
)cn

,

so ∫ ∞
( cn
lnn)

1/(1+δ)
f(n−k+1:n)(y)F(αn:αn)(βy) dy

∼∼∼
∫ ∞

( cn
lnn)

1/(1+δ)
(1− y−(1+δ))cnf(n−k+1:n)(y) dy

= (1 + δ)k

(
n

k

)∫ ∞
( cn
lnn)

1/(1+δ)
(1− y−(1+δ))n(1+c)−k(y−(1+δ))ky−1 dy

=

(
n
k

)(
n(1+c)
k

) ∫ ∞
( cn
lnn)

1/(1+δ)
f(n(1+c)−k+1:n(1+c)) dy

From Lemma D.13, we have

F(n(1+c)−k+1:n(1+c))

((
cn

lnn

1/(1+δ)
))
≤
√
k

n
,

so ∫ ∞
( cn
lnn)

1/(1+δ)
f(n(1+c)−k+1:n(1+c)) dy = 1− F(n(1+c)−k+1:n(1+c))

((
cn

lnn

1/(1+δ)
))

≥ 1−
√
k

n

≈ 1.

Therefore,∫ ∞
( cn
lnn)

1/(1+δ)
f(n−k+1:n)(y)F(αn:αn)(βy) dy ∼∼∼

(
n
k

)(
n(1+c)
k

) ∼∼∼ 1

(1 + c)k

by Lemma D.20. By (D.8), this means

Pr
[
X(αn:αn) < βY(n−k+1:n)

] ∼∼∼ (1 + c)−k.
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D.3 Lemmas for the Equivalence Definition

Lemma D.4 (Transitivity). If f(n) ∼∼∼a1;n1
g(n) and g(n) ∼∼∼a2;n2

h(n), then f(n) ∼∼∼

h(n).

Proof.

f(n)

h(n)
=
f(n)

g(n)
· g(n)

h(n)

≤
(

1 +
a1(lnn)2

n

)(
1 +

a2(lnn)2

n

)
≤ 1 +

(a1 + a2)(lnn)2

n
+
a1a2(lnn)4

n2

≤ 1 +
(a1 + a2 + a1a2)(lnn)2

n

for all n ≥ max(n1, n2), since n ≥ (lnn)2. A symmetric argument holds for

h(n)/f(n). Thus, f(n) ∼∼∼a1+a2+a1a2;max(n1,n2) h(n).

Lemma D.5 (Linearity). If f1(n) ∼∼∼a1;n1
g1(n) and f1(n) ∼∼∼a2;n2

g2(n), then bf1(n) +

cf2(n) ∼∼∼ bg1(n) + cg2(n).

Proof. By Lemma D.11,

bf1(n) + cf2(n)

bg1(n) + cg2(n)
≤ max

(
f1(n)

g1(n)
,
f2(n)

g2(n)

)
≤ max(a1, a2)(lnn)2

n

for n ≥ max(n1, n2). A symmetric argument holds for the reciprocal. Therefore,

bf1(n) + cf2(n) ∼∼∼max(a1,a2);max(n1,n2) bg1(n) + cg2(n).

Lemma D.6 (Integrals). If f(x, n) ∼∼∼a;n0
g(x, n), then∫

f(x, n) dx ∼∼∼
∫
g(x, n) dx
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Proof.

∫
f(x, n) dx∫
g(x, n) dx

=

∫
g(x, n)f(x,n)

g(x,n)
dx∫

g(x, n) dx
≤

∫
g(x, n)

(
1 + a(lnn)2

n

)
dx∫

g(x, n) dx
≤ 1 +

a(lnn)2

n

for n ≥ n0. A symmetric argument holds for the reciprocal, proving the lemma.

Lemma D.7. If f1(n) ∼∼∼a1;n1
g1(n) and f2(n) ∼∼∼a2;n2

g2(n), then

f1(n)f2(n) ∼∼∼ g1(n)g2(n).

Proof.

f1(n)f2(n)

g1(n)g2(n)
=
f1(n)

g1(n)
· f2(n)

g2(n)

≤
(

1 +
a1(lnn)2

n

)(
1 +

a2(lnn)2

n

)
≤ 1 +

(a1 + a2)(lnn)2

n
+
a1a2(lnn)4

n2

≤ 1 +
(a1 + a2 + a1a2)(lnn)2

n

for all n ≥ max(n1, n2), since n ≥ (lnn)2. A symmetric argument holds for the

reciprocal. Thus, f1(n)f2(n) ∼∼∼a1+a2+a1a2;max(n1,n2) g1(n)g2(n).

Lemma D.8. If f(n) ∼∼∼a;n0
g(n), then 1

f(n)
∼∼∼ 1

g(n)
.

Proof.
1/f(n)

1/g(n)
=
g(n)

f(n)
≤ 1 +

a(lnn)2

n

for n ≥ n0. A symmetric argument holds for the reciprocal.

Lemma D.9. If g1(n) ≤ f(n) ≤ g2(n), g1(n) ∼∼∼ h(n), and g2(n) ∼∼∼ h(n), then

f(n) ∼∼∼ h(n).
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Proof.
f(n)

h(n)
≤ g2(n)

h(n)

and
h(n)

f(n)
≤ h(n)

g1(n)
,

proving the lemma by definition.

Fact D.10. For all x ≥ 1, lnx ≤ x and (lnx)2 ≤ x.

Lemma D.11. For a, b, c, d > 0, if a
b
≤ c

d
, then

a

b
≤ a+ c

b+ d
≤ c

d
.

Proof. Since a
b
≤ c

d
, d
b
≤ c

a
. Therefore,

a+ c

b+ d
=
a

b
· 1 + c/a

1 + d/b
≥ a

b
· 1 + d/b

1 + d/b
=
a

b
.

Similarly,
a+ c

b+ d
=
c

d
· 1 + a/c

1 + b/d
≤ c

d
· 1 + b/d

1 + b/d
=
c

d
.

Lemma D.12.
a− (lnn)2/n

b
∼∼∼
a

b

Proof.
a−(lnn)2/n

b
a
b

= 1− (lnn)2

n
≤ 1

a
b

a−(lnn)2/n
b

=
1

1− (lnn)2

an

= 1 +
(lnn)2

an

1− (lnn)2

an

≤ 1 +
2(lnn)2

an

for n ≥ 16/a4.
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D.4 Lemmas for Appendix D.2

Lemma D.13. For k ≤ (1− c) lnn,

F(n(1+c)−k+1:n(1+c))

((
cn

lnn

1/(1+δ)
))
≤
√
k

n
.

Proof. We can write

F(n(1+c)−k+1:n(1+c))

(( cn
lnn

)1/(1+δ)
)

=
k−1∑
j=0

(
n(1 + c)

j

)(
1− lnn

cn

)n(1+c)−j (
lnn

cn

)j

≤
k−1∑
j=0

(n(1 + c))j

j!
exp

(
−
(

lnn

cn

)
(n(1 + c)− j)

)(
lnn

cn

)j

=
k−1∑
j=0

1

j!

(
(1 + c) lnn

c

)j
exp

(
− lnn

(
1 + c−1

(
1− j

n

)))

=
1

n

k−1∑
j=0

1

j!

(
(1 + c−1) lnn

)j ( 1

n

)c−1(1− j
n)

≤ 1

n2
+

1

n

k−1∑
j=1

1√
2πj

(
e(1 + c−1) lnn

j

)j (
1

n

)c−1(1− j
n)

(D.9)

by Stirling’s approximation. The term(
e(1 + c−1) lnn

j

)j
is increasing whenever it’s natural log,

j
(
1 + ln(1 + c−1) + ln lnn− ln j

)
,

is increasing. This has derivative

1 + ln(1 + c−1) + ln lnn− ln j − 1 = ln(1 + c−1) + ln lnn− ln j ≥ ln lnn− ln j.
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Thus, it is increasing for j ≤ lnn. For j ≤ (1− c) lnn, we have(
e(1 + c−1) lnn

j

)j
≤
(
e(1 + c−1) lnn

(1− c) lnn

)(1−c) lnn

=

(
e(1 + c−1)

1− c

)(1−c) lnn

= exp
(
1 + ln(1 + c−1)− ln(1− c)

)(1−c) lnn

= exp (lnn)(1+ln(1+c−1)−ln(1−c))(1−c)

= n(1+ln(1+c−1)−ln(1−c))(1−c)

≤ n(1+c−1+c+c2)(1−c)

= n1+c−1+c+c2−c−1−c2−c3

= nc
−1−c3

≤ nc
−1(1−j/n)

for sufficiently large n, since j ≤ (1−c) lnn. Combining this with (D.9), we have

F(n(1+c)−k+1:n(1+c))

(( cn
lnn

)1/(1+δ)
)
≤ 1

n2
+

1

n
√

2π

k−1∑
j=1

1√
j

≤ 1

n2
+

1

n
√

2π

(
1 +

∫ k

1

1√
j
dj

)
≤ 1

n2
+

√
k

n
√

2π

≤
√
k

n

Lemma D.14. For y ≥ (cn/ lnn)1/(1+δ),

(
1− (βy)−(1+δ)

)αn ∼∼∼ (1− y−(1+δ)
)cn

,
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Proof. We know that 1− (βy)−(1+δ) ≥ (1− y−(1+δ))β
−(1+δ) from the Taylor expan-

sion, giving us(
1− (βy)−(1+δ)

)αn ≥ ((1− y−(1+δ))β
−(1+δ)

)αn
= (1− y−(1+δ))cn.

On the other hand, for y ≥ (cn/ lnn)1/(1+δ),(
1− (βy)−(1+δ)

)αn ≤ exp
(
−cy−(1+δ)n

)
≤
(
1− y−(1+δ)

)cn
1− cny−2(1+δ)

≤
(
1− y−(1+δ)

)cn
1− (lnn)2

cn

∼∼∼
(
1− y−(1+δ)

)cn
.

Lemma D.15. For k ≤ ((1− c2) lnn)/2,

F(β1+δn(1+c)−j:β1+δn(1+c))

(( αn
lnn

)1/(1+δ)
)
≤
√
k

n
,

Proof. We begin with

F(β1+δn(1+c)−j:β1+δn(1+c))

(( αn
lnn

)1/(1+δ)
)

=

j∑
`=0

(
β1+δn(1 + c)

`

)(
1− lnn

αn

)β1+δn(1+c)−`(
lnn

αn

)`
≤

j∑
`=0

(β1+δn(1 + c))`

`!
exp

(
−
(

lnn

αn

)
(β1+δn(1 + c)− `)

)(
lnn

αn

)`
=

j∑
`=0

1

`!

(
β1+δ(1 + c) lnn

c

)`
exp

(
− lnn

(
1 + c−1

(
1− `

n

)))

=
1

n

j∑
`=0

1

`!

(
β1+δ(1 + c−1) lnn

)`( 1

n

)c−1(1− `
n)

≤ 1

n2
+

1

n

j∑
`=1

1√
2π`

(
eβ1+δ(1 + c−1) lnn

`

)`(
1

n

)c−1(1− `
n)

(D.10)
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We apply a similar argument as in Lemma D.13, showing that for ` ≤ ((1 −

c2)/2) lnn,

(
eβ1+δ(1 + c−1) lnn

`

)`
≤
(
ec−1(1 + c−1) lnn

(1− c) lnn

)((1−c2)/2) lnn

=

(
ec−1(1 + c−1)

1− c

)(1−c) lnn

= exp
(
1 + ln c−1 + ln(1 + c−1)− ln(1− c)

)((1−c2)/2) lnn

= exp (lnn)(1+ln c−1+ln(1+c−1)−ln(1−c))((1−c2)/2)

= n(1+ln c−1+ln(1+c−1)−ln(1−c))((1−c2)/2)

≤ n(1+(c−1−1)+c−1+c+c2)((1−c2)/2)

= n(2c−1+c+c2)((1−c2)/2)

≤ n(2c−1+2c)((1−c2)/2) (c ≤ 1)

= nc
−1(1+c2)(1−c2)

= nc
−1(1−c4)

≤ nc
−1(1−`/n)

for sufficiently large n. This gives us

F(β1+δn(1+c)−j:β1+δn(1+c))

(( αn
lnn

)1/(1+δ)
)
≤ 1

n2
+

1

n

j∑
`=1

1√
2π`
≤
√
k

n
,

Lemma D.16. For 0 < a < b and c > 0,

a+ c

b+ c
>
a

b

Proof.
a+ c

b+ c
=
a(1 + c/a)

b(1 + c/b)
>
a(1 + c/b)

b(1 + c/b)
=
a

b
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Lemma D.17. For 0 ≤ y ≤ a1 · lnn
n

and |z| ≤ a2 lnn,

|(1− y)z − (1− yz)| = O

(
1

n

)

Proof. By Taylor’s theorem,

f(y) = (1− y)z = 1− yz ± f ′′(ε)

2
y2

for some 0 ≤ ε ≤ y. Note that

f ′′(ε) = z(z − 1)(1− ε)z−2 ≤ |z(z − 1)| exp(−ε(z − 2)) ≤ |z(z − 1)| exp(ε|z − 2|).

Since ε ≤ y ≤ a1 · lnn
n

and |z| ≤ a2 lnn,

|z(z − 1)| exp(ε|z − 2|) ≤ a2
2(lnn)2n−2na1|z−2|/n.

This gives us

f ′′(ε)

2
y2 ≤ a2

2(lnn)2n−2na1|z−2|/n

2
a2

1(lnn)2n−2 ≤ a2
1a

2
2(lnn)4n−(2−a1(a2 lnn+2)/n).

Using lnn = nln lnn/ lnn, this is

a2
1a

2
2

n
n−(1−a1(a2 lnn+2)/n−4 ln lnn/ lnn).

For sufficiently large n, a1(a2 lnn+ 2)/n+ 4 ln lnn/ lnn ≤ 1, so

a2
1a

2
2

n
n−(1−a1(lnn+2)/n−4 ln lnn/ lnn) ≤ a2

1a
2
2

n
= O(1/n),

which proves the lemma.

Lemma D.18.

F(an:an)

(
b
( cn

lnn

)1/(1+δ)
)
≤ n−ab

−(1+δ)/c
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Proof.

F(an:an)

(
b
( cn

lnn

)1/(1+δ)
)

=

(
1− b−(1+δ) lnn

cn

)an
≤ exp

(
−ab

−(1+δ)

c
lnn

)
= n−ab

−(1+δ)/c

Lemma D.19.

E
[
Z(Cn−lnn+1:Cn)

]
≥
(
Cn

lnn

)1/(1+δ)

for C ≥ 1 and sufficiently large n.

Proof.

E
[
Z(Cn−lnn+1:Cn)

]
= E

[
Z(Cn:Cn)

] lnn−1∏
j=1

(
1− 1

(1 + δ)j

)

= E
[
Z(Cn:Cn)

] lnn−1∏
j=1

(
(1 + δ)j − 1

(1 + δ)j

)

= E
[
Z(Cn:Cn)

] lnn−1∏
j=1

(
j − 1/(1 + δ)

j

)
= E

[
Z(Cn:Cn)

] Γ(lnn− 1/(1 + δ))

Γ(δ/(1 + δ))Γ(lnn)

≥ Γ

(
δ

1 + δ

)
(Cn)1/(1+δ) Γ(lnn− 1/(1 + δ))

Γ(δ/(1 + δ))Γ(lnn)

(by Lemma D.22)

= (Cn)1/(1+δ) Γ(lnn− 1/(1 + δ))

Γ(lnn)

≥
(
Cn

lnn

)1/(1+δ)
(

1 +
1

1+δ
· 1+2δ

1+δ

lnn
−O

(
1

(lnn)2

))
(by Tricomi and Erdélyi (1951))

≥
(
Cn

lnn

)1/(1+δ)

(for sufficiently large n)
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Lemma D.20. For k = O(lnn), (
n
k

)(
n(1+c)
k

) ∼∼∼ 1

(1 + c)k
.

Proof. (
n
k

)(
n(1+c)
k

) =
n(n− 1) · · · (n− k + 1)

n(1 + c)(n(1 + c)− 1) · · · (n(1 + c)− k + 1)
.

Each term (n − j)/(n(1 + c) − j) is between 1/(1 + c) and (1 − j/n)/(1 + c).

Therefore, the entire product is at least

k−1∏
j=0

1

1 + c

(
1− j

n

)
=

1

(1 + c)k

k−1∏
j=0

(
1− j

n

)
≥ 1

(1 + c)k

(
1− k2

n

)
and at most 1/(1 + c)k. This means that

1

(1 + c)k
≥

(
n
k

)(
n(1+c)
k

) ≥ 1

(1 + c)k

(
1− (lnn)2

n

)
∼∼∼

1

(1 + c)k

Lemma D.21. For 0 < z < 1, and y ≥ 0,

(1 + y)z < 1 + yz.

Proof. Let w = z−1. Then, the lemma is true if and only if for w > 1,

1 + y <
(

1 +
y

w

)w
.

Note that for w = 1, we have equality. We will show that the function

f(w) =
(

1 +
y

w

)w
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has nonnegative derivative for w ≥ 1. This is equivalent to showing the same

for its log, which is

d

dw
log f(w) =

d

dw
w log

(
1 +

y

w

)
= log

(
1 +

y

w

)
+

w

1 + y
w

·
(
− y

w2

)
= log

(
1 +

y

w

)
−

y
w

1 + y
w

Let x = 1 + y
w

. Then, the lemma is true if for x > 1,

log(x)− x− 1

x
> 0

x log(x) > x− 1

Both are 0 at x = 1, but the left hand side has derivative 1 + log(x) while the

right hand side has derivative 1, so left hand side will be strictly larger than the

right hand side for x > 1.

Lemma D.22.

E
[
Z(m:m)

] ∼∼∼ Γ

(
δ

1 + δ

)
m1/(1+δ).

Also,

E
[
Z(m:m)

]
≥ Γ

(
δ

1 + δ

)
m1/(1+δ).

Proof. From Malik (1966), we have

E
[
Z(m:m)

]
=

Γ(m+ 1)Γ
(
1− 1

1+δ

)
Γ
(
m+ δ

1+δ

) .

By Tricomi and Erdélyi (1951),

Γ(m+ 1)

Γ
(
m+ δ

1+δ

) = m1/(1+δ)

(
1 +

(
1

1+δ

) (
δ

1+δ

)
2m

+O

(
1

m2

))
≥ m1/(1+δ).
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This means

Γ

(
δ

1 + δ

)
m1/(1+δ) ≤ E

[
Z(m:m)

]
≤ Γ

(
δ

1 + δ

)
m1/(1+δ)

(
1 +O

(
1

n

))
,

so

Γ

(
δ

1 + δ

)
m1/(1+δ) ∼∼∼ E

[
Z(m:m)

]
.

Lemma D.23 ((Malik, 1966), Formula 1).

E
[
Z(m−k:m)

]
=

(
1− 1

k(1 + δ)

)
E
[
Z(m−k+1:m)

]

D.5 Lemmas and Proofs for Section 7.3

Proof of Theorem 7.12. To proceed, we need some notation. Let L be the event

thatX(n−1:n) ≥ T ∩Y(n−1:n) ≥ T (the samples are “large”). LetG be the event that

b(X(n:n)) < Y(n−1:n), meaningG is the event that the policy has an effect. LetD be

the random variable X(n:n)− Y(n−1:n). We want to show that E [D | G] > 0. To do

so, we observe that by Lemma D.24, is sufficient to show that E [D | L] >
Pr[L]
Pr[L]

.

By Lemma D.25, we know that Pr
[
L
]
≤ 2nF (T )n−1. To complete the proof, we

need to show that E [D | L] is large, which we do via Lemma D.26.

Since Pr [L] ≥ 1−2nF (T )n−1, there existsN1 such that for all n ≥ N1, Pr [L] ≥
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1/2. Using Lemma D.26, if n ≥ N1, it is sufficient to have

E [D | L] >
Pr
[
L
]

1
2

K(F (T ) + η)n−1 > 4nF (T )n−1(
1 +

η

F (T )

)n
>

4n

K

n log

(
1 +

η

F (T )

)
> log n+ log

(
4

K

)
√
n log

(
1 +

η

F (T )

)
> 2 (n ≥ 4/K, using

√
n > log n)

n > 4

(
log

(
1 +

η

F (T )

))−2

= N2

Thus, for n > max{N1, N2, 4/K}, E [D | L] >
Pr[L]
Pr[L]

, which by Lemma D.26

implies that E [D | G] > 0. This completes the proof of Theorem 7.12.

Lemma D.24. If L⇒ G and D ≥ −1, then E [D | L] >
Pr[L]
Pr[L]

implies E [D | G] > 0.

Proof.

E [D | G] = E
[
D · 1{L} | G

]
+ E

[
D · 1{L} | G

]
=

E
[
D · 1{L} · 1{G}

]
+ E

[
D · 1{L} · 1{G}

]
Pr [G]

=
E
[
D · 1{L}

]
+ E

[
D · 1{L} · 1{G}

]
Pr [G]

(L⇒ G)

≥
E
[
D · 1{L}

]
− E

[
1{L} · 1{G}

]
Pr [G]

(D ≥ −1)

≥
E
[
D · 1{L}

]
− E

[
1{L}

]
Pr [G]

(1{G} ≤ 1)

=
E [D | L] Pr [L]− Pr

[
L
]

Pr [G]

373



E [D | L] Pr [L]− Pr
[
L
]

Pr [G]
> 0

⇐⇒ E [D | L] Pr [L]− Pr
[
L
]
> 0

⇐⇒ E [D | L] >
Pr
[
L
]

Pr [L]

Lemma D.25. For X(n−1:n), Y(n−1:n) order statistics from a distribution with support

on [0, 1],

Pr
[
X(n−1:n) ≥ T ∩ Y(n−1:n) ≥ T

]
≤ 2nF (T )n−1.

Proof.

Pr
[
X(n−1:n) ≥ T ∩ Y(n−1:n) ≥ T

]
= Pr

[
X(n−1:n) ≥ T

]
Pr
[
Y(n−1:n) ≥ T

]
= (1− F(n−1)(T ))2

= (1− nF (T )n−1(1− F (T ))− F (T )n)2

= (1− nF (T )n−1 + (n− 1)F (T )n)2

≥ (1− nF (T )n−1)2

≥ 1− 2nF (T )n−1

Pr
[
L
]

= 1− Pr [L] ≤ 2nF (T )n−1

Lemma D.26. There exist constants η > 0 and K > 0 such that E [D | L] ≥

K(F (T ) + η)n−1

Proof. First, let fZ and FZ be the pdf and cdf respectively of Y | Y ≥ T , i.e.
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FZ(x) = F (x)−F (T )
1−F (T )

and fZ = F ′Z . Note that

E [D | L] = E
[
X(n:n) − Y(n−1:n) | L

]
= E

[
X(n:n) | X(n−1:n) ≥ T

]
− E

[
Y(n−1:n) | Y(n−1:n) ≥ T

]
= E

[
Y(n:n) | Y(n−1:n) ≥ T

]
− E

[
Y(n−1:n) | Y(n−1:n) ≥ T

]
= E

[
Y(n:n) − Y(n−1:n) | Y(n−1:n) ≥ T

]

Let M be a random variable corresponding to the number of samples from

Y1, . . . , Yn that are larger than T . We can rewrite this as

E [D | L]

=
M∑
m=2

E
[
Y(n:n) − Y(n−1:n) | Y(n−1:n) ≥ T,M = m

]
Pr
[
M = m | Y(n−1:n) ≥ T

]
=

M∑
m=2

E
[
Y(n:n) − Y(n−1:n) |M = m

]
Pr
[
M = m | Y(n−1:n) ≥ T

]
(M ≥ 2 =⇒ Y(n−1:n) ≥ T )

Conditioning on M = m, Y(n:n) and Y(n−1:n) have the same distributions as

Z(m:m) and Z(m−1:m) respectively, where Z(k:m) is the kth order statistic of ran-

dom variables Z1, Z2, . . . , Zm drawn from the distribution with cdf FZ . We will

use FZ,(k:m) to denote the cdf of Z(k:m). Thus, E
[
Y(n:n) − Y(n−1:n) |M = m

]
=

E
[
Z(m:m) − Z(m−1:m)

]
. Using an analysis similar to that of Lopez and Marengo

(2011),

E
[
Z(m:m) − Z(m−1:m)

]
=

∫ 1

T

(1− FZ,(m:m)(x))− (1− FZ,(m−1:m)(x)) dx

=

∫ 1

T

FZ,(m−1:m) − FZ,(m:m)(x) dx

=

∫ 1

T

(
m

m− 1

)
FZ(x)m−1(1− FZ(x)) dx

≥
∫ 1

T

FZ(x)m−1(1− FZ(x)) dx
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Choose η ∈ (0, 1 − F (T )) and η′ ∈ (η, 1 − F (T )). Let r = F−1
Z (F (T ) + η) and

r′ = F−1
Z (F (T ) + η′). Note that T < r < r′ < 1 because otherwise FZ would

have infinite slope at r or r′, which is impossible because fZ is continuous over

a compact set and therefore has a finite maximum. Moreover, it must be the

case that F (T ) < 1 because by assumption, supx:f(x)>0 = 1. If F (T ) were 1, this

would imply that supx:f(x)>0 = T < 1, which is a contradiction.∫ 1

T

FZ(x)m−1(1− FZ(x)) dx

≥
∫ 1

r

FZ(x)m−1(1− FZ(x))

≥
∫ 1

r

FZ(r)m−1(1− FZ(x))

= (F (T ) + η)m−1

∫ 1

r

1− FZ(x) dx

≥ (F (T ) + η)n−1

∫ 1

r

1− FZ(x) dx

≥ (F (T ) + η)n−1

∫ r′

r

1− FZ(x) dx

≥ (F (T ) + η)n−1

∫ r′

r

1− FZ(r′) dx (FZ(x) ≤ FZ(r′) for x ≤ r′)

= (F (T ) + η)n−1(r′ − r)(1− (F (T ) + η′))

= (F (T ) + η)n−1[F−1
Z (F (T ) + η′)− F−1

Z (F (T ) + η)](1− F (T )− η′)

= K(F (T ) + η)n−1

where K = [F−1
Z (F (T ) + η′) − F−1

Z (F (T ) + η)](1 − F (T ) − η′). Since this is

independent of m, we have

E [D | L] =
n∑

m=2

E
[
Y(n:n) − Y(n−1:n) |M = m

]
Pr
[
M = m | Y(n−1:n) ≥ T

]
≥

n∑
m=2

K(F (T ) + η)n−1 Pr
[
M = m | Y(n−1:n) ≥ T

]
= K(F (T ) + η)n−1
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APPENDIX E

HOW DO CLASSIFIERS INDUCE AGENTS TO BEHAVE

STRATEGICALLY?

E.1 Characterizing the Agent’s Response to a Linear Mecha-

nism.

In this section, we’ll characterize how a rational agent best-responds to a linear

mechanism. Its utility is H = β>F , and therefore we can rewrite the optimiza-

tion problem (8.2) with M(F ) = β>F , which yields

max
x∈Rm

n∑
i=1

βifi([α
>x]i) (E.1)

s.t. x ≥ 0

m∑
j=1

xj ≤ B

Note that this is a concave maximization since each fi is weakly concave and

[α>x]i is linear in x. The Lagrangian is then

L(x, λ) =
n∑
i=1

βifi
(
[α>x]i

)
+ λ0

(
B −

m∑
j=1

xj

)
+

m∑
j=1

λjxj.

By the Karush-Kuhn-Tucker conditions, since (E.1) is convex, a solution x∗ is

optimal if and only if∇xL(x∗, λ∗) = 0, so for each j ∈ [m],

n∑
i=1

αjiβif
′
i

(
[α>x∗]i

)
− λ∗0 + λ∗j = 0.

Note that we can write this as

λ∗0 =
∂H

∂xj

∣∣∣∣
x∗

+ λ∗j .
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By complementary slackness, λ∗j > 0 =⇒ x∗j = 0. Therefore, it follows that at

optimality, the gradients with respect to all nonzero components of the effort

profile are λ∗0. Furthermore, the gradients with respect to all effort components

are at most λ∗0 since λ∗j ≥ 0 by definition. This proves the following lemma.

Lemma E.1. For any x ∈ Rm such that x ≥ 0, x is an optimal solution to (E.1) if and

only if the following conditions hold

1.
∑m

j=1 xj = B

2. For all j, j′ such that xj > 0 and xj′ > 0,

∂H

∂xj

∣∣∣∣
x

=
∂H

∂xj′

∣∣∣∣
x

3. For all j such that xj > 0 and for all j′,

∂H

∂xj

∣∣∣∣
x

≥ ∂H

∂xj′

∣∣∣∣
x

Proof. Choose λ∗0 = ∂H
∂xj

∣∣∣
x

for any j such that xj > 0. Choose λ∗j = λ∗0 − ∂H
∂xj

∣∣∣
x

for

all j. Then, (x, λ∗) satisfies stationarity (since ∇xL(x, λ∗) = 0), primal and dual

feasibility by definition, and complementary slackness (since B −
∑m

j=1 xj = 0).

Therefore, x is an optimal solution to (E.1).

To show the other direction, note that maxj
∂H
∂xj

> 0 because each fi(·) is

strictly increasing and there is some nonzero βi. Therefore, λ0 > 0, and by

complementary slackness, every optimal solution must satisfy
∑m

j=1 xj = B.
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APPENDIX F

ALGORITHMIC MONOCULTURE AND SOCIAL WELFARE

F.1 Random Utility Models satisfying Definition 9.1

Theorem F.1. Let f be the pdf of E . The family of RUMs Fθ given by ranking xi + εi
θ

with εi ∼ E satisfies the conditions of Definition 9.1 if:

• f is differentiable

• f has positive support on (−∞,∞)

Proof. We need to show that Fθ satisfies the differentiability, asymptotic opti-

mality, and monotonicity conditions in Definition 9.1.

Differentiability: The probability density of any realization of the n noise

samples εi/θ is
∏n

i=1 f(εi/θ). Let ε = [ε1/θ, . . . , εn/θ] be the vector of noise values

and let M(π) ⊆ Rn be the region such that any ε ∈ M(π) will produces the

ranking π. The probability of any permutation π is

Pr
θ

[π] =

∫
M(π)

n∏
i=1

f
(εi
θ

)
dnz.

Because f is differentiable,

d

dθ
f
(x
θ

)
= f ′

(x
θ

)
·
(
− x
θ2

)
Because Pr θ(π) is an integral of the product of differentiable functions over a

fixed region, it is differentiable.

Asymptotic optimality: We will show that for any pair of elements and any

δ > 0, there exists sufficiently large θ such that the probability that they incor-

rectly ranked is at most δ. We will conclude with a union bound over the n − 1
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pairs of adjacent candidates that there exists sufficiently large θ such that the

probability of outputting the correct ranking must be at least 1− (n− 1)δ.

Consider two candidates xi > xi+1. Let ν be the difference xi − xi+1. Then,

they will be correctly ranked if

εi
θ
> −ν

2
εi+1

θ
<
ν

2

Let q and q be the 1− δ
2

and δ
2

quantiles of E respectively, and let q = max(|q|, |q|).

For θ > 2q
ν

,

Pr
[εi
θ
< −ν

2

]
= Pr

[
εi < −

νθ

2

]
< Pr [εi < −q]

≤ Pr
[
εi < q

]
=
δ

2

Pr
[εi+1

θ
>
ν

2

]
= Pr

[
εi+1 >

νθ

2

]
< Pr [εi+1 > q]

≤ Pr [εi+1 > q]

=
δ

2

Thus, for sufficiently large θ, the probability that xi and xi+1 are incorrectly or-

dered is at most δ.

Repeating this analysis for all n − 1 pairs of adjacent elements, taking the

maximum of all the θ’s, and taking a union bound yields that the probability

of incorrectly ordering any pair of elements is at most (n − 1)δ, meaning the

probability of outputting the correct ranking is at least 1 − (n − 1)δ. Since δ

381



is arbitrary, this probability can be made arbitrarily close to 1, satisfying the

asymptotic optimality condition.

Monotonicity: The removal of any elements does not alter the distribution

of the remaining elements, meaning that the distribution of π(−S) is equivalent

to a RUM with n − |S| elements. Thus, it suffices to show that for a RUM with

positive support on (−∞,∞), the probability of ranking the best candidate first

strictly increases with θ.

Recall that by definition, the candidates are ranked according to xi + εi
θ

. The

probability that x1 is ranked first is

Pr

[
x1 +

ε1

θ
> max

2≤i≤n
xi +

εi
θ

]
= Pr

[
ε1

θ
> max

2≤i≤n
xi − x1 +

εi
θ

]
= Pr

[
ε1 > max

2≤i≤n
θ(xi − x1) + εi

]
= Eε2,...,εn Pr

[
ε1 > max

2≤i≤n
θ(xi − x1) + εi | ε2, . . . , εn

]
(F.1)

We want to show that (F.1) is increasing in θ. Intuitively, this is because as θ

increases, the right hand side of the inequality inside the probability decreases.

To prove this formally, it suffices to show that the subderivative of (F.1) with

respect to θ only includes strictly positive numbers. First, we have

∂

∂θ
Eε2,...,εn Pr

[
ε1 > max

2≤i≤n
θ(xi − x1) + εi | ε2, . . . , εn

]
⊂ R>0

⇐⇒ ∂

∂θ
Pr

[
ε1 > max

2≤i≤n
θ(xi − x1) + εi | ε2, . . . , εn

]
⊂ R>0

Let F and f be the cumulative density function and probability density function

of E respectively. Then,

Pr

[
ε1 > max

2≤i≤n
θ(xi − x1) + εi | ε2, . . . , εn

]
= 1− F

(
max
2≤i≤n

θ(xi − x1) + εi

)
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Note that F (·) is strictly increasing (since f is assumed to have positive support

on (−∞,∞)), so it suffices to show that

∂

∂θ
max
2≤i≤n

θ(xi − x1) + εi ⊂ R<0

For any i,
d

dθ
θ(xi − x1) + εi = xi − x1 < 0.

Thus, the subderivative of the max of such functions includes only strictly neg-

ative numbers, which completes the proof.

F.2 3-candidate RUM Counterexamples

F.2.1 Violating Definition 9.2

Here, we provide a noise mode E , accuracy parameter θ, and candidate distri-

bution D such that UAH < UAA.

Choose the noise distribution E and accuracy parameter θ such that

ε

θ
=


1 w.p. δ

2

0 w.p.1− δ

−1 w.p. δ
2

Note that this distribution does not satisfy Definition 9.1 because it is neither dif-

ferentiable nor supported on (−∞,∞); however, we can provide a “smooth” ap-

proximation to this distribution by expressing it as the sum of arbitrarily tightly

concentrated Gaussians with the same results.
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We choose the candidate distribution D such that x1 − 1 > x2 > x3 > x1 − 2.

For example,

x1 =
7

4

x2 =
1

2

x3 = 0

Under this condition, assuming x3 = 0 without loss of generality,

UAH(θ, θ)− UAA(θ, θ)

=
δ2

32

(
δ3x1 − 4δ2x1 + 4δx1 + 2δ3x2 − 14δ2x2 + 20δx2 − 8x2

)
Notice that the lowest-power δ term is − δ2x2

4
. Therefore, for sufficiently small δ,

this is negative. For example, plugging in the values given above with δ = .1,

UAH(θ, θ)− UAA(θ, θ) ≈ −0.00076.

F.2.2 Violating Definition 9.3

Next, we’ll give a 3-candidate RUM for which UAH < UHH does not hold in

general. Consider the following 3-candidate example.

x1 = 3

x2 = 2

x3 = 0
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Choose E and θ such that

ε

θ
=



1 w.p. 1−δ
2

−1 w.p. 1−δ
2

10 w.p. δ
2

−10 w.p. δ
2

Again, while this noise model doesn’t satisfy Definition 9.1, we can approximate

it arbitrarily closely with the sum of tightly concentrated Gaussians. Let the

θA = 1.1θ and θH = 0.9θ.

We will show that for these parameters, UAH(θA, θH) > UHH(θA, θH), i.e., it is

somehow better to choose after a better opponent than after a worse opponent.

At a high level, the reasoning for this is as follows:

1. When choosing first, the only difference between the algorithm and the

human evaluator is that the algorithm is more likely to choose x2 than x3.

Both strategies have identical probabilities of selecting x1.

2. When choosing second, the human evaluator’s utility is higher when x2

has already been chosen than when x3 has already been chosen. This is

because when x2 is unavailable, the human evaluator is almost guaranteed

to get x1; when x3 is unavailable, the human evaluator will choose x2 with

probability ≈ 1/4.

Let τ and π be rankings generated by the algorithm and human evaluator

respectively. First, we will show that

Pr[τ1 = x1] = Pr[π1 = x1] (F.2)

Pr[τ1 = x2] > Pr[π1 = x2] (F.3)
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To do so, consider the realizations of ε1, ε2, ε3 that result in different rankings

under θA and θH . In fact, the only set of realizations that result in different

rankings are when ε2/θ = −1 and ε3/θ = 1. Thus, the algorithm and human

evaluator always rank x1 in the same position, conditioned on a realization,

which proves (F.2); the only difference is that the algorithm sometimes ranks x2

above x3 when the human evaluator does not. Moreover, whenever ε1/θ = −10,

x2 is more strictly more likely to be ranked first under the algorithm than the

human evaluator, which proves (F.3).

Next, we must show that when choosing second, the human evaluator is

better off when x2 is unavailable than when x3 is unavailable. This is clearly

true because for the human evaluator,

Pr

[
x1 +

ε1θH
θ

> x3 +
ε3θH
θ

]
≈ 1−O(δ)

Pr

[
x1 +

ε1θH
θ

> x2 +
ε3θH
θ

]
≈ 3

4

Thus, conditioned on x2 being unavailable, the human evaluator gets utility≈ 3,

whereas when x3 is unavailable, the human evaluator gets utility≈ 2.75. Let u−i

be the expected utility for the human evaluator when xi is unavailable. Putting
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this together, we get

UAH(θA, θH)− UHH(θA, θH)

=
3∑
i=1

(Pr[τ1 = xi]− Pr[π1 = xi])u−i

= (Pr[τ1 = x1]− Pr[π1 = x1])u−1 + (Pr[τ1 = x2]− Pr[π1 = x2])u−2

+ (Pr[τ1 = x3]− Pr[π1 = x3])u−3

= (Pr[τ1 = x2]− Pr[π1 = x2])u−2 + (Pr[τ1 = x3]− Pr[π1 = x3])u−3

(Pr[τ1 = x1 = Pr[π1 = x1])

= (Pr[τ1 = x2]− Pr[π1 = x2])(u−2 − u−3)

(
∑3

i=1 Pr[τ1 = xi] =
∑3

i=1 Pr[π1 = xi])

> 0

The last step follows from (F.3) and because u−2 > u−3.

F.3 Proof of Theorem 9.5

F.3.1 Verifying Definition 9.2

By (9.2), we can equivalently show that for any θ, UAH(θ, θ) > UAA(θ, θ). Let τ

and π be the algorithmic and human-generated rankings respectively. Note that

they’re identically distributed because θA = θH . Define

Y ,


π1 π1 6= τ1

π2 otherwise

Note that UAH(θ, θ) = E [Y ] and UAA(θ, θ) = E [τ2]. We want to show that

UAH(θ, θ) − UAA(θ, θ) = E [xY − xτ2 ] > 0. It is sufficient to show that for any
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k, E [Y − τ2 | τ1 = xk] > 0. Let Xi = xi + εi/θ. Note that for distinct i, j, k and

xi > xj ,

E [Y − τ2 | τ1 = xk] > 0

⇐=
Pr[Y = xi | τ1 = xk]

Pr[Y = xj | τ1 = xk]
>

Pr[τ2 = xi | τ1 = xk]

Pr[τ2 = xj | τ1 = xk]

⇐⇒ Pr[Y = xi | τ1 = xk] > Pr[τ2 = xi | τ1 = xk]

(numerator and denominator sum to 1)

⇐⇒ Pr[Xi > Xj] > Pr[Xi > Xj | Xk > Xi ∩Xk > Xj]

⇐⇒ Pr[Xi > Xj] > EXk [Pr[Xi > Xj | Xk = a,Xi < a,Xj < a]].

Thus, it suffices to show that for any a,

Pr[Xi > Xj] > Pr[Xi > Xj | Xi < a,Xj < a]. (F.4)

Since Pr[Xi > Xj] = lima→∞ Pr[Xi > Xj | Xi < a,Xj < a], it suffices to show

that for all a,
d

da
Pr[Xi > Xj | Xi < a,Xj < a] ≥ 0, (F.5)

and that it is strictly positive for some a. In other words, the higher a is, the

more likely i and j are to be correctly ordered. In Theorems F.7 and F.8, we

show that (F.5) holds for both Laplacian and Gaussian noise respectively, which

proves that RUMs based on both distributions satisfy Definition 9.2.

F.3.2 Verifying Definition 9.3

Next, we show that for both Laplacian and Gaussian distributions,

UAH(θA, θH) < UHH(θA, θH) for all θA > θH . In fact, for 3-candidate RUM fam-

ilies, we will show that this is always true for any well-ordered distribution, de-

fined as follows.
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Definition F.2. A noise model with density f(·) is well-ordered if for any a > b and

c > d,

f(a− c)f(b− d) > f(a− d)f(b− c).

In other words, for a well-ordered noise model, given two numbers, two

candidates are more likely to be correctly ordered than inverted conditioned

on realizing those two numbers in some order. Lemma F.4 shows that both

Gaussian and Laplacian distributions are well-ordered.

Thus, it suffices to show that for any 3-candidate RUM with a well-ordered

noise model, UAH(θA, θH) < UHH(θA, θH) when θA > θH .

Theorem F.3. For 3 candidates with unique values x1 > x2 > x3 and well-ordered

i.i.d. noise with support (−∞,∞), if θA > θH , then UAH(θA, θH) < UHH(θA, θH).

Proof. Define u−i to be the expected utility of the maximum element of the

human-generated ranking when i is not available. Because we’re in the 3-

candidate setting, we have

u−1 = λ1x2 + (1− λ1)x3

u−2 = λ2x1 + (1− λ2)x3

u−3 = λ3x1 + (1− λ3)x2

where 1/2 < λi < 1. This is because the noise has support everywhere, so it

is impossible to correctly rank any two candidates with probability 1, and any

two candidates are more likely than not to be correctly ordered:

Pr
[εi
θ
− εj
θ
> −δ

]
= Pr[εi − εj ≥ 0] + Pr

[
0 >

εi − εj
θ

> −δ
]
>

1

2
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Note that λ2 > λ1 and λ2 > λ3, since

λ2 = Pr[ε1 − ε3 > −θ(x1 − x3)]

> max {Pr[ε1 − ε3 > −θ(x2 − x3)],Pr[ε1 − ε3 > −θ(x1 − x2)]}

= max{λ1, λ3}.

Let τ ∼ FθA and π ∼ FθH . With this, we can write

UAH(θA, θH) =
3∑
i=1

Pr[τ1 = i]u−i

UHH(θA, θH) =
3∑
i=1

Pr[π1 = i]u−i

Define

∆pi = Pr[τ1 = i]− Pr[π1 = i]

Using Lemmas F.5, and F.6, we have

∆p1 > 0 (By monotonicity of RUM families, see Appendix F.1)

∆p1 ≥ ∆p2

∆p3 ≤ 0

Also, ∆p1 + ∆p2 + ∆p3 = 0. We must show that

UAH(θA, θH)− UHH(θA, θH) =
3∑
i=1

∆piu−i < 0.

We consider 2 cases.

Case 1: ∆p2 ≤ 0.
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Then, ∆p1 = −(∆p2 + ∆p3). This yields

3∑
i=1

∆piu−i

= ∆p1u−1 + ∆p2u−2 + ∆p3u−3

≤ ∆p1u−1 −∆p1 min(u−2, u−3)

= ∆p1 (λ1x2 + (1− λ1)x3 −min {λ2x1 + (1− λ2)x3, λ3x1 + (1− λ3)x2})

≤ ∆p1 (λ1x2 + (1− λ1)x3 −min {λ2x1 + (1− λ2)x3, x2})

We can show that this is at most 0 regardless of which term attains the mini-

mum. Because λ2 > λ1,

λ1x2 + (1− λ1)x3 − λ2x1 − (1− λ2)x3 = λ1x2 + x3 − λ1x3 − λ2x1 − x3 + λ2x3

= λ1x2 − λ1x3 − λ2x1 + λ2x3

= λ1(x2 − x3) + λ2(x3 − x1)

< λ1(x2 − x3) + λ1(x3 − x1)

= λ1(x2 − x1)

< 0

For the second term, we have

λ1x2 + (1− λ1)x3 − x2 = (1− λ1)(x3 − x2) < 0.

Thus,

3∑
i=1

∆piu−i < 0.
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Case 2: ∆p2 > 0. Note that u−1 < x2 < u−3. Then, using ∆p3 = −(∆p1+∆p2),

3∑
i=1

∆piu−i = ∆p1u−1 + ∆p2u−2 + ∆p3u−3

= ∆p1(u−1 − u−3) + ∆p2(u−2 − u−3)

≤ ∆p2(u−1 − u−3) + ∆p2(u−2 − u−3) (∆p1 ≥ ∆p2 and u−1 < u−3)

= ∆p2(u−1 + u−2 − 2u−3)

≤ ∆p2(x2 + x1 − 2(λ3x1 + (1− λ3)x2))

< ∆p2

(
x2 + x1 − 2

(
1

2
x1 +

1

2
x2

))
(λ3 >

1
2
)

= 0

Thus, UAH(θA, θH) < UHH(θA, θH).

F.3.3 Supplementary Lemmas for Random Utility Models

Lemma F.4. Both Gaussian and Laplacian distributions are well-ordered.

Proof. The Gaussian noise model is well-ordered:

f(a− c)f(b− d) =
1

2σ2π
exp(−(a− c)2 − (b− d)2)

=
1

2σ2π
exp(−(a− d)2 − (b− c)2 − 2(ac+ bd− ad− bc))

= f(a− d)f(b− c) exp(−2((a− b)(c− d)))

< f(a− d)f(b− c)
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Laplacian noise is as well:

f(a− c)f(b− d) =
1

4
exp(−|a− c| − |b− d|)

f(a− d)f(b− c) =
1

4
exp(−|a− d| − |b− c|)

It suffices to show that for a > b and c > d, |a− c|+ |b− d| < |a− d|+ |b− c|. To

show this, plot (a, b) and (c, d) in the (x, y) plane. Note that they’re both below

the y = x line, and that the `1 distance between them is |a−c|+ |b−d|. Moreover,

the `1 distance between any two points must be realized by some Manhattan

path, which is a combination of horizontal and vertical line segments. Consider

the point (b, a), which is above the y = x line. Any Manhattan path from (b, a)

to (c, d) must cross the y = x line at some point (w,w). Since (b, a) and (a, b) are

equidistant from (w,w), for any Manhattan path from (b, a) to (c, d), there exists

a Manhattan path from (a, b) to (c, d) passing through (w,w) of the same length,

meaning the `1 distance from (a, b) to (c, d) is smaller than the `1 distance from

(b, a) to (c, d). As a result, |a− c|+ |b− d| < |a− d|+ |b− c|.

Next, we show a few basic facts. Let fA(r) be the density function of the joint

realization R = [X1, . . . , Xn] = [x1 +ε1/θA, . . . , xn+εn/θA] under the algorithmic

ranking and fH(r) be the similarly defined density function under the human-

generated ranking. Consider the “contraction” operation r′ = cont(r) such that

r′i = xi+(ri−xi)· θHθA . Essentially, the contraction defines a coupling between fA(·)

and fH(·), since for r′ = cont(r), fA(r′) dr′ = fH(r) dr. Let π(r) be the ranking

induced by r. Note that contraction cannot introduce any new inversions in

π(r)—that is, if i is ranked above j in π(r) for i < j, then i is ranked above j

in π(cont(r)). Intuitively, this is because contraction pulls values closer to their
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means, and can therefore only correct existing inversions, not introduce new

ones. This fact will allow us to prove some useful lemmas.

Lemma F.5. If Fθ is a RUM family satisfying Definition 9.1, then for τ ∼ FθA and

π ∼ FθH ,

Pr[τ1 = xn] ≤ Pr[π1 = xn]

Proof. Consider any realization r. Because inversions can only be corrected, not

generated, by contraction, if π1(r′) = n, then π1(r) = n where r′ = cont(r). Since

r′ and r have equal measure under fA and fH respectively, we have

Pr[π1 = xn] =

∫
Rn
fH(r)1{π1(r)=xn} dr

=

∫
Rn
fA(cont(r))1{π1(r)=xn} d cont(r)

≥
∫
Rn
fA(cont(r))1{π1(cont(r))=xn} d cont(r)

=

∫
Rn
fA(r)1{π1(r)=xn} dr

= Pr[τ1 = xn]

Next, we prove the following result for well-ordered noise models.

Lemma F.6. For any i > 1, if the noise model E is well-ordered, for θA ≥ θH , τ ∼ FθA ,

and π ∼ FθH ,

Pr[τ1 = x1]− Pr[π1 = x1] ≥ Pr[τ1 = xi]− Pr[π1 = xi]
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Proof. For j 6= i, let Sj→i ⊆ Rn be the set of realizations r such that π1(r) = xj

and π1(cont(r)) = xi. Note that Sj→i = ∅ for j < i because contraction cannot

create inversions. Then, we have that

Pr[τ1 = xi]− Pr[π1 = xi] =
∑
j>i

∫
Rn
fH(r)1{r∈Sj→i} dr −

∑
j<i

∫
Rn
fH(r)1{r∈Si→j} dr

≤
∑
j>i

∫
Rn
fH(r)1{r∈Sj→i} dr

Define

swapi(r) = r′,

where

r′j =


rj j /∈ {1, i}

r1 j = i

ri j = 1

Intuitively, the swapi operation simply swaps the realizations in positions 1 and

i. Note that this is a bijection. Also, if r ∈ Sj→i, then swapi(r) ∈ Sj→1, since

cont(swapi(r))1 ≥ cont(r)i ≥ max
j

cont(r)j ≥ max
j /∈{1,i}

cont(swapi(r))j

cont(swapi(r))1 ≥ cont(r)i ≥ cont(r)1 ≥ cont(swapi(r))i

Furthermore for r ∈ Sj→i, fH(r) ≤ fH(swapi(r)) since

fH(swapi(r))

fH(r)
=
f(ri − x1)f(r1 − xi)
f(r1 − x1)f(ri − xi)

≥ 1
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because the noise is well-ordered and r ∈ Sj→i implies ri > r1. Thus,

∑
j>i

∫
Rn
fH(r)1{r∈Sj→i} dr ≤

∑
j>i

∫
Rn
fH(swapi(r))1{r∈Sj→i} dr

≤
∑
j>i

∫
Rn
fH(swapi(r))1{swapi(r)∈Sj→1} dr

≤
∑
j>i

∫
Rn
fH(r)1{r∈Sj→1} dr

≤
∑
j>1

∫
Rn
fH(r)1{r∈Sj→1} dr

= Pr[τ1 = x1]− Pr[π1 = x1]

Finally, we show that (F.5) holds for both Laplacian and Gaussian noise.

Theorem F.7. For any a ∈ R and Xi = xi + σεi where εi is Laplacian with unit

variance,
d

da
Pr[Xi > Xj | Xi < a,Xj < a] ≥ 0.

Moreover, it is strictly positive for some a.

Proof. First, we must derive an expression for Pr[Xi > Xj | Xi < a,Xj < a].

Recall that the Laplace distribution parameterized by µ and λ has pdf

f(x;µ, λ) =
λ

2
exp(−λ|x− µ|)

and cdf

F (x;µ, λ) =


1
2

exp (−λ(µ− x)) x < µ

1− 1
2

exp (−λ(x− µ)) x ≥ µ

Note that xi and xj be the respective means of Xi and Xj , with xi > xj . Because

the Laplace distribution is piecewise defined, we must consider 3 cases and
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show that in all 3 cases, (F.5) holds. Note that

Pr[Xi > Xj | Xi < a,Xj < a] =

∫ a
−∞ f(x;xi, λ)F (x;xj, λ) dx

F (a;xi, λ)F (a;xj, λ)
(F.6)

Case 1: a ≤ xj .

Then, the numerator of (F.6) is∫ a

−∞

λ

2
exp (−λ(xi − x)) · 1

2
exp(−λ(xj − x)) dx

=
λ

4

∫ a

−∞
exp(−λ(xi + xj − 2x)) dx

=
λ exp(−λ(xi + xj))

4

∫ a

−∞
exp(2λx) dx

=
λ exp(−λ(xi + xj))

4

1

2λ
exp(2λa)

=
exp(−λ(xi + xj − 2a))

8

The denominator is

1

2
exp(−λ(xi − a)) · 1

2
exp(−λ(xj − a)) =

1

4
exp(−λ(xi + xj − 2a)).

Thus,

Pr[Xi > Xj | Xi < a,Xj < a] =
1

2
,

so its derivative is trivially nonnegative.

Case 2: xj < a ≤ xi.
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Then, the numerator of (F.6) is∫ xj

−∞

λ

2
exp (−λ(xi − x)) · 1

2
exp(−λ(xj − x)) dx

+

∫ a

xj

λ

2
exp (−λ(xi − x))

(
1− 1

2
exp(−λ(x− xj))

)
dx

=
exp(−λ(xi − xj))

8
+
λ

2

∫ a

xj

exp(−λ(xi − x)) dx

− λ

4

∫ a

xj

exp(−λ(xi − xj)) dx

=
exp(−λ(xi − xj))

8
+
λ

2

1

λ
(exp(−λ(xi − a))

− exp(−λ(xi − xj)))−
λ

4
(a− xj) exp(−λ(xi − xj))

=
1

2
exp(−λ(xi − a))−

(
3

8
+
λ

4
(a− xj)

)
exp(−λ(xi − xj))

The denominator is(
1− 1

2
exp(−λ(a− xj))

)
· 1

2
exp(λ(xj − a))

=
1

2
exp(−λ(xi − a))− 1

4
exp(−λ(xi − xj))

We can factor out 1
4

exp(−λ(xi − xj)) from both, so

Pr[Xi > Xj | Xi < a,Xj < a] =
2 exp(λ(a− xj))−

(
3
2

+ λ(a− xj)
)

2 exp(λ(a− xj))− 1

=
2 exp(λ(a− xj))− 1−

(
1
2

+ λ(a− xj)
)

2 exp(λ(a− xj))− 1

= 1−
1
2

+ λ(a− xj)
2 exp(λ(a− xj))− 1
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Thus,

d

da
Pr[Xi > Xj | Xi < a,Xj < a] > 0

⇐⇒ d

da

1
2

+ λ(a− xj)
2 exp(λ(a− xj))− 1

< 0

⇐⇒(2 exp(λ(a− xj))− 1)λ <

(
1

2
+ λ(a− xj)

)
2λ exp(λ(a− xj))

⇐⇒2− exp(−λ(a− xj)) < 2

(
1

2
+ λ(a− xj)

)
⇐⇒1− exp(−λ(a− xj)) < 2λ(a− xj)

⇐⇒ exp(−λ(a− xj)) > 1− 2λ(a− xj)

This is true because λ(a− xj) > 0, and for z > 0,

exp(−z) > 1− z > 1− 2z.

Case 3: a > xi.

Then, the numerator of (F.6) is∫ xj

−∞

λ

2
exp (−λ(xi − x)) · 1

2
exp(−λ(xj − x)) dx

+

∫ xi

xj

λ

2
exp (−λ(xi − x))

(
1− 1

2
exp(−λ(x− xj))

)
dx

+

∫ a

xi

λ

2
exp(−λ(x− xi))

(
1− 1

2
exp(−λ(x− xj))

)
dx

=
1

2
−
(

3

8
+
λ

4
(xi − xj)

)
exp(−λ(xi − xj)) +

1

2
(1− exp(−λ(a− xi)))

− λ

4

∫ a

xi

exp(−λ(2x− xi − xj)) dx

= 1−
(

3

8
+
λ

4
(xi − xj)

)
exp(−λ(xi − xj))−

1

2
exp(−λ(a− xi))

+
1

8
exp(λ(xi + xj))(exp(−2λa)− exp(−2λxi))

= 1−
(

1

2
+
λ

4
(xi − xj)

)
exp(−λ(xi − xj))−

1

2
exp(−λ(a− xi))

+
1

8
exp(−λ(2a− xi − xj))
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The denominator is(
1− 1

2
exp(−λ(t− xi))

)(
1− 1

2
exp(−λ(t− xj))

)
= 1− 1

2
exp(−λ(a− xi))−

1

2
exp(−λ(a− xj)) +

1

4
exp(−λ(2a− xi − xj))

Thus,

Pr[Xi > Xj | Xi < a,Xj < a]

=
1−

(
1
2

+ λ
4
(xi − xj)

)
exp(−λ(xi − xj))− 1

2
exp(−λ(a− xi)) + 1

8
exp(−λ(2a− xi − xj))

1− 1
2

exp(−λ(a− xi))− 1
2

exp(−λ(a− xj)) + 1
4

exp(−λ(2a− xi − xj))

∝ 8− (4 + 2λ(xi − xj)) exp(−λ(xi − xj))− 4 exp(−λ(a− xi)) + exp(−λ(2a− xi − xj))
4− 2 exp(−λ(a− xi))− 2 exp(−λ(a− xj)) + exp(−λ(2a− xi − xj))

400



We’re interested in

d

da
Pr[Xi > Xj | Xi < a,Xj < a] > 0

⇐⇒ (4− 2 exp(−λ(a− xi))− 2 exp(−λ(a− xj)) + exp(−λ(2a− xi − xj)

· (4λ exp(−λ(a− xi))− 2λ exp(−λ(2a− xi − xj)))

> (8− 4 exp(−λ(a− xi)) + exp(−λ(2a− xi − xj))

− (4 + 2λ(xi − xj)) exp(−λ(xi − xj)))

· (2λ exp(−λ(a− xi)) + 2λ exp(−λ(a− xj))− 2λ exp(−λ(2a− xi − xj)))

⇐⇒16 exp(−λ(a− xi))− 8 exp(−λ(2a− xi − xj))− 8 exp(−2λ(a− xi))

+ 4 exp(−λ(3a− 2xi − xj))− 8 exp(−λ(2a− xi − xj))

+ 4 exp(−λ(3a− xi − 2xj)) + 4 exp(−λ(3a− 2xi − xj))

− 2 exp(−2λ(2a− xi − xj))

> 16 exp(−λ(a− xi)) + 16 exp(−λ(a− xj))− 16 exp(−λ(2a− xi − xj))

− 8 exp(−2λ(a− xi))− 8 exp(−λ(2a− xi − xj)) + 8 exp(−λ(3a− 2xi − xj))

+ 2 exp(−λ(3a− 2xi − xj)) + 2 exp(−λ(3a− xi − 2xj))

− 2 exp(−2λ(2a− xi − xj))− 2(4 + 2λ(xi − xj)) exp(−λ(a− xj))

− 2(4 + 2λ(xi − xj)) exp(−λ(a+ xi − 2xj))

+ 2(4 + 2λ(xi − xj)) exp(−2λ(a− xj))

⇐⇒ exp(−λ(3a− xi − 2xj))

> 8 exp(−λ(a− xj))− 4 exp(−λ(2a− xi − xj)) + exp(−λ(3a− 2xi − xj))

− (4 + 2λ(xi − xj)) exp(−λ(a− xj))

− (4 + 2λ(xi − xj)) exp(−λ(a+ xi − 2xj))

+ (4 + 2λ(xi − xj)) exp(−2λ(a− xj))
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⇐⇒ exp(−λ(2a− xi − xj))

> 8− 4 exp(−λ(a− xi)) + exp(−λ(2a− 2xi))

− (4 + 2λ(xi − xj))− (4 + 2λ(xi − xj)) exp(−λ(xi − xj))

+ (4 + 2λ(xi − xj)) exp(−λ(a− xj))

⇐⇒ exp(−λ(2a− xi − xj))− 8 + 4 exp(−λ(a− xi))− exp(−2λ(a− xi))

+ (4 + 2λ(xi − xj))(1 + exp(−λ(xi − xj)))

− (4 + 2λ(xi − xj)) exp(−λ(a− xj))

> 0 (F.7)

Note that for any z ≥ 0, we have

(4 + 2z)(1 + e−z)− 8 ≥ 0⇐⇒ (2 + z)(1 + e−z) ≥ 4

⇐⇒ z + 2e−z + ze−z ≥ 2

For z = 0, this holds with equality, and the left hand side is increasing since

d

dx
z + 2e−z + ze−z ≥ 0⇐⇒ 1− 2e−z + e−z − ze−z ≥ 0

⇐⇒ 1 ≥ e−z + ze−z

⇐⇒ 1

1 + z
≥ e−z

⇐⇒ 1 + z ≤ ez
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Therefore, choosing z = λ(xi − xj) and plugging back to (F.7), we have

exp(−λ(2a− xi − xj))− 8 + 4 exp(−λ(a− xi))− exp(−2λ(a− xi))

+ (4 + 2λ(xi − xj))(1 + exp(−λ(xi − xj)))

− (4 + 2λ(xi − xj)) exp(−λ(a− xj)) > 0

⇐= exp(−λ(2a− xi − xj)) + 4 exp(−λ(a− xi))− exp(−2λ(a− xi))

− (4 + 2λ(xi − xj)) exp(−λ(a− xj)) > 0

⇐⇒ exp(−λ(a− xj)) + 4− exp(−λ(a− xi))

− (4 + 2λ(xi − xj)) exp(−λ(xi − xj)) > 0

⇐⇒4(1− exp(−λ(xi − xj))) + exp(−λ(a− xi))(exp(−λ(xi − xj))− 1)

− 2λ(xi − xj) exp(−λ(xi − xj)) > 0

⇐⇒(4− exp(−λ(a− xi)))(1− exp(−λ(xi − xj)))

− 2λ(xi − xj) exp(−λ(xi − xj)) > 0

⇐=3(1− exp(−λ(xi − xj)))− 2λ(xi − xj) exp(−λ(xi − xj)) > 0

(exp(−λ(a− xi)) < 1)

Again letting z = λ(xi − xj), this is true if and only if

3(1− e−z) > 2ze−z ⇐⇒ 3(ez − 1) > 2z

⇐⇒ 3ez > 3 + 2z

which is true because ez > 1 + z for z > 0. This completes the proof for Case 3.

As a result, we have that

d

da
Pr[Xi > Xj | Xi < a,Xj < a] ≥ 0

for all a, with strict inequality for some a, which proves the theorem.

Theorem F.8. For any a ∈ R and Xi = xi + σεi where εi ∼ N (0, 1),

d

da
Pr[Xi > Xj | Xi < a,Xj < a] > 0.
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Proof. Assume σ = 1/
√

2. This is without loss of generality because for any in-

stance with arbitrary σ′, there is an instance with σ = 1/
√

2 that yields the same

distribution over rankings (simply by scaling all item values by σ/σ′). First, we

have

Pr[Xi > Xj | Xi < a,Xj < a] =

∫ a
−∞ Pr[Xi = x] Pr[Xj < x] dx

Pr[Xi < a] Pr[Xj < a]

=

∫ a
−∞ exp(−(x− xi)2)/

√
π · (1 + erf(x− xj))/2 dx

(1 + erf(a− xi))/2 · (1 + erf(a− xj))/2

=
2√
π

∫ a
−∞ exp(−(x− xi)2)(1 + erf(x− xj)) dx

(1 + erf(a− xi)) · (1 + erf(a− xj))

The derivative with respect to a is positive if and only if

(1 + erf(a− xi))(1 + erf(a− xj)) exp(−(a− xi)2)(1 + erf(a− xj))

>

∫ a

−∞
exp(−(x− xi)2)(1 + erf(x− xj)) dx

· 2√
π

(
(1 + erf(a− xi)) exp(−(a− xj)2) + (1 + erf(a− xj)) exp(−(a− xi)2)

)
(F.8)

Let t = a− xi and δ = xi − xj . Then, using the fact that∫ a

−∞
exp(−(x− xi)2)(1 + erf(x− xj)) dx

=

∫ a−xi

−∞
exp(−x2) dx+

∫ a−xi

−∞
exp(−x2) erf(x+ δ) dx

=

√
π

2
(1 + erf(a− xi)) +

∫ a−xi

−∞
exp(−x2) erf(x+ δ) dx,
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(F.8) becomes
√
π

2
· (1 + erf(t))(1 + erf(t+ δ))2 exp(−t2)

(1 + erf(t)) exp(−(t+ δ)2) + (1 + erf(t+ δ)) exp(−t2)

>

√
π

2
(1 + erf(t)) +

∫ t

−∞
exp(−x2) erf(x+ δ) dx

⇐⇒ (1 + erf(t))(1 + erf(t+ δ))2 exp(−t2)

(1 + erf(t)) exp(−(t+ δ)2) + (1 + erf(t+ δ)) exp(−t2)
− (1 + erf(t))

− 2√
π

∫ t

−∞
exp(−x2) erf(x+ δ) dx > 0 (F.9)

To show that this is true, we will use the fact that f(t) > 0 whenever the follow-

ing conditions are met:

1. f(t) is continuous and differentiable everywhere

2. limt→−∞ f(t) = 0

3. d
dt
f(t) > 0

We’ll show that these conditions hold for the LHS of (F.9).

lim
t→−∞

(1 + erf(t))(1 + erf(t+ δ))2 exp(−t2)

(1 + erf(t)) exp(−(t+ δ)2) + (1 + erf(t+ δ)) exp(−t2)
− (1 + erf(t))

− 2√
π

∫ t

−∞
exp(−x2) erf(x+ δ) dx

= lim
t→−∞

(1 + erf(t))(1 + erf(t+ δ))2 exp(−t2)

(1 + erf(t)) exp(−(t+ δ)2) + (1 + erf(t+ δ)) exp(−t2)
(F.10)

Observe that both the numerator and denominator of (F.10) are positive, so this

limit must be at least 0. We can upper bound it by

lim
t→−∞

(1 + erf(t))(1 + erf(t+ δ))2 exp(−t2)

(1 + erf(t)) exp(−(t+ δ)2) + (1 + erf(t+ δ)) exp(−t2)

≤ lim
t→−∞

(1 + erf(t))(1 + erf(t+ δ))2 exp(−t2)

(1 + erf(t+ δ)) exp(−t2)

= lim
t→−∞

(1 + erf(t))(1 + erf(t+ δ))

= 0
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Thus, the limit is 0. Now, we must show that the derivative is positive. The

derivative is

d

dt

[
(1 + erf(t))(1 + erf(t+ δ))2 exp(−t2)

(1 + erf(t)) exp(−(t+ δ)2) + (1 + erf(t+ δ)) exp(−t2)
− (1 + erf(t))

− 2√
π

∫ t

−∞
exp(−x2) erf(x+ δ) dx

]
=

d

dt

[
(1 + erf(t))(1 + erf(t+ δ))2 exp(−t2)

(1 + erf(t)) exp(−(t+ δ)2) + (1 + erf(t+ δ)) exp(−t2)

]
− 2√

π
exp(−t2)

− 2√
π

exp(−t2) erf(t+ δ) (F.11)

Taking this derivative and factoring out

2(1 + erf(t))(1 + erf(t+ δ)) exp(4t2)
√
π
(
(erf (t) + 1) et2 + (erf (δ + t) + 1) e(δ+t)2

)2 ,

we get that (F.11) is positive if and only if

δ
√
π exp((t+ δ)2)(1 + erf(t))(1 + erf(t+ δ))− exp(2δt+ t2)(1 + erf(t+ δ))

+ (1 + erf(t)) > 0

⇐⇒δ
√
π exp((t+ δ)2)(1 + erf(t)) +

1 + erf(t)

1 + erf(t+ δ)
− exp(2δt+ t2) > 0

⇐⇒δ
√
π exp(t2)(1 + erf(t)) + exp(−2δt− t2)

1 + erf(t)

1 + erf(t+ δ)
− 1 > 0

⇐⇒(1 + erf(t))

[
δ
√
π exp(t2) +

exp(−2δt− δ2)

1 + erf(t+ δ)

]
− 1 > 0

⇐⇒1 + erf(t)

exp(−t2)

[
δ
√
π +

exp(−(t+ δ)2)

1 + erf(t+ δ)

]
− 1 > 0 (F.12)

Define

g(t) ,
1 + erf(t)

exp(−t2)
.

Then, (F.12) is

g(t)

[
δ
√
π +

1

g(t+ δ)

]
− 1 > 0

⇐⇒ 1

g(t)
− 1

g(t+ δ)
< δ
√
π
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By the Mean Value Theorem,

1

g(t)
− 1

g(t+ δ)
= −δ d

dt

1

g(t)

∣∣∣∣
t=t∗

for some t ≤ t∗ ≤ t+ δ. Thus, it suffices to show that

d

dt

1

g(t)
> −
√
π (F.13)

for all t. To do this, consider Mills Ratio (Mills, 1926)

R(t) , exp(t2/2)

∫ ∞
t

exp(−x2/2) dx.

Note that this is quite similar in functional form to g(t), and with some manip-

ulation, we can relate the two:

R(t) = exp(t2/2)

∫ ∞
t

exp(−x2/2) dx

R(
√

2t) = exp(t2)

∫ ∞
√

2t

exp(−x2/2) dx

=
√

2 exp(t2)

∫ ∞
t

exp(−x2) dx

=
√

2 exp(t2)

∫ −t
−∞

exp(−x2) dx (exp(−x2) is symmetric)

R(−
√

2t) =
√

2 exp(t2)

∫ t

−∞
exp(−x2) dx

=
√

2 exp(t2) ·
√
π

2
(1 + erf(t))

=

√
π

2

(
1 + erf(t)

exp(−t2)

)
R(−
√

2t) =

√
π

2
g(t)

Sampford (1953, Eq. (3)) proved that d
dt

1
R(t)

< 1 for any t. Thus,

d

dt

1

g(t)
=

d

dt

1√
2
π
R(−
√

2t)
=

√
π

2

d

dt

1

R(−
√

2t)
>

√
π

2
· 1 · −

√
2 = −

√
π,

which proves (F.13) and completes the proof.
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F.4 Verifying that the Mallows Model Satisfies Definition 9.1

Theorem F.9. The family of distributions Fθ produced by the Mallows Model with

Kendall tau distance with θ = φ− 1 satisfies the conditions of Definition 9.1.

Proof. We must show that Fθ satisfies the differentiability, asymptotic optimal-

ity, and monotonicity conditions of Definition 9.1.

Differentiability: Let Π be the set of all permutations on n candidates. The

probability of a realizing a particular permutation π under the Mallows model

is

Pr
θ

[π] =
φ−d(π,π∗)∑

π′∈Π φ
−d(π′,π∗)

Both the numerator and denominator are differentiable with respect to θ = φ−1,

so Prθ[π] is differentiable with respect to θ.

Asymptotic optimality: For the correct ranking π∗,

Pr
θ

[π∗] =
1

Z
,

where the normalizing constant Z is

Z =
∑
π∈Π

φ−d(π,π∗)
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In the limit,

lim
θ→∞

Z = lim
φ→∞

Z

= lim
φ→∞

∑
π∈Π

φ−d(π,π∗)

= lim
φ→∞

1 +
∑

π 6=π∗∈Π

φ−d(π,π∗)

= 1 +
∑

π 6=π∗∈Π

lim
φ→∞

φ−d(π,π∗)

= 1

because for any π 6= π∗, d(π, π∗) ≥ 1. Therefore,

lim
θ→∞

Pr
θ

[π∗] = lim
θ→∞

1

Z
= 1

Monotonicity: We must show that for any S ⊂ x, if π(−S)
1 denotes the value

of the top-ranked candidate according to π excluding candidates in S,

EFθ′
[
π

(−S)
1

]
≥ EFθ

[
π

(−S)
1

]
.

For any i /∈ S, let j be the smallest index such that j > i and j /∈ S. Consider

any π such that π(−S)
1 = xj . Then, swapping i and j yields a permutation π̂ such

that π̂(−S)
1 = xi. Moreover,

Pr[π̂] = Pr[π] · φinv(π)−inv(π̂).

Since i < j, inv(π)− inv(π̂) ≥ 1. Finally, note that swapping i and j is a bijection

between {π : π
(−S)
1 = xj} and {π : π

(−S)
1 = xi}. Thus,

Pr[π
(−S)
1 = xi]

Pr[π
(−S)
1 = xj]

=
∑

π:π
(−S)
1 =xj

Pr[π]

Pr[π
(−S)
1 = xj]

· φinv(π)−inv(π̂)

Note that the terms Pr[π]

Pr[π
(−S)
1 =xj ]

sum to 1, so this is sum is some polynomial in φ

with nonnegative weights and integer powers of φ. As a result, it must have a
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positive derivative with respect to φ, i.e., for i < j,

d

dφ

Pr[π
(−S)
1 = xi]

Pr[π
(−S)
1 = xj]

> 0

Let φ′ > φ. Then,

Prφ[π
(−S)
1 = xi]

Prφ[π
(−S)
1 = xj]

<
Prφ′ [π

(−S)
1 = xi]

Prφ′ [π
(−S)
1 = xj]

Rearranging,
Prφ[π

(−S)
1 = xi]

Prφ′ [π
(−S)
1 = xi]

<
Prφ[π

(−S)
1 = xj]

Prφ′ [π
(−S)
1 = xj]

(F.14)

For θ′ − φ′ − 1 and θ = φ− 1,

EFθ
[
π

(−S)
1

]
=
∑
i/∈S

Pr
φ

[
π
−(S)
1 = xi

]
xi

EFθ′
[
π

(−S)
1

]
=
∑
i/∈S

Pr
φ′

[
π
−(S)
1 = xi

]
xi

By Lemma F.10,

EFθ′
[
π

(−S)
1

]
> EFθ

[
π

(−S)
1

]
,

which completes the proof. Note that we apply Lemma F.10 indexing back-

wards from n to 1, ignoring elements in S, with pi = Prφ

[
π
−(S)
1 = xi

]
and

qi = Prφ′
[
π
−(S)
1 = xi

]
. (F.14) provides the condition that pi/qi is decreasing (as i

decreases, since we are indexing backwards).

F.5 Proof of Theorem 9.6

F.5.1 Verifying Definition 9.2

We must show that when π, τ ∼ Fθ,

E [π1 − π2 | π1 6= τ1] > 0. (F.15)
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We begin by expanding:

E [π1 − π2 | π1 6= τ1]

=
n∑
i=1

n∑
j=1

(xi − xj) Pr[π1 = xi ∩ π2 = xj | π1 6= τ1]

=
n−1∑
i=1

∑
j>i

(xi − xj)

· (Pr[π1 = xi ∩ π2 = xj | π1 6= τ1]− Pr[π1 = xj ∩ π2 = xi | π1 6= τ1])

Since xi > xj for i < j, it suffices to show that for all i < j,

Pr[π1 = xi ∩ π2 = xj | π1 6= τ1] ≥ Pr[π1 = xj ∩ π2 = xi | π1 6= τ1], (F.16)

and that this holds strictly for some i < j. We simplify (F.16) as follows:

Pr[π1 = xi ∩ π2 = xj | π1 6= τ1] > Pr[π1 = xj ∩ π2 = xi | π1 6= τ1]

⇐⇒ Pr[π1 = xi ∩ π2 = xj ∩ π1 6= τ1]

Pr[π1 6= τ1]
>

Pr[π1 = xj ∩ π2 = xi ∩ π1 6= τ1]

Pr[π1 6= τ1]

⇐⇒ Pr[π1 = xi ∩ π2 = xj ∩ π1 6= τ1] > Pr[π1 = xj ∩ π2 = xi ∩ π1 6= τ1]

⇐⇒ Pr[π1 = xi ∩ π2 = xj ∩ τ1 6= xi] > Pr[π1 = xj ∩ π2 = xi ∩ τ1 6= xj]

⇐⇒ Pr[π1 = xi ∩ π2 = xj] Pr[τ1 6= xi] > Pr[π1 = xj ∩ π2 = xi] Pr[τ1 6= xj] (F.17)

We can simplify (F.17) using Lemmas F.11 and F.12. Let |i− j| denote the differ-

ence in rank between xi and xj .

Pr[π1 = xi ∩ π2 = xj] Pr[τ1 6= xi]− Pr[π1 = xj ∩ π2 = xi] Pr[τ1 6= xj]

= Pr[π1 = xi ∩ π2 = xj](1− Pr[τ1 = xi])

− φ−1 Pr[π1 = xi ∩ π2 = xj](1− Pr[τ1 = xj])

= Pr[π1 = xi ∩ π2 = xj](1− Pr[τ1 = xi])

− φ−1 Pr[π1 = xi ∩ π2 = xj](1− φ−|i−j| Pr[τ1 = xi])

= Pr[π1 = xi ∩ π2 = xj](1− Pr[τ1 = xi]− φ−1 − φ−|i−j|−1 Pr[τ1 = xi]))
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This is positive if and only if

1− Pr[τ1 = xi]− φ−1 − φ−|i−j|−1 Pr[τ1 = xi] > 0

⇐⇒ Pr[τ1 = xi]
(
1− φ−|i−j|−1

)
< 1− φ−1

⇐⇒ Pr[τ1 = xi] <
1− φ−1

1− φ−|i−j|−1

⇐⇒ 1− φ−1

φi−1(1− φ−n)
<

1− φ−1

1− φ−|i−j|−1

⇐⇒ φi−1(1− φ−n) > 1− φ−|i−j|−1

This is weakly true for any i < j because φi−1 ≥ 1 and |i − j| + 1 ≤ n, and it is

strictly true for any i, j other than 1 and n. Thus, E [π1 − π2 | π1 6= τ1] > 0.

F.5.2 Verifying Definition 9.3

Recall that Definition 9.3 is equivalent to UAH(θA, θH) < UHH(θA, θH) for θA >

θH . Let τ be the algorithmic ranking, and let π be a ranking from a human

evaluator. Recall that UH(θA, θH) = E [π1]. Throughout this proof, we will drop
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the (θA, θH) notation and simply write UH , UAH , and UHH .

UAH =
n∑
i=1

(Pr[π1 = xi ∩ τ1 6= xi] + Pr[π2 = xi ∩ π1 = τ1])xi

=
n∑
i=1

Pr[π1 = xi ∩ τ1 6= xi]xi +
n∑
i=1

Pr[π2 = xi ∩ π1 = τ1]xi

=
n∑
i=1

(Pr[π1 = xi]− Pr[π1 = xi ∩ τ1 = xi])xi

+
n∑
i=1

∑
j 6=i

Pr[π1 = xj ∩ τ1 = xj ∩ π2 = xi]xi

= UH −
n∑
i=1

Pr[π1 = xi ∩ τ1 = xi]xi

+
n∑
i=1

Pr[π1 = xi ∩ τ1 = xi]E [π2 | π1 = xi ∩ τ1 = xi]

= UH +
n∑
i=1

Pr[π1 = xi] Pr[τ1 = xi] (E [π2 | π1 = xi]− xi)

Similarly, because two human evaluators are independent,

UHH = UH +
n∑
i=1

Pr[π1 = xi]
2 (E [π2 | π1 = xi]− xi) .

Let V−i = E [π2 | π1 = xi]. Note that conditioned on π1 = xi, the remaining ele-

ments of π1 follow a Mallows model distribution over n−1 candidates. Because

the Mallows model is value-independent, increasing any item value increases

the expected value of the top-ranked item (and in fact, the item ranked at any

position). Thus, V−i increases as i increases (since xi, the value of the unavail-

able candidate, decreases). Moreover, xi is strictly decreasing in i, so V−i − xi is

strictly increasing in i. With this, we have

UAH − UH =
n∑
i=1

Pr[π1 = xi] Pr[τ1 = xi] (V−i − xi)

UHH − UH =
n∑
i=1

Pr[π1 = xi]
2 (V−i − xi)
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Let CA = Pr[π1 = τ1] =
∑n

i=1 Pr[π1 = xi] Pr[τ1 = xi], and similarly let CH =∑n
i=1 Pr[π1 = xi]

2. CA > CH by Lemma F.10 with y′i = Pr[π1 = xn−i+1], p′i =

Pr[π1 = xn−i+1] and q′i = Pr[τ1 = xn−i+1].

Let pi = Pr[π′1 = i] Pr[π1 = i]/CA, qi = Pr[π′1 = i]2/CH , and yi = V−i − xi.

Then, we have

UAH − UH
CA

=
n∑
i=1

piyi

UHH − UH
CH

=
n∑
i=1

qiyi

With φA = θA + 1 and φH = θH + 1,

pi
qi

=
CH
CA
·

1−φ−1
A

φi−1
A (1−φ−nA )

1−φ−1
H

φi−1
H (1−φ−nH )

∝ φi−1
H

φi−1
A

,

which is decreasing in i since φH < φA. By Lemma F.10,
∑n

i=1 piyi <
∑n

i=1 qiyi.

Finally, note that UHH − UH < 0 by Lemma F.13, so
n∑
i=1

piyi <
n∑
i=1

qiyi

UAH − UH
CA

<
UHH − UH

CH
CH(UAH − UH)

CA
< UHH − UH

UAH − UH < UHH − UH (CA > CH , and UHH − UH < 0)

UAH < UHH

F.6 Supplementary Lemmas for the Mallows Model

Lemma F.10. Let {yi}ni=1, {pi}ni=1, and {qi}ni=1 be sequences such that

• yi is strictly increasing.
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•
∑n

i=1 pi =
∑n

i=1 qi = 1.

• pi
qi

is decreasing.

Then,
∑n

i=1 piyi <
∑n

i=1 qiyi.

Proof. First, note that there exists j such that pi > qi for i < j and pi ≤ qi for

i ≥ j. To see this, let j be the smallest index such that pj ≤ qj . Such a j must

exist because pi and qi both sum to 1, so it cannot be the case that pi > qi for all

i. This implies pi/qi ≤ 1, and since pi/qi is decreasing, pi ≤ qi for i ≥ j.

Next, note that

0 =
n∑
i=1

(pi − qi)

=

j−1∑
i=1

(pi − qi) +
n∑
i=j

(pi − qi),

meaning
j−1∑
i=1

(pi − qi) =
n∑
i=j

(qi − pi).
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Using this choice of j, we can write
n∑
i=1

piyi −
n∑
i=1

qiyi =
n∑
i=1

(pi − qi)yi

=

j−1∑
i=1

(pi − qi)yi −
n∑
i=j

(qi − pi)yi

≤
j−1∑
i=1

(pi − qi)yj−1 −
n∑
i=j

(qi − pi)yj

=

j−1∑
i=1

(pi − qi)yj−1 −
n∑
i=j

(qi − pi)yj

=

j−1∑
i=1

(pi − qi)yj−1 −
j−1∑
i=1

(pi − qi)yj

=

j−1∑
i=1

(pi − qi)(yj−1 − yj)

< 0

Lemma F.11. For xi > xj ,

Pr[π1 = xi ∩ π2 = xj] = φPr[π1 = xj ∩ π2 = xi]. (F.18)

Proof. Let π−ij be a permutation of all of the candidates except xi and xj . Then,

we have

Pr[π1 = xi ∩ π2 = xj] =
∑
π−ij

Pr[π1 = xi ∩ π2 = xj | π−ij] Pr[π−ij]

=
∑
π−ij

φPr[π1 = xj ∩ π2 = xi | π−ij] Pr[π−ij]

= φPr[π1 = xj ∩ π2 = xi]

Intuitively, given that xi and xj are in the top 2 positions, xi followed by xj is

φ times more likely than xj followed by xi regardless of the remainder of the

permutation, and therefore, xi followed by xj is φ times more likely overall.
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Lemma F.12. For 1 ≤ i ≤ n,

Pr[π1 = xi] =
1− φ−1

φi−1(1− φ−n)
. (F.19)

Proof. Let π−i be a permutation over all items except i. Then,

Pr[π1 = xi] =
∑
π−i

Pr[π1 = xi | π−i] Pr[π−i]

=
∑
π−i

φ−(i−1) Pr[π−i]

= φ−(i−1)
∑
π−i

Pr[π−i]

Note that Pr[π−i] doesn’t depend on which n − 1 items are being ranked, so

this term appears for any i. Moreover,
∑n

i=1 Pr[π1 = xi] = 1. Therefore, we have

Pr[π1 = xi] ∝ φ−(i−1).

Normalizing, we get

Pr[π1 = xi] =
φ−(i−1)∑n
j=1 φ

−(j−1)

=
φ−(i−1)

1−φ−n
1−φ−1

=
1− φ−1

φi−1(1− φ−n)

Intuitively, any permutation over n−1 items is equally likely regardless of what

those items are, and inserting any item at the front of this permutation yields
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a likelihood proportional to the number of additional inversions this causes,

which is equal to the item’s position on the list.1

Lemma F.13. For the Mallows Model, UH(θA, θH) > UHH(θA, θH).

Proof. Intuitively, this is because selecting first is better than selecting second. To

prove this, let π and τ be ranking generated by independent human evaluators

under the Mallows Model, i.e., π, τ ∼ FθH .

UH(θA, θH)− UHH(θA, θH) = E [π1]− E
[
τ1 · 1{π1 6=τ1} + τ2 · 1{π1=τ1}

]
= E

[
(π1 − τ2) · 1{π1=τ1}

]
= E

[
(π1 − π2) · 1{π1=τ1}

]
For any i < j, conditioned on π1 = τ1, they are more likely to be correctly

1Alternatively, we could prove this by showing that for any permutation with i in front, the
permutation in which i and i − 1 are swapped is φ times more likely, and thus, i − 1 is φ times
more likely to be in front than i.
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ordered than not:

E
[
(π1 − π2) · 1{π1=τ1}

]
=
∑
i<j

(Pr[π1 = xi ∩ τ1 = xi ∩ π2 = xj]

− Pr[π1 = xj ∩ τ1 = xj ∩ π2 = xi])(xi − xj)

=
∑
i<j

(Pr[π1 = xi ∩ π2 = xj] Pr[τ1 = xi]

− Pr[π1 = xj ∩ π2 = xi] Pr[τ1 = xj])(xi − xj)

>
∑
i<j

(Pr[π1 = xi ∩ π2 = xj] Pr[τ1 = xj]

− Pr[π1 = xj ∩ π2 = xi] Pr[τ1 = xj])(xi − xj)

=
∑
i<j

(Pr[π1 = xi ∩ π2 = xj]− Pr[π1 = xj ∩ π2 = xi]) (xi − xj)

≥
∑
i<j

(φH Pr[π1 = xj ∩ π2 = xi]− Pr[π1 = xj ∩ π2 = xi]) (xi − xj)

> 0

F.6.1 Proof of Theorem 9.7

To prove this theorem, we make use of the following lemma.

Lemma F.14. Under the Mallows model, the probability that any two items i < j are

correctly ranked increases monotonically with the accuracy parameter φ.

Proof. Let inv(π) be the number of inversions in a permutation π. Under the

Mallows model, the probability of observing π is proportional to φ− inv(π). Let
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Si�j (resp. Sj�i) be the set of permutations where i is ranked before j (resp. j is

ranked before i). Then, the probability i is ranked before j is

Pr[i � j] =

∑
π∈Si�j φ

− inv(π)∑
π∈Si�j φ

− inv(π) +
∑

π∈Sj�i φ
− inv(π)

.

We will show that d
dφ

Pr[i � j] > 0. Note that this is equivalent to showing

d
dφ

Pr[i�j]
Pr[j�i] > 0. Note that

Pr[i � j]

Pr[j � i]
=

∑
π∈Si�j φ

− inv(π)∑
π∈Sj�i φ

− inv(π)
.

Let πi:j be the subsequence of π containing elements i through j. Then, we have

Pr[i � j]

Pr[j � i]
=

∑
π∈Si�j φ

− inv(π)∑
π∈Sj�i φ

− inv(π)

=

∑
πi:j :π∈Si�j φ

− inv(πi:j)
∑

π′:π′i:j=πi:j
φinv(πi:j)−inv(π′)∑

πi:j :π∈Sj�i φ
− inv(πi:j)

∑
π′:π′i:j=πi:j

φinv(πi:j)−inv(π′)

=

∑
πi:j :π∈Si�j φ

− inv(πi:j)∑
πi:j :π∈Sj�i φ

− inv(πi:j)

Intuitively, the term
∑

π′:π′i:j=πi:j
φinv(πi:j)−inv(π′) does not depend on πi:j because

for any πi:j , if we fix the order and positions of the remaining elements, the

number of inversions involving at least one element outside of i : j (i.e.,

inv(π′)−inv(πi:j)) is a constant. For fixed πi:j , there is a bijection between permu-

tations π′ : π′i:j = πi:j and a fixed order and position of the remaining elements

(excluding i : j), meaning this sum does not depend on πi:j . Thus, for the re-

mainder of this proof, we can assume without loss of generality that i = 1 and

j = n. The quantity of interest becomes

Pr[1 � n]

Pr[n � 1]
=

∑
π1:n:π∈S1�n

φ− inv(π1:n)∑
πi:j :π∈Sn�1

φ− inv(π1:n)

=

∑
π∈S1�n

φ− inv(π)∑
π∈Sn�1

φ− inv(π)
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Next, we observe that we can similarly ignore inversions between two ele-

ments that are neither 1 nor n. To see this, let inv1,n(π) be the number of inver-

sions involving at least one of 1 and n. Then, if we fix the order and positions

of 1 and n, all possible permutations of the remaining elements 2 through n− 1

produce the same number of inversions inv1,n(π). More formally, let π(1) and

π(n) be the respective positions of elements 1 and n. Then, this we have

∑
π∈S1�n

φ− inv(π) =
∑
k<`

∑
π:π(1)=k,π(n)=`

φ− inv(π)

=
∑
k<`

∑
π:π(1)=k,π(n)=`

φ− inv1,n(φ) · φinv1,n(φ)−inv(π)

=
∑
k<`

φ−(k−1)−(n−`)
∑

π:π(1)=k,π(n)=`

φinv1,n(φ)−inv(π)

As noted above,
∑

π:π(1)=k,π(n)=`
φinv1,n(φ)−inv(π) does not depend on k or `, since

every permutation of the remaining elements yields the same number of inver-

sions among them regardless of k and `. A similar argument yields

∑
π∈Sn�1

φ− inv(π) =
∑
k>`

φ−(k−1)−(n−`)+1
∑

π:π(1)=k,π(n)=`

φinv1,n(φ)−inv(π)

Putting these together, we have

Pr[1 � n]

Pr[n � 1]
=

∑
k<` φ

−(k−1)−(n−`)∑
π:π(1)=k,π(n)=`

φinv1,n(φ)−inv(π)∑
k>` φ

−(k−1)−(n−`)+1
∑

π:π(1)=k,π(n)=`
φinv1,n(φ)−inv(π)

=

∑
k<` φ

−(k−1)−(n−`)∑
k>` φ

−(k−1)−(n−`)+1

=

∑
k<` φ

−(k−1)−(n−`)∑
k>` φ

−(k−1)−(n−`)+1
· φ

n−1

φn−1

=

∑
k<` φ

`−k∑
k>` φ

`−k+1

Note that each term in the numerator is strictly increasing in φ, while each term

in the denominator is weakly decreasing in φ. As a result, d
dφ

Pr[1�n]
Pr[n�1]

> 0, meaning

for any i < j, d
dφ

Pr[i � j] > 0.
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With this, we proceed inductively, showing that when φH ≥ φA, each firm

rationally chooses to use H . For the first firm, by Lemma F.14, H is more likely

than A to correctly order any pair of candidates, meaning it produces higher ex-

pected utility. Similarly, for any subsequent firm, conditioned on the remaining

candidates, H is still more likely to correctly order any pair of remaining can-

didates, meaning it leads to higher expected utility. A similar argument shows

that all firms strictly prefer H when φH > φA.
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APPENDIX G

MITIGATING BIAS IN ALGORITHMIC DECISION-MAKING:

EVALUATING CLAIMS AND PRACTICES

G.1 Administrative Information on Vendors

Vendor name Funding # of employees Location

8 and Above – 1-10 WA, USA
ActiView $6.5M 11-50 Israel
Assessment Innovation $1.3M 1-10 NY, USA
Good&Co $10.3M 51-100 CA, USA
Harver $14M 51-100 NY, USA
HireVue $93M 251-500 UT, USA
impress.ai $1.4M 11-50 Singapore
Knockri – 11-50 Canada
Koru $15.6M 11-50 WA, USA
LaunchPad Recruits £2M 11-50 UK
myInterview $1.4M 1-10 Australia
Plum.io $1.9M 11-50 Canada
PredictiveHire A$4.3M 11-50 Australia
pymetrics $56.6M 51-100 NY, USA
Scoutible $6.5M 1-10 CA, USA
Teamscope e800K 1-10 Estonia
ThriveMap £781K 1-10 UK
Yobs $1M 11-50 CA, USA

Table G.1: Administrative information on vendors of algorithmic pre-
employment assessments.
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