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This thesis concerns the foundations of first-order optimization theory. In re-

cent years, these methods have found tremendous success in a wide range of

domains due to their incredibly scalable nature. We aim to extend the reach of

first-order optimization guarantees, lessening the gap between practice and the-

ory, as well as enabling the design of new algorithms. We show that many of the

typical assumptions in the theory literature are not fundamentally needed. For

example, analysis in nonsmooth optimization typically relies on Lipschitz con-

tinuity, convexity, and carefully chosen stepsize parameters. Chapters 2-4 show

that classic methods can be applied and analyzed without relying on these struc-

tures. Then Chapters 5-8 consider reformulations of optimization problems that

further extend the reach of first-order methods. Constrained optimization can

be reformulated to avoid orthogonal projections, generic optimization problems

can be reformulated to possess Hölder growth/error bounds, and minimax op-

timization problems can be smoothed and convexified/concavified. Together

these results challenge the limitations on which problems are historically con-

sidered tractable for analysis sake.
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7.4.1 Proximal Point Method Convergence Guarantees . . . . . 224
7.4.2 Polyak Subgradient Method Convergence Guarantees . . 225

viii



8 Nonconvex-Nonconcave Minimax Optimization Guarantees 228
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

8.1.1 Assumptions and Algorithms . . . . . . . . . . . . . . . . . 234
8.1.2 Related Literature. . . . . . . . . . . . . . . . . . . . . . . . 235
8.1.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 239

8.2 The Saddle Envelope . . . . . . . . . . . . . . . . . . . . . . . . . . 241
8.2.1 Calculus for the Saddle Envelope Lη . . . . . . . . . . . . . 242
8.2.2 Smoothing and Convexifing from the Saddle Envelope . . 246

8.3 Interaction Dominant Regime . . . . . . . . . . . . . . . . . . . . . 251
8.3.1 Proof of Theorem 8.3.1 . . . . . . . . . . . . . . . . . . . . . 253
8.3.2 Proof of Theorem 8.3.5 . . . . . . . . . . . . . . . . . . . . . 254

8.4 Interaction Weak Regime . . . . . . . . . . . . . . . . . . . . . . . . 255
8.4.1 Proof of Theorem 8.4.1 . . . . . . . . . . . . . . . . . . . . . 259

8.5 Interaction Moderate Regime . . . . . . . . . . . . . . . . . . . . . 263
8.5.1 Tightness of the Interaction Dominance Regime . . . . . . 263
8.5.2 A Lyapunov for Interaction Moderate Problems . . . . . . 265
8.5.3 Proof of Theorem 8.5.2 . . . . . . . . . . . . . . . . . . . . . 268

8.6 Addendum - Deferred Figures and Proofs . . . . . . . . . . . . . . 271
8.6.1 Sample Paths From Other First-Order Methods . . . . . . 271
8.6.2 Convex-Concave Optimization Analysis . . . . . . . . . . 274

Bibliography 278

ix



LIST OF TABLES

3.1 Estimated stationarity level for each of the proposed algorithms
averaged over 50 trails. . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 The first column applies for any choice of the algorithmic param-
eter ρ, showing progressively faster convergence as more struc-
ture is introduced. The second column shows the rate after opti-
mizing the choice of ρ. The third column further improves these
by allowing nonconstant stepsizes ρk. . . . . . . . . . . . . . . . . 74

7.1 Known convergence rates for several methods. The proximal
point method makes no smoothness or continuity assumptions.
The subgradient and bundle method rates assume Lipschitz con-
tinuity (η = 0) and the gradient descent and universal method
rates assume Lipschitz gradient (η = 1), although these methods
can be analyzed for generic η. . . . . . . . . . . . . . . . . . . . . . 212

x



LIST OF FIGURES

3.1 Performance of PGSG and the subgradient method for values
of γ averaged over 50 trials. Error bars are included to show
one standard deviation. Plot (a) shows the relative distance to
a minimizer after 25000 subgradient evaluations. Plot (b) shows
the number of subgradient evaluations needed until the relative
distance 0.05 to a minimizer. . . . . . . . . . . . . . . . . . . . . . 66

5.1 A halfspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2 Dual halfspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3 A polyhedron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4 Dual polyhedron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.5 An ellipsoid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.6 Dual ellipsoid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.7 A quadratic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.8 Dual of a quadratic. . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.9 A sine wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.10 Dual of sine wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.11 |x| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.12 | · |Γ(y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.13 | · |Γ(y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.14 f(x) =

√
1− x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.15 fΓ = fΓ =
√

1 + y2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.16 g(x) = e−|x| + 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.17 gΓ(y) = gΓ(y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.18 h(x) = (x+ 1)2 + 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.19 hΓ(y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.20 hΓΓ(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.1 The minimum relative accuracy p∗−f(xk)
p∗

of (6.6) seen by the pro-
jected gradient, accelerated gradient, Frank-Wolfe, radial sub-
gradient and radial smoothing methods over 30 minutes. . . . . 171

6.2 Example (a) translating, (b) truncating, and then (c) taking the
radial dual of (6.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.1 Sample paths of PPM from different initial solutions applied to
(8.3) with f(x) = (x + 3)(x + 1)(x − 1)(x − 3) and g(y) = (y +
3)(y+1)(y−1)(y−3) and different scalars A. As A ≥ 0 increases,
the solution path transitions from having four locally attractive
stationary points, to a globally attractive cycle, and finally to a
globally attractive stationary point. . . . . . . . . . . . . . . . . . 231

8.2 Sample paths of PPM, EGM, GDA, and AGDA extending Fig-
ure 8.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

xi



CHAPTER 1

INTRODUCTION

This dissertation considers first-order optimization methods, which have un-

dergone a renaissance over the past decade due to their highly scalable nature.

Second-order (quasi-)Newton methods and interior point methods can produce

high accuracy solutions in only a few iterations, but at a modern scale, may fail

to complete any iteration in a reasonable amount of time. This has led first-

order optimization methods, which tend to produce modest quality solutions

after many relatively cheap iterations, to take center-stage.

Many of the most important current applications in optimization come from

machine learning and data science. These problems perfectly fit the mold for

first-order methods. The size of datasets has been rapidly growing, easily ex-

ceeding many million in sizes: In 1999, the well-worn MNIST dataset, used for

learning handwritten digits, was released containing 70,000 testing and train-

ing images. In 2009, the famous Netflix Prize for learning to predict user ratings

for films concluded where algorithms were given approximately three million

sample ratings and had to predict approximately one hundred million ratings.

Another decade later, problem sizes have only continued to grow. These huge

scales lend themselves to the low iteration cost of first-order optimization, as

anything more risks becoming intractable. Stochastic first-order methods can

be particularly efficient in this setting by only examining a small, randomly se-

lected portion of the data at each iteration. Often this provides an unbiased

estimation of the full objective while reducing the iteration cost from consider-

ing millions of data points to only hundreds (or even just a single data point).

Modern learning problems further align with first-order methods since high-

1



accuracy solutions offer them little benefit and risk statistical problems of over-

fitting. Hence the fact that first-order methods only offer modest accuracy guar-

antees (compared to higher-order methods) does not present a major issue to

the effectiveness of these methods. Indeed stochastic gradient descent (and its

variants) has become the foundational method used throughout machine learn-

ing. Stochastic subgradient methods form a core numerical subroutine for sev-

eral widely used solvers, including Google’s TensorFlow and the open-source

PyTorch library.

The focus of this dissertation is on understanding what structure is fun-

damentally needed for us to design and deploy first-order optimization algo-

rithms. The practical usage of these methods, especially in the machine learning

literature, has shown they are experimentally effective for a wide range of prob-

lems. Despite this, the theory for first-order methods primarily applies in more

narrow settings where properties like Lipschitz continuity or convexity hold or

where operations like orthogonal projections are tractable. We will depart from

relying on these traditional notions, which are cornerstones of the classic first-

order method optimization theory. The essence of each chapter of this work can

be understood by examining and questioning the analysis of perhaps the most

fundamental first-order method, the Subgradient Method.

1.1 The Subgradient Method

Consider the problem of minimizing a function f : Rn → R ∪ {∞} over a set

Q ⊆ Rn

min
x∈Q

f(x). (1.1)

2



In case f is not differentiable, we consider the generalization of its gradient

given by its subdifferential ∂f(x) = {g ∈ Rn | f(x′) ≥ f(x)+〈g, x′−x〉∀x′ ∈ Rn},

capturing the first-order geometry of f . The elements of this differential are

called subgradients. Following the idea of steepest descent, this problem can

be solved by repeatedly moving in negative subgradient directions and then

projecting back onto the feasible region

xk+1 = projQ(xk − αkgk) where gk ∈ ∂f(xk) (1.2)

where αk is some sequence of stepsizes and projQ(x) = argmin{‖x′−x‖ | x′ ∈ Q}

denotes orthogonal projection. The classic analysis of this method [135] bounds

its convergence rate provided (i) the objective is uniformly Lipschitz continu-

ous, (ii) the objective and constraints are convex, (iii) the stepsize αk is carefully

selected, and (iv) the subgradients and orthogonal projections can be computed.

Theorem 1.1.1. For anyM -Lipschitz continuous, convex function f and closed convex

set Q, the subgradient method with Polyak stepsize αk = (f(xk)− inf f)/‖gk‖2 has

min
k≤T

f(xk)− inf f ≤ M dist(x0, argmin f)√
T + 1

.

Additionally supposing that (v) the objective grows sufficiently fast near its

minimizers (typically assumed in the form of a KL condition or growth/error

bound), this rate can be further improved. Nesterov [126] derives matching

complexity lower bounds, preventing nearly any first-order method from beat-

ing Theorem 1.1.1’s rate or its improved rates under growth conditions.

Although these matching upper and lower bounds nicely wrap up this fam-

ily of nonsmooth optimization problems, they rely on all of the nontrivial struc-

tures (i)-(v) above. In the following seven chapters of this dissertation, we de-

velop first-order method machinery that bypasses these classic requirements.
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1.1.1 Relaxing Lipschitz Continuity Assumptions Like (i)

In Chapter 2, we consider convergence guarantees for the classic subgradient

method (1.2) outside the setting of Lipschitz continuous objective functions. The

generalization we propose relies on the existence of a generic upper bound on

the objective function of the form

f(x)− f(x∗) ≤ D(‖x− x∗‖)

for some minimizer x∗. For any such function, we derive a convergence rate

guarantee of

min
k≤T

f(xk)− inf f ≤ D
(
dist(x0, argmin f)√

T + 1

)
.

ConsideringD(t) = Mt shows this generalizesM -Lipschitz continuity as f(x)−

f(x∗) ≤M‖x− x∗‖ and recovers Theorem 1.1.1’s rate of

Mdist(x0, argmin f)√
T + 1

.

An upper bound of this form holds for any problem that is locally Lipschitz

around a minimizer, a much weaker requirement than global Lipschitz conti-

nuity. As a second example beyond the reach of Theorem 1.1.1, any smooth

function will satisfy an upper bound of the form D(t) = Lt2, from which

our theory recovers gradient descent’s known smooth convergence rate of

O(Ldist(x0, argmin f)2/T ). Moreover, the sum of a smooth function and a non-

smooth Lipschitz function will have an upper bound D(t) = Lt2 +Mt and con-

sequently has a convergence guarantee given exactly by the sum of the classic

smooth and nonsmooth rates when considered separately.
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1.1.2 Relaxing Convexity Assumptions Like (ii)

In Chapter 3, we propose and analyze a subgradient method that converges

without relying on convexity. The generalization we propose relies on the ob-

jective function having

x 7→ f(x) +
ρ

2
‖x‖2 be convex (1.3)

for some ρ > 0. For any such function, we introduce an algorithm inspired by

the proximal point method [147] that mimics it using only stochastic subgra-

dient evaluations. We show that this method produces nearly stationary points

for nonsmooth nonconvex optimization at the same rate that stochastic gradient

descent does for smooth nonconvex optimization. For example, this algorithm

and our guarantees apply for any f(x) = g(x) + h(x) given by the sum of a

nonconvex smooth g and a convex nonsmooth function h. This form occurs in

learning problems involving optimizing a smooth but nonconvex model g with

a convex regularization term h, such as an `1 norm to induce sparsity.

1.1.3 Relaxing Stepsize Requirements Like (iii)

In Chapter 4, we address the limitation of the subgradient method in need-

ing a carefully chosen step size (for example, the classic guarantee of Theo-

rem 1.1.1 critically relies on taking αk = (f(xk) − inf f)/‖gk‖2). To do so, we

revisit a classic subgradient method, the proximal bundle method, developed

in 1975 [93, 170] that is known to converge in the limit for any configuration of

its stepsize. We derive a full characterization of this subgradient method’s con-

vergence rate showing that with any configuration of its stepsize, the bundle
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method adapts to converge faster in the presence of various continuity, smooth-

ness, and growth conditions. Inspired by Renegar and Grimmer [142], we also

propose a parallel bundle method that attains our strongest convergence rates

under every combination of assumptions considered.

1.1.4 Removing the Need for Orthogonal Projections Like (iv)

In Chapters 5 and 6, we present an alternative development and generaliza-

tion of the radial reformulation invented by Renegar [140]. In doing so, we

devise a radial duality between nonnegative optimization problems that facil-

itates the development of new families of projection-free first-order methods

applicable even in the presence of nonconvex objectives and constraint sets.

Applying the subgradient method to the radially dual optimization problem

gives a radial subgradient method that converges without requiring Lipschitz

continuity or orthogonal projection, and for appropriate nonconvex problems,

avoids the weakened convexity condition (1.3). This machinery further enables

radial smoothing and accelerated methods, capable of scaling-up much more

efficiently than their classic counterparts.

1.1.5 Growth Bounds Like (v) Hold Without Loss of Generality

In Chapter 7, we consider the improved performance of first-order methods

under growth or error bound conditions. The subgradient method’s analy-

sis is typically done twice, once for the general case and again for the growth

bounded case. We give meta-theorems for deriving general convergence rates
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from those assuming a growth lower bound. Applying this simple but concep-

tually powerful tool to the subgradient method as well as the proximal point

method, the proximal bundle method, gradient descent and universal acceler-

ated methods immediately recovers their known convergence rates for general

convex optimization problems from their specialized rates. Our results apply to

lift any rate based on Hölder continuity of the objective’s gradient and Hölder

growth bounds to apply to any problem with a weaker growth bound or when

no growth bound is assumed.

1.1.6 Characterizing the Landscape of the Proximal Point

Method for Nonconvex-Nonconcave Optimization

In Chapter 8, we deviate from the minimization model (1.1) and instead con-

sider minimax optimization problems of the form

min
x

max
y
L(x, y).

We consider the direct generalization of the subgradient method to this setting,

descending in x and ascending in y. When L(x, y) is convex in x and concave in

y, the convergence of such gradient methods is well understood. Outside this

convex-concave regime, algorithms can fall into nonconvergent or diverging

trajectories. We show that a classic generalization of the Moreau envelope [113]

by Attouch [11] provides key insights into explaining these varied behaviors

in the nonconvex-nonconcave settings. Particularly, we find that the related

envelope is a smoothing of the original objective L and can be convex-concave

even when L lacks such structure. As a result, gradient descent ascent methods

can be analyzed on this reformulated envelope even when the original objective
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does not possess such nice structure.

1.2 Related Works

In recent years, there have been a number of major steps forward in the opti-

mization community extending the reach of first-order methods and their the-

ory. Before we begin developing the advancements outlined above, we place

them in the context of these other recent advances in the analysis of classic first-

order methods and powerful new tools like Bregman and restarting methods.

Bregman methods (see [166]) improve on first-order methods for convex op-

timization by replacing the Euclidean norm with a reference function tailored

to the given problem’s geometry. By doing so, classic notions of Lipschitz conti-

nuity and smoothness can be replaced by relative measures with respect to the

chosen reference function. Such theory for smooth optimization beyond having

a Lipschitz gradient was developed independently in [107] and [13]. Such the-

ory for nonsmooth optimization beyond having a Lipschitz objective function

was developed by Lu [105] and provides an alternative approach to the results

we develop in Chapter 2.

A series of works by Peña and Gutman [116, 69, 68] presented unified con-

vergence proofs for many convex optimization methods ranging from nons-

mooth subgradient methods to smooth accelerated methods. Further, the anal-

ysis in [68] connects these method’s guarantees with those of conjugate gradient

and Bregman methods, identifying a common primal-dual gap underlying the

convergence of all of these methods.
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Early in the development of first-order convex optimization theory, Ne-

mirovskii and Nesterov [122] observed that first-order methods could have their

convergence rates improved by periodically restarting the algorithm at its cur-

rent iterate. Numerous recent works [102, 173, 150, 142] have built on these

restarting ideas to great practical success, improving convergence guarantees

under KL conditions or related growth bounds. These works complement the

theory we develop in Chapter 7 by showing general convergence theory (with-

out relying on the existence of growth/error bounds) can be utilized to give

specialized results in growth bounded settings.

Following the work presented in Chapter 3, Davis and Drusvyatskiy [32] de-

rived several nonconvex convergence guarantees related to subgradient meth-

ods under the weakened convexity condition (1.3). Their guarantees apply to a

wide range of methods fitting within a generic family of model-based methods

and match the convergence results (in expectation) that we present. Further,

Davis et al. [34] derives faster nonconvex rates in the presence of sharp function

growth and [33] derives limiting guarantees for the sweeping class of Whitney

stratifiable functions.
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CHAPTER 2

NONLIPSCHITZ SUBGRADIENT METHOD CONVERGENCE RATES

2.1 Introduction

We consider the nonsmooth, convex optimization problems of the form (1.1)

for some lower semicontinuous convex function f : Rd → R ∪ {∞} and closed

convex feasible region Q. We assume Q lies in the domain of f and that this

problem has a nonempty set of minimizers X∗ (with minimum value denoted

by f ∗). Further, we assume orthogonal projection onto Q is computationally

tractable (which we denote by projQ(·)).

Since f may be nondifferentiable, we weaken the notion of gradients to sub-

gradients. Recall the set of all subgradients at some x ∈ Q (referred to as the

subdifferential) is denoted by

∂f(x) = {g ∈ Rd |
(
∀y ∈ Rd

)
f(y) ≥ f(x) + gT (y − x)}.

We consider solving this problem via a (potentially stochastic) projected sub-

gradient method. These methods have received much attention lately due to

their simplicity and scalability; see [20, 126], as well as [74, 89, 105, 118, 139] for

a sample of more recent works.

Deterministic and stochastic subgradient methods differ in the type of oracle

used to access the subdifferential of f . For deterministic methods, we consider

an oracle g(x), which returns an arbitrary subgradient at x. For stochastic meth-

ods, we utilize a weaker, random oracle g(x; ξ), which is an unbiased estimator

of a subgradient (i.e., Eξ∼D g(x; ξ) ∈ ∂f(x) for some easily sampled distribu-

tion D). One of the earliest works motivating stochastic gradient methods was
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Robbins and Monro [143]. An overview of the early work analyzing stochastic

subgradient methods in optimization is given by Shor [161, §2.4] and the refer-

ences therein.

In this chapter, we analyze two classic subgradient methods, differing in

their step size policy. Let ‖ · ‖ denote the Euclidean norm on Rd. Given a deter-

ministic oracle, we consider the following normalized subgradient method

xk+1 := projQ

(
xk − αk

g(xk)

‖g(xk)‖

)
, (2.1)

for some positive sequence (αk)
T
k=0. Note that since ‖g(xk)‖ = 0 only if xk

minimizes f , this iteration is well-defined until a minimizer is found. Given

a stochastic oracle, we consider the following method

xk+1 := projQ(xk − αkg(xk; ξk)), (2.2)

for some positive sequence (αk)
T
k=0 and i.i.d. sample sequence ξk ∼ D.

The standard convergence bounds for these methods assume all x ∈ Q sat-

isfy ‖g(x)‖ ≤ L or Eξ‖g(x; ξ)‖2 ≤ L2 for some constant L > 0. Then after T > 0

iterations, a point is found with objective gap (in expectation for (2.2)) bounded

by

f(x)− f ∗ ≤ O

(
L‖x0 − x∗‖√

T

)
, (2.3)

for any x∗ ∈ X∗ under reasonable selection of the step size sequence (αk)
T
k=0.

The bound ‖g(x)‖ ≤ L for all x ∈ Q is implied by f being L-Lipschitz contin-

uous on some open convex set U containing Q (which is often the assumption

made). Uniformly bounding subgradients restricts the classic convergence rates

to functions with at most linear growth (at rate L). When Q is bounded, one

can invoke a compactness argument to produce a uniform Lipschitz constant.
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However, such an approach may lead to a large constant heavily dependent on

the size of Q (and frankly, lacks the elegance that such a fundamental method

deserves).

In stark contrast to these limitations, early in the development of subgra-

dient methods Shor [160] observed that the normalized subgradient method

(2.1) enjoys some form of convergence guarantee for any convex function with

a nonempty set of minimizers. Shor showed for any minimizer x∗ ∈ X∗: there

exists some iterate k ≤ T for which either xk ∈ X∗ or(
g(xk)

‖g(xk)‖

)T
(xk − x∗) ≤ O

(
‖x0 − x∗‖√

T

)
,

under reasonable selection of the step size sequence (αk)
T
k=0. Thus for any con-

vex function, the subgradient method has convergence in terms of this inner

product value (which convexity implies is always nonnegative). This quantity

can be interpreted as the distance from the hyperplane {x | g(xk)
T (x− xk) = 0}

to x∗. By driving this distance to zero via proper selection of (αk)
T
k=0, Shor char-

acterized the asymptotic convergence of (2.1).

There is a substantial discrepancy in generality between the standard con-

vergence bound (2.3) and Shor’s result. In this chapter, we address this for both

deterministic and stochastic subgradient methods. The remainder of this section

formally states our generalized convergence rate bounds. For the deterministic

case, our bounds follow directly from Shor’s result, while the stochastic case

requires an alternative approach. Then Section 2.2 applies these bounds to a

few common problem classes outside the scope of uniform Lipschitz continuity.

Finally, our convergence analysis is presented in Section 2.3 and an extension of

our model is discussed in Section 2.4.
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2.1.1 Extended Deterministic Convergence Bounds

Shor’s convergence guarantees for general convex functions will serve as the

basis of our objective gap convergence rates for the subgradient method (2.1)

without assuming uniform Lipschitz continuity. Formally, Shor [160] showed

the following general guarantee for any sequence of step sizes (αk)
T
k=0 (for com-

pleteness, an elementary proof is provided in Section 2.3).

Theorem 2.1.1 (Shor’s Hyperplane Distance Convergence). Consider any convex

f and fix some x∗ ∈ X∗. Then for any positive sequence (αk)
T
k=0, there exists some

iterate k ≤ T of the iteration (2.1) for which either xk ∈ X∗ or(
g(xk)

‖g(xk)‖

)T
(xk − x∗) ≤

‖x0 − x∗‖2 +
∑T

k=0 α
2
k

2
∑T

k=0 αk
. (2.4)

Two Simple Stepsize Selections. The classic objective gap convergence of the

subgradient method follows as a simple consequence of this. Indeed, f being

convex and L-Lipschitz continuous on an open set containing Q (which implies

‖g(xk)‖ ≤ L) together with (2.4) imply

min
k=0...T

{
f(xk)− f ∗

L

}
≤ ‖x0 − x∗‖2 +

∑T
k=0 α

2
k

2
∑T

k=0 αk
.

Given either an upper bound1 R ≥ ‖x0 − x∗‖ or a target accuracy ε > 0, a

convergence rate follows for either of the two following choices of the stepsize

sequence (αk)
T
k=0. Taking αk = R/

√
T + 1 produces

min
k=0...T

{f(xk)− f ∗} ≤
LR√
T + 1

.

Alternatively, taking αk = ε/L yields

T ≥
(
L‖x0 − x∗‖

ε

)2

=⇒ min
k=0...T

{f(xk)− f ∗} ≤ ε.

1Note that an upper boundR can often be produced whenQ is simple and bounded or when
f possesses some structural property like strong convexity.
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Here Lipschitz continuity enabled us to convert a bound on “hyperplane

distance to a minimizer” into a bound on the objective gap. Our extended con-

vergence bounds for the deterministic subgradient method follow from observ-

ing that more general assumptions than uniform Lipschitz continuity suffice to

provide such a conversion. In particular, we assume there is an upper bound on

f of the form

f(x)− f ∗ ≤ D(‖x− x∗‖), (∀x ∈ Rd) (2.5)

for some fixed x∗ ∈ X∗ and nondecreasing nonnegative functionD : R+ → R+∪

{∞}. In this case, we show the following objective gap convergence guarantee.

Theorem 2.1.2 (Extended Deterministic Rate). Consider any convex f satisfying

(2.5). Then for any positive sequence (αk)
T
k=0, the iteration (2.1) satisfies

min
k=0...T

{f(xk)− f ∗} ≤ D

(
‖x0 − x∗‖2 +

∑T
k=0 α

2
k

2
∑T

k=0 αk

)
.

Two Simple Stepsize Selections. Suppose either an upper bound R ≥ ‖x0 −

x∗‖ or a target accuracy ε > 0 is known. Under the constant step size αk =

R/
√
T + 1, the iteration (2.1) satisfies

min
k=0...T

{f(xk)− f ∗} ≤ D
(

R√
T + 1

)
.

Under the constant step size αk = D−1(ε), the iteration (2.1) satisfies

T ≥
(
‖x0 − x∗‖
D−1(ε)

)2

=⇒ min
k=0...T

{f(xk)− f ∗} ≤ ε,

where D−1(ε) = inf{t | D(t) ≥ ε}.

Note that any L-Lipschitz continuous function on Rd satisfies this growth

bound with D(t) = Lt. Thus we immediately recover the standard L‖x0 −
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x∗‖/
√
T convergence rate for unconstrained problems. Similarly, any L-

Lipschitz continuous function on an open neighborhood of Q satisfies this

growth bound with

D(t) =


Lt if t ≤ δ

+∞ otherwise

for some δ > 0. From this, we recover the standard L‖x0 − x∗‖/
√
T rate for

constrained problems provided T ≥ ‖x0 − x∗‖2/δ2.

Using growth bounds allows us to apply our convergence guarantees to

many problems outside the scope of uniform Lipschitz continuity. Theo-

rem 2.1.2 also implies the classic convergence rate for gradient descent on differ-

entiable functions with an L-Lipschitz continuous gradient of O(L‖x0−x∗‖2/T )

[126]. Any such function has growth bounded by D(t) = Lt2/2 on Q = Rd

(see Lemma 2.2.1). Then a convergence rate immediately follows from Theo-

rem 2.1.2 (for simplicity, we consider a constant step size given an upper bound

R ≥ ‖x0 − x∗‖).

Corollary 2.1.3 (Generalizing Gradient Descent’s Convergence). Consider any

convex function f satisfying (2.5) with D(t) = Lt2/2. Then under the constant step

size αk = R/
√
T + 1, the iteration (2.1) satisfies

min
k=0...T

{f(xk)− f ∗} ≤
LR2

2(T + 1)
.

Thus a convergence rate of O(LR2/T ) can be attained without any mention

of smoothness or differentiability. In Section 2.2, we provide a similar growth

bound and thus objective gap convergence for any function with a Hölder con-

tinuous gradient, which also parallels the standard rate for gradient descent.

In general, for any problem with limt→0+ D(t)/t = 0, Theorem 2.1.2 produces

convergence at a rate of o(1/
√
T ).
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Suppose thatD(t)/t is finite in some neighborhood of 0 (as is the case for any

f that is locally Lipschitz around x∗). Then simple limiting arguments yield the

following eventual convergence rate of (2.1) based on Theorem 2.1.2: for any

ε > 0, there exists T0 > 0 such that all T > T0 have

min
k=0...T

{f(xk)− f ∗} ≤ D
(

R√
T + 1

)
≤
(

lim sup
t→0+

D(t)

t
+ ε

)
R√
T + 1

.

As a result, the asymptotic convergence rate of (2.1) is determined entirely by

the rate of growth of f around its minimizers, and conversely, steepness far from

optimality plays no role in the asymptotic behavior.

2.1.2 Extended Stochastic Convergence Bounds

Now we turn our attention to giving more general convergence bounds for the

stochastic subgradient method. This is harder as we can no longer leverage

Shor’s result since normalizing stochastic subgradients may introduce bias or

may not be well-defined if g(xk; ξ) = 0. As a consequence, we need a different

approach to generalizing the standard stochastic assumptions.

We begin by reviewing the standard convergence results for this method.

The following convergence guarantee is immediate from the analysis given

in [161, §2.4] and well-known in the literature.

Theorem 2.1.4 (Classic Stochastic Rate). Consider any convex function f and

stochastic subgradient oracle satisfying Eξ‖g(x; ξ)‖2 ≤ L2 for all x ∈ Q. Fix some

x∗ ∈ X∗. Then for any positive sequence (αk)
T
k=0, the iteration (2.2) satisfies

Eξ0...T

[
f

(∑T
k=0 αkxk∑T
k=0 αk

)
− f ∗

]
≤ ‖x0 − x∗‖2 + L2

∑T
k=0 α

2
k

2
∑T

k=0 αk
.
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Two Simple Stepsize Selections Similar to the deterministic setting, given

either an upper bound R ≥ ‖x0−x∗‖ or a target accuracy ε > 0, simple constant

stepsizes can be analyzed. Under the selection αk = R/(L
√
T + 1), the iteration

(2.2) satisfies

Eξ0...T

[
f

(
1

T + 1

T∑
k=0

xk

)
− f ∗

]
≤ LR√

T + 1
.

Under the selection αk = ε/L2, the iteration (2.2) satisfies

T ≥
(
L‖x0 − x∗‖

ε

)2

=⇒ Eξ0...T

[
f

(
1

T + 1

T∑
k=0

xk

)
− f ∗

]
≤ ε.

We say f is µ-strongly convex on Q for some µ > 0 if for every x ∈ Q and

g ∈ ∂f(x),

f(y) ≥ f(x) + gT (y − x) +
µ

2
‖y − x‖2 (∀y ∈ Q).

Under this condition, the convergence of (2.2) can be improved to O(1/T ) [74,

89, 139]. Below, we present one such bound from [89].

Theorem 2.1.5 (Classic Strongly Convex Stochastic Rate). Consider any µ-strongly

convex function f and stochastic subgradient oracle satisfying Eξ‖g(x; ξ)‖2 ≤ L2 for

all x ∈ Q. Then for the sequence of step sizes αk = 2/µ(k + 2), the iteration (2.2)

satisfies

Eξ0...T

[
f

(
2

(T + 1)(T + 2)

T∑
k=0

(k + 1)xk

)
− f ∗

]
≤ 2L2

µ(T + 2)
.

We remark that Lipschitz continuity and strong convexity are fundamen-

tally at odds. Lipschitz continuity allows at most linear growth while strong

convexity requires quadratic growth. The only way both can occur is when Q is

bounded.

The standard analysis assumes that Eξ‖g(x; ξ)‖2 is uniformly bounded by

some L2 > 0. We generalize this by allowing the expectation to be larger when
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the objective gap at x is large as well. In particular, we assume a bound of the

form

Eξ‖g(x; ξ)‖2 ≤ L2
0 + L1(f(x)− f ∗) (2.6)

for some constants L0, L1 ≥ 0. When L1 equals zero, this is exactly the

classic model. When L1 is positive, this model allows functions with up to

quadratic growth. (To see this, suppose the subgradient oracle is determinis-

tic. Then (2.6) corresponds to a differential inequality of the form ‖∇f(x)‖ ≤√
L1(f(x)− f ∗) + L2

0, which has a simple quadratic solution. This interpreta-

tion is formalized in Section 2.2.4.)

The additional generality allowed by (2.6) is important for two reasons.

First, it allows us to consider many classic problems which fundamentally have

quadratic growth (for example, any quadratically regularized problem, like

training a support vector machine, which is considered in Section 2.2.3). Sec-

ondly, this model allows us to avoid the inherent conflict in Theorem 2.1.5 be-

tween Lipschitz continuity and strong convexity since a function can globally

satisfy both (2.6) and strong convexity.

Based on this generalization of Lipschitz continuity, we have the following

guarantees for convex and strongly convex problems.

Theorem 2.1.6 (Extended Stochastic Rate). Consider any convex function f and

stochastic subgradient oracle satisfying (2.6). Fix some x∗ ∈ X∗. Then for any positive

sequence (αk)
T
k=0 with L1αk < 2 for all k = 0 . . . T , the iteration (2.2) satisfies

Eξ0...T

[
f

(∑T
k=0 αk(2− L1αk)xk∑T
k=0 αk(2− L1αk)

)
− f ∗

]
≤ ‖x0 − x∗‖2 + L2

0

∑T
k=0 α

2
k∑T

k=0 αk(2− L1αk)
.

Two Simple Stepsize Selections Given either an upper bound R ≥ ‖x0 − x∗‖

or a target accuracy ε > 0, we present bounds for two simple constant stepsizes.
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Under the selection αk = R/L0

√
T + 1, the iteration (2.2) satisfies

Eξ0...T

[
f

(
1

T + 1

T∑
k=0

xk

)
− f ∗

]
≤ L0R√

T + 1
+
L1R

2

T + 1
,

provided T ≥ (RL1/L0)2. Under the selection αk = ε/(2L2
0), the iteration (2.2)

satisfies

T ≥
(
L0‖x0 − x∗‖

ε

)2

=⇒ Eξ0...T

[
f

(
1

T + 1

T∑
k=0

xk

)
− f ∗

]
≤ ε,

provided ε ≤ 2L2
0/L1.

Theorem 2.1.7 (Extended Strongly Convex Stochastic Rate). Consider any µ-

strongly convex function f and stochastic subgradient oracle satisfying (2.6). Fix some

x∗ ∈ X∗. Then for the sequence of step sizes

αk =
2

µ(k + 2) +
L2

1

µ(k+1)

,

the iteration (2.2) satisfies

Eξ0...T

[
f

(∑T
k=0(k + 1)(2− L1αk)xk∑T
k=0(k + 1)(2− L1αk)

)
− f ∗

]
≤ 2L2

0(T + 1) + L2
1‖x0 − x∗‖2/2

µ
∑T

k=0(k + 1)(2− L1αk)
.

The following simpler averaging yields a bound weakened roughly by a factor of two:

Eξ0...T

[
f

(
2

(T + 1)(T + 2)

T∑
k=0

(k + 1)xk

)
− f ∗

]
≤ 4L2

0

µ(T + 2)
+

L2
1‖x0 − x∗‖2

µ(T + 1)(T + 2)
.

We remark that one important insight given by Theorem 2.1.7 comes from its

dependence on the initial point x0. The rate only depends on the initial iterate in

the second term above, which decays at a rate ofO(1/T 2). This shows the choice

of the initial point has a relatively small impact on the asymptotic guarantees.

Note the standard analysis of this method (see Theorem 2.1.5) does not give

any insight into the dependence on x0 and instead uses the implicit bound on

‖x0 − x∗‖ given by strong convexity and Lipschitz continuity.
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2.1.3 Related Works

Recently, Renegar [140] introduced a novel framework that allows first-order

methods to be applied to general (non-Lipschitz) convex optimization problems

via a radial transformation. In Chapters 5 and 6, we will further develop this

tool, showing a simple radial subgradient method has convergence paralleling

the classic O(1/
√
T ) rate without assuming Lipschitz continuity. This algorithm

is applied to a transformed version of the original problem and replaces orthog-

onal projection by a line search at each iteration.

Lu [105] analyzes an interesting subgradient-type method (which is a varia-

tion of mirror descent) for non-Lipschitz problems that is customized for a par-

ticular problem via a reference function. This approach produces convergence

guarantees for both deterministic and stochastic problems based on a relative-

continuity constant instead of a uniform Lipschitz constant.

Although the works of Renegar [140], Chapters 5 and 6, and Lu [105] pro-

vide convergence rates for specialized subgradient methods without assuming

Lipschitz continuity, objective gap guarantees for the classic subgradient meth-

ods (2.1) and (2.2), such as the ones presented here, have been missing prior to

our work.

2.2 Applications of Our Extended Convergence Bounds

In this section, we apply our convergence bounds to a variety of problems out-

side the scope of the traditional theory based on uniform Lipschitz constants.
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2.2.1 Smooth Optimization

The standard analysis of gradient descent in smooth optimization assumes the

gradient of the objective function is uniformly Lipschitz continuous, or more

generally, uniformly Hölder continuous. A differentiable function f has (L, v)-

Hölder continuous gradient on Rd for some L > 0 and v ∈ (0, 1] if for all x, y ∈

Rd

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖v.

Note this is exactly Lipschitz continuity of the gradient when v = 1. Below, we

state a simple bound on the growth D(t) of any such function.

Lemma 2.2.1. Consider any f ∈ C1 with a (L, v)-Hölder continuous gradient on Rd

and any minimizer x∗ ∈ X∗. Then

f(x)− f(x∗) ≤ L

v + 1
‖x− x∗‖v+1 (∀x ∈ Rd).

Proof. Since∇f(x∗) = 0, the bound follows directly as

f(x) = f(x∗) +

∫ 1

0

∇f(x∗ + t(x− x∗))T (x− x∗) dt

≤ f(x∗) +∇f(x∗)T (x− x∗) +

∫ 1

0

Ltv‖x− x∗‖v+1 dt

= f(x∗) +
L

v + 1
‖x− x∗‖v+1.

This lemma with v = 1 implies any function with an L-Lipschitz gradient

has growth bounded by D(t) = Lt2/2. Then Theorem 2.1.2 produces our gen-

eralization of the classic gradient descent convergence rate claimed in Corol-

lary 2.1.3. Further, for any function with a Hölderian gradient, Theorem 2.1.2

gives a O(1/T (v+1)/2) convergence rate. The following Corollary generalizes this

fact giving a convergence rate for any (potentially non-differentiable) function

with upper bound D(t) = Ltv+1/(v + 1).
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Corollary 2.2.2 (Generalizing Hölderian Gradient Descent’s Convergence). Con-

sider any convex function f satisfying (2.5) with D(t) = Ltv+1/(v + 1). Then under

the constant step size αk = R/
√
T + 1, the iteration (2.1) satisfies

min
k=0...T

{f(xk)− f ∗} ≤
LRv+1

(v + 1)(T + 1)(v+1)/2
.

2.2.2 Additive Composite Optimization

Often problems arise where the objective is to minimize a sum of smooth and

nonsmooth functions. We consider the following general formulation of this

problem

min
x∈Rd

f(x) := Φ(x) + h(x),

for any differentiable convex function Φ with (LΦ, v)-Hölderian gradient and

any Lh-Lipschitz continuous convex function h. Such problems occur when

regularizing smooth optimization problems, where h would be the sum of one

or more nonsmooth regularizers (for example, ‖ · ‖1 to induce sparsity).

Additive composite problems can be solved by prox-gradient or splitting

methods, which solve a subproblem based on h at each iteration. However,

this limits these methods to problems where h is relatively simple. The sub-

gradient method avoids this limitation by only requiring the computation of

a subgradient of f at each iteration, with the subdifferential being given by

∂f(x) = ∇Φ(x) + ∂h(x). The classic convergence theory fails to provide any

guarantees for this problem since f may be non-Lipschitz. In contrast, we show

this problem class has a simple growth bound from which guarantees for the

classic subgradient method directly follow.
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Lemma 2.2.3. Consider any Φ ∈ C1 with a (LΦ, v)-Hölder continuous gradient on

Rd, any Lh-Lipschitz continuous h on Rd, and any minimizer x∗ ∈ X∗. Then

f(x)− f(x∗) ≤ LΦ

v + 1
‖x− x∗‖v+1 + 2Lh‖x− x∗‖ (∀x ∈ Rd).

Proof. From the optimality conditions of f , we know g∗ := −∇Φ(x∗) ∈ ∂h(x∗).

Define the following lower bound on f(x)

l(x) := Φ(x) + h(x∗) + g∗T (x− x∗).

Notice that f(x) and l(x) both minimize at x∗ with f(x∗) = l(x∗). Since l(x) has

a (LΦ, v)-Hölder continuous gradient, Lemma 2.2.1 implies for any x ∈ Rd,

l(x)− l(x∗) ≤ LΦ

v + 1
‖x− x∗‖v+1.

The Lipschitz continuity of h implies

l(x) = Φ(x) + h(x∗) + g∗T (x− x∗) ≥ Φ(x) + (h(x)− Lh‖x− x∗‖)− Lh‖x− x∗‖.

Combining these two inequalities completes the proof.

PluggingD(t) = LΦt
v+1/(v+1)+2Lht into Theorem 2.1.2 immediately results

in the following O(1/
√
T ) convergence rate (for simplicity, we state the bound

for constant step size).

Corollary 2.2.4 (Additive Composite Convergence). Consider the deterministic

subgradient oracle∇Φ(x)+gh(x). Then under the constant step size αk = R/
√
T + 1,

the iteration (2.1) satisfies

min
k=0...T

{f(xk)− f ∗} ≤
LΦR

v+1

(v + 1)(T + 1)(v+1)/2
+

2LhR√
T + 1

.

The first term in this rate exactly matches the convergence rate on functions,

such as Φ, with Hölderian gradient (see Corollary 2.2.2). Further, up to a factor
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of two, the second term matches the convergence rate on Lipschitz continuous

functions, such as h (see (2.3)). Thus the subgradient method on Φ(x) + h(x)

has convergence guarantees no worse than those of the subgradient method on

Φ(x) or h(x) separately.

2.2.3 Quadratically Regularized Stochastic Optimization

Another common class of optimization problems results from adding in a

quadratic regularization term (λ/2)‖x‖2 to the objective function, for some pa-

rameter λ > 0. Consider solving

min
x∈Rd

f(x) := h(x) +
λ

2
‖x‖2

for any Lipschitz continuous convex function h. Suppose we have a stochas-

tic subgradient oracle for h denoted by gh(x; ξ) for which Eξ gh(x; ξ) ∈ ∂h(x)

and Eξ‖gh(x; ξ)‖2 ≤ L2. Although the function h and its stochastic oracle meet

the necessary conditions for the classic theory to be applied, the addition of a

quadratic term violates uniform Lipschitz continuity. Nonetheless, simple ar-

guments yield a subgradient norm bound like (2.6) and the following O(1/T )

convergence rate.

Corollary 2.2.5 (Quadratically Regularized Convergence). Consider the step sizes

αk =
2

λ(k + 2) + 36λ
k+1

and stochastic subgradient oracle gh(x; ξ) + λx. Fix some x∗ ∈ X∗. The iteration (2.2)

satisfies

Eξ0...T

[
f

(
2

(T + 1)(T + 2)

T∑
k=0

(k + 1)xk

)
− f ∗

]
≤ 24L2

λ(T + 2)
+

36λ‖x0 − x∗‖2

(T + 1)(T + 2)
.
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Proof. Consider any x∗ ∈ X∗ and g∗ := −λx∗ ∈ ∂h(x∗) (this inclusion fol-

lows from the first-order optimality conditions for x∗). From the assumed

stochastic subgradient norm bound Eξ‖gh(x; ξ)‖2 ≤ L2, all subgradients of

h must have norm bounded by L. This follows since each differentiable

point has ‖∇f(x)‖2 ≤ Eξ‖gh(x; ξ)‖2 ≤ L2 and the subdifferential at nondif-

ferentiable points is given by the convex hull of nearby gradients: ∂f(x) =

conv{lim∇f(zk) | lim zk → x, zk ∈ Q} where Q is the set of differentiable points

near x (see [27] for a proof of this characterization). Then the expected norm

squared of the stochastic subgradient gh(x; ξ) + λx is bounded by

Eξ‖gh(x; ξ) + λx‖2 = Eξ‖gh(x; ξ)− g∗ + g∗ + λx‖2

≤ 3Eξ‖gh(x; ξ)‖2 + 3‖g∗‖2 + 3‖g∗ + λx‖2

≤ 6L2 + 3‖g∗ + λx‖2

≤ 6L2 + 6λ(f(x)− f(x∗)),

where the first inequality uses Jensen’s inequality, the second inequality uses the

subgradient norm bound, and the third inequality uses the λ-strong convexity

of f . From this, our bound follows by Theorem 2.1.7.

One common example of a problem of the form h(x) + (λ/2)‖x‖2 is training

a Support Vector Machine (SVM). Suppose one has n data points each with a

feature vector wi ∈ Rd and label yi ∈ {−1, 1}. Then one trains a model x ∈ Rd

for some parameter λ > 0 by solving

min
x∈Rd

f(x) :=
1

n

n∑
i=1

max{0, 1− yiwTi x}+
λ

2
‖x‖2.

Here, a stochastic subgradient oracle can be given by selecting a summand i ∈
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[n] uniformly at random and then setting

gh(x; i) =


−yiwi if 1− yiwTi x ≥ 0

0 otherwise,

which satisfies Ei‖gh(x, i)‖2 ≤ 1
n

∑n
i=1 ‖wi‖2.

Much work has previously been done solving problems of the form h(x) +

λ
2
‖x‖2 and SVMs in particular. If one adds the constraint that x lies in some large

ball Q (which will then be projected onto at each iteration), the classic strongly

convex rate can be applied [158] as the objective function will be Lipschitz on

Q. A similar approach utilized in [89] is to show that, in expectation, all of the

iterates of a stochastic subgradient method lie in a large ball (provided the initial

iterate does). We remark that the resulting guarantees only apply for x0 ∈ Q

and utilize a constant L dependent on the size of Q. Corollary 2.2.5 avoids these

issues, giving a convergence bound for any choice of x0 ∈ Rd.

The specialized mirror descent method proposed by Lu [105] produces con-

vergence guarantees for SVMs at a rate of O(1/
√
T ) without needing a bound-

ing ball. Splitting methods and quasi-Newton methods capable of solving this

problem are given in [43] and [175], respectively, which both avoid needing to

assume subgradient bounds.

2.2.4 Interpreting (2.6) as a Quadratic Growth Upper Bound

Here we provide an alternative interpretation of bounding the size of subgra-

dients by (2.6) on some convex open set U ⊆ Rd for deterministic subgradient
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oracles. In particular, suppose all x ∈ U have

‖g(x)‖2 ≤ L2
0 + L1(f(x)− inf

x′∈U
f(x′)) (2.7)

First consider the classic model where L1 = 0. This is equivalent to f being

L0-Lipschitz continuous on U and can be restated as the following upper bound

holding for each x ∈ U :

f(y) ≤ f(x) + L0‖y − x‖ (∀y ∈ U).

This characterization shows the limitation to linear growth of the classic

model. In the following proposition, we present an upper bound characteri-

zation when L1 > 0, which can be viewed as allowing up to quadratic growth.

Proposition 2.2.6. A convex function f satisfies (2.7) on some open convex U ⊆ Rd if

and only if the following quadratic upper bound holds for each x ∈ U

f(y) ≤ f(x) +
L1

4
‖y − x‖2 + ‖y − x‖

√
L1(f(x)− inf

x′∈U
f(x′)) + L2

0 (∀y ∈ U).

Proof. First we prove the forward direction. Consider any x, y ∈ U and sub-

gradient oracle g(·). Let v = (y − x)/‖y − x‖ denote the unit direction from x

to y, and h(t) = f(x + tv) − infx′∈U f(x′) denote the restriction of f to this line

shifted to have nonnegative value. Notice that h(0) = f(x) − infx′∈U f(x′) and

h(‖y − x‖) = f(y) − infx′∈U f(x′). The convexity of h implies it is differentiable

almost everywhere in the interval [0, ‖y− x‖]. Thus h satisfies the following, for

almost every t ∈ [0, ‖y − x‖],

|h′(t)| = |vTg(x+ tv)| ≤ ‖g(x+ tv)‖.

This produces the differential inequality of |h′(t)| ≤
√
L1h(t) + L2

0. Note that

the unique solution to the ordinary differential equation y′(t) =
√
L1y(t) + L2

0
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with initial condition y(0) = h(0) is y(t) = h(0) + L1

4
t2 + t

√
L1h(0) + L2

0. Then

the claimed bound will follow from showing h(t) ≤ y(t) at t = ‖y − x‖. This

inequality must be the case for all t ≥ 0, as otherwise some t ≥ 0 must have

h(t) = y(t) and lim supt′→t h
′(t′) > y′(t), which implies

lim sup
t′→t

h′(t′) >
√
L1y(t) + L2

0 =
√
L1h(t) + L2

0,

contradicting our premise.

Now we prove the reverse direction. Denote the upper bound given by some

x ∈ U as

ux(y) := f(x) +
L1

4
‖y − x‖2 + ‖y − x‖

√
L1(f(x)− inf

x′∈U
f(x′)) + L2

0.

Further, let Dv denote the directional derivative operator in some unit direction

v ∈ Rd. Then for any subgradient g ∈ ∂f(x),

vTg ≤ Dvf(x) ≤ Dvux(x),

where the first inequality uses the definition of Dv and the second uses

the fact that ux upper bounds f . A simple calculation shows Dvux(x) ≤√
L1(f(x)− infx′∈U f(x′)) + L2

0. Then our subgradient bound follows by taking

v = g/‖g‖.

2.3 Convergence Proofs

Each of our extended convergence theorems follows from essentially the same

proof as its classic counterpart. The central inequality in analyzing subgradient

methods is the following.
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Lemma 2.3.1. Consider any convex function f . For any x, y ∈ Q and α > 0,

Eξ‖projQ(x−αg(x; ξ))− y‖2 ≤ ‖x− y‖2−2α(Eξ g(x; ξ))T (x− y) +α2Eξ‖g(x; ξ)‖2.

Proof. Since orthogonal projection onto a convex set is nonexpansive, we have

‖projQ(x− αg(x; ξ))− y‖2 ≤ ‖x− αg(x; ξ)− y‖2

= ‖x− y‖2 − 2αg(x; ξ)T (x− y) + α2‖g(x; ξ)‖2.

Taking the expectation over ξ ∼ D yields

Eξ‖projQ(x−αg(x; ξ))− y‖2 ≤ ‖x− y‖2−2α(Eξ g(x; ξ))T (x− y) +α2Eξ‖g(x; ξ)‖2.

Let D2
k = Eξ0...T ‖xk − x∗‖2 denote the expected distance squared from each

iterate to the minimizer x∗. Each of our proofs follows the same general outline:

use Lemma 2.3.1 to set up a telescoping inequality on D2
k, then sum the tele-

scope. We begin by proving Shor’s convergence result as its derivation is short

and informative.

2.3.1 Proof of Shor’s Theorem 2.1.1

From Lemma 2.3.1 with x = xk, y = x∗, and α = αk/‖g(xk)‖, it follows that

D2
k+1 ≤ D2

k −
2αkg(xk)

T (xk − x∗)
‖g(xk)‖

+ α2
k,

Inductively applying this implies

0 ≤ D2
T+1 ≤ D2

0 −
T∑
k=0

2αk
g(xk)

T (xk − x∗)
‖g(xk)‖

+
T∑
k=0

α2
k.
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Thus

min
k=0...T

{
g(xk)

T (xk − x∗)
‖g(xk)‖

}
≤ D2

0 +
∑T

k=0 α
2
k

2
∑T

k=0 αk
,

completing the proof. �

2.3.2 Proof of Theorem 2.1.2

This follows directly from Theorem 2.1.1. Note the result trivially holds if some

iterate 0 ≤ k ≤ T satisfies xk ∈ X∗. Suppose xk satisfies the inequality in

Theorem 2.1.1. Let y be the closest point in {x | g(xk)
T (x− xk) = 0} to x∗. Then

our assumed growth bound implies

f(y)− f ∗ ≤ D(‖y − x∗‖) = D
(
gTk (xk − x∗)
‖gk‖

)
≤ D

(
D2

0 +
∑T

k=0 α
2
k

2
∑T

k=0 αk

)
.

The convexity of f implies f(xk) ≤ f(y) completing the proof.

2.3.3 Proof of Theorem 2.1.6

From Lemma 2.3.1 with x = xk, y = x∗, and α = αk, it follows that

D2
k+1 ≤ D2

k − Eξ0...T
[
2αk(Eξg(xk; ξk))

T (xk − x∗)
]

+ α2
kEξ0...T ‖g(xk, ξk)‖2

≤ D2
k − Eξ0...T

[
(2αk − L1α

2
k)(f(xk)− f ∗)

]
+ L2

0α
2
k,

where the second inequality uses the convexity of f and the bound on

Eξ‖g(x; ξ)‖2. Inductively applying this implies

0 ≤ D2
T+1 ≤ D2

0 − Eξ0...T

[
T∑
k=0

(2αk − L1α
2
k)(f(xk)− f ∗)

]
+ L2

0

T∑
k=0

α2
k.

The convexity of f yields

Eξ0...T

[
f

(∑T
k=0 αk(2− L1αk)xk∑T
k=0 αk(2− L1αk)

)
− f ∗

]
≤ D2

0 + L2
0

∑T
k=0 α

2
k∑T

k=0 αk(2− L1αk)
,
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completing the proof.

2.3.4 Proof of Theorem 2.1.7

Our proof follows the style of [89]. Observe that our choice of step size αk satis-

fies the following pair of conditions: First, note that it is a solution to the recur-

rence

(k + 1)α−1
k = (k + 2)(α−1

k+1 − µ). (2.8)

Second, note that L1αk ≤ 1 for all k ≥ 0 since

L1αk =
2µ(k + 2)L1

(µ(k + 2))2 + k+2
k+1

L2
1

≤ 2µ(k + 2)L1

(µ(k + 2))2 + L2
1

≤ 1. (2.9)

From Lemma 2.3.1 with x = xk, y = x∗, and α = αk, it follows that

D2
k+1 ≤ D2

k − Eξ0...T
[
2αk(Eξg(xk; ξ))

T (xk − x∗)
]

+ α2
kEξ0...T ‖g(xk, ξk)‖2

≤ (1− µαk)D2
k − Eξ0...T

[
(2αk − L1α

2
k)(f(xk)− f ∗)

]
+ L2

0α
2
k,

where the second inequality uses the strong convexity of f and the bound on

Eξ‖g(x; ξ)‖2. Multiplying by (k + 1)/αk and invoking (2.9) yields

(k + 1)α−1
k D2

k+1 ≤(k + 1)(α−1
k − µ)D2

k

− Eξ0...T [(k + 1)(2− L1αk)(f(xk)− f ∗)] + L2
0(k + 1)αk.

Notice that this inequality telescopes due to (2.8). Inductively applying this

implies

0 ≤ (α−1
0 − µ)D2

0 − Eξ0...T

[
T∑
k=0

(k + 1)(2− L1αk)(f(xk)− f ∗)

]
+ L2

0

T∑
k=0

(k + 1)αk.
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Since
∑T

k=0(k + 1)αk ≤ 2(T + 1)/µ and α−1
0 − µ = L2

1/2µ, we have

Eξ0...T

[
T∑
k=0

(k + 1)(2− L1αk)(f(xk)− f ∗)

]
≤ L2

1D
2
0

2µ
+

2L2
0(T + 1)

µ
.

Observe that the coefficients of each f(xk) − f ∗ above are positive due to (2.9).

Then the convexity of f yields our first convergence bound. From (2.9), we

know 2− L1αk ≥ 1 for all k ≥ 0. Then the previous inequality can be weakened

to

Eξ0...T

[
T∑
k=0

(k + 1)(f(xk)− f ∗)

]
≤ L2

1D
2
0

2µ
+

2L2
0(T + 1)

µ
.

The convexity of f yields our second convergence bound.

2.4 Improved Convergence Without Strong Convexity

The idea of utilizing growth lower bounds to improve convergence guarantees

is far from new. Nemirovskii and Nesterov [122] showed restarted variations

of standard first-order methods can give optimal convergence rates for convex

problems satisfying the following Hölder growth bound (referred to therein as a

“strict minimum condition”) for all x ∈ Rd: f(x)−f ∗ ≥ µ‖x−x∗‖v+1 where x∗ is

the unique minimizer of f . Later, the work of Burke and Ferris [23] studied (po-

tentially nonconvex) problems with weak sharp minima, that is, for some S ⊆ Rd

and y ∈ S, all x near S have f(x) − f(y) ≥ µdist(x, S). They show this con-

dition often holds and enables improved convergence guarantees, sometimes

ensuring finite convergence.

Many recent works have considered weakening the assumption of strong

convexity while maintaining the standard improvements in convergence rate

for smooth optimization problems (for example, see [18, 40, 108, 117]). Instead,
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the weaker condition of requiring quadratic growth away from the set of mini-

mizers suffices. We demonstrate that this weakening of strong convexity is also

sufficient for (2.2) to have a convergence rate of O(1/T ).

A function f has µ-quadratic growth for some µ > 0 if all x ∈ Q satisfy

f(x) ≥ f ∗ +
µ

2
dist(x,X∗)2.

The proof of Theorem 2.1.7 only uses strong convexity once for the following

inequality:

g(xk)
T (xk − x∗) ≥ f(xk)− f ∗ +

µ

2
‖xk − x∗‖2.

Having µ-quadratic growth suffices to produce a similar inequality, weakened

by a factor of 1/2:

g(xk)
T (xk − projX∗(xk)) ≥ f(xk)− f ∗ ≥

1

2
(f(xk)− f ∗) +

µ

4
dist(xk, X

∗)2.

Then simple modifications of the proof of Theorem 2.1.7 yield the following

convergence rate.

Theorem 2.4.1. Consider any convex function f with µ-quadratic growth and stochas-

tic subgradient oracle satisfying (2.6). Then for the sequence of step sizes

αk =
4

µ(k + 2) +
4L2

1

µ(k+1)

,

the iteration (2.2) satisfies

Eξ0...T

[
f

(∑T
k=0(k + 1)(1− L1αk)xk∑T
k=0(k + 1)(1− L1αk)

)
− f ∗

]
≤ 4L2

0(T + 1) + L2
1dist(x0, X

∗)2

µ
∑T

k=0(k + 1)(1− L1αk)
.

Proof. Observe that our choice of step size αk satisfies the following pair of con-

ditions. First, note that it is a solution to the recurrence

(k + 1)α−1
k = (k + 2)(α−1

k+1 − µ/2). (2.10)
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Second, note that L1αk < 1 for all k ≥ 0. This follows as

L1αk =
4µ(k + 2)L1

(µ(k + 2))2 + 4k+2
k+1

L2
1

≤ 4µ(k + 2)L1

(µ(k + 2))2 + (2L1)2
≤ 1, (2.11)

where the first inequality is strict if L1 > 0 and the second inequality is strict if

L1 = 0.

Let D2
k = Eξ0...Tdist(xk, X∗)2 denote the expected distance squared from

each iterate to the set of minimizers X∗. From Lemma 2.3.1 with x = xk,

y = projX∗(xk), and α = αk, it follows that

D2
k+1 ≤ D2

k − Eξ0...T
[
2αk(Eξg(xk; ξ))

T (xk − y)
]

+ α2
kEξ0...T ‖g(xk, ξk)‖2

≤ (1− µαk/2)D2
k − Eξ0...T

[
(αk − L1α

2
k)(f(xk)− f ∗)

]
+ L2

0α
2
k,

where the second inequality uses the quadratic growth of f and the bound on

Eξ‖g(x; ξ)‖2. Multiplying by (k + 1)/αk and invoking (2.11) yields

(k + 1)α−1
k D2

k+1 ≤(k + 1)(α−1
k − µ/2)D2

k

− Eξ0...T [(k + 1)(1− L1αk)(f(xk)− f ∗)] + L2
0(k + 1)αk.

Notice that this inequality telescopes due to (2.10). Inductively applying this

implies

0 ≤ (α−1
0 −µ/2)D2

0−Eξ0...T

[
T∑
k=0

(k + 1)(1− L1αk)(f(xk)− f ∗)

]
+L2

0

T∑
k=0

(k+ 1)αk.

Since
∑T

k=0(k + 1)αk ≤ 4(T + 1)/µ and α−1
0 − µ/2 = L2

1/µ, we have

Eξ0...T

[
T∑
k=0

(k + 1)(1− L1αk)(f(xk)− f ∗)

]
≤ L2

1D
2
0

µ
+

4L2
0(T + 1)

µ
.

Observe that the coefficients of each f(xk)− f ∗ above are positive due to (2.11).

Then the convexity of f completes the proof.
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Observe that this convergence rate is on the order of O(1/T ). To see this, we

need to show the sum
∑T

k=0(k + 1)(1− L1αk) is at least Ω(T 2), which follows as

T∑
k=0

(k + 1)(1− L1αk) =
T∑
k=0

(k + 1)−
T∑
k=0

(k + 1)L1αk

≥ (T + 1)(T + 2)

2
−

T∑
k=0

4L1

µ

=
(T + 1)(T + 2)

2
− (T + 1)

4L1

µ

=
(T + 1)(T + 2− 8L1/µ)

2
.
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CHAPTER 3

NONCONVEX SUBGRADIENT METHOD CONVERGENCE RATES

3.1 Introduction

Stochastic approximation methods iteratively minimize the expectation of a

family of known loss functions with respect to an unknown probability dis-

tribution. Such methods are of fundamental importance in machine learning,

signal processing, statistics, and data science more broadly. For example, in ma-

chine learning, one is often interested in designing a classifier that performs well

on the entire population of samples, given only a finite list of correctly labeled

pairs z1, . . . , zn obtained from a fixed, but otherwise unknown distribution P.

Such problems can be formulated in our recurring form (1.1) as population risk

minimization:

minimize F (x) :=


Ez∼P[f(x, z)] if x ∈ X ;

∞ otherwise,
(3.1)

Here, X ⊆ Rd denotes a constraint set, while f(x, z) represents the loss of the

decision rule parameterized by x ∈ X on the population data z.

Much algorithmic development has been inspired by (3.1). Robbins-Monro’s

pioneering work 1951 work [143] developed the first method for solving (3.1)

when each f(·, z) is smooth and strongly convex and X = Rd. This and most

later methods are variants of the stochastic projected (sub)gradient method,

which iteratively constructs approximate solutions xt of (3.1) through the re-
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cursion

Sample zt ∼ P

Set xt+1 = projX (xt − αt∇xf(xt, zt)),

where z1, . . . , zt, . . . are i.i.d. and αt is an appropriate control sequence. For non-

smooth f(·, zt), sample gradients are simply replaced by sample subgradients

vt ∈ ∂f(xt, zt), where ∂f(xt, zt) denotes the subdifferential in the sense of con-

vex analysis [148].

The complexity of minimizing (3.1) is directly related to the regularity of

f(·, z). For example, for convex functions f(·, z) the stochastic subgradient

method attains expected functional accuracy ε after O(ε−2) stochastic subgra-

dient evaluations. For strongly convex losses, the number of stochastic subgra-

dient evaluations drops toO(ε−1). The interested reader may turn to the seminal

work [123] for an in-depth investigation of these methods and for information-

theoretic lower bounds showing such rates are unimprovable without further

assumptions.

For convex functions, complexity theory does not favor smooth losses over

nonsmooth losses. For nonconvex problems, the situation is less clear. In the

smooth case, the seminal work of Ghadimi, Lan, and Zhang [58] develops a

variant of the stochastic projected gradient method and establishes that the ex-

pected norm of the projected gradient

Ez1,...,zt
[
‖xt − projX (xt −∇xEz∼P [f(xt, z)])‖2

]
, (3.2)

a natural measure of stationarity, tends to zero at a controlled rate. Namely, with

O(ε−2) stochastic gradient evaluations, the algorithm produces a point with ex-

pected projected gradient norm squared less than ε.
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At the time of writing the original version of this manuscript [36], there

was no similar rate of convergence in the nonsmooth nonconvex setting for

any known subgradient-based algorithm. Part of the difficulty in establishing

a complexity theory for nonsmooth nonconvex subgradient-based methods is

that the “usual criteria,” namely the objective error and the norm of the gradi-

ent, can be completely meaningless. Indeed, on the one hand, one cannot expect

the objective error F (xt)− inf F to tend to zero—even in the smooth setting. On

the other hand, simple examples, e.g., F (x) = |x|, show that dist(0, ∂F (xt)) can

be strictly bounded below by a fixed constant for all t.

In contrast to subgradient-based methods, the “usual criteria” is meaningful

for the proximal point method [147], which constructs a sequence xt of approxi-

mate minimizers through the recursion

xt+1 = argmin
x∈Rd

{
F (x) +

1

2γ
‖x− xt‖2

}
,

where γ is a control parameter. Namely, it is a simple exercise to show that

under minimal assumptions on F , the subdifferential distance dist(0, ∂F (xt))

tends to zero. Of course, each step of the proximal point method is difficult, if

not impossible to execute without further assumptions on F .

The search for an appropriate class of functions F for which each proximal

subproblem may be (approximately) executed naturally leads us to the decep-

tively simple, yet surprisingly broad class of ρ-weakly convex functions. For-

mally, a function F : Rd → R ∪ {∞} is ρ-weakly convex if

the assignment x 7→ F (x) +
ρ

2
‖x‖2 is convex.

For example, any C2 function on a compact, convex set becomes convex after

adding the quadratic |λ|
2
‖ · ‖2, where λ is the minimal eigenvalue of its Hessian
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across all points in the set. In the nonsmooth setting, this class includes all

convex composite losses

h(c(x))

where h is convex and L-Lipschitz and c is C1 with β-Lipschitz Jacobian; such

functions are known to be βL-weakly convex [39, Lemma 4.2]. The additive

composite class is another widely used, much studied class of weakly convex

functions, formed from all sums

g(x) + r(x)

where r is closed and convex and g is C1 with β-Lipschitz gradient; such func-

tions are known to be β-weakly convex. For further examples of weakly convex

functions, see [32, Section 2.1], which includes formulations of robust phase

retrieval, covariance matrix estimation, blind deconvolution, sparse dictionary

learning, robust principal component analysis, and conditional value at risk.

We provide several further examples in Section 3.2.1. It is important to note that

none of these applications are covered by the seminal work of Ghadimi, Lan,

and Zhang [58], which assumes an additive composite objective form.

Contributions. In this chapter, we develop the first known complexity guar-

antees for a subgradient-based method for a general class of nonsmooth non-

convex losses in stochastic optimization. The guarantees in this chapter ap-

ply to ρ-weakly convex losses F . Our algorithm, called the Proximally Guided

stochastic Subgradient Method (PGSG) (Algorithm 2), follows an inner-outer

loop strategy that may be compactly and informally summarized as

xt+1 = ε- argmin
x∈Rd

{
F (x) + ρ‖x− xt‖2

}
(in expectation). (3.3)

The outer loop of PGSG is governed by the approximate proximal point method

applied to the population risk F . Due to ρ-weak convexity of F , the inner loop

39



subproblem is a strongly convex stochastic optimization problem. Thus, by clas-

sical complexity theory, approximate solutions to the inner loop subproblems

may be quickly found. We then turn our attention to establishing complexity

guarantees.

As stated before, simple examples show that one cannot expect the iterates

produced by a subgradient-based algorithm themselves to be ε-stationary be-

cause dist(0, ∂F (xt)) may be bounded below for all t. Instead, we introduce the

following convergence measure: a (random) point x̄ is an ε-solution if

E
[
dist(x̄, {x | dist(0, ∂F (x))2 ≤ ε})2

]
≤ ε, (3.4)

where ∂F is denotes the subdifferential of F in the sense of variational analy-

sis [149]; see Section 3.3. We then show that when both inner and outer loops are

coupled together appropriately, an outer-loop iterate chosen uniformly at ran-

dom is an ε-solution after O(ε−2) stochastic subgradient evaluations. The nearly

stationary point nearby x̄ is itself a solution to a strongly convex stochastic opti-

mization problem. Thus, it is in principle obtainable to any desired degree of

accuracy; see Remark 3.3.4.

Having established expectation guarantees, we turn our attention to proba-

bilistic guarantees. Namely, following [57] (which considers the smooth case),

we say a (random) point x̄ is an (ε,Λ)-solution if

P
(
dist(x̄, {x | dist(0, ∂F (x))2 ≤ ε})2 ≤ ε

)
≥ 1− Λ.

Markov’s inequality shows that PGSG finds an (ε,Λ)-solution x̄ after

O

(
1

Λ2ε2

)
stochastic subgradient evaluations. To improve this complexity, we introduce a
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2-phase algorithm, called 2PGSG, which produces an (ε,Λ)-solution after

O

(
log(1/Λ)

ε2
+

log(1/Λ)

Λε

)
,

stochastic subgradient evaluations, substantially reducing the variance of our

solution estimate. The technique for achieving this improvement is somewhat

different than what [57] proposes in the smooth case. The challenge in establish-

ing the result is that we no longer have unbiased estimates of subgradients at

nearly stationary points. Indeed, the iterates produced by subgradient methods

are only nearby nearly stationary points and are not nearly stationary them-

selves.

Finally, we turn our attention to a more practical variant of PGSG, which

does not assume that the weak convexity constant ρ is known. In this setting, a

simple idea—letting the outer loop stepsize tend to infinity—results in a point x̄,

which satisfies (3.4) after O(ε2/(1−β)) stochastic subgradient evaluations, where

β ∈ (0, 1) is a user defined meta-parameter. We mention that the seminal work

of Ghadimi, Lan, and Zhang [58] also assumes knowledge of the weak convexity

constant ρ; in their setting ρ is simply the Lipschitz constant of the gradient.

We validate our results with some preliminary numerical experiments on the

population objective of a robust real phase retrieval problem. We also discuss

several more examples of weakly convex functions in Section 3.2.1.

3.1.1 Related Work

Stochastic Gradient Methods The convergence rates presented in [57] match

known rates for the stochastic gradient method in nonconvex optimization.
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There, the standard stochastic gradient method may be used without mod-

ification. Interestingly, recent work has developed methods which ensure

E‖∇F‖2 ≤ ε after at most O(ε−3/2) oracle calls [48]. This shows a surprising

gap between smooth and nonsmooth nonconvex optimization not present in

the convex case.

Stochastic Proximal-Gradient Methods For additive composite problems

minimize{Ez[f(x, z)] + r(x)},

one often employs stochastic proximal-gradient methods, which require, at

every iteration, a (potentially costly) evaluation of the mapping prox,ry =

argmin{r(x) + 1
2
‖x − y‖2}. These methods achieve expected projected gradi-

ent norm ε, as in (3.2), after O(ε−2) stochastic gradient evaluations [58]. These

methods have also been extended to regularizers that are arbitrary closed prox-

bounded functions r [171], a setting which we do not recover.

Evaluating the proximal mapping of r could be substantially more expensive

than computing a subgradient. For example, if r = ‖ · ‖2 is the spectral norm on

Rn×n, then its proximal mapping requires a full singular value decomposition.

In contrast, a subgradient may be computed from a single maximal eigenvector.

Another advantage of stochastic subgradient methods over stochastic

proximal-gradient methods, is that multiple nonsmooth functions may be

present in the objective function F . The same is not true for stochastic proximal-

gradient methods: even if two functions r1 and r2 have simple proximal opera-

tors, the proximal operator of the sum r = r1+r2 can be quite complex. Similarly,

the proximal operator of an expectation Ez[r(x, z)] could be intractable.
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Stochastic Methods for Convex Composite Recently [42] proposed a method

for finding stationary points of the convex composite problem in which

f(x, z) = h(c(x, z), z). The first method adapts the prox-linear algorithm [22,

24, 21, 40, 97, 53] to the stochastic setting: given xt, sample zt and form xt+1 as

the solution to the convex problem:

xt+1 = argmin
x∈X

{
h(c(xt, zt) +∇c(xt, zt)(x− xt), zt) +

1

2γt
‖x− xt‖2

}
, (3.5)

where γt = θ(1/
√
t). The second proposed method is a straightforward appli-

cation of the stochastic projected subgradient method [119]. Both methods are

shown to almost surely converge to stationary points, but no rates of conver-

gence are given.

We remark that the convergence proof presented in [42] is complex, being

based on the highly nontrivial theory of nonconvex differential inclusions. We

believe there is a benefit to having a simple proof of convergence, albeit for a

slightly different subgradient method, which is what we provide in this chapter.

Further work on minimizing convex composite problems appears in [98,

168, 167]. This series of papers analyzes nested expectations: F (x) =

Ev[h(Ew[c(x,w) | v], v)]. Although the stochastic structure considered in these

papers is more general than what we consider in Problem 3.1, the assumptions

made on F are much stronger than our assumptions on F . In particular, the

authors prove rates under the assumption that (a) F is convex, (b) F is strongly

convex, or (c) F is nonconvex, but differentiable with Lipschitz continuous gra-

dient. For case (c), the authors propose an algorithm that finds an ε-stationary

point of F after O(ε−2.25) gradient evaluations [168] (in particular, they consider

unconstrained problems).
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Inexact Proximal Point Methods in Nonconvex Optimization The idea of

using the inexact proximal point method to guide a nonconvex optimization

algorithm to stationary points is not new. For example, Hare and Sagastiza-

bal [71, 70] propose a method for computing inexact proximal points, which

then enables the analysis of a nonconvex bundle method. The more recent

work [133] exploits linearly convergent algorithms for solving the proximal sub-

problems. In contrast for the subproblems considered in this chapter, there are

no linearly convergent stochastic subgradient algorithms capable of minimizing

the proximal point step.

Subgradient Methods for Weakly Convex Problems This chapter is not the

first to consider subgradient methods under weak convexity. For example, the

early work [132] proves subsequential convergence of the (non projected) sub-

gradient method for weakly convex deterministic problems. However, no rates

were given in that work.

Almost Sure Convergence of Stochastic Subgradient Methods for Nonconvex

Problems Convergence to stationary points of stochastic subgradient meth-

ods in nonsmooth, nonconvex optimization has previously been attained under

several different scenarios, some of which are more general than the scenario

considered in Problem (3.1) [154, 45, 46]. No rates of convergence were given

in these works. In contrast, the novelty of the proposed approach lies in the at-

tained rate of convergence, which matches the best known rates of convergence

for smooth, nonconvex stochastic optimization [57].
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Rates of Convergence in Stochastic Weakly Convex Optimization Since the

first draft of these results appeared on arXiv in July 2017, several works appear-

ing in 2018 have established convergence of the standard stochastic projected

subgradient method under weak convexity [32, 31]. The obtained rates (in ex-

pectation) are essentially the same as those obtained in this chapter, namely

they are of the form presented in equation (3.4). The authors of [32, 31] do not

provide any probabilistic guarantees.

3.1.2 Outline

Section 3.2 presents notation and several basic results used in this chapter,

as well as further examples of weakly convex functions. Section 3.3 presents

our convergence analysis under the assumption that ρ is known. Section 3.3.2

presents our probabilistic guarantees. Section 3.3.3 presents our convergence

analysis when ρ is unknown. Section 3.4 preliminary presents numerical results

obtained on a robust phase retrieval problem.

3.2 Notation and Basic Results

Most of the notation and concepts we use in this chapter can be found in [149,

27]. Our main probabilistic assumption is that we work in a probability space

(Ω,F ,P) and Rd is equipped with the Borel σ-algebra, which we use to define

measurable mappings.
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For a given function F : Rd → R ∪ {∞}, we let

dom F = {x ∈ Rd | F (x) <∞} epi F = {(x, t) ∈ Rd × R | f(x) ≤ t}.

We say a function is closed if epi F is a closed set. We say a function is proper if

dom F 6= ∅.

Let F : Rd → R ∪ {∞} be a proper closed function. At any point x ∈ dom F ,

we let

∂F (x) = {v ∈ Rd |
(
∀y ∈ Rd

)
F (y) ≥ F (x) + 〈v, y − x〉+ o(‖y − x‖)}

denote the Fréchet subdifferential of F at x. On the other hand, if x /∈ dom F we

let ∂F (x) = ∅. It is an easy exercise to show that at any local minimizer x of F ,

we have the inclusion 0 ∈ ∂F (x).

For the class of weakly convex functions, all elements of the subdifferential

generate quadratic underestimators of the function F , as the following proposi-

tion shows. The equivalences are based on [29, Theorem 3.1].

Proposition 3.2.1 (Subgradients of Weakly Convex Functions). Suppose that F :

Rd → R ∪ {∞} is a closed function. Then the following are equivalent

1. F is ρ-weakly convex. That is, F + ρ
2
‖ · ‖2 is convex.

2. For any x, y ∈ Rd with v ∈ ∂F (x), we have

F (y) ≥ F (x) + 〈v, y − x〉 − ρ

2
‖y − x‖2. (3.6)

3. For all x, y ∈ Rd and α ∈ [0, 1], we have

F (αx+ (1− α)y) ≤ αF (x) + (1− α)f(y) +
ρα(1− α)

2
‖x− y‖2.
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3.2.1 Examples of Weakly Convex Functions

As stated in the introduction, the class of weakly convex functions is broad. In

the nonsmooth setting, this class includes all convex composite losses

h(c(x))

where h is convex and L-Lipschitz and c is C1 with β-Lipschitz Jacobian; such

functions are known to be βL-weakly convex [39, Lemma 4.2]. Several popular

weakly convex formulations are presented in [32, Section 2.1]. We now discuss

several further examples.

Example 3.2.2 (Censored Block Model). The censored block model [1] is a variant

of the standard stochastic block model [2], which seeks to detect two communities in

a partially observed graph. Mathematically, we encode such communities by forming

the “community matrix” M = θ̄θ̄T ∈ {−1, 1}d, where x̄ ∈ {−1, 1}d is a membership

vector in which x̄i = 1 if node i is in the first community, and x̄i = −1 otherwise. In

the censored block model, we observe a randomly corrupted version M̂ of the matrix M

M̂ =


0 with probability 1− p;

Mij with probability p(1− ε);

−Mij with probability pε.

Then our task is to recover M given only M̂ . We may formulate this problem in the

following form convex, composite form:

F (x) =
∑

ij|M̂ij 6=0

|xixj − M̂ij|.

Notice that absolute value function encourages the matrix to xxT agree with M̂ in

most of its nonzero entries—the bulk of which are equal to Mij—due to the sparsity

promoting behavior of the nonsmooth absolute value function.
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Example 3.2.3 (Robust Phase Retrieval). Phase retrieval is a common task in compu-

tational science; applications include imaging, X-ray crystallography, and speech pro-

cessing. Given a set of tuples {(ai, bi)}mi=1 ⊂ Rd × R, the (real) phase retrieval problem

seeks a vector x ∈ Rd satisfying (aTi x)2 = bi for each index i = 1, . . . ,m. This problem

is NP-hard [51]. Strictly speaking, phase retrieval is a feasibility problem. However,

when the set of measurements {bi} is corrupted by gross outliers, one considers the

following “robust” phase retrieval objective:

F (x) =
1

n

n∑
i=1

|〈ai, x〉2 − bi|.

Notice that this nonsmooth objective is given in convex composite form, and therefore,

it is weakly convex.

Example 3.2.4 (Nonsmooth Trimmed Estimation). Let f1, . . . , fn be Lipschitz con-

tinuous, convex loss functions on Rd. The goal of trimmed estimation [152, 4, 110]

is to fit a model while simultaneously detecting and removing “outlier” objectives fi.

Mathematically, we fix a number h ∈ {1, . . . , n} indicating the number of “inliers,”

and formulate the problem as follows:

minimizex∈Rd,w∈Rn
n∑
i=1

wifi(x)

subject to: wi ∈ [0, 1] and
n∑
i=1

wi = h.

One can see that for fixed x, the only objective values that contribute to the sum are

those that are among the h-minimal elements of the set {f1(x), . . . , fn(x)}. At the end

of the chapter, we provide a short proof that this objective is weakly convex. Notice that

it is in general nonconvex, despite each fi begin convex.
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3.3 Proximally Guided Stochastic Subgradient Method

In this section, we formalize the proposed algorithm. First we slightly general-

ize the problem considered in the introduction, namely we assume that

minimizex∈Rd F (x) =


f(x) if x ∈ X

∞ otherwise.
(3.7)

where f is a closed ρ-weakly convex function. Weak convexity of f implies that

each of the proximal subproblems minx∈Rd{F (x) + (1/2γ)‖x− xt‖2} is

µ := γ−1 − ρ

strongly convex. Next we introduce a stochastic subgradient oracle and a basic

assumption on F .

Assumption 1. Fix a probability space (Ω,F ,P) and equip Rd with the Borel σ-

algebra. Then we assume that

(A1) It is possible to generate IID realizations z1, z2, . . . from P.

(A2) There is an open set U ⊆ Rd containing X and a measurable mapping G : U ×

Ω→ Rd such that Ez[G(x, z)] ∈ ∂f(x).

(A3) There is a constant L ≥ 0 such that all x ∈ U have Ez[‖G(x, z)‖2] ≤ L2.

Assumption 1 is standard in the literature on stochastic subgradient meth-

ods. In particular, assumptions (A1) and (A2) are identical to assumptions (A1)

and (A2) in [119], while assumption (A3) is identical to [119, Equation (2.5)]. A

useful consequence of (A3) is that f itself is Lipschitz.

Lemma 3.3.1 (Lipschitz Continuity of f [32, Section 3.2]). Suppose that assumption

(A3) holds. Then f is L-Lipschitz continuous on U.
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The main workhorse of PGSG is a stochastic subgradient method for solv-

ing regularized subproblems minx∈Rd{F (x) + (1/2γ)‖x− xt‖2} induced by the

proximal point method. We now state this method.

Algorithm 1 Projected Stochastic Subgradient Method for Proximal Point Sub-
problems PSSM(y0, G, γ, {αt}, J)

Require: y0 ∈ X , quadratic multiplier γ > 0, maximum iterations J ∈ N, non-
negative stepsize sequence {αt}.

1: for j = 0, . . . , J − 2 do
2: Sample zj and set vj = G(yj, zj) + 1

γ
(yj − y0)

3: yj+1 = projX (yt,j − αjvj)
4: end for
5: return ỹ = 2

J(J+1)

∑J−1
j=0 (j + 1)yj .

Before introducing the Proximally Guided stochastic Subgradient (PGSG)

method, we introduce two necessary algorithm parameters:

jt ≥
11

γ2µ2
; (3.8)

αj =
2

µ

(
j + 2 +

36

γ4µ4(j + 1)

) . (3.9)

The algorithm now follows.

Algorithm 2 Proximally Guided Stochastic Subgradient Method
PGSG(y0, G, γ, {jt}, T )

Require: x0 ∈ X , weak convexity constant ρ > 0, γ ∈ (0, 1/ρ), maximum itera-
tions T ∈ N, maximum inner loop iteration {jt} satisfying (3.8).

1: Define the stepsize sequence {αj} as in (3.9)
2: for t = 0, . . . , T − 2 do
3: xt+1 = PSSM(xt, G, γ, {αj}, jt)
4: end for
5: return xR, where R is sampled uniformly from {0, . . . , T − 1}.

As stated in the introduction PGSG employs an inner-outer loop strategy,

which is shown in Algorithm 2. The outer loop executes T − 1 approximate
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proximal point steps, resulting in the iterates {xt}. The inner loop, shown in Al-

gorithm 1, approximately solves the proximal point subproblem, which is now

strongly convex, using a stochastic subgradient method for strongly convex op-

timization [89]. Beyond its use in governing the outer loop dynamics of PGSG,

the proximal point subproblems also lead to a natural measure of stationarity.

Indeed, for all t ∈ N, define the proximal point

x̂t := argmin
x∈Rd

{
F (x) +

1

2γ
‖x− xt‖2

}
. (3.10)

Note that x̂t exists and is unique by the µ-strong convexity of the proximal sub-

problem. We stress that this point, although in principle obtainable via con-

vex optimization, is never computed. Instead it is only used to formulate con-

vergence guarantees. To that end, the following Lemma shows that the gap

γ−1‖xt − x̂t‖ is a natural measure of stationarity.

Lemma 3.3.2 (Convergence Criteria). Let F : Rd → R ∪ {∞} be a proper closed

function. Let x ∈ Rd. If

x̂ ∈ argmin
y∈Rd

{
F (y) +

1

2γ
‖y − x‖2

}
,

then we have the bound

dist(x, {y ∈ Rd | dist(0, ∂F (y))2 ≤ γ−2‖x− x̂‖2}) ≤ ‖x− x̂‖2. (3.11)

Proof. As x̂ is a minimizer, we have

0 ∈ ∂
[
F (·) +

1

2γ
‖ · −x‖2

]
(y) = ∂F (y) +

1

γ
(y − x),

where the second equality follows by the sum rule for a smooth additive term

(2γ)−1‖·−x‖2 [149]. Thus, we have the inclusion x̂ ∈ {y ∈ Rd | dist(0, ∂F (y))2 ≤

γ−2‖x− x̂‖2}, which leads to the desired conclusion.
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Based on this Lemma, the iterate xt is ε-close to an ε-stationary point in ex-

pectation whenever

E‖xt − x̂t‖2 ≤ min{ε, γ2ε}.

Establishing this fact is the main technical goal of the following theorem.

Theorem 3.3.3 (Convergence of PGSG). Let x0 ∈ X , consider any T ∈ N, and let

xR = PGSG(x0, G, γ, {jt}, T ) Define the quantity

BT,{jt} :=
4

Tµ

(
F (x0)− inf F +

T−1∑
t=0

72L2

µ(jt + 1)

)
.

Then E‖xR − x̂R‖2 ≤ BT,{jt}. Consequently, we have the following bound:

E
[
dist(xR, {x | dist(0, ∂F (x))2 ≤ γ−2BT,{jt}})2

]
≤ BT,{jt}

In particular, given ∆ ≥ F (x0)− inf F , and setting

jt :=

⌈
max

(
576L2

µ2 min{ε, εγ2}
,

11

γ2µ2

)⌉
and T :=

⌈
4∆

µmin{ε, εγ2}

⌉
,

we have

E
[
dist(xR, {x | dist(0, ∂F (x))2 ≤ ε)2

]
≤ ε.

The total number of stochastic oracle evaluations required to compute this point is

bounded by jt · T = O(∆L2ε−2).

Remark 3.3.4 (Obtaining a Nearly Stationary Point). As stated, the theorem in-

dicates that xR is nearby a nearly stationary point. The proof of Lemma 3.3.2 shows

that one can in principle obtain the nearly stationary point x̂R by solving the strongly

convex stochastic optimization problem

x̂R = argmin
x∈Rd

{
F (x) + 1

2γ
‖x− xR‖2

}
,

which is solvable to any desired degree of accuracy (in expectation). Furthermore,

Lemma 3.3.2 shows that one can estimate the degree of stationarity of x̂R by the bound
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dist(0, ∂F (x̂R))2 ≤ γ−2‖xR − x̂R‖2. In particular, given an estimate, x̃R ≈ x̂R, we

have the bound dist(0, ∂F (x̂R))2 ≤ 2γ−2‖xR − x̃R‖2 + 2γ−2‖x̃R − x̂R‖2, which indi-

cates that 2γ−2‖xR − x̃R‖2 may serve as a bound on the true stationarity of x̂R (up to

tolerance 2γ−2‖x̃R − x̂R‖2).

3.3.1 Proof of Theorem 3.3.3

Throughout the proof we will need the following bound on the proximal point

step:

Lemma 3.3.5 (Bounded Steplengths). Let γ > 0, x ∈ X , and suppose that

x̂ ∈ argmin
y∈Rd

{
F (y) + 1

2γ
‖y − x‖2

}
.

Then γ−1‖x− x̂‖ ≤ 2L.

Proof. Note that

1

2γ
‖x− x̂‖2 ≤ F (x)− F (x̂) ≤ L‖x− x̂‖,

where Lipschitz continuity follows from Lemma 3.3.1. Divide both sides of the

inequality by 1
2
‖x− x̂‖ to get the result.

We now analyze one inner loop of Algorithm 2. This inner loop may be

interpreted as a variant of the stochastic projected subgradient method applied

to the strongly convex optimization problem,

minimizex∈Rd Fy(x) := F (x) + 1
2γ
‖x− y‖2,

We note that the following proof is similar in outline to [89], but the results of

that work are not sufficient for our purposes.
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Proposition 3.3.6 (Analysis of PSSM). Let y ∈ X and let ŷ be the unique minimize

of Fy(x) over all x ∈ Rd. Set ỹ = PSSM(y,G, γ, {αj}, J). Then if γ ∈ (0, 1/ρ) and

{αj} is chosen as in (3.9), we have

E[Fy(ỹ)− Fy(ŷ))] ≤ 72L2

µ(J + 1)
+

30‖y − ŷ‖2

γ4µ3J(J + 1)
;

E
[
‖ỹ − ŷ‖2] ≤ 144L2

µ2(J + 1)
+

60‖y − ŷ‖2

γ4µ4J(J + 1)
;

E
[
‖y − ỹ‖2] ≤ 288L2

µ2(J + 1)
+

(
2 +

120

γ4µ4J(J + 1)

)
‖y − ŷ‖2.

On the other hand, if 0 < αj ≤ 2γ for all j, but {αj} and γ are otherwise unconstrained,

we have

E[‖y − ỹ‖] ≤ L
J−1∑
i=0

αi.

Proof. Since ŷ ∈ X and projX is nonexpansive, we have

‖yj+1 − ŷ‖2 ≤ ‖yj − αjvj − ŷ‖2

= ‖yj − ŷ‖2 − 2αj〈yj − ŷ, vj〉+ α2
j‖vj‖2. (3.12)

To proceed further, we must bound ‖vj‖2. To that end, recall that Fy is µ-strongly

convex. Therefore, for any x ∈ X ,

Ez
∥∥∥∥G(x, z) +

1

γ
(x− y)

∥∥∥∥2

= Ez
∥∥∥∥G(x, z)− 1

γ
(ŷ − y) +

1

γ
(x− ŷ)

∥∥∥∥2

≤ Ez3‖G(x, z)‖2 + 3

∥∥∥∥1

γ
(ŷ − y)

∥∥∥∥2

+ 3

∥∥∥∥1

γ
(x− ŷ)

∥∥∥∥2

≤ 15L2 + 3

∥∥∥∥1

γ
(x− ŷ)

∥∥∥∥2

≤ 15L2 +
6

γ2µ
(Fy(x)− Fy(ŷ)),

where the first inequality follows from Jensen’s inequality, the second inequal-

ity uses (A3) twice and Lemma 3.3.5, and the third inequality follows from the

strong convexity.
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Returning to Equation (3.12), we let v̄j = Ejvj ∈ ∂Fy(yj), where Ej[·] de-

notes the expectation conditioned on y1, . . . , yj . Now, we take the conditional

expectation of both sides of the equation, yielding

Ej‖yj+1 − ŷ‖2 ≤ Ej‖yj − ŷ‖2 − 2αj〈yj − ŷ, v̄j〉+ α2
jEj‖vj‖2

≤ Ej‖yj − ŷ‖2 + α2
j

(
15L2 +

6

γ2µ
EjFy(yj)− Fy(ŷ)

)
− 2αj

(
EjFy(yj)− Fy(ŷ) +

µ

2
Ej‖yj − ŷ‖2

)
= (1− αjµ)Ej‖yj − ŷ‖2 + 15α2

jL
2 −

(
2αj −

6α2
j

γ2µ

)
(EjFy(yj)− Fy(ŷ))

≤ (1− αjµ)Et,j‖yj − ŷ‖2 + 15α2
jL

2 − αj(EjFy(yj)− Fy(ŷ)),

where the second inequality uses our bound on Ez‖G(x, z)+γ−1(x−y)‖2 and the

strong convexity of Fy, and the third inequality is a consequence of the bound:

6αj
γ2µ

=
2µ(j + 2)(6/γ2µ)

(µ(j + 2))2 + 36
γ4µ2

j+2
j+1

≤ 2µ(j + 2)(6/γ2µ)

(µ(j + 2))2 + (6/γ2µ)2
≤ 1.

Multiplying by (j + 1)/αj , we find that

(j + 1)α−1
j Ej‖yj+1 − ŷ‖2 ≤ (j + 1)

(
α−1
j − µ

)
Ej‖yj − ŷ‖2 + 15(j + 1)αjL

2

− (j + 1)(EjFy(yj)− Fy(ŷ)).

By our choice of αj , we have (j+ 1)α−1
j = (j+ 2)(α−1

j+1−µ). Therefore, summing

the previous inequality, we have

0 ≤
(
α−1

0 − µ
)
‖y − ŷ‖2 + 15L2

J−1∑
j=0

(j + 1)αj −
J−1∑
j=0

(j + 1)(EjFy(yj)− Fy(ŷ)).

Therefore, noting that
∑jt−1

j=0 (j + 1)αj ≤ 2jt/µ and α−1
0 − µ = 18/(γ4µ3), and

using the convexity of Fy, we deduce

E(Fy(ỹ)− Fy(ŷ)) ≤ 36‖y − ŷ‖2

γ4µ3J(J + 1)
+

60L2

µ(J + 1)
.
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The first distance bound then follows as a direct consequence of the strong con-

vexity of Fy, while the second follows from the convexity of ‖ · ‖2.

Finally, we now work in the case in which γ may be strictly greater than 1/ρ.

We claim that for all j = 0, . . . , J − 1, we have E[‖yj − y0‖] ≤ L
∑j

i=0 αi. Indeed,

this is clearly true for j = 0. Inductively, we also have

Ej‖yj+1 − xt‖ ≤ Ej‖yj − αj(G(yj, zj) + (yj − xt)/γ)− xt‖

≤ |1− αj/γ| · Ej‖yj − xt‖+ αjEΞ0‖G(yj, zj)‖

≤ Ej‖yj − xt‖+ αjL,

where the first inequality follows by nonexpansiveness of projX and the third

follow from the inequality 0 < αj ≤ 2γ. Applying the law of expectation com-

pletes the inductive step. Therefore, we have

E[‖y − ỹ‖] ≤ E

[
2

J(J + 1)

J−1∑
j=0

(j + 1)‖yj − y‖

]
≤ 2

J(J + 1)

J−1∑
j=0

(j + 1)

(
L

j∑
i=0

αi

)

≤ L
J−1∑
i=0

αi,

as desired.

We now give the proof of Theorem 3.3.3.

Proof of Theorem 3.3.3. By the strong convexity of the proximal point subprob-

lem, we have

F (x̂t) ≤ F (xt)−
(

1

2γ
+
µ

2

)
‖x̂t − xt‖2.

Then by Proposition 3.3.6, we have the following bound:

Et[F (xt+1)] ≤ F (x̂t) +
1

2γ
‖x̂t − xt‖2 +

72L2

µ(jt + 1)
+

30‖xt − x̂t‖2

γ4µ3jt(jt + 1)

≤ F (xt) +
72L2

µ(jt + 1)
−
(
µ

2
− 30

γ4µ3jt(jt + 1)

)
‖xt − x̂t‖2,
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where Et[·] denotes the expectation conditioned on x1, . . . , xt. Rearranging, us-

ing the lower bound on jt (which makes the multiple of ‖x̂t − xt‖2 larger than

µ/4 as 30/121 < 1/4), applying the law of total expectation, and summing, we

find that

1

T

T−1∑
t=0

E
[
‖xt − x̂t‖2

]
≤ 4

Tµ

(
F (x0)− inf F +

T−1∑
t=0

72L2

µ(jt + 1)

)
,

as desired. To complete the proof, apply Lemma 3.3.2.

3.3.2 Probabilistic Guarantees

In the previous section, we developed expected complexity results, which de-

scribe the average behavior of the PGSG over multiple runs. We are also inter-

ested in giving guarantees for a single run of an algorithm. Thus, in this section

we recall the notion of an (ε,Λ)-solution given in the introduction: a random

variable x̄ is called an (ε,Λ)-solution if

P
(
dist(x̄, {x | dist(0, ∂F (x))2 ≤ ε})2 ≤ ε

)
≥ 1− Λ.

Theorem 3.3.3 together with Markov’s inequality implies that xR, generated

with

jt :=

⌈
max

(
576L2

µ2 min{εΛ, εΛγ2}
,

12

γ2µ2

)⌉
and T :=

⌈
4∆

µmin{εΛ, εΛγ2}

⌉
,

where ∆ ≥ F (x0)− inf F , is an (ε,Λ)-solution after

jt · T = O(∆L2(εΛ)−2) (3.13)

stochastic oracle evaluations. In this section, we develop a two stage algorithm

that significantly improves the dependence on Λ in this bound.
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The method we propose proceeds in two phases. In the first phase, multiple

independent copies of PGSG are called, resulting in candidates xR1 , . . . , xRS . For

each of the candidates, we then compute an approximate proximal point x̃Rs ≈

x̂Rs . In the second phase, we select one of the candidates xRs̄ based on the size of

γ−1‖xRs − x̃Rs‖, a proxy for the true proximal step length. We will see that such

a point is (ε,Λ)-solution, and the total number of stochastic oracle evaluations

has a much better dependence on Λ.

Before we introduce the algorithm, let us define three parameters

jt :=

⌈
max

{
576L2

µ2 min{ε/24, εγ2/24}
,

11

γ2µ2

}⌉
, T :=

⌈
4∆

µmin{ε/24, εγ2/24}

⌉
,

(3.14)

and

J :=

⌈
max

{
48L2

√
2

µmin{ε, εγ2}
· S

Λ
,

11

γ2µ2
·
√
S

Λ

}⌉
,

where ∆ ≥ F (x0)− inf F . The algorithm now follows.

Algorithm 3 Two Phase Proximally Guided Stochastic Subgradient Method
2PGSG(x0, G, γ, J, S)

Require: x0 ∈ X , weak convexity constant ρ > 0, γ ∈ (0, 1/ρ), Stochastic Sub-
gradient Iteration J ∈ N, number of copies S ∈ N.

1: Define the maximum iterations T as in (3.14)
2: Define the maximum inner loop iteration {jt} as in (3.14)
3: Define the stepsize sequence {αj} as in (3.9)
4: Optimization Phase
5: for s = 1, . . . , S do
6: Set xRs = PGSG(x0, G, γ, {jt}, T ).
7: Set x̃Rs = PSSM(xRs , G, γ, {αj}, J).
8: end for
9: Post-Optimization Phase

10: Choose x∗ = xRs̄ from the candidate list {xsr}Ss=1 such that

s̄ = argmin
s=1,...,S

‖xRs − x̃Rs‖

11: return x∗
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The analysis of this algorithm requires a bound on the expectation of ‖xRs −

x̃Rs‖2 and ‖x̃Rs − x̂Rs‖2, which we now provide.

Lemma 3.3.7. Let xRs be generated as in Algorithm 3. Then

E
[
‖xRs − x̃Rs‖2

]
≤ 1

4
min{ε, γ2ε};

E
[
‖x̃Rs − x̂Rs‖2

]
≤ Λ

4S
min{ε, γ2ε}

Proof. By Proposition 3.3.6 and Theorem 3.3.3, the bound holds:

E
[
‖xRs − x̃Rs‖2

]
≤ 288L2

µ2(J + 1)
+

(
2 +

120

γ4µ4J(J + 1)

)
E
[
‖xRs − x̂Rs‖2

]
≤ 288L2

µ2(J + 1)
+

(
2 +

120

γ4µ4J(J + 1)

)
BT,{jt}

≤ Λ

8S
min{ε, γ2ε}/8 + min{ε, γ2ε}/8 ≤ min{ε, γ2ε}/4,

which proves the first bound.

On the other hand, Proposition 3.3.6 and Theorem 3.3.3 imply that

E
[
‖x̃Rs − x̂Rs‖2

]
≤ 144L2

µ2(J + 1)
+

60

γ4µ4J(J + 1)
E
[
‖xRs − x̂Rs‖2

]
≤ 144L2

µ2(J + 1)
+

60

γ4µ4J(J + 1)
BT,{jt}

≤ Λ

8S
min{ε, γ2ε}+

Λ

8S
min{ε, γ2ε} =

Λ

4S
min{ε, γ2ε},

which proves the second bound and completes the proof.

We now state the convergence guarantees for Algorithm 3.

Theorem 3.3.8. Let x0 ∈ X and let S = log2(2/Λ). Then

x∗ = 2PGSG(x0, G, γ, J, S) returned by Algorithm 3 is an (ε,Λ)-solution. The to-

tal number of stochastic oracle evaluations called by Algorithm 3 is equal to

S · (jt · T + J) = O

(
log2(1/Λ)∆L2

ε2
+

log2(1/Λ)L2

εΛ

)
. (3.15)
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Proof. By Lemma 3.3.2, it suffices to show that

P
(
‖x∗ − x̂∗‖2 ≤ min{ε, γ2ε}

)
≥ 1− Λ.

To that end, note that

‖x∗ − x̂∗‖2 = ‖(xRs̄ − x̂Rs̄)‖2

≤ 2‖xRs̄ − x̃Rs̄‖2 + 2‖x̃Rs̄ − x̂Rs̄‖2

≤ 2 min
s=1,...,S

‖xRs − x̃Rs‖2 + 2 max
s=1,...,S

‖x̃Rs − x̂Rs‖2.

Therefore, we have

P
(
‖x∗ − x̂∗‖2 ≥ min{ε, γ2ε}

)
≤ P

{
min

s=1,...,S
‖xRs − x̃Rs‖2 ≥ 1

2
min{ε, γ2ε}

)
+ P

(
max
s=1,...,S

‖x̃Rs − x̂Rs‖2 ≥ 1

2
min{ε, γ2ε}

)
.

Notice that by Markov’s inequality, independence, and Proposition 3.3.7, we

have:

P
(

2 min
s=1,...,S

‖xRs − x̃Rs‖2 ≥ 1

2
min{ε, γ2ε}

)
≤ 2−S ≤ Λ

2
.

On the other hand, by Markov’s inequality, a union bound, and Proposi-

tion 3.3.7, we have

P
(

2 max
s=1,...,S

‖x̃Rs − x̂Rs‖2 ≥ 1

2
min{ε, γ2ε}

)
≤ Λ

2
,

which shows that x∗ is an (ε,Λ)-solution.

When the second term in (3.15) is dominating, the obtained bound (3.15) is

log2(2/Λ)/εΛ times smaller than the bound (3.13) obtained by the PGSG algo-

rithm.
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3.3.3 PGSG with Unknown Weak Convexity Constant

Algorithm 2 requires that the parameters ε, L, ρ, and ∆ are known. In practice,

computing bounds on L, ρ, and ∆ may be nontrivial. In this section we show

that a simple strategy—letting jt tend to infinity and γt tend to zero—results in

a sublinear convergence rate without knowledge of any problem parameters.

We formalize this procedure in Algorithm 4 using the following parameters: fix

a hyper-parameter 0 < β < 1, and define

γt := (t+ 1)−β; (3.16)

jt := t+ 44; (3.17)

αt,j :=
4γt

j + 1 + 288
j+1

. (3.18)

The algorithm now follows.

Algorithm 4 Parameter Free Proximally Guided Stochastic Subgradient Method
PFPGSG(y0, G, T, β)

Require: x0 ∈ X , maximum iterations T ∈ N, hyper-parameter 0 < β < 1.
1: Define the sequence {γt} as in (3.16)
2: Define the stepsize sequence {αt,j} as in (3.18)
3: Define the maximum inner loop iteration {jt} as in (3.17)
4: for t = 0, . . . , T − 2 do
5: xt+1 = PSSM(xt, G, γt, {αt,0, αt,1, αt,2, . . . }, jt)
6: end for
7: return xR, where R is sampled with probability P(R = t) ∝ γt from
{0, . . . , T − 1}.

In the following, we establish convergence guarantees for the parameter free

variant of PGSG. The proof splits the analysis of PFPGSG into two parts. In the

first part, γt ≥ 1/ρ. In this setting, the analysis of the previous section does not

apply. Thus, we show that that the iterates do not wander very far. In the second

part, γt ≤ 1/ρ, and an argument similar to the one presented in Theorem 3.3.3
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applies. Combining these results then leads to the theorem. To that end, we

address the first part now.

Lemma 3.3.9. Let T0 = d(2ρ)1/βe. Then

E[F (xT0)] ≤ F (x0) + L2T0 log(T0 + 125).

Proof. By Proposition 3.3.6, as αj < 2γt, we have we have ET0‖xt+1 − xt‖ ≤

L
∑jt−1

j=0 αj for all t = 0, . . . , T0 − 1.

ET0F (xT0) ≤ F (x0) + LET0‖xT0 − x0‖

≤ F (x0) + L

T0−1∑
t=0

ET0‖xt+1 − xt‖

≤ F (x0) + L2

T0−1∑
t=0

jt−1∑
j=0

αt,j

≤ F (x0) + L2

T0−1∑
t=0

jt−1∑
j=0

4

j + 1

≤ F (x0) + L2T0 log(T0 + 125), (3.19)

as desired.

We now address the second part of the argument, and with it, deduce the

following theorem. At first glance, the presented rate appears to be better than

the rate obtained by Algorithm 2, which requires knowledge of ρ. However, it

is not because the factor γ−2
R = (R + 1)2β is no longer a constant. Instead, the

convergence rate of Algorithm 4 is on the order of O(T 1−β) in the worst case.

Theorem 3.3.10 (Convergence of Parameter Free PGSG). Let T0 = d(2ρ)1/βe. And

consider any T ∈ N. Let xR = PFPGSG(x0, G, T, β). Define the quantity

CT,{jt} :=
8(1 + β)

(T + 1)1+β

(
F (x0)− inf F + (144C + T0 log(T0 + 125) + T0

2
)L2
)
,
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where C :=
∑∞

t=T0
t−1−β < ∞. Then E‖xR − x̂R‖2 ≤ CT,{jt}. Consequently, we have

the following bound:

E
[
dist(xR, {x | dist(0, ∂F (x))2 ≤ (R + 1)2βCT,{jt}})2

]
≤ CT,{jt}.

Proof. Suppose that t ≥ T0 and notice this ensures γt ∈ (0, 1/ρ). Following an

argument nearly identical to the proof of Theorem 3.3.3, we find that for all

t ≥ T0, we have

Et[F (xt+1)] ≤ F (xt) +
72L2

µt(jt + 1)
−
(
µt
2
− 30

γ4
t µ

3
t jt(jt + 1)

)
‖xt − x̂t‖2,

where µt = γ−1
t − ρ and Et[·] denotes the expectation conditioned on x1, . . . , xt.

We now show that the coefficient of −‖xt − x̂t‖2 is greater than or equal to µt/4.

Indeed, it suffices to show that jt ≥ 12/(1− γtρ)2. To that end, note that

γt ≤ (d(2ρ)1/βe+ 1)−β ≤ 1/(2ρ).

Therefore, 1− γtρ ≥ 1/2, which leads to the claimed inequality: 12/(1− γtρ)2 ≤

44 ≤ jt.

Using the lower bound µt ≥ 1/(2γt) (which follows because t ≥ T0), we thus

find

T−1∑
t=T0

1

8γt
E
[
‖xt − x̂t‖2

]
≤ E[F (xT0)− inf F ] +

T−1∑
t=T0

144γtL
2

(jt + 1)

≤ F (x0)− inf F +
T−1∑
t=T0

144γtL
2

(jt + 1)
+ L2T0 log(T0 + 125).

We would like to extend the sum on the left hand side of the previous inequality

to all t between 0 and T − 1. To that end, we bound the excess terms

T0−1∑
t=0

1

8γt
E
[
‖xt − x̂t‖2

]
≤

T0−1∑
t=0

γtL
2

2
≤ T0L

2

2
.
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Therefore, using the bounds
∑∞

t=T0
γt/(jt + 1) ≤

∑∞
t=T0

t−1−β = C < ∞ and∑T−1
t=0 γ

−1
t ≥

∫ T−1

−1
(t+ 1)βdt = T 1+β/(1 + β), we have,

E
[
‖xR − x̂R‖2

]
=

1∑T−1
t=0 γ

−1
t

T−1∑
t=0

1

γt
E
[
‖xt − x̂t‖2

]
≤ 8(1 + β)

(T + 1)1+β

(
F (x0)− inf F + 144CL2 + L2T0 log(T0 + 125) +

T0L
2

2

)
,

as desired. To complete the proof, apply Lemma 3.3.2.

We remark that this convergence rate can be directly utilized to give a com-

plexity bound on computing an ε-expected stationary point. Completing T

outer iterations, requires O(T 2) oracle evaluations since jt is selected as (3.17).

Then observing that CT,{jt} ≤ ε if T ≥ O(ε−1/(1+β)), we must find an ε-expected

stationary point after at most O(ε−2/(1+β)) oracle evaluations.

3.4 Experimental Results

In this section we address the population version of the robust real phase re-

trieval problem: fix a vector x̄ ∈ Rd and define

F (x) := Ea,δ,ξ
[
|〈a, x〉2 − (〈a, x̄〉2 + δ · ξ)|

]
, (3.20)

where a, δ, and ξ are independent random variables satisfying the following

assumptions

(B1) a is a zero mean standard Gaussian random variable in Rd;

(B2) δ is a {0, 1}-random variable with P (δ = 1) = 0.25;

64



(B3) ξ is a zero mean Laplace random variable with scale parameter 1.

In this setting, it is possible to show that the only minimizers of F (x) are±x̄ [35,

Lemma B.8]. In Lemma 3.5.2, we show that this function is 2-weakly convex.

Implementation. Each step of PGSG and the stochastic subgradient method

requires access to a subgradient of a random function of the form

f(x, a, δ, ξ) = |〈a, x〉2 − (〈a, x̄〉2 + δ · ξ)|.

We choose the selection operator

G(x, a, δ, ξ) = 2〈a, x〉a · sign(〈a, x〉2 − (〈a, x̄〉2 + δ · ξ)) ∈ ∂xf(x, a, δ, ξ).

It is a straightforward exercise to show that G satisfies assumption 1 on any

bounded set X . For our purposes we choose X to be a closed ball with a large

radius, r = 106. In our experiments, we never had to explicitly enforce this

constraint.

Experiment 1: Sensitivity to Stepsize. In the first experiment we compare

the performance of PGSG to the stochastic subgradient method, which pos-

sessed no complexity guarantees at the time of writing this manuscript. In the

stochastic subgradient method, we choose stepsizes of the form γ/(t + 10)β for

varying γ > 0 and β ∈ {1/2, 1}. For PGSG, we chose varying values of γ > 0

and then set αj by (3.9), jt = 250, and µ = 1/2γ. Figure 3.1 shows the result of

running these two methods to solve robust real phase retrieval problems with

d = 50.

Like the choice of γ and consequently αj , the choice of jt is also important for

the practical performance of PGSG. The condition (3.8) used in the analysis of

PGSG is often overly conservative and leads to worse performance in practice.
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(a) (b)

Figure 3.1: Performance of PGSG and the subgradient method for values of γ
averaged over 50 trials. Error bars are included to show one standard deviation.
Plot (a) shows the relative distance to a minimizer after 25000 subgradient eval-
uations. Plot (b) shows the number of subgradient evaluations needed until the
relative distance 0.05 to a minimizer.

In our experiments, we chose the constant jt = 250 to balance the quality of the

solution to the proximal subproblems with the total number of approximately

solved subproblems.

Experiment 2: Mean and Variance of Solution Estimates. Unlike the

subgradient method, PGSG provides an easily computed estimate of the of

how close xR is to a nearly stationary point; see the discussion surrounding

Lemma 3.11 and Remark 3.3.4. For PGSG, 2PGSG, and PFPGSG, this is given

by γ−1‖xR − xR+1‖, γ−1‖xRs − x̃Rs‖, and γ−1
R ‖xR − xR+1‖ respectively. Proposi-

tion 3.3.6 shows these estimates are close to γ−1‖xR− x̂R‖ in expectation, which,

according to Lemma 3.11, is a natural measure of stationarity. Using these sta-

tionarity measures, we analyze the numerical performance of the three algo-

rithms proposed in this manuscript.

Based on the results of Experiment 1, we set γ = 2−6 for the PGSG and 2-

PGSG algorithms. We furthermore set αj by (3.9) and let µ = 1/2γ. For both
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methods, we consider two different selections for the number of inner iterations

jt ∈ {103, 104}. These choices determine the level of stationarity reached by the

algorithm. For 2PGSG, we fix S = 5 and J = 5T . For PFPGSG, we set β = 1/2,

γt = (t+ 1)−β/10 (which differs from (3.16) by a factor of ten), jt as in (3.17), and

αj as in (3.18).

Table 3.1 lists the mean and variance of the stationarity measures averaged

over 50 trials. Each sub column shows the performance of the target algorithm

as the computational budget increases. We find that with jt = 103, both PGSG

and 2PGSG quickly converge to a region of stationarity and then do not im-

prove. With jt = 104, both of these methods reach a level of stationarity an

order of magnitude smaller than with the choice jt = 103. Under sufficiently

large computational budget (2500000 stochastic subgradient evaluations), the

variance of the stationarity reported by 2PGSG is consistently lower than that

of PGSG as expected from Theorem 3.3.8. Finally, we note that the performance

of PFPGSG is similar to PGSG in most regimes.

3.5 Addendum - Examples of Weak Convexity

3.5.1 Trimmed Estimation

Proposition 3.5.1. Suppose that f1, . . . , fn are convex, L-Lipschitz continuous func-

tions on Rd. Then the objective

F (w, x) =


1
n

∑n
i=1 wifi(x) if wi ∈ [0, 1] and

∑n
i=1wi = h;

∞ otherwise.
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Calls PGSG PGSG 2PGSG 2PGSG PFPGSG
jt = 1000 jt = 10000 jt = 1000 jt = 10000

d = 50

100000 mean 1.538 10.02 1.099 12.46 2.877
var. 0.0380 1.683 0.0153 5.871 0.178

500000 mean 1.492 0.2043 1.024 8.406 1.615
var. 0.0542 9.27e-4 0.0119 0.669 0.0421

2500000 mean 1.575 0.2083 1.034 0.1331 0.847
var. 0.0600 7.53e-4 0.0152 2.562e-4 0.0128

d = 100

100000 mean 3.632 17.12 2.703 23.04 6.625
var. 0.137 3.287 0.0544 6.117 0.361

500000 mean 3.579 3.678 2.534 11.83 3.815
var. 0.145 22.35 0.0430 0.891 0.145

2500000 mean 3.622 0.540 2.564 0.365 2.121
var. 0.127 2.71e-3 0.0468 1.01e-3 0.0380

d = 500

100000 mean 27.67 76.86 24.32 100.7 41.65
var. 8.843 16.95 2.465 20.31 6.471

500000 mean 25.53 23.52 17.13 42.25 25.59
var. 1.519 1.474 0.341 4.772 1.946

2500000 mean 25.64 4.759 17.10 3.519 15.09
var. 1.236 0.0454 0.374 0.0118 0.452

d = 1000

100000 mean 64.73 156.5 34.36 199.5 59.25
var. 14.37 49.09 2.388 53.92 167.2

500000 mean 55.97 40.99 33.61 86.97 54.48
var. 3.426 2.091 0.890 9.233 71.38

2500000 mean 55.27 11.88 33.40 9.008 33.86
var. 4.854 0.119 0.634 0.055 1.350

Table 3.1: Estimated stationarity level for each of the proposed algorithms aver-
aged over 50 trails.
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is L-weakly convex.

Proof. We argue using Proposition 3.2.1. Let (w, x), (w̃, x̃) ∈ dom F and let λ ∈

[0, 1]. Then

F ((1− λ)(w, x) + λ(w̃, x̃))

=
1

n

n∑
i=1

((1− λ)wi + λw̃i)fi((1− λ)x+ λx̃)

=
1

n

n∑
i=1

(1− λ)wifi((1− λ)x+ λx̃) +
1

n

n∑
i=1

λw̃ifi((1− λ)x+ λx̃)

≤ 1

n

n∑
i=1

(1− λ)wi((1− λ)fi(x) + λfi(x̃)) +
1

n

n∑
i=1

λw̃i((1− λ)fi(x) + λfi(x̃))

=
1

n

n∑
i=1

(1− λ)wifi(x) +
1

n

n∑
i=1

λ(1− λ)wi(fi(x̃)− fi(x))

+
1

n

n∑
i=1

λw̃ifi(w̃i) +
1

n

n∑
i=1

λ(1− λ)w̃i((fi(x)− fi(x̃))

= (1− λ)F (w, x) + λF (w̃, x̃) +
1

n
λ(1− λ)

n∑
i=1

(w̃i − wi)((fi(x)− fi(x̃))

≤ (1− λ)F (w, x) + λF (w̃, x̃) +
λ(1− λ)L

2
‖w − w̃‖2 +

λ(1− λ)L

2
‖x− x̃‖2,

as desired.

3.5.2 Weak Convexity of Robust Phase Retrieval

Lemma 3.5.2. The robust phase retrieval loss defined in (3.20) is 2-weakly convex.

Proof. For all x, y, a ∈ Rd, we have

〈a, λx+ (1− λ)y〉2 = λ〈a, x〉2 + (1− λ)〈a, y〉2 − λ(1− λ)〈a, y − x〉2.
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Thus, we have

F (λx+ (1− λ)y)

= Ea,δ,ξ
[
|〈a, λx+ (1− λ)y〉2 − (〈a, x̄〉2 + δ · ξ)|

]
≤ λF (x) + (1− λ)F (y) + λ(1− λ)Ea

[
〈a, y − x〉2

]
= λF (x) + (1− λ)F (y) + λ(1− λ)‖x− y‖2.

Therefore, by Proposition 3.2.1, F is 2-weakly convex.
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CHAPTER 4

PROXIMAL BUNDLE METHOD CONVERGENCE RATES

4.1 Introduction

Adaptive optimization algorithms, those capable of adapting as they encounter

problem structure, play an important role in the development of practical opti-

mization methods. These methods often speed-up in the presence of prevalent

structures like growth/error bounds or KL conditions without requiring prior

knowledge of what structure will be present.

In particular, this chapter is interested in solving unconstrained convex min-

imization problems of our recurring form (1.1)

min
x∈Rn

f(x) (4.1)

that attain their minimum value at some x∗ ∈ Rn. We are interested in adapting

to solve this problem under a variety of different assumptions on f , considering

settings where f may be M -Lipschitz continuous

|f(x)− f(y)| ≤M‖x− y‖ , (4.2)

may be differentiable with an L-Lipschitz gradient (often referred to as L-

smoothness)

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ , (4.3)

and may satisfy a Hölderian growth bound

f(x)− f ∗ ≥ µ‖x− x∗‖p . (4.4)
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Particularly important cases are when p = 1 and p = 2, which correspond to

sharp growth (µ-SG) [23] and quadratic growth (µ-QG), generalizing strong con-

vexity, respectively.

The core finding of this chapter is showing that a very classic and time-

tested first-order method, the proximal bundle method, is an adaptive algo-

rithm, speeding up in the presence of either smoothness or Hölder growth. Bun-

dle methods were first developed and proposed independently in [93] and [170].

Computationally cheaper bundle methods which aggregate cuts were analyzed

in [82, 84]. The central result in the convergence theory of bundle methods

is that (for convex f that attain their minimum value somewhere) its two se-

quences of iterates {zk}∞k=0 and {xk}∞k=0 both converge to a minimizer of f . That

is, the bundle method when run with no stopping criteria has

lim
k→∞

xk = lim
k→∞

zk = x∗ ∈ argmin f. (4.5)

Importantly, this holds for any constant configuration of its algorithmic param-

eters. See [84, Thm. 4.9], [78, Thm. XV.3.2.4], or [155, Thm. 7.16] for proofs of

different variations of this result.

This stands in harsh contrast to other first-order methods: for example, gra-

dient descent and its accelerated variants rely on selecting a stepsize inversely

proportional to the level of smoothness, and in nonsmooth optimization, sub-

gradient methods rely on carefully controlled decreasing stepsize sequences.

These simpler algorithms may fail to converge if these rules are not followed.

In 2000, Kiwiel [86] gave the first convergence rate for the proximal bundle

method, showing that an ε-minimizer xk is found within

k ≤ O

(
‖x0 − x∗‖4

ε3

)
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iterations. More recently, Du and Ruszczyński [41] gave the first analysis of bun-

dle methods when applied to problems satisfying a quadratic growth bound.

In this case, an ε-minimizer is found within Õ(1/ε) iterations. Despite having

weaker convergence rate guarantees than simple alternatives like the subgra-

dient method, bundle methods have persisted as a method of choice for non-

smooth convex optimization. In practice, bundle methods have proven to be

efficient methods for solving many nonsmooth problems (see [94, 156, 157, 76]

for further discussion). Extensions that apply to nonconvex problems have been

considered in [3, 72, 83, 111] and an extension to problems where only an inexact

first-order oracle was recently given in [73].

Stronger convergence rates have been established for related level bundle

methods [95], which share many core elements with proximal bundle methods.

Further variations of level bundle methods were studied in [85] and [90]. The

results of Lan [90] are particularly impressive as their proposed method has

optimal convergence rates for both smooth and nonsmooth problems while re-

quiring very little input.

Our Contributions. We show that the most classic version of the bundle

method (the proximal bundle method) is an adaptive algorithm, converging

faster in the presence of smoothness or Hölder growth. Our analysis tech-

nique applies to every combination of continuity/smoothness assumption (4.2)

or (4.3) and growth assumption (4.4) and to constant stepsize selections as well

as adaptively chosen ones. In Table 4.1, we show the leading term in O(ε−1) of

our convergence rates for each of these varied settings. Full theorem statements

are given in Section 4.3 and apply for any Hölder growth exponent (rather than

just the cases of p = 1 and p = 2 shown in the table).
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Assumptions Rate for generic ρ Rate for tuned ρ Rate for adaptive ρk

M
-L

ip
sc

hi
tz No Growth O

(
M2‖x0 − x∗‖4

ρε3

)
O

(
M2‖x0 − x∗‖2

ε2

)
O

(
M2‖x0 − x∗‖2

ε2

)
µ-QG O

(
M2

min{µ, ρ}ε

)
O

(
M2

µε

)
O

(
M2

µε

)
µ-SG O

(
M2

ρε

)
O

(
M2

µ2

√
f(x0)− f∗

ε

)
O

(
M2

µ2
log

(
f(x0)− f∗

ε

))
L

-S
m

oo
th No Growth O

(
L3‖x0 − x∗‖2

ρ2ε

)
O

(
L‖x0 − x∗‖2

ε

)
O

(
L‖x0 − x∗‖2

ε

)
µ-QG O

(
L3

ρ2µ
log

(
f(x0)− f∗

ε

))
O

(
L

µ
log

(
f(x0)− f∗

ε

))
O

(
L

µ
log

(
f(x0)− f∗

ε

))

Table 4.1: The first column applies for any choice of the algorithmic parameter
ρ, showing progressively faster convergence as more structure is introduced.
The second column shows the rate after optimizing the choice of ρ. The third
column further improves these by allowing nonconstant stepsizes ρk.

The existing convergence theory for the proximal bundle method applies

to settings that are comparable to the first two rows of our table. Kiwiel [86]

derived a O(ε−3) convergence rate for Lipschitz problems, which agrees with

our theory. Du and Ruszczynski [41] showed a O(log(1/ε)/ε) convergence rate

for Lipschitz, strongly convex problems which we improve on by removing

the extra logarithmic term and thus achieve the optimal convergence rate for

this setting of O(1/ε). To our knowledge, the rest of our convergence results

apply to wholly new settings for the proximal bundle method. In all of the

M -Lipschitz settings considered, we show that using a nonconstant stepsize,

the bundle method attains the optimal nonsmooth convergence rate. In the L-

smooth settings considered, we find that the bundle method converges at the

same rate as gradient descent (although, unlike gradient descent, our conver-

gence theory applies to any configuration of its algorithmic parameters).

Finally, we propose a parallelizable variant of the bundle method that avoids

the reliance on tuning a stepsize or sequence of stepsizes based on potentially

unrealistic knowledge of underlying problem constants. Applying our analysis
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technique to this parallel method shows it attains the optimal nonsmooth con-

vergence rates for Lipschitz problems with any level of Hölder growth (up to

the cost of running a logarithmic number of instances of the bundle method in

parallel).

4.2 Bundle Methods

Here we formally define the family of proximal bundle methods to which our

theory applies as well as our improved parallel bundle method. We conclude

this section with an outline of our convergence analysis technique.

4.2.1 The Proximal Bundle Methods

Proximal Bundle Methods work by maintaining a model function fk : Rn → R at

each iteration k. Each iteration has a current iterate xk and computes a candidate

for the next iterate as

zk+1 = argmin
z∈X

fk(z) +
ρk
2
‖z − xk‖2.

Note the first-order optimality condition for this subproblem defines a subgra-

dient

sk+1 = ρk(zk+1 − xk) ∈ ∂fk(zk+1).

If the candidate zk+1 has at least β ∈ (0, 1) fraction of the decrease in objective

value that our model fk(·) predicts, then the method takes xk+1 = zk+1 as the

next iterate, called a Descent Step. Otherwise the method keeps the iterate the

same xk+1 = xk, called a Null Step. Regardless of which type of step was taken,
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the model function is improved based on zk+1 and a subgradient gk+1 ∈ ∂f(zk+1)

satisfying the following three properties for all x ∈ Rd:

it must always be uniformly upper bounded by the original objective

fk+1(x) ≤ f(x) , (4.6)

the subgradient of f at zk+1 must give an affine lower bound of

fk+1(x) ≥ f(zk+1) + 〈gk+1, x− zk+1〉 , (4.7)

and after any null step k, the subgradient of fk at zk+1 must give an affine lower

bound of

fk+1(x) ≥ fk(zk+1) + 〈sk+1, x− zk+1〉 . (4.8)

Lastly, we require that after any null step k, the proximal parameter does not

change

ρk+1 = ρk . (4.9)

The proximal bundle method is stated fully in Algorithm 5.

Algorithm 5 Proximal Bundle Method

Require: z0 = x0 ∈ Rn, f0(z) = f(x0) + 〈g0, z − x0〉
1: for k ≥ 0 do
2: Compute candidate iterate zk+1 ← argmin

z∈X
fk(z) +

ρk
2
‖z − xk‖2.

3: if β(f(xk)− fk(zk+1)) ≤ f(xk)− f(zk+1) (Descent step)
4: set xk+1 ← zk+1,
5: else (Null step)
6: set xk+1 ← xk.
7: Update fk+1 and ρk+1 satisfying (4.6), (4.7), (4.8), and (4.9).
8: end for

Bundle Method Model Function Choices

Several different methods for constructing the model functions fk satisfy-

ing (4.6)-(4.8) have been considered. In practice, the main consideration lies
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in weighing potentially greater per iteration gains from having more complex

models and lower iteration costs from having simpler models. Recently, Nes-

terov and Florea [129] proposed a method for efficiently solving piecewise linear

subproblems similar to those considered here in the context of smooth optimiza-

tion.

Full-Memory Proximal Bundle Method The earliest proposed bundle meth-

ods [93, 170] rely on using all of the past subgradient evaluations to construct

the models as

fk+1(x) = max
j=0...k+1

{f(zj) + 〈gj, x− zj〉}. (4.10)

In this case, solving the quadratically regularized subproblem at each iteration

amounts to solving a quadratic program.

Finite Memory Proximal Bundle Method Alternatively using the cut-

aggregation approach of [82, 84], the collection of k + 1 lower bounds used

by (4.10) can be simplified down to just two linear lower bounds. The only two

necessary lower bounds are exactly those required by (4.7) and (4.8). Namely,

one could construct the model functions as

fk+1(x) = max{fk(zk+1) + 〈ρk(zk+1 − xk), x− zk+1〉, f(zk+1) + 〈gk+1, x− zk+1〉}.

(4.11)

Then the subproblem that needs to be solved at each iteration can be done in

closed form, see (4.17). Hence the iteration cost using this model is limited pri-

marily by the cost of one subgradient evaluation.
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Bundle Method Stepsize Choices

The simplest stepsize choice is to select ρk = ρ ∈ R as a constant value. In Sec-

tion 4.3.1, we present convergence theory for the bundle method using a generic

constant, giving the first column of Table 4.1. Tuning this constant to minimize

the resulting convergence guarantee gives the second column of Table 4.1.

Further improvements in convergence guarantees follow from allowing non-

constant stepsizes. If the optimal objective f(x∗) is known, Section 4.3.2 derives

guarantees following from selecting the proximal stepsize parameter as

ρk = (f(xk)− f(x∗))/D2 (4.12)

where D2 ≥ sup{‖x− x∗‖2 | f(x) ≤ f(x0)} for generic problems and as

ρk = µ2/p(f(xk)− f(x∗))1−2/p (4.13)

when Hölder growth (4.4) holds, matching the third column of Table 4.1. These

choices are motivated by mimicking the following idealistic (and impractical)

stepsize rules that naturally arises from our theory

ρk =
f(xk)− f(x∗)

‖xk − x∗‖2
. (4.14)

Other interesting nonconstant stepsizes could also be considered. Stepsizes that

decrease over time, mirroring those employed for subgradient methods, could

be taken to decrease ρk over time based on the number of descent steps taken

so far (using the number of descent steps rather than total steps to satisfy (4.9)).

The analysis of such schemes is beyond the scope of this chapter.
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4.2.2 The Parallel Bundle Method

Here we give a practical scheme for applying the bundle method that attains

the same complexity as our optimally tuned nonconstant stepsizes without any

knowledge of problem structure (i.e., the presence of smoothness or growth

bounds or the associated constants). We do this by employing a logarithmic

number of instances of the bundle method with different constant stepsizes in

parallel that continually share their progress with each other (inspired by the

ideas of [142]). By doing so, we recover our optimal rates, up to the cost of

running a logarithmic number of algorithms which can be mitigated through

parallelization.

The core observation behind our parallel method is that our nonconstant

stepsize rules (4.12) and (4.13) are always in the interval

ρk ∈
[
Ω(ε), O(ε−1)

]
before an ε-minimizer is found. As input, we only assume the following are

given: a lower bound ρ̄ and an upper bound 2J ρ̄ on the range of stepsizes to

consider. Provided our stepsize rules (4.12) and (4.13) lie in this interval,

ρk ∈
[
ρ̄, 2J ρ̄

]
,

we are able to recover our optimal convergence rates. Notice that the interval

[ρ̄, 2J ρ̄] can span the whole range of stepsizes needed for our Hölder growth

analysis by setting ρ̄ = O(ε) and J = O(log(1/ε2)). Our resulting convergence

guarantees only depend logarithmically on the size of this interval (a cost which

can be mitigated through parallelization), so ρ̄ and 2J ρ̄ can bet set generously at

little cost.
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Defining the Parallel Bundle Method

We propose running J copies of the bundle method in parallel, which share their

progress with each other as described below. Each bundle method j ∈ {0, . . . J−

1} uses a constant stepsize ρ(j) = 2j ρ̄. Denote the iterates of bundle method j by

x
(j)
k and its model objectives by f (j)

k . Each bundle method j proceeds as normal

with the only modification being that after it takes a descent step, the algorithm

checks if any other bundle method j′ has an iterate with an even lower objective

value f(x
(j′)
k ) < f(x

(j)
k+1). If such an improvement exists, the bundle method

instead descends to the best such iterate, setting
x

(j)
k+1 ← x

(j′)
k

f
(j)
k+1(z) ← f(x

(j′)
k ) + 〈g(j′)

k , z − x(j′)
k 〉

and then proceeds.

For the sake of analysis, we assume that each parallel instance of the bundle

method operates synchronously, with every instance completing one iteration

before any instance completes a second iteration. This process can be imple-

mented sequentially by cycling through the bundle method instances, comput-

ing one iteration for each before repeating. An asynchronous variant of this pro-

cedure could be analyzed as well (using ideas from the asynchronous restarting

analysis of [142]) but is beyond the focus of this chapter.

Analysis Overview and Proof Sketch

Each iteration of the bundle method can be viewed as attempting to mimic the

proximal point method, using the model fk instead of the true objective function
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f . At each iteration k, denote the objective gap of the proximal subproblem

(called the proximal gap) by

∆k = f(xk)−
(
f(x̄k+1) +

ρk
2
‖x̄k+1 − xk‖2

)
where x̄k+1 = argminx∈Rd

{
f(x) + ρk

2
‖x− xk‖2

}
.

Regardless of which continuity, smoothness and growth assumptions are

made, our analysis works by relating the proximal steps computed by the bun-

dle method on the models fk to proximal steps on f . The following pair of

observations show that the behavior on both descent steps and null steps is

controlled by the proximal gap ∆k.

(i) Descent steps attain decrease proportional to the proximal gap.

Lemma 4.2.1. Every descent step k has

f(xk+1) ≤ f(xk)− β∆k.

(ii) The number of consecutive null steps is bounded by the proximal gap.

Lemma 4.2.2. A descent step k followed by T consecutive null steps has at most

T ≤ 2G2
k

(1− β)2ρk∆k+1

where Gk = sup{‖gt+1‖ | k ≤ t ≤ k + T}. For Lipschitz or smooth objectives,

this simplifies to

T ≤


2M2

(1− β)2ρk∆k+1

if f is M -Lipschitz

4(L+ ρk)
3

(1− β)2ρ3
k

if f is L-smooth .
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With these two observations in hand, convergence guarantees for the bundle

method follow from specifying any choice of the parameter ρk. Standard anal-

ysis [155] of the proximal gap shows the following bound for any minimizer

x∗.

Lemma 4.2.3. For any xk ∈ Rn, the proximal gap is lower bounded by

∆k ≥


1

2ρk

(
f(xk)− f(x∗)

‖xk − x∗‖

)2

if f(xk)− f(x∗) ≤ ρk‖xk − x∗‖2

f(xk)− f(x∗)− ρk
2
‖xk − x∗‖2 otherwise.

(4.15)

All of our analysis (for any combination of continuity/smoothness condi-

tion (4.2) or (4.3) and potential growth condition (4.4)) follows directly from

applying these core lemmas. We bound the number of descent steps by combin-

ing Lemmas 4.2.1 and 4.2.3 to give a recurrence relation describing the decrease

in the objective gap. Then Lemmas 4.2.2 and 4.2.3 together allow us to bound

the number of consecutive null steps between each of these descent steps, which

can then be summed up to bound the total number of iterations required.

4.3 Formal Statement of Convergence Guarantees

We present our convergence guarantees in order of increasing sophistication in

the stepsize policy. First we give guarantees for any constant configuration of

the proximal bundle method, then we consider two nonconstant stepsize poli-

cies, and finally, we analyze our parallel bundle method.
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4.3.1 Convergence Rates from Constant Stepsize Choice

First we formalize our convergence theory for the proximal bundle method us-

ing any constant choice of the stepsize parameter ρk = ρ and any β ∈ (0, 1).

These guarantees all match those claimed in the first column of Table 4.1. After

each theorem, we remark on the tuned choice of ρ that gives rise to the claimed

rate in the second column of Table 4.1. First we consider the setting where only

Lipschitz continuity is assumed.

Theorem 4.3.1. For any M -Lipschitz objective function f , consider applying the bun-

dle method using a constant stepsize ρk = ρ. Then for any 0 < ε ≤ f(x0)− f(x∗), the

number of descent steps before an ε-minimizer is found is at most

2ρD2

βε
+


2 log

(
f(x0)−f(x∗)

ρD2

)
β


+

and the number of null steps is at most

12ρM2D4

β(1− β)2ε3
+

8M2

β(1− β)2ρ2D2

where D2 = supk ‖xk − x∗‖2 <∞.

Remark 4.3.2. It follows from [155, (7.64)] that D2 ≤ ‖x0 − x∗‖2 + 2(1−β)(f(x0)−f∗)
βρ

.

Alternatively, if the level sets of f are bounded, the fact that f(xk) is non-increasing

ensures D2 ≤ sup{‖x− x∗‖2 | f(x) ≤ f(x0)}.

Remark 4.3.3. Carefully selecting the proximal parameter ρ > 0 reduces the number

of gradient oracle queries required to find an ε-minimizer. Selecting ρ = ε/D2 gives an

overall complexity bound of

O

(
M2D2

ε2

)
and matches the optimal rate for nonsmooth, Lipschitz optimization, plus an additive

log term.
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If instead of Lipschitz continuity of the objective, we assume the objective

has Lipschitz gradient, the bundle method adapts to give the following faster

rate.

Theorem 4.3.4. For any L-smooth objective function f , consider applying the bundle

method using a constant stepsize ρk = ρ. Then for any 0 < ε ≤ f(x0) − f(x∗), the

number of descent steps before an ε-minimizer is found is at most

2ρD2

βε
+


2 log

(
f(x0)−f(x∗)

ρD2

)
β


+

and the number of null steps is at most

4(L+ ρ)3

(1− β)2ρ3

2ρD2

βε
+


2 log

(
f(x0)−f(x∗)

ρD2

)
β


+

+ 1


where D2 = supk ‖xk − x∗‖2 <∞.

Remark 4.3.5. Carefully selecting the proximal parameter ρ > 0 can improve the de-

pendency on L in the convergence rate. Namely selecting ρ = L gives an overall com-

plexity bound of
16LD2

β(1− β)2ε
.

This matches the standard convergence rate for gradient descent.

Next we reconsider the settings of Lipschitz continuity and smoothness with

additional structure in the form of a Hölder growth bound. We find that the

convergence guarantees divide into three regions depending on the growth ex-

ponent p, whether it is large, equal to, or smaller than 2. Here p = 2 is the

critical exponent value since the proximal subproblem is adding in quadratic

regularization. Regardless, as p decreases, the bundle method converges faster.
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Theorem 4.3.6. For anyM -Lipschitz objective function f satisfying the Hölder growth

condition (4.4), consider applying the bundle method using a constant stepsize ρk = ρ.

Then for any 0 < ε ≤ f(x0)− f(x∗), the number of descent steps before an ε-minimizer

is found is at most

2ρ

(1− 2/p)βµ2/pε1−2/p
+


2 log

(
f(x0)−f(x∗)

(ρ/µ2/p)1/(1−2/p)

)
β


+

if p > 2
2 log

(
f(x0)−f(x∗)

ε

)
βmin{µ/ρ, 1}

 if p = 2
2 log

(
(ρ/µ2/p)1/(1−2/p)

ε

)
β


+

+
2ρ(f(x0)− f ∗)2/p−1

(1− 21−2/p)βµ2/p
if 1 ≤ p < 2

and the number of null steps is at most

12ρM2

(1− 2/p)β(1− β)2µ4/pε3−4/p
+

8M2

β(1− β)2(ρ/µ2/p)1/(1−2/p)
if p > 2

4M2

β(1− β)2 min{µ/ρ, 1}ρε
if p = 2

4M2

β(1− β)2ρε
+

8M2

β(1− β)2ρ(ρ/µ2/p)1/(1−2/p)
C if 1 ≤ p < 2

where C = max
{

(f(x0)−f∗)4/p−3

(ρ/µ2/p)(4/p−3)/(1−2/p) , 1
}

min
{

1
1−2−|4/p−3| ,

⌈
log2

(
f(x0)−f∗

(ρ/µ2/p)1/(1−2/p)

)⌉}
.

Remark 4.3.7. Carefully selecting the proximal parameter ρ > 0 can improve the de-

pendency on ε and µ in the convergence rate. When p = 2, selecting ρ = µ gives an

overall complexity bound of O(M2/µε). This matches the optimal rate, plus an additive

log term. When p = 1, selecting ρ = O(1/
√
ε) minimizes this bound, but the result-

ing sublinear O(1/
√
ε) rate falls short of the best possible rate (linear convergence) for

sharp, Lipschitz optimization. In the next section where we consider nonconstant step-

sizes, this disconnect will be remedied and a linear convergence guarantee will follow.

Theorem 4.3.8. For any L-smooth objective function f satisfying the Hölder growth

condition (4.4), consider applying the bundle method using a constant stepsize ρk = ρ.

85



Then for any 0 < ε ≤ f(x0)− f(x∗), the number of descent steps before an ε-minimizer

is found is at most

2ρ

(1− 2/p)βµ2/pε1−2/p
+


2 log

(
f(x0)−f(x∗)

(ρ/µ2/p)1/(1−2/p)

)
β


+

if p > 2
2 log

(
f(x0)−f(x∗)

ε

)
βmin{µ/ρ, 1})

 if p = 2

and the number of null steps is at most

4(L+ ρ)3

(1− β)2ρ3

 2ρ

(1− 2/p)βµ2/pε1−2/p
+


2 log

(
f(x0)−f(x∗)

(ρ/µ2/p)1/(1−2/p)

)
β


+

+ 1

 if p > 2

4(L+ ρ)3

(1− β)2ρ3


2 log

(
f(x0)−f(x∗)

ε

)
βmin{µ/ρ, 1}

 if p = 2 .

Remark 4.3.9. Selecting ρ = L gives a complexity bound matching gradient descent.

4.3.2 Convergence Rates from Improved Stepsize Choice

Selecting ρk to vary over the course of the bundle method’s application allows

for stronger convergence guarantees. These rates are formalized in the follow-

ing pair of theorems that consider settings with and without Hölder growth.

In the latter case, we find that our stepsize choice (4.13) removes the need for

piecewise guarantees around growth exponent p = 2, which notably simplifies

the statement of our guarantees.

Theorem 4.3.10. For anyM -Lipschitz objective function f , consider applying the bun-

dle method using the stepsize policy (4.12) with any choice of D2 ≥ sup{‖x − x∗‖2 |

f(x) ≤ f(x0)}. Then for any 0 < ε ≤ f(x0) − f(x∗), the number of descent steps
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before an ε-minimizer is found is at most
2 log

(
f(x0)−f(x∗)

ε

)
β


and the number of null steps is at most(

1

1− (1− β/2)2

)
2M2D2

(1− β)2ε2
.

Theorem 4.3.11. For any M -Lipschitz objective function f satisfying the Hölder

growth condition (4.4), consider applying the bundle method using the stepsize pol-

icy (4.13). Then for any 0 < ε ≤ f(x0) − f(x∗), the number of descent steps before an

ε-minimizer is found is at most 
2 log

(
f(x0)−f(x∗)

ε

)
β


and the number of null steps is at most

(
1

1− (1− β/2)2−2/p

)
2M2

(1− β)2µ2/pε2−2/p
if p > 1

4M2

(1− β)2µ2


log
(
f(x0)−f(x∗)

ε

)
β

 if p = 1 .

4.3.3 Convergence Rates for the Parallel Bundle Method

First, we remark that all of our previous convergence theory for constant step-

sizes (Theorems 4.3.1, 4.3.4, 4.3.6, and 4.3.8) immediately apply to the Parallel

Bundle Method fixing ρ = 2j ρ̄ for any j ∈ {0, . . . J − 1}. This follows by observ-

ing that our proofs just rely on a decrease in objective value at descent steps via

Lemma 4.2.1. Then the key fact is that Lemma 4.2.1 still holds even in the new

case of a bundle method restarting at another method’s lower objective value

iterate. Hence any individual instance of the bundle method with ρ(j) = 2j ρ̄ in
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our parallel scheme will converge at least as fast as Theorems 4.3.1, 4.3.4, 4.3.6,

and 4.3.8 guarantee it would converge on its own.

Further and more importantly, when our nonconstant stepsize rules (4.12)

and (4.13) lie in the interval [ρ̄, 2J ρ̄], we find that their convergence theory (The-

orem 4.3.10 and 4.3.11) also extends to our parallel algorithm. This is formalized

as follows.

Theorem 4.3.12. For any M -Lipschitz objective function f that satisfies the Hölder

growth condition (4.4), consider applying the Parallel Bundle Method with stepsizes

ρ = 2j ρ̄ for j ∈ {0, . . . , J − 1}. Then for any 0 < ε ≤ f(x0)− f(x∗), if

ρ̄ ≤ 1

4
µ2/p min{ε1−2/p, (f(x0)− f(x∗))1−2/p}

and

J ≥ log2

(
µ2/p(max{ε1−2/p, (f(x0)− f(x∗))1−2/p}

4ρ̄

)
,

then one of our J bundle methods will find an ε-minimizer within its first

(
2

1− (1− β/2)2−2/p

)
16M2

(1− β)2µ2/pε2−2/p
+ 2

⌈
2 log(f(x0)−f∗

ε
)

β

⌉
if p > 1

2

(
16M2

(1− β)2µ2
+ 1

)⌈
2 log(f(x0)−f∗

ε
)

β

⌉
if p = 1

iterations.

Remark 4.3.13. These rates match the optimal lower bounds for nonsmooth Lipschitz

optimization, up to small constants (and an additive logarithmic term when p > 1). For

example, under quadratic growth when p = 2, we have

ρ̄ ≤ µ/4 and J ≥ log2(µ/4ρ̄) =⇒ a rate of O
(
M2

µε

)
.

Under sharp growth p = 1, we have

ρ̄ ≤ µ2

4(f(x0)− f(x∗))
and J ≥ log2(µ2/4ρ̄ε) =⇒ a rate of O

(
M2

µ2
log(1/ε)

)
.
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Critically, these convergence rates only depend on ρ̄ and J through the (parallelizable)

cost of updating the J bundle method instances at each iteration.

4.4 Convergence Analysis

Our convergence analysis is built on Lemmas 4.2.1 and 4.2.2, which relate de-

scent steps and null steps to the proximal gap ∆k. After proving these two es-

sential lemmas, all of our subsequent analysis for Theorems 4.3.1 through 4.3.12

follow from using a recurrence relation stemming from Lemma 4.2.1 to bound

the number of descent steps, and from using Lemma 4.2.2 to bound the number

of null steps.

4.4.1 Proof of the Descent Step Lemma 4.2.1

Let x̄k+1 = argmin{f(·) + ρk
2
‖ · −xk‖2}. From (4.6), we have

fk(xk+1) ≤ fk(xk+1) +
ρk
2
‖xk+1 − xk‖2

≤ fk(x̄k+1) +
ρk
2
‖x̄k+1 − xk‖2

≤ f(x̄k+1) +
ρk
2
‖x̄k+1 − xk‖2 .

Hence f(xk) − fk(xk+1) ≥ ∆k. Since we have assumed that iteration k was a

descent step, this implies (f(xk)− f(xk+1))/β ≥ ∆k.
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4.4.2 Proof of the Null Step Lemma 4.2.2

Consider some descent step k followed by T consecutive null steps. Denote the

proximal subproblem gap at iteration k < t ≤ k + T on the model ft by

∆̃t = f(xk+1)−
(
ft(zt+1) +

ρk
2
‖zt+1 − xk+1‖2

)
.

The core of this null step bound relies on the following recurrence showing that

every null step t decreases this quantity as

∆̃t+1 ≤ ∆̃t −
ρk(1− β)2∆̃2

t

2G2
k

. (4.16)

Before deriving this inequality, we show how it completes the proof of this

lemma: After T consecutive null steps, the fact that fk+T ≤ f ensures ∆̃k+T ≥

∆k+T = ∆k+1. Then solving this recurrence relation (see Lemma 4.5.1 at the end

of the chapter with ε = ∆k+1), we conclude the number of consecutive null steps

is at most

T ≤ 2G2
k

(1− β)2ρk∆k+1

.

Now all that remains is to derive the recurrence (4.16).

Consider some null step k < t ≤ k + T in the sequence of consecutive null

steps. Denote the necessary lower bound on ft+1 given by (4.7) and (4.8) as

f̃t+1(·) := max{ft(zt+1) + 〈st+1, · − zt+1〉, f(zt+1) + 〈gt+1, · − zt+1〉} ≤ ft+1(·) .

Denote the result of a proximal step on f̃t+1 by yt+2 = argmin
{
f̃t+1(·) + ρk

2
‖ · −xk+1‖2

}
.

A simple computation gives an explicit form for the minimizer of this problem

θt+1 = min

{
1,
ρk(f(zt+1)− ft(zt+1))

‖gt+1 − st+1‖2

}
yt+2 = xk −

1

ρk
(θt+1gt+1 + (1− θt+1)st+1). (4.17)
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Hence the objective of the proximal subproblem at iteration t + 1 is lower

bounded by

ft+1(zt+2) +
ρk
2
‖zt+2 − xk+1‖2

≥ f̃t+1(yt+2) +
ρk
2
‖yt+2 − xk+1‖2

≥ θt+1(f(zt+1) + 〈gt+1, yt+2 − zt+1〉) + (1− θt+1)(ft(zt+1) + 〈st+1, yt+2 − zt+1〉)

+
ρk
2
‖yt+2 − xk+1‖2

= ft(zt+1) + θt+1

(
f(zt+1)− f t(zt+1)

)
+ 〈θt+1gt+1 + (1− θt+1)st+1, yt+2 − zt+1〉

+
ρk
2
‖yt+2 − xk+1‖2

= ft(zt+1) + θt+1

(
f(zt+1)− f t(zt+1)

)
+ θ2

t+1‖gt+1 − st+1‖2/ρk +
ρk
2
‖zt+1 − xk+1‖2 ,

where the first inequality uses that ft+1 ≥ f̃t+1, the second inequality takes a

convex combination of the two affine functions defining f̃t+1, and the second

equality uses the definition of yt+2. Thus we have

∆̃t+1 ≤ ∆̃t − θt+1(f(zt+1)− ft(zt+1)) + θ2
t+1‖gt+1 − st+1‖2/ρk .

The amount of decrease guaranteed above can be lower bounded as follows

θt+1(f(zt+1)− ft(zt+1)) + θ2
t+1‖gt+1 − st+1‖2/ρk

≥ min

{
f(zt+1)− ft(zt+1),

2ρk(f(zt+1)− ft(zt+1))2

‖gt+1 − st+1‖2

}
≥ min

{
(1− β)∆̃t,

2ρk(1− β)2∆̃2
t

‖gt+1 − st+1‖2

}

≥ min

{
(1− β)∆̃t,

ρk(1− β)2∆̃2
t

‖gt+1‖2 + ‖st+1‖2

}

≥ min

{
2ρk(1− β)∆̃2

t

G2
k

,
ρk(1− β)2∆̃2

t

2G2
k

}

≥ ρk(1− β)2∆̃2
t

2G2
k
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where the first inequality uses the definition of θt+1 and drops a norm squared

term, the second inequality uses the definition of a null step, and the fourth

inequality uses that 2∆̃t ≤ G2
k/ρk, ‖gt+1‖2 ≤ G2

k, and ‖st+1‖2 ≤ 2ρk∆̃t ≤ G2
k. This

verifies (4.16) and completes the proof of our general bound.

For anyM -Lipschitz objective, our specialized result follows from observing

thatGk ≤M as subgradients everywhere are uniformly bounded in norm by the

Lipschitz constant. For any L-smooth objective, the following three inequalities

hold for any null step t in the sequence of consecutive null steps following a

descent step k < t:

‖gt+1‖ ≤ ‖gk+1‖+ L‖zt+1 − xk+1‖ (4.18)

‖zt+1 − xk+1‖ ≤ ‖gk+1‖/ρk (4.19)

‖gk+1‖ ≤
√

2(L+ ρk)∆k+1 . (4.20)

Before proving these three inequalities, we note that combined they give the

claimed bound as

Gk = sup
t
{‖gt+1‖} ≤ sup

t
{‖gk+1‖+ L‖zt+1 − xk+1‖}

≤ (1 + L/ρk)‖gk+1‖

≤ (1 + L/ρk)
√

2(L+ ρk)∆k

and thus G2
k ≤ 2(L + ρk)

3∆k/ρ
2
k. First (4.18) follows directly from the gradient

being L-Lipschitz continuous. Second (4.19) follows from considering the ρk-

strongly convex model proximal subproblem ft(z) + ρk
2
‖z − xk+1‖2. Since zt+1

uniquely minimizes this,

ρk
2
‖zt+1 − xk+1‖2 ≤ ft(xk+1)−

(
ft(zt+1) +

ρk
2
‖zt+1 − xk+1‖2

)
≤ ∆̃t ≤ ∆̃k+1 ≤ ‖gk+1‖2/ρk
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where the last inequality uses (4.7). Third (4.20) follows from the L-smoothness

of f and considering the full proximal subproblem f(z) + ρk
2
‖z − xk+1‖2 since

∆k+1 = f(xk+1)−min
z

{
f(z) +

ρk
2
‖z − xk+1‖2

}
≥ f(xk+1)−min

z

{
f(xk+1) + 〈gk+1, z − xk+1〉+

L+ ρk
2
‖z − xk+1‖2

}
=
‖gk+1‖2

2(L+ ρk)
.

4.4.3 Proof of Theorem 4.3.1

For a constant stepsize ρk = ρ, we can simplify the lower bound (4.15) to only

depend on xk through a simple threshold on f(xk)− f ∗ as

∆k ≥


1

2ρ

(
f(xk)− f ∗

D

)2

if f(xk)− f ∗ ≤ ρD2

1

2
(f(xk)− f ∗) otherwise.

(4.21)

Combining this with Lemma 4.2.1 gives a recurrence relation describing the de-

crease in the objective gap δk = f(xk)− f ∗ on any descent step k of

δk+1 ≤


δk −

βδ2
k

2ρD2
if δk ≤ ρD2

(1− β/2)δk if δk > ρD2 .

Our analysis of the bundle method then proceeds considering these two cases

separately. In each case, solving the given recurrence relation bounds the num-

ber of descent steps possible and applying Lemma 4.2.2 bounds the number of

null steps possible.
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Bounding steps with δk > ρD2.

First we show that the number of descent steps with δk > ρD2 is bounded by
log
(
f(x0)−f∗
ρD2

)
− log(1− β/2)


+

(4.22)

and the number of null steps with δk > ρD2 is at most

8M2

β(1− β)2ρ2D2
. (4.23)

In this case, our recurrence relation simplifies to have geometric decrease at

each descent step δk+1 ≤ (1 − β/2)δk. This immediately bounds the number of

descent steps by (4.22). Index the descent steps before a ρD2-minimizer is found

by k1 < · · · < kn such that xkn+1 is the first iterate with objective value less than

ρD2. Define k0 = −1. Then for each i = 0 . . . n− 1,

f(xki+1)− f ∗ ≥ (1− β/2)i−(n−1)ρD2 .

It follows from (4.15) that ∆ki+1 ≥ (f(xki+1) − f ∗)/2 ≥ (1− β/2)i−(n−1)ρD2/2.

Plugging this into Lemma 4.2.2 upper bounds the number of consecutive null

steps after the descent step ki by

ki+1 − ki − 1 ≤ (1− β/2)(n−1)−i 4M2

(1− β)2ρ2D2
.

Summing this over i = 0 . . . n− 1 bounds the total number of null steps before a

ρD2-minimizer is found by (4.23) as

n−1∑
i=0

(1− β/2)(n−1)−i 4M2

(1− β)2ρ2D2
≤ 8M2

β(1− β)2ρ2D2
.

94



Bounding steps with ρD2 ≥ δk > ε.

Now we complete our proof of Theorem 4.3.1 by bounding the number of de-

scent steps with ρD2 ≥ δk > ε by

2ρD2

βε
(4.24)

and the number of null steps with ρD2 ≥ δk > ε by

12ρD4M2

(1− β)2ε3
. (4.25)

After the bundle method has passed objective value ρD2, the recurrence re-

lation becomes

δk+1 ≤ δk −
βδ2

k

2ρD2
.

Solving this recurrence (see Lemma 4.5.1) implies δk > ε holds for at most (4.24)

descent steps. Then we can bound the number of null steps between these

descent steps by noting (4.21) implies ∆k ≥ (f(xk) − f ∗)2/2ρD2 ≥ ε2/2ρD2.

Then Lemma 4.2.2 upper bounds the number of consecutive null steps by

4D2M2/(1 − β)2ε2. Then multiplying this by our bound on the number of de-

scent steps gives (4.25) as(
2ρD2

βε
+ 1

)
4D2M2

(1− β)2ε2
≤ 12ρD4M2

β(1− β)2ε3
.

4.4.4 Proof of Theorem 4.3.4

Our bound on the number of descent steps comes directly from Theorem 4.3.1.

Our claimed bound on the total number of null steps follows by multiply-

ing this by the constant bound on the number of consecutive null steps from

Lemma 4.2.2.
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4.4.5 Proof of Theorem 4.3.6

Assuming Hölder growth (7.3) holds and fixing ρk = ρ, the lower bound (4.15)

simplifies to only depend on a simple threshold with f(xk)− f ∗ as

∆k ≥


µ2/p(f(xk)− f ∗)2−2/p

2ρ
if (f(xk)− f ∗)1−2/p ≤ ρ/µ2/p

1

2
(f(xk)− f ∗) otherwise .

(4.26)

From this, we arrive at a recurrence relation on the objective gap δk = f(xk)−f ∗

decrease at each descent step k by plugging this lower bound into Lemma 4.2.1

of

δk+1 ≤


δk −

βµ2/pδ
2−2/p
k

2ρ
if δ1−2/p

k ≤ ρ/µ2/p

(1− β/2)δk if δ1−2/p
k > ρ/µ2/p .

Our analysis proceeds by considering the two cases of this recurrence and the

three cases of p > 2, p = 2, and 1 ≤ p < 2 separately. In each case, solving

the given recurrence relation bounds the number of descent steps possible and

applying Lemma 4.2.2 bounds the number of null steps possible.

Given p > 2, bounding steps with δk > (ρ/µ2/p)1/(1−2/p).

First we show that the number of descent steps with δk > (ρ/µ2/p)1/(1−2/p) is

bounded by 
log
(

f(x0)−f∗
(ρ/µ2/p)1/(1−2/p)

)
− log(1− β/2)


+

(4.27)

and the number of null steps with δk > (ρ/µ2/p)1/(1−2/p) is at most

8M2

β(1− β)2(ρ/µ2/p)1/(1−2/p)
. (4.28)
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In this case, our recurrence relation simplifies to have geometric decrease

at each descent step δk+1 ≤ (1 − β/2)δk. This immediately bounds the num-

ber of descent steps by (4.27). Index the descent steps before a (ρ/µ2/p)1/(1−2/p)-

minimizer is found by k1 < · · · < kn such that xkn+1 is the first iterate with objec-

tive value less than (ρ/µ2/p)1/(1−2/p). Define k0 = −1. Then for each i = 0 . . . n−1,

f(xki+1)− f ∗ ≥ (1− β/2)i−(n−1)(ρ/µ2/p)1/(1−2/p).

It follows from (4.15) that

∆ki+1 ≥ (f(xki+1)− f ∗)/2 ≥ (1− β/2)i−(n−1)(ρ/µ2/p)1/(1−2/p)/2.

Plugging this into Lemma 4.2.2 upper bounds the number of consecutive null

steps after the descent step ki by

ki+1 − ki − 1 ≤ (1− β/2)(n−1)−i 4M2

(1− β)2(ρ/µ2/p)1/(1−2/p)
.

Summing this over i = 0 . . . n− 1 bounds the total number of null steps before a

(ρ/µ2/p)1/(1−2/p)-minimizer is found by (4.28) as

n−1∑
i=0

(1− β/2)(n−1)−i 4M2

(1− β)2(ρ/µ2/p)1/(1−2/p)
≤ 8M2

β(1− β)2(ρ/µ2/p)1/(1−2/p)
.

Given p > 2, bounding steps with (ρ/µ2/p)1/(1−2/p) ≥ δk > ε.

Next we show that the total number of descent steps with(ρ/µ2/p)1/(1−2/p) ≥ δk >

ε is bounded by
2ρ

(1− 2/p)βµ2/pε1−2/p
(4.29)

and the number of null steps with (ρ/µ2/p)1/(1−2/p) ≥ δk > ε is at most

12ρM2

(1− 2/p)β(1− β)2µ4/pε3−4/p
. (4.30)
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In this case, the recurrence relation on objective value decrease becomes

δk+1 ≤ δk −
βµ2/pδ

2−2/p
k

2ρ
.

Applying Lemma 4.5.1 gives our bound on the number of descent steps with

δk > ε in (4.29). Plugging the lower bound ∆k ≥ µ2/p(f(xk) − f ∗)2−2/p/2ρ ≥

µ2/pε2−2/p/2ρ into Lemma 4.2.2, the number of consecutive null steps after a de-

scent step is at most
4M2

(1− β)2µ2/pε2−2/p
.

Then multiplying our limit on consecutive null steps by the number of descent

steps between finding a (ρ/µ2/p)1/(1−2/p)-minimizer and finding an ε-minimizer

gives the bound (4.30) as(
2ρ

(1− 2/p)βµ2/pε1−2/p
+ 1

)
4M2

(1− β)2µ2/pε2−2/p
≤ 12ρM2

(1− 2/p)β(1− β)2µ4/pε3−4/p
.

Given p = 2, bounding steps with δk > ε.

Here both cases of our recurrence relation have a similar form, and so we di-

rectly bound the total number of descent steps with δk > ε by
log
(
f(x0)−f∗

ε

)
− log(1− βmin{µ/2ρ, 1/2})

 (4.31)

and the number of null steps with δk > ε by

2M2

β(1− β)2 min{µ/2ρ, 1/2}ρε
. (4.32)

In this case, our recurrence relation simplifies to have geometric decrease at

each descent step δk+1 ≤ (1−βmin{µ/2ρ, 1/2})δk. This immediately bounds the

number of descent steps by (4.31). Index the descent steps before an ε-minimizer
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is found by k1 < · · · < kn such that xkn+1 is the first iterate with objective value

less than ε. Define k0 = −1. Then for each i = 0 . . . n− 1,

f(xki+1)− f ∗ ≥ (1− βmin{µ/2ρ, 1/2})i−(n−1)ε .

It follows from (4.15) that ∆ki+1 ≥ (1− βmin{µ/2ρ, 1/2})i−(n−1)ε/2. Plugging

this into Lemma 4.2.2 upper bounds the number of consecutive null steps after

the descent step ki by

ki+1 − ki − 1 ≤ (1− βmin{µ/2ρ, 1/2})(n−1)−i 2M2

(1− β)2ρε
.

Summing this over i = 0 . . . n − 1 bounds the total number of null steps before

an ε-minimizer is found by

n−1∑
i=0

(1− βmin{µ/2ρ, 1/2})(n−1)−i 2M2

(1− β)2ρε
≤ 2M2

min{µ/2ρ, 1/2}β(1− β)2ρε
.

Given 1 ≤ p < 2, bounding steps with δk > (ρ/µ2/p)1/(1−2/p).

Now we show that the number of descent steps with δk > (ρ/µ2/p)1/(1−2/p) is

bounded by
2ρ(f(x0)− f ∗)2/p−1

(1− 21−2/p)βµ2/p
(4.33)

and the number of null steps with δk > (ρ/µ2/p)1/(1−2/p) is at most

8M2

β(1− β)2ρ(ρ/µ2/p)1/(1−2/p)
C (4.34)

where C = max
{

(f(x0)−f∗)4/p−3

(ρ/µ2/p)(4/p−3)/(1−2/p) , 1
}

min
{

1
1−2−|4/p−3| ,

⌈
log2

(
f(x0)−f∗

(ρ/µ2/p)1/(1−2/p)

)⌉}
.

Notice that since p < 2, the power 1− 2/p of δk in the threshold condition of our

recurrence is negative. In this case, the recurrence relation on objective value

decrease becomes

δk+1 ≤ δk −
βµ2/pδ

2−2/p
k

2ρ
.

99



As an intermediate step, for any i ≥ 0, we first bound the number of descent

and null steps with

2i+1(ρ/µ2/p)1/(1−2/p) ≥ δk > 2i(ρ/µ2/p)1/(1−2/p) .

Since descent steps decreases the objective gap by at least βµ2/pδ
2−2/p
k /2ρ, there

are at most
2ρ(2i(ρ/µ2/p)1/(1−2/p))2/p−1

βµ2/p
=

2(2/p−1)i+1

β

descent steps in this interval. Further, noting that in this interval

∆k ≥
µ2/p(2i(ρ/µ2/p)1/(1−2/p))2−2/p

2ρ
= 2(2−2/p)i−1(ρ/µ2/p)1/(1−2/p) ,

we can bound the number of consecutive null steps following any of these de-

scent steps via Lemma 4.2.2. Hence there are at most

2(4/p−3)i+3M2

β(1− β)2ρ(ρ/µ2/p)1/(1−2/p)

null steps in this interval.

The bundle method halves its objective value at most N = dlog2((f(x0) −

f ∗)/(ρ/µ2/p)1/(1−2/p))e times before an (ρ/µ2/p)1/(1−2/p)-minimizer is found. Then

summing up these bounds on the descent and null steps in each interval lim-

its the number of descent steps needed to find a (ρ/µ2/p)1/(1−2/p)-minimizer

by (4.33) as

N−1∑
i=0

2(2/p−1)i+1

β
≤ 2

β

N−1∑
i=0

2(2/p−1)i

≤ 2(2/p−1)(N−1)+1

(1− 21−2/p)β

≤ 2ρ(f(x0)− f ∗)2/p−1

(1− 21−2/p)βµ2/p
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and similarly, the number of null steps needed by (4.34) as

N−1∑
i=0

2(4/p−3)i+3M2

β(1− β)2ρ(ρ/µ2/p)1/(1−2/p)

≤ 8M2

β(1− β)2ρ(ρ/µ2/p)1/(1−2/p)

N−1∑
i=0

2(4/p−3)i

≤ 8M2

β(1− β)2ρ(ρ/µ2/p)1/(1−2/p)
max

{
(f(x0)− f ∗)4/p−3

(ρ/µ2/p)(4/p−3)/(1−2/p)
, 1

}
min

{
1

1− 2−|4/p−3| , N

}
where the last inequality bounds the geometric sum regardless of the sign of the

exponent 4/p− 3.

Given 1 ≤ p < 2, bounding steps with (ρ/µ2/p)1/(1−2/p) ≥ δk > ε.

Finally, we bound the number of descent steps with (ρ/µ2/p)1/(1−2/p) ≥ δk > ε by
log
(

(ρ/µ2/p)1/(1−2/p)

ε

)
− log(1− β/2)

 (4.35)

and the number of null steps with (ρ/µ2/p)1/(1−2/p) ≥ δk > ε is at most

4M2

β(1− β)2ρε
. (4.36)

In this case, our recurrence relation simplifies to have geometric decrease

at each descent step δk+1 ≤ (1 − β/2)δk. This immediately bounds the num-

ber of descent steps by (4.35). Index the descent steps after a (ρ/µ2/p)1/(1−2/p)-

minimizer but before an ε-minimizer is found by k1 < · · · < kn such that xkn+1

is the first iterate with objective value less than ε. Then for each i = 0 . . . n− 1,

f(xki+1)− f ∗ ≥ (1− β/2)i−(n−1)ε .

It follows from (4.15) that ∆ki+1 ≥ (f(xki+1)− f ∗)/2 ≥ (1− β/2)i−(n−1)ε/2. Plug-

ging this into Lemma 4.2.2 upper bounds the number of consecutive null steps
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after the descent step ki by

ki+1 − ki − 1 ≤ (1− β/2)(n−1)−i 2M2

(1− β)2ρε
.

Summing this over i = 0 . . . n − 1 bounds the additional number of null steps

before an ε-minimizer is found by (4.36) as

n−1∑
i=0

(1− β/2)(n−1)−i 2M2

(1− β)2ρε
≤ 4M2

β(1− β)2ρε
.

4.4.6 Proof of Theorem 4.3.8

Our bound on the number of descent steps comes directly from Theorem 4.3.6.

Our claimed bound on the total number of null steps follows by multiply-

ing this by the constant bound on the number of consecutive null steps from

Lemma 4.2.2.

4.4.7 Proof of Theorem 4.3.10

Combining the lower bound ∆k ≥ 1
2
(f(xk)− f ∗) with Lemma 4.2.1 shows linear

decrease in the objective every descent step

f(xk+1)− f ∗ ≤
(

1− β

2

)
(f(xk − f ∗).

Our bound on the number of descent steps follows immediately from this. Com-

bining the lower bound ∆k ≥ 1
2
(f(xk)−f ∗) with Lemma 4.2.2 shows that at most

2M2D2

(1− β)2(f(xk)− f ∗)2

null steps occur between each descent step. Denote the sequence of descent

steps taken by the bundle method by k1, k2, k3 . . . and as a base case define k0 =
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−1. Let kn be the first descent step finding an ε-minimizer, which must have

n ≤ dlog(1−β/2)(
ε

f(x0)−f∗ )e+. From our linear decrease condition, we know for

any i = 0, 1, 2, 3, . . . n− 1

f(xki+1)− f ∗ ≥ (1− β/2)i−(n−1)ε

and from our null step bound, we know for any i = 0, 1, 2, . . . n− 1

ki+1 − ki − 1 ≤ 2M2D2

(1− β)2(f(xki+1)− f ∗)2
≤ (1− β/2)2(i−(n−1)) 2M2D2

(1− β)2ε2
.

Then summing up our null step bounds ensures

kn − n ≤
n∑
i=1

(1− β/2)2(i−1−(n−1)) 2M2D2

(1− β)2ε2
.

Bounding this geometric series shows us that the bundle method finds an ε-

minimizer with the number of null steps bounded by(
1

1− (1− β/2)2

)
2M2D2

(1− β)2ε2
.

4.4.8 Proof of Theorem 4.3.11

Our bound on the number of descent steps follows from Theorem 4.3.10. Our

proof of the null step bound follows the same approach as Theorem 4.3.10 with

only minor differences. Applying Lemma 4.2.2 with our stepsize choice (4.13)

bounds the number of consecutive null steps after some descent step k by

2M2

(1− β)2µ2/p(f(xk)− f ∗)2−2/p
.

Denote the descent steps −1 = k0 < k1 < k2 < . . . and suppose the xkn+1 is the

first ε-minimizer. Then

ki+1 − ki − 1 ≤ (1− β/2)(2−2/p)(i−(n−1)) 2M2

(1− β)2µ2/pε2−2/p
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since f(xki+1)− f ∗ ≥
(
1− β

2

)i−(n−1)
ε. Summing this up gives

kn − n ≤
n∑
i=1

(1− β/2)(2−2/p)(i−1−(n−1)) 2M2

(1− β)2µ2/pε2−2/p
.

When p > 1, this geometric series shows us that the bundle method finds an

ε-minimizer with the number of null steps bounded by(
1

1− (1− β/2)2−2/p

)
2M2

(1− β)2µ2/pε2−2/p
.

When p = 1, we have a constant upper bound on the number of null steps

following a descent step. Hence the number of null steps is bounded by

2M2

(1− β)2µ2


log
(
f(x0)−f∗

ε

)
− log(1− β/2)

 .

4.4.9 Proof of Theorem 4.3.12

Let δk = minj∈{0,...,J−1}{f(x
(j)
k )−f ∗} denote the lowest objective gap among all of

our J instances of the bundle method after they have taken k synchronous steps.

Then the core of our convergence proof is bounding the number of iterations

where this lowest objective gap is in the interval

(1− β/2)−nε ≤ δk ≤ (1− β/2)−(n+1)ε .

for any integer 0 ≤ n < N :=
⌈

log((f(x0)−f∗)/ε)
− log(1−β/2)

⌉
. Within this interval, we focus on

the instance

j =

⌈
log2

(
µ2/p((1− β/2)−nε)1−2/p

4ρ̄

)⌉
.

This instance of the bundle method’s constant stepsize ρ(j) = 2j ρ̄ approximates

the stepsize (4.13) as

1

4
µ2/p((1− β/2)−nε)1−2/p ≤ ρ(j) ≤ 1

2
µ2/p((1− β/2)−nε)1−2/p .
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Then (4.26) bounds this method’s proximal gap before an (1−β/2)−nε-minimizer

is found by

∆
(j)
k ≥

1

2
(f(x

(j)
k )− f ∗) ≥ (1− β/2)−nε/2 .

Letting δ(j)
k = f(x

(j)
k )−f ∗, each descent step k improves method j’s objective

gap according to the recurrence

δ
(j)
k+1 ≤ min{(1− β/2)δ

(j)
k , δk}

where the first term in the minimum comes from Lemma 4.2.1 and the second

term comes from method j taking any further improvement from the other

bundle methods. By assumption, we have δk ≤ (1 − β/2)−(n+1)ε, and so af-

ter one descent step k′ > k we must have δ(j)
k′+1 ≤ (1 − β/2)−(n+1)ε. Thus af-

ter a second descent step k′′ > k′, our intermediate target accuracy is met as

δk′′+1 ≤ δ
(j)
k′′+1 ≤ (1− β/2)−nε.

Applying Lemma 4.2.2 bounds the number of null steps between these de-

scent steps by

2M2

(1− β)2ρ(j)∆
(j)
k

≤ 16M2

(1− β)2µ2/p((1− β/2)−nε)2−2/p
.

Hence the total number of steps before δ(j)
k < 2nε (and consequently δk < 2nε) is

at most

2

(
16M2

(1− β)2µ2/p((1− β/2)−nε)2−2/p
+ 1

)
.

Summing over this bound completes our proof. When p > 1, this gives a geo-
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metric sum as

N−1∑
n=0

2

(
16M2

(1− β)2µ2/p((1− β/2)−nε)2−2/p
+ 1

)

= 2
N−1∑
n=0

16M2

(1− β)2µ2/p((1− β/2)−nε)2−2/p
+ 2

⌈
log((f(x0)− f ∗)/ε)
− log(1− β/2)

⌉
≤
(

2

1− (1− β/2)2−2/p

)
16M2

(1− β)2µ2/pε2−2/p
+ 2

⌈
log((f(x0)− f ∗)/ε)
− log(1− β/2)

⌉
.

When p = 1, the number of steps in each of our intervals is constant. Con-

sequently, the total number of iterations before an ε minimizer is found is at

most

N−1∑
n=0

2

(
16M2

(1− β)2µ2
+ 1

)
= 2

(
16M2

(1− β)2µ2
+ 1

)⌈
log((f(x0)− f ∗)/ε)
− log(1− β/2)

⌉
.

4.5 Addendum - Solutions to Recurrence Relations

Throughout our analysis, we frequently encounter recurrence relations of the

form δk+1 ≤ δk − αδqk for some α > 0 and q > 1. The following lemma bounds

the number of steps of such a recurrence to reach a desired level of accuracy

δk ≤ ε.

Lemma 4.5.1. For any ε > 0, the recurrence δk+1 ≤ δk − αδqk has δk ≤ ε satisfied by

some

k ≤
⌈

1

(q − 1)αεq−1

⌉
.

Proof. It suffices to show the following upper bound on δk as a function of k

δk ≤
(

1

(q − 1)αk

)1/(q−1)

.
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First we show this bound holds with k = 1. This follows as

δ1 ≤ δ0 − αδq0 ≤ max
δ∈R
{δ − αδq} ≤

(
1

qα

)1/(q−1)

.

Then we complete our proof by induction using the following weighted

arithmetic-geometric mean (AM-GM) inequality, which ensures for any a, α, b, β >

0,

aαbβ ≤
(
αa+ βb

α + β

)α+β

.

For any k ≥ 1, the fact that (k − (q − 1)−1)(k + 1)1/(q−1) ≤ kq/(q−1), which is the

AM-GM inequality with a = k − (q − 1)−1, α = 1, b = k + 1, β = 1/(q − 1),

completes our proof

δk+1 ≤ δk − αδqk ≤
(

1

(q − 1)αk

)1/(q−1)

− α
(

1

(q − 1)αk

)q/(q−1)

=

(
1

(q − 1)α

)1/(q−1)(
k

kq/(q−1)
− 1

(q − 1)kq/(q−1)

)
=

(
1

(q − 1)α

)1/(q−1)
k − (q − 1)−1

kq/(q−1)

≤
(

1

(q − 1)α(k + 1)

)1/(q−1)

.
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CHAPTER 5

RADIAL DUALITY: FOUNDATIONS

5.1 Introduction

Renegar [140] introduced a framework for conic programming (and by reduc-

tion, convex optimization), which turns such problems into uniformly Lipschitz

optimization. After being radially transformed, a simple subgradient method

can be applied and analyzed. Notably, even for constrained problems, such

an algorithm maintains a feasible solution at each iteration while avoiding the

use of orthogonal projections, which can often be a bottleneck for first-order

methods. Subsequently, Grimmer [60] showed that in the case of convex opti-

mization, a simplified radial subgradient method can be applied with simpler

and stronger convergence guarantees. In [141], Renegar further showed that the

transformation of hyperbolic cones is amenable to the application of smoothing

techniques, offering notable improvements over radial subgradient methods.

In this chapter, we provide a wholly different development and generaliza-

tion of the ideas behind Renegar’s framework, which avoids relying on convex

cones or functions as the central object. Instead, our approach is based on the

following simple projective transformation, which we dub the radial point trans-

formation, given by

Γ(x, u) = (x, 1)/u

for any (x, u) ∈ E × R++, where E is some finite dimensional Euclidean space

and R++ is the set of positive real numbers. Applying this elementwise to a set
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S ⊆ E × R++ gives the radial set transformation, denoted by

ΓS = {Γ(x, u) | (x, u) ∈ S}.

To motivate the nomenclature of calling these transformations radial, con-

sider the transformation of a vertical line in E × R++: for any x ∈ E ,

Γ{(x, λ) | λ ∈ R++} = {γ(x, 1) | γ ∈ R++}.

We see that this transformation maps vertical lines into rays extending from

the origin (and rays into vertical lines since the point transformation is dual,

ΓΓ(x, u) = (x, u)).

To extend this set operation to apply to functions, we consider functions

f : E → R++ ∪ {0,∞}mapping into the extended positive reals. Then we define

the upper and lower radial function transformations of f as1

fΓ(y) = sup{v > 0 | (y, v) ∈ Γ(epi f)},

fΓ(y) = inf{v > 0 | (y, v) ∈ Γ(hypo f)}

where epi f = {(x, u) ∈ E × R++ | f(x) ≤ u} denotes the epigraph of f and

hypo f = {(x, u) ∈ E × R++ | f(x) ≥ u} denotes the hypograph of f . The up-

per transformation has the interpretation of reshaping the epigraph of f via the

radial set transformation and returning the smallest function whose hypograph

contains that set. Likewise the lower transformation aims to turn the hypograph

of f into the epigraph of a new function.

Connections To Prior Works. Noting fΓ(y) = sup{v > 0 | v · f(y/v) ≤ 1},

this relates to the transformation used by Grimmer [60] and those of Rene-

gar [140, 141]. The upper and lower transformations coincide in the convex
1Since we are considering functions mapping into R++ ∪ {0,∞}, if no v > 0 satisfies (y, v) ∈

Γ(epi f), we have the supremum defining fΓ(y) equal zero.

109



settings of these previous works but may diverge in the general setting consid-

ered herein. For our analysis, we primarily focus on the upper transformation,

but equivalent results always hold for the lower transform. Artstein-Avidan

and Milman [8] (and the subsequent [7]) consider the same underlying projec-

tive point transformation Γ, but consider the similar but quite different function

transformation inf{v > 0 | (y, v) ∈ Γ(epi f)}. Considering this transformation

limits their theory to the restrictive setting of nonnegative convex functions that

minimize to value zero at the origin. As a result, their theory does not provide

an interesting duality between optimization problems.

We remark on one other way to view the radial function transformation.

Denote the Minkowski gauge of a set S ⊆ E × R++ at some (y, v) ∈ E × R++ by

γS((y, v)) = inf{λ > 0 | (y, v) ∈ λS}. Then the lower radial transformation can

be restated as the restriction of this gauge to v = 1

fΓ(y) = γhypo f ((y, 1)).

This relationship to gauges motivates our notation of Γ to denote the radial

transformation. From this point of view, a connection can be made between this

radial framework and the perspective duality considered by Aravkin et al [5].

They extend the theory of gauge duality developed by Freund [55], which then

applies to nonnegative convex functions by considering perspective functions.

The resulting perspective dual optimization problem minimizes the function

γhypo f∗((y, v)) where f ∗ is the Fenchel conjugate of f . Thus their perspective

duality can be viewed as a combination of applying Fenchel duality and our

radial machinery.

From this connection, we point out a key difference between this radial du-

ality and these previous dualities. The classic theories of Lagrange and gauge
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duality are based on a conjugate or polar defined as a supremum over the dual

vector space. In contrast, the radial dual and the Minkowski gauge are defined

by a one-dimensional problem. This difference allows the radial dual to be ef-

ficiently computed numerically for generic problems using a linesearch or bi-

section, whereas evaluating the Fenchel conjugate of a function is as hard as

optimizing over it.

Our Contributions. This work serves to establish the foundations of radial

transformations as a new addition to the optimization toolbox. The second part

of this work leverages this machinery to develop new radial optimization al-

gorithms. Our development establishes this tool in the following three ways:

(i) The radial transformation is dual and enjoys rich structure stemming from

this. (ii) The radial transformation produces a new duality between nonneg-

ative optimization problems. For example, constraints are dually transformed

into gauges, which allow algorithms to replace orthogonal projections with po-

tentially cheaper, one-dimensional linesearches. We refer any numerically or al-

gorithmically inclined reader to the motivating example of quadratic program-

ming at the start of the next chapter to see this machinery fully in action. (iii)

The radial transformation is the unique operation of its kind.

Duality of the radial transformation. We precisely characterize the family of

functions where the duality fΓΓ = f holds through the star-convexity of their

hypograph. Moreover, when this duality holds, we find that a number of im-

portant classes of functions are dual to each other or self-dual under the radial
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transformations. Namely,

f is upper semicontinuous ⇐⇒ fΓ is lower semicontinuous,

f is continuous ⇐⇒ fΓ is continuous,

f is concave ⇐⇒ fΓ is convex,

f is quasiconcave ⇐⇒ fΓ is quasiconvex,

f is k times differentiable ⇐⇒ fΓ is k times differentiable,

f is analytic ⇐⇒ fΓ is analytic

under appropriate regularity conditions. We also derive a calculus for the radial

transformations, providing formulas for the (sub)gradients and Hessians of fΓ

based on those of f .

Radial duality between optimization problems. For a wide range of func-

tions, Γ(epi f) is the hypograph of another function, and so hypo fΓ = Γ(epi f).

As a result, for such functions, points in hypo f and epi fΓ can be directly re-

lated by the bijection Γ and its inverse (which is also Γ). This relation also ap-

plies to the maximizers of f and the minimizers of fΓ. Namely for any function

f : E → R++ ∪ {0,∞}, consider the primal problem

p∗ = max
x∈E

f(x). (5.1)

Then the radially dual problem is given by

d∗ = min
y∈E

fΓ(y) (5.2)

and has argmax f × {p∗} = Γ
(
argmin fΓ × {d∗}

)
under certain regularity condi-

tions. Hence maximizing f is equivalent to minimizing fΓ.

The radially dual problem (5.2) can exhibit very different behavior than the

original problem (5.1). For example, consider the function f(x) =
√

1− ‖x‖2
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defined on the unit ball, which has arbitrarily large gradients and Hessians as

x approaches the boundary of the ball. Despite this function’s poor behavior,

fΓ(y) =
√

1 + ‖y‖2 has full domain with gradients and Hessians bounded in

norm by one everywhere. This structure is very appealing for the analysis of

first-order optimization methods which tend to heavily rely on these quantities

being bounded. The second part of this work utilizes such structure arising

from the radial duality developed herein to propose and analyze projection-free

radial optimization methods.

Uniqueness of the radial transformation. From our construction of the ra-

dial transformation, it is natural to ask if other interesting transformations of

optimization problems can be given by reshaping the epigraph of a function.

Under some basic assumptions (primarily that the reshaping is invertible and

convexity preserving), there are only two transformations of this form, up to

affine transformations: the trivial duality between maximizing a function and

minimizing its negative and the nontrivial duality given by the radial trans-

formation. These results are similar in spirit to the characterization of order

isomorphisms by [7].

Outline Section 5.2 develops theory for the radial point and set transforma-

tions on E ×R++. Informed by this, Section 5.3 derives the core theory establish-

ing our radial function transformations. Then Section 5.4 develops the calcu-

lus and optimality relationships between the primal (5.1) and radial dual (5.2).

Lastly, Section 5.5 shows that this radial framework is the unique transforma-

tion of nonnegative-valued optimization problems of its type.
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5.1.1 Notation

We primarily consider sets in E × R++, which inherits the standard Euclidean

inner product and norm from E × R. Denote the ball of radius r > 0 around a

point (x, u) ∈ E × R by

B((x, u), r) := {(x′, u′) ∈ E × R | ‖(x′, u′)− (x, u)‖ ≤ r}.

Further, denote orthogonal projection onto a closed set S ⊆ E × R by

projS((x, u)) := argmin{‖(x′, u′)− (x, u)‖ | (x′, u′) ∈ S}.

Note projS is set valued and may not be a singleton if S is not convex.

We consider functions f : E → R++, where R++ = R++∪{0,+∞} denotes the

“extended positive reals”. Here 0 and +∞ are the limit objects of R++, mirroring

the roles of −∞ and +∞ in the extended reals. The effective domain of such a

function is denoted by

dom f := {x ∈ E | f(x) ∈ R++}.

Such functions relate to E × R++ through their graphs, epigraphs, and hy-

pographs

graph f := {(x, u) ∈ E × R++ | f(x) = u},

epi f := {(x, u) ∈ E × R++ | f(x) ≤ u},

hypo f := {(x, u) ∈ E × R++ | f(x) ≥ u}.

We say a function f : E → R++ is upper (lower) semicontinuous if hypo f

(epi f ) is closed with respect to E ×R++. Equivalently, a function is upper semi-

continuous if for all x ∈ E , f(x) = lim supx′→x f(x′) and lower semicontinuous if

f(x) = lim infx′→x f(x′).
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We say a function f : E → R++ is concave (convex) if hypo f (epi f ) is convex.

The set of convex normal vectors of a set S ⊆ E × R at some (x, u) ∈ S is denoted

by

NC
S ((x, u)) := {(ζ, δ) | (ζ, δ)T ((x, u)− (x′, u′)) ≥ 0 ∀(x′, u′) ∈ S}.

Then the convex subdifferential of a function f at some x ∈ dom f is denoted by

∂Cf(x) := {ζ | (ζ,−1) ∈ NC
epi f ((x, f(x)))}.

Likewise, the convex supdifferential of a function f at some x ∈ dom f is denoted

by

∂Cf(x) := {ζ | (−ζ, 1) ∈ NC
hypo f ((x, f(x)))}.

The elements of these differentials are referred to as convex subgradients or

supgradients.

For sets and functions that are not convex, we consider the generalization

given by proximal normals and differentials. The set of proximal normal vectors

of a set S ⊆ E × R at some (x, u) ∈ S is denoted by

NP
S ((x, u)) := {(ζ, δ) | (x, u) ∈ projS((x, u) + ε(ζ, δ)) for some ε > 0}.

Then the proximal subdifferential of a function f at some x ∈ dom f is denoted by

∂Pf(x) := {ζ | (ζ,−1) ∈ NP
epi f ((x, f(x)))}.

Likewise, the proximal supdifferential of a function f at some x ∈ dom f is de-

noted by

∂Pf(x) := {ζ | (−ζ, 1) ∈ NP
hypo f ((x, f(x)))}.

The elements of these differentials are referred to as proximal subgradients or

supgradients.
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5.2 The Radial Set Transformation

We begin by observing a number of properties of the radial point and set trans-

formations. Section 5.2.1 uses these to characterize the convex and proximal

normal vectors of a radially transformed set. Then Section 5.2.2 concludes with

a number of examples and pictures illustrating the radial set transformation. A

careful understanding of this operation on sets forms the foundation for under-

standing the radial function transformation.

One can easily check the point transformation is a continuous analytic bi-

jection on E × R++. Further, both the point and set transformations are dual

since

ΓΓ(x, u) = Γ
(x, 1)

u
=

(x/u, 1)

1/u
= (x, u). (5.3)

Now we observe a few basic properties of the set transformation on any pair

of sets S, T ⊆ E ×R++. First, since the point transformation is invertible (in fact,

it is its own inverse), the set transformation preserves inclusions between sets,

giving

S ⊆ T ⇐⇒ ΓS ⊆ ΓT. (5.4)

Furthermore, the radial set transformation distributes over unions and intersec-

tions, giving

Γ(S ∩ T ) = ΓS ∩ ΓT, (5.5)

Γ(S ∪ T ) = ΓS ∪ ΓT. (5.6)

Since the radial point transformation is a projective transformation, convex

sets, halfspaces, and ellipsoids map into convex sets, halfspaces, and ellipsoids,

respectively. For completeness sake, we give direct proofs of these results at
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the end of the chapter yielding simple formulas for radially dual halfspaces and

ellipsoids in the latter two cases.

Proposition 5.2.1. A set S ⊆ E × R++ is convex if and only if ΓS is convex.

In particular, consider the radial transformation of any halfspace in E ×R++.

Direct manipulation of its definition shows that the radial transformation of a

halfspace is another halfspace.

Proposition 5.2.2. A set S ⊆ E × R++ is a halfspace if and only if ΓS is a halfspace.

In particular, for any halfspace defined by

S =

(x′, u′) ∈ E × R++ |

ζ
δ


Tx′ − x
u′ − u

 ≤ 0

,
letting (y, v) = Γ(x, u), ΓS is the following halfspace

ΓS =

(y′, v′) ∈ E × R++ |

 ζ

−(ζ, δ)T (x, u)


Ty′ − y
v′ − v

 ≤ 0

.

We say that a set is polyhedral if it is the intersection of finitely many half-

spaces and E × R++. Then as an immediate consequence of Proposition 5.2.2

and (5.5), being polyhedral is preserved under the radial set transformation.

Corollary 5.2.3. A set S ⊆ E × R++ is polyhedral if and only if ΓS is polyhedral.

Lastly, we consider the radial transformation of ellipsoids. A set S ⊆ E × R

is an ellipsoid if for some center (x, u) and positive definite linear mapping H ,

S =

(x′, u′) ∈ E × R |

x′ − x
u′ − u


T

H

x′ − x
u′ − u

 ≤ 1

. (5.7)
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Similar to halfspaces, the radial transformation of such an ellipsoid in E × R++

is an ellipsoid in E×R++. Curiously, the center of ΓS is not Γ(x, u) (as one might

expect), but rather the depends on H .

Proposition 5.2.4. A set S is an ellipsoid if and only if ΓS is an ellipsoid.

5.2.1 Normal Vectors Under the Radial Set Transformation

Now we consider how the normal vectors of a set relate to those of its radial

transformation. Proposition 5.2.2’s description of transformed halfspaces char-

acterizes convex normal vectors under the transformation. Combining this re-

sult with Proposition 5.2.4’s description of transformed ellipsoids gives a char-

acterization for proximal normal vectors.

Proposition 5.2.5. For any S ⊆ E × R++, all (y, v) ∈ ΓS have

NC
ΓS((y, v)) =


 ζ

−(ζ, δ)T (x, u)

 |
ζ
δ

 ∈ NC
S ((x, u))


where (x, u) = Γ(y, v).

Proof. For any (x, u) ∈ S, (ζ, δ) ∈ NC
S ((x, u)) if and only if

S ⊆

(x′, u′) ∈ E × R++ |

ζ
δ


Tx′ − x
u′ − u

 ≤ 0

.
Letting (y, v) = Γ(x, u), Proposition 5.2.2 and (5.4) imply

ΓS ⊆

(y′, v′) ∈ E × R++ |

 ζ

−(ζ, δ)T (x, u)


Ty′ − y
v′ − v

 ≤ 0

.
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Thus
(
ζ, −(ζ, δ)T (x, u)

)
∈ NC

ΓS((y, v)). This gives the containment

NC
ΓS((y, v)) ⊇


 ζ

−(ζ, δ)T (x, u)

 |
ζ
δ

 ∈ NC
S ((x, u))


and repeating the argument, replacing S by ΓS, gives the radially dual contain-

ment

NC
S ((x, u)) = NC

ΓΓS((x, u)) ⊇


 ζ ′

−(ζ ′, δ′)T (y, v)

 |
ζ ′
δ′

 ∈ NC
ΓS((y, v))

.
Applying these two containments in succession shows

NC
ΓS((y, v)) ⊇


 ζ

−(ζ, δ)T (x, u)

 |
ζ
δ

 ∈ NC
S ((x, u))


⊇


 ζ ′

−(ζ ′,−(ζ ′, δ′)T (y, v))T (x, u)

 |
ζ ′
δ′

 ∈ NC
ΓS((y, v))


= NC

ΓS((y, v))

yielding the claimed formula.

Proposition 5.2.6. For any S ⊆ E × R++, all (y, v) ∈ ΓS have

NP
ΓS((y, v)) =


 ζ

−(ζ, δ)T (x, u)

 |
ζ
δ

 ∈ NP
S ((x, u))


where (x, u) = Γ(y, v).

Proof. Consider any (x, u) ∈ S and (ζ, δ) ∈ NP
S ((x, u)). Then for some ε > 0, the

ball

E = B


x
u

+ ε

ζ
δ

, ε
∥∥∥∥∥∥∥
ζ
δ


∥∥∥∥∥∥∥
 ⊂ E × R++

119



has E ∩ S = {(x, u)}. Recall from Proposition 5.2.4 that ΓE is an ellipsoid.

Applying (5.5) implies ΓE∩ΓS = {(y, v)}where (y, v) = Γ(x, u). Since−(ζ, δ) ∈

NC
E ((x, u)), Proposition 5.2.5 implies

(
−ζ, (ζ, δ)T (x, u)

)
∈ NC

ΓE((y, v)). Then for

sufficiently small ε′ > 0, the ball

E ′ = B


y
v

+ ε′

 ζ

−(ζ, δ)T (x, u)

, ε′
∥∥∥∥∥∥∥
 ζ

−(ζ, δ)T (x, u)


∥∥∥∥∥∥∥


lies in ΓE, and hence has E ′ ∩ ΓS = {(y, v)}. Thus
(
ζ, −(ζ, δ)T (x, u)

)
∈

NP
ΓS((y, v)), and so

NP
ΓS((y, v)) ⊇


 ζ

−(ζ, δ)T (x, u)

 |
ζ
δ

 ∈ NP
S ((x, u))

.
As shown in the proof of Proposition 5.2.5, the claimed formula follows from

this containment and the dual containment given by replacing S by ΓS.

5.2.2 Examples and Pictures

In Figures 5.1 through 5.10, we give five examples of pairs of sets in R × R++

radially dual to each other. Each figure includes the horizontal line L = {(x, 1) |

x ∈ R} as a black dashed line. Observe that L is exactly the set of fixed points of

the radial point transformation. Further, points above L always map into points

below L (and vice versa).

The first two example pairs given in Figures 5.1 and 5.2 and Figures 5.3

and 5.4 show the radial transformation of a halfspace and a polyhedron (which

must be a halfspace and a polyhedron by Proposition 5.2.2 and Corollary 5.2.3).

Examining the transformation of the horizontal and vertical faces of the square
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in Figure 5.3 demonstrates two simple properties of the radial set transforma-

tion: (i) horizontal lines map into horizontal lines and (ii) vertical lines map into

rays extending away from the origin (and vice versa).

Figures 5.5 and 5.6 show the radial transformation of an ellipsoid (which

must be an ellipsoid by Proposition 5.2.4). Figures 5.7 and 5.8 consider the radial

set transformation of a parabola, which is nearly an ellipsoid in R × R++ but it

approaches height 0 at the origin.

Our last pair of examples in Figures 5.9 and 5.10 show the radial set trans-

formation of a sine wave. Notice that the resulting set is not the graph of any

function. As we now transition to discussing our radial function transforma-

tions, considering how graphs, epigraphs, and hypographs behave under the

set transformation provides key intuitions. The fact that the epigraph of our ex-

ample parabola does not transform into the hypograph of another function and

that the graph of our example sine wave does not transform into the graph of

another function (as we will see) corresponds to our radial duality not holding

for these function.

5.3 The Radial Function Transformation

Recall that we defined two radial function transformations based on the radial

set transformation. The upper radial function transformation of some f : E → R++

is defined by

fΓ(y) = sup{v > 0 | (y, v) ∈ Γ(epi f)}

= sup{v > 0 | v · f(y/v) ≤ 1}. (5.8)
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Figure 5.1: A halfspace.

⇐⇒

Figure 5.2: Dual halfspace.

Figure 5.3: A polyhedron.

⇐⇒

Figure 5.4: Dual polyhedron.

Figure 5.5: An ellipsoid.

⇐⇒

Figure 5.6: Dual ellipsoid.

Figure 5.7: A quadratic.

⇐⇒

Figure 5.8: Dual of a quadratic.

Figure 5.9: A sine wave.

⇐⇒

Figure 5.10: Dual of sine wave.
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This transformation essentially applies Γ to the epigraph of f and then inter-

prets Γ(epi f) as the hypograph of a new function. Alternatively, interpreting

Γ(hypo f) as the epigraph of a new function gives the lower radial function trans-

formation defined by

fΓ(y) = inf{v > 0 | (y, v) ∈ Γ(hypo f)}

= inf{v > 0 | v · f(y/v) ≥ 1}. (5.9)

Based on (5.8) and (5.9), these transformations can alternatively be defined

using the perspective function of f , which we denote by fp(y, v) = v · f(y/v). It is

immediate from this viewpoint that

fΓ = fΓ ⇐⇒ fp(y, ·) is nondecreasing and strictly increasing on its domain.

(5.10)

Having nondecreasing fp(y, ·) can be understood in terms of the intersection

of rays with the epigraph or hypograph of f . The following lemma shows that if

fp(y, ·) is nondecreasing, the ray {λ(y, 1) | λ > 0} has λ(y, 1) lie in the hypograph

for all λ < λ0 and lie in the epigraph for all λ > λ0 for some λ0 ∈ R++. Thus the

hypograph of any such function is star-shaped with respect to the origin.

Lemma 5.3.1. The following three conditions are equivalent:

(i) all y ∈ E have fp(y, ·) nondecreasing,

(ii) all (y, v) ∈ epi f and t ≤ 1 have (y, v)/t ∈ epi f ,

(iii) all (y, v) ∈ hypo f and t ≥ 1 have (y, v)/t ∈ hypo f .

Proof. First suppose fp(y, ·) is nondecreasing and consider any (y, v) ∈ epi f and

t ≤ 1. Then t · f(y/t) ≤ f(y) ≤ v, and so (y, v)/t ∈ epi f . Inversely, suppose

some t < t′ has fp(y, t) > fp(y, t′). Then every f(y/t′) < α < (t/t′) · f(y/t)
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must have (y/t′, α) ∈ epi f . However, dividing this point by t/t′ ≤ 1 gives

(y/t, (t′/t)α) 6∈ epi f . Hence (i) ⇐⇒ (ii). Symmetric arguments show the

equivalent hypograph condition as (i) ⇐⇒ (iii).

We say a function f is upper (lower) radial whenever fp(y, ·) is nondecreasing

and upper (lower) semicontinuous for all y ∈ E . If in addition fp(y, ·) is strictly

increasing on its domain, we say f is strictly upper (lower) radial. The following

theorem shows being upper (lower) radial is exactly the condition for the dual-

ity of the point and set transformations (5.3) to carry over to the upper (lower)

radial function transformation.

Theorem 5.3.2. A function f is upper radial if and only if fΓΓ = f.

Likewise2, a function f is lower radial if and only if fΓΓ = f.

Proof. Observe that (fΓ)p(x, ·) is nondecreasing since it can be written as

u · fΓ(x/u) = u · sup{v > 0 | v · f(x/vu) ≤ 1}

= sup{w > 0 | w · f(x/w) ≤ u}.

Then the twice radially transformed function equals the following infimum

fΓΓ(x) = inf{u > 0 | u · fΓ(x/u) > 1}

= inf{u > 0 | sup{w > 0 | w · f(x/w) ≤ u} > 1}

= inf{u > 0 | ∃w > 1 s.t. w · f(x/w) ≤ u}

= inf{w · f(x/w) | w > 1}.

The claimed duality follows as f(x) = inf{w · f(x/w) | w > 1} if and only if

w 7→ w · f(x/w) is nondecreasing and upper semicontinuous on w > 0 for all

x ∈ E .
2Throughout this manuscript, we claim a mirrored results for the lower radial transformation

in our theorems and propositions. We omit the proofs for these as they parallel those for the
upper radial case.
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The radial duality among upper (or lower) radial functions is central to un-

derstanding our radial function transformations. In Section 5.3.1, we begin by

characterizing when important classes of functions are upper or lower radial

(i.e., semicontinuous, differentiable, convex, and concave functions). Then Sec-

tion 5.3.2 shows being radial is preserved under many standard operations (i.e.,

conic combinations, linear compositions, minimums, and maximums). Sec-

tions 5.3.3, 5.3.4, 5.3.5, and 5.3.6 consider the radial transformations of semi-

continuous, piecewise linear, concave/convex, and quasiconcave/quasiconvex

functions, respectively. We conclude this section by giving several examples of

radial function transformations in Section 5.3.7

5.3.1 Characterizing Radial Functions

Radial Semicontinuous Functions

Here we consider when an upper (or lower) semicontinuous function is upper

(or lower) radial, and thus when our duality holds. Unlike Lemma 5.3.1 which

focuses on rays from the origin, we give a necessary and sufficient condition

based on proximal normal vectors of the function’s hypograph (or epigraph).

We find it suffices to consider whether the origin lies below the hyperplane in-

duced by each proximal normal vector.

Proposition 5.3.3. An upper semicontinuous f is upper radial if and only if all (x, u) ∈

hypo f and (ζ, δ) ∈ NP
hypo f ((x, u)) satisfy

(ζ, δ)T (x, u) ≥ 0.

Likewise, a lower semicontinuous f is lower radial if and only if all (x, u) ∈ epi f and
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(ζ, δ) ∈ NP
epi f ((x, u)) satisfy

(ζ, δ)T (x, u) ≤ 0.

Proof. First suppose f is upper radial and consider any (x, u) ∈ hypo f and

(ζ, δ) ∈ NP
hypo f ((x, u)). By Lemma 5.3.1, (x, u)/t ∈ hypo f for all t ≥ 1. Since

(x, u) ∈ projhypo f ((x, u) + ε(ζ, δ)) for some ε > 0, all t ≥ 1 satisfy

‖(x, u) + ε(ζ, δ)− (x, u)‖2 ≤ ‖(x, u) + ε(ζ, δ)− (x, u)/t‖2.

Simplifying this gives

0 ≤ (1− 1/t)2‖(x, u)‖2 + 2ε(1− 1/t)(ζ, δ)T (x, u),

and so taking t→ 1 verifies (ζ, δ)T (x, u) ≥ 0.

Note that fp(y, ·) is upper semicontinuous by assumption. Now suppose

fp(y, ·) is not nondecreasing. Then Lemma 5.3.1 guarantees some (x, u) ∈ hypo f

and γ > 1 has (x, u)/γ 6∈ hypo f . The assumed upper semicontinuity guarantees

hypo f is closed, and thus for some ε > 0,

B((x, u)/γ, ε) ∩ hypo f = ∅.

Hence the following supremum is well defined

γ′ := sup{1 < t ≤ γ | B((x, u)/t, ε/2) ∩ hypo f 6= ∅}.

Notice that 1 < γ′ < γ. Further, int B((x, u)/γ′, ε/2) ∩ hypo f = ∅. Moreover,

since hypo f is closed, some (x′, u′) ∈ hypo f lies on the boundary of this ball

– that is, ‖(x, u)/γ′ − (x′, u′)‖ = ε/2. Then hypo f at (x′, u′) has the following

proximal normal vector

(ζ ′, δ′) := (x, u)/γ′ − (x′, u′) ∈ NP
hypo f ((x

′, u′)).
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Since all γ′ < t < γ have (x′, u′) 6∈ B((x, u)/t, ε/2),

( ε
2

)2

≤
∥∥∥∥(x, u)

t
− (x′, u′)

∥∥∥∥2

=

∥∥∥∥γ′t (ζ ′, δ′)−
(

1− γ′

t

)
(x′, u′)

∥∥∥∥2

=

∥∥∥∥γ′t (ζ ′, δ′)

∥∥∥∥2

− 2
γ′

t

(
1− γ′

t

)
(ζ ′, δ′)T (x′, u′) +

∥∥∥∥(1− γ′

t

)
(x′, u′)

∥∥∥∥2

=

(
γ′

t

ε

2

)2

− 2
γ′

t

(
1− γ′

t

)
(ζ ′, δ′)T (x′, u′) +

∥∥∥∥(1− γ′

t

)
(x′, u′)

∥∥∥∥2

.

Rearrangement of this inequality gives

2(ζ ′, δ′)T (x′, u′) ≤ −
(
t

γ′
+ 1

)( ε
2

)2

+

(
t

γ′
− 1

)
‖(x′, u′)‖2

.

Taking t→ γ′ shows (ζ ′, δ′)T (x′, u′) ≤ −ε2/2 < 0.

Radial Differentiable Functions

Now we specialize the previous result for semicontinuous functions to dif-

ferentiable functions. We want to allow functions like the previously consid-

ered example f(x) =
√

1− ‖x‖2 (with value 0 whenever ‖x‖ ≥ 1) in our the-

ory here. To this end, we say a function is continuously differentiable if f is

continuous on E and ∇f(x) exists and is continuous on its effective domain

dom f = {x ∈ E | f(x) ∈ R++}.

For any such function f and x ∈ dom f , if some nonzero (ζ, δ) ∈ NP
epi f ((x, u))

exists, then u = f(x) and (ζ, δ) = λ(∇f(x),−1) for some λ ≥ 0. Further, for

a dense subset of dom f , the converse holds (which follows from the density

theorem of proximal calculus [27, Theorem 1.3.1]). Then the continuity of ∇f

and Proposition 5.3.3 imply the following condition is necessary and sufficient
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for f to be radial3.

Proposition 5.3.4. A continuously differentiable f is radial if and only if for all x ∈

dom f ,

(∇f(x),−1)T (x, f(x)) ≤ 0.

This characterization can be alternatively derived by considering when the

partial derivative ∂
∂v
fp(y, v) = f(y/v) − ∇f(y/v)T (y/v) is nonnegative. Based

on this observation, having a positive derivative is sufficient to ensure fp(y, ·) is

strictly increasing on its domain, and thus fΓ = fΓ by (5.10).

Proposition 5.3.5. A continuously differentiable f is strictly radial if for all x ∈

dom f ,

(∇f(x),−1)T (x, f(x)) < 0.

Radial Convex and Concave Functions

Lastly we consider conditions for convex or concave functions to be upper or

lower radial. For convex functions, the proximal subdifferential and convex

subdifferential are equal giving the following characterization.

Proposition 5.3.6. A lower semicontinuous convex f is lower radial if and only if all

(x, u) ∈ epi f and (ζ, δ) ∈ NC
epi f ((x, u)) have

(ζ, δ)T (x, u) ≤ 0.

Now we consider concave functions, finding that it suffices to have points

arbitrarily close to the origin with nonzero function value. As a result, every

3A continuous functions is (strictly) upper radial if and only if it is (strictly) lower radial. In
such cases, we simply say the function is (strictly) radial as a shorthand.
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upper semicontinuous concave function can be translated to become upper ra-

dial.

Proposition 5.3.7. An upper semicontinuous concave f has fp(y, ·) nondecreasing if

and only if 0 ∈ cl {x | f(x) > 0} or f = 0.

Proof. Trivially f = 0 has fp(y, ·) nondecreasing and so we assume some x′ has

f(x′) > 0. Then fp(y, ·) being nondecreasing implies all t ≥ 1 have f(x′/t) ≥

f(x′)/t > 0. Taking t → ∞ gives a sequence of points verifying 0 ∈ cl {y |

f(y) > 0}.

Conversely, suppose 0 ∈ cl {x | f(x) > 0} and consider any (x, u) ∈ hypo f .

Since hypo f is closed and convex and (0, 0) ∈ cl hypo f , the line segment

((0, 0), (x, u)] must lie in hypo f . This is equivalent to fp(y, ·) being nondecreas-

ing by Lemma 5.3.1.

Furthermore, if the origin lies in the interior of {x | f(x) > 0}, we find

that fp(x, ·) is strictly increasing on its domain, and thus fΓ = fΓ by (5.10).

This condition can easily be attained for any concave f whenever a point in the

interior of the function’s domain is known by translating it to the origin. This

directly corresponds to the setting assumed by Grimmer [60] and is equivalent

to the conic setting assumed by Renegar [140].

Proposition 5.3.8. A concave f has fp(y, ·) strictly increasing on its domain if 0 ∈

int {x | f(x) > 0}.

Proof. Consider any y ∈ E and 0 < v < v′ with v · f(y/v) ∈ R++. Since

(y/v, f(y/v)) ∈ hypo f , the convexity of f ensures that the line segment

((0, 0), (y/v, f(y/v))) lies in the interior of the hypograph of f . In particular,
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(v/v′) · (y/v, f(y/v)) = (y/v′, (v/v′) · f(y/v)) ∈ int hypo f . Therefore f(y/v′) >

(v/v′)f(y/v) and so fp(y, v) < fp(y, v′).

5.3.2 Closure of Radial Functions Under Common Operations

Building on our characterizations of when important classes of functions are

upper or lower radial, here we show that this structure is preserved under many

common operations. The following result shows this is the case for any conic

combination (that is,
∑k

i=1 λifi(x) with each λi > 0), composition with linear

maps, and taking finite minimums and maximums.

Proposition 5.3.9. For any pair of (strictly) upper radial functions f1, f2, the following

functions are also (strictly) upper radial functions:

(i) Positive Rescaling by λ > 0: λ · f1,

(ii) Composition with a linear map A : E ′ → E : f1 ◦ A,

(iii) Addition: f1 + f2,

(iv) Minimums: min{f1, f2},

(v) Maximums: max{f1, f2}.

Likewise, these operations all preserve being (strictly) lower radial.

Proof. Each of these operations preserves upper and lower semicontinuity and

being nondecreasing (or strictly increasing). Consequently, they preserve being

(strictly) upper or lower radial.

Note that (i) and (iii) above together give the claimed result for conic combi-

nations. For all of these operations except addition, we can give simple formulas

for the resulting radial transformation, formalized in the following proposition.
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Proposition 5.3.10. For any pair of functions f1, f2, the following identities hold for

any λ > 0 and linear A : E ′ → E

(λ · f1)Γ(y) = fΓ
1 (λy)/λ,

(f1 ◦ A)Γ = fΓ
1 ◦ A,

min{f1, f2}Γ = max{fΓ
1 , f

Γ
2 }.

Further, if f1, f2 are upper radial, then

max{f1, f2}Γ = min{fΓ
1 , f

Γ
2 }.

Likewise, similar identities hold for the lower radial transformation.

Proof. The results for positive rescaling by some λ > 0, for composition with a

linear map A : E ′ → E , and for minimums follow immediately from the defini-

tion of our radial transformation as

(λ · f)Γ(y) = sup{v > 0 | λv · f(y/v) ≤ 1}

= sup{w > 0 | w · f(λy/w) ≤ 1}/λ

= fΓ(λy)/λ,

(f ◦ A)Γ(y) = sup{v > 0 | v · f(Ay/v) ≤ 1}

= fΓ(Ay),

min{f1, f2}Γ(y) = sup{v > 0 | v ·min{f1(y/v), f2(y/v)} ≤ 1}

= max
i=1,2
{sup{v > 0 | v · fi(y/v) ≤ 1}}

= max{fΓ
1 (y), fΓ

2 (y)}.
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The claimed formula for maximums follows as

max{f1, f2}Γ(y) = sup{v > 0 | v ·max{f1(y/v), f2(y/v)} ≤ 1}

= min
i=1,2
{sup{v > 0 | v · fi(y/v) ≤ 1}}

= min{fΓ
1 (y), fΓ

2 (y)},

where the second equality above relies on each v · fi(y/v) being nondecreasing.

From these simple operations, we can build up to more complex functions

that preserve being upper radial. For example, consider the operations taking

the kth largest or smallest element out of a set of n elements

k- min{x1, . . . , xn} := xik where xi1 ≤ xi2 ≤ · · · ≤ xin

k- max{x1, . . . , xn} := xin−k+1
where xi1 ≤ xi2 ≤ · · · ≤ xin .

and averaging the k largest or smallest elements

k-minavg{x1, . . . , xn} :=
1

k

k∑
j=1

xij where xi1 ≤ xi2 ≤ · · · ≤ xin

k-maxavg{x1, . . . , xn} :=
1

k

k∑
j=1

xin−j+1
where xi1 ≤ xi2 ≤ · · · ≤ xin .

Corollary 5.3.11. For any (strictly) upper radial functions f1, . . . , fn, the func-

tions k- min{fi(x)}, k- max{fi(x)}, k-minavg{fi(x)}, and k-maxavg{fi(x)} are all

(strictly) upper radial with

(k- min{fi(x)})Γ(y) = k- max{fΓ
i (y)}.

Proof. This follows immediately from Propositions 5.3.9 and 5.3.10 since these

operations can be described as combinations of minimums, maximums, positive
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rescaling, and addition

k- min{f1(x), . . . , fn(x)} = min{max{fi(x) | i ∈ S} | S ⊆ {1, . . . , n}, |S| = k},

k- max{f1(x), . . . , fn(x)} = max{min{fi(x) | i ∈ S} | S ⊆ {1, . . . , n}, |S| = k},

k-minavg{f1(x), . . . , fn(x)} = min

{
1

k

∑
i∈S

fi(x) | S ⊆ {1, . . . , n}, |S| = k

}
,

k-maxavg{f1(x), . . . , fn(x)} = max

{
1

k

∑
i∈S

fi(x) | S ⊆ {1, . . . , n}, |S| = k

}
.

5.3.3 Radial Transformation of Semicontinuous Functions

Now we turn our focus to understanding how various families of functions be-

have under the radial transformation. Considering the transformation of upper

and lower semicontinuous functions shows that these become lower and upper

semicontinuous, respectively, whenever f is appropriately radial.

Proposition 5.3.12. For any lower semicontinuous, lower radial f , fΓ is upper semi-

continuous. Likewise, for any upper semicontinuous, upper radial f , fΓ is lower semi-

continuous.

Proof. Consider any y ∈ E . Upper semicontinuity trivially holds at y if fΓ(y) =

∞. Now assume fΓ(y) < ∞ and consider any γ > fΓ(y). Then γ · f(y/γ) > 1.

From the lower semicontinuity of f , for some ε > 0, all y′ ∈ B(y, ε) satisfy

γ · f(y′/γ) > 1. Therefore fΓ(y′) ≤ γ. Taking the limit as γ approaches fΓ(y)

shows fΓ(y) = lim supy′→y f
Γ(y′).

These results with upper and lower semicontinuity reversed do not hold in

general. However, whenever fΓ = fΓ, the reversed propositions immediately
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hold. Thus, for strictly upper (lower) radial functions, upper semicontinuity

and lower semicontinuity are dual to each other under the upper (lower) trans-

formation.

Proposition 5.3.13. For any f with fp(y, ·) strictly increasing on its domain for all

y ∈ E ,

f upper semicontinuous =⇒ fΓ = fΓ lower semicontinuous,

f lower semicontinuous =⇒ fΓ = fΓ upper semicontinuous,

f continuous =⇒ fΓ = fΓ continuous.

Proof. Since fΓ = fΓ by (5.10), both directions of Proposition 5.3.12 apply.

5.3.4 Radial Transformation of Piecewise Linear Functions

We say a function f is convex polyhedral if epi f is the intersection of finitely many

halfspaces and E × R++. Likewise, f is concave polyhedral if hypo f is the inter-

section of finitely many halfspaces and E × R++. Recall Corollary 5.2.3 ensures

polyhedral sets map to polyhedral sets under the radial set transformation. The

following proposition shows how this property is mirrored by the radial func-

tion transformation on polyhedral functions.

Proposition 5.3.14. If f is convex polyhedral then fΓ is concave polyhedral.

Likewise, if f is concave polyhedral then fΓ is convex polyhedral.

Proof. If epi f is polyhedral, then Corollary 5.2.3 implies Γ(epi f) is also polyhe-

dral. Since Γ(epi f) is closed with respect to E × R++, the hypograph of fΓ can
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be written as

hypo fΓ = {(y, v) | ∃v′ ≥ v, (y, v′) ∈ Γ(epi f)}.

Then Fourier-Motzkin ensures hypo fΓ is polyhedral.

Like the previous results on semicontinuity, the converses do not hold in

general. However, whenever fp(y, ·) is strictly increasing on its domain for all

y ∈ E , they immediately hold as fΓ = fΓ.

5.3.5 Radial Transformation of Concave/Convex Functions

Recall from Proposition 5.2.1 that the radial set transformation preserves con-

vexity. This structure carries over to the function setting where convex functions

become concave and vice versa.

Proposition 5.3.15. If f is concave then fΓ and fΓ are convex.

Likewise, if f is convex then fΓ and fΓ are concave.

Proof. Note that the perspective function fp(y, v) is concave (convex) whenever

f is concave (convex) [19]. Supposing f is concave. Consider any (y, v), (y′, v′) ∈

epi fΓ and 0 ≤ λ ≤ 1. Note all t > v and t′ > v′ have t · f(y/t) > 1 and

t′ · f(y′/t′) > 1. Then the concavity of fp implies

(λt+ (1− λ)t′) · f
(
λy + (1− λ)y′

λt+ (1− λ)t′

)
> 1.

Thus fΓ(λy + (1− λ)y′) ≤ λv + (1− λ)v′ since this holds for all t > v and t′ > v′.

Now consider any (y, v), (y′, v′) ∈ epi fΓ and 0 ≤ λ ≤ 1. Note there must exist

t, t′ near fΓ(y), fΓ(y′) with t · f(y/t) ≥ 1 and t′ · f(y′/t′) ≥ 1. Then the concavity
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of fp implies

(λt+ (1− λ)t′) · f
(
λy + (1− λ)y′

λt+ (1− λ)t′

)
≥ 1.

Thus fΓ(λy + (1− λ)y′) ≤ λfΓ(y) + (1− λ)fΓ(y′) ≤ λv + (1− λ)v′.

Thus the family of upper radial concave functions is dual to the family of

upper radial convex functions. This is particularly interesting because these

families of functions are very different due to the symmetry breaking nature of

working with the extended positive reals. Proposition 5.3.7 shows that any con-

cave function can be translated to become radial, whereas no similar operation

exists for convex functions. This is a critical algorithmic insight since it allows us

to take generic concave maximization problems and transform them into min-

imization problem that is both convex and upper radial. In the second part of

this work, we will see that radially dual minimization problems are very struc-

tured, often being globally uniformly Lipschitz continuous, despite us starting

with a quite generic maximization problem.

5.3.6 Radial Transformation of Quasi-concave/-convex Func-

tions

Lastly we consider the generalization of concavity and convexity given by qua-

siconcavity and quasiconvexity. We say a function is quasiconcave (quasiconvex)

if its superlevel sets {x ∈ E | f(x) ≥ z} (sublevel sets {x ∈ E | f(x) ≤ z}) are

convex for all z > 0. Similar to the previous section’s results, we find that qua-

siconcave functions are dual to quasiconvex functions (although the additional
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condition that fp(y, ·) is nondecreasing is needed for our fullest version of this

result to hold).

Proposition 5.3.16. If f is quasiconcave, fΓ is quasiconvex. If in addition fp(y, ·) is

nondecreasing, fΓ is quasiconvex. Likewise, if f is quasiconvex, fΓ is quasiconcave. If

in addition fp(y, ·) is nondecreasing, fΓ is quasiconcave.

Proof. Suppose f is quasiconcave and fix any level z ∈ R++. Consider any 0 ≤

λ ≤ 1 and y, y′ ∈ E with fΓ(y) ≤ z and fΓ(y′) ≤ z. First, we consider the upper

radial transformation. Note all γ > z have γ · f(y/γ) > 1 and γ · f(y′/γ) > 1.

Then the quasiconcavity of f implies

γ · f
(
λy + (1− λ)y′

γ

)
≥ γ ·min{f(y/γ), f(y′/γ)}

= min{γ · f(y/γ), γ · f(y′/γ)} > 1.

Thus fΓ(λx+ (1− λ)y) ≤ z since this holds for every γ > z.

Now we consider the lower radial transformation and further assume fp(y, ·)

is nondecreasing. Note all γ > z must have γ · f(y/γ) ≥ 1 and γ · f(y′/γ) ≥ 1.

Then the quasiconvexity of f implies

γ · f
(
λy + (1− λ)y′

γ

)
≥ γ ·min{f(y/γ), f(y′/γ)}

= min{γ · f(y/γ), γ · f(y′/γ)} ≥ 1.

Thus fΓ(λy + (1− λ)y′) ≤ z since this holds for every γ > z.

5.3.7 Examples and Pictures

In Figures 5.11 through 5.20, we give a number of examples of radial function

transformations. As done in our illustrations of the radial set transformation,
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each figure includes the horizontal line {(x, 1) | x ∈ R} as a black dashed line

for reference.

Figures 5.11, 5.12, and 5.13 show the absolute value function and its upper

and lower radial transformations respectively. A simple calculation shows

| · |Γ(y) =


+∞ if − 1 ≤ y ≤ 1

0 otherwise,

| · |Γ(y) =


+∞ if − 1 < y < 1

0 otherwise.

Note |x| is both upper and lower radial, but not strictly. As a result, although |·|Γ

and |·|Γ are not equal, both are dual to |x| under their respective transformations.

Figures 5.14 and 5.15 show the strictly radial, concave function
√

1− x2 (with

the value at all x2 > 1 set to 0) and its transformation
√

1 + y2. Notice the trans-

formed function is convex as guaranteed by Proposition 5.3.15. Moreover, it is

uniformly Lipschitz and smooth even though the original function possesses

neither of these properties.

Figures 5.16 and 5.17 show the strictly radial function e−|x| + 1/2 and its

transformation. Even though this function is neither concave nor convex, our

transformation can still be directly applied. Moreover, this function is quasi-

concave and so, as guaranteed by Proposition 5.3.16, its radial transformation is

quasiconvex.

Lastly, Figures 5.18, 5.19, and 5.20 continue the example of transforming the

quadratic (x + 1)2 + 1/2 which was used in Figures 5.7 and 5.8 to illustrate the

radial set transformation. Notice that this quadratic is not upper radial as its
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epigraph transforms into an ellipsoid-like shape rather than the hypograph of

another function. Hence its upper radial transformation is not dual to the orig-

inal quadratic. Figure 5.20 shows the result of applying the upper radial trans-

formation to this quadratic twice. In this case, the functions in Figures 5.19

and 5.20 are upper radial and thus radially dual.

5.4 Optimization Based on Radial Transformations

Here we develop the necessary machinery to propose and analyze optimization

methods based on the radial transformation. One powerful facet of the duality

between (5.1) and (5.2) lies in how constraints are transformed and the subse-

quent algorithmic gains. Consider maximizing f : E → R++ over some S ⊆ E .

To move the constraints into the objective, we define the indicator function of a

set S ⊆ E as

ιS(x) =


+∞ if x ∈ S

0 if x 6∈ S.

Then it is immediate that the initial problem (5.1) can be written as

max
x∈S

f(x) = max
x∈E

min{f(x), ιS(x)}.

Problems of this form have particularly nice radial transformations since it

distributes over the minimum by Proposition 5.3.10. Thus the radially dual

problem (5.2) is

min
y∈E

max{fΓ(y), ιΓS(y)}.

For convex S with 0 ∈ S, ιΓS(y) is precisely its gauge γS(y) = inf{λ ≥ 0 | y ∈ λS}.

As a result, we find that constraints in the original problem become gauges in
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Figure 5.11: |x|

⇐⇒

Figure 5.12: | · |Γ(y) Figure 5.13: | · |Γ(y)

Figure 5.14: f(x) =
√

1− x2

⇐⇒

Figure 5.15: fΓ = fΓ =
√

1 + y2

Figure 5.16: g(x) = e−|x| + 1/2

⇐⇒

Figure 5.17: gΓ(y) = gΓ(y)

Figure 5.18: h(x) = (x+ 1)2 + 1/2

=⇒

Figure 5.19: hΓ(y)

⇐⇒

Figure 5.20: hΓΓ(x)
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the radially dual problem:

ιΓS(y) = sup{v > 0 | v · ιS(y/v) ≤ 1}

= sup{v > 0 | y/v 6∈ S}

= inf{λ > 0 | y ∈ λS}

= γS(y).

This observation is very useful for designing first-order methods. Typically

constrained optimization problems require orthogonal projections onto the fea-

sible region at each iteration (which may be substantially more expensive than

computing a single subgradient, often dominating an algorithm’s runtime).

Evaluating the gauge of a set and computing one of its subgradients can be

far cheaper than orthogonal projection as it requires at most a one-dimensional

line search and computing a single normal vector of the constraint set. Thus the

radially dual problem effectively replaces the need for orthogonal projections

with much simpler operations. Observing and taking advantage of this struc-

ture in the context of conic programming was a central contribution of [140].

Discussing the fuller implications of transforming constraints into their related

gauge function on the design of algorithms is deferred to the next chapter.

In the remainder of this section, we develop a calculus for the radially dual

optimization problem. For any appropriately radial function, formulas for the

convex and proximal subdifferentials and supdifferentials of its radial trans-

formation are given in Section 5.4.1. Further, assuming f is sufficiently dif-

ferentiable, Section 5.4.2 characterizes the gradients and Hessians of its radial

transformations. In Section 5.4.3, we relate the optimal points (minimizers and

maximizers) and stationary points of a function and its radial transformations.

These calculus and optimality relations form the foundations of relating the pair
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of radially dual optimization problems (5.1) and (5.2).

5.4.1 Convex and Proximal Subgradients and Supgradients

To understand the convex and proximal subdifferentials under radial function

transformations, we leverage Propositions 5.2.5 and 5.2.6 which described nor-

mal vectors under the radial set transformation. The following lemma relates

the epigraph and hypograph of radially transformed functions to those of the

original function.

Lemma 5.4.1. For any upper radial f , epi fΓ ⊆ Γ(hypo f).

Likewise, for any lower radial f , hypo fΓ ⊆ Γ(epi f).

If fp(y, ·) is strictly increasing on its domain, equality holds in both cases.

Proof. Noting that fΓ(y) ≤ v =⇒ v · f(y/v) ≥ 1 for upper radial f , this follows

directly as

Γ(hypo f) =

{
(x, 1)

u
| f(x) ≥ u

}
= {(y, v) | f(y/v) ≥ 1/v}

= {(y, v) | v · f(y/v) ≥ 1}

⊇
{

(y, v) | fΓ(y) ≥ v
}

= epi fΓ.

When f is strictly upper radial, fΓ(y) ≤ v ⇐⇒ v · f(y/v) ≥ 1, and so equality

holds.

In light of Lemma 5.4.1, we can immediately apply our results on normal

vectors under the radial set transformation to understand differentials under
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the function transformation. The following pair of propositions do this for the

convex and proximal subdifferential and supdifferential.

Proposition 5.4.2. For any strictly upper radial f ,

∂Cf
Γ(y) =

 ζ

(ζ, δ)T (x, u)
|

ζ
δ

 ∈ NC
hypo f ((x, u)), (ζ, δ)T (x, u) > 0


where (x, u) = Γ(y, fΓ(y)). Likewise, for any strictly lower radial f ,

∂CfΓ(y) =

 ζ

(ζ, δ)T (x, u)
|

ζ
δ

 ∈ NC
epi f ((x, u)), (ζ, δ)T (x, u) < 0

.
Proof. Recall that Propositions 5.2.5 characterized the convex normal vectors of

the radial transformation of a set in terms of the original set. Since the assumed

strict increase ensures equality holds in Lemma 5.4.1, this applies to the epi-

graph and hypograph of fΓ and fΓ, respectively. Thus when f is strictly upper

radial

NC
epi fΓ((y, v)) =


 ζ

−(ζ, δ)T (x, u)

 |
ζ
δ

 ∈ NC
hypo f ((x, u))

 (5.11)

and when f is strictly lower radial

NC
hypo fΓ

((y, v)) =


 ζ

−(ζ, δ)T (x, u)

 |
ζ
δ

 ∈ NC
epi f ((x, u))

. (5.12)

Then the claimed subgradient and supgradient formulas follow by definition.

Proposition 5.4.3. For any strictly upper radial f ,

∂Pf
Γ(y) =

 ζ

(ζ, δ)T (x, u)
|

ζ
δ

 ∈ NP
hypo f ((x, u)), (ζ, δ)T (x, u) > 0


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where (x, u) = Γ(y, fΓ(y)). Likewise, for any strictly lower radial f ,

∂PfΓ(y) =

 ζ

(ζ, δ)T (x, u)
|

ζ
δ

 ∈ NP
epi f ((x, u)), (ζ, δ)T (x, u) < 0

.
Proof. Recall that Propositions 5.2.6 characterized the proximal normal vectors

of the radial transformation of a set in terms of the original set. Since the as-

sumed strict increase ensures equality holds in Lemma 5.4.1, this applies to the

epigraph and hypograph of fΓ and fΓ, respectively. Thus when f is strictly

upper radial

NP
epi fΓ((y, v)) =


 ζ

−(ζ, δ)T (x, u)

 |
ζ
δ

 ∈ NP
hypo f ((x, u))

 (5.13)

and when f is strictly lower radial

NP
hypo fΓ

((y, v)) =


 ζ

−(ζ, δ)T (x, u)

 |
ζ
δ

 ∈ NP
epi f ((x, u))

. (5.14)

Then the claimed subgradient and supgradient formulas follow by definition.

5.4.2 Gradients and Hessians for Differentiable Functions

Now we narrow our focus to consider differentiable functions under the radial

transformation. Whenever fΓ is differentiable, a formula for its gradient fol-

lows from the subgradient formula in Proposition 5.4.3. To establish when fΓ

is differentiable, we show that being k times continuously differentiable (or an-

alytic) is preserved under the radial transformation for appropriate functions.

Lastly, we give a formula for the Hessian of the radial transformation of any

appropriate twice differentiable function.
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As a first step, we give a simple bijection between the graphs (and thus do-

mains) of a function f and its radial transformation fΓ whenever f is continuous

and strictly radial.

Lemma 5.4.4. For any continuous, strictly radial f ,

graph fΓ = Γ(graph f).

Hence, if y ∈ dom fΓ then y/fΓ(y) ∈ dom f .

Proof. Noting that graph f = epi f ∩ hypo f , we have

graph fΓ = epi fΓ ∩ hypo fΓ = Γ(epi f) ∩ Γ(hypo f)

= Γ(epi f ∩ hypo f)

= Γ(graph f)

where the second equality follows from Lemma 5.4.1 and the third follows

from (5.5).

This lemma lets us view the graph of the radial transformation as the relation

Γ(graph f). Applying the implicit function theorem to this relation shows dif-

ferentiability is preserved under the transformation for appropriate functions.

Then leveraging the previous section’s results on the proximal subdifferential

gives a formula for the gradient of the radial transformation.

Proposition 5.4.5. Consider any strictly upper radial f and x, y ∈ E with (x, f(x)) =

Γ(y, fΓ(y)). Then f is k times continuously differentiable (or analytic) around x with

(∇f(x),−1)T (x, f(x)) < 0

if and only if fΓ = fΓ is k times continuously differentiable (or analytic) around y with

(∇fΓ(y),−1)T (y, fΓ(y)) < 0
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where

∇fΓ(y) =
∇f(x)

(∇f(x),−1)T (x, f(x))
.

Proof. It suffices to only show the forward direction as the duality of the radial

function transformation (Theorem 5.3.2) will then imply the reverse direction.

Define the following k times continuously differentiable (or analytic) function

F (y′, v′) = v′ · f(y′/v′)− 1.

Then from Lemma 5.4.4, we know graph fΓ = {(y′, v′) ∈ E×R++ | F (y′, v′) = 0}.

Noting
∂

∂v
F (y, fΓ(y)) = f(y/fΓ(y))−∇f(y/fΓ(y))T (y/fΓ(y)),

we find ∂
∂v
F (y, fΓ(y)) = f(x)−∇f(x)Tx > 0. Thus the implicit function theorem

can be applied to produce a k times continuously differentiable (or analytic)

function g : U → R++ for some open neighborhood U of y such that

graph fΓ ∩ (U × R++) = {(y, g(y)) | y ∈ U}.

As a result, fΓ must equal g near y, and hence is also k times continuously

differentiable (or analytic) near y.

Now all that remains is to derive our gradient formula and show it satisfies

the claimed inequality. Consider any y ∈ dom fΓ and set x = y/fΓ(y) ∈ dom f .

The density theorem of proximal calculus [27, Theorem 1.3.1] guarantees a se-

quence yi → y exists with all ∂PfΓ(yi) 6= ∅. Then letting xi = yi/f
Γ(yi),

∇fΓ(yi) =
∇f(xi)

(∇f(xi),−1)T (xi, f(xi))

since NP
epi f (xi, f(xi)) ⊆ {λ(∇f(xi),−1) | λ ≥ 0}. Since xi → x, the continuous

differentiability of f and fΓ ensures

∇fΓ(y) =
∇f(x)

(∇f(x),−1)T (x, f(x))
.
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From this, its immediate that

(∇fΓ(y),−1)T (y, fΓ(y)) =

(
∇f(x)

(∇f(x),−1)T (x, f(x))
,−1

)T(
x

f(x)
,

1

f(x)

)
=

1

f(x)

(
∇f(x)Tx

(∇f(x),−1)T (x, f(x))
− 1

)
=

1

(∇f(x),−1)T (x, f(x))
< 0.

We remark that this result does not capture all functions for which the radial

transformation is differentiable. For example, consider the strictly upper radial

function

f(x) =


1 +
√

1− x2 if − 1 ≤ x ≤ 1

0 otherwise

This function is not differentiable everywhere in its domain (namely, it fails at

x = ±1). However, its upper radial transformation is differentiable everywhere

as it equals

fΓ(y) =


(y2 + 1)/2 if − 1 ≤ y ≤ 1

|y| otherwise.

Differentiating the gradient formula of Proposition 5.4.5 directly gives a Hes-

sian formula for the radial transformation of a function.

Proposition 5.4.6. Consider strictly upper radial f and x, y ∈ E satisfying (x, f(x)) =

Γ(y, fΓ(y)). If f is twice continuously differentiable around x with

(∇f(x),−1)T (x, f(x)) < 0,

the Hessian of fΓ = fΓ at y is given by

∇2fΓ(y) =
f(x)

(∇f(x),−1)T (x, f(x))
· J∇2f(x)JT

where J = I − ∇f(x)xT

(∇f(x),−1)T (x,f(x))
.
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Proof. Denote the bijection relating the domains of fΓ and f by π(y) = y/fΓ(y)

(as shown by Lemma 5.4.4). Then the gradient of the radial transformation is

∇fΓ(y) =
∇f(π(y))

(∇f(π(y)),−1)T (π(y), f(π(y)))
.

Thus the Jacobian of π is given by

∇π(y) = I/fΓ(y)− y∇fΓ(y)T/fΓ(y)2

=
1

fΓ(y)

(
I − y∇f(π(y))T

fΓ(y)(∇f(π(y)),−1)T (π(y), f(π(y)))

)
= f(π(y))

(
I − π(y)∇f(π(y))T

(∇f(π(y)),−1)T (π(y), f(π(y)))

)
where the third equality uses that y/fΓ(y) = π(y) and 1/fΓ(y) = f(π(y)) by

Lemma 5.4.4. Let g(x) = ∇f(x)/(∇f(x),−1)T (x, f(x)) denote∇fΓ ◦π−1. Noting

that the gradient of (∇f(x),−1)T (x, f(x)) is∇2f(x)Tx, the Jacobian of g is given

by

∇g(x) =
∇2f(x)

(∇f(x),−1)T (x, f(x))
− ∇f(x)xT∇f 2(x)

(∇f(x),−1)T (x, f(x))2

=
1

(∇f(x),−1)T (x, f(x))

(
I − ∇f(x)xT

(∇f(x),−1)T (x, f(x))

)
∇2f(x)

Since ∇fΓ(y) = g(π(y)), the Hessian of fΓ is given by ∇g(π(y))∇π(y) which is

exactly the claimed formula.

5.4.3 Optimality Under the Radial Transformation

Before addressing optimality under our radial duality, we observe that inequal-

ities between functions are reversed by applying either radial function transfor-

mation. This mirrors (5.4), where we saw the radial set transformation preserves

inclusions between sets. We say f ≤ g if f(x) ≤ g(x) for all x ∈ E .
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Lemma 5.4.7. For any functions f, g, if f ≤ g, then gΓ ≤ fΓ and gΓ ≤ fΓ.

Proof. Notice that f ≤ g is equivalent to epi g ⊆ epi f . Then (5.4) gives Γ(epi g) ⊆

Γ(epi f). Therefore fΓ(y) ≥ gΓ(y) for all y ∈ E .

Now we consider how the extreme values and points of a function and its

radial transformations relate. First, we show for radial functions, the supremum

value of f equals the reciprocal of the infimum value of fΓ in Proposition 5.4.8.

Then Proposition 5.4.9 shows the maximizers of f are related to minimizers of

fΓ by the radial point transformation.

Proposition 5.4.8. For any function f , (inf f) ·
(
sup fΓ

)
= 1 where we let ∞ · 0 =

0 · ∞ = 1. Further, if f is upper radial, (sup f) ·
(
inf fΓ

)
= 1.

Likewise, (sup f) · (inf fΓ) = 1 and if f is lower radial, (inf f) · (sup fΓ) = 1.

Proof. Observe that f ≥ inf f and so applying Lemma 5.4.7 implies

fΓ ≤ (inf f)Γ = 1/ inf f.

Now we show the≥ inequality (which is trivial if inf f(x) =∞). Suppose inf f <

∞. Let xi be a sequence with lim f(xi) = inf f . Then fix any ε > 0 and set

yi = xi/(f(xi)+ε). Observe that v ·f(yi/v) < 1 when v = 1/(f(xi)+ε). Therefore

fΓ(yi) ≥ 1/(f(xi) + ε) and so taking the limit as ε → 0 implies sup fΓ ≥ 1/ inf f.

Lastly, supposing f is upper radial, the upper radial transformation is dual by

Theorem 5.3.2, and so

1 =
(
inf fΓ

)
·
(
sup fΓΓ

)
=
(
inf fΓ

)
· (sup f).

Proposition 5.4.9. For any upper radial f with sup f ∈ R++,

(argmin fΓ)× {inf fΓ} ⊆ Γ((argmax f)× {sup f}).
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Likewise for any lower radial f with inf f ∈ R++,

(argmax fΓ)× {sup fΓ} ⊆ Γ((argmin f)× {inf f}).

If fp(y, ·) is strictly increasing on its domain, equality holds in both cases.

Proof. Consider any (y, v) ∈ (argmin fΓ)×{inf fΓ} and set (x, u) = Γ(y, v). Then

(y, v) ∈ epi fΓ, and so Lemma 5.4.1 ensures (x, u) ∈ hypo f . Therefore x attains

the maximum value of f by Proposition 5.4.8. Hence (x, u) ∈ (argmax f) ×

{sup f}.

When fp(y, ·) is strictly increasing, equality holds in Lemma 5.4.1 and the

above argument can be repeated in reverse.

For nonconvex optimization problems, finding global solutions is of-

ten intractable and so the focus of many optimization methods is on find-

ing stationary points (that is, points with a zero sub(sup)gradient in their

sub(sup)differential). Just as optimal solutions were related between the pri-

mal and radial dual problems, stationary points are also directly related by the

radial point transformation.

Proposition 5.4.10. For any strictly upper radial f ,

{(y, fΓ(y)) ∈ E × R++ | 0 ∈ ∂PfΓ(y)} = Γ{(x, f(x)) ∈ E × R++ | 0 ∈ ∂Pf(x)}.

Likewise for any strictly lower radial f ,

{(y, fΓ(y)) ∈ E × R++ | 0 ∈ ∂PfΓ(y)} = Γ{(x, f(x)) ∈ E × R++ | 0 ∈ ∂Pf(x)}.

Proof. Follows from Proposition 5.4.3.
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5.5 Characterizing Epigraph Reshaping Transformations

In this section, we consider a broader class of transformations given by reshap-

ing a function’s epigraph via some mapping G. In particular, given a generic

optimization problem

p∗ = max
x∈E

f(x), (5.15)

we transform f by reshaping its epigraph into the hypograph of a new function

fG(y) = sup{v | (y, v) ∈ G(epi f)}.

IfG(epi f) is indeed the a function’s hypograph, the identity hypo fG = G(epi f)

holds. Then the transformed optimization problem is defined as

d∗ = min
y∈E

fG(y). (5.16)

Paralleling the development of the radial function transformation fΓ, we

would like to relate minimizers of fG to maximizers of f and vice versa through

the mapping G. To this end, we assume invertibility:

G is a bijection. (A1)

Whenever the given function f is concave, we want to preserve this structure

by having fG be convex. To ensure this, we assume G is convexity preserving:

for any S ⊆ dom G,

S is convex =⇒ GS is convex. (A2)

Lastly, we need a relationship between minimizers of f and maximizers of

fG. This follows by assuming G is height reversing: for any pairs (x, u) =

G−1(y, v) ∈ dom G and (x′, u′) = G−1(y′, v′) ∈ dom G,

u ≥ u′ =⇒ v ≤ v′. (A3)
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Under these three assumptions, any function f satisfying the identity

hypo fG = G(epi f) must have argmax f ×{p∗} = G−1(argmin fG×{d∗}). Hence

the problems (5.15) and (5.16) are equivalent and converting points between

these problems only requires evaluating G or its inverse.

First as an example, we consider transforming functions f : E → R ∪ {±∞}

mapping into the extended reals. Then G must map E × R into E × R. We may

additionally want to impose a condition requiring the function transformation

fG satisfies hypo fG = G(epi f) for a reasonably large class a functions. Namely,

we assume the function transformation is well-defined: for all linear f : E → R,

hypo fG = G(epi f). (A4)

The Fundamental Theorem of Affine Geometry (stated below) gives us an

immediate way to characterize what possible transformations satisfy these four

assumptions. See [6, 137] as references.

Theorem 5.5.1. For n ≥ 2, if F : Rn → Rn is a bijective, convexity preserving map,

then F is an affine transformation.

Utilizing this, we find that any transformation satisfying these four as-

sumptions must be producing an affinely shifted version of the original prob-

lem (5.16). Essentially, any duality of this form amounts to the trivial duality

between maximizing a function and minimizing its negative. This is proven in

Section 5.5.1.

Theorem 5.5.2. Consider any mapG : E×R→ E×R satisfying (A1), (A2), and (A3).

Then G is an affine map

G(x, u) =

A α

0 c


x
u

+

b
d


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with c < 0. Furthermore, if (A4) holds, then α = 0 and

fG(y) = cf(A−1(y − b)) + d.

Thus there are notable limitations on what a transformation satisfying these

four assumptions can accomplish. However, the following theorem provides

an alternative to using the Fundamental Theorem of Affine Geometry and facil-

itates studying more general transformations. See [7] for a reference or [159] for

the original version of this result, which takes a more general perspective based

in projective spaces.

Theorem 5.5.3. For n ≥ 2, if for some convex set K ⊆ Rn with nonempty interior,

F : K → Rn is an injective, convexity preserving map, then F is a fractional linear

map.

This indicates that there is more potential for interesting transformations if

we can restrict our assumptions to a convex subset of E×R (in our case, E×R++).

To this end, we now consider transforming functions f : E → R++ mapping into

the extended positive reals.

We also suppose the transformed function fG : E → R++ maps into the ex-

tend positive reals, and so G maps E × R++ into E × R++. Our first three as-

sumptions (namely, invertibility (A1), convexity preserving (A2), and height

reversing (A3)) extend directly to G having restricted domain and codomain.

We consider the following assumption paralleling (A4) to ensure the function

transformation is well-defined for a basic class of linear-like functions: for all

linear f : E → R,

hypo (f+)G = G(epi f+) (B4)
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where (·)+ = max{·, 0} denotes nonnegative thresholding. Under these four

assumptions, we find that any such transformation of nonnegative-valued opti-

mization problems must produce an affinely shifted version of the upper radial

function transformation. This is proven in Section 5.5.2.

Theorem 5.5.4. Consider any map G : E × R++ → E × R++ satisfying (A1), (A2),

and (A3). Then G is a fractional linear map

G(x, u) =
(Ax+ αu+ b, d)

u

with d > 0. Furthermore, if (B4) holds, then b = 0 and the function transformation is

given by

fG(y) =
1

d
fΓ(A−1(y − α)).

This result is similar in spirit to [8, Theorem 5], avoiding their reliance on

nonnegative convex functions with value 0 at the origin. Thus the radial set

transformation Γ and function transformation fΓ provide the unique mecha-

nism for deriving equivalent nonnegative-valued optimization problems.

5.5.1 Proof of Theorem 5.5.2

From assumptions (A1) and (A2), Theorem 5.5.1 immediately implies that

G(x, u) =

A α

βT c


x
u

+

b
d

.
Further, (A3) becomes for all (x, u), (x′, u′) ∈ E × R,

u ≤ u′ =⇒ βTx+ cu ≥ βTx′ + cu′.

Hence, we must have β = 0 and c ≤ 0. Moreover, since G is a bijection, c < 0.
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Now additionally assume (A4), that this transformation is well-defined for

all linear functions. Observe that the inverse of G is given by

G−1(y, v) =

A α

0 c


−1y − b

v − d

 =

A−1(y − b− α(v − d)/c)

(v − d)/c

.
Suppose for contradiction that α 6= 0. Then the linear function f(x) =

−2αTAx/‖α‖2 has

G(epi f) = {(y, v) | G−1(y, v) ∈ epi f}

= {(y, v) | −2αT (y − b− α(v − d)/c)/‖α‖2 ≤ (v − d)/c}

= {(y, v) | −2αT (y − b) ≤ −‖α‖2(v − d)/c}.

However, this is not the hypograph of any function as (b, d) ∈ G(epi f), but

(b, d − 1) 6∈ G(epi f), which contradicts (A4). Thus we must have α = 0. From

this, we have G−1(y, v) = (A−1(y − b), (v − d)/c). Then fG(y) equals cf(A−1(y −

b)) + d since

hypo fG = {(y, v) | f(A−1(y − b)) ≤ (v − d)/c} = {(y, v) | G−1(y, v) ∈ epi f} = G(epi f).

5.5.2 Proof of Theorem 5.5.4

From assumptions (A1) and (A2), Theorem 5.5.3 immediately implies that

G(x, u) =

A α

βT c


x
u

+

b
d


ηTx+ gu+ h

.

Since G is a bijection, all (x, u) ∈ E × R++ must have G(x, u) ∈ E × R++, and so

βTx+ cu+ d

ηTx+ gu+ h
> 0.
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Thus β = η = 0. Then the mapping σ(u) = (cu+ d)/(gu+ h) must be a bijection

from R++ to R++. Therefore σ must be in one of the following two forms: either

g = 0 and so σ(u) = cu/h with c/h > 0, or g 6= 0 and so σ(u) = d/(gu) with

d/g > 0.

From (A3), the latter of these two possibilities must be the case. Thus g 6= 0

and so without loss of generality, we can suppose g = 1 and d > 0. Hence,

G(x, u) =
(Ax+ αu+ b, d)

u
.

Now additionally assume that this transformation is well-defined for all lin-

ear functions (after thresholding to nonnegative values), namely (B4). Observe

that the inverse of G is given by

G−1(y, v) =
(A−1(y − bv − α), 1)

dv
.

Suppose for contradiction that b 6= 0. Then the function f(x) = (−2bTAx/‖b‖2)+

has

G(epi f) = {(y, v) ∈ E × R++ | G−1(y, v) ∈ epi f}

= {(y, v) ∈ E × R++ | (−2bT (y − bv − α)/(dv‖b‖2))+ ≤ 1/(dv)}

= {(y, v) ∈ E × R++ | −2bT (y − bv − α)/(dv‖b‖2) ≤ 1/(dv)}

= {(y, v) ∈ E × R++ | −2bT (y − α) ≤ −‖b‖2v}.

However, this is not the hypograph of any function as (b−α, 2)) ∈ G(epi f), but

(b − α, 1) 6∈ G(epi f), which contradicts (B4). Thus we must have b = 0. From

this, we have G−1(y, v) = (A−1(y − α), 1)/(dv). Therefore fG must be an affine
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translation of fΓ since

fG(y) = sup{v > 0 | G−1(y, v) ∈ epi f}

= sup{v > 0 | f(A−1(y − α)/(dv)) ≤ 1/(dv)}

=
1

d
sup{w > 0 | f(A−1(y − α)/w) ≤ 1/w}

=
1

d
fΓ(A−1(y − α)).

5.6 Addendum - Computing Some Radial Set Transformations

Here we present direct proofs of our claimed Propositions 5.2.1, 5.2.2, and 5.2.4

characterizing the result of applying the projective transformation Γ to convex

sets, halfspaces, and ellipsoids, respectively.

5.6.1 Proof of Proposition 5.2.1

If suffices to show S being convex implies ΓS is convex, since the duality of the

radial set transformation (5.3) will then imply the reverse direction. Consider

any (y, v), (y′, v′) ∈ ΓS. Let (x, u) = Γ(y, v) and (x′, u′) = Γ(y′, v′). Then since

(x, u), (x′, u′) ∈ S, all 0 ≤ λ ≤ 1 have

λ(x, u) + (1− λ)(x′, u′) ∈ S.

Therefore the line segment between (y, v) and (y′, v′) lies in ΓS as

ΓS 3 (λx+ (1− λ)x′, 1)

λu+ (1− λ)u′

=
(λy/v + (1− λ)y′/v′, 1)

λ/v + (1− λ)/v′

=
λ/v

λ/v + (1− λ)/v′
(y, v) +

(1− λ)/v′

λ/v + (1− λ)/v′
(y′, v′).
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5.6.2 Proof of Proposition 5.2.2

If suffices to show S being a halfspace implies ΓS is a halfspace, since the du-

ality of the radial set transformation (5.3) will then imply the reverse direction.

Applying Γ to the definition of S yields

ΓS =

(x′, 1)

u′
∈ E × R++ |

ζ
δ


Tx′ − x
u′ − u

 ≤ 0


=

(y′, v′) ∈ E × R++ |

ζ
δ


Ty′/v′ − x

1/v′ − u

 ≤ 0


=

(y′, v′) ∈ E × R++ |

ζ
δ


Ty′ − v′x

1− v′u

 ≤ 0


=

(y′, v′) ∈ E × R++ |

 ζ

−(ζ, δ)T (x, u)


Ty′
v′

+ δ ≤ 0


=

(y′, v′) ∈ E × R++ |

 ζ

−(ζ, δ)T (x, u)


Ty′ − y
v′ − v

 ≤ 0

.

5.6.3 Proof of Proposition 5.2.4

If suffices to show S being an ellipsoid in E × R++ implies ΓS is an ellipsoid

E × R++, since the duality of the radial set transformation (5.3) will then imply

the reverse direction. Denote the blocks of H by

H11 H12

HT
12 H22

 and define the
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following matrix

G =


H11 −

H11

H12


Tx
u


−

x
u


TH11

H12


x
u


TH11 H12

HT
12 H22


x
u

− 1


,

related to the radially dual ellipsoid. In particular, for any ellipsoid S ⊆ E×R++

defined by (5.7), ΓS is the following ellipsoid in E × R++ with center

y
v

 =

G−1

 −H12

HT
12x+H22u



ΓS =


(y′, v′) ∈ E × R++ |

y′ − y
v′ − v


T


Gy

v


T

G

y
v

−H22



y′ − y
v′ − v

 ≤ 1


.

First, we observe that G is indeed positive definite. Since H is postive def-

inite, considering its Schur complements ensures H11 is positive definite and

H22 −HT
12H

−1
11 H12 > 0. Likewise, G is positive definite if H11 is positive definite

and
x
u


TH11 H12

HT
12 H22


x
u

− 1

−
[H11 H12

]Tx
u



T

H−1
11

[H11 H12

]Tx
u




is positive. Simplifying this condition for G to be positive definite yields the

equivalent inequality u2(H22 − HT
12H

−1
11 H12) > 1. This must be the case since

S ⊆ E × R++ and so H22 −HT
12H

−1
11 H12 > 1/u2.
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Applying Γ to the definition of S and completing the square gives the claim

as

ΓS =

(x′, 1)

u′
∈ E × R++ |

x′ − x
u′ − u


TH11 H12

HT
12 H22


x′ − x
u′ − u

 ≤ 1


=

(y′, v′) ∈ E × R++ |

y′/v′ − x
1/v′ − u


TH11 H12

HT
12 H22


y′/v′ − x

1/v′ − u

 ≤ 1


=

(y′, v′) ∈ E × R++ |

y′ − v′x
1− v′u


TH11 H12

HT
12 H22


y′ − v′x

1− v′u

 ≤ v′2


=

(y′, v′) ∈ E × R++ |

y′
v′


T

G

y′
v′

+ 2HT
12y
′ − 2(HT

12x+H22u)v′ ≤ −H22

.
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CHAPTER 6

RADIAL DUALITY: APPLICATIONS AND ALGORITHMS

6.1 Introduction

The previous chapter established a theory of radial duality relating nonnegative

optimization problems through a projective transformation, extending the ideas

of Renegar [140] from their origins in conic programming. We give a minimal

overview here of our radial duality theory needed to begin algorithmically ben-

efiting from it and then a fuller but terse summary in Section 6.2.3 of the core

results necessary to derive our radial optimization guarantees.

For a finite dimensional Euclidean space E , our three transformations of in-

terest are the radial point transformation, radial set transformation, and upper

radial function transformation, which are denoted by

Γ(x, u) = (x, 1)/u,

ΓS = {Γ(x, u) | (x, u) ∈ S},

fΓ(y) = sup{v > 0 | (y, v) ∈ Γ(epi f)}

for any point (x, u) ∈ E × R++, set S ⊆ E × R++, and function f : E → R++,

respectively. Here R++ denotes the extended positive reals R++ ∪ {0,+∞}. It is

immediate that the point and set transformations are dual since

ΓΓ(x, u) = Γ
(x, 1)

u
=

(x/u, 1)

1/u
= (x, u).

Central to establishing our theory of radial duality is the characterization of

exactly when this duality carries over to the function transformation. We say a
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function f is upper radial if the perspective function fp(y, v) = v · f(y/v) is upper

semicontinuous and nondecreasing in v ∈ R++. Moreover, it is strictly upper

radial if it is strictly increasing in v whenever fp(y, v) ∈ R++. The cornerstone

theorem of our radial duality Theorem 5.3.2 is that

f = fΓΓ ⇐⇒ f is upper radial. (6.1)

The duality of the radial function transformation provides a duality between

optimization problems. For any strictly upper radial function f : E → R++,

consider the primal problem

p∗ = max
x∈E

f(x). (6.2)

Then the radially dual problem is given by

d∗ = min
y∈E

fΓ(y) (6.3)

and has (argmax f)×{p∗} = Γ
(
(argmin fΓ)× {d∗}

)
. Thus maximizing f is equiv-

alent to minimizing fΓ and solutions can be converted between these problems

by applying the radial point transformation Γ or its inverse (which is also Γ by

duality).

Importantly, the two nonnegative optimization problems (6.2) and (6.3) can

exhibit very different structural properties. For example, consider maximiz-

ing f(x) =
√

1− ‖x‖2
2+

which takes value zero outside the unit ball and has

arbitrarily large gradients and Hessians as x approaches the boundary of this

ball. Its radial dual fΓ(y) =
√

1 + ‖y‖2
2 has full domain with gradients and

Hessians bounded in norm by one everywhere. Thus our radial duality the-

ory poses an opportunity to extend the reach of many standard optimization

algorithms reliant on such structure. The previous works of Renegar [140] and
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Grimmer [60] analyzing subgradient methods and Renegar [141] employing ac-

celerated smoothing techniques on a radial reformulation of the objective crit-

ically rely on the reformulation being uniformly Lipschitz continuous, which

always occurs in the special cases of the radial dual that they consider.

Our Contributions. This chapter leverages our radial duality theory to

present and analyze projection-free radial optimization algorithms in this new-

found, wider context than previous works were able to. Finding that a mild

condition ensures the radial dual is uniformly Lipschitz continuous, we an-

alyze a radial subgradient method for a broad range of non-Lipschitz primal

problems with or without concavity. Observing that constraints radially trans-

form into related gauges, we propose a radial smoothing method that takes ad-

vantage of this structure for concave maximization. Further, we find that our

radial transformation extends smoothness on a level set of the primal to hold

globally in the radial dual, which prompts our analysis of a radial accelerated

method. Of greater importance than these particular algorithms, this chapter

aims to demonstrate the breadth of applications and algorithms that can be ap-

proached using our radial duality theory.

Outline. We begin with a motivating example of the computational bene-

fits and scalability that follow from designing algorithms based on the radial

dual (6.3) in Section 6.2. Then Section 6.3 formally establishes algorithmically

useful properties of our radial dual, namely Lipschitz continuity, smoothness,

and growth conditions. Finally, Section 6.4 addresses the convergence of our

radial algorithms for concave maximization and Section 6.5 addresses applica-

tions and guarantees in nonconcave maximization.
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6.2 A Motivating Setting of Polyhedral Constraints

We begin by motivating the algorithmic usefulness of our radial duality by con-

sidering optimization with polyhedral constraints. Consider any maximization

problem with upper semicontinuous objective f : Rn → R ∪ {−∞} and m in-

equality constraints aTi x ≤ bi given by
maxx f(x)

s.t. Ax ≤ b.

(6.4)

We assume this problem is feasible. Then without loss of generality, we have

0 ∈ int ({x | Ax ≤ b} ∩ {x | f(x) > 0}). This can be achieved by computing

any point x0 in the relative interior of {x | Ax ≤ b} ∩ {x | f(x) ∈ R} and then

(i) translating the problem to place x0 at the origin, (ii) adding a constant to the

objective to ensure f(0) > 0, and (iii) if needed, re-parameterizing the problem1

to only consider the smallest subspace containing {x | Ax ≤ b} ∩ {x | f(x) >

0}. Note that doing this translation suffices to guarantee that any concave f

will have f+(x) := max{f(x), 0} be strictly upper radial by Proposition 5.3.8.

We will only make the weaker assumption here that f+ is strictly upper radial

rather than the narrower case of it being concave. Then this problem can be

reformulated as the following nonnegative optimization problem of our primal

form (6.2) 
maxx f+(x)

s.t. Ax ≤ b

= max
x

min
i

{
f+(x), ιaTi x≤bi(x)

}
1Instead of using a re-parameterization, one can explicitly include equality constraints in

our model. The details of this approach are given in Section 6.2.2, where we see that equality
constraints are unaffected by the radial dual.
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where ιaTi x≤bi(x) =


+∞ if aTi x ≤ bi

0 if aTi x > bi

is an indicator function for each in-

equality constraint. Note that each ιaTi x≤bi is strictly upper radial since 0 is

strictly feasible and so applying Proposition 5.3.9 ensures the primal objective

mini

{
f+(x), ιaTi x≤bi(x)

}
is strictly upper radial. Then we can compute the radi-

ally dual optimization problem (6.3) using Proposition 5.3.10 as

min
y

max
i

{
fΓ

+(y), aTi y/bi
}

(6.5)

since the radial transformation of each indicator functions is linear

ιΓaTi x≤bi
(y) = sup

{
v > 0 | v · ιaTi x≤bi(y/v) ≤ 1

}
= sup

{
v > 0 | aTi (y/v) > bi

}
= (aTi y/bi)+.

We drop the nonnegative thresholding on each aTi y/bi above since fΓ
+(y) is non-

negative.

Importantly, the dual formulation (6.5) is unconstrained, unlike the pri-

mal, since the primal inequality constraints have transformed into simple linear

lower bounds on the radially dual objective. This dual further profits from the

structure of its objective function as it is often globally Lipschitz continuous (a

common property among radial duals that we will show in Proposition 6.3.1)

and has the simple form of a finite maximum. This radially dual structure gives

us an algorithmic angle of attack not available in the primal problem.
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6.2.1 Quadratic Programming

To make these benefits concrete, consider solving a generic quadratic program

of the following form 
maxx 1− 1

2
xTQx− cTx

s.t. Ax ≤ b

(6.6)

for some Q ∈ Rn×n, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm
++. We reformulate this

problem as the following nonnegative optimization problem of the form (6.2)
maxx 1− 1

2
xTQx− cTx

s.t. Ax ≤ b

= max
x

min
i

{
(1− 1

2
xTQx− cTx)+, ιaTi x≤bi(x)

}
.

Whenever this primal objective is strictly upper radial, the radial dual of our

quadratic program is2

min
y

max
i

{(
cTy + 1 +

√
(cTy + 1)2 + 2yTQy

2

)
+

, aTi y/bi

}
(6.7)

where the first term in our maximum is set to zero if (cTy + 1)2 + 2yTQy < 0

as can occur for nonconcave primal objectives. We find that our radial duality

holds here whenever 1
2
xTQx > −1 for all Ax ≤ b. This captures two natural

settings: (i) when the primal objective is concave (as Q is positive semidefinite)

or (ii) when the primal objective is nonconcave but has a compact feasible region

(since we can rescale the objective to be 1−λxTQx/2−λcTxwithout changing the

2Our calculation of the radial dual of the quadratic objective (1− 1
2x

TQx− cTx)+ follows by
definition as

(1− 1

2
xTQx− cTx)Γ

+(y) = sup

{
v > 0 | v

(
1− yTQy

2v2
− cT y

v

)
≤ 1

}
= sup{v > 0 | v2 − 1

2
yTQy − (cT y + 1)v ≤ 0}

=

(
cT y + 1 +

√
(cT y + 1)2 + 2yTQy

2

)
+

.
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set of maximizers but ensuring λ
2
xTQx > −1 everywhere). Section 6.5.1 shows

more generally that any differentiable objective with compact constraints can be

rescaled to apply our radial duality theory.

We verify that our primal objective is strictly upper radial (and so our radial

duality holds) for this upper semicontinuous objective by checking when fp(y, ·)

is strictly increasing on its domain. The partial derivative with respect to v of

the perspective function

v ·min
i

{
(1− 1

2
(y/v)TQ(y/v)− cT (y/v))+, ιaTi x≤bi(y/v)

}

=


v
(

1− yTQy
2v2 − cT y

v

)
if A(y/v) ≤ b

0 otherwise

is 1 + yTQy
2v2 at every feasible y/v. This is always positive (and hence the perspec-

tive function is increasing in v) exactly when every x = y/v with Ax ≤ b has

1
2
xTQx > −1.

Quadratic Programming Numerics

As previously noted, the radially dual formulation (6.7) is unconstrained and

Lipschitz continuous despite the primal possessing neither of these properties.

This differs from the structure found from taking a Lagrange dual [37] or gauge

dual [55]. As a result, our radial dual is well set up for the application of a

subgradient method. We consider the following radial subgradient method with

stepsizes αk > 0 defined by Algorithm 6.
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Algorithm 6 The Radial Subgradient Method

Require: f : E → R++, x0 ∈ dom f , T ≥ 0
1: (y0, v0) = Γ(x0, f(x0)) Transform into the radial dual
2: for k = 0 . . . T − 1 do
3: yk+1 = yk − αkζ ′k, where ζ ′k ∈ ∂PfΓ(yk) Run the subgradient method
4: end for
5: (xT , uT ) = Γ(yT , f

Γ(yT )) Transform back to the primal
6: return xT

Further noting that the radially dual problem is a finite maximum of sim-

ple smooth Lipschitz functions, we can apply the smoothing ideas of Nes-

terov [127]. Perhaps the most clear description of these techniques is given

by Beck and Teboulle [15]. In particular, for any fixed η > 0, we consider the

smooth function given by taking a “soft-max”

gη(y) = η log

(
exp

(
cTy + 1 +

√
(cTy + 1)2 + 2yTQy

2η

)
+

m∑
i=1

exp

(
aTi y

biη

))
(6.8)

which approaches our radially dual objective as η → 0. Then we can minimize

the radial dual up to accuracy O(η) by minimizing this smoothed objective. Do-

ing so with Nesterov’s accelerated method gives the following radial smoothing

method defined by Algorithm 7 (a similar radial algorithm was employed by

Renegar [141] showing that the transformation of any hyperbolic programming

problem also admits a smoothing that can be efficiently minimized).

Algorithm 7 The Radial Smoothing Method

Require: f : E → R++, x0 ∈ dom f , η > 0, Lη > 0, T ≥ 0
1: (y0, v0) = Γ(x0, f(x0)) and ỹ0 = y0 Transform into the radial dual
2: Let gη(y) denote an η-smoothing of fΓ(y)
3: for k = 0 . . . T − 1 do
4: ỹk+1 = yk −∇gη(yk)/Lη Run the accelerated method
5: yk+1 = ỹk+1 + k−1

k+2
(ỹk+1 − ỹk)

6: end for
7: (xT , uT ) = Γ(yT , f

Γ(yT )) Transform back to the primal
8: return xT
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The per iteration cost of these radial methods is controlled by the cost of

evaluating one subgradient of the radially dual objective (6.7) or one gradient

of our smoothing of the radially dual objective (6.8). Both of these can be done

efficiently in closed form in terms of the two matrix-vector products Ay and Qy.

Despite this low iteration cost, a feasible primal solution (xk, uk) = Γ(yk, f
Γ(yk))

is known at every iteration. Convergence guarantees for the radial subgradi-

ent and smoothing methods for concave maximization are given later in Sec-

tions 6.4.1 and 6.4.2.

Classic optimization algorithms that preserve feasibility at every iteration

tend to have much higher iteration costs. Here we compare with three of the

most standard first-order methods that enforce feasibility: projected gradient

descent (or rather, projected gradient ascent)

xk+1 = proj{x|Ax≤b}(x+∇f(x)/L),

an accelerated projected gradient method
x̃k+1 = proj{x|Ax≤b}(xk +∇f(xk)/L)

xk+1 = x̃k+1 + k−1
k+2

(x̃k+1 − x̃k),

and the Frank-Wolfe method3 with stepsize sequence βk > 0
x̃k+1 ∈ argmaxx

{
∇f(xk)

Tx | Ax ≤ b
}

xk+1 = xk + βk(x̃k+1 − xk).

All three of these methods require solving a subproblem at each iteration.

The projected gradient and accelerated gradient methods require repeated pro-

jection onto the polyhedron {x | Ax ≤ b}, which is itself an instance of (6.6)

3Quadratic programming was, in fact, the original motivating setting for the Frank-Wolfe
algorithm [54].
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specialized to Q = I . The Frank-Wolfe method requires repeatedly solving a

linear program over this polyhedron. Both of these operations are far more ex-

pensive than the matrix-vector products required by the radial subgradient and

smoothing methods but may allow them to have a greater improvement in ob-

jective value per iteration4.

To weigh this tradeoff, we consider running these five algorithms on syn-

thetic quadratic programs given by drawing two matrices A ∈ Rm×n and

P ∈ Rn×100 and a vector c ∈ Rn with i.i.d. Guassian entries and setting Q = PP T

and all bi = 1. Then we run each algorithm for 30 minutes on instances of

size (n,m) ∈ {(100, 400), (400, 1600), (1600, 6400)}. Our numerical experiments

are conducted on a four-core Intel i7-6700 CPU using Julia 1.4.1 and Gurobi

9.0.3 to solve any subproblems5. For each method, we set x0 = 0 and use

the following choice of stepsizes: the projected and accelerated gradient meth-

ods use L = λmax(Q), the Frank-Wolfe method uses an exact linesearch βk =

min
(
∇f(xk)T (x̃k+1−xk)

‖PT (x̃k+1−xk)‖2 , 1
)

, the radial subgradient method uses the Polyak stepsize

αk = fΓ(yk)−d∗
‖ζ′k‖2

, and the radial smoothing method fixes Lη = 0.1 max{‖ai/bi‖2}/η

and η ∈ {10−8, 10−8, 10−6} for each of our three problem sizes.

The best primal objective value seen by each method is shown in realtime in

Figure 6.1. First, we remark on the total number of iterations completed by each

method in the allotted half hour, shown in the following table.

4There are other QP solvers like OSQP [162] that also only rely on cheap matrix operations,
but such operator splitting methods do not maintain a feasible solution at each iteration. Hence
they cannot be compared as directly.

5The source code is available at github.com/bgrimmer/Radial-Duality-QP-Example
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(a) (n,m) = (100, 400) (b) (n,m) = (400, 1600) (c) (n,m) = (1600, 6400)

Figure 6.1: The minimum relative accuracy p∗−f(xk)
p∗

of (6.6) seen by the pro-
jected gradient, accelerated gradient, Frank-Wolfe, radial subgradient and ra-
dial smoothing methods over 30 minutes.

(n,m) (100, 400) (400, 1600) (1600, 6400)

Projected Grad 17,788 iter. 487 iter. 7 iter.

Accelerated Grad 18,412 iter. 506 iter. 7 iter.

Frank-Wolfe 24,137 iter. 333 iter. 26 iter.

Radial Subgrad 8,950,726 iter. 6,835,355 iter. 213,381 iter.

Radial Smoothing 3,827,988 iter. 757,829 iter. 39,005 iter.

In our largest problem setting (n,m) = (1600, 6400), which has approximately

ten million nonzeros, the projected gradient, accelerated gradient, and Frank-

Wolfe methods only compute a couple dozen steps within our time budget

whereas our radial methods take tens or hundreds of thousands of steps. For

any larger problem instances, these classic methods may not even complete a

single step and so the radial subgradient and smoothing methods vacuously

outperform them.

At every scale of problem size, the radial smoothing method is competitive.

For our smallest instance (n,m) = (100, 400), the accelerated and projected gra-

dient methods quickly reach an accuracy around 10−6, which is the default tol-
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erance of Gurobi, followed shortly afterward by the radial smoothing method.

However, for our moderate-sized instance (n,m) = (400, 1600), the classic meth-

ods begin to fall off with the radial smoothing method and accelerated method

performing comparably. For our largest instance (n,m) = (1600, 6400), the

methods relying on orthogonal projection make essentially no progress due

to their high iteration cost, and the Frank-Wolfe method only makes minor

amounts of progress relative to our radial methods. Our algorithms based on

radial duality appear to provide a far more scalable approach.

Throughout our experiments, the radial smoothing method outperforms the

radial subgradient method by a couple orders of magnitude. This agrees with

our convergence theory showing that the radial subgradient method converges

at a O(1/ε2) rate while the smoothing technique enables O(1/ε) convergence,

presented in Sections 6.4.1 and 6.4.2, respectively.

6.2.2 Broader Computational Advantages of Considering Radi-

ally Dual Problems

We conclude this motivating section with a high-level discussion of the compu-

tational advantages we see in optimizing over radially dual problem formula-

tions. These benefits all extend beyond the particular radial optimization algo-

rithms considered herein.
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Maintaining Primal Feasible Iterates Without Costly Projections

Here we generalize the setting of polyhedral constraints considered by (6.4).

After a translation, any convex constraints can be expressed as the intersection

of a convex set S ⊆ E with 0 ∈ int S and a subspace T = {x ∈ E | Ax = 0}.

Consider any primal problem with strictly upper radial objective f given by
max f(x)

s.t. x ∈ S

Ax = 0

= max
x∈E

min{f(x), ιS(x), ιT (x)}

where ιS(x) =


+∞ if x ∈ S

0 if x 6∈ S
Then the radially dual problem is

min
y∈E

max{fΓ(y), γS(y), γT (y)} =


min max{fΓ(y), γS(y)}

s.t. Ay = 0

where γS(y) = inf{λ ≥ 0 | y ∈ λS} denotes the Minkowski gauge since

ιΓS(y) = sup{v > 0 | v · ιS(y/v) ≤ 1} = inf{λ > 0 | y ∈ λS} = γS(y).

Having multiple set constraints S1 . . . Sn in the primal maxx∈S1∩···∩Sn f(x) simply

adds more terms to the radially dual finite maximum of miny∈E max{fΓ(y), γSi(y)}.

This formulation allows algorithms to maintain a feasible primal solution at

each iteration without requiring costly subproblems relating to S. Instead, a pri-

mal feasible solution can be recovered from any radial dual solution y ∈ E with

Ay = 0 as x = y/max{fΓ(y), γS(y)} ∈ S ∩ T . Algorithmically, this replaces the

need for orthogonal projections onto the feasible region S ∩ T with the cheaper

operations of orthogonally projecting onto the subspace T and evaluating the
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gauge of S. This computational gain was one of the key contributions identi-

fied by [140] and was central to the motivation of [141, 60] as well as being a

motivation of this work.

Handling Nonconcave Objectives and Nonconvex Constraints

Our calculation of the radial dual for quadratic programming did not funda-

mentally rely on concavity as it also applies to nonconcave problems with a

bounded feasible region. Indeed one of the key insights from the first part of this

work was divorcing the idea of radial transformations from relying on notions

of convexity or concavity. In Section 6.5.1, we discuss several nonconcave pri-

mal maximization problems where radial duality holds, generalizing the above

reasoning to star-convex constraints and covering important areas like noncon-

vex regularization and optimization with outliers.

Efficiently Evaluating Generic Radial Duals

A remark on the efficiency of computing the upper radial function transfor-

mation fΓ(y): In general, we do not have a closed-form as we found in our

quadratic programming example. However, numerically evaluating fΓ(y) is a

one-dimensional subproblem that can be solved by bisection whenever f is up-

per radial (since v 7→ vf(y/v) is then nondecreasing). Even if f is not upper

radial, fΓ(y) may still be tractable to compute. For example, any polynomial f

has evaluation of fΓ amount to polynomial root finding. Once fΓ(y) has been

computed, its gradients and Hessian follow from (6.25) and (6.26).
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Improving Conditioning and Problem Structure

As a final motivating example of the structural advantages of taking the radial

dual, consider the following Poisson inverse problem. Given linear measure-

ments with Poisson distribution noise bi ∼ Poisson(aTi x), the maximum likeli-

hood estimator is given by maximizing

L(x) :=


∑

i bi log(aTi x)− aTi x if all aTi x > 0

−∞ otherwise.

Then given any convex regularizer r(x) and constraint set S ⊆ Rn, we formulate

a Poisson inverse problem as

max
x∈S
L(x)− r(x) (6.9)

This type of problem arises in image processing (see [16] for a survey of ap-

plications from astronomy to medical imaging) as well as in network diffu-

sion and time series modeling (see the many references in [75]). Although

this problem is concave, the blow-up from the logarithmic terms prevents stan-

dard first-order methods from being applied. Provided the regularization r and

constraints S are sufficiently simple, customized primal-dual [75] or Bregman

methods [13, 115] provide a powerful tactic for solving this problem.

For generic S and r, our radial duality can be applied. Given any x0 ∈

int dom L∩S and u0 < L(x0)− r(x0), we can reformulate this objective function

to be strictly upper radial via a simple translation and truncation. We consider

the equivalent problem of

max
x∈Rn

min{(L(x+ x0)− r(x+ x0)− u0)+, ιS(x+ x0)}.

Then we can employ our radial duality machinery using [62, Proposition 3.8]

since our translated and truncated objective is concave with 0 strictly in its do-
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(a) L(x+ x0)− u0 (b) (L(x+ x0)− u0)+ (c) (L(x+ x0)− u0)Γ
+(y)

Figure 6.2: Example (a) translating, (b) truncating, and then (c) taking the radial
dual of (6.9).

main. The radial dual here is defined everywhere dom fΓ = Rn, is globally

uniformly Lipschitz continuous (see Proposition 6.3.1) and if S = Rn and r(x)

is twice continuously differentiable, has globally Lipschitz continuous gradient

(see Corollary 6.3.3). The primal formulation is none of these. Note that dif-

ferent translations of the objective (here corresponding to a different choice of

(x0, u0)) produce different radial duals, which in turn can have very different

global Lipschitz and smoothness constants.

Figure 6.2 shows the steps of taking the radial dual of a two-dimensional

likelihood maximization problem with {a1, a2, a3} = {(2,−1), (1, 1), (−1, 2)},

bi = 1, S = R2, and r = 0: (a) shows the translated objective with x0 = (3, 3) and

u0 = −10, (b) shows the truncated strictly upper radial nonnegative optimiza-

tion problem, and (c) shows the well behaved radially dual objective.

6.2.3 Notation and Review

We consider functions f : E → R++, where R++ = R++ ∪ {0,+∞} denotes the

“extended positive reals”. Here 0 and +∞ are the limit objects of R++, mirroring
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the roles of −∞ and +∞ in the extended reals. The effective domain, graph,

epigraph, and hypograph of such a function are

dom f := {x ∈ E | f(x) ∈ R++},

graph f := {(x, u) ∈ E × R++ | f(x) = u},

epi f := {(x, u) ∈ E × R++ | f(x) ≤ u},

hypo f := {(x, u) ∈ E × R++ | f(x) ≥ u}.

We say a function f : E → R++ is upper (lower) semicontinuous if hypo f (epi f )

is closed with respect to E × R++. Equivalently, a function is upper semicon-

tinuous if for all x ∈ E , f(x) = lim supx′→x f(x′) and lower semicontinuous if

f(x) = lim infx′→x f(x′). We say a function f : E → R++ is concave (convex) if

hypo f (epi f ) is convex. The set of convex normal vectors of a set S ⊆ E × R at

some (x, u) ∈ S is denoted by

NC
S ((x, u)) := {(ζ, δ) | (ζ, δ)T ((x, u)− (x′, u′)) ≥ 0 ∀(x′, u′) ∈ S}.

Then the convex subdifferential and convex supdifferential of a function f is denoted

by

∂Cf(x) := {ζ | (ζ,−1) ∈ NC
epi f ((x, f(x)))},

∂Cf(x) := {ζ | (−ζ, 1) ∈ NC
hypo f ((x, f(x)))}.

We also consider the generalization given by proximal normal vectors and

sub/supdifferentials of

NP
S ((x, u)) := {(ζ, δ) | (x, u) ∈ projS((x, u) + ε(ζ, δ)) for some ε > 0},

∂Pf(x) := {ζ | (ζ,−1) ∈ NP
epi f ((x, f(x)))},

∂Pf(x) := {ζ | (−ζ, 1) ∈ NP
hypo f ((x, f(x)))}.
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Dual Families of Functions Most of our theory characterizing the radial trans-

formation relies on the given function being (strictly) upper radial. Recall that

Proposition 5.3.3 shows an upper semicontinuous function f is upper radial

(that is, our radial duality fΓΓ = f holds) if and only if all (x, u) ∈ hypo f and

(ζ, δ) ∈ NP
hypo f ((x, u)) satisfy

(ζ, δ)T (x, u) ≥ 0. (6.10)

Geometrically, this corresponds to the origin lying below all of the hyperplanes

induced by proximal normal vectors of the hypograph. Similarly, Proposition

5.3.5 ensures a continuously differentiable function f is strictly upper radial if

all x ∈ dom f satisfy

(∇f(x),−1)T (x, u) < 0. (6.11)

For concave functions, being upper radial corresponds to the origin lying in the

function’s domain. In particular, Proposition 5.3.8 ensures an upper semicon-

tinuous concave function f is strictly upper radial if

0 ∈ int {x | f(x) > 0}. (6.12)

Assuming strict upper radiality holds, the following families of functions are

radially dual

f is upper semicontinuous ⇐⇒ fΓ is lower semicontinuous, (6.13)

f is continuous ⇐⇒ fΓ is continuous, (6.14)

f is concave ⇐⇒ fΓ is convex, (6.15)

where these follow from Propositions 5.3.13 and 5.3.15. For differentiable func-

tions satisfying (6.11), Proposition 5.4.5 shows

f is k times differentiable ⇐⇒ fΓ is k times differentiable, (6.16)

f is analytic ⇐⇒ fΓ is analytic. (6.17)
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Relating Extreme Points, (Sub)Gradients, and Hessians We recall a few bijec-

tions relating functions and their radial transformations. For any strictly upper

radial f , Lemma 5.4.1 ensures

epi fΓ = Γ(hypo f). (6.18)

Further, Lemma 5.4.4 shows for any continuous strictly upper radial function,

the following pair of bijections between graphs and domains hold

graph fΓ = Γ(graph f), (6.19)

y ∈ dom fΓ ⇐⇒ y/fΓ(y) ∈ dom f. (6.20)

Then Propositions 5.4.9 and 5.4.10 shows that the radial point transformation

relates the maximizers of strictly upper radial functions f to minimizers of fΓ

as well as relates their stationary points

argmin fΓ × {inf fΓ} = Γ(argmax f × {sup f}), (6.21)

{(y, fΓ(y)) ∈ E × R++ | 0 ∈ ∂PfΓ(y)} = Γ{(x, f(x)) ∈ E × R++ | 0 ∈ ∂Pf(x)}.

(6.22)

In particular, for any upper semicontinuous, strictly upper radial f , the con-

vex and proximal subgradients of its upper radial transformation are given by

Propositions 5.4.2 and 5.4.3 as

∂Cf
Γ(y) =

 ζ

(ζ, δ)T (x, u)
|

ζ
δ

 ∈ NC
hypo f ((x, u)), (ζ, δ)T (x, u) > 0

 (6.23)

∂Pf
Γ(y) =

 ζ

(ζ, δ)T (x, u)
|

ζ
δ

 ∈ NP
hypo f ((x, u)), (ζ, δ)T (x, u) > 0

 (6.24)

where (x, u) = Γ(y, fΓ(y)). Further, if f is continuously differentiable and satis-

fies (6.11), Proposition 5.4.5 shows the gradient of the upper radial transforma-
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tion at y = x/f(x) is

∇fΓ(y) =
∇f(x)

(∇f(x),−1)T (x, f(x))
. (6.25)

If in addition we suppose f is twice continuously differentiable around x,

Proposition 5.4.6 shows the Hessian of the upper radial transformation is

∇2fΓ(y) =
f(x)

(∇f(x),−1)T (x, f(x))
· J∇2f(x)JT (6.26)

where J = I − ∇f(x)xT

(∇f(x),−1)T (x,f(x))
.

6.3 Conditioning of the Radially Dual Problem

As we have seen, the radial dual often enjoys very favorable structural proper-

ties. In the following three subsections, we characterize the Lipschitz continuity,

smoothness, and growth conditions of the radially dual problem. Historically,

these properties are all of great importance to the development of first-order

optimization algorithms.

6.3.1 Lipschitz Continuity of the Radially Dual Problem

We say a function f is uniformly M -Lipschitz continuous if for all x, x′ ∈ E ,

|f(x)− f(x′)| ≤M‖x− x′‖.

For any lower semicontinuous function f : E → R++ ∪ {∞}, M -Lipschitz con-

tinuity is equivalent to all proximal subgradients ζ ∈ ∂Pf(x) having norm

bounded by M [27, Theorem 1.7.3].
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Lipschitz continuity plays an important role in the analysis of many first-

order methods for nonsmooth optimization. Recalling that the previous

works [140, 141, 60] critically rely on their radially reformulated objective be-

ing uniformly Lipschitz, here we present a general characterization of when the

radial transformation of a function is uniformly Lipschitz. To take advantage of

the second characterization of Lipschitz continuity above, we need to ensure fΓ

maps into R++ ∪ {∞}. The following simple assumption is equivalent to this

(by the definition of the upper radial transformation): for all y ∈ E

lim
v→0

v · f(y/v) = 0.

This condition is always the case when f is bounded above as will typically

be the case for our primal maximization problem. Under this condition, we find

that the Lipschitz continuity of fΓ is controlled by the distance (measured in E)

from the origin to each hyperplane defined by a proximal normal vector:

R(f) = inf{‖x′‖ | (ζ, δ) ∈ NP
hypo f (x, u), (ζ, δ)T ((x′, 0)− (x, u)) = 0}.

The following proposition gives the exact Lipschitz constant in terms of R(f).

Proposition 6.3.1. Consider any upper semicontinuous, strictly upper radial f where

all y ∈ E have limv→0 v · f(y/v) = 0. Then fΓ is 1/R(f)-Lipschitz continuous.

Proof. The key observation here is that for any (x, u) ∈ hypo f and (ζ, δ) ∈

NP
hypo f ((x, u)),

(ζ, δ)T (x, u) = inf
{
ζTx′ | (ζ, δ)T ((x′, 0)− (x, u)) = 0

}
= ‖ζ‖ inf

{
‖x′‖ | (ζ, δ)T ((x′, 0)− (x, u)) = 0

}
≥ ‖ζ‖R(f)
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where the first equality is trivial and the second uses that the minimum norm

point in this hyperplane will be a multiple of ζ . Then the subgradient for-

mula (6.24) ensures any ζ ′ ∈ ∂PfΓ(y) must have

‖ζ ′‖ =
‖ζ‖

(ζ, δ)T (x, u)
≤ 1/R(f)

for (x, u) = Γ(y, fΓ(y)) and some (ζ, δ) ∈ NP
hypo f ((x, u)). Since every radially

dual subgradients is uniformly bounded, fΓ is uniformly Lipschitz. Consider-

ing a sequence of (ζ, δ) ∈ NP
hypo f ((x, u)) approaching attainment of R(f) makes

this argument tight.

The condition (x, u)T (ζ, δ) ≥ R(f)‖ζ‖ can be viewed as a natural way to

quantify how radial f is by strengthening (6.10). When f is concave, R(f) can

be simplified to

R(f) = inf{‖x‖ | f(x) = 0}, (6.27)

which matches the Lipschitz constants used in the previous works [140, 141,

60]. This gives a natural way to measure the extent of radiality of a concave

function by strengthening (6.12). From this, we see any concave maximization

problem (with a known point in the interior of its domain) can be translated and

transformed into a convex minimization problem that is uniformly Lipschitz

continuous with constant depending on how interior the known point is to the

function’s domain.
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6.3.2 Smoothness of the Radially Dual Problem

We say a continuously differentiable function f is uniformly L-smooth if its

gradient is L-Lipschitz continuous: for all x, x′ ∈ dom f

‖∇f(x)−∇f(x′)‖ ≤ L‖x− x′‖.

As an example, consider the radial dual of the continuously differentiable

function f(x) =
√

1− xTQx+, which is upper radial for any matrix Q. This

radially transforms into the similarly shaped function

fΓ(y) = sup{v > 0 | v
√

1− yTQy/v2 ≤ 1}

= sup{v > 0 | v2 − yTQy ≤ 1}

=
√

1 + yTQy+.

Supposing Q is positive semidefinite and nonzero, our primal is concave and

differentiable on its domain but fails to have a Lipschitz gradient since ∇f(x)

blows up at the boundary of its domain. However, in this case, the radially dual

fΓ is well behaved, being convex and λmax(Q)-smooth.

For generic functions, we cannot hope to find smoothness out of thin air

(like we do in the above example or quite generically with Lipschitz continuity

in the previous section). This is due to (6.16) which establishes differentiability

is preserved under the radial transformation. In line with this equivalence, we

find that when f is L-smooth, fΓ is O(L)-smooth, provided the domain of f is

bounded. Let D(f) = sup{‖x‖ | x ∈ dom f} denote the norm of the largest

point in the domain of f . Note that since we are primarily taking the radial

dual of maximization problems that are bounded above and truncated below

to be nonnegative optimization, D(f) can be viewed as bounding the level set

dom f = {x | f(x) > 0}.
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The following proposition shows the operator norm of the radial transforma-

tion’s Hessian is controlled by the ratio between D(f) and R(f) and the norm

of the primal Hessian. From this, we conclude for twice differentiable L-smooth

functions, the radial dual is also O(L)-smooth.

Proposition 6.3.2. Consider any upper radial f with D(f) < ∞ and R(f) > 0 and

x, y ∈ E satisfying (x, f(x)) = Γ(y, fΓ(y)). If f is twice continuously differentiable

around x, then

‖∇2fΓ(y)‖ ≤
(

1 +
D(f)

R(f)

)3

‖∇2f(x)‖.

Proof. First we verify that (∇f(x),−1)T (x, f(x)) < 0 holds for all x ∈

dom f and so the Hessian formula (6.26) can be applied: if ∇f(x) = 0,

(∇f(x),−1)T (x, f(x)) = −f(x) < 0 and if ∇f(x) 6= 0, (∇f(x),−1)T (x, f(x)) ≤

−‖∇f(x)‖R(f) < 0. Then our bound on the Hessian of fΓ follows from the

following pair of inequalities. First, we have

f(x)

(∇f(x),−1)T (x, f(x))
= 1 +

∇f(x)Tx

(∇f(x),−1)T (x, f(x))

≤ 1 +
‖∇f(x)‖‖x‖

|(∇f(x),−1)T (x, f(x))|

≤ 1 +
‖x‖
R(f)

.

Second, the matrix J = I − ∇f(x)xT

(∇f(x),−1)T (x,f(x))
has operator norm bounded by

‖J‖ ≤ 1 +
‖∇f(x)‖‖x‖

|(∇f(x),−1)T (x, f(x))|
≤ 1 +

‖x‖
R(f)

.

Then applying our bounds to each term in the Hessian formula (6.26) gives the

claimed result.

Corollary 6.3.3. Consider any upper radial, twice continuously differentiable f with

D(f) <∞ and R(f) > 0. If f is L-smooth, then fΓ is
(

1 + D(f)
R(f)

)3

L-smooth.
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Proof. For a twice continuously differentiable function, having L-Lipschitz gra-

dient is equivalent to having Hessian bounded in operator norm by L. Noting

that R(f) > 0 implies f is strictly upper radial by (6.11), we have a bijection be-

tween the domains of f and fΓ from (6.20). Hence the Hessian of fΓ is uniformly

bounded by
(

1 + D(f)
R(f)

)3

L.

Although this result requires smoothness of the primal objective f to be max-

imized, it still provides an algorithmically valuable tool due to the symmetry-

breaking nature of considering functions on the extended positive reals R++.

Supposing f is bounded above, this result allows us to extend smoothness of f

on a level set dom f = {x | f(x) > 0} to global smoothness of the dual fΓ on

dom fΓ = E .

For example, consider an unconstrained S = Rd instance of our previous

motivating example of the Poisson likelihood problem (6.9) which is not defined

everywhere (only on {x | aTi x > 0}) with gradients blowing up as x approaches

the boundary of this domain. However, provided the measurements {ai} span

Rn, this objective has bounded level sets. Consequently, for any twice contin-

uously differentiable r(x), our radial duality provides a reformulation that ex-

tends the smoothness on the level set {x | L(x)− r(x) > 0} to hold globally.

More broadly, (6.16) ensures being k-times differentiable is preserved by

the radial transformation. We expect similar bounds can be derived show-

ing higher-order smoothness bounds (that is, showing Lipschitz continuity of

higher-order derivatives) on the primal level set {x | f(x) > 0} extend to the

radial dual as global higher-order smoothness bounds. Carefully conducting

such analysis would likely enable the study of radial second-order methods,

like radial Newton methods.
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6.3.3 Growth Conditions in the Radially Dual Problem

For a lower semicontinuous function f : E → R++, we say the Łojasiewicz con-

dition holds at a local minimum x∗ if for some constants r > 0, C > 0 and

exponent θ ∈ [0, 1), all nearby x ∈ B(x∗, r) have

dist(0, ∂Pf(x)) ≥ C(f(x)− f(x∗))θ. (6.28)

For an upper semicontinuous function f with local maximum x∗, we instead

require all nearby x ∈ B(x∗, r) have

dist(0, ∂Pf(x)) ≥ C(f(x∗)− f(x))θ. (6.29)

These conditions are widespread, holding for generic subanalytic func-

tions [104, 103] and nonsmooth subanalytic convex functions [17]. These

properties are closely related to the Kurdyka-Łojasiewicz condition [88] and

Hölderian growth/error bounds used by [18, 173, 150, 142], which are known

to speed up the convergence of many first-order methods.

Under mild conditions, the Łojasiewicz condition is preserved by our radial

transformation. Consequently, optimization algorithms based on solving the

radially dual problem can enjoy the same improved convergence historically

expected in the primal from such conditions.

Proposition 6.3.4. Consider any upper semicontinuous, strictly upper radial function

f with R(f) > 0. If f satisfies the Łojasiewicz condition (6.29) at some stationary

point x∗ ∈ dom f with exponent θ, then fΓ at y∗ = x∗/f(x∗) ∈ dom fΓ satisfies the

Łojasiewicz condition (6.28) with the same exponent θ.

Proof. Note that (6.13) ensures fΓ is lower semicontinuous. Let r, C, θ satisfy the

Łojasiewicz condition of f at some stationary point x∗ and denote the radially
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dual stationary point from (6.22) as y∗ = x∗/f(x∗). Since fΓ is 1/R(f)-Lipschitz

continuous, every 0 < r′ < fΓ(y∗)R(f) will have all y ∈ B(y∗, r′) map to x =

y/fΓ(y) with

‖x− x∗‖ =

∥∥∥∥ y

fΓ(y)
− y∗

fΓ(y∗)

∥∥∥∥
≤
∥∥∥∥y − y∗fΓ(y)

∥∥∥∥+

∥∥∥∥ y∗

fΓ(y)
− y∗

fΓ(y∗)

∥∥∥∥
=
‖y − y∗‖
fΓ(y)

+
‖y∗‖|fΓ(y)− fΓ(y∗)|

fΓ(y)fΓ(y∗)

≤ r′

fΓ(y)
+

‖y∗‖r′

R(f)fΓ(y)fΓ(y∗)

≤ r′

fΓ(y∗)− r′/R(f)
+

‖y∗‖r′

R(f)(fΓ(y∗)− r′/R(f))fΓ(y∗)
.

Therefore selecting small enough r′ guarantees that all of the dual points near y∗

map back to primal points x = y/fΓ(y) in the ballB(x∗, r) where the Łojasiewicz

condition holds. Further the Lipschitz continuity of the radial dual allows us to

guarantee that all of these primal points have f(x) bounded below by nearly

f(x∗) as

f(x) = fΓΓ(x) ≥ 1/fΓ(y) ≥ 1/(fΓ(y∗)− r′/R(f)) = (f(x∗)−1 + (R(f)/r′)−1)−1.

Combining this with the assumed upper semincontinuity of f , we have f(x)→

f(x∗) as y → y∗ (despite not assuming continuity of the primal function f ).

Then all that remains is to show the Łojasiewicz supgradient norm lower

bound from the primal extends to lower bound the norm of the radially

dual subgradients. For every y ∈ B(y∗, r′), the formula (6.24) ensures every

ζ ′ ∈ ∂Pf
Γ(y) has ζ ′ = ζ/(ζ, δ)T (x, u) where (x, u) = Γ(y, fΓ(y)) and (ζ, δ) ∈

NP
hypo f ((x, u)). First, suppose δ 6= 0. Then u = f(x) and −ζ/δ ∈ ∂Pf(x) is a

primal supgradient. Consequently, we can bound the size of our radially dual
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subgradient as

‖ζ ′‖ =
‖ζ/δ‖

(ζ/δ, 1)T (x, f(x))

≥ ‖ζ/δ‖
‖ζ/δ‖‖x‖+ f(x)

≥ C(f(x∗)− f(x))θ

C(f(x∗)− f(x))θ‖x‖+ f(x)

=
Cf θ(x)f θ(x∗)

C(f(x∗)− f(x))θ‖x‖+ f(x)

(
fΓ(y)− fΓ(y∗)

)θ
where the final inequality uses that f(x) ≥ 1/fΓ(y) and f(x∗) = 1/fΓ(y∗). Recall-

ing that as y → y∗, the related primal point x = y/fΓ(y)→ x∗ and f(x)→ f(x∗),

the coefficient above must converge to a positive constant

Cf θ(x)f θ(x∗)

C(f(x∗)− f(x))θ‖x‖+ f(x)
→ Cf 2θ(x∗)

C0θ‖x∗‖+ f(x∗)
.

The boundary case of horizontal normal vectors with δ = 0 follows from the

same argument above by passing to a sequence of points (xi, f(xi)) → (x, f(x))

and proximal normal vectors (ζi, δi) ∈ NP
hypo f ((xi, f(xi))) with (ζi, δi) → (ζ, δ)

and δi 6= 0. The existence of such a sequence is guaranteed by the Horizontal

Approximation Theorem [27, Page 67].

The case of θ = 0 above is an important special case known as sharpness.

If this condition holds globally, (6.28) and (6.29) correspond to the following

global error bounds holding for all x ∈ E

f(x) ≥ f(x∗) + C‖x− x∗‖ (6.30)

and

f(x) ≤ (f(x∗)− C‖x− x∗‖)+ (6.31)

respectively. This condition has a long history in nonsmooth optimization (see

Burke and Ferris [23] as a classic reference establishing the prevalence of sharp
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minima). The two global sharp error bounds (6.31) and (6.30) are dually related

as follows.

Proposition 6.3.5. For any upper semicontinuous, strictly upper radial f satisfy-

ing (6.31) at x∗ ∈ E with constant C, then fΓ satisfies (6.30) at y∗ = x∗/f(x∗) with

constant
C

C‖x∗‖+ f(x∗)
.

Proof. Denote the assumed upper bound on f from sharpness as h(x) := f(x∗)−

C‖x−x∗‖. Then h+ must be strictly upper radial due to (6.12) since h is concave

with h(0) > 0 as

h(0) = 2h(x∗/2)− h(x∗) ≥ 2f(x∗/2)− f(x∗) > 0

where the first equality uses that h is linear on the segment [0, x∗], the inequality

uses that h(x∗/2) ≥ f(x∗/2), and the strict inequality uses that f is strictly upper

radial. The upper radial transformation hΓ
+ is lower bounded by our claimed

sharpness lower bound for any y ∈ E

hΓ
+(y) ≥ 1

f(x∗)
+
C‖y − x∗/f(x∗)‖
f(x∗) + C‖x∗‖

= fΓ(y∗) +
C‖y − y∗‖

f(x∗) + C‖x∗‖

since hp+(y, v) at v = 1
f(x∗)

+ C‖y−x∗/f(x∗)‖
f(x∗)+C‖x∗‖ has

hp+(y, v) =

(
1

f(x∗)
+
C‖y − x∗/f(x∗)‖
f(x∗) + C‖x∗‖

)
f(x∗)− C

∥∥∥∥y − ( 1

f(x∗)
+
C‖y − x∗/f(x∗)‖
f(x∗) + C‖x∗‖

)
x∗
∥∥∥∥

≤ 1 +
C‖y − x∗/f(x∗)‖
f(x∗) + C‖x∗‖

f(x∗)− C‖y − x∗/f(x∗)‖+
C2‖y − x∗/f(x∗)‖‖x∗‖

f(x∗) + C‖x∗‖

= 1 + C‖y − x∗/f(x∗)‖
(

f(x∗)

f(x∗) + C‖x∗‖
− 1 +

C‖x∗‖
f(x∗) + C‖x∗‖

)
= 1

where the single inequality above uses the reverse triangle inequality. Using

Lemma 5.4.7, f ≤ h+ implies fΓ ≥ hΓ
+, competing our proof.

189



6.4 Radial Algorithms for Concave Maximization

Now we turn our attention to understanding the primal convergence guaran-

tees that follow from algorithms minimizing the radial dual. In this section, we

consider concave maximization problems where being strictly upper radial and

having R(f) > 0 hold without loss of generality via a simple translation. Then

the following section tackles nonconcave maximization problems where more

care must be taken to ensure our duality holds.

We first remark on the natural measure of optimality in the primal that arise

from considering the radial dual. Recall the set of fixed points of Γ are exactly

the horizontal line at height one {(y, 1) | x ∈ E} = Γ{(x, 1) | x ∈ E}. Conse-

quently, a natural way to relate nearly optimal solutions between then primal

and radial dual comes from considering when sup f = inf fΓ = 1. In this case,

finding a dual point with accuracy

fΓ(yk)− inf fΓ ≤ ε

is equivalent to the relative accuracy primal guarantee of

sup f − f(xk)

f(xk)
≤ ε

using that 1/fΓ(yk) ≤ fΓΓ(xk) = f(xk) for xk = yk/f
Γ(yk) on any upper radial f .

Following from this, we state all of our radial algorithm convergence guarantees

in relative terms.

Secondly, we remark on the meaning of finding a radially dual solution min-

imized all the way to zero objective value fΓ(y) = 0. In this case, y certifies that

the primal maximization is unbounded as the ray (y, 1)/v ∈ epi f for all v > 0.

Note the converse of this is not true: for example, the strictly radial function

f(x) =
√
x+ 1+ is unbounded above, but has fΓ(y) > 0 everywhere.
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6.4.1 Radial Subgradient Method

We begin by considering the radial subgradient method previously defined

in Algorithm 6. This method simply takes the radial dual, applies the clas-

sic subgradient method to the resulting minimization problem, and then takes

the radial dual again to return a primal solution. Importantly this method is

projection-free since any primal constraint set S appears in the radial dual ob-

jective through its gauge γS . This method is very similar to those considered

in [140, 60] which also apply a subgradient method to a radial reformulation.

However, those methods include additional steps periodically rescaling their

radial objective. Our algorithm omits such steps while matching the improved

convergence guarantees of [60].

The standard subgradient method analysis shows the radial subgradient it-

erates yk converge in terms of radial dual optimality at a rate controlled by the

radially dual Lipschitz constant. Recall that translating a point in the interior of

hypo f to the origin ensures R(f) > 0 and so the radial dual is Lipschitz con-

tinuous by Proposition 6.3.1). Consequently, no structure needs to be assumed

beyond concavity to analyze the radial subgradient method.

Theorem 6.4.1. Consider any upper semicontinuous, concave f with R(f) > 0 and

p∗ = sup f ∈ R++ attained on some nonempty setX∗ ⊆ E . Then the radial subgradient

method (Algorithm 6) with stepsizes αk has primal solutions xk = yk/f
Γ(yk) satisfy

min
k<T

{
p∗ − f(xk)

f(xk)

}
≤ dist(p∗y0, X

∗)2 +
∑T−1

k=0 (p∗αk/R(f))2

2
∑T−1

k=0 p
∗αk

.

Selecting x0 = 0 and αk = εfΓ(yk)/‖ζ ′k‖2 for any ε > 0 ensures

T ≥ dist(x0, X
∗)2

R(f)2ε2
=⇒ 1

T

T−1∑
k=0

p∗ − f(xk)

p∗
≤ ε.
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Proof. Having R(f) > 0 ensures f is strictly upper radial by (6.12). Then fΓ is

convex by (6.15) and has minimum value d∗ = 1/p∗ attained on Y ∗ := X∗/p∗

by (6.21). The classic convex convergence analysis of subgradient methods fol-

lows from the fact that: for any y∗ ∈ Y ∗,

‖yk+1 − y∗‖2 = ‖yk − y∗‖2 − 2αkζ
′T
k (yk − y∗) + α2

k‖ζ ′k‖2

≤ ‖yk − y∗‖2 − 2αk(f
Γ(yk)− d∗) + α2

k‖ζ ′k‖2

and so inductively,

T−1∑
k=0

αk(f
Γ(yk)− d∗) ≤

‖y0 − y∗‖2 +
∑T−1

k=0 α
2
k‖ζ ′k‖2

2
. (6.32)

Noting (xk, uk) = Γ(yk, f
Γ(yk)), the primal iterates have f(xk) ≥ 1/fΓ(yk). Then

multiplying through by (1/d∗)2, which equals (p∗)2, we arrive at the relative

primal convergence rate of

T−1∑
k=0

αk
d∗

(
p∗ − f(xk)

f(xk)

)
=

T−1∑
k=0

αk
(d∗)2

(
1

f(xk)
− 1

p∗

)
≤ ‖y0/d

∗ − y∗/d∗‖2 +
∑T−1

k=0 (αk/d
∗)2‖ζ ′k‖2

2
.

Since fΓ is 1/R(f)-Lipschitz (by Proposition 6.3.1), every radially dual subgra-

dient is uniformly bounded by ‖ζ ′k‖ ≤ 1/R(f). Then selecting y∗ = projY ∗(y0)

gives our claimed primal convergence rate. Observe that setting x0 = 0 sets

y0 = x0/f(x0) = 0 as well. Then plugging αk = εfΓ(yk)/‖ζ ′k‖2 into (6.32) yields

dist(x0, X
∗)2

2
=

dist(y0/d
∗, X∗)2

2
≥

T−1∑
k=0

αk
d∗

(
fΓ(yk)− d∗

d∗
− 1

2

(αk
d∗

)
‖ζ ′k‖2

)

≥
T−1∑
k=0

ε

(
fΓ(yk)

d∗‖ζ ′k‖

)2(
p∗ − f(xk)

p∗
− ε

2

)

≥
T−1∑
k=0

εR(f)2

(
p∗ − f(xk)

p∗
− ε

2

)
.
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Rearranging this completes our proof as the primal convergence guarantee be-

comes
1

T

T−1∑
k=0

p∗ − f(xk)

p∗
≤ dist(x0, X

∗)2

2R(f)2εT
+
ε

2
.

Recall for concave f the formula for R(f) can be simplified to inf{‖x‖ |

f(x) = 0}, which quantifies how interior the origin is to the set {x | f(x) > 0}.

In this light, the constants in this rate agree with those in the guarantees of [60],

up to small constants.

The classic convergence rates of the subgradient method improve in the

presence of growth conditions like (6.28) or (6.30). For example growth with

exponent θ = 1/2 corresponds to the case of quadratic growth (generalizing

strong convexity) and leads to faster O(1/ε) convergence, see [89] as a simple

example. When θ = 0, sharp growth enables the classic subgradient method

to converge linearly, as shown by Polyak [135, 136] more than 50 years ago.

Recalling that these quantities are preserved from primal to radial dual (Propo-

sitions 6.3.4 and 6.3.5), we find the same improvements to hold for our radial

subgradient method. The following two theorems establish this speed up when

θ = 0 and θ > 0, using the radially dual Polyak stepsize αk = (fΓ(yk)−d∗)/‖ζ ′k‖2.

Theorem 6.4.2. Consider any upper semicontinuous, concave f with R(f) > 0 and

p∗ = sup f ∈ R++ attained at x∗ ∈ E . Fix x0 = 0 and αk = (fΓ(yk) − d∗)/‖ζ ′k‖2.

If f satisfies the sharp growth condition (6.31), then the radial subgradient method

(Algorithm 6) has xk = yk/f
Γ(yk) satisfy

T ≥ 4

(
p∗ + Cdist(x0, X

∗)

CR(f)

)2

log2

(
p∗ − f(x0)

f(x0)ε

)
=⇒ min

k<T

{
p∗ − f(xk)

f(xk)

}
≤ ε.
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Proof. Plugging the stepsize choice αk = (fΓ(yk)− d∗)/‖ζ ′k‖2 into (6.32) implies

T−1∑
k=0

(fΓ(yk)− d∗)2

2
≤ ‖y0 − y∗‖2

2R(f)2
(6.33)

where y∗ = x∗/p∗ and Proposition 6.3.1 is used to bound ‖ζ ′k‖ ≤ 1/R(f). Then

the radially dual sharpness bound from Proposition 6.3.5 guarantees ‖y0−y∗‖ ≤
p∗+C‖x∗‖

C
(fΓ(y0)− d∗). Hence

1

T

T−1∑
k=0

(fΓ(yk)− d∗)2 ≤ (p∗ + C‖x∗‖)2(fΓ(y0)− d∗)2

C2R(f)2T
.

Therefore some k ≤ 4
(
p∗+C‖x∗‖
CR(f)

)2

has halved the dual objective gap, fΓ(yk) −

d∗ ≤ (fΓ(y0)− d∗)/2. Repeatedly applying this, we conclude that for any ε′ > 0,

T ≥ 4

(
p∗ + Cdist(x0, X

∗)

CR(f)

)2

log2

(
fΓ(y0)− d∗

ε′

)
=⇒ min

k<T

{
fΓ(yk)− d∗

}
≤ ε′.

Considering ε′ = ε/p∗ gives the claimed linear convergence rate.

This generalizes the linear convergence results shown by [140] for linear pro-

gramming. To the best of our knowledge, this is the first first-order method lin-

ear convergence guarantee for generic non-Lipschitz, sharp convex optimiza-

tion. holds with θ > 0 around a maximizer x∗, the radial subgradient method

enjoys improved convergence once it enters this local region. This result mir-

rors the tradition subgradient method’s speed up, although the existing results

all additionally require Lipschitz continuity.

Theorem 6.4.3. Consider any upper semicontinuous, concave f with R(f) > 0 and

p∗ = sup f ∈ R++ attained at x∗ ∈ E . Fix x0 = 0 and αk = (fΓ(yk) − d∗)/‖ζ ′k‖2.

If f satisfies the Łojasiewicz condition (6.29) with exponent θ > 0, then the radial

subgradient method (Algorithm 6) has xk = yk/f
Γ(yk) satisfy

T ≥ O
(
1/ε2θ

)
=⇒ min

k<T

{
p∗ − f(xk)

f(xk)

}
≤ ε.
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Proof. By Proposition 6.3.4, the Łojasiewicz condition (6.28) holds at the dual

minimizer y∗ = x∗/p∗ for some constants r′, C ′ with the same exponent θ. Inte-

grating this condition (as done in [18, Theorem 5]) ensures every y ∈ B(y∗, r′)

has the following local error bound

fΓ(y)− d∗ ≥ (C ′(1− θ)‖y − y∗‖)1/(1−θ)
. (6.34)

The subgradient method must have some yk0 in the ball B(y∗, r′) with

k0 ≤

(
‖y0 − y∗‖

(C ′(1− θ)r′)1/(1−θ)R(f)

)2

since (6.33) ensures the average iterate has objective gap squared at most

(C ′(1− θ)r′)2/(1−θ). Notice that the Polyak stepsize ensures the distance from

the iterates yk to y∗ is nonincreasing as

‖yk+1 − y∗‖2 = ‖yk − y∗‖2 − 2αkζ
′T
k (yk − y∗) + α2

k‖ζ ′k‖2

≤ ‖yk − y∗‖2 − 2αk(f
Γ(yk)− d∗) + α2

k‖ζ ′k‖2

≤ ‖yk − y∗‖2 − (fΓ(yk)− d∗)2

‖ζ ′k‖2
≤ ‖yk − y∗‖2.

Hence all k ≥ k0 have yk ∈ B(y∗, r′) as well. Then our claimed convergence

rate follows by bounding the number of iterations required to ensure the ob-

jective gap halves fΓ(yk0+k) − d∗ ≤ (fΓ(yk0) − d∗)/2. Applying the local error

bound (6.34) to (6.33) initialized at yk0 implies

1

T

T−1∑
k=0

(fΓ(yk0+k)− d∗)2 ≤ (C ′(1− θ))2(fΓ(yk0)− d∗)2(1−θ)

C2R(f)2T
.

Therefore some k ≤ 4
(
C′(1−θ)
R(f)

)2

/(fΓ(yk0) − d∗)2θ iterations after k0, the radially

dual objective gap must have halved. Repeatedly applying this gives the fol-

lowing geometric sum limiting the number of iterations required to reach any

ε′ > 0 level of radial dual accuracy

T ≥ k0 +
∞∑
i=1

4

(
C ′(1− θ)
R(f)

)2
1

(2iε′)2θ
=⇒ min

k<T

{
fΓ(yk)− d∗

}
≤ ε′.
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Selecting ε′ = ε/p∗ gives the claimed result as

T ≥ k0 +
4

1− 22θ

(
C ′(1− θ)
R(f)

)2(
2p∗

ε

)2θ

=⇒ min
k<T

{
p∗ − f(xk)

f(xk)

}
≤ ε.

The previous pair of convergence theorems relied on using a Polyak stepsize,

which requires the often impractical knowledge of d∗. This can be remedied by

replacing the simple subgradient method in Algorithm 6 with a more sophisti-

cated stepping scheme like [81] or restarting scheme like [173, 150, 142] which

all attain similar convergence guarantees.

6.4.2 Radial Smoothing Method

Now we turn our attention to the radial smoothing method previously defined

as Algorithm 7 in the context of smoothing the radial dual of our quadratic pro-

gram. More generally, we consider primal problems maximizing a minimum of

smooth functions over polyhedral constraints

p∗ =


maxx min{fj(x) | j = 1, . . . ,m1}

s.t. aTi x ≤ bi for i = 1, . . . ,m2.

(6.35)

where each fj is twice continuously differentiable and concave with R(fj) ≥

R > 0 and D(fj) ≤ D < ∞ and each bi > 0. Note that having R(fj) > 0 and

bi > 0 can be attained without loss of generality by translating a strictly feasible

point in the domain of each fj to the origin. Further, assuming D(fj) < ∞

implies each fj has bounded level sets and so each fj is L-smooth on the level

set {x | fj(x) > 0} for some sup{‖∇2fj(x)‖ | f(x) > 0} ≤ L <∞. This objective

is strictly upper radial and its radial dual is

d∗ = min
y∈E

max
{
fΓ
j (x), (ai/bi)

Ty | j ∈ {1, . . . ,m1}, i ∈ {1, . . . ,m2}
}
. (6.36)
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Then we consider the smoothing of this objective for any η > 0 given by

gη(y) = η log

(
m1∑
j=1

exp

(
fΓ
j (y)

η

)
+

m2∑
i=1

exp

(
aTi y

biη

))
.

Our radial smoothing method (Algorithm 7) proceeds by minimizing this

smoothing with Nesterov’s accelerated method to produce a radially dual so-

lution with accuracy O(η). Nearly any other fast iterative method could be em-

ployed here instead, which could then avoid needing knowledge of problem

constants. Converting this radial dual guarantee back to the primal problem

gives the following primal convergence theorem.

Theorem 6.4.4. Consider any problem of the form (6.35). Fixing Lη = (1+D/R)3L+

max{1/R2,‖ai/bi‖}
η

and x0 = 0, the radial smoothing method (Algorithm 7) has xk =

yk/max{fΓ
j (x), (ai/bi)

Ty} feasible with

p∗ −min{fj(xk)}
min{fj(xk)}

≤ 2Lη(1 + ηp∗ log(m1 +m2))2D2

p∗(k + 1)2
+ ηp∗ log(m1 +m2).

In particular, setting η = ε/2 log(m1 +m2), this ensures the following O(1/ε) conver-

gence rate

k + 1 ≥ 2(1 + p∗ε/2)D

√
(1 +D/R)3L

p∗ε
+

2 max{1/R2, ‖ai/bi‖2} log(m1 +m2)

p∗ε2

=⇒ p∗ −min{fj(xk)}
min{fj(xk)}

≤ p∗ε.

Proof. Observe that all of them1+m2 functions defining gη are convex (by (6.15)),

max{1/R, ‖ai/bi‖}-Lipschitz continuous (by Proposition 6.3.1) and (1+D/R)3L-

smooth (by Corollary 6.3.3). Then [15, Proposition 4.1] ensures gη is convex,

is (1 + D/R)3L + max{1/R2,‖ai/bi‖}
η

-smooth, and closely follows the radially dual

objective with every y ∈ E satisfying

0 ≤ gη(y)−max
{
fΓ
j (y), (ai/bi)

Ty
}
≤ η log(m1 +m2). (6.37)
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Note that for any s > 0, the corresponding primal objective super-level set is

bounded by

sup{‖x‖ | fj(x) ≥ s, aTi x ≤ bi} ≤ D.

Then the bijection epi fΓ = Γ(hypo f) from (6.18) bounds every sub-level set of

the dual with

sup{‖y‖ | fΓ
j (y) ≤ 1/s, (ai/bi)

Ty ≤ 1/s} ≤ D/s.

In particular considering s = p∗ = 1/d∗ shows every radial dual minimizer has

norm bounded by d∗D. Then the upper bound from (6.37) ensures the d∗ +

η log(m1 + m2) sub-level set of gη is nonempty and the lower bound from (6.37)

allows us to bound this level set by

sup{‖y‖ | gη(y) ≤ d∗ + η log(m1 +m2)} ≤ (d∗ + η log(m1 +m2))D.

Therefore the distance from y0 = 0 to a minimizer of gη is at most (d∗+η log(m1+

m2))D.

Since gη is smooth and has a minimizer, applying the standard acceler-

ated method convergence guarantee [125] guarantees the iterates of our radial

smoothing method have

gη(yk)− inf gη ≤
2Lη(d

∗ + η log(m1 +m2))2D2

(k + 1)2
.

Converting this guarantee to be in terms of our radially dual objective, (6.37)

ensures

max
{
fΓ
j (yk), (ai/bi)

Tyk
}
− d∗ ≤ 2Lη(d

∗ + η log(m1 +m2))2D2

(k + 1)2
+ η log(m1 +m2).

Finally, stating this to be in terms of the primal solution xk =

yk/max{fΓ
j (x), (ai/bi)

Ty} yields

p∗ −min{fj(xk)}
min{fj(xk)}

≤ 2Lη(1 + ηp∗ log(m1 +m2))2D2

p∗(k + 1)2
+ ηp∗ log(m1 +m2).
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Renegar [141] uses the same general technique to give accelerated conver-

gence guarantees for solving the broad family of hyperbolic programming prob-

lems (which includes semidefinite programming) where the radial dual also

admits a natural smoothing. The restarting schemes of [150] and [142] both

explicitly consider restarting smoothing methods to attain improved conver-

gence when growth conditions like the Łojasiewicz condition (6.28) hold. Due

to Proposition 6.3.4, applying these more sophisticated methods to solve the

radially dual problem will give rise to radial algorithms that enjoy the same im-

proved convergence. The analysis of such a method should follow similarly to

that of Theorem 6.4.3.

6.4.3 Radial Accelerated Method

Motivated by our example transforming the Poisson likelihood problem (6.9),

algorithms can be designed to take advantage of the radial transformation ex-

tending smoothness on a level set to hold globally. Consider maximizing any

twice differentiable concave function f : E → R ∪ {−∞} with bounded level

sets. Then, without loss of generality, we have 0 ∈ int {x | f(x) > 0} and so f+

is strictly upper radial. Letting L = sup{‖∇2f(x)‖ | f(x) > 0}, Corollary 6.3.3

ensures fΓ
+ is (1 + D(f)/R(f))3L-smooth on all of E . Hence fΓ

+ can be mini-

mized directly using Nesterov’s accelerated method, giving the following radial

accelerated method defined by Algorithm 8.
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Algorithm 8 The Radial Accelerated Method

Require: f : E → R++, x0 ∈ dom f , L > 0, T ≥ 0
1: (y0, v0) = Γ(x0, f(x0)) and ỹ0 = y0 Transform into the radial dual
2: for k = 0 . . . T − 1 do
3: ỹk+1 = yk −∇fΓ(y)/(1 +D(f)/R(f))3L Run the accelerated method
4: yk+1 = ỹk+1 + k−1

k+2
(ỹk+1 − ỹk)

5: end for
6: (xT , uT ) = Γ(yT , f

Γ(yT )) Transform back to the primal
7: return xT

This radial accelerated algorithm inherits the primal accelerated method’s

O(
√
Ldist(x0, X∗)2/ε) rate, only requiring L-smoothness on the level set {x |

f(x) > 0} as follows.

Theorem 6.4.5. Consider any twice differentiable, concave f with R(f) > 0, D(f) <

∞, L = sup{‖∇2f(x)‖ | f(x) > 0}, and p∗ = sup f ∈ R++ attained on some set

X∗ ⊆ E . Fixing x0 = 0, the radial accelerated method (Algorithm 8) has for any ε > 0,

k + 1 ≥ (1 +D(f)/R(f))3/2

√
2Ldist(x0, X∗)2

p∗ε
=⇒ p∗ − f(xk)

f(xk)
≤ ε.

Proof. Recall the fΓ is convex by (6.15) and is (1 + D(f)/R(f))3L-smooth by

Corollary 6.3.3. Then Nesterov’s classic analysis [125] ensures our radially dual

iterates converge with

fΓ(yk)− d∗ ≤
2(1 +D(f)/R(f))3Ldist(y0, Y

∗)2

(k + 1)2

where Y ∗ = X∗/p∗. Letting (xk, uk) = Γ(yk, vk) yields primal iterates with

f(xk) ≥ 1/fΓ(yk). Then multiplying this bound through by 1/d∗ = p∗ produces

the primal guarantee

p∗ − f(xk)

f(xk)
≤ 2(1 +D(f)/R(f))3Ldist(y0/d

∗, X∗)2

p∗(k + 1)2
.

Noting that y0/d
∗ = x0 = 0, this gives the claimed convergence guarantee.
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A few remarks on this convergence result. The additional coefficient of

(1 + D(f)/R(f))3/2 is quite pessimistic as many of the examples we have con-

sidered have radial dual smoother than the primal, but Corollary 6.3.3 fails to

capture this potential upside in its O(L) bound. For particular applications, we

expect much tighter bounds on the radially dual smoothness are possible. The

proposed radial accelerated method unrealistically relies on knowledge of our

smoothness constant upper bound (1 + D(f)/R(f))3L. However, this can be

remedied by including a linesearch/backtracking as done in [14, 128].

Under growth conditions, the convergence of accelerated methods also

improves. For example, applying the adaptive accelerated gradient method

of [102] to solve the radially dual problem would give a radial method that

speeds up in the presence of primal growth conditions by Proposition 6.3.4. The

analysis of such a method should follow similarly to that of Theorem 6.4.3.

6.5 Radial Algorithms for Nonconcave Maximization

Our radial duality theory applies beyond the concave maximization problems

that have been considered so far. The foundational theorem (6.1) establishes

that our radial duality applies to the broader family of upper radial functions.
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6.5.1 Examples of Radial Duality with Nonconvex Objectives

or Constraints

Geometrically, upper radial functions all have a star-convex hypograph with re-

spect to the origin Lemma 5.3.1, meaning that all (y, v) ∈ hypo f have (y, v)/t ∈

hypo f for all t ≥ 1. Star-convexity has been considered throughout the op-

timization literature. The structure of optimizing over star-convex constraint

sets has been considered as early as [153]. Efficient global optimization of star-

convex objectives is possible if star-convexity holds with respect to a global op-

timizer (see [130, 66, 92, 67, 77]). However, in general, even linear optimization

over star-convex bodies is NP-hard [26]. Our model of star-convexity w.r.t. the

origin captures this NP-hard case.

Star-Convex Constraints

We say that a set S ⊆ E is star-convex with respect to the origin if every x ∈ S has

the line segment λx ∈ S for all 0 ≤ λ ≤ 1. This is exactly the condition needed to

ensure the indicator function ιS(x) =


+∞ if x ∈ S

0 if x 6∈ Ss
is strictly upper radial6.

Then the radial dual of such a star-convex set’s indicator is given by the gauge

ιΓS(y) = sup{v > 0 | v · ιS(y/v) ≤ 1} = inf{λ > 0 | y ∈ λS} = γS(y).

Importantly, the gauge γS(y) is convex if and only if S is convex. As a result,

algorithms utilizing the radial dual of star-convex constraints avoid needing

6This is essentially by definition as v · ιS(y/v) is nondecreasing in v if and only if S is star-
convex w.r.t. the origin. Then its simple to check this function is upper semicontinuous and is
vacuously strictly increasing on its effective domain dom ιS = ∅, which is empty.
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difficult nonconvex orthogonal projections, replacing them with evaluating a

nonconvex gauge function appearing in the objective.

One important example where star-convex sets arises comes from consid-

ering chance constraints [87, 121, 176]. Given some distribution over potential

constraint sets Sξ ⊆ E , a robust problem formulation may want to ensure that

the constraint is satisfied with probability at least Λ ∈ [0, 1]. Then the chance-

constrained feasible region is S = {x | P(x ∈ Sξ) ≥ Λ}. If each potential con-

straint set is convex with 0 ∈ Sξ, then the chance-constrained set S is star-convex

w.r.t. the origin.

Optimization over Compact Sets

Now we generalize our previous example from Section 6.2 where we saw that

any nonconcave quadratic program with a compact polyhedral feasible region

could be rescaled for our radial duality to apply. Consider maximizing any

continuously differentiable function f over a compact set S that is star-convex

w.r.t. the origin. Supposing f(0) > 0, this is equivalent to the following maxi-

mization problem of the primal form (6.2)

max
y∈E

min{(1 + λf(x))+, ιS(x)}

for any λ > 0. We can check when this objective is strictly upper radial (and

so our duality holds) by considering whether its perspective function is strictly

increasing on its domain:

v ·min
i
{(1 + λf(y/v))+, ιS(y/v)} =


(v + λvf(y/v))+ if y/v ∈ S

0 otherwise.
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The partial derivative of this with respect to v at any y/v ∈ S ∩ dom (1 + λf)+ is

1− λ(∇f(y/v),−1)T (y/v, f(y/v)).

Noting that (∇f(x),−1)T (x, f(x)) is continuous on the compact set S ∩

dom (1 + λf)+, we can select λ > 0 small enough to always have 1 −

λ(∇f(y/v),−1)T (y/v, f(y/v)) > 0. Doing so makes our objective strictly upper

radial and hence our radial duality applies.

Nonconvex Regularization

Many optimization tasks take the additive composite form

max
y∈E

f(x)− r(x)

where f is an upper semicontinuous, concave function with f(0) > 0 and

r(x) is an added (or rather subtracted since we are maximizing) regulariza-

tion term. Many sparsity inducing regularization penalties decompose as a sum

over the x’s coordinates r(x) =
∑n

i=1 σ(xi) for some simple nonconvex function

σ : R → R. For example, `q-regularization sets σ(t) = λ|t|q for some 0 < q < 1,

bridging the gap between `0 and `1-regularization, and smoothly clipped abso-

lute deviation (SCAD) regularization [47] sets

σ(t) =


λ|t| if |t| ≤ λ

(−|t|2 + 2aλ|t| − λ2)/2(a− 1) if λ < |t| ≤ aλ

(1 + a)λ2/2 if |t| > aλ

for some constants a > 2 and λ > 0. Many more regularizers are of this form,

like MCP [177] and firm thresholding [56]. See [169] for a survey of numer-

ous other important nonconvex regularization formulations and their usage in

practice.
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These regularizers are all continuous and have r(y/v) nonincreasing in v.

These two simple properties suffice to guarantee subtracting r from f will not

break its upper radiality since

v(f(y/v)− r(y/v))+ = max{vf(y/v)− vr(y/v), 0}

is a sum of two upper semicontinuous, nondecreasing functions in v. As a result,

our radial duality applies to the potentially nonconcave primal objective (f(x)−

r(x))+.

Optimization with Outliers

Many learning problems take the form of minimizing a stochastic loss function

Eξ[f(x, ξ)] using a finite sample approximation. Given i.i.d. samples ξ1, . . . , ξs,

this problem can be formulated as the following maximization

max
x∈E

1

s

s∑
i=1

−f(x, ξi).

If each −f(·, ξi) is concave, a translation will ensure every −f(·, ξi) is upper

radial and our radial duality can be applied. In the presence of t outliers in the s

samples ξ1, . . . , ξs, this finite sample approximation could be improved to only

consider the loss function on the best s− t samples

max
x∈E

max

{
1

s− t
∑
i∈S

−f(x, ξi) | S ⊆ {1...s}, |S| = s− t

}
.

Provided each−f(·, ξi) is upper radial, this whole objective will be upper radial

by Corollary 5.3.11 and so our radial duality applies. The minimax formulation

of [174] exactly corresponds to this problem formulation at its equilibrium. By

the same corollary, our radial duality also applies to maximizing the (s − t)th

largest element of {−f(x, ξi)}si=1. Such an optimization problem captures the

classic idea of least median of squares regression [151].
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6.5.2 Example Nonconcave Guarantee for the Radial Subgradi-

ent Method

In this concluding section, we demonstrate the style of results possible from

applying our radial duality to nonconcave maximization. In particular, we con-

sider the nonconcave, nonsmooth primal problem of maximizing the minimum

of a set of twice continuously differentiable, strictly upper radial fj over some

convex set S ⊆ E

p∗ =


maxx min{fj(x) | j = 1, . . . ,m}

s.t. x ∈ S.
= max

x∈E
min{fj(x), ιS(x)} (6.38)

where each fj has R(fj) ≥ R > 0 and bounded level sets D(fj) ≤ D < ∞

and the origin lies in the interior of the constraint set B(0, R) ⊆ S. Let L ≥

sup{‖∇2fj(x)‖ | fj(x) > 0, x ∈ S} bound the smoothness of each fj on this

compact level set.

This primal is strictly upper radial since each function defining the minimum

is strictly upper radial and so our radial duality applies. The radial dual of this

problem is

d∗ = min
y∈E

max{fΓ
j (y), γS(y)}. (6.39)

Note each fΓ
j (y) is convex if and only if fj is concave by (6.15). Hence if our pri-

mal (6.38) is nonconcave, our radial dual (6.39) will be nonconvex. Regardless,

our previously proposed radial subgradient method (Algorithm 6) can still be

applied and analyzed.

Recently, convergence theory for subgradient methods without convexity

has been developed, following the ideas we presented in Chapter 3. Particu-

larly, consider minimizing a nonconvex, nonsmooth function g : E → R that is

206



bounded below. Then [32, Theorem 3.1] ensures that provided g is uniformly

M -Lipschitz and ρ-weakly convex (defined as g+ ρ
2
‖ · ‖2 being convex), the sub-

gradient method yk+1 = yk − εζk/‖ζk‖2 for ζk ∈ ∂Pg(yk) will have some yk be

nearly stationary on the Moreau envelope of g. In particular, this implies some

yk will have a nearby y that is nearly stationary

T ≥ ρM2(g(y0)− inf g)

ε4

=⇒ min
k<T
{‖y − yk‖} ≤

ε

2
√
ρ

with dist(0, ∂Pg(y)) ≤ √ρε. (6.40)

Applying this machinery on the radial dual allows us to ensure a nearly sta-

tionary point y near a dual iterate yk exists. Then converting this guarantee back

to the primal gives the following primal convergence guarantee, preserving the

above O(1/ε4) rate despite not assuming the primal (6.38) is either Lipschitz or

weakly convex.

Theorem 6.5.1. Consider any problem of the form (6.38) with p∗ ∈ R++. Fixing

x0 = 0 and αk = ε/‖ζ ′k‖2, the radial subgradient method (Algorithm 6) has xk =

yk/max{fΓ
j (yk), γS(yk)} satisfy

T ≥ (1 +D/R)3L(min{fj(x0)} − p∗)
R2 min{fj(x0)}p∗ε4

=⇒ min
k<T
{‖x− xk‖} ≤

p∗ε

2
√

(1 +D/R)L

with dist(0, ∂P min{fj, ιaTi x≤bi}(x)) ≤
p∗
√

(1 +D/R)3Lε

1−
√

(1 +D/R)3LεD

for some nearby x ∈ E provided 0 < ε < 1/
√

(1 +D/R)3LD.

Proof. Observe that each function in the maximum defining the radial

dual (6.36) is 1/R-Lipschitz (by Proposition 6.3.1) and each fΓ
j is (1 +

D/R)3L-smooth (by Corollary 6.3.3). Then the whole radially dual objective
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max{fΓ
j (y), γS(y)} is 1/R-Lipschitz and (1 + D/R)3L-weakly convex. Hence

even though our primal is not assumed to be either Lipschitz or weakly convex,

these two properties occur in the radial dual due to each fi having R(fi) > 0

and smoothness on the level set {x | fj(x) > 0} respectively. Then we can ap-

ply (6.40) implying a nearby dual solution y has

T ≥
(1 +D/R)3L(min{fΓ

j (y0)} − d∗)
R2ε4

=⇒ min
k<T
{‖y − yk‖} ≤

ε

2
√

(1 +D/R)3L

with dist(0, ∂P max{fΓ
j , γS}(y)) ≤

√
(1 +D/R)3L ε.

Relating this guarantee to the primal is done in the following two steps.

First, we show the nearby radial dual solution y corresponds to a primal so-

lution x = y/max{fΓ
j (y), γS(y)} that is also near the primal iterates xk =

yk/max{fΓ
j (yk), γS(yk)}. Then relating the dual stationarity of y to the primal

stationarity of x completes our proof, showing it is a nearby, nearly stationary

primal solution.

Observe that having ‖y− yk‖ ≤ ε/2
√

(1 +D/R)3L ensures the distance ‖x−

xk‖ is at most

‖x− xk‖ =

∥∥∥∥ y

max{fΓ
j (y), γS(y)}

− yk
max{fΓ

j (yk), γS(yk)}

∥∥∥∥
≤ ‖y − yk‖

max{fΓ
j (y), γS(y)}

+

∥∥∥∥ yk
max{fΓ

j (y), γS(y)}
− yk

max{fΓ
j (yk), γS(yk)}

∥∥∥∥
=

‖y − yk‖
max{fΓ

j (y), γS(y)}
+ ‖xk‖

∣∣∣∣∣max{fΓ
j (yk), γS(yk)}

max{fΓ
j (y), γS(y)}

− 1

∣∣∣∣∣
≤ ‖y − yk‖

max{fΓ
j (y), γS(y)}

+
D‖y − yk‖/R

max{fΓ
j (y), γS(y)}

≤ 1 +D/R

d∗
‖y − yk‖ ≤

ε

2d∗
√

(1 +D/R)L

208



where the first inequality uses the triangle inequality, the second uses the

bounded primal level sets and the radially dual 1/R-Lipschitz continuity, and

the third uses that d∗ = 1/p∗ ∈ R++.

Lastly, let v = max{fΓ
j (y), γS(y)}, u = 1/v and ζ ′ ∈ ∂P max{fΓ

j , γS}(y) denote

a radially dual subgradient with ‖ζ ′‖ ≤
√

(1 +D/R)3L ε. Then we can bound

(ζ ′,−1)T (y, v) ≤ ‖ζ ′‖‖y‖ − v

≤
√

(1 +D/R)3Lε‖x‖/u− 1/u

≤ −(1−
√

(1 +D/R)3LεD)/p∗ < 0.

Noting that (ζ ′,−1) ∈ NP
epi min{fΓ

j ,γS}
(y, v), the primal then has a supgradient

ζ :=
ζ ′

(ζ ′,−1)T (y, v)
∈ ∂P min{fj, ιS}(x)

by (6.24) applied to the radial dual. This primal subgradient has norm at most

O(ε) since

‖ζ‖ =

∥∥∥∥ ζ ′

(ζ ′,−1)T (y, v)

∥∥∥∥ =
‖ζ ′‖

|(ζ ′,−1)T (y, v)|
≤

p∗
√

(1 +D/R)3Lε

1−
√

(1 +D/R)3LεD
.
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CHAPTER 7

LIFTING CONVERGENCE RATES ASSUMING HÖLDER GROWTH

7.1 Introduction

We consider minimizing an unconstrained problem of our recurring form (1.1)

min
x∈Rn

f(x) (7.1)

that attains its minimum value at some x∗. Typically first-order optimization

methods suppose f possesses some continuity or smoothness structure. These

assumptions are broadly captured by assuming f is (L, η)-Hölder smooth, de-

fined for any L ≥ 0 and 0 ≤ η ≤ 1 as

‖g − g′‖ ≤ L‖x− x′‖η for all x, x′ ∈ Rn, g ∈ ∂f(x), g′ ∈ ∂f(x′) (7.2)

where ∂f(x) = {g ∈ Rn | f(x′) ≥ f(x) + 〈g, x′ − x〉 ∀x′ ∈ Rn} is the subdiffer-

ential of f at x. When η = 1, this corresponds to the common assumption of

L-smoothness (i.e., having∇f(x) be L-Lipschitz). When η = 0, this captures the

standard nonsmooth optimization model of having f(x) itself be L-Lipschitz.

Throughout the first-order optimization literature, improved convergence

rates typically follow from assuming the given objective function satisfies a

growth/error bound or Kurdyka-Łojasiewicz condition (see [104, 103, 88, 17, 18]

for a sample of works developing these ideas). One common formalization of

this comes from assuming (α, p)-Hölderian growth holds, defined by

f(x) ≥ f(x∗) + α‖x− x∗‖p for all x ∈ Rn . (7.3)

The two most important cases of this bound are Quadratic Growth given by

p = 2 (generalizing strong convexity [117]) and Sharp Growth given by p = 1

(which occurs broadly in nonsmooth optimization [23]).
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Typically different convergence proofs are employed for the cases of min-

imizing f with and without assuming the existence of a given growth lower

bound. Table 7.1 summarizes the number of iterations required to guaran-

tee ε-accuracy for several well-known first-order methods: the Proximal Point

Method with any stepsize ρ > 0 defined by

xk+1 = proxρ,f (xk) := argmin{f(x) +
1

2ρ
‖x− xk‖2} , (7.4)

the Polyak Subgradient Method defined by

xk+1 = xk − ρkgk for some gk ∈ ∂f(xk) (7.5)

with stepsize ρk = (f(xk)− f(x∗))/‖gk‖2, and Gradient Descent

xk+1 = xk − ρk∇f(xk) (7.6)

with stepsize ρk = ‖∇f(xk)‖(1−η)/η/L1/η as well as the more sophisticated Prox-

imal Bundle Method considered previously in Chapter 4 of [93, 170] and a

restarted variant of the Universal Gradient Method of [128].

Our Contribution. This chapter presents a pair of meta-theorems for deriv-

ing general convergence rates from rates that assume the existence of a growth

lower bound. In terms of Table 7.1, we show that each convergence rate im-

plies all of the convergence rates to its left: the quadratic growth column’s rates

imply all of the general setting’s rates and each sharp growth rate implies that

method’s general and quadratic growth rate. More generally, our results show

that any convergence rate assuming growth with exponent p implies rates for

any growth exponent q > p and for the general setting. An early version of

these results [61] only considered the case of nonsmooth Lipschitz continuous

optimization.
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General Quadratic Growth Sharp Growth

Proximal Point
Method [147, 50] O

(
1

ε

)
O

(
1

α
log
(
f(x0)−f(x∗)

ε

))
O

(
f(x0)− f(x∗)− ε

α2

)
Polyak Subgradient
Method [135, 136] O

(
1

ε2

)
O

(
1

εα

)
O

(
1

α2
log
(
f(x0)−f(x∗)

ε

))
Proximal Bundle
Method ([86, 41]
and Chapter 4)

O

(
1

ε3

)
O

(
1

εα2

)
-

Gradient
Descent [126] O

(
1

ε

)
O

(
1

α
log
(
f(x0)−f(x∗)

ε

))
-

Restarted Universal
Method [150, 142] O

(
1√
ε

)
O

(
1√
α

log
(
f(x0)−f(x∗)

ε

))
-

Table 7.1: Known convergence rates for several methods. The proximal point
method makes no smoothness or continuity assumptions. The subgradient and
bundle method rates assume Lipschitz continuity (η = 0) and the gradient de-
scent and universal method rates assume Lipschitz gradient (η = 1), although
these methods can be analyzed for generic η.

A natural question is whether the reverse implications hold (whether each

column of Table 7.1 implies the rates to its right). If one is willing to modify the

given first-order method, then the literature already provides a partial answer

through restarting schemes [122, 102, 173, 150, 142]. Such schemes repeatedly

run a given first-order method until some criteria is met and then restart the

method at the current iterate. For example, Renegar and Grimmer [142] show

how a general convergence rate can be extended to yield a convergence rate un-

der Hölder growth. Combining this with our rate lifting theory allows any rate

assuming growth with exponent p to give a convergence rate applying under

any growth exponent q < p.
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7.2 Rate Lifting Theorems

Now we formalize our model for a generic first-order method fom. Note that for

it to be meaningful to lift a convergence rate to apply to general problems, the

inputs to fom need to be independent of the existence of a growth bound (7.3),

but may depend on the Hölder smoothness constants (L, η) or the optimal ob-

jective value f(x∗). We make the following three assumptions about fom:

(A1) The method fom computes a sequence of iterates {xk}∞k=0. The next iterate

xk+1 is determined by the first-order oracle values {(f(xj), gj)}k+1
j=0 where

gj ∈ ∂f(xj).

(A2) The distance from any xk to some fixed x∗ ∈ argmin f is at most some

constant D > 0.

(A3) For some p ≥ 1, there exists a function K : R3
++ → R such that if f is (L, η)-

Hölder smooth and possesses (α, p)-Hölder growth on B(x∗, D), then for

any ε > 0, fom finds an ε-minimizer xk with

k ≤ K(f(x0)− f(x∗), ε, α).

On the Generality of (A1)-(A3). Note that (A1) allows the computation of xk+1

to depend on the function and subgradient values at xk+1. Hence the prox-

imal point method is included in our model since it is equivalent to xk+1 =

xk − ρkgk+1, where gk+1 ∈ ∂f(xk+1). We remark that (A2) holds for all of the

previously mentioned algorithms under proper selection of their stepsize pa-

rameters. In fact, many common first-order methods are nonexpansive, giving

D = ‖x0− x∗‖. Lastly, note that the convergence bound K(f(x0)− f(x∗), ε, α) in

(A3) can depend on L, η, p even though our notation does not enumerate this. If
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one wants to make no continuity or smoothness assumptions about f , (L, η) can

be set as (∞, 0) (the proximal point method is one such example as it converges

independent of such structure).

The following pair of convergence rate lifting theorems show that these

assumptions suffice to give general convergence guarantees without Hölder

growth and guarantees for Hölder growth with any exponent q > p.

Theorem 7.2.1. Consider any method fom satisfying (A1)-(A3) and any (L, η)-Hölder

smooth function f . For any ε > 0, fom will find f(xk− γkgk)− f(x∗) ≤ ε by iteration

k ≤ K(f(x0)− f(x∗), ε, ε/D
p)

where γk =


‖gk‖(1−η)/η/L1/η if η > 0

0 if η = 0.

Theorem 7.2.2. Consider any method fom satisfying (A1)-(A3) and any (L, η)-Hölder

smooth function f possessing (α, q)-Hölder growth with q > p. For any ε > 0, fom

will find f(xk − γkgk)− f(x∗) ≤ ε by iteration

k ≤ K(f(x0)− f(x∗), ε, α
p/qε1−p/q)

where γk =


‖gk‖(1−η)/η/L1/η if η > 0

0 if η = 0.

Applying these rate lifting theorems amounts to simply substituting α with

ε/Dp or αp/qε1−p/q in any guarantee depending on (α, p)-Hölder growth. For

example, the Polyak subgradient method satisfies (A2) with D = ‖x0 − x∗‖ and

converges for any L-Lipschitz objective with quadratic growth p = 2 at rate

K(f(x0)− f(x∗), ε, α) =
8L2

αε
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establishing (A3) (a proof of this fact is given at the end of the chapter for com-

pleteness). Then applying Theorem 7.2.1 recovers the method’s classic conver-

gence rate as

=⇒ K(f(x0)− f(x∗), ε, ε/D
2) =

8L2‖x0 − x∗‖2

ε2
.

For convergence rates that depend on f(x0)−f(x∗), this simple substitution falls

short of recovering the method’s known rates, often off by a log term. Again

taking the subgradient method as an example, under sharp growth p = 1, con-

vergence occurs at a rate of

K(f(x0)− f(x∗), ε, α) =
4L2

α2
log2

(
f(x0)− f(x∗)

ε

)
.

Then Theorem 7.2.1 ensures the following weaker general rate

=⇒ K(f(x0)− f(x∗), ε, ε/D) =
4L2‖x0 − x∗‖2

ε2
log2

(
f(x0)− f(x∗)

ε

)
and Theorem 7.2.2 ensures the weaker quadratic growth rate

=⇒ K(f(x0)− f(x∗), ε, ε/D) =
4L2

αε
log2

(
f(x0)− f(x∗)

ε

)
.

In the following section, we provide simple corollaries that remedy this issue.

7.2.1 Improving Rate Lifting via Restarting

The ideas from restarting schemes can also be applied to our rate lifting the-

ory. We consider the following conceptual restarting method restart-fom that

repeatedly halves the objective gap: Set an initial target accuracy of ε̃ = 2N−1ε

with N = dlog2((f(x0) − f(x∗))/ε)e. Iteratively run fom until an ε̃-optimal solu-

tion is found, satisfying

f(xk − γkgk)− f(x∗) ≤ ε̃
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with γk =


‖gk‖(1−η)/η/L1/η if η > 0

0 if η = 0

and then restart fom at x0 ← xk − γkgk

with new target accuracy ε̃← ε̃/2.

Note for the proximal point method (7.4), Polyak subgradient method (7.5),

and gradient descent (7.6), this restarting will not change the algorithm’s tra-

jectory: this follows as (i) all three of these methods have the iterates {yk} pro-

duced by fom initialized at y0 = xT satisfy yk = xk+T and (ii) the proximal point

method and subgradient method both have γT = 0 and gradient descent has

γT = ρT equal to its stepsize. As a result, the following corollaries of our lifting

theorems apply directly to these three methods without restarting.

Corollary 7.2.3. Consider any method fom satisfying (A1)-(A3) and any (L, η)-Hölder

smooth function f . For any ε > 0, restart-fom will find f(xk − γkgk) − f(x∗) ≤ ε

after at most
N−1∑
n=0

K(2n+1ε, 2nε, 2nε/Dp)

total iterations.

Proof. Observe that restart-fom must have found an ε-minimizer after the N th

restart. Our corollary then follows from bounding the number of iterations re-

quired for each of these N restarts. Run i ∈ {1 . . . N} of fom has initial objective

gap at most 2N+1−iε, and so Theorem 7.2.1 ensures an 2N−iε-minimizer is found

after at most

K(2N+1−iε, 2N−iε, 2N−iε/Dp)

iterations. Summing this bound over all i gives the claimed result.

Corollary 7.2.4. Consider any method fom satisfying (A1)-(A3) and any (L, η)-Hölder

smooth function f possessing (α, q)-Hölder growth with q > p. For any ε > 0,
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restart-fom will find f(xk − γkgk)− f(x∗) ≤ ε after at most

N−1∑
n=0

K(2n+1ε, 2nε, αp/q(2nε)1−p/q)

total iterations.

Proof. Along the same lines as the proof of Corollary 7.2.3, this corollary follows

from bounding the number of iterations required for each of restart-fom’s N

restarts. Run i ∈ {1 . . . N} of fom has initial objective gap at most 2N+1−iε, and

so Theorem 7.2.2 ensures an 2N−iε-minimizer is found after at most

K(2N+1−iε, 2N−iε, αp/q(2N−iε)1−p/q/)

iterations. Summing this bound over all i gives the claimed result.

Applying these corollaries to every entry in Table 7.1 verifies our claim that

each column implies those to its left (as well as all of the omitted columns with

p ∈ (1, 2) ∪ (2,∞)). For example, the proximal point method has (A2) hold with

D = ‖x0 − x∗‖ and (A3) hold with

K(f(x0)− f(x∗), ε, α) =
f(x0)− f(x∗)− ε

ρα2

(a proof of this fact is given in the appendix for completeness). Then Corol-

lary 7.2.3 recovers the proximal point method’s general convergence rate of

N−1∑
n=0

K(2n+1ε, 2nε, 2nε/D) =
N−1∑
n=0

2n+1ε− 2nε

ρ(2nε/D)2
=

N−1∑
n=0

D2

ρ2nε
=

2‖x0 − x∗‖2

ρε

and Corollary 7.2.4 recovers its linear convergence rate under quadratic growth

q = 2 of

N−1∑
n=0

K(2n+1ε, 2nε, α1/2(2nε)1/2) =
N−1∑
n=0

2n+1ε− 2nε

ρ(2n/2α1/2ε1/2))2
=

N−1∑
n=0

1

ρα
=
N

ρα
.
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Likewise, the O(
√
L/α log(f(x0) − x(x∗))/ε) rate of the universal accelerated

method [128] for L-smooth optimization under quadratic growth p = 2 recovers

Nesterov’s classic accelerated convergence rate as

N∑
n=0

K(2n+1ε, 2nε, 2nε/D2) =
N∑
n=0

O

(√
LD2

2nε
log(2)

)
= O

(√
LD2

ε

)
.

7.2.2 Recovering Lower Bounds on Oracle Complexity

The contrapositive of our rate lifting theorems immediately lifts complexity

lower bounds from the general case to apply to the specialized case of Hölder

growth. Well-known simple examples [126] give complexity lower bounds

when no growth bound is assumed for first-order methods satisfying

(A4) For every k ≥ 0, xk+1 lies in the span of {gi}ki=0.

Optimal lower bounds under Hölder growth were claimed by Nemirovski and

Nesterov [122, page 26], although no proof is given. Here we note that the sim-

ple examples from the general case suffice to give lower bounds on the possible

convergence rates under growth conditions.

For M -Lipschitz nonsmooth optimization, a simple example shows any

method satisfying (A4) cannot guarantee finding an ε-minimizer in fewer than

M2‖x0 − x∗‖2/16ε2 subgradient evaluations. Consequently, applying Theo-

rem 7.2.1, any method satisfying (A1)-(A4) for M -Lipschitz optimization with

(α, p)-Hölder growth must have its rate K(f(x0)− f(x∗), ε, α) bounded by

K(f(x0)− f(x∗), ε, ε/D
p) ≥ M2‖x0 − x∗‖2

16ε2
.
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For example, this ensures the Polyak subgradient method’s O(1/αε) rate under

quadratic growth cannot be improved by more than small constants. The expo-

nent on α cannot decrease since that would beat the general cases’ lower bound

dependence on ‖x0− x∗‖2 (as D = ‖x0− x∗‖ here) and similarly the exponent of

ε cannot be improved due to the lower bound dependence of 1/ε2.

Likewise, for L-smooth optimization, a simple example shows no method

satisfying (A4) can guarantee computing an ε-minimizer in fewer than√
3L‖x0 − x∗‖2/32ε iterations. Applying Theorem 7.2.1, we conclude any

method satisfying (A1)-(A4) for smooth optimization with (α, p)-Hölder growth

has its rate K(f(x0)− f(x∗), ε, α) bounded by

K(f(x0)− f(x∗), ε, ε/D
p) ≥

√
3L‖x0 − x∗‖2

32ε
.

7.3 Proofs of the Rate Lifting Theorems 7.2.1 and 7.2.2

The proofs of our two main results (Theorems 7.2.1 and 7.2.2) rely on several

properties of Fenchel conjugates, which we will first review. The Fenchel conju-

gate of a function f : Rn → R ∪ {∞} is

f ∗(g) := sup
x
{〈g, x〉 − f(x)} .

We say that f ≥ h if for all x ∈ Rn, f(x) ≥ h(x). The conjugate reverses this

partial ordering, having f ≥ h =⇒ h∗ ≥ f ∗. Applying the conjugate twice

f ∗∗ gives the largest closed convex function majorized by f (that is, the “convex

envelope” of f ) and consequently, for closed convex functions, f ∗∗ = f .

The (L, q)-Hölder smoothness condition (7.2) is equivalent to having upper

219



bounds of the following form hold for every x ∈ Rn and g ∈ ∂f(x)

f(x′) ≤ f(x) + 〈g, x′ − x〉+
L

η + 1
‖x′ − x‖η+1 . (7.7)

Taking the conjugate of this convex upper bound gives an equivalent dual con-

dition: a function f is (L, η)-Hölder smooth if and only if its Fenchel conjugate

has the following lower bound for every g ∈ Rn and x ∈ ∂f ∗(g)

f ∗(g′) ≥ f ∗(g) + 〈x, g′ − g〉+


η

(η+1)L1/η ‖g′ − g‖(η+1)/η if η > 0

δ‖g′−g‖≤L(g′) if η = 0

(7.8)

where δ‖g′−g‖≤L(g′) =


0 if ‖g′ − g‖ ≤ L

∞ otherwise
is an indicator function.

7.3.1 Proof of Theorem 7.2.1

Suppose that no iteration k ≤ T has xk−γkgk as an ε-minimizer of f . We consider

the following convex auxiliary functions given by (L, η)-Hölder smoothness at

each xk and gk ∈ ∂f(xk)

hk(x) := f(xk) + 〈gk, x− xk〉+
L

η + 1
‖x− xk‖η+1

and at the minimizer x∗ with zero subgradient 0 = g∗ ∈ ∂f(x∗)

h∗(x) := f(x∗) + 〈g∗, x− x∗〉+
L

η + 1
‖x− x∗‖η+1 .

Then we focus on the convex envelope surrounding these models

h(x) := (min{hk(·) | k ∈ {0, . . . , T, ∗}})∗∗(x) . (7.9)

We consider the auxiliary minimization problem of minh(x), which shares and

improves on the structure of f as described in the following three lemmas.
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Lemma 7.3.1. The objectives f and h have f(xi) = h(xi) and gi ∈ ∂h(xi) for each

i ∈ {0, . . . , T, ∗}.

Lemma 7.3.2. The objective h is (L, η)-Hölder smooth.

Lemma 7.3.3. The objective h has (ε/Dp, p)-Hölder growth on B(x∗, D).

Before proving these three results, we show that they suffice to complete our

proof. Lemma 7.3.1 and assumption (A1) together ensures that applying fom to

either f or h produces the same sequence of iterates up to iteration T . Since f

and h both minimize at x∗ (as g∗ = 0 ∈ ∂f(x∗) ∩ ∂h(x∗)), no xk with k ≤ T is an

ε-minimizer of h. Hence applying the structural conditions from Lemmas 7.3.2

and 7.3.3 with assumption (A3) on h completes our rate lifting argument as

T < K(h(x0)− h(x∗), ε, ε/D
p) = K(f(x0)− f(x∗), ε, ε/D

p) .

Proof of Lemma 7.3.1

By definition, each gi provides a linear lower bound on f as

f(x) ≥ f(xi) + 〈gi, x− xi〉 .

Noting that all k ∈ {0, . . . , T, ∗} have hk ≥ f , it follows that

min{hk(x) | k ∈ {0, . . . , T, ∗}} ≥ f(xi) + 〈gi, x− xi〉 .

Since this linear lower bound is convex, its also a lower bound on the convex

envelope h. Setting x = xi, equality holds with this linear lower bound. Thus

f(xi) = h(xi) and gi is also a subgradient of h at xi.
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Proof of Lemma 7.3.2

Here our proof relies on the dual perspective of (L, η)-Hölder smoothness given

by (7.8). Since each hk is (L, η)-Hölder smooth, each h∗k satisfies the dual lower

bounding condition (7.8). Obverse that

h∗(y) =

(
min

k∈{0,...,T,∗}
{hk(·)}

)∗
(y)

= sup
x

{
〈y, x〉 − min

k∈{0,...,T,∗}
{hk(x)}

}
= max

k∈{0,...,T,∗}
{h∗k(y)} .

Consequently, h∗ also satisfies the dual condition (7.8) since it is the maximum

of functions satisfying this lower bound. Therefore h∗∗ = h retains the (L, η)-

Hölder smoothness of each of the models hk and the original objective f .

Proof of Lemma 7.3.3

For any x ∈ B(x∗, D) and k ∈ {0, . . . , T}, the function Gk lies above our claimed

growth bound as

hk(x) ≥ hk(xk − γkgk) ≥ f(x∗) + ε ≥ f(x∗) +
ε

Dp
‖x− x∗‖p

where the first inequality uses that xk−γkgk minimizes hk, the second uses hk ≥

f and no ε-minimizer has been found, and the last inequality that x ∈ B(x∗, D).

Similarly, our growth bound holds for h∗ as

h∗(x) = h(x∗) +
L

η + 1
‖x− x∗‖η+1 ≥ h(x∗) +

L

(η + 1)Dp−(η+1)
‖x− x∗‖p

≥ h(x∗) +
ε

Dp
‖x− x∗‖p

where the last inequality uses that LDη+1

η+1
≥ f(x0) − f(x∗) ≥ ε. Hence

mink∈{0,...,T,∗}{hk(x)} satisfies our claimed Hölder growth lower bound. Since
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this lower bound is convex, the convex envelope h must also satisfy the Hölder

bound (7.3).

7.3.2 Proof of Theorem 7.2.2

Suppose that no iteration k ≤ T has xk − γkgk as an ε-minimizer of f . Consider

the auxiliary objective h(x) defined by (7.9). Then Lemmas 7.3.1 and 7.3.2 show

h agrees with f everywhere fom visits and is (L, η)-Hölder smooth. From this,

(A1) ensures that applying fom to either f or h produces the same sequence of

iterates up to iteration T . Since f and h both minimize at x∗, no xk with k ≤ T is

an ε-minimizer of h. As before, h further satisfies a Hölder growth lower bound.

Lemma 7.3.4. The objective h has (αp/qε1−p/q, p)-Hölder growth on B(x∗, D).

Hence h is Hölder smooth and has Hölder growth with exponent p. Then (A3)

ensures

T < K(h(x0)− h(x∗), ε, α
p/qε1−p/q) = K(f(f(x0)− f(x∗), ε, α

p/qε1−p/q) .

Proof of Lemma 7.3.4

This proof follows the same general approach used in proving Lemma 7.3.3. For

any x ∈ B(x∗, D) and k ∈ {0, . . . , T, ∗}, hk lies above our claimed growth bound:

Any x with ‖x− x∗‖ > (ε/α)1/q has

hk(x) ≥ f(x) ≥ f(x∗) + α‖x− x∗‖q ≥ f(x∗) + αp/qε1−p/q‖x− x∗‖p .

Any x with ‖x− x∗‖ ≤ (ε/α)1/q has k ∈ {0, . . . , T} satisfy

hk(x) ≥ hk(xk − γkgk) ≥ f(x∗) + ε ≥ f(x∗) + αp/qε1−p/q‖x− x∗‖p
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and k = ∗ has

h∗(x) ≥ f(x) ≥ h(x∗) + α‖x− x∗‖q ≥ h(x∗) + α
‖x− x∗‖p

(ε/α)(p−q)/q

= h(x∗) + αp/qε1−p/q‖x− x∗‖p .

Hence mink∈{0,...,T,∗}{hk(x)} satisfies our claimed Hölder growth lower bound.

Since this lower bound is convex, the convex envelope h must also satisfy the

Hölder bound (7.3).

7.4 Addendum - Example Rates Under Hölder Growth

7.4.1 Proximal Point Method Convergence Guarantees

First, we verify (A2) holds for the proximal point method.

Lemma 7.4.1. For any minimizer x∗, (A2) holds with D = ‖x0 − x∗‖.

Proof. The proximal operator proxρ,f (·) is nonexpansive [134]. Then since any

minimizer x∗ of f is a fixed point of proxρ,f (·), the distance from each iterate to

x∗ must be nonincreasing.

Assuming sharpness (Hölder growth with p = 1) facilitates a finite termi-

nation bound on the number of iterations before an exact minimizer is found

(see [50] for a more general proof and discussion of this finite result). Below we

compute the resulting function K(f(x0)− f(x∗), α, ε) that satisfies (A3).
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Lemma 7.4.2. Consider any convex f satisfying (7.3) with p = 1. Then for any ε > 0,

the proximal point method with stepsize ρ > 0 will find an ε-minimizer xk with

k ≤ K(f(x0)− f(x∗), ε, α) =
f(x0)− f(x∗)− ε

ρα2
.

Proof. The optimality condition of the proximal subproblem is (xk+1 − xk)/ρ ∈

∂f(xk+1). Hence convexity ensures

‖xk+1 − xk|‖xk+1 − x∗‖/ρ ≥ 〈(xk+1 − xk)/ρ, xk+1 − x∗〉 ≥ f(xk+1)− f(x∗).

Then supposing that xk+1 6= x∗, the sharp growth bound ensures

‖xk+1 − xk‖ ≥ ρ(f(xk+1)− f(x∗))/‖xk+1 − x∗‖ ≥ ρα.

Noting the proximal subproblem is ρ-strongly convex, until a minimizer is

found, the objective has constant decrease at each iteration

f(xk+1) ≤ f(xk)−
‖xk+1 − xk‖2

ρ
≤ f(xk)− ρα2.

7.4.2 Polyak Subgradient Method Convergence Guarantees

Much like the proximal point method, the distance from each iterate of the sub-

gradient method to a minimizer is nonincreasing when the Polyak stepsize is

used.

Lemma 7.4.3. For any minimizer x∗, (A2) holds with D = ‖x0 − x∗‖.

Proof. The convergence of the subgradient method is governed by the following
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inequality

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2〈ρkgk, xk − x∗〉+ ρ2
k‖gk‖2

≤ ‖xk − x∗‖2 − 2ρk(f(xk)− f(x∗)) + ρ2
k‖gk‖2

= ‖xk − x∗‖2 − (f(xk)− f(x∗))
2

‖gk‖2

≤ ‖xk − x∗‖2 − (f(xk)− f(x∗))
2

L2
, (7.10)

where the first inequality uses the convexity of f and the second uses our as-

sumed subgradient bound. Thus the distance from each iterate to x∗ is nonin-

creasing.

Below we give a simple proof that the subgradient method under L-

Lipschitz continuity and quadratic growth finds an ε-minimizer within

O(L2/αε) iterations.

Lemma 7.4.4. Consider any convex f satisfying (7.3) with p = 2. Then for any ε > 0,

the subgradient method with the Polyak stepsize will find an ε-minimizer xk with

k ≤ K(f(x0)− f(x∗), ε, α) =
8L2

αε
.

Proof. This convergence rate follows by noting (7.10) implies the objective gap

will halve f(xk)− f(x∗) ≤ (f(x0)− f(x∗))/2 after at most

4L2‖x0 − x∗‖2

(f(x0)− f(x∗))2
≤ 4L2

α(f(x0)− f(x∗))

iterations. Iterating this argument, a 2−n(f(x0)−f(x∗))-minimizer is found with

k ≤
n−1∑
i=0

4L2

2−iα(f(x0)− f(x∗))
≤ 8L2

2−nα(f(x0)− f(x∗))
.

Considering n = dlog2((f(x0)−f(x∗))/ε)e, gives our claimed bound on the num-

ber of iterations needed to find an ε-minimizer.
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Rather than relying on quadratic growth, assuming sharpness (Hölder

growth with p = 1) allows us to derive a linear convergence guarantee. Below

we compute the resulting function K(f(x0)− f(x∗), α, ε) that satisfies (A3).

Lemma 7.4.5. Consider any convex f satisfying (7.3) with p = 1. Then for any ε > 0,

the subgradient method with the Polyak stepsize will find an ε-minimizer xk with

k ≤ K(f(x0)− f(x∗), ε, α) =
4L2

α2
log2

(
f(x0)− f(x∗)

ε

)
.

Proof. Again, this convergence rate follows by noting (7.10) implies the objective

gap will halve f(xk)− f(x∗) ≤ (f(x0)− f(x∗))/2 after at most

4L2‖x0 − x∗‖2

(f(x0)− f(x∗))2
≤ 4L2

α2

iterations, which immediately establishes the claimed rate.
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CHAPTER 8

NONCONVEX-NONCONCAVE MINIMAX OPTIMIZATION

GUARANTEES

8.1 Introduction

Minimax optimization has become a central tool for modern machine learning,

recently receiving increasing attention in optimization and machine learning

communities. The problem of interest is the following saddle point optimization

problem:

min
x∈Rn

max
y∈Rm

L(x, y) , (8.1)

where L(x, y) is a differentiable function in x and y. Many important problems

in modern machine learning can be formulated as a minimax optimization prob-

lem with the form (8.1), and often the objective L(x, y) is neither convex in x nor

concave in y. For example,

• (GANs). Generative adversarial networks (GANs) [59] learn the distribu-

tion of observed samples through a two-player zero-sum game. While the

generative network (parameterized by G) generates samples minimizing

their difference from the true data distribution, the discriminative network

(parameterized by D) maximizes its ability to distinguish between these

distributions. This gives rise to the minimax formulation

min
G

max
D

Es∼pdata [logD(s)] + Ee∼platent [log(1−D(G(e)))] ,

where pdata is the data distribution, and platent is the latent distribution.

228



• (Robust Training). Minimax optimization has a long history in robust

optimization. Recently, it has found usage with neural networks, which

have shown great success in machine learning tasks but are vulnerable to

adversarial attack. Robust training [109] aims to overcome such issues by

solving the minimax problem

min
x

E(u,v)

[
max
y∈S

`(u+ y, v, x)

]
,

where u is a feature vector, v is its label, x is the model parameters be-

ing trained, y is an adversarial modification, and S is the set of possible

corruptions.

• (Reinforcement Learning). In reinforcement learning, the solution to Bell-

man equations can be obtained by solving a primal-dual minimax formu-

lation. Such an approach can be viewed as having a dual critic seeking a

solution satisfying the Bellman equation and a primal actor seeking state-

action pairs to break this satisfaction [163, 28].

The Proximal Point Method (PPM) may be the most classic first-order

method for solving minimax problems. It was first studied in the seminal work

by Rockafellar in [147], and many practical algorithms for minimax optimiza-

tion developed later on turn out to be approximations of PPM, such as Extra-

gradient Method (EGM) [165, 120] and Optimistic Gradient Descent Ascent [30].

The update rule of PPM with step-size η is given by the proximal operator:

(xk+1, yk+1) = prox
,η(xk, yk) := arg min

u∈Rn
max
v∈Rm

L(u, v) +
η

2
‖u− xk‖2 − η

2
‖v − yk‖2.

(8.2)

For convex-concave minimax problems, PPM is guaranteed to converge to an

optimal solution. However, the dynamics of PPM for nonconvex-nonconcave
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minimax problems are much more complicated. For example, consider the spe-

cial case of minimax optimization problem with bilinear interaction defined as

min
x

max
y
L(x, y) = f(x) + xTAy − g(y). (8.3)

Figure 8.1 presents the sample paths of PPM from different initial solutions solv-

ing a simple two-dimensional nonconvex-nonconcave minimax problem (8.3)

with f(x) = g(x) = (x − 3)(x − 1)(x + 1)(x + 3) and different interaction terms

A. This example may be the simplest non-trivial example of a nonconvex-

nonconcave minimax problem. It turns out the behaviors of PPM heavily re-

lies on the scale of the interaction term A: when the interaction term is small,

PPM converges to local stationary solutions, as the interaction term increases,

PPM may fall into a limit cycle indefinitely, and eventually when the interaction

term is large enough, PPM converges globally to a stationary solution. Similar

behaviors also happen in other classic algorithms for nonconvex-nonconcave

minimax problems, in particular, EGM, which is known as one of the most ef-

fective algorithms for minimax problems. See Figure 8.2 in Appendix 8.6.1 for

their trajectories for solving this simple two-dimension example (the study of

these other algorithms is beyond the scope of this chapter). In practice, it is

also well-known that classic first-order methods may fail to converge to a stable

solution for minimax problems, such as GANs [49].

The goal of this chapter is to understand these varied behaviors of PPM

when solving nonconvex-nonconcave minimax problems. We identify that the

following saddle envelope, originating from Attouch and Wets [11], provides key

insights

Lη(x, y) := min
u∈Rn

max
v∈Rm

L(u, v) +
η

2
‖u− x‖2 − η

2
‖v − y‖2. (8.4)

This generalizes the Moreau envelope, but differs in key ways. Most outstand-

230



A = 1 A = 10 A = 100

Figure 8.1: Sample paths of PPM from different initial solutions applied to (8.3)
with f(x) = (x+ 3)(x+ 1)(x− 1)(x− 3) and g(y) = (y + 3)(y + 1)(y − 1)(y − 3)
and different scalars A. As A ≥ 0 increases, the solution path transitions from
having four locally attractive stationary points, to a globally attractive cycle,
and finally to a globally attractive stationary point.

ingly, we show that the saddle envelope not only smooths the objective but

also can convexify and concavify nonconvex-nonconcave problems when∇2
xyL

is sufficiently large (which can be interpreted as having a high level of the in-

teraction between x and y). Understanding this envelope in our nonconvex-

nonconcave setting turns out to be the cornerstone of explaining the above var-

ied behaviors of PPM. Utilizing this machinery, we find that the three regions

shown in the simple two-dimensional example (Figure 8.1) happen with gener-

ality for solving (8.1). Informally speaking,

1. When the interaction between x and y is dominant, PPM has global linear

convergence to a stationary point of L(x, y) (Figure 8.1 (c)). This argument

utilizes the fact that, in this case, the closely related saddle envelope be-

comes convex-concave thanks to the high interaction terms, even though

the original function L(x, y) is nonconvex-nonconcave.

2. When the interaction between x and y is weak, properly initializing PPM

yields local linear convergence to a nearby stationary point of L(x, y) (Fig-
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ure 8.1 (a)). The intuition is that due to the low interaction we do not lose

much by ignoring the interaction and decomposing the minimax problems

to a nonconvex minimization problem and a nonconcave maximization

problem (where the local convergence of PPM is typical).

3. Between these interaction dominant and weak regimes, PPM may fail to

converge at all and fall into cycling (Figure 8.1 (b)) or divergence (see the

example in Section 8.5.1). In this scenario, we construct a “Lyapunov”-

type function that characterizes how fast PPM may diverge and show that

the resulting diverging bound is tight for PPM by constructing a worst-

case example.

Furthermore, we believe a careful understanding of the saddle envelope of

nonconvex-nonconcave functions will be broadly impactful outside its use

herein analyzing the proximal point method. In Section 8.2, we develop the

saddle envelope’s calculus for nonconvex-nonconcave functions generalizing

the convex-concave results of [9, 12]. As a byproduct of our analysis of the sad-

dle envelope, we clearly see that the interaction term helps the convergence of

PPM for minimax problems. This may not be the case for other algorithms,

such as gradient descent ascent (GDA) and alternating gradient descent ascent

(AGDA) (see Figure 8.2 in Appendix 8.6.1 for some examples and [64] for theo-

retical analysis).

We comment on the meaning of stationary points∇L(z) = 0 for nonconvex-

nonconcave problems. By viewing the problem (8.1) as a simultaneous zero-

sum game between a player selecting x and a player selecting y, a stationary

point can be thought of as a first-order Nash Equilibrium. That is, neither player

tends to deviate from their position based on their first-order information. One
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can instead view the minimax problem as a sequential zero-sum game (where

the minimizing player selects x and then the maximizing player exploits that

choice in choosing y). Unlike the convex-concave case, the solutions between

these two types of games no longer coincide and the optimal (sequential) mini-

max solution need not be a stationary point. In this case, a different asymmetric

measure of optimality may be called for [30, 80, 49]. However such approaches

are beyond the scope of this chapter as the limit points of the proximal point

method are all stationary points.

In the rest of this section, we discuss the assumptions, related literature, and

preliminaries that will be used later on. In Section 8.2, we develop our expanded

theory for the saddle envelope. In particular, we introduce the interaction dom-

inance condition (Definition 8.2.5) that naturally comes out as a condition for

convexity-concavity of the saddle envelope. In Section 8.3, we present the global

linear convergence of PPM for solving interaction dominant minimax problems.

In Section 8.4, we discuss the behaviors of PPM in the interaction weak case and

show that with a good initialization, PPM converges to a local stationary point.

In Section 8.5, we show that PPM may diverge when our interaction dominance

condition is slightly violated, showing the tightness of our global convergence

theory. Further, we propose a natural “Lyapunov”-type function that applies to

generic minimax problems, providing an upper bound on how quickly prob-

lems can divergence in the difficult interaction moderate setting. This bound on

PPM’s divergence is tight under our basic assumptions as we provide a worst-

case example.
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8.1.1 Assumptions and Algorithms

Basic definitions and assumptions. We say a function M(x, y) is β-smooth if

its gradient is uniformly β-Lipschitz

‖∇M(z)−∇M(z′)‖ ≤ β‖z − z′‖

or equivalently for twice differentiable functions, if ‖∇2M(z)‖ ≤ β. Further,

we say a twice differentiable M(x, y) is µ-strongly convex-strongly concave for

some µ ≥ 0 if

∇2
xxM(z) � µI , −∇2

yyM(z) � µI .

When µ = 0, this corresponds to M being convex with respect to x and concave

with respect to y.

Throughout this chapter, we are primarily interested in the weakening of

this convexity condition to allow negative curvature given by ρ-weak convexity

and ρ-weak concavity (recall these notions were introduced in Chapter 3): we

assume that L is twice differentiable, and for any z = (x, y) ∈ Rn × Rm that

∇2
xxL(z) � −ρI , −∇2

yyL(z) � −ρI . (8.5)

Notice that the objective L(x, y) is convex-concave when ρ = 0, and strongly

convex-strongly concave when ρ < 0. Here our primary interest is in the regime

where ρ > 0 is positive, quantifying how nonconvex-nonconcave the given

problem instance is.

Algorithms for minimax problems. Besides PPM, Gradient Descent Ascent

(GDA) is another classic algorithm for minimax problem (8.1). The update rule
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is given by xk+1

yk+1

 =

xk
yk

− s
 ∇xL(xk, yk)

−∇yL(xk, yk)

 , (8.6)

with stepsize parameter s > 0. However, GDA is known to work only for

strongly convex-strongly concave minimax problems, and it may diverge even

for simple convex-concave problems [30, 106].

In this chapter, we study a more generalized algorithm, damped PPM, with

damping parameter λ ∈ (0, 1] and proximal parameter η > 0. The damped

proximal point method updates byxk+1

yk+1

 = (1− λ)

xk
yk

+ λ prox
,η(xk, yk) . (8.7)

In particular, when λ = 1, we recover the traditional PPM (8.2). Interestingly,

we find through our theory that some nonconvex-nonconcave problems only

have the proximal point method converge when damping is employed (that is,

λ < 1 strictly).

8.1.2 Related Literature.

Guarantees for Convex Minimax Optimization There is a long history of re-

search into convex-concave minimax optimization. Rockafellar [147] studies

PPM for solving monotone variational inequalities, and shows that, as a special

case, PPM converges to the stationary point linearly when L(x, y) is strongly

convex-strongly concave or when L(x, y) is bilinear. Later on, Tseng [165] shows

that EGM converges linearly to a stationary point under similar conditions. Ne-

mirovski [120] shows that EGM approximates PPM and presents the sublinear
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rate of EGM. Recently, minimax problems have gained the attention of the ma-

chine learning community, perhaps due to the thriving of research on GANs.

Daskalakis and Panageas [30] present an Optimistic Gradient Descent Ascent al-

gorithm (OGDA) and shows that it converges linearly to the saddle-point when

L(x, y) is bilinear. Mokhtari et al. [112] show that OGDA is a different approxi-

mation to PPM. Lu [106] presents an ODE approach, which leads to unified con-

ditions under which each algorithm converges, including a class of nonconvex-

nonconcave problems.

There are also extensive studies on convex-concave minimax problems when

the interaction term is bilinear (similar to our setting (8.1)). Some influential

algorithms include Nesterov’s smoothing [124], Douglas-Rachford splitting (a

special case is Alternating Direction Method of Multipliers (ADMM)) [38, 44]

and Primal-Dual Hybrid Gradient Method (PDHG) [25].

Guarantees for Nonconvex Minimax Optimization Recently, a number of

works have been undertaken considering nonconvex-concave minimax prob-

lems. The basic technique is to first turn the minimax problem (8.1) to a mini-

mization problem on Φ(x) = maxy L(x, y), which is well-defined since L(x, y) is

concave in y, and then utilize the recent developments in nonconvex optimiza-

tion [100, 101, 138, 164].

Unfortunately, the above technique cannot be extended to nonconvex-

nonconcave setting, because Φ(x) is no longer tractable to compute (even

approximately) as it is a nonconcave maximization problem itself. Indeed,

the current understanding of nonconvex-nonconcave minimax problems is

fairly limited, in particular compared with the growing literature on non-
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convex optimization. The recent research on nonconvex-nonconcave mini-

max problems mostly relies on some form of convex-concave-like assump-

tions, such as Minty’s Variational Inequality [99] and Polyak-Lojasiewicz condi-

tions [131, 172], which are strong in general and successfully bypass the inherent

difficulty in the nonconvex-nonconcave setting. Such theory, unfortunately, pre-

supposes the existence of a globally attractive solution. As such, fundamental

nonconvex-nonconcave structures like local solutions and cycling are prohib-

ited.

In an early version of this work [63], we presented preliminary results for

analyzing nonconvex-nonconcave bilinear problem (8.3). Simultaneous to (or

after) the early version, [96] presents examples of nonconvex-nonconcave min-

imax problems where a reasonably large class of algorithms do not converge;

[79] presents an ODE analysis for the limiting behaviors of different algorithms

with shrinking step-size (equivalently it studies the ODE when step-size of an

algorithm goes to 0) and shows the possibility to converge to an attractive cy-

cle; [178] utilizes tools from discrete-time dynamic systems to study the be-

haviors of algorithms around a local stationary solution, which involves the

non-transparent complex eigenvalues of the Jacobian matrix at a stationary so-

lution; [64] studies higher-order resolution ODEs of different algorithms for

nonconvex-nonconcave minimax problems, which presents more transparent

conditions for when a stationary solution is locally attractive, and characterizes

the threshold of phase transitions between limit cycles and limit points. Com-

pared to these recent works, we identify theoretical machinery in the saddle en-

velope that facilitates directly analyzing nonconvex-nonconcave minimax prob-

lems. This enables us to obtain a global understanding of the PPM’s trajectory,

as well as more transparent conditions under which it converges/diverges.
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Properties and Convergence of Saddle Envelopes A notion of epi/hypo-

convergence of saddle functions and in particular the saddle envelope is de-

veloped by Attouch and Wets [11, 10]. These notions of convergence facilitate

asymptotic studies of penalty methods [52] and approximate saddle points [65].

Rockafellar [145, 146] further builds generalized second derivatives for saddle

functions, which may provide an avenue to relax our assumptions of twice dif-

ferentiability here. Assuming the given function L is convex-concave, conti-

nuity/differentiability properties and relationships between saddle points are

developed in [9, 12], which facilitate asymptotic convergence analysis of proxi-

mal point methods like [114]. In Section 8.2, we build on these results, giving a

calculus for the saddle envelope of nonconvex-nonconcave functions.

Nonconvex Moreau Envelopes The idea to utilize a generalization of the

Moreau envelope for nonconvex-nonconcave minimax problems is well moti-

vated by the nonconvex optimization literature. In recent years, the Moreau

envelope has found great success as an analysis tool in nonsmooth nonconvex

optimization as shown in Chapter 3 and [32, 179] and in nonconvex-concave

optimization [138]. There, the Moreau envelope provides an angle of attack for

describing stationarity in settings where gradients need not converge to zero

even as first-order methods converge. Although we identify a different primary

barrier (PPM may not converge at all as cycling and divergence arise from rea-

sonable instances), we still find the Moreau envelope provides the key insight.

In our setting, the critical finding is that the saddle envelope can convexify and

concavify nonconvex-nonconcave problems, which has no parallel for the clas-

sic Moreau envelope.
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8.1.3 Preliminaries

Review of convex-concave saddle point optimization. Strongly convex-

strongly concave minimax optimization problems minx maxyM(x, y) are well

understood. The following lemma is key to the convergence of gradient de-

scent ascent on these problems. In the language of monotone operators, this

lemma corresponds to showing F (x, y) := (∇xM(x, y),−∇yM(x, y)) is locally

strongly monotone (or coercive). From this, the subsequent theorem below

shows that gradient descent ascent contracts towards a stationary point when

strong convexity-strong concavity and smoothness hold in a region around it.

Proofs of these two standard results are given in Appendix 8.6.2 for complete-

ness.

Lemma 8.1.1. Suppose M(x, y) is µ-strongly convex-strongly concave on a convex set

S = Sx × Sy, then it holds for any (x, y), (x′, y′) ∈ S that

µ

∥∥∥∥∥∥∥
x− x′
y − y′


∥∥∥∥∥∥∥

2

≤


 ∇xM(x, y)

−∇yM(x, y)

−
 ∇xM(x′, y′)

−∇yM(x′, y′)



Tx− x′
y − y′

.
In particular, when∇M(x′, y′) = 0, the distance to this stationary point is bounded by∥∥∥∥∥∥∥

x− x′
y − y′


∥∥∥∥∥∥∥ ≤
‖∇M(x, y)‖

µ
.

Theorem 8.1.2. Consider any minimax problem minx∈Rn maxy∈RmM(x, y) where

M(x, y) is β-smooth and µ-strongly convex-strongly concave on a set B(x0, r) ×

B(y0, r) with r ≥ 2‖∇M(x0, y0)‖/µ. Then GDA (8.6) with initial solution (x0, y0)

and step-size s ∈ (0, 2µ/β2) linearly converges to a stationary point (x∗, y∗) ∈

B((x0, y0), r/2) with∥∥∥∥∥∥∥
xk − x∗
yk − y∗


∥∥∥∥∥∥∥

2

≤
(
1− 2µs+ β2s2

)k∥∥∥∥∥∥∥
x0 − x∗

y0 − y∗


∥∥∥∥∥∥∥

2

.
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Review of the Moreau envelope’s properties. Denote the Moreau envelope

of a function f with proximal parameter η > 0 by

eη{f}(x) = min
u

f(u) +
η

2
‖u− x‖2 . (8.8)

The Moreau envelope of a function provides a lower bound on it everywhere as

all x ∈ Rn have

eη{f}(x) ≤ f(x) (8.9)

and if f is ρ-weakly convex and η > ρ, these functions are equal at the stationary

points of f

eη{f}(x∗) = f(x∗) ⇐⇒ ∇f(x∗) = 0 . (8.10)

Moreover, for ρ-weakly convex functions, there is a nice calculus for the Moreau

envelope. Its gradient at some x ∈ Rn is determined by the proximal step x+ =

argminu f(u) + η
2
‖u− x‖2 having

∇eη{f}(x) = η(x− x+) = ∇f(x+) . (8.11)

For twice differentiable f , the Moreau envelope is twice differentiable as well

with Hessian

∇2eη{f}(x) = ηI − (ηI +∇2f(x+))−1 . (8.12)

From this formula, we can extract the following bounds related to smoothness

and convexity

(η−1 − ρ−1)−1I � ∇2eη{f}(x) � ηI . (8.13)

These bounds ensure the Moreau envelope is has a max{η, |η−1 − ρ−1|−1}-

Lipschitz gradient, which simplifies for convex f (that is, ρ ≤ 0) to have an

η-Lipschitz gradient. Noting that (η−1 − ρ−1)−1 always has the same sign as −ρ,

we see that the Moreau envelope is (strongly/weakly) convex exactly when the

given function f is (strongly/weakly) convex.
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8.2 The Saddle Envelope

In this section, we consider the saddle envelope first developed by Attouch and

Wets [11] and characterize its structure for nonconvex-nonconcave optimiza-

tion. Recall for any proximal parameter η > 0, the saddle envelope (also referred

to as an upper Yosida approximate and a mixed Moreau envelope) is defined as

Lη(x, y) := min
u∈Rn

max
v∈Rm

L(u, v) +
η

2
‖u− x‖2 − η

2
‖v − y‖2.

We require that the parameter η is selected with η > ρ, which ensures the mini-

max problem in (8.4) is strongly convex-strongly concave. As a result, the saddle

envelope is well-defined (as its subproblem has a unique minimax point) and

often can be efficiently approximated.

The saddle envelope generalizes the Moreau envelope from the minimiza-

tion literature to minimax problems. To see this reduction, taking any objective

L(x, y) = g(x) (that is, one constant with respect to y) gives

Lη(x, y) = min
u

max
v

g(u) +
η

2
‖u− x‖2 − η

2
‖v − y‖2 = eη{g}(x) .

We take careful note throughout our theory of similarities and differences from

the simpler case of Moreau envelopes. We begin by considering how the value

of the saddle envelope Lη relates to the original objective L. Unlike the Moreau

envelope in (8.9), the saddle envelope fails to provide a lower bound. If the

objective function is constant with respect to y, having L(x, y) = g(x), the saddle

envelope becomes a Moreau envelope and provides a lower bound for every

(x, y),

Lη(x, y) = eη{g}(x) ≤ g(x) = L(x, y) .

Conversely, if L(x, y) = h(y), then the saddle envelope provides an upper

bound. In generic settings between these extremes, the saddle envelope Lη need
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not provide any kind of bound on L. The only generic relationship we can es-

tablish between L(z) and Lη(z) everywhere is that as η → ∞, they approach

each other. This result is formalized by [11] through epi-hypo convergence.

In the following pair of subsections, we build on the classic results of [11,

9, 12] by deriving a calculus of the saddle envelope of nonconvex-nonconcave

functions (in Section 8.2.1) and characterizing the smoothing and convexifying

effects of this operation (in Section 8.2.2).

8.2.1 Calculus for the Saddle Envelope Lη

Here we develop a calculus for the saddle envelope Lη, giving formulas for its

gradient and Hessian in terms of the original objective L and the proximal op-

erator. These results immediately give algorithmic insights into the proximal

point method. First, we show that a generalization of the Moreau gradient for-

mula (8.11) and the convex-concave formula of [9, Theorem 5.1 (d)] holds.

Lemma 8.2.1. The gradient of the saddle envelope Lη(x, y) at z = (x, y) is∇xLη(z)

∇yLη(z)

 =

η(x− x+)

η(y+ − y)

 =

∇xL(z+)

∇yL(z+)


where z+ = (x+, y+) = prox

,η(z) is given by the proximal operator.

Proof. Notice that the saddle envelope is a composition of Moreau envelopes

Lη(x, y) = min
u

(
max
v
L(u, v)− η

2
‖v − y‖2

)
+
η

2
‖u− x‖2

= min
u
−eη{−L(u, ·)}(y) +

η

2
‖u− x‖2 = eη{g(·, y)}(x)
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where g(u, y) = −eη{−L(u, ·)}(y). Applying the gradient formula (8.11) gives

our first claimed gradient formula in x of∇xLη(x, y) = η(x− x+) since x+ is the

unique minimizer of u 7→ g(u, y) + η
2
‖u − x‖2. Symmetric reasoning gives our

first claimed formula ∇yLη(x, y) = η(y+ − y) in y. The second claimed equality

is precisely the first-order optimality condition for (8.2).

Corollary 8.2.2. The stationary points of Lη are exactly the same as those of L.

Proof. First consider any stationary point z = (x, y) of L. Denote z+ = prox
,η(z)

and the objective function defining the proximal operator (8.2) as M(u, v) =

L(u, v) + η
2
‖u− x‖2 − η

2
‖v − y‖2. Then observing that ∇M(z) = 0, z must be the

unique minimax point of M (that is, z = z+ = prox
,η(z)). Hence z must be a

stationary point of Lη as well since∇Lη(z) = ∇L(z+) = ∇L(z) = 0.

Conversely consider a stationary point z = (x, y) of Lη. Then η(x − x+) =

∇xLη(z) = 0 and η(y+ − y) = ∇yLη(z) = 0. Hence we again find that z = z+ =

prox
,η(z) and consequently, this point must be a stationary point of L as well

since∇L(z) = ∇L(z+) = ∇Lη(z) = 0.

Corollary 8.2.3. One step of the (damped) PPM (8.7) on the original objective L is

equivalent to one step of GDA (8.6) on the saddle envelope Lη with s = λ/η.

Proof. Let (x+
k , y

+
k ) = prox

,η(xk, yk) and let (xk+1, yk+1) be a step of GDA on

Lη(x, y) from (xk, yk) with step-size s = λ/η. Thenxk+1

yk+1

 =

xk
yk

− s
 ∇xLη(zk)

−∇yLη(zk)

 =

xk
yk

− λ

η

 η(xk − x+
k )

−η(y+
k − yk)


= (1− λ)

xk
yk

+ λ

x+
k

y+
k


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follows from Lemma 8.2.1.

Similar to our previous lemma, the Hessian of the saddle envelope at some

z is determined by the Hessian of L at z+ = prox
,η(z). This formula generalizes

the Moreau envelope’s formula (8.12) whenever L is constant with respect to y.

Lemma 8.2.4. The Hessian of the saddle envelope Lη(z) is ∇2
xxLη(z) ∇2

xyLη(z)

−∇2
yxLη(z) −∇2

yyLη(z)

 = ηI − η2

ηI +

 ∇2
xxL(z+) ∇2

xyL(z+)

−∇2
yxL(z+) −∇2

yyL(z+)



−1

where z+ = prox
,η(z). Since η > ρ, we have

∇2
xxLη(z) = ηI − η2

(
ηI +∇xxL(z+) +∇2

xyL(z+)(ηI −∇2
yyL(z+))−1∇2

yxL(z+)
)−1

,

∇2
yyLη(z) = −ηI+η2

(
ηI +∇yyL(z+) +∇2

yxL(z+)(ηI +∇2
xxL(z+))−1∇2

xyL(z+)
)−1

.

Proof. Consider some z = (x, y) and a nearby point z∆ = z + ∆. Denote one

proximal step from each of these points by z+ = (x+, y+) = prox
,η(z) and z∆

+ =

(x∆
+, y

∆
+ ) = prox

,η(z
∆). Then our claimed Hessian formula amounts to showing ∇xLη(z

∆)

−∇yLη(z
∆)

−
 ∇xLη(z)

−∇yLη(z)


=

ηI − η2

ηI +

 ∇2
xxL(z+) ∇2

xyL(z+)

−∇2
yxL(z+) −∇2

yyL(z+)



−1

∆x

∆y

+ o(‖∆‖).

Recall Lemma 8.2.1 showed the gradient of the saddle envelope is given by

∇xLη(z) = η(x − x+) and ∇yLη(z) = η(y+ − y). Applying this at z and z+ and

dividing by η, our claimed Hessian formula becomesx∆
+ − x+

y∆
+ − y+

 = η

ηI +

 ∇2
xxL(z+) ∇2

xyL(z+)

−∇2
yxL(z+) −∇2

yyL(z+)



−1∆x

∆y

+ o(‖∆‖) . (8.14)
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Our proof shows this in two steps: first considering a proximal step on the

second-order Taylor approximation of L at z+ and then showing this closely

matches the result of a proximal step on L.

First, consider the following quadratic model of the objective around z+:

L̃(z) = L(z+) +∇L(z+)T (z − z+) +
1

2
(z − z+)T∇2L(z+)(z − z+) .

Denote the result of one proximal step on L̃ from z∆ by z̃∆
+ = (x̃∆

+, ỹ
∆
+ ). Since

the proximal subproblem is strongly convex-strongly concave, this solution is

uniquely determined by ∇xL̃(x̃∆
+, ỹ

∆
+ )

−∇yL̃(x̃∆
+, ỹ

∆
+ )

+

η(x̃∆
+ − x∆)

η(ỹ∆
+ − y∆)

 = 0 .

Plugging in the definition of our quadratic model L̃ yields ∇xL(z+)

−∇yL(z+)

+

 ∇2
xxL(z+) ∇2

xyL(z+)

−∇2
yxL(z+) −∇2

yyL(z+)


x̃∆

+ − x+

ỹ∆
+ − y+

+

η(x̃∆
+ − x∆)

η(ỹ∆
+ − y∆)

 = 0 .

HenceηI +

 ∇2
xxL(z+) ∇2

xyL(z+)

−∇2
yxL(z+) −∇2

yyL(z+)



x̃∆

+ − x+

ỹ∆
+ − y+

 = η

x∆ − x+ − η−1∇xL(z+)

y∆ − y+ + η−1∇yL(z+)


=⇒

ηI +

 ∇2
xxL(z+) ∇2

xyL(z+)

−∇2
yxL(z+) −∇2

yyL(z+)



x̃∆

+ − x+

ỹ∆
+ − y+

 = η

∆x

∆y


=⇒

x̃∆
+ − x+

ỹ∆
+ − y+

 = η

ηI +

 ∇2
xxL(z+) ∇2

xyL(z+)

−∇2
yxL(z+) −∇2

yyL(z+)



−1∆x

∆y

.
This is nearly our target condition (8.14). All that remains is to show our

second-order approximation satisfies ‖z∆
+ − z̃∆

+‖ = o(‖∆‖). Denote the proximal

subproblem objective by M∆(u, v) = L(u, v) + η
2
‖u − x∆‖2 − η

2
‖v − y∆‖2 and
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its approximation by M̃∆(u, v) = L̃(u, v) + η
2
‖u − x∆‖2 − η

2
‖v − y∆‖2. Noting

that ‖∇M̃∆(x+, y+)‖ = η‖∆‖, we can apply Lemma 8.1.1 to the (η − ρ)-strongly

convex-strongly concave function M̃∆ to bound the distance to its minimax

point as

‖z+ − z̃∆
+‖ ≤

η

η − ρ
‖∆‖ .

Consequently, we can bound difference in gradients betweenL and its quadratic

model L̃ at z̃∆
+ by ‖∇L(z̃∆

+ ) − ∇L̃(z̃∆
+ )‖ = o(‖∆‖). Therefore ‖∇M∆(z̃∆

+ )‖ =

o(‖∆‖) and so applying Lemma 8.1.1 to the strongly convex-strongly concave

function M∆ bounds the distance to its minimax point as ‖z∆
+ − z̃∆

+‖ = o(‖∆‖),

which completes our proof.

A careful understanding of the saddle envelope’s Hessian allows us to de-

scribe its smoothness and when it is convex-concave. This is carried out in the

following section and forms the crucial step in enabling our convergence anal-

ysis for nonconvex-nonconcave problems.

8.2.2 Smoothing and Convexifing from the Saddle Envelope

Recall that the Moreau envelope eη{f} serves as a smoothing of any ρ-weakly

convex function since its Hessian has uniform bounds above and below (8.13).

The lower bound on the Moreau envelope’s Hessian guarantees it is convex

exactly when the given function f is convex (that is, ρ = 0), and strongly convex

if and only if f is strongly convex.

In the convex-concave case [12, Proposition 2.2] established the saddle enve-

lope has 1/η-Lipschitz gradient. Our Hessian formula in Lemma 8.2.4 allows us
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to quantify the envelope’s smoothness for nonconvex-nonconcave objectives.

Remarkably, we find that the minimax extension of this result is much more

powerful than its Moreau counterpart. The saddle envelope will be convex-

concave not just when L is convex-concave, but whenever the following inter-

action dominance condition holds with a nonnegative parameter α.

Definition 8.2.5. A function L is α-interaction dominant with respect to x if

∇2
xxL(z) +∇2

xyL(z)(ηI −∇2
yyL(z))−1∇2

yxL(z) � αI (8.15)

and α-interaction dominant with respect to y if

−∇2
yyL(z) +∇2

yxL(z)(ηI +∇2
xxL(z))−1∇2

xyL(z) � αI . (8.16)

For any ρ-weakly convex-weakly concave function L, interaction domi-

nance holds with α = −ρ since the second term in these definitions is al-

ways positive semidefinite. As a consequence, any convex-concave function

is α ≥ 0-interaction dominant with respect to both x and y. Further, nonconvex-

nonconcave functions are interaction dominant with α ≥ 0 when the second

terms above are sufficiently positive definite (hence the name “interaction dom-

inant” as the interaction term of the Hessian∇2
xyL(z) is dominating any negative

curvature in Hessians ∇2
xxL(z) and −∇2

yyL(z)). For example, any problem with

β-Lipschitz gradient in y has interaction dominance in x hold with non-negative

parameter whenever

∇2
xyL(z)∇2

yxL(z)

η + β
� −∇2

xxL(z)

since ηI−∇2
yyL(z) � (η+β)I . Similarly, any problem with β-Lipschitz gradient

in x has interaction dominance in y with a non-negative parameter whenever

∇2
yxL(z)∇2

xyL(z)

η + β
� ∇2

yyL(z) .
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The following proposition derives bounds on the Hessian of the saddle en-

velope showing it is convex in x (concave in y) whenever α ≥ 0-interaction

dominance holds in x (in y). Further, its Hessian lower bounds ensure that Lη

is (η−1 + α−1)−1-strongly convex in x (strongly concave in y) whenever α > 0-

interaction dominance holds in x (in y).

Proposition 8.2.6. If the x-interaction dominance (8.15) holds with α ∈ R, the saddle

envelope is smooth and weakly convex with respect to x

(η−1 + α−1)−1I � ∇2
xxLη(z) � ηI ,

and if the y-interaction dominance condition (8.16) holds with α ∈ R, the saddle enve-

lope is smooth and weakly concave with respect to y

(η−1 + α−1)−1I � −∇2
yyLη(z) � ηI .

Proof. Recall the formula for the x component of the Hessian given by

Lemma 8.2.4. Then the interaction dominance condition (8.15) can lower bound

this Hessian by

∇2
xxLη(z) = ηI − η2

(
ηI +∇xxL(z+) +∇2

xyL(z+)(ηI −∇2
yyL(z+))−1∇2

yxL(z+)
)−1

� ηI − η2(ηI + αI)−1

= (η − η2/(η + α))I

= (η−1 + α−1)−1I .

Note that ηI + ∇2
xxL(z+) is positive definite (since η > ρ) and ∇2

xyL(z+)(ηI +

∇2
yyL(z+))−1∇2

yxL(z+) is positive semidefinite (since its written as a square).

Then the inverse of their sum must also be positive definite and consequently

∇2
xxLη(z) is upper bounded by

ηI − η2
(
ηI +∇xxL(z+) +∇2

xyL(z+)(ηI +∇2
yyL(z+))−1∇2

yxL(z+)
)−1 � ηI .
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Symmetric reasoning applies to give bounds on∇2
yyLη(z).

Remark 8.2.7. Note that our definition of interaction dominance depends on the choice

of the proximal parameter η > ρ. In our convergence theory, we will show that interac-

tion dominance with nonnegative α > 0 captures when the proximal point method with

the same parameter η converges.

Remark 8.2.8. Proposition 8.2.6 generalizes the Hessian bounds for the Moreau enve-

lope (8.13) since for any L(x, y) that is constant in y, the α-interaction dominance

condition in x simplifies to simply be ρ-weak convexity ∇2
xxL(z) + ∇2

xyL(z)(ηI −

∇2
yyL(z))−1∇2

yxL(z) = ∇2
xxL(z) � αI . Hence this special case has α = −ρ.

In addition to bounding the Hessians of the x and y variables separately,

we can also bound the overall smoothness of the saddle envelope. Our next

result shows that the saddle envelope maintains the same max{η, |η−1−ρ−1|−1}-

smoothing effect as the Moreau envelope (8.13).

Proposition 8.2.9. Lη has max{η, |η−1 − ρ−1|−1}-Lipschitz gradient.

Proof. Consider two points z = (x, y) and z̄ = (x̄, ȳ) and denote one proxi-

mal step from each of them by z+ = (x+, y+) = prox
,η(z) and z̄+ = (x̄+, ȳ+) =

prox
,η(z̄). Define the (η − ρ)-strongly convex-strongly concave function under-

lying the computation of the saddle envelope at z as

M(u, v) = L(u, v) +
η

2
‖u− x‖2 − η

2
‖v − y‖2.

First we compute the gradient of M at z̄+ which is given by∇xM(z̄+)

∇yM(z̄+)

 =

∇xL(z̄+) + η(x̄+ − x)

∇yL(z̄+)− η(ȳ+ − y)

 = η

x̄− x
y − ȳ

.
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Applying Lemma 8.1.1, and noting that z+ = prox
,η(z) has ∇M(z+) = 0 yields∥∥∥∥∥∥∥

x̄+ − x+

ȳ+ − y+


∥∥∥∥∥∥∥

2

≤ η

η − ρ

x̄− x
ȳ − y


Tx̄+ − x+

ȳ+ − y+

.
Recalling the saddle envelope’s gradient formula from Lemma 8.2.1, we can

upper bound the difference between its gradients at z and z̄ by

1

η2
‖∇Lη(z)−∇Lη(z̄)‖2 =

∥∥∥∥∥∥∥
x− x+

y+ − y

−
x̄− x̄+

ȳ+ − ȳ


∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥
x− x̄
y − ȳ


∥∥∥∥∥∥∥

2

+ 2

x− x̄
y − ȳ


Tx̄+ − x+

ȳ+ − y+

+

∥∥∥∥∥∥∥
x̄+ − x+

ȳ+ − y+


∥∥∥∥∥∥∥

2

≤

∥∥∥∥∥∥∥
x− x̄
y − ȳ


∥∥∥∥∥∥∥

2

+

(
η

η − ρ
− 2

)x̄− x
ȳ − y


Tx̄+ − x+

ȳ+ − y+

.

Notice that

x̄− x
ȳ − y


Tx̄+ − x+

ȳ+ − y+

 is non-negative but the sign of
(

η
η−ρ − 2

)
may

be positive or negative. If this coefficient is negative, we can upperbound the

second term above by zero, giving ‖∇Lη(z)−∇Lη(z̄)‖2 ≤ η2‖z − z̄‖2. If instead(
η
η−ρ − 2

)
≥ 0, then we have smoothness constant |η−1 − ρ−1|−1 as

‖∇Lη(z)−∇Lη(z̄)‖2 ≤ η2

(
1 +

(
η

η − ρ
− 2

)
η

η − ρ

)∥∥∥∥∥∥∥
x− x̄
y − ȳ


∥∥∥∥∥∥∥

2

= η2

(
η

η − ρ
− 1

)2

∥∥∥∥∥∥∥
x− x̄
y − ȳ


∥∥∥∥∥∥∥

2

=

(
ηρ

η − ρ

)2

∥∥∥∥∥∥∥
x− x̄
y − ȳ


∥∥∥∥∥∥∥

2

by Cauchy Schwarz and using that

∥∥∥∥∥∥∥
x̄+ − x+

ȳ+ − y+


∥∥∥∥∥∥∥ ≤ η

η−ρ

∥∥∥∥∥∥∥
x̄− x
ȳ − y


∥∥∥∥∥∥∥.
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The setting of taking the Moreau envelope of a convex function gives a sim-

pler smoothness bound of η since having ρ ≤ 0 implies η = max{η, |η−1 −

ρ−1|−1}. The same simplification holds when applying our saddle envelope

machinery to convex-concave problems: the saddle envelope of any convex-

concave L is η-smooth, matching the results of [12, Proposition 2.1].

8.3 Interaction Dominant Regime

Our theory for the saddle envelope Lη(z) shows it is much more structured

than the original objective function L(z). Proposition 8.2.6 established that for x

and y interaction dominant problems, the saddle envelope is strongly convex-

strongly concave. Proposition 8.2.9 established that the saddle envelope is al-

ways smooth (has a uniformly Lipschitz gradient). Both of these results hold

despite us not assuming convexity, concavity, or smoothness of the original ob-

jective. Historically these two conditions are the key to linear convergence (see

Theorem 8.1.2) and indeed we find interaction dominance causes the proximal

point method to linearly converge. The proof of this result is deferred to the end

of the section.

Theorem 8.3.1. For any objective L that is ρ-weakly convex-weakly concave and α >

0-interaction dominant in both x and y, the damped PPM (8.7) with η and λ satisfying

λ ≤ 2
min{1, (η/ρ− 1)2}

η/α + 1

linearly converges to the unique stationary point (x∗, y∗) of (8.1) with∥∥∥∥∥∥∥
xk − x∗
yk − y∗


∥∥∥∥∥∥∥

2

≤
(

1− 2λ

η/α + 1
+

λ2

min{1, (η/ρ− 1)2}

)k∥∥∥∥∥∥∥
x0 − x∗

y0 − y∗


∥∥∥∥∥∥∥

2

.
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For example, setting η = 2ρ and λ = 1
1+η/α

, our convergence rate simplifies to∥∥∥∥∥∥∥
xk − x∗
yk − y∗


∥∥∥∥∥∥∥

2

≤
(

1− 1

(2ρ/α + 1)2

)k∥∥∥∥∥∥∥
x0 − x∗

y0 − y∗


∥∥∥∥∥∥∥

2

.

Remark 8.3.2. Theorem 8.3.1 is valid even if α > 0-interaction dominance only holds

locally. That is, as long as α-interaction dominance holds within an l2-ball around a

local stationary point, and the initial point is sufficiently within this ball, then PPM

converges linearly to this local stationary point.

Remark 8.3.3. For µ-strongly convex-strongly concave problems, this theorem recovers

the standard proximal point convergence rate for any choice of η > 0. In this case, we

have ρ = −µ, α = µ, and can set λ = 1
η/µ+1

, giving a O(η2/µ2 log(1/ε)) convergence

rate matching [144].

Remark 8.3.4. The α > 0-interaction dominance condition is tight for obtaining global

linear convergence. A nonconvex-nonconcave quadratic example illustrating the sharp-

ness of this boundary is presented in Section 8.5.1. Moreover, our example shows that

it is sometimes necessary to utilize the damping parameter (that is, selecting λ < 1) for

PPM to converge.

If we only have α > 0-interaction dominance with y, then the saddle enve-

lope Lη is still much more structured than the original objective L. In this case,

Lη(x, y) may still be nonconvex in x, but Proposition 8.2.9 ensures it is strongly

concave in y. Then our theory allows us to extend existing convergence guaran-

tees for nonconvex-concave problems to this larger class of y interaction dom-

inant problems. For example, Lin et al. [100] recently showed that GDA with

different, carefully chosen stepsize parameters for x and y will converge to a

stationary point at a rate of O(ε−2). We find that running the following damped
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proximal point method is equivalent to running their variant of GDA on the

saddle envelopexk+1

yk+1

 =

λx+
k + (1− λ)xk

γy+
k + (1− γ)yk

where

x+
k

y+
k

 = prox
,η(xk, yk) (8.17)

for proper choice of the parameters λ, γ ∈ [0, 1]. From this, we derive the follow-

ing sublinear convergence rate for nonconvex-nonconcave problems whenever

y interaction dominance holds, proven at the end of the section.

Theorem 8.3.5. For any objective L that is ρ-weakly convex-weakly concave and α >

0-interaction dominant in y, consider the PPM variant (8.17) with damping constants

λ = Θ

(
min{1,|η/ρ−1|3}

(1+η/α)2

)
and γ = Θ(min{1, |η/ρ− 1|}). If the sequence yk is bounded1,

then a stationary point ‖∇L(x+
T , y

+
T )‖ ≤ ε will be found by iteration T ≤ O(ε−2).

Remark 8.3.6. Symmetrically, we can guarantee sublinear convergence assuming

only x-interaction dominance. Considering the problem of maxy minx L(x, y) =

−miny maxx−L(x, y), which is now interaction dominant with respect to the inner

maximization variable, we can apply Theorem 8.3.5. This reduction works since al-

though the original minimax problem and this maximin problem need not have the same

solutions, they always have the same stationary points.

8.3.1 Proof of Theorem 8.3.1

Propositions 8.2.6 and 8.2.9 show that Lη is µ = (η−1 + α−1)−1-strongly convex-

strongly concave and has a β = max{η, |η−1 − ρ−1|−1}-Lipschitz gradient. Hav-

ing strong convexity and strong concavity ensures Lη has a unique stationary

1We do not believe this boundedness condition is fundamentally needed, but we make it to
leverage the results of [100] which utilize compactness.
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point (x∗, y∗), which in turn must be the unique stationary point of L by Corol-

lary 8.2.2. Recall Corollary 8.2.3 showed that the damped PPM (8.7) on L is

equivalent to GDA (8.6) with s = λ/η on Lη. Then provided

λ ≤ 2
min{1, (η/ρ− 1)2}

η/α + 1
=

2(η−1 + α−1)−1

max{η2, (η−1 − ρ−1)−2}
,

we have s = λ/η ∈ (0, 2µ/β2). Hence applying Theorem 8.1.2 shows the itera-

tions of GDA (and consequently PPM) linearly converge to this unique station-

ary point as∥∥∥∥∥∥∥
xk − x∗
yk − y∗


∥∥∥∥∥∥∥

2

≤
(

1− 2λ

η/α + 1
+

λ2

min{1, (η/ρ− 1)2}

)k∥∥∥∥∥∥∥
x0 − x∗

y0 − y∗


∥∥∥∥∥∥∥

2

.

8.3.2 Proof of Theorem 8.3.5

Proposition 8.2.6 shows that whenever interaction dominance holds for y the

saddle envelope is µ = (η−1 +α−1)−1-strongly concave in y and Proposition 8.2.9

ensures the saddle envelope has a β = max{η, |η−1− ρ−1|−1}-Lipschitz gradient.

Recently, Lin et al. [100] considered such nonconvex-strongly concave problems

with a compact constraint y ∈ D. They analyzed the following variant of GDAxk+1

yk+1

 = projRn×D


xk
yk

+

−∇xL(xk, yk)/ηx

∇yL(xk, yk)/ηy


 (8.18)

which projects onto the feasible region Rn × D each iteration and has different

stepsize parameters ηx and ηy for x and y. Lin et al. prove the following theorem

showing a sublinear guarantee.

Theorem 8.3.7 (Theorem 4.4 of [100]). For any β-smooth, nonconvex-µ-strongly

concave L, let κ = β/µ be the condition number for y. Then for any ε > 0, GDA
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with stepsizes η−1
x = Θ(1/κ2β) and η−1

y = Θ(1/β) will find a point satisfying

‖∇L(xT , yT )‖ ≤ ε by iteration

T ≤ O

(
κ2β + κβ2

ε2

)
.

Assuming that the sequence yk above stays bounded, this projected gradient

method is equivalent to running GDA on our unconstrained problem by setting

the domain of y as a sufficiently large compact set to contain all the iterates. Con-

sider setting the averaging parameters as λ = Θ(η/κ2β) = Θ

(
min{1,|η/ρ−1|3}

(1+η/α)2

)
and γ = Θ(η/β) = Θ(min{1, |η/ρ− 1|}). Then using the gradient formula from

Lemma 8.2.1, we see that the damped proximal point method (8.17) is equiva-

lent to running GDA on the saddle envelope with ηx = η/λ and ηy = η/γ:xk+1

yk+1

 =

xk
yk

+

−∇xLη(xk, yk)/ηx

∇yLη(xk, yk)/ηy

 =

λx+
k + (1− λ)xk

γy+
k + (1− γ)yk

.
Then the above theorem guarantees that running this variant of the proxi-

mal point method on L (or equivalently, applying the GDA variant (8.18) to the

saddle envelope) will converge to a stationary point with ‖∇Lη(zT )‖ ≤ ε within

T ≤ O(ε−2) iterations. It immediate follows from the gradient formula that z+
T =

prox
,η(zT ) is approximately stationary for L as ‖∇L(z+

T )‖ = ‖∇Lη(zT )‖ ≤ ε.

8.4 Interaction Weak Regime

Our previous theory showed that when the interaction between x and y is suffi-

ciently strong, global linear convergence occurs. Now we consider when there

is limited interaction between x and y. At the extreme of having no interaction,
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nonconvex-nonconcave minimax optimization separates into nonconvex mini-

mization and nonconcave maximization. On these separate problems, local con-

vergence of the proximal point method is well-understood.Here we show that

under reasonable smoothness and initialization assumptions, this local conver-

gence behavior extends to minimax problems with weak, but nonzero, interac-

tion between x and y.

To formalize this, we make the following regularity assumptions

‖∇2L(z)‖ ≤ β , for all z ∈ Rn × Rm (8.19)

‖∇2L(z)−∇2L(z̄)‖ ≤ H‖z − z̄‖ , for all z, z̄ ∈ Rn × Rm (8.20)

and quantify how weak the interaction is by assuming

‖∇2
xyL(z)‖ ≤ δ , for all z ∈ Rn × Rm (8.21)

‖∇2
xxL(x, y)−∇2

xxL(x, ȳ)‖ ≤ ξ‖y − ȳ‖

‖∇2
yyL(x, y)−∇2

yyL(x̄, y)‖ ≤ ξ‖x− x̄‖
, for all (x, y), (x̄, ȳ) ∈ Rn × Rm

(8.22)

for some constants β,H, δ, ξ ≥ 0. Here we are particularly interested in problems

where δ and ξ are sufficiently small. For example, the bilinear setting of (8.3) sat-

isfies this with (δ, ξ) = (λmax(A), 0) and so we are considering small interaction

matrices A.

For such problems, we consider an initialization for the proximal point

method based on our motivating intuition that when there is no interaction,

we can find local minimizers and maximizers with respect to x and y. For a
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fixed point z′ = (x′, y′), we compute our PPM initialization z0 = (x0, y0) as
x0 = a local minimizer of minu L(u, y′) ,

y0 = a local maximizer of maxv L(x′, v) .

(8.23)

These subproblems amount to smooth nonconvex minimization, which is well-

studied (see for example [91]), and so we take them as a blackbox.

The critical observation explaining why this is a good initialization is that

provided δ and ξ are small enough, we have (i) that the interaction dominance

conditions (8.15) and (8.16) hold at z0 with a nearly positive α = α0, often with

α0 > 0 and (ii) that z0 is a nearly stationary point of L. Below we formalize each

of these properties and arrive at conditions quantifying how small we need ξ

and δ to be for our local convergence theory to apply.

(i) First, we observe that the interaction dominance conditions (8.15) and (8.16)

hold at z0 with a nearly positive coefficient α0. Since x0 and y0 are local

optimum, for some µ ≥ 0, we must have

∇2
xxL(x0, y

′) � µI and −∇2
yyL(x′, y0) � µI .

Then the Hessians at z0 must be similarly bounded since the amount they

can change is limited by (8.22). Hence

∇2
xxL(z0) � (µ− ξ‖y0 − y′‖)I and −∇2

yyL(z0) � (µ− ξ‖x0 − x′‖)I .

Adding a positive semidefinite term onto these (as is done in the definition

of interaction dominance) can only increase the righthand-side above. In

particular, we can bound the second term added in the interaction domi-
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nance conditions (8.15) and (8.16) as

∇2
xyL(z0)(ηI −∇2

yyL(z0))−1∇2
yxL(z0) �

∇2
xyL(z0)∇2

yxL(z0)

η + β

�
λmin(∇2

xyL(z0)∇2
yxL(z0))

η + β
I ≥ 0,

∇2
yxL(z0)(ηI +∇2

xxL(z0))−1∇2
xyL(z0) �

∇2
yxL(z0)∇2

xyL(z0)

η + β

�
λmin(∇2

yxL(z0)∇2
xyL(z0))

η + β
I ≥ 0.

Hence interaction dominance holds at z0 in both x and y with

∇2
xxL(z0) +∇2

xyL(z0)(ηI −∇2
yyL(z0))−1∇2

yxL(z0)

�
(
µ+

λmin(∇2
xyL(z0)∇2

yxL(z0))

η + β
− ξ‖y0 − y′‖

)
I ,

−∇2
yyL(z0) +∇2

yxL(z0)(ηI +∇2
xxL(z0))−1∇2

xyL(z0)

�
(
µ+

λmin(∇2
yxL(z0)∇2

xyL(z0))

η + β
− ξ‖x0 − x′‖

)
I .

For our local linear convergence theory to apply, we need this to hold with

positive coefficient. It suffices to have ξ sufficiently small, satisfying
ξ‖y0 − y′‖ < µ+

λmin(∇2
xyL(z0)∇2

yxL(z0))

η + β

ξ‖x0 − x′‖ < µ+
λmin(∇2

yxL(z0)∇2
xyL(z0))

η + β
.

(8.24)

Note this is trivially the case for problems with bilinear interaction (8.3) as

ξ = 0. It is also worth noting that even if µ = 0, the right-hand-sides above

are still strictly positive if∇xyL(z0) is full rank and the variable dimensions

n and m of x and y are equal2.

(ii) Next, we observe that z0 is nearly stationary by applying (8.21) and using

2This works since having full rank square ∇2
xyL(z0) implies that both of its squares

∇2
xyL(z0)∇2

yxL(z0) and ∇2
yxL(z0)∇2

xyL(z0) are full rank as well. Hence these squares must be
strictly positive definite and as a result, have strictly positive minimum eigenvalues.
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the first-order optimality conditions of the subproblems (8.23):

‖∇L(z0)‖ ≤

∥∥∥∥∥∥∥
∇xL(x0, y

′)

∇yL(x′, y0)


∥∥∥∥∥∥∥+ δ‖z0 − z′‖ = δ‖z0 − z′‖.

For our convergence theory, this gradient needs to be sufficiently small

δ‖z0 − z′‖ ≤
α0(η − ρ)

2
(

1 + 4
√

2(η+α0/2)
α0

+ 4
√

2β(η+α0/2)
α0(η−ρ)

)
H
(

1 + 2δ
η−ρ + δ2

(η−ρ)2

) . (8.25)

Under these conditions, we have the following linear convergence guaran-

tee.

Theorem 8.4.1. For any objective L satisfying weak convexity-concavity (8.5), the

smoothness conditions (8.19) and (8.20), and the interaction bounds (8.21) and (8.22),

consider the damped PPM (8.7) with initialization (x0, y0) given by (8.23) and η and λ

satisfying

λ ≤ 2
min{1, (η/ρ− 1)2}

2η/α0 + 1
.

Then PPM linearly converges to a nearby stationary point (x∗, y∗) of (8.1) with∥∥∥∥∥∥∥
xk − x∗
yk − y∗


∥∥∥∥∥∥∥

2

≤
(

1− 2λ

2η/α0 + 1
+

λ2

min{1, (η/ρ− 1)2}

)k∥∥∥∥∥∥∥
x0 − x∗

y0 − y∗


∥∥∥∥∥∥∥

2

provided δ and ξ are small enough to satisfy (8.24) and (8.25).

8.4.1 Proof of Theorem 8.4.1

Our proof of this local convergence guarantee considers two sets centered at

(x0, y0): An inner region Binner = B(x0, r)×B(y0, r) with radius

r :=
4(η + α0/2)

α0

‖∇L(z0)‖
η − ρ
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and an outer ball Bouter = B((x0, y0), R) with radius

R :=

(
1 +

4
√

2(η + α0/2)

α0

+
4
√

2β(η + α0/2)

α0(η − ρ)

)
‖∇L(z0)‖
η − ρ

≥
√

2r .

Thus Binner ⊆ Bouter. The following lemma shows that the α0 > 0-interaction

dominance at z0 (following from our initialization procedure) extends to give

α0/2-interaction dominance on the whole outer ball Bouter.

Lemma 8.4.2. On Bouter, α0/2-iteration dominance holds in both x and y.

Proof. First, observe that the functions defining the interaction dominance con-

ditions (8.15) and (8.16)

∇2
xxL(z) +∇2

xyL(z)(ηI −∇2
yyL(z))−1∇2

yxL(z),

−∇2
yyL(z) +∇2

yxL(z)(ηI +∇2
xxL(z))−1∇2

xyL(z)

are both uniformly Lipschitz with constant3

H

(
1 +

2δ

η − ρ
+

δ2

(η − ρ)2

)
.

Then our Lipschitz constant follows by observing the component functions

defining it satisfy the following: ∇2
xxL(z) and∇2

yyL(z) are H-Lipschitz,∇2
xyL(z)

and its transpose∇2
yxL(z) are both H-Lipschitz and bounded in norm by δ, and

(ηI+∇2
xxL(z))−1 and (ηI−∇2

yyL(z))−1 are bothH/(η−ρ)2-Lipschitz and bounded

in norm by (η − ρ)−1.

3This constant follows from multiple applications of the “product rule”-style formula that
A(z)B(z) is uniformly (a′b+ab′)-Lipschitz provided A(z) is bounded by a and a′-Lipschitz and
B(z) is bounded by b and b′-Lipschitz: any two points z, z′ have

‖A(z)B(z)−A(z′)B(z′)‖ ≤ ‖A(z)B(z)−A(z′)B(z)‖+ ‖A(z′)B(z)−A(z′)B(z′)‖
≤ (a′b+ b′a)‖z − z′‖.
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It follows that every z ∈ Bouter has α0/2-interaction dominance in x as

∇2
xxL(z) +∇2

xyL(z)(ηI −∇2
yyL(z))−1∇2

yxL(z)

� ∇2
xxL(z0) +∇2

xyL(z0)(ηI −∇2
yyL(z0))−1∇2

yxL(z0)−H
(

1 +
2δ

η − ρ
+

δ2

(η − ρ)2

)
RI

� ∇2
xxL(z0) +∇2

xyL(z0)(ηI −∇2
yyL(z0))−1∇2

yxL(z0)− α0/2I

� α0I − α0/2I = α0/2I

where the first inequality uses Lipschitz continuity, the second inequality uses

our assumed condition (8.25) of H
(

1 + 2δ
η−ρ + δ2

(η−ρ)2

)
R ≤ α0/2, and the third

inequality uses the α0-interaction dominance at z0. Symmetric reasoning shows

α0/2-interaction dominance in y holds for each z ∈ Bouter as well.

From this, interaction dominance on the outer ball suffices to ensure the sad-

dle envelope is strongly convex-strongly concave on the inner region.

Lemma 8.4.3. The saddle envelope is (η−1 + (α0/2)−1)−1-strongly convex-strongly

concave on Binner.

Proof. Given α0/2-interaction dominance holds on Bouter, it suffices to show that

for any z = (x, y) ∈ Binner, the proximal step z+ = prox
,η(z) ∈ Bouter as we can

then apply the Hessian bounds from Proposition 8.2.6 to show strong convexity

and strong concavity.

Define the function underlying the computation of the proximal step at (x, y)

as

M(u, v) = L(u, v) +
η

2
‖u− x‖2 − η

2
‖v − y‖2.

Our choice of η > ρ ensures that M is (η − ρ)-strongly convex-strongly con-

cave. Thus applying Lemma 8.1.1 and then the β-Lipschitz continuity of ∇L(z)
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implies∥∥∥∥∥∥∥
x− x+

y − y+


∥∥∥∥∥∥∥ ≤
‖∇M(x, y)‖

η − ρ
=
‖∇L(x, y)‖
η − ρ

≤ ‖∇L(x0, y0)‖+ β
√

2r

η − ρ
.

Hence ‖z0 − z+‖ ≤ ‖z0 − z‖+ ‖z − z+‖ ≤
√

2r + ‖∇L(z0)‖+β
√

2r
η−ρ = R.

Armed with the knowledge that interaction dominance holds on Binner, we

return to the proof of Theorem 8.4.1. Observe that the gradient of the saddle

envelope at z0 = (x0, y0) is bounded by Lemma 8.2.1 and Lemma 8.1.1 as

‖∇Lη(z0)‖ = ‖η(z0 − z+
0 )‖ ≤ η

η − ρ
‖∇M0(z0)‖ =

η

η − ρ
‖∇L(z0)‖

where z+
0 = prox

,η(z0) andM0(u, v) = L(u, v)+ η
2
‖u−x0‖2− η

2
‖v−y0‖2 is the η−ρ-

strongly convex-strongly concave function defining it. Now we have shown all

of the conditions necessary to apply Theorem 8.1.2 on the square B(x0, r) ×

B(y0, r) with

r =
4(η + α0/2)‖∇L(z0)‖

α0(η − ρ)
=

2‖∇Lη(z0)‖
µ

upon which the saddle envelope is µ = (η−1 + (α0/2)−1)−1-strongly convex-

strongly concave and β = max{η, |η−1 − ρ−1|−1}-smooth. Hence applying GDA

with s = λ/η to the saddle envelope produces iterates (xk, yk) converging to a

stationary point (x∗, y∗) with∥∥∥∥∥∥∥
xk − x∗
yk − y∗


∥∥∥∥∥∥∥

2

≤
(

1− 2λ

η(η−1 + (α0/2)−1)
+

λ2

η2(η−1 − ρ−1)2

)k∥∥∥∥∥∥∥
x0 − x∗

y0 − y∗


∥∥∥∥∥∥∥

2

.

By Corollary 8.2.2, (x∗, y∗) must also be a stationary point of L. Further, by

Corollary 8.2.3, this sequence (xk, yk) is the same as the sequence generated by

running the damped PPM on (8.1).
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8.5 Interaction Moderate Regime

Between the interaction dominant and interaction weak regimes, the proximal

point method may diverge or cycle indefinitely (recall our introductory exam-

ple in Figure 8.1 where convergence fails in this middle regime). We begin

by considering the behavior of the proximal point method when applied to a

nonconvex-nonconcave quadratic example. From this, our interaction domi-

nance condition is tight, exactly describing when our example converges.

8.5.1 Tightness of the Interaction Dominance Regime

Consider the following nonconvex-nonconcave quadratic minimax problem of

min
x∈Rn

max
y∈Rn

L(x, y) =
−ρ
2
‖x‖2 + axTy − −ρ

2
‖y‖2 (8.26)

where a ∈ R controls the size of the interaction between x and y and ρ ≥ 0 con-

trols how weakly convex-weakly concave the problem is. Notice this problem

has a stationary point at the origin. Even though this problem is nonconvex-

nonconcave, PPM will still converge to the origin for some selections of a, ρ,

and η. Examining our interaction dominance conditions (8.15) and (8.16), this

example is α = −ρ+ a2/(η − ρ)-interaction dominant in both x and y.

For quadratic problems, PPM always corresponds to the matrix multiplica-
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tion. In the case of (8.26), the damped PPM iteration is given byxk+1

yk+1

 = (1− λ)

xk
yk

+ λ

(1− ρ/η)I aI/η

−aI/η (1− ρ/η)I


−1xk

yk


= (1− λ)

xk
yk

+
λη

η − ρ


 I aI/(η − ρ)

−aI/(η − ρ) I



−1xk

yk


= (1− λ)

xk
yk

+
λη

a2/(η − ρ) + η − ρ

 I −aI/(η − ρ)

aI/(η − ρ) I


xk
yk


=

CI −DI
DI CI


xk
yk


for constants C = 1− λα

η + α
andD =

ληa

(η + α)(η − ρ)
. Notice that these constants

are well-defined since η− ρ > 0 and η+ α > 0 (even if α is negative) since η > ρ

and α ≥ −ρ. Matrix multiplication of this special final form has the following

nice property for any z,∥∥∥∥∥∥∥
CI −DI
DI CI

z
∥∥∥∥∥∥∥

2

= (C2 +D2)‖z‖2. (8.27)

Hence this iteration will globally converge to the origin exactly when(
1− λα

η + α

)2

+

(
ληa

(η + α)(η − ρ)

)2

< 1 .

Likewise, the damped proximal point method will cycle indefinitely when this

holds with equality and diverges when it is strictly violated. As a result, vio-

lating α > 0-interaction dominance (that is, having α ≤ 0) leads to divergence

in (8.26) for any choice of the averaging parameter λ ∈ (0, 1] since this forces

C ≥ 1 (and so C2 + D2 > 1). Hence our interaction dominance boundary is

tight.
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Further, this example shows that considering the damped proximal point

method (as opposed to fixing λ = 1) is necessary to fully capture the conver-

gence for interaction dominant problems. For example, setting ρ = 1, a = 2, η =

3 has α = 1-interaction dominance in x and y and converges exactly when

(1− λ/4)2 + (3λ/4)2 < 1

which is satisfied when λ ∈ (0, 0.8), but not by the undamped proximal point

method with λ = 1. Our theory from Theorem 8.3.1 is slightly more conserva-

tive, guaranteeing convergence whenever λ ≤ 0.5 = 2 min{1, (η/ρ− 1)2}/(η/α+

1).

8.5.2 A Lyapunov for Interaction Moderate Problems

The standard analysis of gradient descent on nonconvex optimization relies on

the fact that the function value monotonically decays every iteration. However,

such properties fail to hold in the nonconvex-nonconcave minimax setting: the

objective is neither monotonically decreasing nor increasing while PPM runs.

Worse yet, since we know the proximal point method may cycle indefinitely

with gradients bounded away from zero (for example, recall the interaction

moderate regime trajectories in Figure 8.1), no “Lyapunov”-type quantity can

monotonically decrease along the iterates of the proximal point method.

In order to obtain a similar analysis as the standard nonconvex optimization

approach, we propose to study the following “Lyapunov” function, which cap-

tures the difference between smoothing over y and smoothing over x using the

classic Moreau envelope,

L(x, y) :=− eη{−L(x, ·)}(y)− eη{L(·, y)}(x) . (8.28)
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The following proposition establishes structural properties supporting our con-

sideration of L(x, y).

Theorem 8.5.1. The Lyapnuov L(x, y) has the following structural properties:

1. L(x, y) ≥ 0,

2. When η > ρ, L(x, y) = 0 if and only if (x, y) is a stationary point to L(x, y),

3. When η = 0, L(x, y) recovers the well-known primal-dual gap of L(x, y)

L(x, y) = max
v
L(x, v)−min

u
L(u, y).

Proof. Recall that a Moreau envelope eη{f(·)}(x) provides a lower bound (8.9)

on f everywhere. Hence eη{−L(x, ·)}(y) ≤ −L(x, y) and eη{L(·, y)}(x) ≤

L(x, y), and so our proposed Lyapunov is always nonnegative since

L(x, y) = −eη{−L(x, ·)}(y)− eη{L(·, y)}(x) ≥ L(x, y)− L(x, y) = 0 .

Further, it follows from (8.11) that for any ρ-weakly convex function f , selecting

η > ρ ensures the Moreau envelope equals the given function precisely at its sta-

tionary point. Then the preceding nonnegativity argument holds with equality

if and only if

∇y − L(x, ·)(y) = 0 and ∇xL(·, y)(x) = 0 .

Hence we have L(x, y) = 0 ⇐⇒ ∇L(x, y) = 0. Lastly, when η = 0, we have

L(x, y) = −min
v

{
−L(x, v) +

η

2
‖v − y‖2

}
−min

u

{
−L(u, y) +

η

2
‖u− x‖2

}
= max

v
L(x, v)−min

u
L(u, y) ,

recovering the primal-dual gap for L(x, y).
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For example, computing the Moreau envelopes defining L(z) for (8.26) gives

eη{L(·, y)}(x) =
1

2
(η−1 − ρ−1)−1‖x‖2 +

ηa

η − ρ
xTy − α

2
‖y‖2 (8.29)

eη{−L(x, ·)}(y) = −α
2
‖x‖2 − ηa

η − ρ
xTy +

1

2
(η−1 − ρ−1)−1‖y‖2 (8.30)

where α = −ρ+ a2/(η − ρ) is this problem’s interaction dominance. Hence

L(z) =
1

2

(
α− (η−1 − ρ−1)−1

)
‖z‖2 .

Noting that α ≥ −ρ and −(η−1 − ρ−1)−1 > −ρ, we see that the origin is the

unique minimizer of L(z) and consequently the unique stationary point of L. In

this case, minimizing L(z) is simple convex optimization.

Future works could identify further tractable nonconvex-nonconcave prob-

lem settings where algorithms can minimize L(x, y) instead as all of its global

minimums are stationary points of the original objective. Since this problem is

purely one of minimization, cycling can be ruled out directly. As previously ob-

served, the proximal point method is not such an algorithm since it may fall into

a cycle and fail to monotonically decrease L(z). Instead, we find the following

weakened descent condition for L(z), relating its change to our α-interaction

dominance conditions. Note that this result holds regardless of whether the

interaction dominance parameter α is positive or negative.

Theorem 8.5.2. For any ρ-weakly convex-weakly concave, α ∈ R-interaction domi-

nant in x and y problem, any z ∈ Rn × Rm has z+ = prox
,η(z) satisfy

L(z+) ≤ L(z)− 1

2

(
α + (η−1 − ρ−1)−1

)
‖z+ − z‖2 .

Remark 8.5.3. This upper bound is attained by our example diverging problem (8.26).

This is example attains our bound since the proof of Theorem 8.5.2 only introduces
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inequalities by using the following four Hessian bounds for every (u, v)

∇2
xx − eη{−L(u, ·)}(v) � αI , ∇2

yy − eη{−L(u, ·)}(v) � −(η−1 − ρ−1)−1I ,

∇2
yy − eη{L(·, v)}(u) � αI , ∇2

xx − eη{L(·, v)}(u) � −(η−1 − ρ−1)−1I .

Observing that all four of these bounds hold with equality everywhere in (8.29) and

(8.30) shows our recurrence holds with equality.

Remark 8.5.4. For generic minimax problems, Theorem 8.5.2 bounds how quickly

PPM can diverge. For any objective L that is l-Lipschitz and nearly convex-concave,

satisfying weak convexity-weak concavity (8.5) with some ρ = ε. Then since α ≥ −ρ =

−ε, the Lyapanov increases by at most O(ε) as

L(z+)− L(z) ≤ −1

2

(
α− ηρ

η − ρ

)
‖∇L(z+)/η‖2 ≤ εl2

2η2

(
1 +

η

η − ε

)
≈ εl2

η2
.

8.5.3 Proof of Theorem 8.5.2

First, we bound the Hessians of the functions defining our Lyapunov L(z).

Lemma 8.5.5. If the x-interaction dominance (8.15) holds with α ∈ R, the function

eη{L(·, y)}(x) has Hessians in x and y bounded by

(η−1 − ρ−1)−1I � ∇2
xxeη{L(·, y)}(x) � ηI and ∇2

yyeη{L(·, y)}(x) � −αI .

Symmetrically, if the y-interaction dominance (8.16) holds with α ∈ R,

∇2
xxeη{−L(x, ·)}(y) � −αI and (η−1 − ρ−1)−1I � ∇2

yyeη{−L(x, ·)}(y) � ηI.

Proof. For the Hessian bound in the x variable, this follows directly from the

Moreau envelope Hessian bounds (8.13). Considering eη{L(·, y)}(x) as a func-

tion of y, we find that its gradient is given by∇yeη{L(·, y)}(x) = ∇yL(x+, y) and
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Hessian∇2
yyeη{L(·, y)}(x) is given by

∇2
yyL(x+, y)−∇2

yxL(x+, y)(ηI +∇2
xxL(x+, y))−1∇2

xyL(x+, y)

where x+ = argminuL(u, y) + η
2
‖u−x‖2. Noting that this Hessian matches the α-

interaction dominance condition (8.16) gives our bound on −∇2
yyeη{L(·, y)}(x).

All that remains is to derive our claimed gradient and Hessian formulas in y.

Consider a nearby point y∆ = y + ∆ and denote x∆
+ = argminuL(u, y∆) + η

2
‖u−

x‖2. Consider the second-order Taylor model of the objective L around (x+, y)

denoted by L̃(u, v) with value

L(x+, y) +

∇xL(x+, y)

∇yL(x+, y)


Tu− x+

v − y


+

1

2

u− x+

v − y


T∇2

xxL(x+, y) ∇2
xyL(x+, y)

∇2
yxL(x+, y) ∇2

yyL(x+, y)


u− x+

v − y

 .

Denote the x̃∆
+ = argminuL̃(u, y∆) + η

2
‖u− x‖2. Noting this point is uniquely

defined by its first-order optimality conditions, we have

∇xL(x+, y) +∇2
xxL(x+, y)(x̃∆

+ − x+) +∇2
xyL(x+, y)∆ + η(x̃∆

+ − x) = 0 ,

=⇒ (ηI +∇2
xxL(x+, y))(x̃∆

+ − x+) = −∇2
xyL(x+, y)∆ ,

=⇒ x̃∆
+ − x+ = −(ηI +∇2

xxL(x+, y))−1∇2
xyL(x+, y)∆ .

Denote the proximal subproblem objective by M∆(u, v) = L(u, y∆) + η
2
‖u− x‖2

and its approximation by M̃∆(u, v) = L̃(u, y∆) + η
2
‖u − x‖2. Noting that

‖∇xM̃
∆(x+, y

∆)‖ = ‖∇2
xyL(x+, y)∆‖, the (η − ρ)-strongly convexity of M̃∆

bounds the distance to its minimizer by

‖x+ − x̃∆
+‖ ≤

‖∇2
xyL(x+, y)∆‖
η − ρ

= O(‖∆‖) .
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Consequently, we can bound difference in gradients between L and its model

L̃ at x̃∆
+ by ‖∇L(x̃∆

+, y
∆) −∇L̃(x̃∆

+, y
∆)‖ = o(‖∆‖). Therefore ‖∇M∆(x̃∆

+, y
∆)‖ =

o(‖∆‖). Then using the strong convexity of M∆ with this gradient bound, we

conclude the distance from x̃∆
+ to the minimizer x∆

+ is bounded by ‖x̃∆
+ − x∆

+‖ =

o(‖∆‖). Then our claimed gradient formula follows as

eη{L(·, y∆)}(x)− eη{L(·, y)}(x)

= L(x∆
+, y

∆) +
η

2
‖x∆

+ − x‖2 − L(x+, y)− η

2
‖x+ − x‖2

=

∇xL(x+, y) + η(x+ − x)

∇yL(x+, y)


Tx∆

+ − x+

∆

+ o(‖∆‖)

= ∇yL(x+, y)T∆ + o(‖∆‖) .

Moreover, our claimed Hessian formula follows as

∇yeη{L(·, y∆)}(x)−∇yeη{L(·, y)}(x)

= ∇yL(x∆
+, y

∆)−∇yL(x+, y)

= ∇yL̃(x̃∆
+, y

∆)−∇yL(x+, y) + o(‖∆‖)

=

∇2
xyL(x+, y)

∇2
yyL(x+, y)


T−(ηI +∇2

xxL(x+, y))−1∇2
xyL(x+, y)∆

∆

+ o(‖∆‖) .

Notice that −eη{−L(u, ·)}(y) has gradient at x+ of ∇x − eη{−L(x+, ·)}(y) =

∇xL(z+) = η(x − x+) and from Lemma 8.5.5 that its Hessian in x is uni-

formly lower bounded by αI . As a result, we have the following decrease in

−eη{−L(u, ·)}(y) when moving from x to x+

−eη{−L(x+, ·)}(y) ≤ −eη{−L(x, ·)}(y) +∇xL(z+)T (x+ − x)− α

2
‖x+ − x‖2

= −eη{−L(x, ·)}(y)−
(
η +

α

2

)
‖x+ − x‖2 .
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From the gradient formula (8.11), we know that ∇y − eη{−L(x+, ·)}(y) =

∇yL(z+) = η(y+ − y) and from Lemma 8.5.5 that its Hessian in y is uniformly

bounded above by −(η−1 − ρ−1)−1I . Then we can upper bound the change in

−eη{−L(x+, ·)}(v) when moving from y to y+ as

− eη{−L(x+, ·)}(y+) + eη{−L(x+, ·)}(y)

≤ ∇yL(z+)T (y+ − y) +
−(η−1 − ρ−1)−1

2
‖y+ − y‖2

=

(
η − (η−1 − ρ−1)−1

2

)
‖y+ − y‖2 .

Summing these two inequalities yields

− eη{−L(x+, ·)}(y+) + eη{−L(x, ·)}(y)

≤
(
η − (η−1 − ρ−1)−1

2

)
‖y+ − y‖2 −

(
η +

α

2

)
‖x+ − x‖2 .

Symmetrically, the change in −eη{L(·, y)}(x) from z to z+ is

− eη{L(·, y+)}(x+) + eη{L(·, y)}(x)

≤
(
η − (η−1 − ρ−1)−1

2

)
‖x+ − x‖2 −

(
η +

α

2

)
‖y+ − y‖2 .

Summing these two symmetric results gives the claimed bound.

8.6 Addendum - Deferred Figures and Proofs

8.6.1 Sample Paths From Other First-Order Methods

Figure 8.2 plots the solution paths of four common first-order methods for min-

imax problem for solving a two-dimensional nonconvex-nonconcave minimax
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problem:

min
x

max
y
L(x, y) = (x+ 3)(x+ 1)(x−1)(x−3) +Axy− (y+ 3)(y+ 1)(y−1)(y−3),

(8.31)

with four different levels of interaction term, A = 1, 10, 100, 1000. This problem

is globally ρ = 20-weakly convex and β = 172-smooth on the box [−4, 4]×[−4, 4].

Each plot in Figure 8.2 shows the sample paths generated by running 100

iterations of the given method from the twelve different initial solutions around

the boundary of the plot (4, 0), (0, 4), (−4, 0), (0,−4), (4, 2), (2, 4), (4,−2), (2,−4),

(−4, 2), (−2, 4), (−4,−2), (−2,−4) and four initial solutions towards the center

of the plot (1, 0), (0, 1), (−1, 0), (0,−1).

Plots (a)-(d) show the behavior of the Proximal Point Method (PPM) (8.7)

with η = 2ρ = 40 and λ = 1. These figures match the landscape described by

our theory: A = 1 is small enough to have local convergence to four different

stationary points (each around {±2}× {±2}), A = 10 has moderate size and ev-

ery sample path is attracted into a limit cycle, and finally A = 100 and A = 1000

give a large enough interaction term to create a globally attractive stationary

point (moreover, comparing plots (c) and (d) shows as A becomes larger the

rate of convergence increases).

Plots (e)-(h) show the behavior of the Extragradient Method (EG), which is

defined by x̃
ỹ

 =

xk
yk

+ s

−∇xL(xk, yk)

∇yL(xk, yk)


xk+1

yk+1

 =

xk
yk

+ s

−∇xL(x̃, ỹ)

∇yL(x̃, ỹ)

 (8.32)
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A = 1 A = 10 A = 100 A = 1000

Figure 8.2: Sample paths of PPM, EGM, GDA, and AGDA extending Figure 8.1.

with stepsize chosen as s = 1/2(β+A) = 1/(344+2A). This stepsize was chosen

since the objective function has a β + A-Lipschitz gradient. These figures show

that the extragradient method follows the same general trajectory as described

by our theory for the proximal point method. For smallA = 1, local convergence

occurs. For moderate sized A = 10 and A = 100, the algorithm falls into an

attractive limit cycle, never converging. For large enough A = 1000, the method

globally converges to a stationary point. The extragradient method only differs

from the proximal point method’s landscape in that it requires a larger A to
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transition into the interaction dominant regime.

Plots (i)-(l) show the behavior of Gradient Descent Ascent (GDA) (8.6) with

s = 1/2(β + A) = 1/(344 + 2A). This method is known to be unstable and di-

verge even for convex-concave problems. The same behavior carries over to our

nonconvex-nonconcave example. For small A, we still see local convergence.

However for A = 10, 100, 1000, we find that GDA falls into a limit cycle with

increasingly large radius as A grows.

Lastly, plots (m)-(p) show the behavior of Alternating Gradient Descent As-

cent (AGDA), defined by
xk+1 = xk − s∇xL(xk, yk)

yk+1 = yk + s∇yL(xk+1, yk)

(8.33)

with s = 1/2(β + A) = 1/(344 + 2A). Again for small A, we still see local

convergence, but for larger A = 10, 100, 1000, AGDA always falls into a limit

cycle.

8.6.2 Convex-Concave Optimization Analysis

Proof of Lemma 8.1.1

Observe that

M(x′, y′) ≤M(x, y′)−∇xM(x′, y′)T (x− x′)− µ

2
‖x− x′‖2

≤M(x, y) +∇yM(x, y)T (y′ − y)−∇xM(x′, y′)T (x− x′)

− µ

2
‖y − y′‖2 − µ

2
‖x− x′‖2
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where the first inequality uses strong convexity of M in x and the second uses

strong concavity in y. Symmetrically,

M(x′, y′) ≥M(x′, y)−∇yM(x′, y′)T (y − y′) +
µ

2
‖y − y∗‖2

≥M(x, y) +∇xM(x, y)T (x′ − x)−∇yM(x′, y′)T (y − y′)

+
µ

2
‖x− x′‖2 +

µ

2
‖y − y′‖2.

Combining the above two inequalities gives the first claimed inequality

µ

∥∥∥∥∥∥∥
x− x′
y − y′


∥∥∥∥∥∥∥

2

≤


 ∇xM(x, y)

−∇yM(x, y)

−
 ∇xM(x′, y′)

−∇yM(x′, y′)



Tx− x′
y − y′

.
Furthermore, when∇M(x′, y′) = 0, we have

µ

∥∥∥∥∥∥∥
x− x′
y − y′


∥∥∥∥∥∥∥

2

≤ ‖∇M(x, y)‖

∥∥∥∥∥∥∥
x− x′
y − y′


∥∥∥∥∥∥∥ ,

which finishes the proof of the second inequality.

Proof of Theorem 8.1.2

First we use Lemma 8.1.1 to conclude that if the set S is large enough, M must

have a stationary point in S. Now defineB(z, r) = {z′|‖z−z′‖ ≤ r} as the closed

Euclidean ball centered as a with radius r.

Lemma 8.6.1. Suppose M is µ-strongly convex-strongly concave in a set B(x, r) ×

B(y, r) for some fixed (x, y) and r ≥ 2‖∇M(x, y)‖/µ, then there exists a stationary

point of M in B((x, y), r/2).

Proof. Consider the constrained problem minx′∈B(x,r) maxy′∈B(y,r) M(x, y). Since

M(x, y) is strongly convex-strongly concave, it must have a unique solution

275



(x∗, y∗). The first-order optimality condition for (x∗, y∗) ensures

∇xM(x∗, y∗) = −λ(x∗ − x) and −∇yM(x∗, y∗) = −γ(y∗ − y)

for some constants λ, γ ≥ 0 that are nonzero only if x∗ or y∗ are on the boundary

of B(x, r) and B(y, r) respectively. Taking an inner product with (x∗ − x, y∗ − y)

gives  ∇xM(x∗, y∗)

−∇yM(x∗, y∗)


Tx∗ − x
y∗ − y

 = −

∥∥∥∥∥∥∥
√λ(x∗ − x)

√
γ(y∗ − y)


∥∥∥∥∥∥∥

2

≤ 0. (8.34)

Applying Lemma 8.1.1 and utilizing (8.34), we conclude that

µ

∥∥∥∥∥∥∥
x∗ − x
y∗ − y


∥∥∥∥∥∥∥

2

+

 ∇xM(x, y)

−∇yM(x, y)


Tx∗ − x
y∗ − y

 ≤ 0. (8.35)

Hence ∥∥∥∥∥∥∥
x∗ − x
y∗ − y


∥∥∥∥∥∥∥

2

≤ 1

µ

∥∥∥∥∥∥∥
 ∇xM(x, y)

−∇yM(x, y)


∥∥∥∥∥∥∥
∥∥∥∥∥∥∥
x∗ − x
y∗ − y


∥∥∥∥∥∥∥ ,

whereby ∥∥∥∥∥∥∥
x∗ − x
y∗ − y


∥∥∥∥∥∥∥ ≤

1

µ

∥∥∥∥∥∥∥
 ∇xM(x, y)

−∇yM(x, y)


∥∥∥∥∥∥∥ < r/2 ,

where the last inequality utilize the condition on r. Since (x∗, y∗) lies strictly

inside the ball B((x, y), r/2), the first-order optimality condition implies (x∗, y∗)

is a stationary point of M .

Lemma 8.6.1 ensures the existence of a nearby stationary point (x∗, y∗). Then

the standard proof of strongly monotone (from Lemma 8.1.1) and Lipschitz op-
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erators gives a contraction whenever s ∈ (0, 2µ/β2):∥∥∥∥∥∥∥
xk+1 − x∗

yk+1 − y∗


∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥
xk − x∗
yk − y∗


∥∥∥∥∥∥∥

2

− 2s

 ∇xM(xk, yk)

−∇yM(xk, yk)


Txk − x∗

yk − y∗


+ s2

∥∥∥∥∥∥∥
 ∇xM(xk, yk)

−∇yM(xk, yk)


∥∥∥∥∥∥∥

2

≤

∥∥∥∥∥∥∥
xk − x∗
yk − y∗


∥∥∥∥∥∥∥

2

− 2µs

∥∥∥∥∥∥∥
xk − x∗
yk − y∗


∥∥∥∥∥∥∥

2

+ β2s2

∥∥∥∥∥∥∥
xk − x∗
yk − y∗


∥∥∥∥∥∥∥

2

=
(
1− 2µs+ β2s2

)∥∥∥∥∥∥∥
xk − x∗
yk − y∗


∥∥∥∥∥∥∥

2

,

where the inequality utilizes (8.35) at (x, y) = (xk, yk) and the smoothness of

M(x, y).
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[156] Claudia Sagastizábal. Divide to Conquer: Decomposition Methods for
Energy Optimization. Mathematical Programming, 134(1):187–222, Aug
2012.
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