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This dissertation is dedicated to the study of combinatorial characterizations of

polarizations of powers of the graded maximal ideal in a polynomial ring, and

applications of these characterizations to questions in algebra, geometry, and

combinatorics. We first characterize polarizations of powers of the graded maxi-

mal ideal in terms of their graphs of linear syzygies, and apply this characteriza-

tion to study their Alexander duals and the question of when the Stanley–Reisner

ideals of polarizations are shellable. We then give a novel characterization of

polarizations of the same class of ideals in terms of hook tableaux. Finally, we

show that any triangulation of a product of simplices gives rise to a polarization

of a power of a graded maximal ideal.
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CHAPTER 1

INTRODUCTION

Intuitively, a polarization of a monomial ideal I is a squarefree monomial ideal

Ĩ that has many of the same homological properties of Ĩ. The first incarnation

of polarizations appeared in Hartshorne’s 1966 thesis [23], in which he used

polarizations to construct so-called “distractions” and which he used to prove

connectedness of the Hilbert scheme. Since then, polarizations have been ubiq-

uitous in the study of monomial ideals due to the ease with which they allow

one to pass from an arbitrary monomial ideal to a squarefree one. In this way,

polarizations give access to combinatorial and topological tools that only exist

for squarefree monomial ideals, such as Stanley–Reisner theory.

Historically in the literature, there has been one particular construction of a

polarization which is most commonly used; we refer to this ideal as the standard

polarization. However, it eventually became clear that this was not the only way

to polarize an ideal. Several authors have considered and used polarizations

other than the standard polarization over the years, such as the shifting operator

introduced by Aramova, Herzog, and Hibi [3] and later generalized by Murai [36];

or the polarization introduced by Nagel and Reiner in [38] in their construction of

the “complex of boxes”, which gives rise to a minimal, linear, cellular resolution

of all strongly stable ideals. Despite this, there has been no systematic study of

the variety of polarizations and properties which characterize them.

In this dissertation, we undertake this task for the case of powers of the

graded maximal ideal in a polynomial ring. We present three distinct combi-

natorial characterizations of polarizations in this case and apply them to study

questions in algebra and combinatorics. Informally, the key idea uniting all of
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these characterizations is to think of a “potential” polarizations as coming from

a set of isotone maps from the generators of the ideal to the Boolean poset, and

to ask what properties these maps must satisfy in order to give a polarization of

a power of the maximal ideal. The first characterization is in terms of subgraphs

of the graph of linear syzygies between the generators of the “potential” polar-

ization; we frequently refer to this condition as the “spanning tree condition”.

In later chapters, we show that this “spanning tree condition” can be stated in

other equivalent ways. In Part II, we show that the spanning tree condition

is equivalent to showing that a certain set of hook tableaux which arise from

the isotone maps span a certain Schur module. In Part III, we show that the

spanning tree condition is also equivalent to the “hexagon axiom” introduced by

Galashin, Nenashev, and Postnikov in [20] in their axiomatic characterization of

triangulations of root polytopes.

This dissertation is organized as follows. Part I is dedicated to studying

polarization in terms of the linear syzygy edges between their generantors. In

Chapter 2, we give a complete characterization of polarizations of powers of the

maximal ideal in terms of their graphs of linear syzygies. In Chapter 3, we utilize

this characterization to construct the Alexander dual of any polarization of a

power of the graded maximal ideal. In Chapter 4, we apply the constructions of

previous chapters to show that the Stanley–Reisner complexes of polarizations of

(x, y, z)d are always simplicial balls. Chapter 5 is dedicated to studying necessary

and sufficient conditions on potential graphs of linear syzygies to determine

when a set of valid isotone maps (as defined in Chapter 2) exists. In particular, we

give an algorithm for computing a set of isotone maps (and therefore, potentially,

a polarization) from a graph satisfying certain properties. Chapters 1-4 are based

on joint work with Gunnar Fløystad and Henning Lohne.
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In Part II, we study the L-complex of Buchsbaum and Eisenbud. In Chapter 6,

we show that the L-complex is cellular, and is in fact supported on a CW-complex

obtained from the so-called hypersimplicial complex (introduced by Batzies and

Welker in [5]) via discrete Morse theory. In Chapter 7, we rephrase the “span-

ning tree condition” from Part I in terms of a condition on the hook tableaux

corresponding to the linear syzygy edges. Chapter 7 is based on joint work with

Keller VandeBogert.

Finally, in Part III, we relate triangulations of a product of simplices ∆n−1×∆d−1

to polarizations of powers of the graded maximal ideal. In particular, we show

that every so-called trianguloid (introduced by Galashin, Nenashev, and Postnikov

in [20]) of a product of simplices gives rise to a polarization of (x1, . . . , xn)d.

3



Part I

Polarizations and Linear Syzygy

Edges
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CHAPTER 2

POLARIZATIONS OF POWERS OF GRADED MAXIMAL IDEALS

This chapter is based on joint work with Gunnar Fløystad and Henning Lohne.

2.1 Polarizations in the literature

We begin by presenting the “classical” construction of polarizations of monomial

ideals, which we call the “standard polarization”. Afterwards, we introduce

other types of polarizations which have appeared in the literature to date and

discuss their applications.

It is common for authors to define a polarization of a monomial ideal using the

following construction, which outputs what we will call the standard polarization

of a monomial ideal. The standard polarization has been used extensively in the

literature for various purposes in algebra and combinatorics; see, for instance,

work of Faridi [13], Fröberg [19], Herzog [24], Schwartau [47], and Rota and Stein

[44].

Construction 2.1.1 (Standard Polarization). Let I be a monomial ideal in the

polynomial ring S = k[x1, . . . , xn] over a field k. Let di be the largest power of the

variable xi which divides a minimal generator of I. Let X̌i = {xi1, xi2, . . . , xidi} for

each i ∈ [n], and construct the new polynomial ring S̃ = k[X̌1, . . . , X̌n] with the

union of all of these variables.

Take each generator of I of the form

xa1
1 xa2

2 . . . xan
n
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and make the following monomial

(x11x12 . . . x1a1) · (x21x22 . . . x2a2) . . . (xn1 . . . xnan)

a minimal generator of Ĩ ⊂ S̃ .

Call Ĩ the standard polarization of I. To recover the quotient ring S/I from S̃ /Ĩ,

simply cut down by the regular sequence of variable differences

σ =

n⋃
i=1

{xi1 − xi2, xi1 − xi3, . . . , xi1 − xidi}.

Although the standard polarization is what is historically meant in the lit-

erature by a “polarization” of a monomial ideal, in recent years it has become

evident that there are other ways to polarize an ideal. The following construction

was introduced by Nagel and Reiner in [38] for strongly stable ideals. It was

further studied by Yanagawa in [52].

Construction 2.1.2 (Box Polarization). Let I be a monomial ideal in the polyno-

mial ring S = k[x1, . . . , xn] over a field k. Let di be the largest power of the variable

xi which divides a minimal generator of I. Let X̌i = {xi1, xi2, . . . , xidi} for each i ∈ [n],

and construct the new polynomial ring S̃ = k[X̌1, . . . , X̌n] with the union of all of

these variables.

Take each generator of I of the form

xa1
1 xa2

2 . . . xan
n

and make the following monomial

(x11x12 . . . x1a1) · (x2a1+1x22 . . . x2a1+a2) . . . (xn,a1+···+an−1+1 . . . xn,a1+···+an)

a minimal generator of Ĩ ⊂ S̃ . Call Ĩ the box polarization of I.

6



Another instance of a non-standard polarization which has previously ap-

peared in the literature is the shifting operation introduced by Aramova, Herzog,

and Hibi in [3] for generic initial ideals. Murai further generalized this operation

in [36] for the purposes of proving a conjecture of Kalai on generic initial ideals of

Stanley–Reisner ideals of squeezed spheres. Yanagawa carried out further study

of this operation in [52]. We present here Yanagawa’s formulation of Murai’s

operator.

Construction 2.1.3 (Shifting Operator). Let T = k[x1, . . . , xN] be a polynomial

ring over a field k with N � 0. Let m be a monomial in the polynomial ring

S = k[x1, . . . , xn], and write m in the form

m =

e∏
i=1

xαi with 1 ≤ α1 ≤ · · · ≤ αe ≤ n.

Define (−)σ(a) to be the operation sending m to

mσ(a) B
e∏

i=1

xαi+ai−1 ∈ T.

For a monomial ideal I ⊂ S with minimal generating set G(I), set

Iσ(a) B
(
mσ(a) | m ∈ G(I)

)
⊂ T.

If ai+1 > ai for all i, then mσ(a) is a squarefree monomial ideal. In particular, if

ai = i for all i, then (−)σ(a) coincides with the squarefree operation (−)σ, which plays

an important role in the construction of the symmetic shifting of a simplicial

complex; see [3] for this formulation, or see [28] for Kalai’s original formulation

of a shifted complex.
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2.2 Separations and polarizations

In this section we recall the basic notions of separation of a monomial ideals and

separated models, as introduced by Fløystad, Greve, and Herzog in [16]. We also

define a polarization of a monomial ideal as a separation which is a squarefree

monomial ideal.

Notation 2.2.1. If R is a set, let k[xR] be the polynomial ring in the variables xr

where r ∈ R. If S → R is a map of sets, it induces a k-algebra homomorphism

k[xS ]→ k[xR] by mapping xs to xr if s 7→ r.

Definition 2.2.2 (Separation, Separated Model). Let R′
p
−→ R be a surjection of

finite sets such that |R′| = |R| + 1. Let r1 and r2 be the two distinct elements of R′

which map to a single element r in R. Let I be a monomial ideal in the polynomial

ring k[xR] and J a monomial ideal in k[xR′]. Then J is a simple separation of I if the

following holds:

i. The monomial ideal I is the image of J by the map k[xR′]→ k[xR].

ii. Both the variables xr1 and xr2 occur in some minimal generators of J (usually

in distinct generators).

iii. The variable difference xr1 − xr2 is a non-zero divisor in the quotient ring

k[xR′]/J.

More generally, if R′
p
−→ R is a surjection of finite sets and I ⊆ k[xR] and

J ⊆ k[xR′] are monomial ideals such that J is obtained by a succession of simple

separations of I, then J is a separation of I. J a separated model (of I) if there are no

possible nontrivial separations of J.

8



Observation 2.2.3. The minimal generators of the separation J and the ideal I

are in one-to-one correspondence. More generally, the graded Betti numbers of J

and I coincide, since we get from k[xR′]/J to k[xR]/I by dividing out by a regular

sequence of linear forms.

In [2], Altmann, Bigdeli, Herzog, and Lu show that simple separations may

be considered as deformations of the ideal I.

Any monomial ideal may be separated to its standard polarization. So clearly

any separated model is a squarefree monomial ideal. The standard polarization

may, however, be further separable, so it may not be a separated model.

Example 2.2.4. Consider the ideal I = (x2y2, x2z2, y2z2) in the polynomial ring

k[x, y, z]. The “standard polarization” of I from Construction 2.1.1 is

Ĩ = (x1x2y1y2, x1x2z1z2, y1y2z1z2).

This may be further separated to

J = (x1x2y1y2, x′1x′2z1z2, y1y2z1z2).

With the notion of separations in hand, we may now introduce a more general

definition of polarizations, which was likely first noted by Yanagawa in [52].

Definition 2.2.5 (Polarization). Let I ⊆ k[xR] be a monomial ideal and R′ → R be

a surjection of finite sets. An ideal J ⊆ k[xR′] is a polarization of I if J is squarefree

and a separation of I.

This general notion of polarization is likely first defined in [52]. By the

example above it is not true that any polarization is a separated model. However,

9



as we will see in the next section, it turns out these notions are equivalent for

Artinian monomial ideals.

We conclude this section with a general lemma which will be useful in the

proof of the main theorem of this chapter.

Lemma 2.2.6. Let I be a monomial ideal in k[x0, x1, . . . , xn] such that each generator of

I is squarefree in the x0-variable. Then if (x0 − x1) · f is in I, then for every monomial m

in f we have that x0m and x1m are in I.

Proof. Let f = xa
0 fa + xa−1

0 fa−1 + · · · + f0 where each fp have no x0-terms. Then if

(x0 − x1) f is in I, the only terms with xa+1
0 are the terms in xa+1

0 fa, and so these are

in I since we are in a Zn-graded setting. But since I is squarefree in x0, we have

x0 fa in I and so xa
0 fa in I. In this way we may “pull out” one variable at a time to

find that all terms xp
0 fp are in I for p ≥ 1.

Then in (x0 − x1) f0, the terms with x0 are those in x0 f0. Hence x0 f0 is in I and

so x0 f is in I. Again since I is multigraded, each monomial term x0m is in I. We

also get x1 f ∈ I and then each x1m ∈ I. �

2.3 Polarizations of Artinian monomial ideals

In this section, we restrict our study of polarizations to the case of Artinian

monomial ideals in a polynomial ring S = k[x1, . . . , xn]. In this case, for every

index i, some power xdi
i is a minimal generator of I.

Notation 2.3.1. Let I be an Artinian monomial ideal in the polynomial ring

S = k[x1, . . . , xn] over a field k. For each i ∈ [n], let di be the power of xi giving a

10



minimal generator of I. Let X̌i = {xi1, xi2, . . . , xid′i } for each i ∈ [n] be a set of new d′i

variables (where d′i ≥ di), and construct a new polynomial ring S̃ = k[X̌1, . . . , X̌n]

with the union of all of these variables. Denote by π the homomorphism

π : S̃ → S

xi j 7→ xi.

Let Ĩ ⊂ S̃ be a polarization of I. Then each monomial generator xa = xa1
1 · · · x

an
n of

I corresponds to the squarefree monomial

m(a) = m1(a) · m2(a) · · ·mn(a)

in Ĩ, where mi(a) is a squarefree monomial of degree ai in the variables in the set

X̌i.

To get from S̃ /Ĩ to the quotient ring S/I, divide out by a regular sequence

consisting of variable differences xip − xiq. For each i, choose (di − 1) linearly

independent such variable differences. Any such sequence of variable differences

in any order will do.

To obtain an intermediate separation of I, choose surjections pi : X̌i → X̌′i . This

gives a map of polynomial rings

S̃ → k[X̌′1, . . . , X̌
′
n].

The image of the polarization Ĩ is an ideal I′ in k[X̌′1, . . . , X̌
′
n] such that I′ is a

separation of I. Now, to get from S̃ /Ĩ to k[X̌′1, . . . , X̌
′
n]/I′, divide out by a regular

sequence of variable differences xia − xib where for each i, xia and xib are in the

same fiber p−1
i (x′) of pi, where there are |p−1

i (x′)| − 1 linearly independent such

variable differences for each fiber.
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Lemma 2.3.2. Let xa and xb be minimal generators of a monomial ideal I and m(a) and

m(b) the corresponding generators in a polarization of I. Fix an index i. If ai ≤ bi and

a j ≥ b j for every j , i, then the i’th part mi(a) divides mi(b).

Proof. Proceed by induction on d = bi − ai. If d = 0 then clearly b = a and there

is nothing to prove. We may also assume that ai ≥ 1, since otherwise there is

nothing to prove. Suppose, seeking contradiciton, that mi(a) does not divide

mi(b). Then we may factor mi(b) as ti(b) · ni(b) where ti(b) has degree d + 1 and

has no common variable with mi(a). (We are of course using here that mi(b)

is squarefree.) For simplicity, re-index variables so that ti(b) = xi1xi2 · · · xi,d+1.

We now in k[X̌1, . . . , X̌n]/Ĩ divide out by all the variable differences involving X̌ j-

variables where j , i, and by all variable differences xir−xi,r+1 for r = d+2, . . . , di−1.

Thus we are collapsing all the X̌ j-variables into the single variable x j and the

variables xi,d+2, . . . , xi,ni into a single variable xi. We get a quotient ring

k[xi1, . . . , xi,d+1, x1, . . . , xn]/I′, (2.1)

where I′ is a separation of I. Note that m(a) collapses to xa in I′.

Consider now the variable difference xi,d+1 − xi in the polynomial ring above.

We see that

(xi,d+1 − xi)xi1 · · · xid · x
ai−1
i

∏
j,i

xa j

j

= xi1 · · · xi,d+1 · x
ai−1
i

∏
j,i

xa j

j − xi1 · · · xi,d · x
ai
i

∏
j,i

xa j

j (2.2)

vanishes in the quotient ring (2.1): the first term is divisible by the image of m(b)

in I′ (note that bi = (d + 1) + (ai−1)), and the second term is divisible by the image

of m(a). Since xi,d+1 − xi is not a zero divisor (it belongs to a regular sequence), we
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get from (2.2) that

n = xi1 · · · xid · x
ai−1
i

∏
j,i

xa j

j (2.3)

is in I′. Now if d = 1, this monomial has Zn-degree a. But the monomial xa is in I′,

with the same degree. Since these are the Zn-degree of a generator of I, there can

only be a single monomial in I′ with this Zn-degree. We get a contradiction. Now

suppose d ≥ 2. Then n is divisible by a generator m′(c) in I′ which can not be xa.

We will have each c j ≤ a j for j , i, and so ci > ai. Furthermore, we have bi > ci

since n in (2.3) has i-degree d + ai − 1 = bi − 1. By induction on d, considering

the polarized ideal J, the i’th part mi(a) here divides the i’th part mi(c). But then

going to I′ then xai
i divides the image of m′i(c), and so xai

i would divide n of (2.3),

a contradiction. �

Remark 2.3.3. If m(a) is a minimal generator of Ĩ, then Lemma 2.3.2 implies

that mi(a) will divide mi(0, . . . , ni, . . . , 0) which of course is just m(0, . . . , ni, . . . , 0).

Thus, if the polarization of xdi
i is xi1xi2 · · · xidi , then every xi-variable occurring

in the minimal generators of J are among these variables, and so we may take

X̌i = {xi1, . . . , xidi}.

As we saw in Example 2.2.4, the following result is quite particular to Artinian

monomial ideals.

Corollary 2.3.4. Every polarization of an Artinian monomial ideal I is a separated

model for I.

Proof. If the polarization J was not a separated model, then let J′ be a further

simple separation. Since I in k[x1, . . . , xn] is an Artinian monomial ideal, every

variable xi of course occurs in a minimal generator of I, in fact xdi
i is a minimal

generator. Then if J′ is in k[X̌′1, . . . , X̌
′
n] then every variable in this polynomial ring
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must also occur in a generator of J′, by the definition of a separation. By the above

Lemma 2.3.2 and Remark 2.3.3, if xdi
i polarizes to xi1 · · · xidi then X̌′i = {xi1, . . . , xidi}.

But J is obtained from J′ by dividing out by a variable difference xia − xib. Then

the image of xi1 · · · xidi in J would not be squarefree, a contradiction. �

2.4 Isotone maps and linear syzygy edges

The material in this section is a summary of the combinatorial characterization

of polarizations of powers of the graded maximal ideal m in a polynomial ring

given by the author, Fløystad, and Lohne in [1]. The idea is to put a set of

partial orders ≥i on the lattice points of a dilated simplex (which are in bijection

with the generators of a power of m) and view a “potential polarization” as

coming from a set of isotone maps from the lattice points of the dilated simplex

to the Boolean lattice. One may visualize these potential polarizations as a

graph of linear syzygies among the generators of the “potentially polarized”

ideal. Theorem 2.5.1 gives a complete characterization of which of these isotone

maps give “honest” polarizations in terms of a combinatorial condition on the

corresponding graph of linear syzygies.

Notation 2.4.1. Fix integers n and d, and let S = k[x1, . . . , xn] be a polynomial over

a field k. Let X̌i = {xi1, . . . , xid} be a set of variables, and let S̃ = k[X̌1, . . . , X̌n] be a

polynomial ring in the union of all these variables. Denote by m = (x1, . . . , xn) the

graded maximal ideal of S .

Denote by ∆Z(n, d) = ∆(n, d)∩Zn the set of lattice points of the dilated simplex

d ·∆n−1, i.e., the set of tuples a = (a1, . . . , an) of non-negative integers with
∑n

i ai = d.

Consider the polytopal CW-complex with the underlying space d · ∆n−1, with
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CW-complex structure induced by intersection with the cubical CW-complex

structure on Rn given by the integer lattice Zn. Denote by T (n, d) the one-skeleton

of this cell complex.

Observation 2.4.2. The elements of ∆Z(n, d) are exactly the exponent vectors of

the minimal generating set of the ideal md.

Notation 2.4.3. Let ei ∈ Nn be the ith unit vector in Nn. For a given a, denote by

Supp(a) the support of a, that is, the set of all i such that ai > 0. If B is a subset of

[n], denote by 1B the n-tuple
∑

i∈B ei. For example, if B = [n], then 1B = (1, . . . , 1).

In the following definitions, we introduce some key subgraphs of T (n, d)

which will be critical for characterizing polarizations of md combinatorially.

Definition 2.4.4 (Complete down-graph). Given c ∈ ∆Z(n, d +1) and i, j ∈ Supp(c),

there is an edge between c − ei and c − e j in T (n, d) denoted (c; i, j). Every edge

in T (n, d) can be realized as an edge (c; i, j) for unique c, i, and j. An n-tuple

c ∈ ∆Z(n, d + 1) induces a subgraph of T (n, d) called the complete down-graph D(c)

on the points c − ei for i ∈ Supp(c). If R ⊆ [n], denote by DR(c) the complete graph

with edges (c; r, s) for r, s ∈ R.

Definition 2.4.5 (Complete up-graph). Any a ∈ ∆Z(n, d − 1) also determines a

subgraph of T (n, d): the complete up-graph U(a) consisting of points a + ei for

i = 1, . . . , n with edges (a + ei + e j; i, j) for i , j.

Remark 2.4.6. The complete down-graph D(c) induces a simplex of full dimen-

sion d − 1 if and only if ci ≥ 1 for all i, i.e., c has full support. For each a in

∆Z(n, d − 1), the induced simplex of the up-graph U(a) always has full dimension

d − 1.
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(3,0,0)

(0,3,0) (0,0,3)

Figure 2.1: The graph T (3, 3).

Example 2.4.7. The graph T (3, 3) pictured in Figure 2.1 has three “complete

down-triangles” with full support corresponding to the vectors (2, 1, 1), (1, 2, 1),

and (1, 1, 2) in ∆Z(n, d + 1). It also has six “complete up-triangles”.

We now introduce a set of partial orders ≥i for each i ∈ [n].

Definition 2.4.8 (The Partial Order ≥i). Adopt notation and hypotheses of Nota-

tion 2.4.1. Fix an index 1 ≤ i ≤ n. Define (∆Z(n, d),≥i) to be the poset with ground

set ∆Z(n, d) and partial order ≥i such that b ≥i a if bi ≥ ai and b j ≤ a j for j , i.

Observation 2.4.9. The partial order ≥i as in Definition 2.4.8 is graded, where

a ∈ ∆Z(n, d) has rank ai.

The maps in the following construction will be play an important role in the

combinatorial characterization of md.

Construction 2.4.10 (Isotone Maps). Adopt notation and hypotheses of Notation

2.4.1. Let Bd be the Boolean poset on [d] and {Xi}1≤i≤n be a set of rank-preserving
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isotone maps

Xi : (∆Z(n, d),≤i)→ Bd.

For any a ∈ ∆Z(n, d), let mi(a) =
∏

j∈Xi(a) xi j and m(a) =
∏n

i=1 mi(a). Let J be the ideal

in k[X̌1, . . . , X̌n] generated by the m(a).

Definition 2.4.11 (Linear Syzygy Edge). Let (c; i, j) be an edge of T (n, d), where

c ∈ ∆Z(n, d + 1). Then (c; i, j) is a linear syzygy edge (or LS-edge) if there is a

monomial m of degree d − 1 such that

m(c − ei) = x jr ·m and m(c − e j) = xis ·m,

for suitable variables x jr ∈ X̌ j and xis ∈ X̌i. This edge gives a linear syzygy

between the monomials m(c − ei) and m(c − e j). Equivalently, in terms of the

isotone maps,

Xp(c − ei) = Xp(c − e j)

for every p , i, j. Observe that both mi(c − ei) and m j(c − e j) are common factors

of m(c − ei) and m(c − e j).

Sometimes, one may wish to consider whether two elements of ∆Z(n, d) would

share a linear syzygy edge with respect to a subset of [n].

Definition 2.4.12 (R-Linear Syzygy Edge). Let R ⊆ [n] and c ∈ ∆Z(n, d + 1) with R

contained in the support of c. Let r, s ∈ R. Define (c; r, s) to be an R-linear syzygy

edge if

Xp(c − er) = Xp(c − es) for p ∈ R \ {r, s}.

By the isotonicity of the Xp, for p = r, s,

Xr(c − er) ⊆ Xr(c − es), Xs(c − es) ⊆ Xs(c − er).

Let DR(c) be the complete graph with edges (c; r, s) for r, s ∈ R.
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(c1, c2, c3 − 1)
(c; 2, 3) (c1, c2 − 1, c3)

(c; 1, 3)

(c1 − 1, c2, c3)

(c; 1, 2)

n · x1i3 x2 j3 n · x1i2 x3 j2

n · x2i1 x3 j1

Figure 2.2: A down-triangle and its labeled monomials

The following lemma tells us that the monomials assigned to vertices of a

down-triangle by a set of isotone maps must have a common factor which is easy

to describe.

Lemma 2.4.13. Let c ∈ ∆Z(n, d) have support C ⊆ {1, 2, . . . , n}. The monomials assigned

to the vertices in the down-graph D(c) by the maps Xi have a common factor of degree

c − 1C. This common factor is
∏

i∈C mi(c − ei).

Proof. Fix an element j ∈ C. For the order ≥k we have c − e j ≥k c − ek for every

k ∈ C. Hence Xk(c − ek) is contained in Xk(c − e j) for every k ∈ C. Thus m(c − e j)

has mk(c − ek) as a factor for each k ∈ C. �

Example 2.4.14. Let m = 3 and c = (c1, c2, c3) be in ∆+
3 (n + 1). On the left in Figure

2.2 is the down triangle D(c). Let

n = m1(c − e1) · m2(c − e2) · m3(c − e3).

Then the monomials associated to the vertices of this down-triangle are shown

to the right in Figure 2.2.

The following lemma turns out to be a useful tool for induction, and for

applications in later sections.
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x1y1w1

x1z1w1

x2y1z2

y1z2w1

x1y1w1

x1z1w1

x2y1z2

Figure 2.3: R-linear syzygy edges where R = {2, 3, 4}.

Lemma 2.4.15. Let c ∈ ∆Z(n, d + 1). If the set of linear syzygy edges in LS(c) contains

a spanning tree for D(c), then for each R ⊆ supp(c), the set of R-linear syzygy edges

contains a spanning tree for DR(c).

Example 2.4.16. Consider the case of four variables and c = (1, 1, 1, 1). Write

x, y, z,w for x1, x2, x3, x4, respectively. On the left of Figure 2.3 is the down-graph

D(c) with the three thick edges the linear syzygy edges.

Let R = {2, 3, 4}. On the right is the down-graph DR(c) where the two thick

edges are the R-linear syzygy edges and the relevant variables marked in bold.

Proof of Lemma 2.4.15. Let Q be the complement of R in Supp (c). Let r and s be

two elements in R. There is a path from c − er to c − es in D(c) consisting of linear

syzygy edges. It may be broken up into smaller paths: From c − er = c − er0 to

c − er1 , from c − er1 to c − er2 , ..., from c − erp−1 to c − erp = c − es where on the path

from c−eri−1 to c−eri the only vertices c−eq with q ∈ R are the end vertices q = ri−1

and q = ri while the in-between vertices c − eq all have q ∈ Q. We claim that each

edge from c − eri−1 to c − eri is an R-linear syzygy edge. This will prove the lemma.

Let the path from c − ri−1 to c − ri be

c − eri−1 = c − eq0 , c − eq1 , . . . , c − eqt = c − eri
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where q1, . . . , qt−1 are all in Q. We must show that

Xp(c − eri−1) = Xp(c − eri) for p ∈ R \ {ri−1, ri}. (2.4)

But since the edges on the path are linear syzygy edges we have

Xp(c − eq j−1) = Xp(c − eq j) for p ∈ supp(c) \ {q j−1, q j}.

Since q1, . . . , qt−1 are not in R we get (2.4) �

2.5 Proof of the main theorem

We conclude this chapter by presenting and proving a complete combinatorial

characterization of all polarizations of md in terms of their graphs of linear

syzygies.

Theorem 2.5.1. Adopt notation 2.4.1. A set of isotone maps X1, . . . , Xn as in Con-

struction 5.0.11 determines a polarization of the ideal (x1, . . . , xn)d if and only if for

every c ∈ ∆Z(n, d + 1), the linear syzygy edges LS(c) contain a spanning tree for the

down-graph D(c).

Example 2.5.2. Figure 2.4 depicts the graph of linear syzygies for a polarization

of (x, y, z)3. Notice that at most one edge is removed from each down-triangle, so

it satisfies the spanning tree condition of Theorem 2.5.1.

Before stating the technical propositions and lemmas required to prove Theo-

rem 2.5.1, we establish some notation we will be used without comment for the

remainder of this section.
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x1x2y2 x1x2z2

x1x2x3

y1y2y3 z1z2z3

x1z1z2x2y1y2

y1y2z2 y1z2z3

x1y1z2

Figure 2.4: An example of a polarization of (x, y, z)3.

Notation 2.5.3. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two n-tuples in ∆z(n, d).

Let [n] = A ∪ B be the disjoint set partition such that ai ≥ bi for i ∈ A and ai < bi

for i ∈ B. Define

d(a,b) B
∑
i∈B

(bi − ai) =
∑
i∈A

(ai − bi) (2.5)

to be a measure of the distance between a and b. Note that the distance may be

measured using only the index set B which in turn depends on the ordered set

(a,b). It should thus really be written B(a,b). When we measure the distance

between two vertices, the first will normally be denoted by a variation on a and

the second a variation on b.

We have the partial order a ≤ b if each ai ≤ bi. The least upper bound for a

and b in this partial order is

a ∨ b = (max{a1, b1}, . . . ,max{an, bn}).

The main ingredient of the proof of Theorem 2.5.1 is the following technical

Proposition.

Proposition 2.5.4. Let a,b ∈ ∆Z(n, d). Suppose that for every c ∈ ∆Z(n, d + 1), the

linear syzygy edges LS(c) contains a spanning tree for the down-graph D(c). Then there
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is a path

a = b0,b1, . . . ,bN = b

in ∆Z(n, d) such that:

1. Every bi ≤ a ∨ b,

2. Every m(bi) divides the least common multiple lcm(m(a),m(b)),

3. The edge from bi−1 to bi is a linear syzygy edge for each i.

We call such a path an LS -path from a to b.

We begin by proving Proposition 2.5.4 when the distance between a and b is

one.

Lemma 2.5.5. When the distance between a and b is one, there is an LS-path from a to

b.

Proof. In this case there is a unique c ∈ ∆Z(n, d + 1) such that a = c − ei and

b = c−e j, and then a∨b = c. Let T in the linear syzygy edges LS(c) be a spanning

tree for D(c). Then there is a unique path from a to b in T . We show that for

any m(u) on this path, m(u) divides lcm(m(a),m(b)). It is enough to show for any

k ∈ Supp (c), any xk-variable in m(u) is contained in either the xk-variables of m(a)

or the xk-variables of m(b). There are two cases to consider.

Case 1. If the path from a to b does not contain c − ek, then since all edges on the

path are linear syzygy edges, Xk(bi−1) = Xk(bi) for every i.

Case 2. It the path from a to b contains c − ek, say this is bt, then:

• Xk(bi−1) = Xk(bi) for i < t and these are all equal to Xk(a),
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• Xk(bi) = Xk(bi+1) for i > t and these are all equal to Xk(b),

• Xk(bt) = Xk(c − ek) is contained in both Xk(a) and Xk(b) by the isotonicity of

Xk.

�

Proof of Proposition 2.5.4. This proof has been divided up into three parts. In Part

A, we define the setting, establish notation, and split our desired path into three

pieces. In Part B, we prove several facts which give more information about one

of these pieces of the path. Finally, in Part C, we connect these three paths and

show this new path has all of the desired properties.

Part A. In this part we define the setting. Take distinct a and b in ∆Z(n, d). Assume

the distance d(a,b) ≥ 2 since the case of distance 1 is done above. Let

B = B(a,b) = {i | bi > ai}, A> = {i | ai > bi}, A= = {i | ai = bi},

and A = A> ∪ A=. We want to consider b′ which are in some sense “close” to b.

Let P(b) consist of all b′ ∈ ∆Z(n, d) such that

(1.) – For i in B, bi = b′i

– For i in A, b′i ≤ ai.

(2.) There is some LS-path from b′ to b where the vertices u on the path satisfy

– u ≤ a ∨ b (which, since we are assuming an LS-path, follows from 1

above),

– m(u) divides lcm(m(a),m(b)).
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Now let the subset A1 of A consist of all coordinate indices i in A such that

there is some b′ in P(b) with strict inequality b′i < ai. Let A0 be the complement

A \ A1. It is the intersection of all the A= associated to b′ in P(b). In particular note

that:

(i) A1 ⊇ A> (since b ∈ P(b)), so A1 is not empty and A0 ⊆ A=.

(ii) b′i = ai = bi for i ∈ A0,

(iii) d(a,b′) = d(a,b) for b′ ∈ P(b)

where (iii) follows because the B-sets B(a,b′) = B(a,b) and the distance may be

measured by this; see equation (2.5) in Notation 2.5.3.

Choose β ∈ B and let R = A1 ∪ {β}. Consider the down-graph DR(a + eβ). With

β fixed, there is by Lemma 2.4.15 an R-linear syzygy edge (a + eβ; β, α) for some

α in A1. This is an edge from a to a + eβ − eα. Since α ∈ A1 there is a b′ ∈ P(b)

with b′α < aα. Then the B-sets (see Notation 2.5.3) B(a + eβ − eα,b′) ⊆ B(a,b′), with

equality unless aβ + 1 = bβ in which case the the former set comes from removing

β from the latter. In any case one has

d(a + eβ − eα,b′) = d(a,b′) − 1 (= d(a,b) − 1).

By induction on distance there is an LS-path

a + eβ − eα = b0,b1, · · · ,bN = b′. (2.6)

So we have that

• each m(b j) divides lcm(m(a + eβ − eα),m(b′)), and

• each b j ≤ (a + eβ − eα) ∨ b′ ≤ a ∨ b.
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There may be elements on this LS-path such that m(b j) does not divide

lcm(m(a),m(b)). But m(b j) will divide if we get sufficiently close to b′ as we

show in Fact 2.5.7 below. If a + eβ − eα and b′ have equal i’th coordinates for every

i ∈ B, the distance d(a,b) would be 1, but we are assuming the distance is ≥ 2. So

a + eβ − eα and b′ do not have equal i’th coordinate for every i ∈ B. Let bp be the

last element on the path (2.6) for which bp
k , b′k for some k ∈ A0 ∪ B.

Part B. In this part, in Facts 2.5.6, 2.5.7, and 2.5.8, we investigate in detail the path

from bp to b′ = bN .

Fact 2.5.6. There is a unique k ∈ A0 ∪ B such that bp
k , b′k. For every i ∈ A0 ∪ B and

j = p, . . . ,N we have b j
i = b′i = bi, save for j = p and i = k when bp

k = bp+1
k − 1 which is

b′k − 1 = bk − 1.

Proof. Clearly, by the definition of bp, we have that the b j
i are all equal to b′i for

i ∈ A0 ∪ B and j = p + 1, . . . ,N. If i ∈ B then b′i = bi since b′ ∈ P(b). If i ∈ A0 then

b′i = bi by the equation (ii) in Part A of this proof. Furthermore we must have

bp
k = bp+1

k ± 1 which is b′k ± 1. Note that

bp
i ≤ max{ai, bi} = bi, i ∈ A0 ∪ B. (2.7)

Since the edge from bp to bp+1 is an LS-edge, there are exactly two coordinates k, `

where bp and bp+1 are distinct. Since bp+1
k = bk we must by (2.7) have bp

k = bp+1
k − 1.

Then we will have bp
` = bp+1

` + 1. If ` ∈ A0 ∪ B then bp+1
` = b′` = b` which together

with the inequality (2.7) gives a contradiction. Thus we have a unique k in A0 ∪ B.

Whence when i ∈ A0 ∪ B and i , k we have bp
i = bp+1

i = b′i = bi. �

Fact 2.5.7. For all b j with j = p, . . . ,N we have

i) b j ≤ a ∨ b,
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ii) m(b j) divides lcm(m(a),m(b)).

Proof. Part i) is already noted when we defined the path from a + eβ − eα to b′.

Now we do part ii). We know that mt(b j) divides lcm(mt(a + eβ − eα),mt(b′)) for

every t.

(a.) Let t ∈ A1. There is an R = A1 ∪ {β}-linear syzygy between m(a) and

m(a + eβ − eα) and so mt(a) = mt(a + eβ − eα) for t ∈ A1 \ {α}. For t = α then

mα(a + eβ − eα) divides mα(a) by Xα being isotone. From this and the defining

requirements on b′, it follows that mt(b j) divides lcm(m(a),m(b)) for t ∈ A1.

(b.) Let now t ∈ A0 ∪ B. The edges on the path between bp and b′ are LS-edges.

It follows then from Fact 2.5.6 that for each t ∈ (A0 ∪ B) \ {k} and j = p, . . . ,N that

mt(b j) = mt(b′). When t = k, since bp
k = bp+1

k −1 the part mk(bp) divides mk(bp+1) and

we will further have all mk(b j) equal for j = p + 1, . . . ,N, since these b j are related

by LS-edges, and have the same k’th coordinate. The upshot is that also mk(b j)

divides mk(b′). Thus mt(b j) divides mt(b′) for every t ∈ A0 ∪ B. Since b′ ∈ P(b), the

mt(b′) divide lcm(m(a),m(b)) and we are done. �

The following is the main technical detail that makes the proof work. It

ensures that we can use induction on distance in Part C. To achieve this we need

A0 as small as possible, and therefore introduce the neighbourhood P(b) of b.

(But this had to be balanced against A1, the complement of A0 in A, not being too

big in order to construct the LS-path in (2.6) by induction.)

Fact 2.5.8. The coordinate k ∈ B.

Proof. By Fact 2.5.7 m(b j) divides lcm(m(a),m(b)) and b j ≤ a∨b for j = p, . . . ,N. If

k ∈ A0 then by Fact 2.5.6 bp
i = b′i = bi for each i ∈ B. So bp fulfills the requirement
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to be in P(b). But then by the equation (ii) in Part A, one has that bp
k = ak = bk

contradicting Fact 2.5.6. �

Part C. In this last part we splice three paths together to make an LS-path from

a to b. Consider the distance between a and bp. For i ∈ A we have bp
j ≤ a j since

bp ≤ a ∨ b. For i ∈ B \ {k} we have bp
i = b′i = bi > ai and when i = k then ak < bk

and bp
k = bk − 1. Thus, by looking at the terms with coordinates in B, the distance

d(a,bp) = d(a,b) − 1. By induction there is an LS-path from a to bp. We now have

three LS-paths which we splice:

• The LS-path from a to bp. All m(u) on this path have i) u ≤ a ∨ bp ≤ a ∨ b

and ii) m(u) divides lcm(m(a),m(bp)) which again divides lcm(m(a),m(b))

by Fact 2.5.7.

• The LS-path from bp to b′. We refer to Fact 2.5.7 concerning the terms here.

• The LS-path from b′ to b with properties required by the definition of P(b).

Splicing these three LS-paths together we get a path of linear syzygy edges

from m(a) to m(b) where all m(u) on this path have i) u ≤ a∨b and ii) m(u) divides

lcm(m(a),m(b)). Thus we have an LS-path from a to b. �

We show first Part a., that if the isotone maps {Xi} give a polarization, then

for each c ∈ ∆Z(n, d + 1) the linear syzygy edges LS(c) of the down-graph D(c)

contain a spanning tree for this down-graph.

Proof of Theorem 2.5.1, ( =⇒ ). We assume that the isotone maps {Xi} give an ideal

J which is a polarization. We shall prove that every down-graph D(c) contains

a spanning tree of linear syzygy edges. For simplicity we shall assume Supp (c)
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has full support [n] = {1, 2, . . . , n}. The arguments work just as well in the general

case. Since by Lemma 2.4.13

m =

n∏
i=1

mi(c − ei)

of degree c − 1 is a divisor of m(c − ev) for any c − ev in D(c), we may write

m(c − ev) = m · n(c − ev) where n(c − ev) has degree 1 − ev. For two distinct vertices

c − ev and c − ew in D(c) we define the distance d(m(c − ev),m(c − ew)) to be the

number of k ∈ [m] such that either:

• The (unique) xk-variables of n(c − ev) and of n(c − ew) are distinct,

• k = v (then n(c − ev) has no xv-variable),

• k = w (then n(c − ew) has no xw-variable),

Note that if the distance between m(c − ev) and m(c − ew) is 2, then the set of

k’s is {v,w} and there is a linear syzygy between these monomials. Suppose now

the vertices of D(c) can be divided into two distinct subsets V1 and V2 such that

there is no linear syzygy edge between a vertex in V1 and a vertex in V2.

Let c − ev in V1 and c − ew in V2 be such that the distance d between m(c − ev)

and m(c − ew) is minimal. We must have d ≥ 3 and the number of vertices m ≥ 3.

For simplicity we may assume v = 1 and w = 2 and that we may write

n(c − e2) = x1i1 x3i3 · · · xnin , n(c − e1) = x2 j2 x3 j3 · · · xn jn ,

where xpip , xp jp for p = 3, . . . , d and xpip = xp jp for p > d where d ≥ 3.

Consider the graded ring k[X̌1, . . . , X̌n]/J and divide out by the regular se-

quence xpip − xp jp for p = 4, . . . , d. This is a regular sequence, since we assume we
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have a polarization. We get a quotient algebra k[X̌′1, . . . , X̌
′
n]/J′ and denote by xp

the class xpip = xp jp for p ≥ 4. In J′ we have generators

m(c − e2) = m · n(c − e2), n(c − e2) = x1i1 x3i3 x4 · · · xn

m(c − e1) = m · n(c − e1), n(c − e1) = x2 j2 x3 j3 x4 · · · xn

Now x3i3 − x3 j3 is a non-zero divisor of k[X̌′1, · · · , X̌
′
n]/J′. Consider

(x3i3 − x3 j3)x1i1 x2 j2 x4 · · · xn ·m.

It is zero in this quotient ring, and so

m′ = x1i1 x2 j2 x4 · · · xn ·m

is zero in this quotient ring and so must be a generator of J′ of degree c − e3. But

then the generator of this degree in the polarization J must be

m′ = x1i1 x2 j2 x4k4 · · · xnkn ·m

where each kp is either ip or jp. Hence all kp = ip = jp for p > d. But then we see

that the distance between m′ and m(c − e2) is ≤ d − 1 and similarly the distance

between m′ and m(c − e1) is ≤ d − 1. Whether m′ is now in V1 or in V2 we see that

this contradicts d being the minimal distance. �

Proof of Theorem 2.5.1, (⇐= ). We shall now prove that if each down-graph D(c)

contains a spanning tree of linear syzygy edges, then J will be a polarization.

Order the variables in each X̌i in a sequence xi1, xi2, . . . , xin. Let X̌′i consist of

xi1, . . . , xipi , xi so we have a surjection X̌i → X̌′i for each i sending xi j to itself for

j ≤ pi, and to xi for j > pi. Denote the image of J in k[X̌′1, . . . , X̌
′
n] by J′ and

the image of m(a) by m′(a). The quotient ring k[X̌′1, . . . , X̌
′
n]/J′ is obtained from

k[X̌1, . . . X̌n]/J by dividing out by variable differences xi j − xi, j+1 for i = 1, . . . n and
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j > pi. Assume that this is a regular sequence. We show that if we now divide

out by xi,pi − xi,pi+1 this is a non-zero divisor of k[X̌′1, . . . , X̌
′
n]/J′. By continuing we

get eventually that k[x1, . . . , xn]/(x1, . . . , xn)d is a regular quotient of k[X̌1, . . . , X̌n]/J

and so J is a polarization of (x1, . . . , xn)d.

Write x′i = xi,pi . Suppose (x′i − xi) · f = 0 in k[X̌′1, . . . , X̌
′
n]/J′ where f is a polyno-

mial. By Lemma 2.2.6 (with x′i = xi,pi taking the place of x0), we must show that if

m is a monomial such that x′i ·m = 0 and xi ·m = 0, then m = 0 in the quotient

ring. So some generator m′(a) of J′ divides x′im and some generator m′(b) divides

xim.

By Proposition 2.5.4 there is an LS-path from m(a) to m(b) consisting of linear

syzygy edges and such that each u on this path has u ≤ a ∨ b and m(u) on this

path divides lcm(m(a),m(b)). The image m′(u) then divides x′i xim. We will show

by induction on the length of the path that some monomial m′(u) on this path

divides m, and so m is zero in the quotient ring k[X̌′1, . . . , X̌
′
n]/J′.

If the path has length one, there is a linear syzygy edge between m(a) and

m(b). Write

x′i ·m = m′(a) · n0(a), xi ·m = m′(b) · n0(b).

Write also m = (x′i)
p(xi)q · n where n does not contain x′i or xi. If none of m′(a) or

m′(b) divides m, then

m′(a) = (x′i)
p+1(xi)q′ · n1(a), m′(b) = (x′i)

p′(xi)q+1 · n1(b),

where p′ ≤ p and q′ ≤ q (and n1(a) and n1(b) do not contain x′i or xi). But since the

edge from a to b is a linear syzygy edge, we must have p′ = p, q′ = q. But a linear

syzygy edge involves variables of distinct xi-type, which is not so here. Thus one

of m′(a) or m′(b) must divide m.
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Suppose now the path has length ≥ 2.

Case ai ≥ bi. Let a to a′ be the first edge along the path. Then the coordinate

a′i ≤ ai.

If i) the coordinates ai and a′i are equal, the xi-type variables of m(a) and m(a′)

are the same, since this is a linear syzygy edge. Since m′(a) divides x′im we get

that m′i(a
′) divides x′im. If ii) a′i < ai then when going from m(a) to m(a′) some

xi-type variable drops out from mi(a) by isotonicity of Xi and so also m′i(a
′) divides

x′im.

Since the path from a to b is an LS-path, m′(a′) divides x′i xim. For j , i, then

m′j(a
′) must divide m since m′j(a

′) contains no xi-type variable. The upshot is that

m′(a′) divides x′im. Considering the LS-path from a′ to b, by induction on path

length, some m′(u) along this path divides m.

Case ai ≤ bi. Let b to b′ be the first edge along the path going from b to a. Then

the coordinate b′i ≤ bi. Now the same argument as in the case above works in this

case. �
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CHAPTER 3

ALEXANDER DUALS OF POLARIZATIONS OF POWERS OF THE

MAXIMAL IDEAL

This chapter is based on joint work with Gunnar Fløystad and Henning Lohne.

In this chapter, we will describe the Alexander dual ideal of any polarization

of the ideal (x1, . . . , xn)d. The description is a direct construction involving the

isotone maps {Xi}i∈[n] from the previous chapter.

In the Section 3.1, we will introduce rainbow monomial ideals and show that

the class of rainbow monomial ideals with linear resolution is exactly Alexander

dual to the class of polarizations of Artinian monomial ideals. In Section 3.2,

we restrict our attention to polarizations of powers of the graded maximal ideal

and use the constructions in Chapter 2 to give a construction of the Alexander

dual. In Section 3.3, we rephrase the main theorem of this chapter in terms of

simplified versions χi of the Xi, which are isotone maps χi : ∆Z(n, d) → {0 < 1},

and present some key lemmas and definitions. The proofs of these key lemmas

are in Section 3.4.

3.1 Alexander duals of polarizations of Artinian monomial ide-

als

First, we recall the definition of the Alexander dual of an ideal.

Definition 3.1.1 (Alexander Dual). Let I be a squarefree monomial ideal in a

polynomial ring S . The Alexander dual ideal I∨ of I is the monomial ideal in S
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whose monomials are precisely those that have nontrivial common divisor with

every monomial in I, or equivalently, every generator of I.

Definition 3.1.2 (Rainbow Monomial). Consider each set of variables X̌i, i =

1, . . . , n as a color class of monomials. A monomial x1i1 x2i2 · · · xnin with one variable

of each color is a rainbow monomial.

Proposition 3.1.3. The class of ideals generated by rainbow monomials and with m-

linear resolution is precisely the class which is Alexander dual to the class of polarizations

of Artinian monomial ideals in m variables:

a. Let J be a polarization of an Artinian monomial ideal I in k[x1, . . . , xn]. The

Alexander dual ideal of J is generated by rainbow monomials and has m-linear

resolution.

b. If an ideal J′ is generated by rainbow monomials and has m-linear resolution (and

every variable in the ambient ring occurs in some generator of the ideal), then its

Alexander dual J is a polarization of an Artinian monomial ideal in m variables.

Proof. a. Since I is Cohen-Macaulay of codimension m, the same is true for J.

Then the Alexander dual of J is generated in degree m and has m-linear resolution

[11]. But if m is a generator for this Alexander dual, it has a common variable

with xi1xi2 · · · xini (the polarization of xni
i ) for every i = 1, . . . ,m. Hence m must

have a variable of each of the m colors.

b. By [11], the Alexander dual J of J′ is Cohen-Macaulay of codimension

m. For each color class X̌i = {xi1, . . . , xini}, the ideal J will contain the monomial

which is the product of all these variables.

If we for every color class i divide the quotient ring k[X̌1, . . . , X̌n]/J by all the

variable differences xi, j−xi, j−1 for j = 2, . . . , di, we get a quotient ring k[x1, . . . , xn]/I
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where I is Artinian since it contains xdi
i for each i. Hence like J the ideal I is Cohen-

Macaulay of codimension n. Then the sequence we divided out by must have

been a regular sequence, and so J is a polarization of I. �

Remark 3.1.4. Considering the X̌i as color classes, both the Artinian ideal I,

the polarization J and its Alexander dual are generated by colored monomials.

Such ideals and the associated simplicial complexes have been considered in

various settings, like balanced simplicial complexes by Stanley [49], relating

to the colorful topological Helly theorem by Kalai and Meshulam, [29], and

resolutions of such ideals by the second author [14].

In the following sections, we describe the Alexander dual of any polarization

J of a maximal ideal power. But while the description of the generators of J is

rather direct, it is highly redundant, and it is not obvious from the description

that there are actually always
(

n+m−1
m

)
generators of the Alexander dual.

3.2 Statement and examples

In this section, we present our construction of the Alexander dual of a polariza-

tion of md and some examples.

Construction 3.2.1. Let J ⊂ k[X̌1, . . . , X̌n] be a polarization of the ideal (x1, . . . , xn)d

in k[x1, . . . , xn]. For any a ∈ ∆Z(n, d − 1) we have the up-graph U(a), with vertices

a + e j for j = 1, . . . , n. At the vertex a + e j we have the x j-type variables X j(a + e j).

We take the product of all these variable sets:

M(a) =

n∏
j=1

X j(a + e j).
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x1x2y2 x1x2z2

x1x2x3

y1y2y3 z1z2z3

x1z1z2x2y1y2

y1y2z2 y1z2z3

x1y1z2

1

2 3

4 5 6

Figure 3.1: The up-triangles of a polarization of (x, y, z)3

It consists of monomials x1i1 x2i2 · · · xnin where x ji j is in X j(a + e j). Let I be the ideal

generated by the monomials in the union of all the M(a) for a ∈ ∆Z(n, d − 1).

Theorem 3.2.2. The ideal I in Construction 3.2.1 is the Alexander dual J∨ of J.

Example 3.2.3. Consider again the polarization J from Example 2.5.2. Its graph

of linear syzygies is again given in Figure 3.1, this time labeling each of the

up-triangles in the graph with integers 1-6.

The up-triangle i corresponds to an element ai ∈ ∆3(2), where a1 = (2, 0, 0), a2 =

(1, 1, 0), a3 = (1, 0, 1), a4 = (0, 2, 0), a5 = (0, 1, 1), and a6 = (0, 0, 2). The sets of

monomials M(ai) are:
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M(a1) = {x1y2z2, x2y2z2, x3y2z2}

M(a2) = {x1y1z2, x1y2z2, x2y1z2, x2y2z2}

M(a3) = {x1y1z1, x1y1z2, x2y1z1, x2y1z2}

M(a4) = {x2y1z2, x2y2z2, x2y3z2}

M(a5) = {x1y1z2, x1y1z3, x1y2z2, x1y2z3}

M(a6) = {x1y1z1, x1y1z2, x1y1z3}

The boldface monomials are the ten distinct monomials we find from this

process, which in fact generate the Alexander dual I of J.

We shall go through several steps in proving the above theorem. It turns out

that we will be able to abstract the situation so our arguments will only involve a

collection of isotone maps

χi : ∆Z(n, d)→ {0 < 1}, i = 1, . . . , n (3.1)

where ∆Z(n, d) has the partial order ≥i, and such that χi(b) = 0 ⇐⇒ bi = 0.

Remark 3.2.4. When n = 3, the maps χi are in bijection with ways of stacking

coins in the plane, where the bottom row consists of d + 1 consecutive coins. In

particular, this means there are Cd+1 many such maps, where Cd is the dth Catalan

number; see [50, Exercise 6.19 hhh]).

First we establish some notation which will be used for the rest of the chapter.
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Notation 3.2.5. For a monomial m ∈ k[X̌1, . . . , X̌n] and index i ∈ [n], define maps

χi,m : ∆Z(n, d)→ {0 < 1}

b 7→


0, no variable of Xi(b) is in m.

1, some variable of Xi(b) is in m.

We will frequently drop the m from the notation and simply denote these maps

by χi when the monomial m is understood.

Observation 3.2.6. The following properties of the maps χi,m follow directly from

the properties of the maps Xi.

(i) The map χi,m is an isotone.

(ii) If (c; j, k) is a linear syzygy edge for the isotone maps {Xi}i∈[n], then χi,m(c −

e j) = χi,m(c − ek) for every i , j, k.

(iii) An edge (c; i, j) of ∆Z(n, d) is a linear syzygy edge for the collection {Xi}i∈[n]

if χp(c − ei) = χp(c − e j) for every p , i, j.

Furthermore, we have the following observations about monomials m in the

Alexander dual of J.

(a) If a monomial m ∈ k[X̌1, . . . , X̌n] is in the Alexander dual of J, then it has a

common variable with every m(b); equivalently, for every b ∈ ∆Z(n, d), m

has a common variable with some mi(b) for i = 1, . . . , n. This holds if and

only if for every such b, there is some i with χi,m(b) = 1.

(b) The monomial m is in I if and only if for some a ∈ ∆Z(n, d − 1), it has a

common variable with every X j(a + e j) for j = 1, . . . , n. Thus for such an a

we have χ j,m(a + e j) = 1 for every j.
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The goal now is to abstract the negations of statements (a) and (b) in the

observation above in order to prove Theorem 3.2.2.

Definition 3.2.7 (Full Zero Point, Zero Corner). A multidegree b ∈ ∆Z(n, d) is

a full zero point for the collection {χi}i∈[n] if χi(b) = 0 for every i = 1, . . . , n. An

up-simplex U(a) of ∆Z(n, d) has a zero corner if χi(a + ei) = 0 for some i.

We prove the following.

Theorem 3.2.8. Let {χi}i∈[n] be a set of isotone maps as in 3.1 such that for every down-

graph of ∆Z(n, d), the linear syzygy edges for {χi} contains a spanning tree. Then {χi} has

a full zero point in ∆Z(n, d) if and only if every up-graph of ∆Z(n, d) has a zero corner.

As a consequence we get Theorem 3.2.2.

Proof of Theorem 3.2.2. If m < I, then every up-graph in ∆Z(n, d) has a zero corner.

If m is not in the Alexander dual of J, then it has a full zero point for the χi,m’s.

Hence by Theorem 3.2.8 I will be the Alexander dual of J. �

3.3 Definitions and key lemmas

In order to facilitate our arguments we need to have a more flexible framework to

work in. For g ∈ Nn with |g| ≤ d and S ⊆ [n], let ∆S (d, g) be the induced subgraph

of T (n, d) (see Notation 2.4.1) whose vertices are the degrees b ≥ g such that

supp(b − g) ⊆ S . This means:

i) |b| = d, ii) bi = gi for j ∈ [n] \ S , iii) bi ≥ gi for i ∈ S .
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We omit n in ∆S (d, g) since n is fixed througout. We sometimes write ∆S (g) for

∆S (d, g), but on a few occasions we will want (d − 1) or (d + 1) instead of d as an

argument, and use the full notation.

The convex hull of ∆S (g) in RS is a simplex of dimension |S | − 1 if |g| < n. The

size of this simplex is n − |g|. For g = 0, the zero degree, we have ∆[n](0) = ∆Z(n, d)

as defined earlier. Note that ∆S ′(g′) is a non-empty subset of ∆S (g) if and only if

the following three properties hold:

i) S ′ ⊆ S , ii) g′ ≥ g, iii) d′i = gi for i ∈ [n] \ S .

Example 3.3.1. Let S = {2, 3, 4} and g = (1, 0, 0, 0). Then ∆S (g) is the induced sub-

graph of T (4, 3) depicted in Figure 3.2; its convex hull is a simplex of dimension

2, and its size is 2. If S ′ = {2, 4}, then ∆S ′(g) is the subgraph of ∆S (g) depicted by

the thick line in Figure 3.2. Its convex hull is a simplex of dimension 1, and its

size is also 2.

(1,2,0,0)

(1,0,2,0) (1,0,0,2)

Figure 3.2: A subgraph of T (4, 3).

Definition 3.3.2. For a ∈ ∆S (d − 1, g) we get an induced subgraph US (a; g) of

∆S (g) with vertices {a + ei | i ∈ S }. This is a complete graph on |S | vertices whose

convex hull is of dimension |S | − 1. The graph US (a; g) is an up-graph. The i ∈ S

are the corners of the up-graph.

39



For c ∈ ∆S (n + 1, g) we get an induced subgraph DS (c; g) of ∆S (g) with vertices

{c − ei | i ∈ supp(c − g)}. This is a complete graph on | supp(c − g)| vertices whose

convex hull is a simplex of dimension | supp(c − g)| − 1. The graph DS (c; g) is a

down-graph.

Suppose that for each j ∈ S we have isotone maps, where we have given

∆S (g + e j) the ≥ j-ordering:

χ j : ∆S (g + e j)→ {0 < 1}.

Note that for b ∈ ∆S (g), the χ j(b) are defined precisely for j ∈ supp(b − g).

Definition 3.3.3. A vertex b ∈ ∆S (g) is a full zero point for {χi}i∈S if χi(b) = 0 for

every i ∈ supp(b−g). An up-graph US (a; g) has a zero corner for {χi}i∈S if χ j(a+e j) = 0

for some j ∈ S .

An edge (c; r, s) of ∆S (g) (note that then {r, s} ⊆ S ) is a linear syzygy edge for the

{χ j} j∈S if

χ j(c − er)) = χ j(c − es), for j ∈ supp(c − g) \ {r, s}.

Lemma 3.3.4. Suppose we have isotone maps {χ j} j∈S for ∆S (g) such that the linear

syzygy edges in every down-graph of ∆S (g) contains a spanning tree.

Let ∆R(g′) be a non-empty subgraph of ∆S (g). For j ∈ R let χ j be the restriction

of χ j to isotone maps associated to ∆R(g′). Then each down-graph of ∆R(g′) contains a

spanning tree of linear syzygy edges for the {χ j} j∈R.

Proof. The proof of this statement is essentially the same as for Lemma 2.4.15. �
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3.4 Proofs of technical lemmas

We prove this direction of Theorem 3.2.8.

Lemma 3.4.1. Let S ⊆ [n] have cardinality ≥ 2. Suppose every down-graph of ∆S (g)

contains a spanning tree of linear syzygies for the isotone maps {χ j} j∈S . Let b ∈ ∆S (g)

and p ∈ S . Suppose χi(b) = 0 for every i ∈ supp(b − g) \ {p}. Then every up-graph

US (a; g) in ∆S (g) with ap ≥ bp has a zero corner for the {χi}i∈S .

Corollary 3.4.2. Suppose the maps {χi}i∈S have a full zero point in ∆S (g). Then every

up-graph in ∆S (g) has a zero corner.

Proof of Lemma 3.4.1 and Corollary 3.4.2. We prove these in tandem by induction

on the cardinality |S |. We prove Corollary 3.4.2 by assuming Lemma 3.4.1. Then

we prove Lemma 3.4.1 by assuming Corollary 3.4.2 has been proven for all ∆S ′(g)

when the cardinality |S ′| < |S |.

Assume we have shown Lemma 3.4.1. Let b be a full zero point for ∆S (g) and

consider an up-graph US (a; g) in ∆S (g). Since |b| = d and |a| = d − 1, then at least

for one p we have ap ≥ bp. Then Lemma 3.4.1 implies that US (a; g) is an up-graph

with a zero corner, proving Corollary 3.4.2.

We now show Lemma 3.4.1. For simplicity we assume p = 1. First we do

the case |S | = 2, say S = {1, 2}. Then χ2(b) = 0. By isotonicity of χ2 we have

χ2(b+λe1−λe2) = 0 for λ ≥ 0. But letting λ = a1−b1, the point b+λe1−λe2 = a+e2

is a zero corner for US (a; g).

Assume now |S | ≥ 3 and Corollary 3.4.2 holds for S ′ with 2 ≤ |S ′| < |S |. We

argue by induction on the difference a1 − b1.

41



Case 1: a1 = b1. Let S ′ = S \ {1} and g′ = g + (b1 − g1)e1. Then b ∈ ∆S ′(g′) and b

is a full zero point for the {χi}i∈S ′ . By Corollary 3.4.2 every up-graph US ′(a; g′) in

∆S ′(g′) has a zero corner for {χi}i∈S ′ . Since a ∈ ∆S ′(d − 1, g′) iff a ∈ ∆S (d − 1, g) with

a1 = d′1 = b1, up-graphs US ′(a; g′) in ∆S ′(g′) correspond to up-graphs US (a; g) with

a1 = b1. Then every up-graph US (a; g) with a1 = b1 has a zero corner for {χi}i∈S .

Case 2: a1 > b1. Consider the down-graph DS (b+e1). By assumption on the maps

χi, at least one edge (b+e1; 1, r) is a linear syzygy edge, so χ j(b+e1−er) = χ j(b) = 0

for every j ∈ supp(b − g) \ {1, r}. But b + e1 − er ≤r b, so χr(b + e1 − er) ≤ χp(b) = 0.

Therefore χ j(b + e1 − er) = 0 for every j ∈ supp(b − g) \ {1}. Since the difference

in first coordinates of a and b + e1 − er is one less than a1 − b1, by induction the

up-graph US (a; g) has a zero corner for {χ j} j∈S . �

We now prove the other direction of Theorem 3.2.8. We need the following

specific lemma. It says that you can “pull a point” with specific properties in a

given direction and into a simplex of a smaller size.

Lemma 3.4.3. Let b ∈ ∆S (g) with |g| ≤ d − 1, 1 ∈ S , and b1 ≤ g1 + 1. Suppose

χi(b) = 0 for i ∈ supp(b − g) \ {1}, χ1(b) = 1 if 1 ∈ supp(b − g).

Let p ∈ S \ {1} and g′ = g + ep. Then there is some b′ ∈ ∆S (g′) with b′1 ≤ d′1 + 1(= g1 + 1)

such that

χi(b′) = 0 for i ∈ supp(b′ − g′) \ {1}, χ1(b′) = 1 if 1 ∈ supp(b′ − g′). (3.2)

Proof. If bp ≥ dp + 1 we simply let b′ = b. So suppose bp = dp. Looking at the

down-graph DS (b + ep; g) there is a linear syzygy edge (b + ep; p, q) for some

q ∈ S \ {p}. It goes from b to b′ = b + ep − eq. Let us show that this b′ has the

desired properties.
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We have b′ − g′ = b − g − eq and so supp(b′ − g′) is supp(b − g) with q possibly

removed. We see that p < supp(b′−g′), and so χi(b′) = χi(b) for i ∈ supp(b′−g′)\{q}.

Case 1: q = 1. In this case b′1 = g1 so 1 < supp(b′ − g′) and (3.2) holds.

Case 2: q , 1. Note b′ ≤q b. So if q is contained in supp(b′ − g′) then χq(b′) ≤

χq(b) = 0. Furthermore χ1(b′) = χ1(b) = 1 if 1 ∈ supp(b′ − g′). So again (3.2)

holds. �

Proposition 3.4.4. Let |g| ≤ d − 1 and |S | ≥ 2. Suppose every up-graph in ∆S (g) has a

zero corner for the {χi}i∈S . Then there is an element of ∆S (g) which is a full zero point.

Proof. We prove by induction on the size (n−|g|) and cardinality |S | that the above

holds. If |g| = d − 1, then ∆S (g) equals the up-graph US (g; g). If we have a zero at

corner p ∈ S , so χp(g + ep) = 0, then b = g + ep is a full zero point of ∆S (g) since

supp(b − g) = {p}.

Now pick an element of S , say 1 ∈ S . By induction on size, ∆S (g + e1) has a

full zero point b. If b1 > g1 + 1 then supp(b − g) = supp(b − (g + e1)) and b is a full

zero point for ∆S (g). So suppose b1 = g1 + 1. If χ1(b) = 0, it is a full zero point in

∆S (g). Otherwise we have:

χi(b) = 0 for i ∈ supp(b − g) \ {1}, χ1(b) = 1.

First consider when S has cardinality two, say S = {1, 2}, let a = b − e1 and

consider the up-graph US (a; g). Since χ1(a + e1) = 1, we must in the other corner

of this up-graph have χ2(a + e2) = 0. Since 1 is not in the support of (a + e2) − g,

then b = a + e2 is a full zero point.
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So let S have cardinality ≥ 3 and put S ′ = S \ {1}. We show now that each

up-graph in ∆S ′(g) has a zero corner. By induction we then have a full zero b0

in ∆S ′(g). Since 1 is not in the support of b0 − g this b0 is also a full zero point in

∆S (g) and we are done.

So let US ′(a; g) be an up-graph in ∆S ′(g). We also have the up-graph US (a; g)

in ∆S (g). If there is some p ≥ 2 such that ap > bp we apply Lemma 3.4.3 and ”pull”

the point b to a point b′ in a smaller sized ∆S (g + ep), which still contains US (a; g).

In this way we continue until we have a b with either i) ap ≤ bp for every p ≥ 2,

or ii) the size of ∆S (g) has become 1. But with this size we have a = g and so

ap ≤ bp for every p ≥ 2 in any case. We also have a1 = g1 ≤ b1 ≤ g1 + 1 and recall

that |b| = d and |a| = d − 1.

Case b1 = a1. Then b = a + ep for some p ≥ 2 and p ∈ supp(b − g). Then

χp(a + ep) = χp(b) = 0

and so US ′(a; g) has a zero corner.

Case b1 = a1 + 1. Then b = a + e1 and 1 ∈ supp(b − g) so

χ1(a + e1) = χ1(b) = 1.

Since US (a; g) has a zero corner we must have χp(a + ep) = 0 for some p ∈ S ′ and

so US ′(a; g) has a zero corner. �
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CHAPTER 4

POLARIZATIONS DEFINE SHELLABLE SIMPLICIAL COMPLEXES

This chapter is joint work with Gunnar Fløystad and Henning Lohne.

In this chapter we show that the Alexander dual of any polarization of the

power (x, y, z)n is a monomial ideal with linear quotients. This is equivalent to the

polarization defining a shellable simplicial complex via the Stanley-Reisner corre-

spondence, [25, Prop.8.2.5]. By a result of Björner [7, Thm.11.4], this immediately

implies that these polarizations define simplicial balls.

4.1 Balls and spheres

The notion of a shelling first appeared in work of Schläfli in the late 1800s, who

used (without proof) the assumption that the boundary of a convex polytope is

shellable in order to compute its Euler characteristic (see [46]). This assumption

was not actually proven until 1970 by Bruggesser and Mani [8], and has since

been utilized in the proofs of celebrated theorems such as McMullen’s proof

of the Upper Bound Theorem [32]. Shellability has been and continue to be a

critical tool in algebra, geometry, and combinatorics in large part due to its strong

topological implications.

We begin by recalling the definition of a shellable simplicial complex.

Definition 4.1.1 (Shelling order). An ordering F1, . . . , Ft of the facets of a simpli-

cial complex ∆ is a shelling order if, for each j with 1 < j ≤ t, the intersection j−1⋃
i=1

Fi

 ∩ F j
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is a nonempty union of facets of ∂F j, the boundary of F j. If there exists a shelling

order of ∆, then ∆ is called shellable.

We now recall a famous theorem of Danaraj and Klee, which describes a case

where shellability has strong topological consequences beyond just describing

the homotopy type.

Theorem 4.1.2. Let ∆ be a pure shellable d-dimensional simplicial complex in which

every codimension 1 face is contained in at most 2 facets. Then ∆ is homeomorphic to

a d-sphere or a d-ball. Moreover, ∆ is homeomorphic to a d-sphere if and only if every

codimension 1 face is contained in exactly two facets.

It turns out that the faces of the Stanley–Reisner complex of any polarization

of an Artinian monomial ideal satisfy the condition appearing in Theorem 4.1.2.

Lemma 4.1.3. Let ∆(J) be the simplicial complex associated to the polarization J of an

Artinian monomial ideal I. Then every codimension one face of ∆(J) is contained in one

or two facets. If I is not a complete intersection, then at least once there is a codimension

one face contained in exactly one facet.

Proof. Let ∆i be the simplex on {(i, j) | j = 1, . . . , di}. The squarefree monomial

xi1xi2 · · · xidi in k[X̌i] defines the sphere which is the boundary ∂∆i of this sim-

plex. The natural polarization in k[X̌1, . . . , X̌n] of the complete intersection

(xd1
1 , x

d2
2 , . . . , x

dn
n ) then defines the sphere of codimension n which is the join

S =
n
∗

i=1
∂∆i. Every codimension one face is here on precisely two facets.

The simplicial complex ∆(J) is a Cohen-Macaulay subcomplex of S with the

same dimension as S . If ∆(J) is not all of S , let F be a facet of ∆(J) and G a facet
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of S not in ∆(J). Since S is strongly connected, there is a path of facets

F = F0, F1, . . . , Fr = G

such that Fi ∩ Fi+1 has codimension one for each i, [25, Prop.9.1.12]. Let p be

maximal such that Fp is in ∆(J). Then Fp∩Fp+1 is only on the facet Fp in ∆(J). �

This leads to the following natural question:

Question 4.1.4. Do polarizations of Artinian monomial ideals have shellable simplicial

complexes?

The standard polarization of an Artinian monomial ideal was shown to be

shellable independently by A. Soleyman Jahan in [48] and Faridi [13]. In [37],

Murai uses this fact to conclude that standard polarizations give simplicial

balls. More generally, Ali, Fløystad, and Nematbakhsh [10] show that so-called

letterplace ideals define simplicial balls by showing that these simplicial complexes

are shellable. Letterplace ideals are introduced in [16] and are polarizations of

Artinian monomial ideals. The article [15] discusses such Artinian monomial

ideals more in depth.

In the next section, we will show in the case of three variables that the Alexan-

der dual of any polarization J has linear quotients, which is equivalent to J being

a shellable simplicial complex. Thus, in this case the simplicial complex ∆(J) is

shellable and hence a simplicial ball.
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U(a + 1, b, c)

D(a + 1, b + 1, c + 1)

α

β γ

β γ

Figure 4.1: A sub-graph of (x, y, z)d

4.2 Polarizations are shellable

Notation 4.2.1. An element (a, b, c) in ∆3(d − 1) corresponds to an up-triangle in

T (3, d). If xα ∈ X(a + 1, b, c) we say that xα (or just α) is an x-variable belonging to

the up-triangle U(a, b, c). Similarly if yβ ∈ Y(a, b + 1, c) and zγ ∈ Z(a, b, c + 1). We

also say the monomial xαyβzγ (or just αβγ) belongs to (a, b, c).

Lemma 4.2.2. Suppose αβγ belongs to the up-triangle U(a + 1, b, c) in ∆3(d − 1), see

Figure 4.1.

a. Then either the up-triangle U(a, b + 1, c) or the up-triangle U(a, b, c + 1) has a

monomial α′βγ belonging to them.

b. If α either belongs to the up-triangle U(a, b + 1, c) or to U(a, b, c + 1), then αβγ

will belong to one of the up-triangles U(a, b, c + 1) or in U(a, b + 1, c).

Proof. Consider the up-triangles in Figure 4.1. In the middle we have a down-

triangle D(a + 1, b + 1, c + 1) ∈ T (3, d). Note that since Y is isotone, β will be in

both the up-triangles U(a + 1, b, c) and U(a, b + 1, c) and since Z isotone γ in both

U(a + 1, b, c) and U(a, b, c + 1).

a. If the edge ((a + 1, b + 1, c + 1); 1, 2) is a linear syzygy edge, then also γ

belongs to U(a, b + 1, c), and if ((a + 1, b + 1, c + 1); 1, 3) is a linear syzygy edge
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then β belongs to U(a, b, c + 1). Since at least one of them is a linear syzygy edge

we are done.

b. If ((a, b + 1, c + 1); 2, 3) is a linear syzygy edge, α is either in none or in both

the two lower up-triangles. It then follows by part a that αβγ belongs to one of

these up-triangles.

If ((a, b + 1, c + 1); 2, 3) is not a linear syzygy edge, the two other edges are

linear syzygy edges. By the argument in part a, both the lower up-triangles

contains β and γ and so at least on of them contains αβγ. �

Let X̌ be a set of x-variables (with various indices) and Y̌ and Ž be sets of y-

and z-variables.

Lemma 4.2.3. Let I be an ideal generated by a subset of monomials in the product set

X̌ · Y̌ · Ž. Let xαyβzγ be in X̌ · Y̌ · Ž but not in I. Then I : xαyβzγ is generated by variables

if and only if for every xα′yβ′zγ′ ∈ I one of the variables xα′ , yβ′ or zγ′ is in the colon ideal.

Proof. Note that by the construction of I and definition of xαyβzγ, none of the

variables xα, yβ, or zγ can be in I : xαyβzγ.

It is straightforward to verify that the first assertion implies the second.

Assume the second assertion holds. Then, if say yβ′zγ′ is in the colon ideal, then

xαyβyβ′zγzγ′ is in I. So at least some xαyβ̃zγ̃ is in I, where β̃ = β′ or γ̃ = γ′. But by

assumption then either yβ′ or zγ′ is in the colon ideal. This implies the colon ideal

is generated by variables. �

We now consider the monomials xαyβzγ belonging to the up-triangles

U(a, b, c) ∈ ∆3(d − 1) and shall provide a total order on these monomials. First
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consider the partial order on triples where (a, b, c) ≥ (a′, b′, c′) if a ≥ a′ and take

any linear extension on this to get a total order � on triples.

Now for each up-triangle U(a, b, c) we shall make a total order on the (degree

3) monomials belonging to it. For each X(a + 1, b, c) choose any total order of the

x-variables. To order the variables in Y(a, b + 1, c) we have an ascending chain

Y(a, 1, d − a − 1) ⊆ Y(a, 2, d − a − 2) ⊆ · · · ⊆ Y(a, d − a, 0). (4.1)

We order the variables such that each new variable popping up in the chain is

less than the foregoing variables. Similarly for the variables in Z(a, b, c + 1) we

have a chain

Z(a, d − a − 1, 1) ⊆ Z(a, d − a − 2, 2) ⊆ · · · ⊆ Z(a, 0, d − a),

and we order the variables such that each new variables popping up in the

chain is less than the foregoing variables. The monomials belonging to U(a, b, c)

correspond to

X(a + 1, b, c) × Y(a, b + 1, c) × Z(a, b, c + 1).

We get the partial product order on this and take a linear extension of this partial

order.

We now order the monomials associated to the up-triangles in T (3, d) as

follows. If α′β′γ′ occurs first in (a′, b′, c′) and αβγ occurs first in (a, b, c), then

α′β′γ′ > αβγ (4.2)

if (a′, b′, c′) � (a, b, c), or if (a′, b′, c′) = (a, b, c) and the order of (4.2) is given by the

order on the monomials belonging to the up-triangle U(a, b, c).

Proposition 4.2.4. The ideal generated by all the variables belonging to the up-triangles

of T (3, d), has linear quotients given by the ordering of the monomials above.
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α

β γ

α′

β′ γ′

(u, b, c) (u, b′, c′)

Figure 4.2: The situation in Part 1 of the proof of Proposition 4.2.4.

Proof. Let αβγ occur for the first time in the up-triangle (u, b, c) and let I be the

ideal generated by all the larger monomials. We shall show that I : xαyβzγ is

generated by variables and use Lemma 4.2.3.

1. Let α′β′γ′ be in (u, b′, c′) where (u, b′, c′) � (u, b, c). Suppose c′ ≥ c, see Figure

4.2. and so γ belongs to (u, b′, c′), since the map Z : ∆3(n)→ B(n) is isotone.

a. If β ≥ β′ then β will be in U(u, b′′, c′′) where b′′ ≤ b′ so c′′ ≥ c′. Then β will

also be in U(u, b′, c′) and since γ is in U(u, b′, c′) we will have α′βγ belonging to

U(u, b′, c′). If α = α′ then αβγ would occur in U(u, b′, c′) contradicting that αβγ

first occurs in U(u, b, c). So α , α′ and this gives xα′ in the colon ideal.

b. Assume now that β < β′. Note that since b′ ≤ b we have β′ belonging to

U(u, b, c). Then αβ′γ is already in I by the ordering on the monomials belonging

to U(u, b, c), and hence β′ is in the colon ideal.

2. A symmetric argument works when α′β′γ′ is in U(u, b′, c′) and b′ ≥ b.

3. Assume now that α′β′γ′ belongs to the up-triangle U(u + 1, b′, c′) where the

sum of these coordinates is d − 1. Either b′ ≥ b or c′ ≥ c. Suppose the latter, see

Figure 4.3. Then β′ belongs to the up-triangle U(u, b, c) due to Y being isotone.

a. If β′ > β in the order given by (4.1), then αβ′γ > αβγ and so the former

belongs to I and β′ is in the colon ideal I : xαyβzγ.
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α

β γ

α′

β′ γ′

(u, b, c)

(u + 1, b′, c′)

Figure 4.3: The situation in Part 3 of the proof of Proposition 4.2.4.

b. If β′ = β note that yβ = yβ′ is in Y(u, b − 1, c + 1) since b > b′. By Lemma

4.2.2 (applied in the y-direction, not x-direction) either αβγ is in U(u + 1, b, c) or

in U(u, b − 1, c + 1). The latter must be the case since αβγ first occurs in U(u, b, c).

c. If β′ < β, then since β′ belongs to U(u, b, c), β must belong to U(u, b− 1, c + 1)

and by Lemma 4.2.2 αβγ will belong to U(u, b − 1, c + 1).

In case b. and c. we may continue like this and push αβγ stepwise to the right,

until we get to (u, b− r, c + r) where c + r = c′ + 1, and (u, b− r, c + r) = (u, b′, c′ + 1),

so αβγ is in both U(u, b′ + 1, c′) and U(u, b′, c′ + 1). Note that by X being isotone α

belongs to (u + 1, b′, c′). We show that one of α′, β′, or γ′ is in the colon ideal.

i. If β = β′ and γ = γ′ then α′βγ belongs to U(u + 1, b′, c′). Since αβγ occurs

first in U(u, b, c), we cannot have α = α′ and so xα′ is in the colon ideal.

ii. If β , β′ and γ = γ′ then αβ′γ belongs to U(u + 1, b′, c′) and so yβ′ is in the

colon ideal.

iii. If β = β′ and γ , γ′ then αβγ′ belongs to U(u + 1, b′, c′) and so zγ′ is in the

colon ideal.

iv. Suppose that β , β′ and γ , γ′. If the edge ((u + 1, b′ + 1, c′ + 1); 1, 2) is

a linear syzygy edge then γ is in Z(u + 1, b′, c′ + 1) and so αβ′γ belongs
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to U(u + 1, b′, c′). If ((u + 1, b′ + 1, c′ + 1); 1, 3) is a linear syzygy edge then

β ∈ Y(u + 1, b′ + 1, c′) and so αβγ′ is belongs to U(u + 1, b′, c′).

4. Suppose then that α′β′γ′ is in U(u + r, b′, c′) where r ≥ 2.

a. If b′ ≤ b and c′ ≤ c (then at least one inequality is strict) then αβ′γ′ is in

U(u + r, b′, c′) since the map X is isotone, and α also belongs to either U(u + r −

1, b′ + 1, c′) or U(u + r − 1, b′, c′ + 1). Hence by Lemma 4.2.2 αβ′γ′ is in one of these

up-triangles. We may continue until either u + r − 1 = u + 1, treated in Case 3., or

until b′ > b or c′ > c. Assume c′ > c.

b. We then assume α′β′γ′ is in (u + r, b′, c′) where r ≥ 2 and c′ > c. Note that

by Y being isotone and b′ < b, β′ will belong to U(u, b, c) and to U(u, b − 1, c + 1).

b1. If β′ > β, then αβ′γ > αβγ and so yβ′ is in the colon ideal.

b2. If β = β′ then β belongs to U(u + r, b′, c′). By Y being isotone, β belongs to

U(u, b − 1, c + 1).

b3. If β′ < β, then β is in the up-triangle U(u, b − 1, c + 1). In both cases b2 and

b3, by Lemma 4.2.2 αβγ is either in up-triangle U(u+1, b−1, c), not possible,

or in U(u, b − 1, c + 1).

In this way we may continue going rightwards until we get to (u, b − t, c + t)

with c + t = c′. Then (u, b′ + r, c′) contains αβγ and so α is in (u + r, b′, c′) and

(u + r − 1, b′ + 1, c′). Then αβ′γ′ is in (u + r, b′, c′) and since αβγ occurs first in

U(a, b, c) this is not equal to αβ′γ′. By Lemma 4.2.2 we may push it down to level

u + r − 1. In this way we can continue until we get αβ′γ′ on level u + 1 which is

treated in Case 3. �
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CHAPTER 5

WHEN DO ISOTONE MAPS EXIST?

All of the combinatorial characterizations of polarizations ofmd given in previous

chapters rely on the existence of the rank-preserving isotone maps Xi in Construc-

tion 2.4.10. However, it is not clear when a graph of linear syzygies gives rise

to such a set of isotone maps. The goal of this chapter is to give necessary and

sufficient conditions for a graph of linear syzygies of md to induce isotone maps

as in Construction 2.4.10. These conditions, labelled (G1)-(G4), are presented

in Theorem 5.0.4. The results in this section are a critical stepping stone in the

direction of being able to generate all polarizations of (x1, . . . , xn)d for arbitrary n

and d.

To show that our conditions are sufficient, we give an explicit algorithm

(see Construction 5.0.11) to determine a set of isotone maps from a graph of

linear syzygies, and we prove in Proposition 5.0.14 that the maps output by the

algorithm are indeed isotone and satisfy the condition (∗) in Setup 5.0.1. This

algorithm extends work of Lohne in [30], where he gives such an algorithm for

determining polarizations of (x, y, z)d from potential graphs of linear syzygies.

Note, however, that the three variable case is quite straightforward: any subgraph

of T (n, d) containing all of the “boundary” edges gives rise to a set of isotone

maps. As we will see in Example 5.0.2, this is not the case for n > 3, even if the

graph of linear syzygies corresponds to a set of linear syzygies in a valid free

resolution of md.

As it turns out, the main difficulty of this section is the correct formulation

of the conditions (G1)-(G4) of Theorem 5.0.4; once these conditions are written
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down, it is a straightforward yet tedious verification that the desired algorithm

is well defined.

We begin by establishing some notation for the rest of the chapter.

Notation 5.0.1. Fix integers n and d, and let S = k[x1, . . . , xn] be a polynomial over

a field k. Let X̌i = {xi1, . . . , xid} be a set of variables, and let S̃ = k[X̌1, . . . , X̌n] be a

polynomial ring in the union of all these variables. Denote by m = (x1, . . . , xn) the

graded maximal ideal of S .

Denote by ∆Z(n, d) = d∆n−1 ∩ Zn the set of lattice points of the dilated (n − 1)-

simplex d∆n−1, i.e., the set of tuples a = (a1, . . . , an) of non-negative integers with∑n
i ai = d. Denote by T (n, d) the one-skeleton of the hypersimplicial complexHd

n

from Definition 6.3.2.

Let G be a subgraph of T (n, d). Let Pi = (∆Z(n, d),≥i) be the poset with ground

set ∆Z(n, d) and partial order ≥i from Definition 2.4.8, and let Bd be the Boolean

poset on [d]. Let {Xi}i∈[n] be a set of isotone maps

Xi : Pi → Bd

such that rank k elements of Pi map to rank k elements of Bd and the following

property holds:

(∗) (c; i, j) is an edge in G if and only if Xp(c − ei) = Xp(c − e j) for all p , i, j.

Let P be a poset and let a and b be elements in the ground set of P. The

notation a m b means that a covers b in P. In this case, we will frequently say that

a is a parent of b and that b is a child of a.

For any c ∈ ∆Z(n, d + 1), let LS(c) be the set of linear syzygy edges in the

complete down-graph D(c). For any b ∈ ∆Z(n, d − 1), denote by LSi(b) the set of
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linear syzygy edges in the induced subgraph of U(b) on the vertex set {b + e j |

j , i}.

As the following example shows, not all subgraphs G ⊂ T (n, d) give rise

to a well-defined set of isotone maps {Xi}i∈[n] satisfying (∗), even if the graph

corresponds to the graph of syzygies among the generators of md appearing in a

minimal free resolution of md.

Example 5.0.2. Let I = (x1, x2, x3, x4)2 in S = k[x1, x2, x3, x4] where k is any field.

Let F be the L-complex (see Chapter 6) of Definition 6.2.3 resolving I, where

ψ : F → S maps the basis element fi to the variable xi. The basis elements of

L1
2(F) correspond to elements of the form ( fa1 ∧ fa2) ⊗ ( fb1) such that a1 < a2 and

a1 ≤ b1, as described in Proposition 6.2.6. Let GF correspond to graph of linear

syzygies in the presenting step of F. Then there are no linear syzygy edges

between any of the vertices corresponding to the vertices (1, 1, 0, 0), (1, 0, 1, 0) or

(1, 0, 0, 1). Now, suppose there exists an isotone map X1 : P1 → B2 satisfying (∗).

Then X1(1, 1, 0, 0) , X1(1, 0, 1, 0) , X1(1, 0, 0, 1), but all must be equal to rank 1

elements of B2. However, B2 has only 2 elements of rank 1, so this is not possible.

Therefore, there is no valid set of isotone maps Xi satisfying (∗) induced by GF.

The example above gives key insights into what properties are necessary for a

graph of linear syzygies to induce isotone maps. Before we give these conditions,

we establish some notation which will be used throughout the remainder of this

chapter.

Notation 5.0.3. For any c ∈ ∆Z(n, d + 1), let LS(c) be the set of linear syzygy edges

in the complete down-graph D(c). For any b ∈ ∆Z(n, d − 1), denote by LSi(b) the

set of linear syzygy edges in the induced subgraph of U(b) on the vertex set

{b + ε j | j , i}.
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In the following theorem, we give a complete list of necessary and sufficient

conditions for a graph of linear syzygies to give rise to a valid set of isotone

maps satisfying (∗) from Setup 5.0.1. Showing necessity is a straightforward

verification. Sufficiency follows from the explicit construction of these isotone

maps in Construction 5.0.11.

Theorem 5.0.4. Adopt notation and hypotheses of Setup 5.0.1. If Xi is any map with

source Pi satisfying (∗), then Xi is well-defined if and only if G satisfies the following

properties:

(G1) For any b ∈ Pi of rank k, there are at most k connected components of LSi(b − ei)

(see Notation 5.0.3), and each is a complete graph.

(G2) Any element of Pi has at most two parents which are not adjacent in G who share

a parent.

(G3) Suppose that a and b both cover elements f and g such that f and g are in two

distinct connected components of LSi(c − εi) for some c. Then a and b must be

adjacent. Similarly, if a and b are covered by elements f and g such that f and g

are in two different connected components of LSi(c − εi) for some c, then a and b

are adjacent.

(G4) Suppose f and g are adjacent in G. Let f be a parent of elements a and d in Pi and

let g be a parent of elements b and d. If d and a are adjacent in G and a and b are

adjacent in G, then d must also be adjacent to b in G. See Figure 5.1 for a .

In Figure 5.1, we give a visual depiction of the conditon (G4). Thick edges

correspond to edges in the graph G and thin edges correspond to covering

relations in the poset Pi.
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f g

a d b

Figure 5.1: A depiction of condition (G4).

Proof. The existence of Xi given conditions (G1)-(G4) follows from Construction

5.0.11. Now suppose that G does not satisfy any of conditions (G1)-(G4) in

Theorem 5.0.4.

(G1) Let a be an element of rank k in (∆Z(n, d),≥i). It has at most n−1 children. In

Bd, any element of rank k has
(

k
k−1

)
= k children. If LSi(a − ei) has more than

k components, then each component must map to a distinct descendant

of a rank k element of Bd, which is not possible. Moreover, if any of

these connected components are not a complete graph, then there are two

vertices a and b which are not adjacent but map to the same element of Bd,

contradicting the assumption that Xi satisfies (∗).

(G2) Suppose a has three non-adjacent parents b1,b1,b3 ∈ Pi of rank k. If

b1,b2, and b3 all share a parent, then |Xi(b1) ∩ Xi(b2) ∩ Xi(b3)| = k − 2. But

Xi(a) = Xi(b1) ∩ Xi(b2) ∩ Xi(b3), so it cannot map to a rank k element of Bd, a

contradiction.

(G3) Suppose a and b are rank k > 0 elements of (∆Z(n, d),≥i) and a is not adjacent

to b. Then Xi(a) ∪ Xi(b) is a rank k + 1 element of Bd. In particular, there is

exactly one possible image under the map Xi for a parent of both a and b.

Similarly, Xi(a)∩ Xi(b) is a rank k − 1 element of Bd, which must correspond

to the image of any child of a and b under Xi.
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(G4) Suppose a is adjacent to d and b. If Xi satisfies condition (∗), then Xi(a) =

Xi(b) if and only if a and b are adjacent in G.

�

The following lemma tells us that the “boundary edges” of the dilated simplex

must be contained in the graph of linear syzygies in order for it to give rise to a

set of isotone maps.

Lemma 5.0.5. Adopt notation and hypotheses of Setup 5.0.1, and assume G satisfies

conditions (G1)-(G4) in Theorem 5.0.4. Then for all 0 ≤ k ≤ d, the edge (kei + (d − k +

1)e j ; i, j) is in G.

Proof. This follows from property (G1) in Theorem 5.0.4. �

It turns out that this property is both necessary and sufficient in the case

where n = 3 for isotone maps Xi satisfying (∗) to exist.

Observation 5.0.6. It is straightforward to verify that if n = 3, any graph of linear

syzygies such that the only edges removed from sk1(Hd
3 ) are those contained in

maximal down-triangles satisfies conditions (G1)-(G4) above.

We now partition (∆Z(n, d),≥i) into a set of chains we call Cp such that for all

a ∈ Cp, one has that ak = pk for all k , i, j (where j = 2 if i = 1, and j = 1 for all

other i). In particular, every element of ∆Z(n, d) is contained in a unique Cp. All

of these chains can be extended in a natural way to maximal chains which we

call Cp. We also define a total ordering ≺ on the chains Cp and C
p

which will later

be used to construct the desired Xi maps in Construction 5.0.11.
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Notation 5.0.7. If C is any chain in (∆Z(n, d),≥i), denote by Ck the unique rank

k element of C, if it exists. For simplicity, if i = 1, set j = 2; for i , 1, set j = 1.

Denote by 0 = (0, . . . , 0) ∈ Nn. For any p ∈ Nn, let |p| = p1 + p2 + · · · + pn.

Definition 5.0.8 (Chains Cp). Let p ∈ Nn with i, j < Supp(p) and |p| = r ≤ d. Define

Cp to be the (d − r)-chain such that Cp
k−r = C0

k − rei + p. In particular, every a ∈ Cp

satisfies that ak = pk for all k , i, j.

For any Cp with |p| = r, where 1 ≤ r ≤ d, set m B min{` | ` ∈ Supp(p)}. Let C̄p

denote the maximal chain from extending Cp such that C̄p
k = C̄p−em for all k > d − r.

If p,q ∈ Nn with i, j < Supp(p + q) and |p|, |q| ≤ d, define the total order ≺ on

the chains Cp where Cp ≺ Cq if |p| < |q| or |p| = |q| and p` < q` for the first ` where

they differ. Similarly, define C
p
≺ C

q
if Cp ≺ Cq.

(3,0,0) C0

(0,3,0) (0,0,3) = C3ε3

C2ε3

Cε3

Figure 5.2: Chains of Definition 5.0.8 for (∆Z(3, 3),≥1).

Example 5.0.9. Figures 5.2 and 5.3 give labeled chains for ∆Z(3, 3) and ∆Z(4, 3),

respectively. Observe that if a = dek for some k , i, j, then a is contained in the

unique one-element chain Cdek . In Figure 5.3, the chains are ordered as follows:

C0 ≺ Ce3 ≺ Ce4 ≺ C2e3 ≺ Ce3+e4 ≺ C2e4 ≺ C3e3 ≺ C3e4 .
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(0, 3, 0, 0)

(0, 2, 1, 0)

(0, 1, 2, 0)

(0, 0, 3, 0)

(0, 2, 0, 1)

(0, 1, 1, 1)

(0, 0, 2, 1)

(0, 1, 0, 2)

(0, 0, 1, 2)

(0, 0, 0, 3)

(1, 2, 0, 0)
(1, 1, 1, 0) (1, 0, 2, 0) (1, 1, 0, 1) (1, 0, 1, 1) (1, 0, 0, 2)

(2, 1, 0, 0) (2, 0, 1, 0) (2, 0, 0, 1)

(3, 0, 0, 0)
C0

Cε3 Cε4

C2ε4C2ε3 Cε3+ε4

Figure 5.3: Chains for (∆Z(4, 3),≥1).

Notation 5.0.10. Elements of the symmetric group Sd correspond bijectively to

chains of Bd via

σ 7→ (∅ ⊂ {σ1} ⊂ {σ1, σ2} ⊂ · · · ⊂ {σ1, . . . , σd}). (5.1)

One may also view σ as a word in [d]. Set σ|` to be the subword (σ1, . . . , σ`) of σ.

Then σ|` corresponds to a chain of length ` in Bd via

σ|` 7→ (∅ ⊂ {σ1} ⊂ {σ1, σ2} ⊂ · · · ⊂ {σ1, . . . , σ`}).

For any two words τ, σ, say that τ ⊆ σ if for all i, there exists some j such that

τi = σ j.

When referring to the image of a ∈ (∆Z(n, d),≥i) under a map Xi, say that a is

labeled by the element Xi(a) ∈ Bd. Given a chain C of (∆Z(n, d),≥i), say that C is

labeled by σ ∈ Sd if Xi(Ck) = {σ1, σ2, . . . , σk}.

The following construction generalizes work of Lohne in [30]. The idea is to

label the maximal chains Cp in the order ≺ presented in Definition 5.0.8, starting

at the bottom of each chain. Every time an element of a ∈ Cp is not adjacent to
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the previously labeled element of the same rank in a specified earlier chain, one

must apply a transposition to the word that labeled that chain.

Construction 5.0.11. Adopt notation and hypotheses of Setup 5.0.1, and assume

G satisfies conditions (G1)-(G4) of Theorem 5.0.4. Begin by labeling the chain

C0 by the word σ0 = (12 . . . d) ∈ Sd. Label all chains Cp in increasing order with

respect to ≺ in Definition 5.0.8 as follows. For any Cp with |p| = r, where 1 ≤ r ≤ d,

set m B min{` | ` ∈ Supp(p)}. Starting at k = 0, apply the transposition (k, k + 1)

to σp−em for every k such that Cp
k is not adjacent to Cp−em

k . Let σp be the resulting

word in Sd after applying all required transpositions, and label the chain C
p

by

the word σp.

123

1

12

32

23

∅
∅ ∅

∅

Figure 5.4: Output of Construction 5.0.11 for a graph of linear syzygies.

Example 5.0.12. We apply the algorithm in Construction 5.0.11 to the graph

of linear syzygies in Figure 5.4 for (x, y, z)3, which is a subgraph of the one-

skeleton ofHd
n in Figure 2.1. The chains in (∆Z(3, 3),≥1) are labeled in Figure 5.2.

First, set σ0 = (123) by construction. To find σe3 , observe that the rank 1 and

rank 2 elements of Ce3 are not adjacent to the rank 1 and 2 elements of C0. So

σe3 = (23)(12)σ0 = (23)(12)(123) = (23)(213) = (231). Similarly, to compute σ2e3 ,
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observe that the rank 1 element of C2e3 is not adjacent to the rank 1 element of

Ce3 , so σ2e3 = (12)(231) = (321).

Remark 5.0.13. Let a ∈ ∆Z(n, d). Then a appears in the unique chain Cp where

|p| = d−ai−a j and p =
∑
`,i, j

a`e`. Moreover, observe that σp
k = σ

p−em
k for all k > d−|p|

by construction. In particular, every a ∈ (∆Z(n, d),≥i) is given a unique labeling

by Construction 5.0.11, so it is well-defined.

We conclude this section by checking that the rank-preserving maps Xi pro-

duced by Construction 5.0.11 are indeed isotone maps and satisfy (∗) from Setup

5.0.1 if G satisfies condition (G1)-(G4) in Theorem 5.0.4. The proof follows from a

double induction on the chains Cp (following the order ≺ from Definition 5.0.8)

as well as the rank k on Cp.

Proposition 5.0.14. Adopt notation and hypotheses of Setup 5.0.1, and assume G

satisfies conditions (G1)-(G4) in Theorem 5.0.4. Let {Xi}i∈[n] be a set of maps from

∆Z(n, d) to Bd as in Construction 5.0.11. Then

(i) every map Xi : (∆Z(n, d),≥i)→ Bd is isotone, and

(ii) (c; s, t) is an edge in G if and only if Xi(c − es) = Xi(c − et) for all i , s, t.

Proof. Proceed by induction on the chains Cr,p and the rank k of the poset. For

ease of notation, assume that i = 1.

Base case. Construction 5.0.11 labels the chain C0 in an isotone manner by

construction. The next chain labeled by the algorithm is C
e3 . By construction,

every element a ∈ Ce3 will satisfy X1(a) = X1(a− e3 + e2) if and only if a is adjacent

to a − e3 + e2, and X1(a) ⊂ X1(a + e1 − e3) by construction, as well.
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For any other chain Cp, Construction 5.0.11 will always label the bottom

element Cp
0 with the empty set, so its image under X1 will always be less than the

image of any element above it in P1 under X1. Moreover, by Lemma 5.0.5, every

edge on the boundary of T (n, d) is in G, so all elements of rank 0 also satisfy

condition (ii).

Induction hypothesis. Assume that all chains preceding C
p

have been labeled

by Construction 5.0.11, and that all elements in these preceding chains satisfy (i)

and (ii) with respect to other elements in chains preceding C
p
. Moreover, for any

a′ = C
p
` with ` < k, assume a′ satisfies properties (i) and (ii) with respect to other

elements in P1 in earlier chains.

h

a

a + e1 − em a + e1 − et

a + e2 − em a + e2 − et

a + e2 − e1

S

Figure 5.5: The situation in the proof of (i) of Proposition 5.0.14.

Induction Step. Let a = C
p
k = c − es for c ∈ ∆Z(n, d + 1) and some s ∈ [n]. Set

m B min{` | ` ∈ Supp(a) and ` , 1, 2}.

Proof of (i). It suffices to check (i) in the case when d = a + e1 − et is a cover of a in

P1, where t ∈ Supp(a). This situation is depicted in Figure 5.5. If t = 2 or m, then

X1(a) < X1(a + e1 − et) by construction, so assume t , 2,m. Observe that a + e1 − em

also covers a and shares a parent with a+e1−et, namely, a+2e1−em−et. If a+e1−et is
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adjacent to a+e1−em, then by the induction hypothesis X1(a+e1−et) = X1(a+e1−em)

and so Xi(a) < Xi(a + e1 − et).

Assume a+e1−et is not adjacent to a+e1−em. The element a+e1−et also covers

a− et + e2, and the element a + e1 − em also covers a + e2 − em. Moreover, a + e2 − em

and a + e2 − et are both covered by h = a − et + e j − em + e1. All of the elements in

the set S = {a, a + e2 − em, a + e2 − et} cover the element a− e1 + e2; so by Condition

(G2) in Theorem 5.0.4, at least two elements of S must be adjacent. Because of

the assumption that a + e1 − et is not adjacent to a + e1 − em, one has by Condition

(G3) that if any pair of element of S are adjacent in G, then all three must be

pairwise adjacent. By construction, X1(a) = X1(a + e2 − em) if and only if they are

adjacent in G; and by the induction hypotheses, X1(a + e2 − em) = X1(a + e2 − et)

if and only if they are adjacent in G. Because all three are adjacent, one has

X1(a) = X1(a + e2 − et) < X1(a + e1 − et), giving the desired result.

a + ε1 − εm

bd a

b − ε1 + ε2 a − ε1 + ε2

t = m

a + ε1 − εmb + ε1 − εm

bw a

f
t , m

Figure 5.7: Situations in the proof of (ii) of Proposition 5.0.14.

Proof of (ii). It suffices to check (ii) in the case when b = c−et is in a chain preceding

Cp. There are two possible cases to check: when t = m (see Figure 5.6a), and when

t , m (see Figure 5.6b).
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• t = m, ( =⇒ ) : Assume a is adjacent to b. Let d = a − em + e2. All three

elements a,b, and d are children of the element a + e1 − em. If d is adjacent

to either a or b, then all three must be adjacent by (G1). By construction,

X1(a) = X1(d), and by induction, X1(d) = X1(b); so X1(a) = X1(b), as desired.

Now suppose that d is adjacent to neither a nor b. The element a − e1 + e2 is

covered by both a and d, and the element b−e1 +e2 is covered by both b and

d. Therefore, a − e1 + e2 must be adjacent to b − e1 + e2 by Condition (G3) in

Theorem 5.0.4. By the induction hypothesis, X1(a − e1 + e2) = X1(b − e1 + e2).

In addition, X1(a), X1(b), and X1(d) must all contain X1(a − e1 + e2) and be

contained in X1(a + e1 − em) by induction (for b and d) and by construction

(for a), so there are only two possible options for labels for a,b, and d. Since

X1(d) , X1(a) by construction and X1(d) , X1(b) by induction, one has that

X1(a) = X1(b), as required.

• t = m, (⇐= ) : Suppose a is not adjacent to b. By Conditon (G1), at most

one of the pair (a,b) may be adjacent to d. If one is connected to d and the

other is not, then X1(a) , X1(b) by construction. Now suppose that neither

a nor b is connected to d. Then b − e1 + e2 is not adjacent to a − e1 + e2,

since otherwise G would violate Condition ((G2)) in Theorem 5.0.4. By

construction, X1(a)∩X1(d) = X1(a− e1 + e2), and by induction X1(b)∩X1(d) =

X1(b − e1 + e2). Since X1(a − e1 + e2) , X1(b − e1 + e2) by induction, one has

X1(a) , X1(b), as desired.

• t , m, ( =⇒ ) : Assume a and b are adjacent. Observe that if t , m, then

m ∈ Supp(b). Consider the element w = a−em+es = b−em+et. If w is adjacent

to either a or b, then all three are connected by Conditoin (G1). Now a

and w fall into the case where t = m, so X1(a) = X1(w) and X1(w) = X1(b) by

induction, so X1(a) = X1(b).
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Now assume that w is adjacent to neither a nor b. By Condition (G3),

b + e1 − em must be adjacent to a + e1 − em. Moreover, all of a,b, and w cover

the element f = w− e1 + em = b− e1 + et = a− e1 + es. By isotonicity of X1, one

has that X1(w) ∩ X1(b) = X1(f) and X1(w) ∩ X1(a) = X1(f), so X1(a) = X1(b) as

desired.

• t , m, (⇐= ) : Assume a is not adjacent to b. Again consider the element

w = a − em + es = b − em + et. Notice that a, b, and w all share a child

f = w − e1 + em = b − e1 + et = a − e1 + es, so by Condition (G2), at least one

pair among the three must be adjacent in G. If either a or b is adjacent to w,

the other cannot be by condition (G1). Combining the induction hypothesis

and the argument for the case when t = m above gives the desired result.

�
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Part II

Polarizations and Hook Partitions
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CHAPTER 6

THE L-COMPLEX IS CELLULAR

6.1 Frames and discrete Morse theory for cellular resolutions

In this section, we recall some important notions on cellular resolutions and

Discrete Morse theory for cellular resolutions. For further exposition on frames

and cellular resolutions, we refer the reader to [41] and [42]. We will use the

terminology of frames to give a convenient framework (pun intended) for defin-

ing cellular resolutions. Proposition 6.1.10 will be essential for proving that the

L-complexes of Buchsbaum and Eisenbud are cellular. We begin by adopting the

following setup:

Setup 6.1.1. Let S = k[x1, . . . , xn] be a polynomial ring over a field k. Let M be a

monomial ideal in S minimally generated by monomial m1, . . . ,mr. Let LM denote

the set of least common multiples of subsets of m1, . . . ,mr. By convention, 1 ∈ LM

is considered to be the lcm of the empty set.

Definition 6.1.2 (Frame). Adopt notation and hypotheses of Setup 6.1.1. A frame

(or an r-frame) U is a complex of finite k-vector spaces with differential ∂ and a

fixed basis that satisfies the following conditions:

(1) Ui = 0 for i < 0 and i � 0,

(2) U0 = k

(3) U1 = kr

(4) ∂(w j) = 1 for each basis vector w j in U1 = kr.
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Given a complex of free modules over some polynomial ring, it is easy to

obtain a frame by setting all variables equal to 1. Conversely, given a frame U, one

may construct a multigraded complex G of finitely generated free multigraded

S -modules with multidegrees in LM using the following construction due to

Peeva and Velasco [42].

Construction 6.1.3 (Homogenization). Adopt notation and hypotheses of Setup

6.1.1. Let U be an r-frame. Set

G0 = S and G1 = S (−m1) ⊕ · · · ⊕ S (−mr).

Let v1, . . . , vp and u1, . . . , uq be the given bases of Ui and Ui−1, respectively. Let

u1, . . . , uq be the basis of Gi−1 = S q chosen on the previous step of the induction.

Introduce v1, . . . , vp that will be a basis of Gi = S p. If

∂(v j) =
∑

1≤s≤q

αs jus

with coefficients αs j ∈ k, then set

mdeg(v j) = lcm(mdeg(us) | αs j , 0)

Gi =
⊕
1≤ j≤p

S (−mdeg(v j))

d(v j) =
∑

1≤s≤q

αs j
mdeg(v j)
mdeg(us)

· us.

Clearly coker(d1) = S/M and the differential d is homogeneous by construction.

Call G the M-homogenization of U.

The following simple criterion by Peeva and Velasco [42] determines when a

frame supports a graded free resolution of S/M. The abridged version of this re-

sult states that exactness can be checked by only considering multihomogeneous

strands.
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Proposition 6.1.4. The sequence of modules and homomorphisms G as in Construction

6.1.3 is a complex. Moreover, if G(≤ m) is the subcomplex of G generated by the

multihomogeneous basis elements of multidegrees dividing m, then G is a free multigraded

resolution of S/M if and only if for all monomials 1 , m ∈ LM, the frame of the complex

G(≤ m) is exact.

A natural source of frames that can be used to support resolutions of mono-

mial ideals are provided by CW-complexes, since the conditions (1) − (4) of

Definition 6.1.2 are trivially satisfied.

Notation 6.1.5. Let X be a regular CW-complex, and denote by X(i) the set of

i-cells of X and by X(∗) B
⋃

i≥0 X(i) the set of all cells of X. Denote by C(X; k) the

augmented oriented cellular chain complex of X over k with

C(X; k)i =
⊕
c∈X(i)

kec

where ec denotes the basis element corresponding to the face c ∈ X(i), and the

differential ∂ acts as

∂(ec) =
∑

c≥c′∈X(i−1)

[c, c′]ec′

where [c, c′] is the coefficient in the differential of the cellular homology of X.

With the above notation in mind, we use the language of frames to define

cellular resolutions.

Definition 6.1.6 (Cellular Resolution). Adopt notation of Notation 6.1.5. Assume

that |X(0)| = r and M = (m1, . . . ,mr) is a monomial ideal in a polynomial ring S .

Label each 0-cell of X by a minimal generator mi of M. After shifting C(X; k) in

homological degree, C(X; k)[−1] is a frame. Denote by FX the M-homogenization

of C(X; k) as in Construction 6.1.3. The complex FX is supported on X. The complex

FX is a cellular resolution if it is exact.
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Definition 6.1.7 (Face Multidegrees, Subcomplex X≤m). Let M = (m1, . . . ,mr) be a

monomial ideal in a polynomial ring S , and let X be a regular CW-complex with

0-cells labeled by the generators of M. The multidegree of each vertex of X is

given by its monomial label. Define a face c to have multidegree

mdeg(c) = lcm(mi | mi ∈ c).

By convention, mdeg(∅) = 1. Define the following subcomplexes of X:

X≤m B {c ∈ X | mdeg(c) divides m}

X<m B {c ∈ X | mdeg(c) strictly divides m}.

The following Proposition is an immediate consequence of Proposition 6.1.4

combined with the notation and hypotheses introduced in Definition 6.1.7.

Proposition 6.1.8. Let M = (m1, . . . ,mr) be a monomial ideal in a polynomial ring S ,

and let X be a regular CW-complex with 0-cells labeled by the minimal generators of M.

The complex FX from Definition 6.1.6 is a free resolution of S/M if and only if for all

multidegrees 1 , m ∈ LM, the complex X≤m is acyclic over k.

Next, we introduce some of the basic machinery of discrete Morse theory for

cellular resolutions. Discrete Morse theory was developed by Forman in [17] to

extend the ideas from Morse theory in differential geometry to CW complexes.

The interested reader is encouraged to consult Forman’s survey paper [18] for

further reading on discrete Morse theory. The application of discrete Morse

theory to the study of cellular resolutions was first explored by Batzies and

Welker in [5] as a method of “cutting down” a large cellular resolution in such a

manner that the resulting subcomplex is also a cellular resolution.

Construction 6.1.9 (Discrete Morse Function, Acyclic Matching, Critical Cells).

Adopt Notation 6.1.5. Let GX be the directed graph on the set of cells of X whose
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set EX of edges is given by c → c′ for c′ ⊆ c and dim(c′) = dim(c) − 1. A discrete

Morse function arises from a set A ⊆ EX of edges in GX satisfying:

1. each cell occurs in at most one edge of A, and

2. the graph GA
X with edge set

EA
X B (EX \ A) ∪ {c′ → c | c→ c′ ∈ A}

is acyclic (i.e., it does not contain a directed cycle).

Such a set A ⊆ EX is called an acyclic matrching of GX. A cell of X is A-critical

with respect to A if it is not contained in any edge of A. An acyclic matching is

homogeneous if c→ c′ ∈ A implies that mdeg(c) = mdeg(c′).

The proof of the following proposition can be found in the appendix of [5],

and shows that acyclic matchings can be used to induce acyclic subcomplexes

that are also supported on cell complexes.

Proposition 6.1.10. Let X be a regular CW-complex which supports a free resolution of

a monomial ideal M, and let A be a homogeneous acyclic matching of GX. Then there is a

(not necessarily regular) CW-complex XA whose i-cells are in one-to-one correspondence

with the A-critical i-cells of X such that XA is homotopy equivalent to X.

Moreover, XA inherits a multigrading from X, and for any multidegree α and restric-

tion A≤α of A to X≤α, one has

X≤α ' (X≤α)A≤α � (XA)≤α.

In particular, XA also supports a cellular resolution of the ideal M.

Definition 6.1.11 (Morse Complex). The complex XA of Proposition 6.1.10 is

called the Morse complex of X for the matching A.
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Remark 6.1.12. The explicit construction of the Morse complex XA from an acyclic

matching A is quite technical, and therefore is not included here. The interested

reader is encouraged to consult the appendix of [5] for more details.

6.2 Background on L-complexes

The goal of this section is to introduce the L-complexes of Buchsbaum and

Eisenbud and to make clear our conventions on Young tableaux. For further

details on Schur modules and their use in the construction of free resolutions,

one may consult Weyman’s book [51].

The following notation will be used throughout this section and the rest of

this chapter.

Notation 6.2.1. Let R be a polynomial ring over a field k. Let F be a free R-module

of rank n with basis f1, . . . , fn. Denote by S d(F) the dth symmetric power of F,

and by
∧n F the nth exterior power of F. Let J = { j1 < j2 < · · · < jk} ⊂ [n]. Define

fJ B f j1 ∧ · · · ∧ f jk ∈

k∧
F.

If α = (α1, . . . , αn) ∈ Nn such that
∑

i αi = d, set

f α B f α1
1 f α2

2 . . . f αn
n ∈ S d(F).

Setup 6.2.2. Let F denote a free R-module of rank n, and S = S (F) the symmetric

algebra on F with the standard grading. Define a complex

· · · //∧a+1 F ⊗R S b−1
κa+1,b−1//∧a F ⊗R S b

κa,b // · · ·
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where the maps κa,b are defined as the composition

a∧
F ⊗R S b →

a−1∧
F ⊗R F ⊗R S b

→

a−1∧
F ⊗R S b+1

where the first map is comultiplication in the exterior algebra and the second

map is the standard module action (where we identify F = S 1(F)). Define

La
b(F) := ker κa,b.

Let ψ : F → R be a morphism of R-modules with im(ψ) an ideal of grade n.

Let kosψ :
∧i F →

∧i−1 F denote the standard Koszul differential; that is, the

composition

i∧
F → F ⊗R

i−1∧
F (comultiplication)

ψ⊗1
−−−→ R ⊗R

i−1∧
F �

i−1∧
F (module action).

Explicitly, if J = { j1 < · · · < jk}, then

kosψ( fJ) =
∑
i∈[k]

(−1)iψ( f ji) · fJ\ ji .

Definition 6.2.3 (L-Complex). Adopt notation and hypotheses of Setup 6.2.2.

Define the complex

L(ψ, b) : 0 // Ln−1
b

kosψ⊗1 // · · ·
kosψ⊗1 // L0

b
S b(ψ) // R // 0

where kosψ ⊗ 1 : La
b(F) → La−1

b is induced by making the following diagram

commute: ∧a F ⊗ S b(F) kosψ⊗1 //∧a−1 F ⊗ S b(F)

La
b(F) kosψ⊗1 //

OO

La−1
b (F)

OO
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The following Proposition shows that the L-complexes constitute a minimal

free resolution of powers of complete intersections in general.

Proposition 6.2.4. Let ψ : F → R be an R-module homomorphism from a free module

F of rank n such that the image im(ψ) is an ideal of grade n. Then the complex L(ψ, b) of

Definition 6.2.3 is a minimal free resolution of R/ im(ψ)b

We also have (see Proposition 2.5(c) of [9], or just use Proposition 6.2.6)

rankR La
b(F) =

(
n + b − 1

a + b

)(
a + b − 1

a

)
.

Moreover, using the notation and language of Chapter 2 of [51], La
b(F) is the

Schur module L(a+1,1b−1)(F). This allows us to identify a standard basis for such

modules.

Notation 6.2.5. We use the English convention for partition diagrams. That is,

the partition (3, 2, 2) corresponds to the diagram

.

A Young tableau is standard if it is strictly increasing in both the columns and

rows. It is semistandard if it is strictly increasing in the columns and nondecreasing

in the rows.

Proposition 6.2.6. Adopt notation and hypotheses as in Setup 6.2.2. Then a basis for

La
b(F) is represented by all Young tableaux of the form

i0 j1 · · · jb−1

i1

...

ia

with i0 < · · · < ia and i0 ≤ j1 ≤ · · · ≤ jb−1.
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Proof. See Proposition 2.1.4 of [51] for a more general statement. �

Remark 6.2.7. Adopt notation and hypotheses of Setup 6.2.2. Let F have basis

f1, . . . , fn. In the statement of Proposition 6.2.6, we think of a tableau as represent-

ing the element

κa+1,b−1( fi0 ∧ · · · ∧ fia ⊗ f j1 · · · f jb−1) ∈
a∧

F ⊗ S b(F).

We will often write fi1 ∧ · · · ∧ fia+1 ⊗ f j1 · · · f jb−1 ∈ La
b(F), with the understanding

that we are identifying La
b(F) with the cokernel of κa+2,b−2 :

∧a+2 F ⊗ S b−2(F) →∧a+1 F ⊗ S b−1(F).

The following Observation is sometimes referred to as the shuffling or straight-

ening relations satisfied by tableaux in the Schur module La
b(F).

Observation 6.2.8. Any tableau of the form

T =
i0 j1 · · · jb−1

i1

...

ia

with j1 ≤ · · · ≤ jb−1 viewed as an element in La
b(F) with b ≥ 2 may be rewritten as

a linear combination of other tableaux in the following way:

T =

a∑
k=0

(−1)k j1 ik j2 · · · jb−1

i0
...

îk
...

ia

.

Notice that if i0 > j1 and i0 < · · · < ia, then this rewrites T as a linear combination

of semistandard tableaux after reordering the row into ascending order.
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6.3 The L-complex is cellular

In this section, we apply discrete Morse theory to the so-called hypersimplex reso-

lution (see Definition 6.3.2) of md in a novel way to obtain a CW-complex which

supports the L-complex with the exact basis elements described in Proposition

6.2.6. In particular, Proposition 6.3.10 implies that the L-complex of Buchsbaum

and Eisenbud is CW-cellular. While Batzies and Welker had previously ob-

tained a minimal cellular resolution of md by finding an acyclic matching on the

hypersimplex resolution in [5], the minimal resolution they obtain is instead

isomorphic to the Eliahou-Kervaire resolution of md.

Notation 6.3.1. The notation ∆(n, d) will denote the dilated (n−1)-simplex d ·∆n−1;

that is,

∆(n, d) = d · ∆n−1 :=

(y1, . . . , yn) ∈ Rn |

n∑
i=1

yi = d, yi ≥ 0 for i = 1, . . . , n

 .
Definition 6.3.2 (Hypersimplicial Complex). Let Hd

n be the polytopal CW-

complex with the underlying space ∆(n, d), with CW-complex stucture induced

by intersection with the cubical CW-complex structure on Rd given by the integer

lattice Zd. That is, the closed cells ofHd
n are given by all hypersimplices

Ca,J B ∆(n, d) ∩
{
(y1, . . . , yn) ∈ Rn | yi = ai for i ∈ [d] \ J and y j ∈ [a j, a j + 1] for j ∈ J

}
= conv

a +
∑
j∈J

` jε j | ` j ∈ {0, 1},
∑
j∈J

` j = d − |a|


with a ∈ Nn, J ⊂ [n], |a| B

∑
i∈[n] ai, εi the ith unit vector in Rn, either subject to the

conditions |a| = d and J = ∅ (these are the 0-cells), or the condition 1 ≤ d − |a| ≤

|J| − 1. The CW-complex Hd
n is multigraded by setting lcm(Ca,J) B a +

∑
j∈J ε j.

CallHd
n the hypersimplicial complex.
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Let J = ( j0 < · · · < jr) and use the notation Jv B J \ { jv}. Then the differential

ofHd
n is given by

∂(Ca,J) =



∑r
v=0(−1)v(Ca,Jv −Ca+εv,Jv) if 2 ≤ d − |a| ≤ |J| − 2

∑r
v=0(−1)vCa,Jv if 1 = d − |a| ≤ |J| − 2

∑r
v=0(−1)vCa+ε j,Jv if 2 ≤ d − |a| = |J| − 1

Ca+e j0 ,∅
−Ca+e j1 ,∅

if d − |a| = 1

0 if |a| = d.

Observation 6.3.3. The one skeleton ofHn
d is exactly T (n, d) from Notation 2.4.1

in the previous chapter.

6.3.4. Adopt notation and hypotheses of Setup 6.2.2. If J = ( j0 < j1 < · · · < jr) and

a ∈ Nd, note that every r-dimensional cell Ca,J corresponds to the element fJ ⊗ f a in∧r+1 F ⊗ S |a|(F). These elements, in turn, can be represented as hook tableaux with

strictly increasing columns and weakly increasing rows:

Ca,J ←→ fJ ⊗ f a ←→
j0 1a1 . . . nan

j1

j2
...

jr

.

We will implicitly use this correspondence to refer to cells Ca,J of Hd
n as tableaux or

elements of
∧r+1 F ⊗S |a|(F). Themd-homogenization (see Construction 6.1.3) ofHd

n [−1]
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therefore corresponds to the double complex in Figure 6.1 where the maps κ and kosψ ⊗ 1

are as defined in Setup 6.2.2.

0

0
∧n F

. .
. ...

...

0 . . .
∧5 F ⊗ S d−3

∧4 F ⊗ S d−3(F)

0
∧n F ⊗ S d−2(F) . . .

∧4 F ⊗ S d−2(F)
∧3 F ⊗ S d−2(F)

0
∧n F ⊗ S d−1(F) . . .

∧4 F ⊗ S d−1(F)
∧3 F ⊗ S d−1(F)

∧2 F ⊗ S d−1(F)

F ⊗ S d(F) S d(F) 0kosψ⊗1

κ

kosψ⊗1kosψ⊗1kosψ⊗1kosψ⊗1

kosψ⊗1 kosψ⊗1 kosψ⊗1

kosψ⊗1kosψ⊗1

κκ
κ

κ κ

κ

κ

kosψ⊗1

κ

κ

κ

kosψ⊗1

Figure 6.1: Double complex supported onHd
n .

Example 6.3.5. The edge with vertices (1, 1, 1) and (1, 0, 2) in blue-green in Figure

6.2a and 6.2b corresponds to the cell C(1,0,1),23, which has the following image in

the double complex of Figure 6.1:

2 1 3

3
7→ x2 ·

1 3 3
− x3 ·

1 2 3
.

112 113

111

222 333

133122

223 233

123

The cell C(1,0,1),123 inH3
3 .

112 113

111

222 333

133122

223 233

123

The cell C(0,0,1),123 inH3
3 .
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(3,0,0,0)(3,0,0,0)

(0,0,0,3)(0,0,0,3)

(0,3,0,0)(0,3,0,0) (0,0,3,0)(0,0,3,0)

Figure 6.3: The one-skeleton ofH3
4 .

The “up-simplex” corresponding to the cell C(1,0,1),123 colored in Figure 6.2a has

image

1 1 3

2

3

7→ x1 ·
2 1 3

3
− x2 ·

1 1 3

3
+ x3 ·

1 1 3

2
.

Finally, the “down-simplex” of Figure 6.2b corresponding to the cell C(0,0,1),123 has

image
1 3

2

3

7→
2 1 3

3
−

1 2 3

3
+

1 3 3

2
.

The following simple observation turns out to be critical for applications in

Section 7.1.

Observation 6.3.6. All elements of
∧2 F ⊗ S d−1 contained in the one-skeleton of

a “down-triangle” are related by a straightening relation as in Observation 6.2.8.

Example 6.3.7. Figure 6.3 depicts the one-skeleton of H3
4 . In this case, the hy-

persimplices which appear as maximal cells are not solely simplices: there are
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four octahedra in the complex, which correspond to the four possible elements

of
∧4 F ⊗ F. The image of any one of these octahedra in the double complex of

Figure 6.1 is a linear combination of eight tableaux, corresponding to the eight

faces of the octahedron: four “up-triangles” coming from its image under κ, and

four “down-triangles” corresponding to its image under kosψ ⊗ 1.

Proposition 6.3.8 (see [5]). Let md = (x1, . . . , xn)d ⊂ k[x1, . . . , xn]. ThenHd
n defines a

multigraded cellular free resolution of md.

Batzies and Welker [5] use discrete Morse theory to show that the Eliahou–

Kervaire resolution for powers of the graded maximal ideal is cellular. We apply

their techniques to obtain a minimal cellular resolution isomorphic to the L-

complex as in Definition 6.2.3. To do this, we find an acyclic matching on Hd
n

distinct from the one in [5] which has a corresponding Morse complex which

supports the L-complex.

Proposition 6.3.9. Let Hd
n be as in Definition 6.3.2. Consider the matching Ca,J →

Ca+εmin J ,J\min J, where

1. a ∈ Nn,

2. J ⊂ [n] is such that 2 ≤ d − |a| ≤ |J| − 1, and

3. min J ≤ min a.

Then this is an acyclic homogeneous matching A on Hd
n as in Construction 6.1.9.

Moreover, if H̃d
n = (Hd

n )A denotes the corresponding Morse complex, then the A-critical

cells ofHd
n are:

1. the 0-cells Ca,∅, where a ∈ Nn ∩ ∆(n, d), and
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2. the cells Ca,J such that min J ≤ min a and |a| = d − 1.

Proof. A is a matching because cells Ca,J on the left hand side must satisfy min J ≤

min a while the cells Ca′,J′ on the right hand side must satisfy min J′ > min a′.

Suppose, seeking contradiction, that A contains a cycle. Observe that mdeg(Ca,J)

must be weakly decreasing along every directed edge of the cycle, so in particular

it must be constant. Observe that every element Ca,J at the head of an edge

directed upwards in EA satisfies min J ≤ min a, but then every element at the

head of an arrow pointing “down” from one of these elements must have the

same min J. But this element Ca′,J′ must also be at the tail of some other element

of EA pointing upwards, so it must also satisfy that min J′ < min a, which is a

contradiction. �

We conclude this section with the main result of this chapter, which states

that the L-complex from Definition 6.2.3 is supported on a CW-complex.

Proposition 6.3.10. Let ∂̃ denote the differential of the Morse complex H̃d
n = (Hd

n )A and

C̃a,J the cell in H̃d
n corresponding to the A-critical cell Ca,J of Hd

n . Then H̃d
n supports

a minimal linear cellular resolution of a power of the graded maximal ideal which is

isomorphic to the L-complex from Definition 6.2.3.

Proof. The A-critical cells of Hd
n are exactly the 0-cells Ca,∅ for a ∈ ∆Z(n, d) ∩

Nn and all cells Ca,J such that min J ≤ min a and |a| = d − 1; in particular, the

critical cells correspond to exactly those standard hook tableaux which are basis

elements of the modules in the L-complex. Let Ca,J be a critical cell with p =

min J and q = min{i | i ∈ supp(a)}. Then the differential ∂ of Hd
n applied to Ca,J

has at most one nonstandard tableau in its image, which would be Ca,Jp . This

element is matched with Ca−εq,Jp∪q, which has an image under ∂ consisting of
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standard tableaux of the same shape and multidegree as Ca,Jp , and potentially

some tableaux corresponding to elements which are matched with elements

one dimension lower and therefore do not appear in ∂̃. In particular, after

homogenization, ∂̃ corresponds exactly to the differential of the L-complex in

Definition 6.2.3. �
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CHAPTER 7

POLARIZATIONS VIA HOOK PARTITIONS

This chapter is based on joint work with Keller VandeBogert.

7.1 Hook tableaux and polarizations

The goal of this section is to provide a dictionary between the notation and

terminology introduced in Chapter 2 and the Schur modules appearing in the

L-complexes of Section 6.2. More precisely, we give a new combinatorial char-

acterization of all polarizations of powers of the graded maximal ideal in terms

of generating sets of the Schur module L1
d(F). The main result of this section is

Theorem 7.1.6, which shows that the spanning tree condition of Theorem 2.5.1 is

equivalently asking that the Young tableaux canonically associated to the linear

syzygy edges form a basis for the associated Schur module.

The actual dictionary for translating between the different aforementioned

frameworks is given by Proposition 7.1.2; these results will be employed in

Section 7.2 to extend the results in Chapter 2 to the case of restricted powers.

Notation 7.1.1. Fix integers n and d, and let S = k[x1, . . . , xn] be a polynomial

over a field k. Let X̌i = {xi1, . . . , xid} be a set of variables, and let S̃ = k[X̌1, . . . , X̌n]

be a polynomial ring in the union of all these variables. Denote bym = (x1, . . . , xn)

the graded maximal ideal of S .

Let ∆(n, d) be the dilated (n − 1)-simplex from Definition 6.3.1. Denote by

∆Z(n, d) = ∆(n, d) ∩ Zn the set of lattice points of the dilated simplex d∆n−1, i.e.,

the set of tuples a = (a1, . . . , an) of non-negative integers with
∑n

i ai = d. Denote
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by T (n, d) = T (n, d) the one-skeleton of the hypersimplicial complex Hd
n from

Definition 6.3.2.

Let La
b(F) be the Schur module defined in Setup 6.2.2.

Proposition 7.1.2. Adopt notation and hypotheses of Notation 7.1.1. Then:

(a) There exists a bijection ψn,d from ∆Z(n, d) to S d(F).

(b) For any pair c ∈ ∆Z(n, d + 1) and R ⊆ Supp(c) such that |R| = t, the complete

subgraph DR(c) (see Definition 2.4.12) corresponds to a unique element of
∧t F ⊗

S d−t+1(F).

(c) There exists a bijection θn,d from the edges of ∆Z(n, d) to the elements of
∧2 F ⊗

S d−1(F).

Proof. For (a), the map

ψn,d : ∆Z(n, d)→ S d(F) (7.1)

such that ψn,d(a) = f a gives the desired bijection.

For (b), Let c ∈ ∆Z(n, d + 1). If R ⊆ Supp(c), define

ωn,d(c,R) B fR ⊗ ψn,d−|R|+1(cR) (7.2)

where cR = c −
∑

i∈R εi. In particular, if R = Supp(c), then the map

ωn,d : ∆Z(n, d + 1)→
t∧

F ⊗ S d−t−1(F) (7.3)

such that ωn,d(c) = fSupp(c) ⊗ ψn,d−t+1(c′) is a bijection between the down-triangles

of T (n, d) and
∧t F ⊗ S d−t−1(F), where c′ = c −

∑
i∈Supp(c) εi and t = |Supp(c)|.

For (c), If (c; i, j) is an edge in T (n, d), then the map

θn,d(c; i, j) B fi ∧ f j ⊗ ψn,d−1(c − εi − ε j) (7.4)
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12

11

22

13

23
33

Figure 7.1: T (3, 2) with vertex labels in S 2(F).

gives a bijection between edges of T (n, d) and elements of
∧2 F ⊗ S d−1(F). �

7.1.3. Let c ∈ ∆Z(n, d + 1) be a down-triangle and let R ⊆ Supp(c). Set T = ω(c,R) ∈∧|R| F ⊗ S d−|R|−1(F). The tableaux appearing in the image κ|R|,n−|R|+1(T ) (where κa,b is

defined in Setup 6.2.2) correspond exactly to the down-triangles DP(c) such that |P| =

|R| − 1. In particular, as noted in Observation 6.3.6, if |R| = 3, κ3,n−2(T ) corresponds to a

linear combination of the labels appearing on the three edges of DR(c).

Example 7.1.4. Figure 7.1 depicts T (3, 2) with vertex labels in S 2(F) where F is a

free module with basis elements { f1, f2, f3}. The unique maximal down-triangle

in this graph corresponds to c = (1, 1, 1) ∈ ∆Z(3, 3), or, via the map in part (b) of

Proposition 7.1.2, f1 ∧ f2 ∧ f3 ∈
∧3 F. Applying the map κ3,0 from Definition 6.2.3

gives exactly the tableaux corresponding to the edges of the down-triangle c:

1

2

3

κ3,0
7−−→

1 2

3
−

2 1

3
+

1 3

2

Definition 7.1.5. Let χ = {Xi} denote a set of isotone maps

Xi : (∆Z(n, d),≥i)→ Bd

as in Construction 2.4.10. Let LSχ be the set of linear syzygy edges after applying

χ to the generators of md as in Definition 2.4.11. Denote by tab(χ) the set of
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tableaux in
∧2 F ⊗ S d−1(F) associated to the edges LSχ via the correspondence in

6.3.4.

Theorem 7.1.6. Adopt notation and hypotheses of Setup 7.1.1. Let χ = {Xi} denote a

set of isotone maps as in Construction 2.4.10. Then the following are equivalent:

1. The elements of tab(χ) span the module L1
d(F).

2. For every c ∈ ∆Z(n, d + 1), LS(c) contains a spanning tree of the complete down-

graph D(c).

3. The set of isotone maps X1, . . . , Xn determine a polarization of (x1, . . . , xn)d.

Proof. Note that (2)⇐⇒ (3) is Theorem 2.5.1.

(2) =⇒ (1): Take c ∈ ∆Z(n, d + 1) and let a = c − εi and b = c − ε j for some

i, j ∈ Supp(c). If LS (c) contains a spanning tree, then for any two vertices a and b

in c, there exists a path in LS (c) connecting them. It suffices to show that for any

a and b in D(c), θn,d(c; i, j) is in the span of tab(X).

Proceed by induction on k, the number of edges in the shortest path from

a to b. If k = 1, then the tableau corresponding to the edge between a and b is

in tab(X). Now assume that for any two vertices c − εi and c − ε j such that the

shortest path in LS (c) between them is length k, the tableau θn,d(c; i, j) is a linear

combination of elements in tab(X). Let a and b be two vertices of D(c) such that

the shortest path between them is length k + 1, i.e., there is a set of vertices

a = d1, . . . ,dk+2 = b

such that each d j is a vertex in D(c) and each pair (d j,d j+1) is connected by

an edge in LS(c). The length of the shortest path between a and dk+1 is k, so
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by the induction hypothesis, the tableau labeling the edge between them is

spanned by the elements of tab(X). If a = c − εi1 ,b = c − εi2 , and dk+1 = c − εi3 ,

set R = {i1, i2, i3} and consider the “smaller” down-triangle DR(c) (see Definition

2.4.12). By Observation ??, the edge between a and b is a linear combination

of the other two edges of DR(c), which in turn have been shown to be linear

combinations of elements of tab(X), hence proving the claim.

(1) =⇒ (2): Let c ∈ ∆Z(n, d + 1) be a complete down-graph in T (n, d). It suffices to

show that for any two vertices a = c − εi and b = c − ε j, there exists a path from a

to b by edges labeled by tableaux in tab(X). Since tab(X) must contain a basis of

the module L1
d(F), one may assume that tab(X) is a basis itself. Suppose θn,d(c; i, j)

is not in tab(X). The result follows from the following claims:

(i) There exists some R = {i, j, `1} ⊆ Supp(c) such that DR(c) has at least one

edge labeled by an element of tab(X).

(ii) Suppose (c; i, `1) is the unique edge of DR(c) labeled by an element of tab(X).

Then there exists some P = {`1, `2, j} ⊆ Supp(c) such that at least one edge of

DP(c) has a label appearing in tab(X) and `2 , i.

(iii) Let Γ(c) be the subgraph of D(c) with edges labeled by elements of tab(X).

If Γ(c) contains a cycle, then it corresponds to a linearly dependent subset

of tab(X).

To see (i), suppose no tableaux corresponding to edges in any possible DR(c)

are in tab(X). Then no tableaux in any of the possible straightening relations

containing θn,d(c; i, j) coming from the image of any of the ωn,d(c,R) under κ3,n−2

appear in tab(X). Hence, θn,d(c; i, j) is not in the span of tab(X).
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For (ii), observe that the image of ωn,d(c,R) under κ3,n−2 gives that θn,d(c; i, j)

is in the span of θn,d(c; i, `1) and θn,d(c; j, `1). By assumption, θn,d(c; i, `1) ∈ tab(X).

Suppose every other DP(c) with |P| = 3 containing θn,d(c; j, `1) has no edges labeled

by tableaux in tab(X). Then θn,d(c; j, `1) is not in the span of tab(X), contradicting

the assumption that tab(X) spans L1
d(F).

To check (iii), proceed by induction on the length k of the cycle. In the base

case where k = 3, the cycle forms the edges of a down-triangle DR(c) where |R| = 3.

The three tableaux labeling the edges of DR(c) make up the straightening relation

from the image of ωn,d(c,R) under κ3,n−2, implying they are linearly dependent.

This contradicts the assumption that tab(X) forms a basis. Now assume that

any cycle of length k in Γ(c) gives a linearly dependent subset of tab(X), and

suppose there is a cycle a1, . . . , ak+1 such that the edges (a j, a j+1) and (a1, ak) are

labeled by tableaux in tab(X) and each a j = c − εi j . Let R = {i1, ik, ik+1}. By the

induction hypothesis, θn,d(c; i1, ik) is equal to a linear combination of tableaux

θn,d(c; ik, ik+1) and θn,d(c; i1, ik+1); but also by the induction hypotheses, it is a linear

combination of tableaux of the form θn,d(c; i j, i j+1) where 1 ≤ j ≤ k. Therefore, the

cycle corresponds to a linearly dependent subset of tab(X).

With claims (i)-(iii) established, iterate the following process. Choose a trian-

gle DR(c) such that R = {i, j, `} and some edge of DR(c) is labeled by an element of

tab(X). If both θn,d(c; i, `1) and θn,d(c; `1, j) are in tab(X), the claim follows. Suppose

that only one of these tableaux are in tab(X); without loss of generality, assume

that θn,d(c; i, `) ∈ tab(X). By (ii), there is some triangle DP(c) such that P = {`1, `2, j}

and at least one edge of DP(c) has a label appearing in tab(X). If both θn,d(c; `1, `2)

and θn,d(c; `2, j) appear in tab(X), then the claim follows. Otherwise, repeat this

process. This process must terminate by (iii), giving the desired path.

90



�

7.2 Cellular resolutions and polarizations of restricted powers

of the graded maximal ideal

In this section, we extend the results from Chapter 2 and Section 7.1 to the case

of so-called restricted powers of the graded maximal ideal. This class of ideals

comes from bounding the multidegrees appearing in the generators of md. We

show in Proposition 7.2.6 that these ideals also have a minimal, linear, cellular

resolution arising as a subcomplex of the L-complex. In addition, we give two

combinatorial characterizations of polarizations of this class of ideals: one in

terms of their graphs of linear syzygies, and one in terms of spanning sets of a

submodule of the associated Schur module. These characterizations are given by

Theorem 7.2.8.

Setup 7.2.1. Let I be a monomial ideal in a polynomial ring S = k[x1, . . . , xn]

over a field k with generating set G(I) = (m1, . . . ,mr). Let u ∈ I be a monomial,

and define the monomial ideal I≤u to be the ideal generated by monomials

{mi | mi divides u}.

Let di be the highest power of xi that appears in a minimal generator of I. Set

X̌i = {xi1, . . . , xidi} for all i, and define the polynomial ring S̃ = k[X̌1, . . . , X̌n] in the

union of all these variables. Observe that S̃ has a Zn-grading induced by the first

indices of the variables in S̃ .

Let Ĩ be a polarization of I. Define Ĩ≤u to be generated by those elements of Ĩ

with Zn-multidegree bounded above by u.
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The following useful proposition was observed in [22].

Proposition 7.2.2. Let I be a monomial ideal in a polynomial ring S . Fix a multi-

homogeneous basis of a multigraded free resolution FI of S/I. Denote by FI(≤ u) the

subcomplex of F generated by multihomogeneous basis elements of multidegrees dividing

u.

(1) The subcomplex FI(≤ u) is a multigraded free resolution of S/(I≤u).

(2) If FI is a minimal multigraded free resolution of S/I, then FI(≤ u) is independent

of the choice of basis.

(3) If FI is a minimal multigraded free resolution of S/I, then the resolution FI(≤ u)

is also minimal.

Proposition 7.2.3. Adopt Setup 7.2.1. Then Ĩ≤u is a polarization of I≤u.

Proof. Let F̃ be a free resolution of Ĩ. Then F̃ is a multigraded resolution with

respect to the Zn-multigrading where each variable xi, j in X̌i has multidegree ei.

By the definition of a polarization, F̃⊗ S̃ /σ � F, where σ is a regular S̃ /Ĩ-sequence

of variable differences and F is a minimal free resolution of I. By Proposition

7.2.2, both F(≤ u) and F̃(≤ u) are minimal multigraded free resolutions of I≤u and

Ĩ≤u, respectively; in particular, one has that

F̃(≤ u) ⊗ S̃ /σ � F(≤ u). (7.5)

It remains to check that σ is indeed a regular sequence on S̃ /Ĩ≤u. This follows

immediately from the string of isomorphisms:

H•(F̃(≤ u) ⊗ S̃ /σ) � TorS̃
• (S̃ /Ĩ≤u, S̃ /σ) � H•(S̃ /Ĩ≤u ⊗ K(σ)•),

where K(σ)• denotes the Koszul complex on σ. Since F̃(≤ u) ⊗ S̃ /σ � F(≤ u) is

acyclic, it follows that H>0(S̃ /Ĩ ⊗K(σ)•) = 0, so σ is regular on S̃ /Ĩ by, for instance,

[41, Theorem 14.7]. �
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We apply these results to extend results on cellular resolutions and polar-

izations from powers of the maximal ideal to so-called restricted powers of the

graded maximal ideal. This terminology conforms with that of [21] and [22].

Definition 7.2.4 (Restricted Powers). Let m = (x1, . . . , xn) be the graded maximal

ideal in a polynomial ring S over a field k. For any vector u ∈ Nn, define the

restricted power of m to be md(≤ u) to be the ideal generated by (xa |
∑n

i ai =

d and ai ≤ ui for all i ∈ [n]).

Setup 7.2.5. Let S = k[x1, . . . , xn] be a polynomial over a field k. Denote by

m = (x1, . . . , xn) the graded maximal ideal of S . For u ∈ Nn, let md(≤ u) be

the restricted power of the graded maximal ideal as in Definition 7.2.4. Let

X̌i = {xi1, . . . , xid} be a set of variables, and let S̃ = k[X̌1, . . . , X̌n] be a polynomial

ring in the union of all these variables. Let Bd(≤ ui) be the truncated Boolean poset

on [d] with elements of rank at most ui in Bd.

LetHd
n be the hypersimplicial complex from Definition 6.3.2, and letHd

n (≤ u)

be the induced subcomplex with cells {Ca,J | mdeg(Ca,J) ≤ u}. Denote by ∆Z
≤u(n, d)

and T≤u(n, d) the 0-skeleton and 1-skeleton ofHd
n (≤ u), respectively. We also use

the notation ∆Z
≤u(n, d) for ∆Z

≤u(n, d).

Let La
b,≤u(F) be the Schur module defined in Setup 6.2.2 restricted to multide-

grees ≤ u, where the multidegree of an element fJ ⊗ f α ∈
∧

Fa ⊗ S b(F) is defined

to be α +
∑

j∈J ε j, where ε j is the j’th unit vector in Nn.

Proposition 7.2.6. Adopt notation and hypotheses of Setup 7.2.5. Then:

1. The induced subcomplex Hd
n (≤ u) supports a polyhedral cellular resolution of

md(≤ u).
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2. The induced subcomplex H̃d
n (≤ u) supports a minimal CW cellular resolution of

md(≤ u) which is isomorphic to a subcomplex of the L-complex.

In particular, md(≤ u) has a linear minimal free resolution.

Proof. Apply Proposition 7.2.2. �

Corollary 7.2.7. Adopt notation and hypotheses of Setup 7.2.1 and let 1 = (1, 1, . . . , 1) ∈

Nn. The ideal generated by all squarefree monomials of a given degree in S has a non-

minimal resolution supported on the polyhedral cell complex Hd
n (≤ 1), and it has a

minimal free resolution supported on the CW-complex H̃d
n (≤ 1), , the restriction of the

Morse complex from Proposition 6.3.9.

Moreover, one can extend the characterizations of polarizations of powers

of the graded maximal ideal in Theorem 7.1.6 to restricted powers of the max-

imal ideal. Observe that all the definitions in Chapter 2 work in this context,

exchanging ∆Z(n, d) with ∆Z
≤u(n, d) and exchanging Bd with Bd(≤ ui) as required.

Theorem 7.2.8. Adopt notation and hypotheses of Setup 7.2.1. Let X = {Xi}i∈[n] denote

a set of rank-preserving isotone maps

Xi : (∆Z
≤u(n, d),≤i)→ Bd(≤ ui)

as in Construction 2.4.10. Denote by tab(X) be the set of tableaux in
∧2 F ⊗ S d−1(F)

associated to the linear syzygy edges in T≤u(n, d) after applying the isotone maps in X to

its vertices. Then the following are equivalent:

1. The elements of tab(X) span the module L1
d,≤u(F).

2. For every c ∈ ∆Z
≤u(n, d + 1), LS(c) contains a spanning tree of the complete down-

graph D(c).
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3. The set of isotone maps X1, . . . , Xn determine a polarization of md(≤ u).

Proof. (1) =⇒ (2): The proof is identical to that of Theorem 7.1.6.

(2) =⇒ (3): This follows from Proposition 7.2.3.

(3) =⇒ (1): Suppose the set of isotone maps X = {Xi}i∈[n] determine a polarization˜md(≤ u) of md(≤ u). Let F̃ be a (not necessarily minimal) free resolution of ˜md(≤ u)

with linear syzygies corresponding to the set of linear syzygy edges induced by

X. Let F = F̃ ⊗ S̃ /σ, be the depolarization of F̃, where σ is a regular sequence of

variable differences. Then F is a free resolution of md(≤ u) with linear syzygies

which are in bijection with tab(X). Since F must be a free resolution of md(≤ u),

tab(X) must span L1
d,≤u(F).

�
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Part III

Polarizations and Triangulations of

Root Polytopes
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CHAPTER 8

TRIANGULOIDS AND POLARIZATIONS

Triangulations arise naturally in a wide variety of contexts, including opti-

mization, combinatorics, algebra, topology, and computer science. In particular,

triangulations of a product of simplices ∆d−1 × ∆n−1 have been shown to be in

bijection with various objects, including:

• fine mixed subdivisions of the dilated simplex d · ∆n−1 (see [45] or [27]);

• tropical oriented matroids (see [4] or [39]);

• tropical pseudohyperplane arrangements (see [26]);

• matching ensembles (see [6] or [40]);

• ...and more (see [43])

More generally, for any bipartite graph G contained in the complete bipartite

graph Kn,d, Postnikov introduced in [43] the notion of a root polytope QG, which

specializes to a product of simplices in the case when G = Kn,d. He showed that

every triangulation of root polytope gives rise to a fine mixed subdivision of a

generalized permutahedron PG. Triangulations of root polytopes have arisen in the

contexts of pipe dream complexes (see [35]), noncrossing alternating trees (see

[33] and [34]), and subword complexes (see [12]).

However, there was no general theory characterizing all triangulations of

root polytopes until the work of Galashin, Nenashev, and Postnikov in [20].

They introduce the notion of a trianguloid, which is a collection of bipartite

graphs G = {Ga} (one for each lattice point a of a certain trimmed generalized

permutathedron) satisfying four axioms. It turns out that these trianguloids
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are in bijection with triangulations of root polytopes. Galashin, Nenashev, and

Postnikov represent these “trianguloids” as graphs with multiple colored edges

between the lattice points of d · ∆n−1, and their conditions are quite technical.

In this chapter, we provide a novel perspective: the bipartite graphs Ga in

a trianguloid can be written as monomials, and the axioms for the graphs give

rise to conditions on these monomials. We show in Theorem 8.1.4 that in the

case where the root polytope is a product of simplices ∆n−1 × ∆d−1, three of the

trianguloid axioms are equivalent to the condition that the monomials generate a

polarization of a power of the graded maximal ideal. In particular, we show that

the most technical axiom for a trianguloid, called the hexagon axiom, is equivalent

to the spanning tree condition for a polarization in Theorem 2.5.1.

8.1 Trianguloids are polarizations

Trianguloids were introduced by Galashin, Nenashev, and Postnikov in [20] as

a manner of axiomatizing triangulations of root polytopes. In particular, they

show that trianguloids are in bijection with triangulations of ∆n−1 ×∆d−1, and that

these ideas can be extended to encompass triangulations of all root polytopes QG

corresponding to a bipartite graph G. In this section, we relate their axioms for

trianguloids to the combinatorial characterization of polarizations of powers of

the graded maximal ideal in Theorem 2.5.1.

The following phrasing of the definition of a trianguloid in the case of ∆n−1 ×

∆d−1 can be found in [31].

Definition 8.1.1 (Trianguloid). Let G = {Ga | a ∈ ∆Z(n, d)} be a collection of

bipartite graphs on L t R in bijection with the lattice points ∆Z(n, d). Let Na(v)
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denote the neighborhood of v in Ga. The collection G is a pre-trianguloid if it

satisfies the following axioms:

(T1) The graph Ga has right degree vector a,

(T2) Each graph has no isolated left nodes,

(T3) For a, a′ ∈ ∆Z(n, d) where a′ = a + ep − eq, one has Na(rp) ⊂ Na′(rp).

G is a trianguloid if it is a pre-trianguloid which satisfies the following hexagon

axiom:

(T4) Let c ∈ ∆Z(n, d − 2) and i, j, k ∈ [d] be distinct such that Nc+ei+e j(r j) ,

Nc+e j+ek(r j). Then

Nc+ei+e j(ri) = Nc+ei+ek(ri), Nc+ei+ek(rk) = Nc+e j+ek(rk).

The definition of a trianguloid turns out to be eerily similar to character-

izations of polarizations of powers of the graded maximal ideal from earlier

chapters. We recall the Theorem 2.5.1 from Chapter 2, now phrasing it axiomati-

cally to demonstrate the parallel with the axiomitization of triangulations of root

polytopes above.

Theorem 8.1.2. Let G be a subgraph of T (n, d). Let Bn be the Boolean poset on [n].

Suppose that a set of maps {Xi}1≤i≤d where

Xi : (∆Z(n, d),≤i)→ Bn

exists on the vertices of G such that the following properties hold:

(P1) The maps Xi are rank-preserving.

99



(P2) The maps Xi are isotone.

(P3) (c; i, j) is an edge in G if and only if Xp(c − ei) = Xp(c − e j) for all p , i, j.

For any a ∈ ∆Z(n, d), let mi(a) =
∏

j∈Xi(a) xi j and m(a) =
∏n

i=1 mi(a). Let J be the ideal in

S̃ generated by the monomials m(a). Then J is a polarization of (x1, . . . , xn)d ⊂ S if and

only if the graph G satisfies the following property:

(P4) For every c ∈ ∆Z(n, d + 1), the linear syzygy edges LS(c) contain a spanning tree

for the down-graph D(c).

We will now prove the main theorem of this chapter: namely, that three of

the trianguloid axioms are equivalent to polarizations of powers of the graded

maximal ideal. The primary difficulty is showing that the “hexagon axiom”

(T4) in Definition 8.1.1 is equivalent to the “spanning tree condition” (P4) in

Theorem 8.1.2. The fact that (P4) implies (T4) follows from Lemma 2.4.15. The

proof technique to show that (T4) implies (P4) models the proof of the forward

direction of Theorem 2.5.1.

Notation 8.1.3. Let G = {Ga | a ∈ ∆Z(n, d)} be a collection of bipartite graphs on

L t R in bijection with the lattice points ∆Z(n, d). Denote by E(Ga) the edge set

(i, j) ∈ [d] × [n] of the bipartite graph Ga. Define I(G) ⊂ S̃ be the ideal

I(G) B

 ∏
(i, j)∈E(Ga)

xi j | Ga ∈ G

 .
Theorem 8.1.4. Let G = {Ga | a ∈ ∆Z(n, d)} be a collection of bipartite graphs on L t R

in bijection with the lattice points ∆Z(n, d). Let I(G) be the ideal of G as in Notation 8.1.3.

Then I(G) ⊂ S̃ is a polarization of (x1, . . . , xn)d ⊂ S if and only if G satisfies axioms (T1),

(T3), and (T4) in the definition of a trianguloid (Definition 8.1.1).
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Proof. It is straightforward to verify from the definitions that (T1) is equivalent

to (P1) and that (T3) is equivalent to to (P2). Moreover, the hexagon axiom (T4)

follows directly from Lemma 2.4.15 and (P3).

It remains to show that the hexagon axiom (T4) together with (T1) and (T3)

imply the spanning tree condition (P4); that is, we wish to show that for any

c ∈ ∆Z(n + 1), there is a path of linear syzygy edges inside the simplex (c − ei | i ∈

Supp c) from c − ev to c − ew for any v,w ∈ Supp(c). For ease of notation, assume

that Supp(c) = [d], although the following argument works for arbitrary Supp(c).

By (T3), every Nc−ei(ri) ⊂ Nc−e j(ri) for all i, j ∈ Supp(c). Define the bipartite

graph Hc−ei to have the edge set

E(Gc−ei) \
⋃
j∈[n]

⋃
`∈Nc−e j (r j)

(`, r j).

Denote by Ñc−ei(rp) the neighborhood of rp in Hc−ei . Define the distance between

c − ew and c − ev to be

dist(c − ew, c − ev) B the number of elements k such that Ñc−ev(rk) , Ñc−ew(rk).

Observe that this distance is always greater than or equal to 2 for distinct v,w,

since they themselves are always included. If dist(c − ew, c − ev) = 2, then there

exists a linear syzygy edge between c − ev and c − ew.

Suppose, seeking contradiction, that one may partition the vertices of c into

V1 and V2 such that there is no linear syzygy edge between any vertex in V1

and any vertex in V2. Choose c − ev ∈ V1 and c − ew ∈ V2 which minimizes

dist(c − ev, c − ew); call this distance dist. For ease of notation, let v = 1 and let

w = 2. Then Hc−e1 and Hc−e2 are depicted in Figure 8.2. Because v and w cannot

be connected by assumption, dist ≥ 3. Suppose, again for ease of notation, that

ip , jp for p ∈ [3, dist] and ip = jp for all p ∈ [dist, n].
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Now consider the vertex c − e3. By (T4), one has that Nc−e1(r3) , Nc−e2(r3)

implies that Nc−e3(r2) = Nc−e1(r2) and Nc−e3(r1) = Nc−e2(r1). Then Hc−e3 is the graph

depicted in Figure 8.3. But now, each k` in Figure 8.3 must be equal to either i` or

j`.

Suppose that Nc−e3(rp) , Nc−e1(rp) and Nc−e3(rp) , Nc−e2(rp). Then by (T4), one

has

Nc−ep(r3) = Nc−e1(r3) and Nc−ep(r3) = Nc−e2(r3).

Together, these imply that Nc−ep(r3) = Nc−e1(r3) = Nc−e2(r3), which is a contradic-

tion. So now one has that

dist(c − e1, c − e3) < dist(c − e1, c − e2), dist(c − e2, c − e3) < dist(c − e1, c − e2)

which contradicts dist being the minimal distance between V1 and V2, regardless

of whether c − e3 is in V1 or V2. �
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1

...
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Hc−e2

Figure 8.2: Graphs Hc−ei in the proof of Theorem 8.1.4.

In particular, we have the following corollary.

Corollary 8.1.5. Adopt Notation 8.1.3 and let G be a trianguloid. Then I(G) is a

polarization of a power of the graded maximal ideal.
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Figure 8.3: Hc−e3 in the Proof of Theorem 8.1.4.
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x1z1z2x2y1y2

y1y2z2 y1z2z3

x1y1z2

Figure 8.4: A polarization which does not give a mixed subdivision.

As the following example shows, the converse of the above corollary does

not hold.

Example 8.1.6. Figure 8.4 depicts the same polarization of (x, y, z)3 from Example

2.5.2. This polarization does not give rise to a mixed subdivision. In particular,

note the cell with five vertices which is not a mixed cell. One can verify that it

is not possible to give this polarization a labeling up to symmetry which also

satisfies (T2) by studying closely the possible vertex labels of the unmixed cell.
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