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ABSTRACT

Brands often use loyalty programs to offer customers points, miles, credits, etc...

as incentives to create loyalty and drive retention. While loyalty programs are

an established marketing research area - pricing, inventory and revenue man-

agement questions around the use of loyalty programs remain. Pricing and

inventory decisions related to loyalty programs faced by franchisees are of par-

ticular interest as brand based loyalty programs are ’funded’ by the franchisee

and owner profitability and brand loyalty may not always be fully aligned. In

this thesis, we build a model which examines dynamic pricing and segmenta-

tion opportunities created through the use of loyalty programs. We first analyze

improvements in customer segmentation created through the use of loyalty pro-

grams and the ability of customers to purchase goods/services with both cash

and/or through the use of points/miles. Further, we investigate the role of

selling through intermediaries where consumers may not earn loyalty benefits

(points) from their inter-mediated purchase. Lastly, we look at the role of dy-

namic pricing (of both cash and points purchases) as the franchisee looks to

meet occupancy thresholds in an effort to increase the value paid to the owner

by the brand for product purchases made though redeemed points/miles.
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1 Introduction

Loyalty programs are a common marketing effort to increase customer purchase

frequency, increase the consumer base and hopefully increase profitability. Loy-

alty programs come in many different forms from offering every nth item free

to the points and miles type programs that are prolific in hospitality today. In

many loyalty programs, customers may earn points or miles for a stay, for ex-

ample Marriott Bonvoy members earn 10 points per dollar spent on eligible

hotel stays, with SkyMile members on Delta flights earning 5 miles for each dol-

lar spent on eligible tickets. More recently, consumers can also earn points or

miles on non-firm specific purchases through co-branded (e.g. a Delta branded

American Express card) credit cards. Co-branded credit cards have become very

common across hospitality with US Airlines generating an estimated $4 billion

in incremental revenue from the sale of miles to credit card partners (IdeaWorks,

2008).

With accumulated points, either directly through service/product pur-

chases, or indirectly though co-branded credit-cards, customers can then re-

deem for products (hotel rooms, flights, tickets, cosmetics, etc.) This redemp-

tion behavior results in points having some cash-equivalence. The cash value of

points will depend on the number required for redemption as well as face value

of the item purchased through redemption. Historically, hotels have largely

kept the points/stay element of cash-equivalence fairly constant, whereas air-

line typically have a variable points (miles) / flight model dependent upon de-

mand for the underlying seats. Recently, Marriott and Hilton have championed

a dynamic model for points redemption (Grant, 2019). On Marriott’s Bonvoy

web page (MarriottInternational, 2020), required points to redeem hotels have
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been dynamically set by three seasons: off, standard and peak and by three

activities: PointSavers, Points and Cash+Points.

While loyalty programs may seem to be advantageous and clearly create

brand loyalty, their impact to individual firms may not be as clear depending

on the nature and structure of the loyalty program. While a centralized firm,

like a large airline, may have more direct control over the structure and value

of loyalty programs, in decentralized franchiser-franchisee structures (typical of

large hotel brands) the franchisee may have less control. For example, an indi-

vidual branded hotel owner - say the franchisee of a large brand like Marriott

or Hilton, will be required to pay the brand for points provided to a customer

upon a hotel stay. Similarly, when a guest redeems his/her points for a stay at

a branded hotel the brand will need to pay the hotel owner for the redeemed

points. Unfortunately, for the hotel owner, what they pay for the points and

what they receive are not equivalent, with the difference helping to fund the

chains brand building efforts. Under most settings, what the hotel owner re-

ceives financially for a redeemed hotel stay will be on a sliding scale dependent

upon the occupancy of the hotel on the redeemed night. For low occupancy re-

demption, the hotel may receive only slightly above its variable cost, receiving a

percentage (< 100%) of recent average daily rates (ADR) as the hotel approaches

occupancy in the high 90’s.

In the following we explore the dynamics of loyalty programs from a pric-

ing standpoint, specially we focus upon how loyalty programs create segmenta-

tion opportunities for firms. We then focus on the dynamics of redemption and

demand as they relate to owner profitability, illustrating the trade-off between

posted prices and variable redemption (points/stay) as they are impacted by the
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cash equivalents ($ per redeemed stay) that a franchisee receives as the result of

occupancy thresholds. While we use lodging as our motivation, the dynam-

ics of our approach hold for any franchiser—franchisee setting where loyalty

programs are partially funded by the franchisee.

2 Literature Review

Loyalty programs are one of the most effective ways to establish loyal connec-

tions between customers and service firms (Evanschitzky et al., 2012; Yi and

Jeon, 2003). Studies have shown that loyalty programs contribute to a more fre-

quent repurchasing behavior from customers, thus bringing more revenue to

service firms (Bolton et al., 2000). Loyal customers are willing to pay even when

the product rate goes up (Rowley, 2005). It was also stated that loyal customers

broadcast positive word of mouth (Bowen and Chen, 2001).

American Airlines pioneered the first loyalty program in 1981 (Berman,

2006). Two years later, InterContinental championed the first hotel loyalty pro-

gram (Dekay, 2009), followed by Marriott in the same year (Zuo, 2018). At

the end of 2018, Marriott Bonvoy had become the largest and most valuable

travel program in the lodging industry as Bonvoy had reached nearly 125 mil-

lion members. Both reward redemption and member contribution percentages

reached record levels (Sorenson, 2019). Loyalty programs are one of the most ef-

fective ways to establish loyal connections between customers and service firms

(Evanschitzky et al., 2012; Yi and Jeon, 2003). Studies have shown that loyalty

programs contribute to a more frequent repurchasing behavior from customers,

thus bringing more revenue to service firms (Bolton et al., 2000). Loyal cus-
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tomers are willing to pay even when the product rate goes up (Rowley, 2005). It

was also stated that loyal customers broadcast positive word of mouth (Bowen

and Chen, 2001).

In the eyes of consumers, one of the advantages of loyalty programs is

reduced cost or free future purchases. A variety of information sources ex-

ist to help consumers maximize the value of the loyalty program points they

have accumulated. Online forums (thepointsguy.com, onemileatatime.com, fly-

ertea.com, etc.) provide information enabling consumers to quickly achieve

elite membership levels as well as provide guidance on how to maximize the

dollar value of their points (Samantha, 2020). Customers often refer to these re-

sources to decide whether to pay by points, by cash or a combination of points

and cash (Schlappig, 2020). The success and/or popularity of hospitality re-

lated loyalty programs has resulted in frequent flier miles becoming the sec-

ond largest currency after the US dollar, as approximately 500 billion miles

are distributed by 100 million travellers each year . The aggregate number of

unredeemed miles is estimated at 8.5 trillion, assuming no new miles are ac-

cumulated, it would take nearly 23 years to redeem current outstanding miles

(economist, 2002).

While there exists a variety of consumer facing sources on loyalty programs

and their value, the academic literature has only recently started to focus on the

financial or currency aspects of loyalty programs. Drèze and Nunes (2004) first

considered using points as a payment at the beginning of 2000. They introduced

several novel currencies (points and flier miles) from loyalty programs such as

Marriott Rewards, American Express and Delta SkyMiles, respectively. Such

currencies can be functioned as paper money which could be budgeted, saved
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and spent by consumers as well.

One of the difficulties in valuing rewards programs stems from consumers

hesitation in redemption. We do not really know why loyalty program mem-

bers redeem or why they do not ((Bijmolt et al., 2011). Some consumers hesitate

to redeem points because they want more points to reach higher rewards levels

and to enjoy more benefits (Peter, 2006). Others may simply have a pathological

desire to stockpile points (Saxena et al., 2004). Kwong et al. (2011) have studied

factors that impact customers to redeem and indicated that consumers are more

willing to spend points when there are easily-anticipated benefits to redeem

points. When it is easier to calculate the percentage savings with point pur-

chases, customers will decide to spend points. Stourm et al. (2015) argued that

unredeemed points can expire, and they can lose their value if the retailer enters

bankruptcy or alters the program rules. Delaying redemption makes customers

forgo the time value of money from delayed rewards. They present a model that

unites economic, cognitive and psychological motivations for persistent stock-

piling in loyalty programs, even though the retailer does not explicitly reward

point accumulation. The data shows that redemption behavior is mostly im-

pacted by cognitive and psychological incentives. Their findings also provide

insights into how customers are likely to respond to communication strategies,

promotions and policy changes.

We have so far discussed about the background of loyalty programs, theo-

retical and practical studies about reward redemption, plus two more theories

related with dynamic redemption pricing. Reward redemption is a benefit that

hotels appreciate customers who join their loyalty program after their stays.

Customers are motivated by points-pressure, reward behavior and personal-
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ized marketing strategies to “unlock” higher membership levels for more priv-

ilege benefits. We also consider reward points as a novel currency and mental

accounting theory to support this study.

The idea of dynamic redemption rates is related to dynamic pricing, which

has been widely implemented in hotels and discussed by many scholars that

sellers should adjust pricing based on remaining time and inventory during the

selling horizon: i.e. (Ahn et al., 2007; Aviv and Pazgal, 2008). There are limited

scholars beginning to address a dynamic redemption pricing but is not yet com-

pletely understood. Chung et al. (2019) used a standard dynamic pricing model

(Gallego and Van Ryzin, 1994) to study “how reward sales affect prices over a

course of selling season.”

To our best knowledge, dynamic redemption pricing is believed to be an un-

explored area of hotel revenue management. Historically, required number of

points to redeem a hotel room is not a function of demand by stay date, but a

fixed number set by hotel location and star level. Second, hotels could get com-

pensated by the brand for number of redemption bookings based on occupancy

for any given day. Therefore, one typical way for hotels is to push occupancy

as high as possible, getting compensated by the brand for loyalty redemption

besides regular revenue (Anderson and Xie, 2016).

Perhaps the paper most strongly related to ours is Chung H. and H.S. (2014)

where they study dynamic pricing for a service firm where customers can pay

via cash (or credit card) as well as redeem rewards points. Similar to our ap-

proach customers are heterogeneous in their reservations prices as well as their

points balances. Unlike our paper, in their approach customers have a heteroge-

neous perceived value of a reward points, whereas we assume customers make
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points versus cash choices to maximize their surplus across their heterogeneous

reference price/point balances. Our approach allows for differences across con-

sumers while also providing structural insight into when a firm may engage in

different pricing approaches as a function of demand and reimbursement poli-

cies set forth by the points issuer.

3 Model Development

We develop a model of a firm selling to loyal strategic consumers, customers

are loyal to the firm but strategically decide if they should acquire capacity by

paying the posted retail price or through redeeming of points (or miles) accu-

mulated by the firm‘s loyalty program. Our framework uses seven simple pa-

rameters as outlined in Table 1. The firms posts a price P and then sets discount

factors δ whereby the price paid of a redemption stay is δpP and the price paid

for a restricted purchase, say on an intermediary is δdP. Customers have het-

erogeneous valuations (v) for the firm’s product for regular retail (referred to as

cash purchases) at price P as well as heterogeneous balances of loyalty program

points (γ) used for the purchase of goods or services through the firm’s loyalty

program at price δpP. When products are purchased via loyalty redemption the

firm receives a fraction (α) of the redemption stay as a cash equivalent, while

customers receive (β) new loyalty program points or credits for retail/cash pur-

chases (α < β). The firm may choose to differentiate the price of points versus

cash purchases uses variable δ to scale the price of a redemption purchase rela-

tive to a regular retail purchase, e.g. Pp = δP. In addition, the firm may choose

to offer supply at a discounted price, Pd but without awarding points for future

use, e.g. a hotel offering rooms through an opaque or discounted online travel
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agent channel might also have a discounted cash price where Pd = δdP but the

guest does not receive any points or miles for future stays with the brand. We

use T as the demand level above which the firms receives a higher redemption

reimbursement rate, i.e. with a larger α. We introduce a constraint ζ to reg-

ulate steady-state points consumption, i.e. to ensure that sufficient points are

generated via cash purchases to fund future points redemption.

Model Notation
vi Customer i’s valuation of the product for cash purchases

γi Customer i’s points balance

α Firm conversion factor for points-to-cash

β Fraction of the retail price P that consumers earn in points

δ Price ratio for points and inter-mediated selling

T Demand threshold

ζ Steady-state points consumption

Table 1: Model Notation

Each customer i looking to acquire service has an independent reference

price or valuation vi for the service provider. Similar to Anderson and Xie (2014),

Wang et al. (2009) and Fay (2008) we assume vi uniformly distributed between 0

and 1, i.e. its density function f (vi) has value of 1 for 0 ≤ vi ≤ 1 and 0 otherwise.

If the service provider uses regular retail pricing only, and set its price as P.

Consumer i has surplus CS i = vi − P, so only consumers with valuation higher

than the price P will purchase. Therefore, we have the expected revenue for the

service provider,

π =

∫ 1

P
P f (vi)dvi = P(1 − P) = P − P2 (1)
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Taking the derivative of π with respect to P and setting it to be zero, we can

solve for the optimal price: P∗ = 1
2 .

Since d2π
dP2 = −2 < 0, we substituteP∗ back into (1) resulting in (maximized)

revenue of π∗ = 1
4 . Moreover, from (1), it is straightforward to see that the maxi-

mum revenue concaves in the prices. Figure 1 summarizes the segmentation (or

lack thereof) created by a single posted price.

sP∗0 1
� -A

P∗ = 1
2

A - customers purchasing

Figure 1: Single Posted Price

The service firm may also allow consumers the option to earn and later re-

deem loyalty points for capacity instead of having to pay retail. Consumers also

have heterogeneous points balances γi, and similar to their valuation, it is uni-

formly distributed between 0 and 1, i.e. its density function f (γi) has value of 1

for 0 ≤ γi ≤ 1 and 0 otherwise. In addition to using points for product/service

purchases, consumers now also earn points when paying retail. Let β represent

the fraction of the retail price P that consumers earn in points. A customer now

needs to decide if they should pay retail P or pay price Pp using points. For

clarity of differentiation we denote someone paying retail prices P as paying

with cash versus someone paying with points Pp. Customers decide how (or if)

they decide to purchase by maximizing their surplus. A customer may choose

to pay cash if vi ≥ P, generating a surplus CS i = vi − P + βP + γi, or they may

redeem points if γi ≥ Pp with a surplus CS i = vi + γi − Pp. It is obvious that for
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P = Pc = Pp
1 , if vi ≥ P and the consumer can pay cash for service they will as

CS i = vi−P+βP+γi is greater than CS i = vi+γi−Pp. Figure (2) illustrates the seg-

mentation created through the addition of points redemption, with area A cash

purchases, areas B and C having vi < P, but with C having points redemption.

t
P = Pc = Pp

A - Cash customers

vi ≥ P

0 1γi

1

vi

C -Points customers
γi ≥ P

B - no purchase
γi ≤ P
vi ≤ P

Figure 2: Segmentation through Rewards Redemption

Owing to the segmentation created through redemption, overall demand

increases. Demand for cash Dc =
∫ 1

P
f (vi)dvi = 1 − P. Cash transactions occur

whenever vi ≥ P (with probability 1 − P). The service firm provides customers

with loyalty program points as part of their stay, and is required to ’buy’ these

points from the brand or franchiser, thus a proportionate cost β is incurred by

the service provider. The revenue π to the firm as a function of cash (πc) is then

πc = (1 − β)(P − P2).
1In many settings Pc in absolute terms is much different than P, e.g. 15,000 points for a hotel

stay, we set P = Pc without any loss of generality as changing Pc would simply require scaling
of f (γ)
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Points transaction occur when γi ≥ P and when vi ≤ P (with probability

P). As illustrated in Figure 2, consumers only use points if they do not have

sufficient cash, which happens with probability P. Thus demand for points pur-

chases Dp = P
∫ 1

P
f (vi)dvi = P(1 − P) respectively. Note P has no subscripts as

P = Pc = Pp. The service provider is compensated for each redemption stay by

the brand with factor α, resulting in revenue of αP for redemption πp = αP2(1−P)

Total demand, D = Dc + Dp = 1 − P2, sums up both cash and points demand,

resulting in total revenue,

π = πc + πp = P(1 − P)(1 − β + αP) (2)

To find the optimal P, we take the derivative of (2) with respect to P, then set

to zero and pick the positive solution. Thus, we get the optimal price,

P∗ =
−1 + α + β +

√
1 + α + α2 − 2β − αβ + β2

3α
(3)

We plug (3) into (2) for optimal revenue,

π∗ = −
(2 + α − 2β + M)(−1 − 2α + β + M)(−1 + α + β + M)

27α2 , (4)

where M =
√
α + α2 + (−1 + β)2 − αβ.

Proposition 1 When P = Pc = Pp, the optimal price strictly increases with respect to

α and β.

Proof. We take the derivatives P∗ w.r.t to both α and β for (3):

dP∗

dα
=

(1 − β)(2 + α − 2β + 2
√
α + α2 + (β − 1)2 − αβ)

6α2
√
α + α2 + (β − 1)2 − αβ

> 0
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dP∗

dβ
=

1 + 2+α−2β

2
√
α+α2+(β−1)2−αβ

3α
> 0

Example In Figure 3 we illustrate the impacts of α and β upon P∗. We fix

α = 0.4 to see how P∗ changes with respect to β, and β = 0.8 to see how P∗

changes with respect to α. P∗ increases with α and β which verifies the above

two partial derivatives.

0.50

0.55

0.60

0.0 0.2 0.4 0.6 0.8
α

P

(a) P∗ increases with α when β = 0.8

0.575

0.600

0.625

0.650

0.4 0.6 0.8 1.0
β

P

(b) P∗ increases with β when α = 0.4

Figure 3: P∗ changes with α and β at unconstrained prices

3.1 Differential Redemption Pricing

Setting P = Pc = Pp, independent of conversion factors and scaling parameters

(or distributions) may have a restrictive assumption, as such in the following

section we introduce a discount factor δ resulting in Pp = δP allowing for differ-

ential redemption pricing. The introduction of δ means a points purchase can

now take place γi ≥ δP with surplus CS i = vi + γi − δP having to be compared to

CS i = vi − P + βP + γi when a consumer is deciding on a payment form.

It is straight forward to show that if δ ≤ 1−β then vi+γi−δP ≥ vi−P+βP+γi and

12



if a customer has sufficient points (γi ≥ δP) then a points purchase is preferred

- even if the customer has vi ≥ P. If δ ≤ 1 − β then customer segmentation is

as illustrated in Figure 4 (a) whereas under larger δ segmentation (δ > 1 − β)

follows Figure 4 (b).

s P = Pc

A - Cash
customers
vi ≥ P

0 1γi

1

vi

C - Points customers
γi ≥ δP

Pp = δP, δ ≤ 1 − βs
B - no purchase
γi ≤ δP
vi ≤ P

(a) δ ≤ 1 − β

s P = Pc
A - Cash customers

vi > P

0 1γi

1

vi

C - Points customers
γi > δP

Pp = δP, δ > 1 − βs
B - no purchase
γi < δP
vi < P

(b) δ > 1 − β

Figure 4: Segmentation through Differential Pricing

Given the differences between consumer preferences for points versus cash

purchases, two demand scenarios arise:

• Case I: δ < 1 − β, Deep discount

• Case II: δ ≥ 1 − β, Light discount or points premium

3.1.1 Deeply Discounted Redemption Prices

If points (relative to cash) are deeply discounted, customers prefer to redeem

points for goods and services over paying cash. Points transactions occur when-

ever vi ≥ δP (with probability 1− δP) and as a result points demand Dp = 1− δP.
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Multiplying points demand by firm revenue, αδP, we get the redemption

revenue πp = αδP(1 − δP). Cash transactions occur whenever vi ≥ P and con-

sumers have insufficient points, which happens with probability δP. Thus, cash

demand Dc = δP(1 − P) with price P, resulting revenue πc = δP2(1 − P).

Total demand as a summation of cash and points demand,

D = 1 − δP + δP(1 − P) = 1 − δP2

Firm revenue from points and cash purchases sums up δ(1 − β)P2(1 − P) and

αδP(1 − δP) respectively,

π = δ(1 − β)P2(1 − P) + αδP(1 − δP) (5)

We illustrate it into a constrained optimization programming,

max
P,δ

δ(1 − β)P2(1 − P) + αδP(1 − δP)

s.t. δ ≤ 1 − β

δP ≤ 1

P, δ > 0

P < 1

We introduce two Lagrange multipliers λ1 and λ2 to rewrite the optimization

as

L = δ(1 − β)P2(1 − P) + αδP(1 − δP) + λ1(1 − δ − β) + λ2(1 − δP) (6)
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The corresponding KKT conditions,

dL
dP
= δ[α − λ2 − 2αδP + P(1 − β)(2 − 3P)] (6 i)

dL
dδ
= λ1 + P[α − λ2 − 2αδP + P(1 − β)(1 − P)] (6 ii)

λ1(1 − δ − β) = 0 (6 iii)

λ2(1 − δP) = 0 (6 iv)

Thus we need to discuss all permutations of λ1 and λ2 to find the solutions.

I. We assume λ1 = λ2 = 0

This assumption satisfies KKT condition (6 iii ) and (6 iv )where 1 − δ − β > 0

and 1− δP > 0 and then we plug λ1 = λ2 = 0 into KKT conditions (6 i ) and (6 ii )

and set to zero then get

δ∗ = 1 +
1 − β
4α

, P∗ =
1
2
,

However, δ∗ = 1 + 1−β
4α is greater then 1, while δ ≤ 1 − β must be smaller than

1. Thus, we could not find any feasible solution when λ1 = λ2 = 0.

II. We assume λ1 = 0 and λ2 , 0.

This assumption also satisfies KKT condition (6 iii ) and (6 iv )where 1−δ−β >

0 and 1 − δP = 0 and then we plug λ1 = 0 into KKT conditions (6 i ) and (6 ii

)set to zero so we could know 1 − P = 2 − 3P thus we can solve for P∗ and since

1 − δP = 0, δ∗ can also be solved.

δ∗ = 2, P∗ =
1
2
,

Obviously this δ∗ = also violates the constraint that δ < 1 − β. Thus, we also

could not find any feasible solution when λ1 = 0 and λ2 , 0.
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III. We assume λ1 , 0 and λ2 = 0.

This as well satisfies KKT conditions (6 iii ) and (6 iv ) where δ∗ = 1 − β and

1 − δP > 0. We plug δ∗ = 1 − β into (6 i ) and set to zero so that we could solve

for P∗. There are two solutions for P∗ but here we only pick the positive one,

P∗ =
(1 − β)(1 − α) + M

3(1 − β)

where M =
√

(−1 + β)[−1 + α2(−1 + β) + β − α(1 + 2β)].

We then plug P∗ and δ∗ so that we have the optimal revenue

π∗ =
[(1 − β)(1 − α) + M][(1 − β)(1 − α)2 + M + α(4 + 2β − M)]

27
(8)

IV. We assume λ1 , 0 and λ2 , 0. This as well satisfies KKT conditions (6 iii )

and (6 iv ) where δ∗ = 1 − β and 1 − δP = 0. Thus,

P∗ =
1

1 − β

However, since 1 − β < 1 so P∗ = 1
1−β > 1 violates the constraint that P < 1. This

is not a feasible solution.

Thus we formulate such lemma.

Lemma 1 When δ ≤ 1 − β, we can only find the optimum at boundary.

As with Proposition 1, the optimal price strictly increases with respect to α

and β. In this case δ = 1 − β represents a constant and does not change with

respect to α but decreases with β. We take derivative of P∗ with respect to both

α and β to confirm Proposition 1 in the constrained case.

dP∗

dα
=

1 − β − [−1+2α(−1+β)−2β](−1+β)

2
√

(−1+β)[−1+α2(−1+β)+β−α(1+2β)]

3(1 − β)
> 0
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dP∗

dβ
=

α

2(1 − β)
√

(−1 + β)[−1 + α2(−1 + β) + β − α(1 + 2β)]
> 0

Example We still use the example of α = 0.4 and β = 0.8 to show how P

changes with respect to both α and β. Similar to the unconstrained case, the

boundary optimal price also increases as α and β. But the curves all show a

more steep trend compared with the unconstrained optimal price.
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(a) P increases with α
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β
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(b) P increases with β

Figure 5: P∗ changes with α and β at deeply discounted redemption prices

3.1.2 Redemption Premium or Moderate Discount

With moderately discounted points purchases, customers still prefer to use cash

if they have enough cash. Thus, cash demand and revenue remain the same

with the undifferentiated case.

Though now customers prefer points if they do not have enough cash with

probability P, points price now becomes αδP after discounting. Thus points

demand and revenue now become Dp = P
∫ 1

δP
f (vi)dvi = P(1 − δP) and πp =

αδP ∗ P
∫ 1

δP
f (vi)dvi = αδP2(1 − δP)
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Total demand,

D = 1 − P + P(1 − δP) = 1 − δP2

resulting in firm revenue,

π = (1 − β)(P − P2) + αδP2(1 − δP) (9)

We also write it as a constrained optimization problem,

max
P,δ

(1 − β)(P − P2) + αδP2(1 − δP)

s.t. δ > 1 − β

δP ≤ 1

P, δ > 0

P < 1

We also transfer this constrained optimization to a new function with two

Lagrangian multiplier λ1 and λ2,

L = (1 − β)(P − P2) + αδP2(1 − δP) + λ1(δ + β − 1) + λ2(1 − δP) (10)

The KKT conditions are,

dL
dP
= 1 + 2P(αδ − 1) − 3αδ2P2 + β(2P − 1) − δλ2 (10 i)

dL
dδ
= λ1 − P[λ2 − αP(1 − 2δP)] (10 ii)

λ1(δ + β − 1) = 0 (10 iii)

λ2(1 − δP) = 0 (10 iv)

Since δ < 1 − β, we only need to find internal optimum when λ1 = 0, which

satisfies KKT condition (10 iii ).
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I. We assume λ1 = λ2 = 0.

To solve for δ∗, we set KKT condition (10 ii ) to zero. Then we get αP2(1 −

2δP) = 0. Since αP2 is non-zero, we know that δP = 1
2 and we plug it into KKT

condition (10 i ) and set to zero then we get,

(1 − β)(1 − 2P) +
1
4
α = 0

And the optimal price,

P∗ =
4 + α − 4β

8 − 8β

Since δP = 1
2 , the optimal discount,

δ∗ =
4 − 4β

4 + α − 4β

Here we formulate the second proposition.

Proposition 2 When δ > 1 − β, the optimal price P and the optimal discount factor δ

strictly increase and decrease with respect to α and β.

Proof. We take derivative of equation (12) and (12) with respect to both α and

β.

dP∗

dα
=

1
8(1 − β)

> 0,
dP∗

dβ
=

α

8(1 − β)2 > 0

dδ∗

dα
= −

4α
[4(1 − β) + α]2 < 0,

dδ∗

dβ
= −

4(1 − β)
[4(1 − β) + α]2 < 0

Example For illustration, we set α = 0.4 and β = 0.8 to see how optimal P

and δ change with respect to α and β separately. So from Figure 6 we can tell
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that similar to unconstrained case, P also increases with both two parameters

while δ decreases as shown in Figure 7. It is important to note that δ goes to

zero is because firms do not need a very big discount purchase with price.
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(b) P∗ increases with β

Figure 6: P∗ changes with α and β at redemption premium or moderate discount
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(b) δ∗ decreases with β

Figure 7: δ∗ changes with α and β at redemption premium or moderate discount

We then plug the optimal values back into the original revenue function to

obtain,

π∗ =
(4 + α − 4β)2

64(1 − β)
(12)

II. We assume λ1 = 0 and λ2 , 0.
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This assumption also satisfies KKT condition (10 iii ) and (10 iv )where δ >

1 − β and 1 − δP = 0 and then we plug λ1 = 0 into KKT conditions (10 i ) and (10

ii ) and set to zero so we could know 1− P = 2− 3P thus we can solve for P∗ and

since 1 − δP = 0, δ∗ can also be solved.

δ∗ = 2, P∗ =
1
2
,

Then we can find π∗ = 1−β
4 .

Here we get another lemma under this case.

Lemma 2 When δ > 1 − β, we can always find the optimal internal solutions.

Therefore, based on Lemma 1 and 2, we get the first theorem.

Theorem 1 To get maximal revenue, firms never deeply discount on points but always

discount lightly on points price.

3.2 Steady-state points consumption

Logically, firms need customers paying with cash and earning points in order

to be able to have customers redeem points in the future. We introduce a pa-

rameter, ζ, to constrain cash and redemption demand such that ζ ∗ DC ≥ DP.

It should be noted that points demand may exceed cash demand in the event

that the firm allows customers to earn points in other forms, e.g. through a co-

branded credit card. For the majority of our analysis we assume ζ = 1, i.e. in

steady-state (across all customers) points used by customers have to be equal to

points issued by the firm.
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In this section, we use an alternative solution method for finding optimal

values, where instead of using gradients for P and δ, we solve for δ for a fixed

P and then perform a one-dimensional search to find the optimal P. We utilize

this approach owing to the additional complexity inducted by the steady state

points consumption constraint and the inability to find closed-form solutions

for both optimal price and discount factor(s). As a result of Theorem 1, we only

need to consider the case of redemption premium or moderate discount, i.e.

where δ > 1 − β and consumers prefer to use cash over points. An additional

constraint, ζ times cash demand should be no less than points demand, ζ(1 −

P) − P(1 − δP) ≥ 0 is added to the formulation.

Thus, the optimization problem becomes,

max
δ

(1 − β)(P − P2) + αδP2(1 − δP)

s.t. δ ≥ 1 − β

ζ(1 − P) − P(1 − δP) ≥ 0

δP ≤ 1

δ > 0

with resulting Lagrangian,

L = (1 − β)(P − P2) + αδP2(1 − δP) + λ1(δ + β − 1) + λ2[ζ(1 − P) − P(1 − δP)] + λ3(1 − δP)(13)

The KKT conditions for a fixed P are

dL
dδ
= λ1 + P[−λ3 + P(α + λ2 − 2αδP)] (13 i)

λ1(δ + β − 1) = 0 (13 ii)

λ2[ζ(1 − P) − P(1 − δP)] = 0 (13 iii)

λ3(1 − δP) = 0 (13 iii)

22



A series of cases arise as a function of the two Lagrange multipliers.

I: We assume λ1 = λ2 = λ3 = 0.

This satisfies KKT conditions (13 ii ), (13 iii ) and (13 iii ) where δ > 1 − β,

ζ(1 − P) > P(1 − δP) and 1 − δP > 0. We then plug λ1 = λ2 = λ3 = 0 into KKT

condition (13 i ) and set it to zero then it is fairly easy to have

δ∗ =
1

2P

II: We assume λ1 , 0 and λ2 = λ3 = 0.

This satisfies KKT conditions (13 ii ), (13 iii ) and (13 iii ) where δ = 1 − β,

ζ(1 − P) > P(1 − δP) and 1 − δP > 0.

δ∗ = 1 − β

III: We assume λ1 = 0, λ2 , 0 and λ3 = 0.

This satisfies KKT condition (13 ii ), (13 iii ) and (13 iii ) where δ > 1 − β,

ζ(1 − P) − P(1 − δP) = 0 and 1 − δP > 0.

δ∗ =
P − ζ + Pζ

P2

IV: We assume λ1 = λ2 = 0 and λ3 , 0.

This satisfies KKT condition (13 ii ), (13 iii ) and (13 iii ) where δ > 1 − β,

ζ(1 − P) − P(1 − δP) > 0 and 1 − δP = 0.

δ∗ =
1
P

To simplify, we assume ζ = 1 where points issued equal to points consumed.

We now still use the example of α = 0.4 and β = 0.8. Since we do a one-
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dimensional search for δ, here we do a plot that indicates how optimal results

(δ and profit) change as a function of P. In order to see how δ changes value

as constraint changes we show the curve of the difference between cash and

points demand when ζ = 1. Here δ uses the left first axes while profit and the

demand variance uses the right secondary axes. Cash demand first is greater

then demand demand and gradually they become the same and the variance

equals to 0, which means the ζ constraint changes from un-tight to tight. δ as a

function of P, decreases first then when ζ constraint becomes tight, it starts to

increase. Profit increases first but then decreases and maximum is at the vertical

line where P is approximately 0.678.
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Figure 8: Sensitivity of P at steady-state points consumption

Example In order to show how δ∗, P∗, profit and demand change with respect

to α and β, we loop over all possible values of these two variables, find the

constrained optimal profit then store P∗ and δ∗.
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I. Sensitivity of α at steady-state points consumption (β = 0.8)

Optimal Values Profit Demand

α Price (P∗) Point discount (δ∗) Points price (δ∗P∗) Total Cash Points

0.1 0.562 0.890 0.500 0.063 0.719 0.438 0.281

0.2 0.625 0.800 0.500 0.078 0.688 0.375 0.313

0.3 0.670 0.757 0.507 0.094 0.660 0.330 0.330

0.4 0.678 0.774 0.525 0.111 0.644 0.322 0.322

0.5 0.683 0.785 0.536 0.128 0.634 0.317 0.317

0.6 0.686 0.790 0.542 0.145 0.628 0.314 0.314

0.7 0.689 0.796 0.549 0.162 0.622 0.311 0.311

Table 2: Sensitivity of α at steady-state points consumption (β = 0.8)

From this table, we can see that with α increases, P also increases. This is

consistent with practice as a higher α shows that each room earns a high base

rate due to the hotel’s high market position. On the other hand, δ shows a trend

that increases first then decreases. This is because with lower P, ζ constraint is

not tight. Then gradually ζ constraint becomes tight so δ goes up.

Specifically, α at low range indicates a relatively low scale hotels: upper mid-

scale or upper scale brands like Courtyard, FourPoints, etc. For these brands,

they post low price in market. And since their posted cash price is already rel-

atively low, even though they have the highest δ thus still generate low and

same points price which implicates that for these hotels the points price does

not change with α. And even if α = 0.1 brings a high occupancy than α = 0.2,

the profit is lower because of posted price P∗. For example, from customers per-

spective, there is not too much difference for either a Courtyard or FourPoints

hotel. They normally have the same hotel category or points price though Best
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Available Rates (BAR) slightly differ. And the one with slightly higher BAR has

a higher profit even cash demand is lower.

When α goes up, the situation links to higher scale hotels: upper upscale

and luxury such as Marriott, Ritz Carlton, etc. All segments has a decreasing

demand, while increasing in price, discount factor, and profit. The maximized

profit is when α reaches to the highest. With price increases, the occupancy

decreases then keep at a stable stage where cash and points demand are equal

to 0.31. For example, an 8-category Ritz Carlton requires both highest BAR and

points price, its profit still beats any type of other hotels even if they have much

higher occupancy.

II. Sensitivity of β at steady-state consumption (α = 0.4)

Optimal Values Profit Demand

β Price (P) Point discount (δ) Points price (δP) Total Cash Points

0.5 0.600 0.833 0.500 0.180 0.700 0.400 0.300

0.6 0.625 0.800 0.500 0.156 0.688 0.375 0.313

0.7 0.666 0.751 0.500 0.133 0.667 0.334 0.333

0.8 0.678 0.774 0.525 0.111 0.644 0.322 0.322

0.9 0.691 0.800 0.553 0.090 0.618 0.309 0.309

Table 3: Sensitivity of β at steady-state points consumption (α = 0.4)

β as the burning ratio, as it increases, P also increases and δ increases then de-

creases as well. Maximum profit is when β is the lowest. Occupancy decreases

with price increases as well. Since we have α = 0.4 we can take Sheraton ho-

tels but in multiple markets as an example: even though these are all Sheraton

hotels, their category may or may not be the same.
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Specifically, when β falls in the relatively lower ranges, though price in-

creases as β goes up, with a decreasing δp, profit and demand also go down.

So here when the price increases, they still share the same hotel category since

δp needs to decrease. And the lower burning ratio, the less points issued to

customers, the higher revenue.

Then when β goes up, though price increases as β goes up, with a decreasing

δp, profit and demand also go down. Here the same two Sheraton hotels have

different categories: the higher β, the higher retail price as well as the higher

discount factor to generate a higher points price, thus a higher category. Still,

the highest revenue goes to the lowest burning ratio.

3.3 Discounted/Opaque and Inter-mediated Pricing

To increase demand firms may offer capacity at discounted prices. In an effort to

further segment customers and reduce dilution capacity offered at discounted

prices may be made less desirable through addition of restrictions, e.g. cancella-

tion and refund policies. Given the focus on loyalty programs we utilize a simi-

lar restriction to many hotel brands selling rooms via online travel agents where

purchasers of rooms on these channels don’t receive points with the brand for

future stays.

We introduce a discounted deal segment where customers can purchase with

at a discounted price δdP while not receiving any points resulting in a surplus of

CS i = vi−δdP+γi, which we use to compare with cash surplus CS i = vi+γi−P+βP

and points surplus CS i = vi + γi − δpP where δp denotes the discount factor on

points price, to compare with previous δ when there is only cash and points
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segments. For deal segment, we focus on realistic discounting where β + δd > 1.

As earlier we use this surplus to decide which segment, as a function of vi

and γi, a consumer falls within. Since we already know that from Theorem 1,

points are never preferred. It is straightforward to show that the key to under-

stand customer preference is to figure out which one is bigger among the two

discount factors. Preference order is cash, deal and points when δp > δd > 1 − β

(illustrated in Figure 9(a) and preference order changes to cash, points and deal

when δd > δp > 1 − β (illustrated in Figure 9(b).

A - Cash customers

D - Deal customers
Pd ≤ vi < P

vi ≥ P

0 1γi

1

vi

C -Points customers
γi ≥ Pp

B - no purchase
γi < Pp
vi < Pd

(a) δp > δd > 1 − β

A - Cash customers

D - Deal customers
Pd ≤ vi < P

vi ≥ P

0 1γi

1

vi

C -Points customers
γi ≥ Pp

B - no purchase
γi < Pp
vi < Pd

(b) δd > δp > 1 − β

Figure 9: Segmentation through Discounted/Opaque and Inter-mediated Pric-
ing

3.3.1 Discounted Deal Prices Preferred to Points Redemption

When vi ≥ P, customers first still prefer cash if they have enough cash with

probability Dc = 1 − P. Thus, cash segment is the same as unconstrained situa-

tion. However, another group of customers may have less cash that only could
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afford deal price on discounted/opaque channels with probability of P − δdP

when δdP ≤ vi < P. And if they could not afford deal price but they have

enough points, they choose points when vi < δdP and γi ≥ Pp. Otherwise, they

leave if vi < δdP and γi < Pp.

For deal segment, the demand is Dd =
∫ P

δdP
f (vi)dvi = P − δdP. The ADR for

each deal room is δdP thus deal revenue is πd = δdP
∫ P

δdP
f (vi)dvi = δdP(P−δdP). For

points segment, since customers could not afford deal price first and customers

who could not afford points has a probability of 1 − δpP thus points demand is

Dp = δdP
∫ 1

δpP
f (vi)dvi = δdP(P − δpP). Each points room now is still worth αδpP

so revenue for points segment is πp = αδpPδdP
∫ 1

δpP
f (vi)dvi = αδpP ∗ δdP(1 − δpP).

To sum up all demands of three segments, total demand D

D = 1 − δpδdP2

To sum up all demands of three segments, total revenue

π = P(1 − P)(1 − β) + δdP(P − δdP) + αδpP ∗ δdP(1 − δpP) (15)

To solve the optimal solutions, we form this optimization program,

max
δp,δd

P(1 − P)(1 − β) + δdP(P − δdP) + αδpP ∗ δdP(1 − δpP)

s.t. δd ≥ 1 − β

δp ≥ δd

ζ(1 − P) − δdP(1 − δpP) ≥ 0

δd ≤ 1

δpP ≤ 1

δd, δp > 0
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As earlier, we introduce three Lagrange multipliers λ1, λ2, λ3, λ4 and λ5 to

rewrite the objective function,

L = P(1 − P)(1 − β) + δdP(P − δdP) + αδpP ∗ δdP(1 − δpP)

+ λ1(δd + β − 1)

+ λ2(δp − δd)

+ λ3(ζ(1 − P) − δdP(1 − δpP))

+ λ4(1 − δd)

+ λ5(1 − δpP)

(16)

The KKT conditions are,

dL
dδp
= λ2 + P[−λ5 + δdP(α + λ3 − 2αδpP)] (16 i)

dL
dδd
= −λ4 + λ1 − λ2 + P[P − 2δdP + λ3(δpP − 1) + αP(δp − δpP2)] (16 ii)

λ1(δd + β − 1) = 0 (16 iii)

λ2(δp − δd) = 0 (16 iv)

λ3(ζ(1 − P) − δdP(1 − δpP)) = 0 (16 v)

λ4(1 − δd) = 0 (16 vi)

λ5(1 − δpP) = 0 (16 vii)

Similar to our solution approach in 3.2, we do a one-dimensional search for

δ given P represents any fixed number and the solutions are,

I. We assume λ1 , 0, λ2 , 0 and λ3 = λ4 = λ5 = 0.

This assumption satisfies KKT condition (16 iii ), (16 iv ), (16 v ) (16 vi ) and

(16 vii ) where δd + β− 1 = 0, δp − δd = 0, ζ(1− P)− δdP(1− δpP) > 0, 1− δd > 0 and
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1 − δpP > 0 thus

δ∗p = δ
∗
d = 1 − β

II. We assume λ1 , 0 and λ2 = λ3 = λ4 = λ5 = 0.

This assumption satisfies KKT condition (16 iii ), (16 iv ), (16 v ) (16 vi ) and

(16 vii ) where δd + β − 1 = 0, δp > δd, ζ(1 − P) > δdP(1 − δpP), 1 − δd > 0 and

1 − δpP > 0. We then plug λ2 = λ3 = λ4 = λ5 = 0 and δd + β − 1 = 0 into KKT

condition (16 i ) and set it to zero then we get

δ∗p =
1

2P
, δ∗d = 1 − β

III. We assume λ1 = λ2 = λ3 = 0, λ4 , 0 and λ5 = 0.

This assumption satisfies KKT condition (16 iii ), (16 iv ), (16 v ), (16 vi ) and

(16 vii ) where δd + β − 1 > 0, δp > δd, ζ(1 − P) > δdP(1 − δpP), 1 − δd = 0 and

1−δpP > 0. We then plug λ1 = λ2 = λ3 = λ5 = 0 and 1−δd = 0 into KKT condition

(16 i ) and set it to zero then we get

δ∗p =
1

2P
, δ∗d = 1

IV. We assume λ1 = λ2 = λ3 = λ4 = λ5 = 0.

This assumption also satisfies KKT condition (16 iii ), (16 iv ) and (16 v ),

(16 vi ) and (16 vii ) where δd + β − 1 > 0, δp > δd, ζ(1 − P) > δdP(1 − δpP),

1 − δd > 0 and 1 − δpP > 0. We first plug λ2 = λ3 = λ5 = 0 into KKT condition

(16 i ) and set it to zero so that we could solve for δ∗p. Then we plug it as well as

λ1 = λ2 = λ3 = λ4 = 0 into KKT condition (16 ii ) and set it to zero to get δ∗d. Thus,

δ∗p =
1

2P
, δ∗d =

α + 4P
8P

31



V. We assume λ1 = λ2 = λ3 = λ4 = 0 and λ5 , 0.

This assumption also satisfies KKT condition (16 iii ), (16 iv ) and (16 v ),

(16 vi ) and (16 vii )where δd + β − 1 > 0, δp > δd, ζ(1 − P) > δdP(1 − δpP),

1 − δd > 0 and 1 − δpP = 0. We first could know δ∗p =
1
P . Thus according to it and

λ1 = λ2 = λ3 = λ4 = 0 we know δ∗d by setting KKT condition (16 ii ) to zero.

δ∗p =
1
P
, δ∗d =

1
2

VI. We assume λ1 = λ2 = λ3 = 0, λ4 , 0 and λ5 , 0.

This assumption also satisfies KKT condition (16 iii ), (16 iv ) and (16 v ), (16

vi ) and (16 vii )where δd + β − 1 > 0, δp > δd, ζ(1 − P) > δdP(1 − δpP), 1 − δd = 0

and 1 − δpP = 0. Thus,

δ∗p =
1
P
, δ∗d = 1

VII. We assume λ1 , 0, λ2 = λ3 = λ4 = 0 and λ5 , 0.

This assumption also satisfies KKT condition (16 iii ), (16 iv ) and (16 v ), (16

vi ) and (16 vii )where δd + β − 1 = 0, δp > δd, ζ(1 − P) > δdP(1 − δpP), 1 − δd > and

1 − δpP = 0. Thus,

δ∗p =
1
P
, δ∗d = 1 − β

VIII. We assume λ1 = 0, λ2 , 0 λ3 = λ4 = 0 and λ5 , 0.

This assumption also satisfies KKT condition (16 iii ), (16 iv ) and (16 v ), (16

vi ) and (16 vii )where δd + β − 1 > 0, δp = δd, ζ(1 − P) > δdP(1 − δpP), 1 − δd > 0

and 1 − δpP = 0. Thus,

δ∗p = δ
∗
d =

1
P
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IX. We assume λ1 , 0, λ2 = 0, λ3 , 0 and λ4 = λ5 = 0.

This assumption also satisfies KKT condition (16 iii ), (16 iv ) and (16 v ), (16

vi ) and (16 vii ) where δd + β − 1 = 0, δp > δd, ζ(1 − P) = δdP(1 − δpP), 1 − δd > 0

and 1 − δpP > 0. We plug δd + β − 1 = 0 into ζ(1 − P) − δdP(1 − δpP) = 0 to solve

for δ∗p. Thus,

δ∗p =
P(1 − β + ζ) − ζ

(1 − β)P2 , δ∗d = 1 − β

X. We assume λ1 = 0, λ2 , 0, λ3 , 0 and λ4 = λ5 = 0.

This assumption also satisfies KKT condition (16 iii ), (16 iv ) and (16 v ), (16

vi ) and (16 vii ) where δd + β − 1 > 0, δp = δd, ζ(1 − P) = δdP(1 − δpP), 1 − δd > 0

and 1 − δpP > 0. We plug δp = δd into ζ(1 − P) − δdP(1 − δpP) = 0 to solve for δ∗p.

Thus,

δ∗p = δ
∗
d =

1 −
√

1 + 4ζ(−1 + P)
2P

or

δ∗p = δ
∗
d =

1 +
√

1 + 4ζ(−1 + P)
2P

XI. We assume λ1 = 0, λ2 , 0 and λ3 = λ4 = λ5 = 0.

This assumption also satisfies KKT condition (16 iii ), (16 iv ) and (16 v ), (16

vi ) and (16 vii )where δd + β − 1 > 0, δp = δd, ζ(1 − P) > δdP(1 − δpP), 1 − δd > 0

and 1 − δpP > 0. We plug these equations into KKT condition (16 i ) and (16 ii )

and set them to zero so that we could get two equations to solve the two equal

discount factors. Solving them simultaneously and thus,

δ∗p = δ
∗
d =
−1 + α +

√
1 + α2 − 2α + 3αP

3αP
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XII. We assume λ1 = 0, λ2 = 0, λ3 , 0 and λ4 = λ5 = 0.

This assumption also satisfies KKT condition (16 iii ), (16 iv ) and (16 v ), (16

vi ) and (16 vii )where δd +β−1 > 0, δp > δd, ζ(1−P) = δdP(1−δpP), 1−δd > 0 and

1 − δpP > 0. We plug λ1 = λ2 = λ4 = λ5 = 0 into KKT condition (16 i ) and (16 ii )

and set them to zero, as well as ζ(1−P) = δdP(1−δpP) so that we could solve both

discount factors. Let M = 9α2ζ(P − 1)P6 and N =
√

3α3P12(27α(P − 1)2ζ2 + P3),

δ∗p =
1
P
−

P2

[3(M + N)]
1
3

+
(M + N)

1
3

3
2
3αp3

δ∗d =

P
3 +

αP6

[3(M+N)]
2
3
+

(M+N)
2
3

3
4
3 αP4

2P

XII. We assume λ1 = 0, λ2 = 0, λ3 , 0, λ4 , 0 and λ5 = 0.

This assumption also satisfies KKT condition (16 iii ), (16 iv ) and (16 v ), (16

vi ) and (16 vii )where δd + β − 1 > 0, δp > δd, ζ(1 − P) = δdP(1 − δpP), 1 − δd = 0

and 1 − δpP > 0. Thus,

δ∗p =
P − ζ + pζ

P2 , δ∗d = 1

We still draw a plot to see the impacts of P under this case. δp is the left first

axes while δd, profit and the demand variance uses the right secondary axes.

Cash demand first is greater then demand demand and gradually they become

the same and the variance equals to 0, which means the ζ constraint changes

from un-tight to tight. δd shows a deceasing trend while when ζ constraint be-

comes tight the slope becomes deeper. δp, similar to section 3.2, decreases first

and then increases when ζ constraint becomes tight. Profit increases first but

then decreases and maximum is at the vertical line where P is approximately

0.939.
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Figure 10: Sensitivity of P when preference is cash, deal and points

Now we loop over all possible value of α and β to find maximal outputs as

well.

I. Sensitivity of α when preference is cash, deal and points (β = 0.8)

Optimal Values Profit Demand

α Price (P) Point discount (δp) Deal discount (δd) Points price (δpP) Deal price (δdP) Total Cash Deal Points

0.1 0.999 0.999 0.500 0.998 0.500 0.250 0.501 0.001 0.499 0.001

0.2 0.999 0.999 0.500 0.998 0.500 0.250 0.501 0.001 0.499 0.001

0.3 0.999 0.999 0.500 0.998 0.500 0.250 0.501 0.001 0.499 0.001

0.4 0.939 0.928 0.504 0.871 0.473 0.253 0.588 0.061 0.466 0.061

0.5 0.908 0.883 0.511 0.802 0.464 0.260 0.628 0.092 0.444 0.092

0.6 0.887 0.851 0.520 0.755 0.461 0.268 0.652 0.113 0.426 0.113

0.7 0.872 0.830 0.531 0.723 0.463 0.277 0.665 0.128 0.409 0.128

Table 4: Sensitivity of α when preference is cash, deal and points (β = 0.8)

With one more distribution channel added, all optimum stay at a steady

state first when α in lower values. In order to get highest revenue to cover

such low cash-points conversion, such Courtyard or FourPoints post a very high

retail price and points price to lower points demand. So they post a good price
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on deal to drive more volume. The other possible reason is that competitors

in market which has the same burning ratio post a very high price thus even

though Courtyard hotels drop rate, there is still the same demand but with less

profit. Sometimes revenue managers post a high price: i.e. only sell expensive

suites cash prices just to stop customers redeem points, which on the other hand

verifies the importance of dynamic points pricing.

Then gradually with α increases, the highest revenue also goes to highest

α. But we need to notice that the price is decreasing while profit increases. For

example, a JW Marriott hotel has a high category because of their excellent per-

formance last year. With good reputation, they have a very high cash and points

demand but they need to reduce deal demand to drive revenue.

II. Sensitivity of β when preference is cash, deal and points (α = 0.4)

Optimal Values Profit Demand

β Price (P) Point discount (δp) Deal discount (δd) Points price (δpP) Deal price (δdP) Total Cash Deal Points

0.5 0.837 0.757 0.532 0.634 0.445 0.284 0.718 0.163 0.392 0.163

0.6 0.864 0.808 0.521 0.698 0.450 0.271 0.686 0.136 0.414 0.136

0.7 0.897 0.864 0.511 0.775 0.459 0.261 0.644 0.103 0.438 0.103

0.8 0.939 0.928 0.504 0.871 0.473 0.253 0.588 0.061 0.466 0.061

0.9 0.999 0.999 0.500 0.998 0.500 0.250 0.501 0.001 0.499 0.001

Table 5: Sensitivity of β when preference is cash, deal and points (α = 0.4)

β as the burning ratio here shows the opposite trend with α as the earning

ratio: prices, discount factors and deal demand increase and other outputs de-

crease. The highest β = 0.9 (i.e. Ritz Carlton) generates the lowest profit while

the highest profit goes the the lowest β = 0.5 (i.e. Sheraton). The increasing β

brings with increasing price as category increases. For example, the best strat-

egy for the Ritz Carlton is to post a very high cash price while focus on deal

segment. However, the Sheraton posts a relatively low price which attracts the
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most cash demand thus pushing to the highest revenue. So we could conclude

that under these cases and this market, it might be vise not to open very luxury

hotels.

3.3.2 Moderately Discounted Points Redemption Preferred to Deal Prices

Still, customers prefer cash segment first if they have enough cash when vi ≥ P.

And they don’t have enough cash they pay points next when vi < P and γi ≥

δpP. Thus the probability is the same with redemption premium or moderate

discount situation in cash and points only case. But after these two options, if

customers do not have enough points but have less money to afford the deal

price, then they pay via discounted/opaque channels when δdP ≤ vi < P and

γi < δpP. Last, when vi < δdP and γi < δpP, customers leave.

Demands for cash and points are Dc = 1 − P and Dp = P(1 − δpP). Revenue

for cash and points is πc = P(1 − P)(1 − β) and πp = αδpP ∗ P(1 − δpP). For deal

segment, since customers could not afford points segment with probability of

δpP, and the probability that customers could afford deal but could not afford

cash is P − δdP. Thus, deal demand is Dd = δpP
∫ P

δdP
f (vi)dvi = δpP(P − δdP). Deal

revenue is πd = δdPδpP
∫ P

δdP
f (vi)dvi = δdP ∗ δpP(P − δdP).

We sum up three demands and total demand is

D = 1 − P + P(1 − δpP) + δpP(P − δdP) = 1 − δpδdP2

Total firm revenue is

π = P(1 − P)(1 − β) + αδpP ∗ P(1 − δpP) + δdP ∗ δpP(P − δdP) (18)
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So the optimization program changes to,

max
δp,δd

P(1 − P)(1 − β) + αδpP ∗ P(1 − δpP) + δdP ∗ δpP(P − δdP)

s.t. δp ≥ 1 − β

δd ≥ δp

ζ(1 − P) − P(1 − δpP) ≥ 0

δd ≤ 1

δpP ≤ 1

δp, δd > 0

Similarly we also introduce three Lagrange multipliers λ1, λ2 and λ3 to

rewrite the objective function,

L = P(1 − P)(1 − β) + αδpP ∗ P(1 − δpP) + δdP ∗ δpP(P − δdP)

+ λ1(δp + β − 1)

+ λ2(δd − δp)

+ λ3(ζ(1 − P) − P(1 − δpP))

+ λ4(1 − δd)

+ λ5(1 − δpP)

(19)
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The KKT conditions are,

dL
dδp
= λ1 − λ2 + P[−λ5 + P(α + λ3 − 2αδpP + δdP(1 − δd)] (19 i)

dL
dδd
= −λ4 + λ2 + δpP3(1 − 2δd) (19 ii)

λ1(δp + β − 1) = 0 (19 iii)

λ2(δd − δp) = 0 (19 iv)

λ3(ζ(1 − P) − P(1 − δpP)) = 0 (19 v)

λ4(1 − δd) = 0 (19 vi)

λ5(1 − δpP) = 0 (19 vii)

We also do one-dimensional search here. For fixed P and δp that deal revenue

(the only part that is a function of δd) is a function of δdP(P − δdP) and we also

have δd ≥ δp. Thus, deal revenue can be maximized only when the two discount

factors are equal where KKT condition (19 iv ) satisfies δd , 0.

Thus, the constrained optimization solutions are,

I. We assume λ1 , 0 and λ3 = λ4 = λ5 = 0.

This assumption satisfies KKT conditions (19 iii ), (19 iv ), (19 v ), (19 vi ) and

(19 vii ) where δp = 1 − β, δp = δd, ζ(1 − P) > 1 − δpP, 1 − δd > 0 and 1 − δpP > 0

thus

δ∗p = δ
∗
d = 1 − β

II. We assume λ1 = λ3 = λ4 = 0 and λ5 , 0.

This assumption satisfies KKT conditions (19 iii ), (19 iv ), (19 v ), (19 vi ) and

(19 vii ) where δp = 1 − β, δp = δd, ζ(1 − P) > 1 − δpP, 1 − δd > 0 and 1 − δpP > 0
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thus

δ∗p = δ
∗
d =

1
P

III. We assume λ1 = λ3 = λ4 = λ5 = 0.

This assumption satisfies KKT conditions (19 iii ), (19 iv ), (19 v ), (19 vi ) and

(19 vii ) where δp > 1 − β, δp = δd, ζ(1 − P) > 1 − δpP, 1 − δd > 0 and 1 − δpP > 0.

We plug λ1 = λ3 = λ4 = λ5 = 0 into KKT condition (19 i ) and (19 ii ) and set them

to zero so that we could get two equations to solve λ2 and δp = δd. Thus,

δ∗p = δ
∗
d =

P − αP −
√

P(3α + P − 2αP + α2P)
3P

or

δ∗p = δ
∗
d =

P − αP +
√

P(3α + P − 2αP + α2P)
3P

IV. We assume λ1 = 0, λ3 , 0 and λ4 = λ5 = 0.

This assumption satisfies KKT conditions (19 iii ), (19 iv ), (19 v ), (19 vi ) and

(19 vii ) where δp > 1 − β, δp = δd, ζ(1 − P) = 1 − δpP, 1 − δd > 0 and 1 − δpP ≥ 0.

Thus we plug δp = δd into ζ(1 − P) = P(1 − δpP) and we get

δ∗p = δ
∗
d =

P − ζ + Pζ
P2

We also draw the plot to the sensitivity of P when the preference is cash,

points and deal. Since we already know that the optimum is always when the

two discount factors are the same so there are only one discount factor curve

shown. It first starts at 0 which is because there are only two-segment and we

do not recommend deal segment here. Gradually with prices increases profit

increases first then decrease where the optimal profit is when P∗ = 0.682.
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Figure 11: Sensitivity of P when the preference is cash, points and deal

Now we loop over all possible value of α and β to find maximal profits then

store the optimal price and discount factors.

I. Sensitivity of α when preference is cash, points and deal (β = 0.8)

Optimal Values Profit Demand

α Price (P) Point discount (δp) Deal discount (δd) Points price (δpP) Deal price (δdP) Total Cash Deal Points

0.1 0.671 0.760 0.760 0.510 0.510 0.103 0.740 0.329 0.082 0.329

0.2 0.676 0.770 0.770 0.521 0.521 0.120 0.729 0.324 0.081 0.324

0.3 0.679 0.777 0.777 0.527 0.527 0.137 0.722 0.321 0.080 0.321

0.4 0.682 0.783 0.783 0.534 0.534 0.154 0.715 0.318 0.079 0.318

0.5 0.684 0.787 0.787 0.538 0.538 0.170 0.711 0.316 0.079 0.316

0.6 0.686 0.790 0.790 0.542 0.542 0.188 0.706 0.314 0.078 0.314

0.7 0.688 0.794 0.794 0.547 0.547 0.205 0.701 0.312 0.077 0.312

Table 6: Sensitivity of α when preference is cash, points and deal (β = 0.8)

Here we notice that the optimal profit under each α satisfies that cash de-

mand equals to points demand. And even though deal price is lower it gener-

ates the lowest demand. As α increases, there is not too much price increases
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along with demand decrease but the highest α = 0.7 i.e. JW Marriott) gener-

ates almost double profit of the lowest α = 0.1 (i.e. FourPoints). For example

in this market, this JW Marriott and FourPoints don’t have too much price gap

but since JW has the highest revenue for each points room, it has much higher

revenue than the FourPoints.

II. Sensitivity of β when preference is cash, points and deal (α = 0.4)

Optimal Values Profit Demand

β Price (P) Point discount (δp) Deal discount (δd) Points price (δpP) Deal price (δdP) Total Cash Deal Points

0.5 0.666 0.748 0.748 0.498 0.498 0.219 0.751 0.334 0.083 0.334

0.6 0.671 0.760 0.760 0.510 0.510 0.197 0.740 0.329 0.082 0.329

0.7 0.676 0.770 0.770 0.521 0.521 0.175 0.729 0.324 0.081 0.324

0.8 0.682 0.783 0.783 0.534 0.534 0.154 0.715 0.318 0.079 0.318

0.9 0.688 0.794 0.794 0.547 0.547 0.132 0.701 0.312 0.077 0.312

Table 7: Sensitivity of β when preference is cash, points and deal (α = 0.4)

Still, the optimal profit under each α satisfies that cash demand equals to

points demand. The higher β burns more cost to issue points thus the lowest

revenue goes to the highest β = 0.9.

Numerically from the table examples under these two preference cases we

could tell that preference with cash, deal and points generates higher profit than

the preference with cash, points and deal.This is because δd wants to be no less

than δp: i.e. we only get that segmentation because we constraint it to appear.

So here we introduce the second theorem.

Theorem 2 Preference with cash, deal and points generates higher profit than the pref-

erence with cash, points and deal.
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3.4 Demand Dependent Redemption Reimbursement

While in the previous section we have shown that differential pricing may have

limited financial impact, firms may choose to deploy more active pricing in the

event of demand and supply imbalances. As discussed previously, when firms

are part of a larger brand there may be a transaction loss between the value a

firm pays for loyal program points it provides to customers and the payments

it receives (from the brand) upon redemption by customers. As an illustration,

most large hotel brands typically compensate a franchisee anywhere from 25-

50% of their ADR (average daily rate) for a redemption stay if the hotel is a mod-

erate demand levels (i.e. the room might have otherwise gone unoccupied). The

compensation (% of ADR) to the franchisee increases with occupancy reflecting

the increasing opportunity cost of the redemption stay.

In this section we consider a setting where a firm receives αl for redeemed

goods/services when demand is low, i.e. when demand is below a certain

threshold T (D < T ) and αh otherwise. Specifically we look a firm who may

choose to lower price P, and/or discount points in an attempt to raise demand

above the redemption threshold T to increase the level redemption to αh.

Owing to earlier results we do not need to look at all segmentation. Link-

ing back to section 3.3 we illustrate the implication of dynamic pricing strategy

when deal segment is added. For the two segmentation introduced in 3.3.2

when preference is cash, points, and deal please note that we don’t consider

this segmentation as displayed in Figure (9b) according to Theorem 2.

43



3.4.1 Cash and Points only

The updated optimization problem now becomes,

max
δ

(1 − β)(P − P2) + αδP2(1 − δP)

s.t. δ ≥ 1 − β

ζ(1 − P) ≥ P(1 − δP)

1 − δP2 ≥ T

δP ≤ 1

δ > 0

Similarly we also introduce three Lagrange multipliers λ1, λ2, λ3 and λ4 to

rewrite the objective function,

L = (1 − β)(P − P2) + αδP2(1 − δP)

+ λ1(δ + β − 1)

+ λ2[ζ(1 − P) − P(1 − δP)]

+ λ3(1 − δP2 − T )

+ λ4(1 − δP)

(21)

The KKT conditions are,

dL
dδ
= λ1 + P2(α − λ2 + λ3 − 2αδP) (21 i)

λ1(δ + β − 1) = 0 (21 ii)

λ2(ζ(1 − P) − P(1 − δP)) = 0 (21 iv)

λ3(1 − δP2 − T ) (21 iii)

λ4(1 − δP) = 0 (21 v)

We also do one dimensional search for δ and P given P fixed. Then we take

derivative of the L function with respect to δ. And the solutions are,
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I. We assume λ1 , 0 and λ2 = λ3 = λ4 = 0.

This assumption satisfies KKT conditions (21 ii ),(21 iii ), (21 iv ) and (21 v )

where δ = 1 − β, ζ(1 − P) > P(1 − δP), 1 − δP2 > T and 1 − δP > 0, thus

δ∗ = 1 − β

II. We assume λ1 = 0, λ2 , 0, and = λ3 = λ4 = 0.

This assumption satisfies KKT conditions (21 ii ),(21 iii ), (21 iv ) and (21 v )

where δ > 1 − β, ζ(1 − P) = P(1 − δP), 1 − δP2 > T , and 1 − δP > 0, thus

δ∗ =
P − ζ + Pζ

P2

III. We assume λ1 = λ2 = 0, λ3 , 0 and λ4 = 0.

This assumption satisfies KKT conditions (21 ii ),(21 iii ), (21 iv ) and (21 v )

where δ > 1 − β, 1 − δP2 = T , ζ(1 − P) > P(1 − δP), and 1 − δP > 0, thus

δ∗ =
1 − T

P2

IV. We assume λ1 = λ2 = λ3 = λ4 = 0.

This assumption satisfies KKT conditions (21 ii ),(21 iii ), (21 iv ) and (21 v

) where δ > 1 − β, ζ(1 − P) > P(1 − δP), 1 − δP2 > T , and 1 − δP > 0. We

plugλ1 = λ2 = λ3 = λ4 = 0. into KKT conditions (21 i ) and set to zero thus

δ∗ =
1

2P

V. We assume λ1 = λ2 = λ3 = 0 and λ4 , 0.
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This assumption satisfies KKT conditions (21 ii ),(21 iii ), (21 iv ) and (21 v )

where δ > 1 − β, ζ(1 − P) > P(1 − δP), 1 − δP2 > T , and 1 − δP = 0. Thus

δ∗ =
1
P

Here we need to clarify that the key result that we focus here is when δ∗ = 1−T
P2

where we have the Lagrangian for the demand constraint and this constraint is

binding. All other formulas look the same as what we have for section 3.2 with

the the demand constraint is not binding.

With demand constraint added, the sensitivity of P shows a different curve

compared with section 3.2 when there is no demand constraint. Here we no-

tice that there is a maximum value of P = 0.650 could attribute to the feasible

optimal values, where cash demand equals to points demand which indicates a

tight ζ constraint. Both discount factor and demand variance decrease and the

profit increases until the optimum found at P∗ = 0.650.
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Figure 12: Sensitivity of P at cash and points only model (α = 0.4, β = 0.8)
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From 3.2 we already know that when α = 0.4 and β = 0.8 the optimal demand

is approximately 0.644. Thus we pick T > 0.644 = 0.7 as the starting demand

threshold that hotels can receive redemption reimbursement if they push up

points occupancy thus at the high α region.

Sensitivity of T at cash and points only model (α = 0.4, β = 0.8)

Optimal Values Profit Demand

T Price (P∗) Point discount (δ∗) Points price (δ∗P∗) Total Cash Points

0.7 0.650 0.710 0.462 0.110 0.700 0.350 0.350

0.8 0.599 0.557 0.334 0.101 0.800 0.401 0.399

0.9 0.535 0.349 0.187 0.082 0.900 0.465 0.435

0.678 0.774 0.525 0.111 0.644 0.322 0.322

Table 8: Sensitivity of T at cash and points only model (α = 0.4, β = 0.8)

As T increases, all outputs keep at a stable stage where cash demand equals

to points demand and profit gets to maximum. However, when T reaches to a

higher level at 0.7, profit start to decrease even though occupancy increases.

We also add one row of the results in section 3.2 when there is no demand

constrained. Thus it is clear to show that unconstrained profit is always higher

then when we have the demand constraint. Compared with section 3.2 where

the demand constraint is not discussed, we need to figure out the how profit

changes if hotels switch from αl to αh. We take α = 0.2 as an example. When

α = 0.2 the optimal profit is approximately 0.078 while here with the same α and

when T = 0.8 the profit now becomes lower as around 0.075. Thus to achieve

the same profit hotels switch to αh to get more compensation.

Thus we draw the plot of T to find the variance between αh and αl, between
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the optimal profits, discount factors. Since we want to find the αh and according

to the curves below, we could see that we decrease the new price and discount

factor to get the same profit level. Here we have the difference between con-

strained optimal and unconstrained optimal P and δ on the left axes and αh − αl

as the right axes. As T goes up, the α variance curve shows a deeper increase.

However in reality, hotel brands like Marriott shows a steady increase starting

from when T is 0.85 and linear increase by tiers of T . Other most hotel brands

typically only have two tiers: one is above 0.9 and the other is between 0.95 to

1. This can be our management insight for hotel brands to make compensation

policy for redemption rooms for hotels.
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Figure 13: Dynamic Redemption Reimbursement at cash and points only model
(α = 0.2, β = 0.8)
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3.4.2 Discounted Deal Prices Preferred to Points Redemption

The new optimization problem now changes to

max
δp,δd

P(1 − P)(1 − β) + δdP(P − δdP) + αδpP ∗ δdP(1 − δpP)

s.t. δd ≥ 1 − β

δp ≥ δd

ζ(1 − P) − δdP(1 − δpP) ≥ 0

δd ≤ 1

δpP ≥ 1

1 − δpδdP2 ≥ T

δd > 0

Thus, we introduce four Lagrange multiplier λ1, λ2, λ3, and λ4 here to solve

for the optimal solution,

L = P(1 − P)(1 − β) + δdP(P − δdP) + αδpP ∗ δdP(1 − δpP)

+ λ1(δd + β − 1)

+ λ2(δp − δd)

+ λ3(ζ(1 − P) − δdP(1 − δpP))

+ λ4(1 − δd)

+ λ5(1 − δpP)

+ λ6(1 − δpδdP2 − T )

(23)
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The KKT conditions are,

dL
dδp
= λ2 + P[−λ5 + δdP(α + λ3 − 2αδpP − λ6)] (23 i)

dL
dδd
= −λ4 + λ1 − λ2 + P[P − 2δdP + λ3(δpP − 1) + αP(δp − δpP2) − λ6δpP] (23 ii)

λ1(δd + β − 1) = 0 (23 iii)

λ2(δp − δd) = 0 (23 iv)

λ3(ζ(1 − P) − δdP(1 − δpP)) = 0 (23 v)

λ4(1 − δd) = 0 (23 vi)

λ5(1 − δpP) = 0 (23 vii)

λ6(1 − δpδdP2 − T ) = 0 (23 viii)

The constrained optimization solutions are,

I. We assume λ1 , 0, λ2 , 0 and λ3 = λ4 = λ5 = λ6 = 0.

This assumption satisfies KKT condition (23 iii ), (23 iv ) (23 v ), (23 vi ), (23

vii ) and (23 viii ) where δd + β − 1 = 0, δp − δd = 0, ζ(1 − P) − δdP(1 − δpP) > 0,

1 − δd > 0, 1 − δpP > 0 and 1 − δpδdP2 > T . Thus

δ∗p = δ
∗
d = 1 − β

II. We assume λ1 , 0 and λ2 = λ3 = λ4 = λ5 = λ6 = 0.

This assumption satisfies KKT condition (23 iii ), (23 iv ) (23 v ), (23 vi ), (23

vii ) and (23 viii ) where where δd + β − 1 = 0, δp > δd, ζ(1 − P) > δdP(1 − δpP),

1− δd > 0, 1− δpP > 0 and 1− δpδdP2 > T . We then plug λ2 = λ3 = λ4 = λ5 = λ6 = 0

and δd + β − 1 = 0 into KKT condition (23 i ) and set it to zero then we get

δ∗p =
1

2P
, δ∗d = 1 − β
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III. We assume λ1 = λ2 = λ3 = 0, λ4 , 0 and λ5 = λ6 = 0.

This assumption satisfies KKT condition (23 iii ), (23 iv ) (23 v ), (23 vi ), (23

vii ) and (23 viii ) where δd + β − 1 > 0, δp > δd, ζ(1 − P) > δdP(1 − δpP), 1 − δd = 0,

1 − δpP > 0 and 1 − δpδdP2 > T . We then plug λ1 = λ2 = λ3 = λ5 = λ6 = 0 and

1 − δd = 0 into KKT condition (23 i ) and set it to zero then we get

δ∗p =
1

2P
, δ∗d = 1

IV. We assume λ1 = λ2 = λ3 = λ4 = λ5 = λ6 = 0.

This assumption satisfies KKT condition (23 iii ), (23 iv ) (23 v ), (23 vi ), (23

vii ) and (23 viii ) where δd + β − 1 > 0, δp > δd, ζ(1 − P) > δdP(1 − δpP), 1 − δd > 0,

1 − δpP > 0 and 1 − δpδdP2 > T . We first plug λ2 = λ3 = λ5 = λ6 = 0 into KKT

condition (23 i ) and set it to zero so that we could solve for the optimal δp. Then

we plug it as well as λ1 = λ40 into KKT condition (23 ii ) and set it to zero to get

the optimal δd. Thus,

δ∗p =
1

2P
, δ∗d =

α + 4P
8P

V. We assume λ1 = λ2 = λ3 = λ4 = 0, λ5 , 0 and λ6 = 0.

This assumption satisfies KKT condition (23 iii ), (23 iv ) (23 v ), (23 vi ), (23

vii ) and (23 viii ) where δd + β − 1 ≥ 0, δp ≥ δd, ζ(1 − P) ≥ δdP(1 − δpP), 1 − δd ≥ 0,

1− δpP = 0 and 1− δpδdP2 ≥ T . Thus according to it and λ1 = λ2 = λ3 = λ4 = 0 we

know δ∗d.

δ∗p =
1
P
, δ∗d =

1
2

VI. We assume λ1 = λ2 = λ3 = 0, λ4 , 0, λ5 , 0 and λ6 = 0.
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This assumption satisfies KKT condition (23 iii ), (23 iv ) (23 v ), (23 vi ), (23

vii ) and (23 viii ) where δd + β − 1 > 0, δp > δd, ζ(1 − P) > δdP(1 − δpP), 1 − δd = 0,

1 − δpP = 0 and 1 − δpδdP2 > T . Thus,

δ∗p =
1
P
, δ∗d = 1

VII. We assume λ1 , 0, λ2 = λ3 = λ4 = 0, λ5 , 0 and λ6 = 0.

This assumption satisfies KKT condition (23 iii ), (23 iv ) (23 v ), (23 vi ), (23

vii ) and (23 viii ) where δd + β − 1 = 0, δp > δd, ζ(1 − P) > δdP(1 − δpP), 1 − δd > 0,

1 − δpP = 0 and 1 − δpδdP2 > T . Thus,

δ∗p =
1
P
, δ∗d = 1 − β

VIII. We assume λ1 = 0, λ2 , 0 λ3 = λ4 = 0, λ5 , 0 and λ6 = 0.

This assumption satisfies KKT condition (23 iii ), (23 iv ) (23 v ), (23 vi ), (23

vii ) and (23 viii ) where δd + β − 1 > 0, δp = δd, ζ(1 − P) > δdP(1 − δpP), 1 − δd > 0,

1 − δpP = 0 and 1 − δpδdP2 > T . Thus,

δ∗p = δ
∗
d =

1
P

VIII. We assume λ1 = λ2 = λ3 = λ4 = 0, λ5 , 0 and λ6 , 0.

This assumption satisfies KKT condition (23 iii ), (23 iv ) (23 v ), (23 vi ), (23

vii ) and (23 viii ) where δd + β − 1 > 0, δp > δd, ζ(1 − P) > δdP(1 − δpP), 1 − δd > 0,

1 − δpP = 0 and 1 − δpδdP2 = T . Thus,

δ∗p =
1
P
, δ∗d =

1 − T
P

IX. We assume λ1 , 0, λ2 = 0, λ3 , 0 and λ4 = λ5 = λ6 = 0.
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This assumption satisfies KKT condition (23 iii ), (23 iv ) (23 v ), (23 vi ), (23

vii ) and (23 viii ) where δd + β − 1 = 0, δp > δd, ζ(1 − P) = δdP(1 − δpP), 1 − δd > 0,

1−δpP > 0 and 1−δpδdP2 > T . We plug δd+β−1 = 0 into ζ(1−P)−δdP(1−δpP) = 0

to solve for δ∗p. Thus,

δ∗p =
P(1 − β + ζ) − ζ

(1 − β)P2 , δ∗d = 1 − β

X. We assume λ1 = 0, λ2 , 0, λ3 , 0 and λ4 = λ5 = λ6 = 0.

This assumption satisfies KKT condition (23 iii ), (23 iv ) (23 v ), (23 vi ), (23

vii ) and (23 viii ) where δd + β − 1 > 0, δp = δd, ζ(1 − P) = δdP(1 − δpP), 1 − δd > 0,

1 − δpP > 0 and 1 − δpδdP2 > T . We plug δp = δd into ζ(1 − P) − δdP(1 − δpP) = 0

thus

δ∗p = δ
∗
d =

1 −
√

1 + 4ζ(−1 + P)
2P

or

δ∗p = δ
∗
d =

1 +
√

1 + 4ζ(−1 + P)
2P

XI. We assume λ1 = 0, λ2 , 0 and λ3 = λ4 = λ5 = λ6 = 0.

This assumption satisfies KKT condition (23 iii ), (23 iv ) (23 v ), (23 vi ), (23

vii ) and (23 viii ) where δd + β − 1 > 0, δp = δd, ζ(1 − P) > δdP(1 − δpP), 1 − δd > 0,

1 − δpP > 0 and 1 − δpδdP2 > T . We plug these into KKT condition (23 i ) and (23

ii ) and set them to zero so that we could solve both discount factors. Solving

them simultaneously and thus,

δ∗p = δ
∗
d =
−1 + α +

√
1 + α2 − 2α + 3αP

3αP

XII. We assume λ1 = 0, λ2 = 0, λ3 , 0 and λ4 = λ5 = λ6 = 0.
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This assumption satisfies KKT condition (23 iii ), (23 iv ) (23 v ), (23 vi ),

(23 vii ) and (23 viii ) where δd + β − 1 > 0, δp > δd, ζ(1 − P) = δdP(1 − δpP),

1 − δd > 0, 1 − δpP > 0 and 1 − δpδdP2 > T . We plug them into KKT condition (23

i ) and (23 ii ) and set to zero so that we could solve both discount factors. Let

M = 9α2ζ(P − 1)P6 and N =
√

3α3P12(27α(P − 1)2ζ2 + P3),

δ∗p =
1
P
−

P2

[3(M + N)]
1
3

+
(M + N)

1
3

3
2
3αp3

δ∗d =

P
3 +

αP6

[3(M+N)]
2
3
+

(M+N)
2
3

3
4
3 αP4

2P

XIII. We assume λ1 = 0, λ2 , 0, λ3 = λ4 = λ5 = 0 and λ6 , 0.

This assumption satisfies KKT condition (23 iii ), (23 iv ) (23 v ), (23 vi ), (23

vii ) and (23 viii ) where δd + β − 1 > 0, δp = δd, ζ(1 − P) > δdP(1 − δpP), 1 − δd > 0,

1 − δpP > 0 and 1 − δpδdP2 = T . We plug δp = δd into 1 − δpδdP2 = T and get

δ∗p = δ
∗
d =

√
1 − T
P

XIV. We assume λ1 = 0λ2 = λ3 = 0, λ4 , 0, λ5 = 0 and λ6 , 0.

This assumption satisfies KKT condition (23 iii ), (23 iv ) (23 v ), (23 vi ), (23

vii ) and (23 viii ) where δd + β − 1 > 0, δp > δd, ζ(1 − P) > δdP(1 − δpP), 1 − δd = 0,

1 − δpP > 0 and 1 − δpδdP2 = T . Thus,

δ∗p =
1 − T

P2 , δ∗d = 1

XV. We assume λ1 , 0, λ2 = λ3 = λ4 = λ5 = 0 and λ6 , 0.

This assumption satisfies KKT condition (23 iii ), (23 iv ) (23 v ), (23 vi ), (23

vii ) and (23 viii ) where δd + β − 1 = 0, δp > δd, ζ(1 − P) > δdP(1 − δpP), 1 − δd > 0,
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1 − δpP > 0 and 1 − δpδdP2 = T . We plug δd = 1 − β into 1 − δpδdP2 = T and get

δ∗p =
T − 1

(β − 1)P2 , δ
∗
d = 1 − β

XVI. We assume λ1 = 0, λ2 = 0, λ3 , 0 and λ4 = λ5 = 0 and λ6 , 0.

This assumption satisfies KKT condition (23 iii ), (23 iv ) (23 v ), (23 vi ), (23

vii ) and (23 viii ) where δd + β − 1 > 0, δp > δd, ζ(1 − P) = δdP(1 − δpP), 1 − δd > 0,

1 − δpP > 0 and 1 − δpδdP2 = T . Thus,

δ∗p =
T − 1

P[T − 1 + ζ(P − 1)]
, δ∗d =

1 − T + ζ(1 − P)
P

XVII. We assume λ1 = λ2 = λ3 = λ4 = λ5 = 0 and λ6 , 0.

This assumption satisfies KKT condition (23 iii ), (23 iv ) (23 v ), (23 vi ),

(23 vii ) and (23 viii ) where δd + β − 1 > 0, δp > δd, ζ(1 − P) > δdP(1 − δpP),

1 − δd > 0, 1 − δpP > 0 and 1 − δpδdP2 = T . We plug these into KKT condition (23

i ) and (23 ii ) and set them to zero so that we solve both discount factors. Let

J =
√

3α3P12(P3 + 27α(T − 1)2) and K = 9α2P6(T − 1)

δ∗p =
−3( 2

3 )αP5 + 3( 1
3 )(J − K)

2
3

3αP3(J − K)
1
3

δ∗d =

6 + 6∗3
1
3 αP5

(J−K)
2
3
+

2∗3( 2
3 )(J−K)

2
3

αP5

36

XVIII. We assume λ1 = 0, λ2 = 0, λ3 , 0 and λ4 , 0 and λ5 = λ6 = 0.

This assumption satisfies KKT condition (23 iii ), (23 iv ) (23 v ), (23 vi ), (23

vii ) and (23 viii ) where δd + β − 1 > 0, δp > δd, ζ(1 − P) = δdP(1 − δpP), 1 − δd = 0,

1 − δpP > 0 and 1 − δpδdP2 > T . Thus,

δ∗p =
P − ζ + ζP

P2 , δ∗d = 1
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Here we need to clarify that when we have the Lagrangian for the demand

constraint and when this constraint is binding, we get five new results as a func-

tion of T which we should pay attention to. All other formulas look the same as

what we have for section 3.3.1 with the the demand constraint is not binding.

Now we also draw a plot to see how P impacts on optima discount factors,

profit and how the cash and points demand variance changes. With demand

constraint added, the overall trend of all curves are still similar to section 3.3.1

while since we add the demand constraint, the optimal price decreases com-

pared with section 3.3.1 which now becomes lower at P∗ = 0.884.
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Figure 14: Sensitivity of P when preference is cash, deal and points with demand
constraint (α = 0.4, β = 0.8)

Now we loop over all possible value of T to find maximal profits then store

the best feasible price, discount factors, occupancy, and demand of cash, deal

and points segments.

Sensitivity of T when preference is cash, deal and points (α = 0.4, β = 0.8)
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Optimal Values Profit Demand

T Price (P) Point discount (δp) Deal discount (δd) Points price (δpP) Deal price (δdP) Total Cash Deal Points

0.6 0.933 0.918 0.857 0.501 0.467 0.253 0.600 0.067 0.466 0.067

0.7 0.884 0.816 0.721 0.471 0.416 0.249 0.700 0.116 0.468 0.116

0.8 0.836 0.657 0.549 0.435 0.364 0.235 0.800 0.164 0.472 0.164

0.9 0.786 0.405 0.318 0.399 0.314 0.209 0.900 0.214 0.472 0.214

0.939 0.928 0.504 0.871 0.473 0.253 0.588 0.061 0.466 0.061

Table 9: Sensitivity of T when preference is cash, deal and points (α = 0.4, β =

0.8)

From section 3.3.1 we already know that optimal demand is 0.588 then we

pick T > 0.588 = 0.6 as the starting occupancy to receive redemption reimburse-

ment. Thus in order to get the same profit, firms need to dynamically price

lower, pushing up to a higher occupancy to αh for more points redemption re-

imbursement.

We also look into the different between αh and αl. We still use the example

of α = 0.2 and β = 0.8. Still, the left axes represents the difference of P, δp and

δd while the right axes is the difference between αh and αl. The overall trend of

all variance curves are similar to section 3.4.1 while less deep as deal segment

added. But still as T increases, α should not be linearly increasing per current

points redemption reimbursement policy.

4 Summary and Discussions

In order to understand how customers make purchase decisions, we first start

with fixed and unconstrained model, then we add constraint on points discount

and found that firms never offer huge discounts on points, but they do offer a
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Figure 15: Dynamic Redemption Reimbursement when preference is cash, deal
and points (α = 0.2, β = 0.8)

moderate discount on the price of points for profit maximum. Next we intro-

duce a steady-state points consumption and we observe a higher profits which

indicates that firms should value the co-brand credit partners. Continuing we

explore how profit changes with one more segment on inter-mediate channels.

With different preference we figure out that preference for cash, deal, and points

yields a bigger profit than preference for cash, points and deal. Last we add de-

mand constraint in order to investigate whether profit can be increased when

firms push up occupancy to achieve the demand threshold for more redemp-

tion reimbursement.

Thus we build a model for customer segmentation: who prefer cash, points

or deal segment under which situations. Then with all above constraints added

how preference changes. After understanding customer segmentation, we for-

mulate constrained optimization programming step by step, and introduce mul-
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tiple Lagrange multipliers to solve for the best pricing strategy: how should we

price on each distribution channel.

The model contains four given parameters: α as the earning ratio represents

the cash value of each points redemption room that the hotel receives from the

brand. On the other hand β as the burning ratio specifies the cost that the hotel

buy points from the brand to be issued to customers who purchase rooms via

cash. We need to note that there are multiple ways that customers can require

points and the most typical example is by credit card consumption. Thus we

introduce ζ as the scale to regulate cash demand should be no less than points

demand: i.e. ζ = 1 means points issued are exactly the points consumed. The

last parameter T is the demand threshold given by the brand. This is because

when market demand is higher, each hotel room could have been sold at incred-

ibly high cash rate in order to maximize revenue. However, loyalty programs

require hotels to satisfy loyal customers’ redemption needs. Thus, when the oc-

cupancy reaches to such T , the brand gives the hotel redemption reimbursement

as ”compensation” reward revenue.

The very first step is to understand customer surplus which is further used

to compare to understand customer decision making. Cash customers cost cash

for each room while as loyalty program reward they could receive points from

the hotel. Thus their cash balance decreases and points balance increases. Points

customers only burn points and there is no change for their cash balance. Sim-

ilar to cash segment, deal customers still pay some cash via the inter-mediated

channels but they could not receive any points rewarded because they do not

buy via direct channels. Thus, their cash balance decreases and no change for

points balance. This logic is vitally important and the first step for us to under-
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stand segmentation demand. With demand formulated, we multiple the price

of each segment and sum them up to get the total revenue. Without any loss of

generality we scale the prices to be all the same P and we solve for the discount

factors for deal and points segment then by multiplying P we could know their

prices as well.

First of all, we start with the fixed setting which is typically how hotels are

doing now when there is no real-time dynamics for points price. Each year

hotels receives a category to define their points price: A category-one Marriott

hotel only needs 7,500 points while a category-8 hotel is worth 85,000 points.

This is fairly easy to solve as customers who are ”richer” than the cash price

will buy cash and then if they could not afford the cash and if they are ”richer”

than points price they buy points. Otherwise if they are ”poor” in either cash

or points balance, they leave and such demands go to other hotels. Marriott

start to introduce the idea of dynamic points pricing back to the merge with

Starwood, it can only allow hotels to choose from three seasons: Off, standard

and peak. However, this could not help hotels to monitor points redemption

inventory control in real time, we introduce a constraint that allows points price

to decrease. Thus, with the lower points, will customers ”richer” again and will

the lost demand come back?

Second, if we decide to discount points price, attract more demand and in-

crease revenue, we need to think about how ”attractive” should such promotion

be: all of a sudden drop an 8-CAT Ritz Carlton deeply the to be 7,500 or moder-

ately? So in this step we are trying to figure out the discount factor δ and points

price dropped from P to δP. Cash customers have the same surplus while points

customers now burn less points thus we compare the new points surplus with
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cash. A deep discount indeed could bring more points demand but each points

room still generates lower revenue than cash room and it might hurt the in-

ventory should have been sold to cash customers as they might switch to pay

points. Mathematically we also prove that there is no interior solution here.

Then with a moderate discount, cash customers don’t switch and more points

rooms sold plus more cash converted per points room. Thus we conclude that

firms never deeply discount on points but always discount lightly on points

price. However, what if customers have multiple access to points (credit cards)

so that their points balance are not steady? Then we add a constraint ζ to regu-

late their points balance.

In section 3.2 we still introduce Lagrange multipliers to translate into a con-

strained optimization programming but we use a new method to solve for the

optimal profit. In stead of solving both price and discount factor, we only solve

for δ given a fixed P which indicates all possible values from zero to one. This

is due to the added complexity introduced by the steady state points consump-

tion constraint, as well as the difficulties to find closed-form solutions for both

optimal pricing and discount factor. Thus, here P becomes a parameter and all

solutions of δ now is a function of P, α, β and ζ. In order to display how P

from zero to one impacts δ, as well as other outputs: profit and the cash/points

demand variance, we loop over P in three decimals from 0.001 to 0.999 with

the example of α = 0.4, β = 0.8 and ζ = 1. As constraints move from not tight

to tight, curves change accordingly which results in the profit increases then

decreases such that we find the optimal profit then we store this P.

We also want to find the optimal profit for any given set of α and β so we also

loop over all possible values of α and β in one decimal from 0.1 to 0.9, find the
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optimal profit then store for the corresponding price and discount factor then

we analyze how α and β impact all the optimal results.

If the steady-state demand constraint is tight, thus hotels are generating

more cash sales than hotels plan to do optimally, if in absence of the constraint.

So we can relax the constraint by allowing points to be accumulated not just

through cash sales, but through co-branded credit cards. This indicates that ζ

can be lower then hotels generate a higher profit. Plus, the brand could make

money from selling points to those credit cards. However, hotels make less

profit. We need to be cautious here because the profit we are trying to maximize

is for the owners, not for the brand. So owners are better-off as we relax the

constraint, but now there are going to be more points stays. We can get from

Lagrangian for ζ as the marginal effect for per unit increase to understand how

much the profit changes once relaxing the constraint.

Hotels not only have their own direct channels, they also post price on inter-

mediated channels like OTAs (Expedia, Booking.com, etc) as a tradition for

many years. Logically it is very easy to understand that with one more seg-

ment the revenue will be higher than there are only two segments. Revenue

managers are forced and required to keep the rate parity of all inter-mediate

channels, where they show the same price as official website in order to drive

direct bookings and reduce commission. But there are multiple channels that al-

low customers to enjoy a lower discount when they are ”qualified” to do so: i.e.

a customer is at a very high membership at Expedia, and when s/he logs into

his Expedia account there are always more attractive deal price than the official

website. Another example coule be the typical Opaque price situation. This

new segment by nature has a lower price than official website P thus we define
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its price as δdP where δp denotes its discount factor. Then we adjust points price

under this setting as δpP to differentiate with each other.

From section 3.1 we understand that points will never be preferred so we al-

ready know that the first preference will always be cash so our focus is whether

customers prefer deal, points or points, deal. Similarly our first step is still com-

paring surplus: among deal and points which one is more attractive to cus-

tomers? To translate to mathematics: which segment generates a higher sur-

plus? We find that preference order is cash, deal and points when δp > δd > 1−β

and preference order changes to cash, points and deal when δd > δp > 1−β. Sim-

ilar to the approach in section 3.2 we also loop P to see its sensitivity under each

preference order and also loop over α and β to find the numerical optimum.

For cash, points and deal preference order, we find that those two discount

factors are optimal when they are equal, and this is because..... By checking

profit of these two preference orders, we get another theorem that preference

with cash, deal and points generates higher profit than the preference with cash,

points and deal.

Now we come to the most interesting part where we introduce the demand

threshold T . We compare occupancy (total demand) with it to see if hotels can

receive redemption reimbursement. With more cash rewarded to each points

room, we introduce the idea of αh and αl as the cash converted now is higher

thus hotels switch from αl region to αh region. We first figure out when there

are only two segments: cash and points then we also solve with deal segment

added. We also use the same methods as in section 3.2 while we also draw plots

to check the impacts of T that whether the switch of α attributes to a higher

profit.
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We also create a table shows the optimal results as a summary of the numeri-

cal results and how they change in optimal values as we increase segmentation,

as constraints are either binding (B) or not binding (NB). ”NUM” under P means

we are using one-dimensional search by assuming P is also a fixed number.
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Constraints Equations

C
as

h
an

d
Po

in
ts

Discount Steady-state Demand δp − δd 1 − δd 1 − δpP P δp δd

NB NB 4+α−4β
8−8β

4−4β
4+α−4β

NB B 1
2 2

NB NB NB NUM 1
2P

B NB NB NUM 1 − β

NB B NB NUM P−ζ+Pζ
P2

NB NB B NUM 1
P

B NB NB NB NUM 1 − β

NB B NB NB NUM P−ζ+Pζ
P2

NB NB B NB NUM 1−T
P2

NB NB NB NB NUM 1
2P

NB NB NB B NUM 1
P

C
as

h,
D

ea
la

nd
Po

in
ts

B NB NB B NB NUM 1 − β 1 − β

B NB NB NB NB NUM 1
2P 1 − β

NB NB NB B NB NUM 1
2P 1

NB NB NB NB NB NUM 1
2P

α+4P
8P

NB NB NB NB B NUM 1
P

1
2

NB NB B B B NUM 1
P 1

B NB NB NB B NUM 1
P 1 − β

NB NB B NB B NUM 1
P

1
P

B B NB NB NB NUM P(1−β+ζ)−ζ
(1−β)P2 1 − β

NB B B NB NB NUM
1−
√

1−4ζ(−1+P
2P

1−
√

1−4ζ(−1+P
2P

NB B B NB NB NUM
1−
√

1+4ζ(−1+P
2P

1−
√

1+4ζ(−1+P
2P

NB NB B NB NB NUM −1+α+
√

1+α2−2α+3αP
3αP

−1+α+
√

1+α2−2α+3αP
3αP

NB B NB NB NB NUM 1
P −

P2

[3(M+N)]
1
3
+

(M+N)
1
3

3
2
3 αp3

P
3 +

αP6

[3(M+N)]
2
3
+

(M+N)
2
3

3
4
3 αP4

2P
1

NB B NB B NB NUM P−ζ+pζ
P2 1

B NB NB NB B NB NUM 1 − β 1 − β

B NB NB NB NB NB NUM 1
2P 1 − β

NB NB NB NB B NB NUM 1
2P 1

NB NB NB NB NB NB NUM 1
2P

α+4P
8P

NB NB NB NB NB B NUM 1
P

1
2

NB NB NB B B B NUM 1
P 1

B NB NB NB NB B NUM 1
P 1 − β

NB NB NB B NB B NUM 1
P

1
P

B B NB NB NB NB NUM P(1−β+ζ)−ζ
(1−β)P2 1 − β

NB B NB B NB NB NUM
1−
√

1−4ζ(−1+P
2P

1−
√

1−4ζ(−1+P
2P

NB B NB B NB NB NUM
1−
√

1+4ζ(−1+P
2P

1−
√

1+4ζ(−1+P
2P

NB NB NB B NB NB NUM −1+α+
√

1+α2−2α+3αP
3αP

−1+α+
√

1+α2−2α+3αP
3αP

NB B NB NB NB NB NUM 1
P −

P2

[3(M+N)]
1
3
+

(M+N)
1
3

3
2
3 αp3

P
3 +

αP6

[3(M+N)]
2
3
+

(M+N)
2
3

3
4
3 αP4

2P
1

NB B NB NB B NB NUM P−ζ+pζ
P2 1

NB NB B NB NB B NUM 1
P

1−T
P

NB NB B B NB NB NUM
√

1−T
P

√
1−T
P

NB NB B NB B NB NUM
√

1−T
P2 1

B NB B NB NB NB NUM T−1
(β−1)P2 1 − β

NB NB B NB B NB NUM
√

1−T
P2 1

NB B B NB NB NB NUM T−1
P[T−1+ζ(P−1)]

1−T+ζ(1−P)
P

NB NB B NB NB NB NUM −3( 2
3 )
αP5+3( 1

3 )(J−K)
2
3

3αP3(J−K)
1
3

6+ 6∗3
1
3 αP5

(J−K)
2
3
+

2∗3
( 2

3 )
(J−K)

2
3

αP5

36
2

Table 10: Summary Results

1M = 9α2ζ(P − 1)P6, N =
√

3α3P12(27α(P − 1)2ζ2 + P3)
2J =

√
3α3P12(P3 + 27α(T − 1)2), K = 9α2P6(T − 1)
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