
DYNAMICS OF FINITE-DENSITY INERTIAL
PARTICLES IN AN ARBITRARY FLOW

A Thesis

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

by

Anirban Bhattacharjee

August 2021



© August 2021 Anirban Bhattacharjee

ALL RIGHTS RESERVED



ABSTRACT

Anirban Bhattacharjee

The main focus of this thesis is the dynamics of finite-density inertial parti-

cles in an arbitrary flow. We derive a closed-form solution for the Lyapunov

exponent, which measures the rate of change of volume of a cloud of particles.

At an infinite density ratio, it has been shown [1] that much of the clustering

phenomenon in 3D turbulence can be explained using a 1D canonical flow os-

cillating at a single frequency. We extend this analysis to study the dynamics of

various particles, namely light, heavy and neutrally buoyant for a wide range

of flows. We know that clustering is negligible at small and large Stokes num-

ber and substantial at Stokes number ≈ O(1). We analytically explain this non-

monotonic behavior for finite-density particles heavier than the fluid and study

the effect of density ratio for such particles in turbulence. We also observe a

lower bound of -1/2 on the Lyapunov exponent normalized by the particle re-

laxation time, but there is no such upper bound. We further observe that neu-

trally buoyant particles disperse in a strongly straining flow. Finally, we explain

the effect of the Basset term on our analysis.

This thesis also contributes to developing an efficient solver called complex-

valued Stokes Solver (SCVS) for cardiovascular flows, which solves the un-

steady Stokes equation in the spectral domain instead of solving it in the time

domain. SCVS shows an order of magnitude improvement in accuracy and two

orders of magnitude improvement in cost compared to a standard stabilized fi-

nite element solver called RBVMS. For a more direct one-to-one comparison, we

also compare SCVS against an in-house time-based Stokes solver, which uses



the same shape functions, where we see three orders of magnitude improve-

ment in the cost and improved accuracy. This improvement in performance

stems from the transformation of the governing differential equations into a

system of boundary value problems, where only a few modes need to be solved

instead of thousands of time steps.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The dynamics of particles in arbitrary flows has been a keen area of interest

for decades since not only is it ubiquitous [3, 4], but also a better understand-

ing of it improves the design of several applications and helps to identify new

ones. The study of droplet coalescence in clouds [5, 6, 7] can improve weather

forecasting tools. The study of planktons [4] and marine snow in the oceans

[8] is very important since they play a major role in sustaining food webs and

global biochemical cycles, mainly the carbon cycle. It also has many other ap-

plications in science and engineering, ranging from pharmaceutical to energy.

[9, 10, 11, 12]

One interesting phenomenon often observed is the formation of regions of

high concentration by inertial particles in arbitrary flows. This is known as par-

ticle clustering [13], preferential concentration [14] or segregation [15]. We focus

on an ensemble of particles which we call a cloud. Our goal is to develop a sim-

ple analytical model that predicts what happens to the cloud of particles at dif-

ferent values of particle-to-fluid density ratio and Stokes number. Subjected to a

background flow, the cloud can either grow in size, which we call dispersion or

shrink over time, which we call clustering. Although there has been extensive

numerical and experimental research on these phenomena in the past, there is

no analytical model to predict the dynamics of a cloud of finite-density inertial

particles. The first part of the thesis addresses that.
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In the second part of the thesis, our focus is on developing an efficient

Stokes solver for cardiovascular flows. Developing efficient modeling tools is

paramount since heart-related conditions are the leading cause of death world-

wide [16]. In many cases, the simulation of blood flow needs to be fast and

cost-effective since time is an important constraint. One needs to remember

that cardiovascular modeling has to be often done in complex geometries. One

important application, keeping in mind all these requirements is treating pa-

tients with congenital heart defects who need to be operated on immediately

after birth [17]. Also, performing shape optimization and uncertainty quantifi-

cation for surgery related purposes require hundreds of simulations [18]. In

industries, where there is a constraint on the access to computational resources

due to cost considerations [19], there arises a need to build computationally ef-

ficient techniques. We try to develop such a technique and see how it reduces

the CPU usage and improves the accuracy.

1.2 Previous Work

The effect of the Stokes number and the flow Reynolds number on particle

dynamics has been extensively studied, which include not only experimental

research [10, 20, 21, 22, 23, 24] but also numerical [25, 26, 27, 15, 28, 29] and an-

alytical predictions [30, 13, 31, 32, 33]. It has been shown in these papers that

there is minimum clustering at small Stokes numbers, where the particles act

as fluid tracers and simply move along the streamlines of the flow. In contrast,

at very large Stokes number, the particle motion is uncorrelated with the back-

ground flow and they disperse out ballistically due to their large inertia. Maxi-

mum clustering occurs at Stokes number ≈ O(1). Although this non-monotonic
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behavior has been observed experimentally and validated numerically, it has

not been explained analytically. Recently, this phenomenon has been analyti-

cally explained in [1], where the particle-to-fluid density ratio was assumed to

be infinitely large. We will call the analysis IDR, where IDR stands for Infinite

Density Ratio.

One of the first analytical relations of particle clustering was derived by [32]

and [33]. We will call this analysis RM (which stands for Robinson–Maxey)

throughout the rest of our work and this is derived by assuming that the accel-

eration of the particles is roughly the same as that of the fluid. We will show

later that the amount of clustering or dispersion which is quantified by a pa-

rameter C (which is defined in Section 2.1) equals another parameter, Q, which

is half the Q-criterion defined in [34, 35] used for the identification of vortical

regions. RM predicts that C changes linearly with Q unbounded which is not

consistent with experimental observations. The drawback of this analysis stems

from its central assumption that the acceleration of the particles is the same as

that of the background flow. This assumption is only valid when the particle

inertia is very small and hence it restricts the validity of RM to small Stokes

number.

For Stokes number ≈ O(1) or higher, IDR however explains the non-

monotonic behavior analytically. The central assumption in IDR is that the

particle-to-fluid density ratio is infinite and it only takes the drag force into

account. It also makes use of a 1D canonical flow with a single frequency of

oscillation to explain the aforementioned behavior, which we will talk about

in greater detail later. There is no analytical study however on the dynamics

of finite-density inertial particles and we plan to extend this canonical flow to
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investigate the more realistic scenario of finite particle-to-fluid density ratio.

Next, we shift our focus to some of the previous work on solvers for cardio-

vascular flows. Although there is a wide variety of available numerical methods

for simulating cardiovascular flows, we focus mainly on finite element tech-

niques to demonstrate the relative accuracy and cost of our proposed technique

because first, they are widely adopted [36] and second, our technique is also

based on finite element modeling. The Residual-based variational multiscale

method (RBVMS) is a standard finite element based time-dependent solver,

which uses the concept of the streamwise upwind Petrov-Galerkin (SUPG) tech-

nique [37, 38, 39]. For time-dependent solvers like the RBVMS, one needs to

discretize the differential equations, i.e. divide the entire time domain of the

problem into small time steps. These time steps should be small enough to

ensure that the solver is not only accurate but is also stable. Hence the cost de-

pends on the size of these time steps. The cost gets increased further when one

needs to perform many simulations to get a cycle-to-cycle convergence, given

the transient nature of the solution.

To get rid of these issues, one can transform the whole problem from the

time domain to the frequency domain using Fourier transformation. This was

the main subject of Chenwei Meng’s thesis [2]. Instead of now solving for thou-

sands of time steps, one needs to solve multiple boundary problems, each cor-

responding to one mode. For cardiovascular flows, it was shown that the num-

ber of modes required to get an accurate solution is significantly less (less than

ten) than the number of time steps required to solve a single cardiac cycle (in

the order of thousands [40] ). Thus, the accuracy or the stability of the scheme

no longer depends on the step size since the technique gets rid of the time-
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integration scheme completely. We need not worry about the cycle-to-cycle con-

vergence as well since we are solving boundary value problems and that does

not include the transient part of the solution. This technique shows a significant

improvement in the accuracy and cost compared to RBVMS.

In this study, we compare the performance of this spectral solver with the

Mixed-Shape Stokes (MSS) solver which we will talk about in greater detail

later. The MSS is tailored to be closer to the proposed technique for a more

apple-to-apple comparison.

1.3 Overview

The objective of chapter 2 is to study the effect of particle-to-fluid density

ratio and the Stokes number on clustering. We start with the governing differ-

ential equations and derive a relation for the Lyapunov exponent. Then, we use

a simple model to verify that our analytical results agree well with the reference

numerical results. Next, we show that this analysis is also valid at small Stokes

number (RM) and infinite particle-to-fluid density ratios (IDR). We explain the

non-monotonic behavior of clustering for particles in turbulence but restrict it

to heavy particles. Then we derive the results for extremely light and neutrally

buoyant particles. Finally, we look at what happens if we include the Basset

history term, a term that we have neglected otherwise.

In chapter 3, we first introduce the spectral algorithm, which we call

complex-valued Stokes solver (SCVS). Next, we compare the performance of

SCVS against a standard RBVMS solver for oscillating flows in a 3D pipe. We

also compare SCVS to an in-house MSS solver before drawing conclusions. Fi-
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nally, we present the preliminary results on an inherently parallel GMRES in

chapter 4.
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CHAPTER 2

DYNAMICS OF FINITE-DENSITY PARTICLES

2.1 Introduction

Particle dynamics is determined by many parameters such as the particle

size, the particle-to-fluid density ratio, thermal fluctuations, the anisotropy of

the background flow, the Reynolds number, and the Froude number. To ensure

that our analysis is tractable, we ignore those parameters that have a negligi-

ble effect on the dynamics. The thermal fluctuations are neglected because the

Knudsen number is small. Similarly, the body forces are assumed to be too small

to have any significant effect since the Froude number is large. We also assume

that the flow is isotropic. Further, we neglect the effect of particles on flow and

particle-particle interactions because we assume that the volume fraction is low.

We are interested in the Batchelor regime, where the particles are smaller than

the Kolmogorov length scale, η. With the assumptions above, the dynamics

depend on the Stokes number, St and the particle-to-fluid density ratio, ρp/ρ f ,

where ρp and ρ f are the particle and fluid densities, respectively.

It was shown in IDR that the motion of the particles in the cloud in three

dimensions can be analyzed as three one-dimensional problems. The velocity

gradient tensor of the cloud has three eigendirections. The deformation of the

cloud can be characterized by the rate of expansion or contraction along these

eigendirections. Therefore, we consider two particles along an eigendirection

with separation distance, x∗ at any given time, t∗. The dynamics of each particle

is governed by the Maxey–Riley equation [41] in one dimension, which is given

7



below:

mp
dv?

dt?
= 3πµdp(u? − v?) + m f

Du?

Dt?
+

m f

2

(
du?

dt?
−

dv?

dt?

)
, (2.1)

where mp and m f are the masses of the particle and the displaced fluid, respec-

tively, u? is the dimensional fluid velocity at the particle location, v? = dx∗/dt∗

is the dimensional velocity of the particle, dp is the particle diameter, and µ is

the fluid viscosity. D/Dt∗ = ∂/∂t∗ + u∗∂/∂x∗ is the Lagrangian derivative along

the trajectory of a fluid element. Similarly, d/dt∗ = ∂/∂t∗ + v∗∂/∂x∗ is the La-

grangian derivative along particle trajectory. The first term on the right-hand

side of Eq. (2.1), 3πµdp (u? − v?) is the Stokes drag. The other two terms, i.e.,

m f
Du?
Dt? and m f

2 ( d
dt? −

dv?
dt? ), which we call the pressure term and the added mass

term arise due to the finite value of particle-to-fluid density ratio. Eq. (2.1) can

be simplified to

dv?

dt?
=

6πµdp

(2mp + m f )
(u? − v?) +

m f

(2mp + m f )

(
2

Du?

Dt?
+

du?

dt?

)
. (2.2)

The volume of each particle and the displaced fluid is V = πd3
p/6. The particle

density is ρp while the fluid density is ρ f . We substitute mp = ρpV and m f = ρ f V

in Eq (2.2) to get
dv?

dt?
=

u? − v?

τ
+
β

3

(
2

Du?

Dt?
+

du?

dt?

)
, (2.3)

where β = 3ρ f /(2ρp + ρ f ) is the added mass factor and τ = (ρ f + 2ρp) d2
p/36µ is

the particle relaxation time. The time scale used to non-dimensionalize Eq. (2.3)

is τ. To non-dimensionalize u? and v?, we use dp/τ. The non-dimensionalized

form of Eq. (2.3) is given by

ẍ = u − ẋ +
β

3

(
2

Du
Dt

+
du
dt

)
, (2.4)

where u, x and t are the non-dimensional terms corresponding to u∗, x∗ and t∗.

As discussed before, RM was the first analytical study to be carried out on

clustering where the main assumption was that the acceleration of the particles

8



is roughly the same as that of the background flow, or

ẍ =
Du
Dt

, (2.5)

where x and u are vectors since RM analyzed the problem in three dimensions.

It also assumed that the particle-to-fluid density ratio is infinite, or β = 0. The

non-dimensionalized Maxey–Riley equation in three dimensions thus becomes

ẍ = u − ẋ. (2.6)

Another assumption used in RM is ∇.u = 0, where (•) indicates the Lagrangian

time-averaging along the trajectory of the particle. This means physically that

the flow is assumed to be incompressible along the particle trajectory. Using

these assumptions, we get

C := ∇.ẋ = ∇.u − ∇.ẍ = ∇.u − ∇.
(
Du
Dt

)
, (2.7)

where C is the rate of contraction or expansion of the cloud. We know that

D/Dt = ∂/∂t + u.∇ is the Lagrangian derivative along the trajectory of a fluid

element. We also know that ∇.u = 0. Hence, Eq. (2.7) simplifies to

C := −
∂(∇.u)
∂t

− ∇.(u.∇u). (2.8)

We neglect the ∇2 term obtained from the simplification of Eq. (2.8) since the

flow field is linear. We use the assumption ∇.u = 0 again to get

C := −
∂ui

∂x j

∂u j

∂xi
= −||Ω||2 − ||S||2 = Q, (2.9)

where Ω and S are the dimensionless rotation-rate and strain-rate tensors re-

spectively, and Q is half of the Q-criterion defined in [34, 35] used to identify

vortical regions. Q > 0 and Q < 0 indicates the dominance of rotation-rate and

strain-rate respectively. According to Eq. (2.9), the amount of clustering or dis-

persion, C, is linearly related to Q. C > 0 indicates dispersion, when particles
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move away from each other over time, whereas for C < 0, the reverse happens

and it is called clustering. The drawback of RM stems from its central assump-

tion that the acceleration of the particles is the same as that of the background

flow, which restricts the accuracy of RM to small Stokes number.

For turbulent flows, the Kolmogorov time scale, τη is often used as the flow

time scale and is given by

τη =

(
ν

ε

)1/2
, (2.10)

where ν is the kinematic viscosity, and ε is the average rate of dissipation of

turbulence kinetic energy per unit mass of the fluid. Similarly, the Kolmogorov

length scale, η is used as the corresponding flow length scale, where η is given

by

η =

(
ν3

ε

)1/4

. (2.11)

Eliminating ε from Eqs. (2.10) and (2.11) we get

τη =
η2

ν
. (2.12)

The kinematic viscosity, ν is related to the dynamic viscosity, µ as ν = µ/ρ f . The

Stokes number, St which characterizes the inertia of the particles is the ratio of

the particle relaxation time and the Kolmogorov time scale, τη. So we have

St :=
τ

τη
=

(ρ f + 2ρp) d2
p ν

36µ η2 =
1

18

(
ρp

ρ f
+

1
2

) (
dp

η

)2

. (2.13)

Since we are interested in the Batchelor regime where dp < η, we have an upper

bound on the range of Stokes numbers where our analysis is valid; St < (ρp/ρ f +

1/2)/18. The smaller the density ratio, the lesser the upper bound on the Stokes

number is. We will analyze the clustering of heavy particles (β < 1) in turbulence

using these ideas later in Section 2.3.4.
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In this chapter, we first derive a closed-form solution for the degree of clus-

tering or dispersion from Eq. (2.1). Then, we will try to derive some key insights

on the particle dynamics for different values of density ratios and Stokes num-

ber. Finally, we study the effect of the Basset term on clustering, which arise due

to the boundary layer on the particles.

2.2 Analytical Derivation

We consider four particles at positions X and X +δXi, with i = 1, 2, 3 at t = 0 as

shown in Figure 1. These four particles constitute a cloud, the volume of which

changes with time. We assume that the velocity field of the fluid is linear. Even

if the flow is chaotic, the particles are smaller than the Kolmogorov length scale.

The trajectory of a particle initially located at X + δX is given by

xi(X + δX, t) = xi(X, t) +
∂xi

∂X j
δX j. (2.14)

The kinematics of the cloud is fully characterized by Eq. (2.14) and the linear

deformation tensor, Ji j such that: Ji j = ∂xi
∂X j

. The size of the cloud, in 3D is char-

acterized by its volume, which is denoted by V(t) and given by

V(t) = det(xi(X + δX j, t) − xi(X, t)). (2.15)

Clearly, V(0) = det(δX j
i ) . We are interested in finding out V(t)/V(0) which is a

measure of the change of the volume of the cloud. We use Eq. (2.14), Eq. (2.15)

and the definition of J to express V(t)/V(0) in terms of J:

V(t)/V(0) = det(J(t)). (2.16)

We define the finite time exponential rate of change of the volume, Ct as

V(t)/V(0) = exp(Ctt). (2.17)
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Figure 2.1: Schematic of a cloud of four particle as it moves from X and X + δX j,
j = 1, 2, 3 at t = 0 to x(X, t) and x(X + δX j, t) at a given time. The relative motion is
characterized by the tensor J.

Combining Eq. (2.16) and Eq. (2.17), we get

Ct =
1
t
ln[det(J(t))]. (2.18)

At t −→ ∞, it can be shown that Ct −→ C, [1] which was defined earlier in Eq. (2.9).

From a Lagrangian point of view, C is the exponential rate of change of volume

after a sufficiently long time. As discussed before, if real (C) > 0, then the phe-

nomenon is called dispersion and the size of the particle cloud increases with

time. If real (C) < 0, then the size decreases with time and the particles come

closer, which is known as clustering. C can be complex, where the imaginary

part indicates that one of the particles of the tetrahedron shown in Figure 1 has

crossed the plane formed by the other three. We call this phenomenon particle

crossover.

There is a velocity gradient tensor associated with the cloud, and this tensor

has three eigenvectors. These eigenvectors are directions along which the par-

ticle cloud experiences pure expansion or contraction. We assume that the rate

of expansion or contraction of the cloud is the same in each direction. Hence

12



instead of analyzing the whole cloud, we shift our focus to a pair of particles

on one of these directions and see if the distance between them increases or

decreases over time. Hence, the 3D problem can be transformed into three iden-

tically similar independent 1D problems. In 1D, Eq. (2.4) becomes

ẍ = u − ẋ + β
∂u
∂t

+
β

3

(
2u
∂u
∂x

+ ẋ
∂u
∂x

)
. (2.19)

Differentiating Eq. (2.19) by X on both sides, we get

J̈ =
∂u
∂x

J − J̇ + β
∂2u
∂t∂x

J +
1
3
β
∂u
∂x

(
2
∂u
∂x

J + J̇
)

+
1
3
β (2u + ẋ)

∂2u
∂x2 J, (2.20)

where J=∂x/∂X. J is a second order tensor in 3D and becomes a scalar in 1D. The

volume of the cloud at any time compared to the initial volume was given by det

(J) in 3D. In 1D, J(t) equals the ratio of the distance between two particles at any

given time and their initial separation distance. Now, ∂u/∂X = (∂u/∂x) (∂x/∂X)

or ∂u/∂X = (∂u/∂x) J by chain rule. Also, ∂2u/∂x2 = 0 since the velocity field is

linear. Eq. (2.20) thus becomes

J̈ =
∂u
∂x

J − J̇ + β
∂2u
∂t∂x

J +
1
3
β
∂u
∂x

(
2
∂u
∂x

J + J̇
)
. (2.21)

The rate of expansion or contraction along any eigendirection is known as the

Lyapunov exponent, λ. Since we have transformed the initial problem into n

independent 1D problems, the exponential rate of change of the cloud size, C, is

related to λ by the relation:

C = nλ, (2.22)

where n is the number of spatial dimensions in the problem. Eq. (2.18) in 1D

then can be rewritten as λt = 1
t ln(J(t)) and λt −→ λ as t −→ ∞. Since ∂u/∂x is

a function of time, Eq. (2.21) is not a constant coefficient ordinary differential

equation. To circumvent this problem, we use F = J̇/J where F is the rate of

change of volume normalized by the volume of the cloud in 3D. The 1D analogy

13



would be the rate of change of distance between two particles normalized by the

distance between the two particles. Since FJ = J̇, we get

FJ̇ + ḞJ = J̈, (2.23)

or F2J + ḞJ = J̈. Substituting for J̇ and J̈ in Eq. (2.21), we get

Ḟ + F2 + F =
∂u
∂x

+ β
∂

∂t

(
∂u
∂x

)
+

1
3
β
∂u
∂x

(
2
∂u
∂x

+ F
)
. (2.24)

To proceed further, we recall the assumption that the velocity field of the

background flow is linear in space, which means that the velocity gradient is a

function of time alone (and not space), therefore we can represent it as a set of

harmonic functions using Fourier transformation. So, the velocity gradient can

be represented as:
∂u
∂x

=
∑
ω

G(ω)eiωt, (2.25)

where

G(ω) =
1

2π

ˆ ∞
−∞

∇u(t)e−iωtdt. (2.26)

Here, ω varies from −∞ to ∞ and ω = 2πk/T where k ∈ Z and T −→ ∞ is the

sampling period. Further, we express F as follows:

F = λ +
∑
ω

ψ(ω)eiωt. (2.27)

At long times, the rate of change of the distance normalized by the initial dis-

tance becomes constant, and is equal to the Lyapunov exponent, λ. ψ(ω) is the

response of F to G, and is separated from the steady response, λ. Substituting

for F and the velocity gradient in Eq. (2.24), we get

λ2 + λ +
∑
ω

[
(1 + 2λ + iω)ψ(ω) − (1 +

1
3
βλ + iβω)G(ω)

]
eiωt

+
∑
ω

∑
ω′

[
ψ(ω)ψ(ω′) −

2
3
βG(ω)G(ω′) −

1
3
βG(ω)ψ(ω′)

]
ei(ω+ω′)t = 0.

(2.28)
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The higher-order terms (beyond eiωt) can be neglected. Also, ψ(ω) and ψ(ω′) are

only correlated when ω = −ω′. The same holds for G(ω) G(ω′), and G(ω) ψ(ω′)

and Eq. (2.28) thus becomes

λ2 + λ +
∑
ω

[
(1 + 2λ + iω)ψ(ω) − (1 +

1
3
βλ + iβω)G(ω)

]
eiωt

+
∑
ω

[
ψ(ω)ψ(−ω) −

2
3
βG(ω)G(−ω) −

1
3
βG(ω)ψ(−ω)

]
= 0.

(2.29)

For Eq. (2.29) to be true,

λ2 + λ +
∑
ω

ψ(ω)ψ(−ω) =
1
3
β
∑
ω

G(ω)
[
2G(−ω) + ψ(−ω)

]
, (2.30)

and

ψ(ω) = (1 + 2λ + iω)−1(1 +
1
3
βλ + iβω)G(ω). (2.31)

From Eq. (2.30) and Eq. (2.31), we get

λ2 + λ +
∑
ω

(
(1 + βλ/3)2 + (βω)2

(1 + 2λ)2 + ω2 −
1
3
β(1 + 2λ)(1 + βλ/3) + (βω)2

(1 + 2λ)2 + ω2 −
2
3
β

)
G(ω)G(−ω) = 0.

(2.32)

Using the convolution theorem, the summation term can be expressed as a con-

tinuous integral. Eq. (2.32) then becomes

λ2 + λ −

ˆ ∞
−∞

1
9

(
(3 − βλ − β)(3 + βλ) + 6(βω)2

(1 + 2λ)2 + ω2 − 6β
)
ρ̃Qdω = 0, (2.33)

where ρ̃Q in 1D is defined as follows:

ρ̃Q = −
1

2π

ˆ ∞
−∞

∂u(t′)
∂x

∂u(t + t′)
∂x

e−iωtdt. (2.34)

Extending Eq. (2.33) to n dimensions, we get

λ2 + λ −
1
n

ˆ ∞
−∞

1
9

(
(3 − βλ − β)(3 + βλ) + 6(βω)2

(1 + 2λ)2 + ω2 − 6β
)
ρ̃Qdω = 0. (2.35)

Eq. (2.35) is an integral equation. To evaluate the integral, we need to know

the value of λ, which is the solution itself. Hence further simplification of the
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integral is required, as discussed in Section 2.3. We note that RM is a special

form of Eq. (2.35) when |λ| << 1, β = 0 and ω ≈ 0 since it is valid only for small

values of Stokes number and infinite density ratio. The integral in Eq. (2.35) for

RM reduces to ||Ω||2 − ||S||2, which is the same as Eq. (2.9). A change in time scale

would affect ω, λ and ρ̃Q, thereby changing the equation above. For example,

instead of the particle relaxation time, we can choose the Kolmogorov time scale

as the time scale for the analysis, the details of which are provided in Section

2.3.4.

2.3 One Dimensional Unimodal Excitation

We consider a 1D problem with the background flow having a single fre-

quency. IDR shows that this simple 1D model accurately predicts much of the

clustering phenomenon in turbulence. We use this model for the more gen-

eral case of finite particle-to-fluid density ratio. Later on, we show that this 1D

problem can be also used for flows in higher dimensions. For the 1D flow, the

velocity gradient is defined as:

∂u
∂x

=
√
−2φ cos(ωt). (2.36)

The factor of -2 and the square root have been used to allow for a one-to-one

correspondence between ρ̃Q and φ. u is the background flow around the particles

located on the x-axis. φ can take complex values, the meaning of which will be

discussed later. For now, we assume that φ is real. When φ < 0, the velocity

gradient coefficient, i.e
√
−2φ, is real. This represents straining flow since u is

of the form: u = Axcos(ωt), which means that u is real and the particles move

towards or away along a line. φ > 0 however is not easy to visualize in 1D. One
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can imagine the line to have a rotational motion with the particles moving along

concentric arcs. We henceforth call it the rotating regime. The velocity gradient,

in this case, is purely imaginary.

If we imagine two particles separated by ∆x, the difference in velocities be-

tween them is ∆u, where ∆u = (∂u/∂x)∆x. Since u is a linear function of x, (∂u/∂x)

is independent of ∆x. ∆u or the rate of change of separation between the parti-

cles at that instant scales with the separation distance, ∆x. Hence, the separation

distance varies exponentially with time, and we define the Lyapunov exponent,

λ, as the exponential rate at which the particles converge towards or diverge

away from each other.

We proceed by simplifying Eq. (2.35). The canonical flow model has one

single frequency, say ω′. Hence we have

ρ̃Q(ω′) = nφδ(ω − ω′). (2.37)

From Eq. (2.35) and Eq. (2.37), we get:

λ2 + λ −
1
9

(
(3 − βλ − β)(3 + βλ) + 6(βω)2

(1 + 2λ)2 + ω2 − 6β
)
φ = 0. (2.38)

Let γ = 1 + 2λ, which means that λ =
γ−1

2 . Substituting for λ, Eq. (2.38) becomes

γ4 − 2kγ2 − l = 0, (2.39)

where k = 1−ω2

2 − 1
18 (24 + β)βφ and l = ω2 + 1

9

[
(6 − β)2 + 24(β − 1)βω2

]
φ. This is a

second-order polynomial equation in γ2, the solution for which is

γ2 = k ±
√

k2 + l. (2.40)

When there is no flow (φ = 0), there should not be any clustering or disper-

sion, which means λ = 0 or γ = 1. This condition eliminates one solution for γ2.
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Imposing the condition λ = 0 or γ = 1 at φ = 0 again we get

λ = −
1
2

+
1
2

√
k +
√

k2 + l. (2.41)

Eq. (2.41) is a closed-form solution for the Lyapunov exponent. We observe the

following from Eq. (2.41):

1. The Lyapunov exponent, λ, depends on the oscillation amplitude, φ, the

added mass factor, β, and the oscillation frequency, ω. The real part of the

exponent signifies expansion or contraction. real(λ) < 0 implies clustering,

where the distance between two particles decreases with time, whereas

real(λ) > 0 implies dispersion, where the separation distance increases.

2. A non-zero value of imag (λ) indicates particle crossover, when the tetra-

hedral cloud collapses and flips. In the one-dimensional setting, imag(λ) ,

0 implies that the two particles have exchanged sides on the line.

3. Since the last term in Eq. (2.41) is always positive, the Lyapunov exponent

has a lower bound of −1/2 regardless of the particle-to-fluid density ratio.

There is no upper bound on the Lyapunov exponent. In other words, there

is a limit on how quickly the particles can come close to one another, but

particles can move away from one another unbounded.

4. All the equations derived so far are normalized by τ. Such a normaliza-

tion restricts the analysis to particles with the same diameter. In reality, we

encounter particles with different diameters in the same flow. To ensure

that we can carry out the analysis for all of them simultaneously, we nor-

malize the results by the Kolmogorov time-scale or the flow time scale, τη,

instead. We employ the subscript η to distinguish parameters that are nor-

malized by τη. Thus we have λ = St λη, ω = St ωη, and φ = St2 φη. Since φη
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remains the same for all the particles, a larger Stokes number corresponds

to a larger φ.

5. The parameter β is a function of the particle-to-fluid density ratio and

varies as β = 3/(2ρp/ρ f + 1). Therefore, when the particle is lighter than

the fluid, β > 1. For particles heavier than the fluid, β < 1. Special cases

include very heavy particles (ρp >> ρ f ) with β = 0, neutrally buoyant par-

ticles (ρp = ρ f ) with β = 1, and very light particles (ρp << ρ f ) with β = 3.

Similarly, φ > 0 and φ < 0 indicate the rotating and straining regimes,

respectively.

6. In the rotating regime, λ can never be complex if ω < 5.5/
√

(6) ≈ 2.25.

Beyond this limit, the higher the value of ω, the smaller is the value of φ

at which λ becomes complex.Therefore, particle crossover does not take

place in the rotating regime unless φ or ω is very large.

7. λ = 0 for β = 1 unless φ < −9(1 +ω2)/25. In other words, neutrally buoyant

particles perfectly mimic the background flow, provided that the flow is

not highly straining or oscillating. Similarly, λ = 0 for φ = 0 or no-flow.

This in fact is a condition which we used while deriving the closed-form

solution for λ.

8. Finally, particle crossover takes place when either
√

k +
√

k2 + l < 0 or
√

k2 + l < 0. For chaotic flows, ω ≈ 0, it can be shown that particle crossover

only takes place for dense particles in a straining flow.
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2.3.1 Agreement of the present analysis with IDR and RM

Our present analysis is a more general form of IDR and RM. IDR assumes

that the particle-to-fluid density ratio is infinite, or in other words ρp/ρ f −→ ∞ or

β = 0. So Eq. (2.41) in our analysis reduces to:

λ = −
1
2

+
1
4

√
2(1 − ω2) + 2

√
(1 + ω)2 + 16φ . (2.42)

Similarly, Eq (2.35), which relates clustering or dispersion to ρ̃Q, reduces to:

λ2 + λ −
1
n

ˆ ∞
−∞

ρ̃Q

(1 + 2λ)2 + ω2 dω = 0. (2.43)

Eqs. (2.42) and (2.43) had been proved in IDR, hence there is an agreement with

our analysis when the density ratio goes to infinity and the analysis in IDR.

Similarly, the central assumption in RM is that the particle acceleration is

roughly equal to the fluid acceleration. Like IDR, RM also assumes that β = 0.

We have used these assumptions to derive Eq. (2.9). We also use Eqs. (2.22)

and (2.37) to show that RM can be simplified as follows:

λ = φ. (2.44)

In our analysis, Eq. (2.41) at the limits of φ << 1 and ω ≈ 0 becomes the same as

Eq. (2.44).

Thus, to summarize, in our analysis we obtain the Lyapunov exponent, λ, as

a function of β, φ, and ω. It agrees with the result obtained in IDR at the limit of

infinite density ratio, and with the result in RM at small values of φ.
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2.3.2 Numerical Validation

The rate of clustering or dispersion at long times is related to x as C =

limt→∞ ln [x(t + T )/x(t)]. Hence, one way to numerically validate our results is

to compute the ratio x(t + T )/x(t) from Eqs. (2.4) and (2.36) as t −→ ∞, where T is

the period of oscillation. However, x grows exponentially with time, leading to

an ill-conditioned system. To avoid this problem, instead of the brute-force ap-

proach, we solve the eigenvalue problem for one cycle. This method also avoids

the large computational error incurred otherwise.

For the 1D canonical flow discussed above, ∂u/∂x is a harmonic function with

period T . Let us now define a 2 × 2 transformation matrix, A, which satisfies:x(T )

v(T )

 = A

x(0)

v(0)

 . (2.45)

For the 1D modal problem, we select 2 linearly independent initial condi-

tions for [x v]T , and the time evolution is calculated based on Eq. (2.4) in each

case. A good choice for [x(0) v(0)]T is [1 0]T and [0 1]T respectively. Evaluating

[x(T ) v(T )]T twice gives us both columns, and hence, the matrix A. A has two

eigenvalues, which correspond to how [x v]T changes after one cycle compared

to the initial value. Only the eigenvalue with the larger magnitude is impor-

tant, since the other one decays at long times. This is the Lyapunov exponent

that we have already analytically derived before. We have used the second-

order Adams–Bashforth method to evaluate how [x v]T evolves in time using

the Maxey–Riley Equation. The time step that we have used is 1 ×10−5π/ω, and

it produces sufficiently small errors.

In this study, particle dynamics depends on three parameters in the strain-

21



φ

β

−1

−0.5

0

0.5

1

0 1 2 3

(a) Reference

β
0 1 2 3

−0.5
−0.4
−0.3
−0.2
−0.1
0
0.1
0.2
0.3
0.4
0.5

real(λ)(b) Present Analysis

Figure 2.2: The rate of contraction or expansion, real (λ) obtained (a) numerically and
(b) analytically as a function of the oscillation amplitude, φ and the added mass factor,
β. The oscillation frequency is assumed to be very small (ω ≈ 0).

ing and rotating regimes, namely the velocity gradient,
√
−2φ, the frequency of

oscillation, ω, and the added mass factor, β. To get a better understanding, we

let one of the parameters be constant and see how the rate of expansion or con-

traction varies as a function of the other two parameters obtained using both the

numerical technique discussed above and the analytical derivation, Eq. (2.41).

In Figure 2.2, the frequency of oscillation is kept very small (ω = 0.01) so that

any further decrease in ω would not affect the results. Our entire domain is

divided into four subdomains where β < 1 and β > 1 indicate heavy and light

particles, respectively. Similarly, φ < 0 and φ > 0 indicate the straining and

rotating regime, respectively. We observe that in the rotating regime (φ > 0),

only dispersion is observed for heavy particles (β < 1), and only clustering is

observed for lighter particles (β > 1). This is intuitive since in rotating flows,

heavy particles tend to move away and light particles move towards the center

of rotation. In the straining regime (φ < 0), there can be clustering or dispersion

for heavy particles depending on the velocity gradient and the added mass fac-

tor. For neutrally buoyant particles (β = 1), we observe that beyond a certain
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Figure 2.3: The rate of contraction or expansion, real (λ) normalized by the oscillation
amplitude, φ as a function of the added mass factor, β and the oscillation frequency, ω
obtained (a) using numerical integration and (b) analytical prediction. φ is assumed to
be very small (φ ≈ 0).

φ in the straining regime, particle dispersion takes place as predicted. For light

particles, only dispersion is observed in the straining regime.

In Figure 2.3, φ is considered to be very small (φ <<1) and the Lyapunov

exponent normalized by φ is evaluated as a function of the added mass factor

and the frequency of oscillation. For φ ≈ 0, Eq. (2.41) can be expressed as a linear

function of φ by the following expression:

λ

φ
= (1 − β)

(1 − 2
3βω

2)
1 + ω2 . (2.46)

From Eq. (2.46), we infer that the Lyapunov exponent can be zero when ei-

ther the added mass factor, β is unity, or when ω2 = 3/2β. This means that for

neutrally buoyant particles and the curve ω2 = 3/2β, there is no clustering and

dispersion. We can see in Figure 2.3 that the dashed curve (ω2 = 3/2β) and the

line β = 1 demarcate the clustering and dispersion regimes. For dense parti-

cles, we observe dispersion at smaller frequencies and clustering beyond the

ω2 = 3/2β curve. For light particles, the opposite is observed. Overall, there is a
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very good match between the analytical and numerical results.

2.3.3 Implication on 3D flows

Our earlier discussion assumed a single frequency of oscillation and a real

value of φ for the background flow, as described in Eq. (2.36). The question that

automatically follows is whether we can extend this 1D model to 3D flows. To

answer this, we will use the same argument we used while deriving an expres-

sion for the Lyapunov exponent: particle clustering in 3D can be broken down

into three identical but independent 1D problems. If we have a particle that is

located in a particular eigendirection, it will not be influenced by the flow in

the other two eigendirections. Our initial 1D formulation with real φ is not suf-

ficient to describe 3D flows. We need to re-evaluate the domain of φ to make

our formulation more generic. To help this discussion, we use the fact that the

velocity gradient tensor, ∇u has three eigenvalues in 3D and two eigenvalues in

2D. In 2D, we denote the eigenvalues be λu
1 and λu

2 (the superscript u is used to

distinguish it from the Lyapunov exponent). For 2D and 3D flows, the eigen-

values can be complex. Also, due to the continuity equation, the sum of the

eigenvalues is zero. This is only possible when λu
1 and λu

2 are both real or are

both imaginary, with one value being the opposite sign of the other. This means

to characterize 2D flows, φ can now take both positive and negative real values.

φ < 0 characterizes straining flows, whereas φ > 0 characterizes rotating flows,

which we have already discussed.

For 3D flows, we denote the eigenvalues by λu
1, λu

2 and λu
3. All the eigenvalues

can be real in such a way that the sum is zero. However, there is a possibility
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Figure 2.4: The rate of contraction or expansion, real (λ) normalized by the oscillation
amplitude, |φ| as a function of the added mass factor, β and the oscillation amplitude
phase angle, θ obtained (a) using numerical integration and (b) analytical prediction.
Both |φ| and ω are assumed to be very small (φ ≈ 0) and (ω ≈ 0).

that there is a complex conjugate pair among the three. This means that we can

have a pair of eigenvalues with both real and imaginary parts. For example if

λu
1 = 2, then λu

2 = −1 + i and λu
3 = −1− i. Therefore, to extend our 1D model to 3D

we need to extend the domain of φ to include complex values. φ now has the

form φ = |φ| eiθ where θ is called the phase angle and can take any value between

0 to π for 3D flows and either 0 or π for 2D flows.

Physically, a non-zero value of θ implies that stretching (or contraction) and

rotation are occurring simultaneously, an example unique only to 3D flows

would be vortex stretching. The dynamics now depend on one more param-

eter, θ. Figure 2.4 shows the variation of the rate of expansion or contraction

normalized by the oscillation amplitude (real(λ)/φ) as a function of the phase

angle, θ, and the added mass factor, β, for small values of |φ| and ω. Analytically,

for such cases, Eq (2.41) simplifies to

real (λ)
|φ|

= (1 − β) cos(θ). (2.47)
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For particles denser than the fluid, particles tend to disperse away as θ is small.

This tendency decreases as the degree of rotation decreases and the degree of

straining associated with the flow increases. In other words, θ increases for a

given density ratio until particles begin to cluster. This transition takes place at

θ = π/2 as observed in Figure 2.4 and predicted in Eq. (2.47). When the value

of θ is further increased, we notice an increase in clustering. Lighter particles,

however, tend to cluster as θ is small. This tendency decreases as θ increases for

a given β till particles begin to disperse at θ = π/2. When the value of θ is further

increased, we notice an increase in dispersion. There is no clustering for θ = π/2

and β = 1. Overall, Figure 2.4 shows a good agreement between our analytical

predictions in Eq. (2.41) and the numerical calculations. This shows that our 1D

unimodal model can be extended to 3D flows.

2.3.4 Relevance of the 1D modal problem in predicting cluster-

ing for heavy particles (β < 1) in turbulence

The numerical results obtained so far use the Maxey–Riley equation normal-

ized by τ or Eq. (2.4). To make the analysis more general to study particles of

different sizes and densities in the same flow, we use τη or the flow time scale

for normalization. We also revisit the argument that we made earlier that there

is a one-to-one correspondence between our 1D model and 3D turbulence when

ωη ≈ 0. This is because one can argue that the frequency of oscillation is much

smaller than the inverse of the particle relaxation time for chaotic flows. After

renormalizing Eq. (2.41) with the flow scale, we get

λη = −
1

2St
+

1
2St

√
k′ +

√
k′2 + l′, (2.48)
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Figure 2.5: The rate of expansion or contraction, real (λη) as a function of the Stokes
number from (a) the present analysis and (b) reference computational results in the
rotating regime (φη = 1) and from (c) the present analysis and (d) reference
computational results in the straining regime (φη = −1) for density ratios, ρp/ρ f = 10
(blue), 50 (red) and 5000 (black).

where k’ = 1
2 −

1
18 (24 + β) βφη St2 and l’ = 1

9 (6 − β)2φηSt2. We see how the rate

of clustering or dispersion varies as a function of the Stokes number obtained

from the present analysis in Figure 2.5 (a) and the reference numerical results in

Figures 2.5 (b) for three different density ratios. It validates the fact that there is

negligible clustering at small and large values of the Stokes number.

Our analysis is valid up to a certain Stokes number, which we call the criti-

cal Stokes number, Stcr, beyond which the particle diameter is no longer smaller

than the Kolmogorov length scale, η. For large density ratios, we can investi-

gate both high and low values of Stokes numbers and show how the clustering
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Figure 2.6: The rate of expansion or contraction, real (λη) as a function of the
particle-to-fluid density ratio from the present analysis (red dashed) and reference
numerical results (black solid) (a) in the rotating (φη = 1) and (b) straining regime
(φη = −1) for different Stokes number.

phenomenon becomes negligible at both the limits. For smaller density ratios

however, Stcr decrease (for example, for density ratio = 50, the value of this limit

is 2.8). Therefore, we have restricted the analysis of this section to heavy parti-

cles only. Stcr is so small for light particles that we already know that clustering

would be a linear function of the Stokes number.

Our analysis captures the non-monotonic behavior for finite density ratios.

There is a good agreement between the present analysis and reference numer-

ical results as illustrated in Figures 2.5 (a) and 2.5 (b). As we increase St from

zero in the straining regime, real (λη) decreases monotonically till a minimum

value. Real (λη) increases with a further increase in the Stokes number. RM

failed to explain a lower bound on the real value of the Lyapunov exponent

since, according to Eq (2.9), clustering is unbounded. With a further increase

in the Stokes number, real (λη) become positive and particles begin to disperse.

In the rotating regime, real (λη) is always greater than zero. This means clus-

tering is not observed for any value of Stokes number in this regime. Both the

present analysis and the reference numerical results predict the same trend for
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finite density ratios.

The rate of clustering or dispersion as a function of particle-to-fluid density

ratio (instead of β since we restrict this subsection to heavy particles in turbu-

lence) is shown next for different Stokes numbers in the rotating regime in Fig-

ure 2.6 (a) and the straining regime in Figure 2.6 (b). For the rotating regime,

we observe that an increase in density ratio leads to an increase in dispersion in

the straining regime. This is because the outward force acting on the particles

increases with an increase in the density ratio. There is no clustering in the ro-

tating regime. This is obvious since we only consider particles whose density is

greater than that of the fluid.

For the straining regime, an increase in the density of the particles leads to

more clustering. This is intuitive since less dense particles have a greater ten-

dency to act as neutral fluid tracers and hence, have a smaller value of cluster-

ing. However, an increase in the density ratio leads to a decrease in dispersion,

which is counter-intuitive. We also note that as we increase the density ratio,

the change in the Lyapunov constant becomes more gradual and eventually

converges to the results predicted by IDR. This is because at higher density ra-

tios, the added mass and the pressure terms in Eq. (2.1) become negligible and

the only important force is the drag force.
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2.3.5 Results for particles with negligible densities (β ≈ 3) and

neutrally buoyant particles (β = 1)

For neutrally buoyant particles, β = 1. Thus Eq. (2.41) simplifies to:

λ = −
1
2

+
1
2

√√√
(1 − ω2)

2
−

25
18
φ +

√(
(1 + ω2)

2
+

25
18
φ

)2

. (2.49)

If the last term under the square root, i.e., (1+ω2)
2 + 25

18φ is greater than zero, then

we end up with λ = 0, which is the intuitive result. In physical terms, it means

that there is no clustering or dispersion for neutrally buoyant particles, which is

expected. However, when

(1 + ω2)
2

+
25
18
φ < 0 (2.50)

or

φ < −
9(1 + ω2)

25
, (2.51)

λ is no longer zero. This means that for strong straining flows, neutrally buoyant

particles disperse. λ in that case is given by:

λ = −
1
2

+
1
2

√
−

(
ω2 +

25
9
φ

)
. (2.52)

For very small frequencies (ω ≈ 0), λ , 0 only for φ < −9/25 ≈ −0.36. λ is

approximately equal to − 1
2 + 5

6

√
−φ. Hence, there is no upper bound on the

dispersion of such particles. We also observe that there is no way λ can be

complex, hence particle crossover is not observed at all.

Next, we look at what happens for very light particles such that β ≈ 3.

Eq. (2.41) in this form is intractable and needs further simplification. Hence, we

want to see what happens to such light particles in chaotic flows when ω ≈ 0.
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Figure 2.7: The rate of expansion or contraction, real (λ) as a function of the oscillation
amplitude, φ at ω ≈ 0 for infinite density particles (black), neutrally buoyant particles
(blue) and extremely light particles (red) obtained both from the analytical derivation
(present analysis) and numerical integration (reference).

Under this additional approximation, we get,

λ = −
1
2

+

√
(2)
4

√
1 − 9φ +

√
1 − 14φ + 81φ2. (2.53)

For light particles, the Lyapunov exponent is always greater than zero for strain-

ing flows and always less than zero for rotating flows. There is no particle

crossover at all. Further, we observe that λ = −2φ for |φ| ≈ 0. Hence, clustering

has a linear dependence on φ at very small oscillation amplitudes. If |φ| >> 1, λ

scales with |φ| 1/2 in the straining regime and |φ| 1/4 in the rotating regime. Fig-

ure 2.7 shows a very good match between the analytical prediction and the nu-

merical results for neutrally buoyant (β = 1), very light (β ≈ 3) and very dense

particles (β ≈ 0) and shows all the trends discussed in this subsection.

31



2.3.6 Inclusion of the Basset history term

The analysis so far had neglected the effect of the Basset history term, which

physically represents the lagging boundary layer developed on the surface of

the particle as it is subjected to the background flow. As the name suggests, this

force term includes the effect of the particle and fluid flow acceleration at all

instances in the past. The Maxey–Riley Equation with the history term is given

by:

mp
dv?

dt?
= 3πµdp(u?−v?)+m f

Du?

Dt?
+

m f

2

(
du?

dt?
−

dv?

dt?

)
+

3πd2
pµ

2
√
πν

ˆ t?

0

g?(τ)
√

t? − τ
dτ, (2.54)

where mp and m f are the masses of the particle and the displaced fluid respec-

tively, u? is the dimensional fluid velocity and v? is the dimensional velocity of

the particle, dp is the particle diameter, and µ is the fluid viscosity. The integral

term is the history force, where g?(τ) = d
dτ (u? − v?). The Maxey–Riley equation

assumes that the initial velocities of the particles as well as the background flow

is zero. Accounting for the initial slip between the particles and the fluid, the

Maxey–Riley equation gets modified [42, 43] as follows:

mp
dv?

dt?
= 3πµdp(u? − v?) + m f

Du?

Dt?
+

m f

2

(
du?

dt?
−

dv?

dt?

)
+

3πd2
pµ

2
√
πν

ˆ t?

0

g?(τ)
√

t? − τ
dτ +

u∗(0) − v∗(0)
√

t∗

 , (2.55)

where v∗(0) and u∗(0) are the particle and fluid velocities at t = 0. The history

force includes the initial slip as well. The non-dimensionalized form of Eq. (2.55)

is given by

ẍ = u(x, t) − ẋ +
β

3

(
2

D
Dt

u(x, t) +
d
dt

u(x, t)
)

+

√
3β
π

(ˆ t

0

g(τ)
√

t − τ
dτ +

u(0) − v(0)
√

t

)
.

(2.56)

We use the same scales for non-dimensionalization as in Eq. (2.4) We call the

integral term in Eq. (2.56) IB. We want to see how the term behaves for the
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clustering and the dispersion case. IB is an improper integral given by:

IB(t) =

ˆ t

0

g(τ)
√

t − τ
dτ. (2.57)

T is the time period of oscillation associated with the unimodal excitation of the

background flow. Expressing this integral as a sum of the first cycle’s effect and

the rest, we get

IB(t) =

ˆ T

0

g(τ)
√

t − τ
dτ +

ˆ t

T

g(τ)
√

t − τ
dτ. (2.58)

Applying the substitution method on the second integral, we obtain

IB(t) =

ˆ T

0

g(τ)
√

t − τ
dτ +

ˆ t−T

0

g(τ + T )
√

(t − T ) − τ
dτ. (2.59)

We assume that u and v vary exponentially, as they do in the absence of the

history term. Hence, the ratio of g(τ + T )/g(τ), which we call the displacement

ratio, k has a constant value, at very long times. Thus, we get

IB(t) =

ˆ T

0

g(τ)
√

t − τ
dτ + k

ˆ t−T

0

g(τ)
√

(t − T ) − τ
dτ. (2.60)

The second term in Eq. (2.60) is basically the integral term for the time instant,

(t − T ) multiplied by the displacement ratio, k. Therefore, Eq (2.60) simplifies to

IB(t) =

ˆ T

0

g(τ)
√

t − τ
dτ + kIB(t − T ). (2.61)

Substituting t = mT in Eq. (2.61):

IB(mT ) =

ˆ T

0

g(τ)
√

mT − τ
dτ + kIB((m − 1)T ). (2.62)

This is a recursive relation which relates the integral term at the mth cycle with

the term at the (m − 1)th cycle. Expanding for all the cycles, we obtain

IB(mT ) =

m∑
i=1

km−i
ˆ T

0

g(τ)
√

iT − τ
dτ. (2.63)
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We get the following inequality from Eq. (2.63):

IB(mT ) >
(ˆ T

0
g(τ)dτ

) m∑
i=1

km−i

√
iT
, (2.64)

which further leads to

IB(mT ) >
(ˆ T

0
g(τ)dτ

) m∑
i=1

km−i

√
mT

. (2.65)

Eq. (2.65) sets a lower limit on the integral. For clustering, we know that both

the fluid and particle velocities decrease with time, and hence the displacement

ratio, k < 1. Also, since we are interested in the long term behavior of the

particle, the number of cycles, m is much larger than 1. The summation term in

the lower bound represents an infinite geometric progression (GP), which can

be simplified by the sum of an infinite GP. Hence, Eq. (2.65) gets simplified to

IB(mT ) >
1
√

mT

(
1

1 − k

) (ˆ T

0
g(τ)dτ

)
. (2.66)

We denote the Basset history term as FB, where

FB(mT ) =

√
3β
π

(
IB(mT ) +

u(0) − v(0)
√

mT

)
(2.67)

Using Eqs. (2.66) and (2.67) and noting t = mT , we get

FB(t) >

√
3β
π

1
√

t

(
1

1 − k

) (ˆ T

0
g(τ)dτ

)
+

√
3β
π

(
u(0) − v(0)
√

t

)
(2.68)

Eq. (2.68) indicates that the Basset term after m cycles is at least of the order

of 1
√

t
or 1

√
mT

. The other terms, namely the added mass, drag, and pressure, as

well as the particle inertia (on the left hand side) in the Maxey–Riley equation,

decrease exponentially with the number of cycles, m and clearly scale with a

much smaller value (than 1
√

t
). This is not physically possible. Hence, our as-

sumption that the particle displacement varies exponentially for clustering is

not true, which is further validated with results obtained by numerical integra-

tion as shown in Figure 2.8 (b).
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Figure 2.8: The logarithm of the absolute value of particle displacement as a function
of time (a) for dispersion, and (b) for clustering, with (in blue), and without (in red) the
history term.

For dispersion, k > 1. Hence, we can use Eq. (2.65) to get a relation for FB

after m cycles as follows:

FB(mT ) >

√
3β
π

1
√

t

(
km − 1
k − 1

) (ˆ T

0
g(τ)dτ

)
+

√
3β
π

(
u(0) − v(0)
√

t

)
. (2.69)

The difference with Eq. (2.68) arises due to whether the displacement ratio, k, is

lesser or greater than 1. Since, in this case, km >> 1, Eq. (2.69) becomes:

FB(mT ) >

√
3β
π

1
√

t

(
km

k − 1

) (ˆ T

0
g(τ)dτ

)
+

√
3β
π

(
u(0) − v(0)
√

t

)
. (2.70)

The term (u(0) − v(0)) /
√

t scales with 1/
√

t and has a negligible contribution to

the dynamics for dispersion. We see that the lower bound has a component

km which scales exponentially with the number of cycles. Later on, we show

numerically, that x varies exponentially with time. Therefore, dispersion can be

quantified using the Lyapunov exponent.

We numerically find out how x varies as a function of t from Eq. (2.56) us-

ing a time integration scheme as we did before. The Basset term needs special

treatment as it is an improper integral. This was the first issue we faced while

working on the problem since the ordinary trapezoidal rule cannot be applied.

We use an alternate trapezoidal-based (TB) method instead, which was used in
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[44] to evaluate the history term. The basic idea of the TB method is that instead

of linearly interpolating the whole term inside the integral, we represent the lin-

ear interpolant of g(τ) as P(τ) and then find the exact integral of P(τ)/
√

t − τ. At

any time t, we discretize the time domain into N subdomains such that ∆t = t/N

and τn = t − n∆t for n = 0, 1, . . . ,N. Now, IB(t) is given by

IB(t) =

ˆ t

0

g(τ)
√

t − τ
dτ. (2.71)

By linearly interpolating g(τ) for each time interval, Eq. (2.71) becomes

IB(t) ≈
N∑

n=1

ˆ τn−1

τn

gn + (gn−1 − gn)(τ − τn)/∆t
√

t − τ
dτ, (2.72)

where gn = g(τn). It can be shown that this integration leads to

IB(t) ≈
4
3

g0

√
∆t + gN

√
∆t(N − 4

3 )

(N − 1)
√

N − 1 + (N − 3
2 )
√

N
+
√

∆t

×

N−1∑
n=1

gn

 n + 4
3

(n + 1)
√

n + 1 + (n + 3
2 )
√

n
+

n − 4
3

(n − 1)
√

n − 1 + (n − 3
2 )
√

n

 .
(2.73)

The value of g should be known at all n instants according to Eq. (2.73). There-

fore, we treat it as a vector, g, where at each step after we evaluate dv/dt and

du/dt, we add another element to it corresponding to that time instance. The

other force terms, namely added mass, drag, and pressure are evaluated as be-

fore. Now, the part with g0 is treated differently to ensure stability. Since, we

know that

g0(t) =
d
dt

u(t) −
d
dt

v(t), (2.74)

we bring the dv/dt term on the left-hand side and add only the du/dt part to FB.

Therefore, the acceleration of the particle is governed by the form1 +
4
3

√
3β
π

√
∆t

 dv
dt

=
∑

F, (2.75)

where
∑

F is the sum of all the force terms minus the dv/dt part. This process is

repeated for all time instances.
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Figure 2.9: The logarithm of the displacement ratio, k as a function of the number of
cycles, m for (a) dispersion and (b) clustering. On the right, we have the zoomed in
versions of the plots to show a constant value of k for dispersion and an asymptotic
value for clustering.

Although, we know how to find x(t), evaluating the Lyapunov exponent for

the dispersion case is still a challenge. The method of eigenvalues discussed un-

der Section 2.3.2 cannot be applied because of the history term. Hence, we use

the brute-force approach of finding out x(t) for multiple cycles, and then finding

out the exponent corresponding to the last cycle. We have to keep in mind how-

ever that the difference between the exponents of the last and penultimate cycle

should be small enough to ensure that they have converged to the Lyapunov

exponent. For example, in Figure 2.10 (a) we find out x for 10 cycles for each

φ and β. The maximum normalized difference that we get for real (λ) for the

10th and 9th cycle in that case is 7.59 × 10−3 which is small enough to consider

37



Figure 2.10: The rate of expansion, real (λ) as a function of β and φ (a) with the history
term and (b) without the history term for 0 ≤ β < 1, φ > 0 and ω = 0.1 where only
dispersion is observed.

convergence.

Figure 2.8 (a) shows how the logarithm of the absolute value of particle dis-

placement varies with time for
√
−2φ = 1, ω = 0.5 and β = 0.1. For dispersion as

we mentioned, the particle displacement is an exponential function of time like

the case without the Basset term. Hence we can define a Lyapunov exponent

in the dispersion regime. For example in this case, we get a constant value of

log (k) = 0.265 as it is evident in Figure 2.9 (a) and the Lyapunov exponent is

0.265/(2π/0.5) ≈ 0.02.

For clustering however, the displacement does not vary exponentially with

time unlike the case when the history term was neglected. Figure 2.8 (b) shows

the contrast between the scenarios when we neglect the Basset history Force (in

red) and when the term is included (in blue). The displacement ratio, k in this

case is not constant and log (k) asymptotically reaches the value of 0 as it is

evident from Figure 2.9 (b). This means that as the time increases, the tendency

of the particles to mimic the background flow increases.

Next, we want to see how the introduction of the history term changes the

38



Figure 2.11: The value obtained after subtracting real (λ) with the history term from
real (λ) without the history term for 0 ≤ β < 1, φ > 0 and ω = 0.1.

value of the Lyapunov exponent for dispersion. Hence, we shift our focus to a

region where only dispersion is observed. Particles heavier than the fluid in a

rotating flow satisfy this condition as shown in Figure 2.10 (b). Figure 2.10 (a)

shows that in spite of the inclusion of the history term, the particles still undergo

dispersion. However, the interesting thing that we observe in Figure 2.11 is that

the rate of dispersion is always higher for the case without the history term. In

other words, the inclusion of the history term lowers the Lyapunov exponent

when particles are dispersing.

The important question that is yet to be addressed is how can we quantify

the clustering phenomenon. Since the log (|x|) vs t plot didn’t show an exponen-

tial variation with t, we had to analytically validate that exponential variation is

39



not possible for clustering. One way of addressing that issue is to approximate

x using another function type and then use the characteristics of that function

type to quantify clustering. This is the scope for future research.

To summarize, we start with the inclusion of the history term in the Maxey–

Riley equation. We validate the fact that for clustering, displacement is not an

exponential function of time unlike the case with no history term which is con-

sistent with our observations. We also find out that for dispersion, the varia-

tion is still exponential and hence can be quantified by the Lyapunov exponent.

Next, we compare the Lyapunov exponents for the cases with and without the

history term. We choose a regime where we only observe dispersion. One such

example would be particles heavier than the fluid in a rotating flow (or 0 ≤ β < 1

and φ > 0). We see that these particle still undergo dispersion but there is always

a decrease in the Lyapunov exponent.

2.4 Conclusion

We have derived an analytical expression (2.41) for the Lyapunov exponent

as a function of the Stokes number and the particle-to-fluid density ratio. The

Lyapunov exponent is the same in each direction, hence analyzing one direction

would suffice. Since the densities of the particle and the fluid are comparable,

the added mass and the pressure forces affect the particle dynamics. We em-

ploy a one-dimensional unimodal canonical flow that has been shown to show

a very good agreement with the analytical results, albeit at infinite density ratio

which we have referred to as IDR, to validate our results. Hence our analysis is

more general, and at the limits of infinite density ratio, it converges to the result
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derived in IDR. Further, our analysis explains the non-monotonic trend of clus-

tering for finite particle-to-fluid density ratios, which RM failed to predict. We

predict that in the straining regime, we might observe clustering or dispersion

depending on the Stokes number. An increase in the particle-to-fluid density

ratio leads to an increase in clustering and a decrease in dispersion. Similarly, in

the rotating regime, we predict no clustering, and an increase in dispersion for

higher values of density ratio. We also show that there exists a lower bound on

particle clustering corresponding to real(λ) = −0.5. We also observed that there

exists a condition for which there can be dispersion for neutrally buoyant parti-

cles, which is further validated by our numerical results. Finally, we study how

the inclusion of the Basset history term affects our analysis. For clustering, we

show that the separation distance between a pair of particles will no longer be

exponential in time whereas dispersion can still be quantified by the Lyapunov

exponent, which decreases when the history term is considered.
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CHAPTER 3

SPECTRAL STOKES SOLVER FOR TIME-PERIODIC FLOWS

3.1 Introduction

In this chapter, we first introduce our algorithm, which we call the complex-

valued Stokes Solver (SCVS). It is based on finite element modeling in the spec-

tral domain. The result of the modeling is a complex-valued linear system

which we solve using GMRES.

Next, we compare the performance of SCVS against RBVMS for an oscillat-

ing flow in 3D pipe for different flow conditions. For validation, we also com-

pare our results to an analytical prediction that exists for such flows. We finally

compare the performance of SCVS to a more similar solver called MSS before

concluding at the end.

3.2 SCVS

We consider low Reynolds number flow in a domain Ω with boundary Γ = ∂Ω

that is governed by the unsteady Stokes equations given by

ρ
∂u
∂t

= −∇p + ∇ · (µ∇u) in Ω,

∇ · u = 0 in Ω,

u = g on Γg,

(−pI + µ∇u) · n = h on Γh,

(3.1)
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where u(x, t) refers to the velocity of the fluid at location x and time t, p(x, t) is

the pressure, ρ is the density, Γ is the boundary, n is the outward normal vector,

and µ is the dynamic viscosity. g and h refer to the imposed velocity and traction

on the Dirichlet Γg and Neumann Γh boundaries, respectively, where Γ = Γg∪Γh.

Additionally, the boundary conditions are assumed to be periodic with a time

period of T .

To represent Eq. (3.1) in the spectral domain, we make use of Fourier trans-

formation. Hence, the velocity and pressure can be written as,

u(x, t) =
∑

i

ũi(x)e ĵωit,

p(x, t) =
∑

i

p̃i(x)e ĵωit,

(3.2)

where ĵ =
√
−1. Here the frequency ωi is defined in terms of the period T as ωi =

2πi/T for i = 0, 1, . . . ,Nm, Nm being the largest mode. For cardiovascular flows,

T is the cardiac cycle, which is the time period of the boundary conditions. We

can represent the Dirichlet and Neumann boundary conditions in the spectral

domain as

g(x, t) =
∑

i

g̃i(x)e ĵωit

h(x, t) =
∑

i

h̃i(x)e ĵωit
(3.3)

Eq. (3.1) thus becomes,

ĵωiρũi = −∇p̃i + ∇ · (µ∇ũi) in Ω,

∇ · ũi = 0 in Ω,

ũi = g̃i on Γg,

(−p̃iI + µ∇ũi) · n = h̃i on Γh.

(3.4)

The term on the left hand side is complex unless ωi = 0. The constraint ωi = 0
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corresponds to the steady state. Since these equations are independent bound-

ary value problems, we drop the subscript i, in our analysis.

Next, we define the weak form of Eq. (3.4). The weak form of Eq. (3.4) is

stated as follows. For a given frequency ω, find ũ ∈ S and p̃ ∈ P such that for

any w ∈ W and q ∈ Q

BG (w, q; ũ, p̃) = FG (w, q) ,

BG =

ˆ
Ω

[
ĵωρw · ũ + ∇w : (−p̃I + µ∇ũ) + q∇ · ũ

]
dΩ,

FG =

ˆ
Γh

w · h̃dΓ,

(3.5)

holds. In Eq. (3.5), w and q are test functions for velocity and pressure, respec-

tively, and

S =
{
ũ|ũ(x) ∈ (H1)nsd , ũ = g̃ on Γg

}
,

W =
{
w|w(x) ∈ (H1)nsd , w = 0 on Γg

}
,

P =
{
p̃| p̃(x) ∈ L2

}
,

Q =
{
q|q(x) ∈ L2

}
,

(3.6)

where S and P are the velocity and pressure solution, respectively. W and Q

are the test function spaces. L2 denotes the space of scalar-valued functions that

are square-integrable on Ω, (H1)nsd denotes the space of vector-valued functions

with square-integrable derivatives on Ω, and nsd is the number of spatial dimen-

sions.

We denote the finite-dimensional subspace of S, W, P, and Q by Sh, Wh,

Ph, and Qh, respectively. Then, we represent the discrete form of Eq. (3.5) using

Galerkin’s approximation. Namely, we seek ũh ∈ Sh and p̃h ∈ Ph such that for

any w̃h ∈ Wh and q̃h ∈ Qh

BG

(
wh, qh; ũh, p̃h

)
= FG

(
wh, qh

)
, (3.7)
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holds. In writing Eq. (3.7), we assumed Ωh = Ω, i.e., the computational domain

after discretization remains unchanged. If the two are different, all the integrals

are done over Ωh instead when computing BG and FG in Eq. (3.7).

The Galerkin’s formulation has a saddle-point nature, which leads to a sin-

gular system if the same shape functions for velocity and pressure are used.

Many techniques have been developed in the past to overcome this issue, like

penalty techniques [45], mixed-element [46] and stabilized finite element meth-

ods [47]. In the present study, we use the mixed finite element method. Basically,

we use linear and quadratic shape functions for pressure and velocity, respec-

tively, to satisfy inf-sup condition (also known as LBB condition) [48, 49, 50].

In 3D, we use linear tetrahedral elements with 4 nodal points for pressure and

quadratic shape functions with 10 nodes for velocity. We denote the correspond-

ing linear and quadratic shape functions at global node A by NA(x) and MA(x)

respectively. Therefore, velocity and pressure and their corresponding test func-

tions in terms of the aforementioned shape functions can be represented as

wh(x) =
∑

A∈η\ηg

MA(x)WA,

qh(x) =
∑
A∈η̂

NA(x)QA,

ũh(x) =
∑

A∈η\ηg

MA(x)UA +
∑
A∈ηg

MA(x)GA,

p̃h(x) =
∑
A∈η̂

NA(x)PA,

(3.8)

where η, ηg, and η̂ are the velocity nodes, velocity nodes on the Dirichlet bound-

aries, and pressure nodes, respectively. UA, PA, WA, QA in Eq. (3.8) are the ve-

locity and pressure unknowns and their respective test functions. GA is the pre-

scribed velocity defined on the Dirichlet boundaries after discretization such
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that

g̃h(x) = Πhg̃(x) =
∑
A∈ηg

MA(x)GA, (3.9)

where Πhg̃ is an operator that projects g̃ to the finite-dimensional discrete space.

Substituting Eq. (3.8) in Eq. (3.7) we get the following linear system

AX = R, (3.10)

where

A =

 K D

DT 0

 , X =

UP
 , R =

B0
 . (3.11)

Here, K and D are block matrices and B is a vector which are given by,

KAB =

ˆ
Ω

(
ĵωρMAMB + µ∇MA · ∇MB

)
IdΩ,

DAB = −

ˆ
Ω

∇MANBdΩ,

BA =

ˆ
Γh

MAh̃dΓ − KABGB.

(3.12)

The solution to this is obtained using the Generalized minimal residual method

(GMRES) method [51] with a Jacobi preconditioner.

3.3 Results

In this section, we will establish the relative accuracy and cost of the SCVS

algorithm against a standard RBVMS solver and an in-house MSS solver. The

details pertaining to the RBVMS algorithm are included in Appendix A. We

have considered creeping flow through a 3D pipe as our test case for compari-

son. The analytical solution for this problem is available and it will be employed

to further validate the results. The geometry has been discretized using tetra-

hedral elements. We have used Tetgen [52] and Simvascular [53] software for
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mesh generation and an-house script for node insertion. We first compare our

results with a standard RBVMS solver. Since SCVS uses mixed QM mesh un-

like RBVMS, which uses linear mesh for discretization, for a more thorough

comparison, we also compare SCVS to an in-house solver called MSS, which

uses QM mesh as well. The only difference is that MSS, like RBVMS, solves the

Stokes equation in the time domain unlike SCVS, which solves it in the spectral

domain.

3.3.1 Comparison with RBVMS

Since the SCVS and RBVMS simulations are performed using quadratic and

linear shape functions, comparison is done betweeen those pairs of meshes

which have similar degrees of freedom. A total of five cycles or 10,000 time steps

are simulated to achieve cycle-to-cycle convergence for the RBVMS solver. All

the results correspond to the last simulated cycle to get rid of the transient part

of the solution. For all cases, the Reynolds number is kept very small (Re < 10−3)

to neglect the effect of inertia or non-linearity. The Reynolds number depends

on the maximum flow rate through the boundaries, the diameter of the pipe,

and the kinematic viscosity, ν = µ/ρ.

Table 3.1: Meshes used for discretization shown in Figure 3.1. QM and LM refer to
mixed quadratic-linear and linear tetrahedral meshes, which are employed in the SCVS
and the RBVMS simulations, respectively. Nele, Nnds, and Ndof denote the numbers of
elements, nodes, and degrees of freedom, respectively.

Mesh SCVS RBVMS

QM1 QM2 QM3 QM4 LM1 LM2 LM3 LM4

Nele 24,450 49,388 95,524 162,444 207,063 374,852 728,922 1,197,044
Nnds 37,469 70,872 133,645 225,610 37,401 64,434 122,291 197,660
Ndof 113,193 221,894 418,400 705,311 149,604 257,736 489,164 790,640
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Figure 3.1: Schematic of oscillatory creeping flow in a pipe. h(t)/hmax refers to the
imposed Neumann boundary condition at the inlet as a function of time. The contour
of normalized radial velocity magnitude is shown for W = 8π case at t = T/4 obtained
from the SCVS solver.

As mentioned before, we use GMRES to solve the linear system for both

SCVS and RBVMS with εL = 10−6 as the tolerance. Both the RBVMS and the

SCVS solvers are based on an in-house finite element solver [54, 55, 56], which is

written in object-oriented Fortran and parallelized using the MPI library. How-

ever since the equations for SCVS have complex valued terms, we need to make

changes to the GMRES solver accordingly.

Coming back to the test case, we have considered a pipe with an aspect ratio

of L/R = 15 with a cosinusoidal inlet (on the left) and zero outlet Neumann

boundary condition (Figure 3.1). These boundary conditions produce a solution

that corresponds to the fully developed condition observed in an infinitely long

pipe. Our analysis is limited to three Womersley numbers W = ωR2/ν = 8π, 40π

and 80π, with R denoting the radius of the pipe. For each of RBVMS and SCVS,

simulations are performed in four different meshes (Table 3.1). The number of

elements in corresponding meshes is selected such that the number of nodes is

roughly the same for both solvers. Overall, the element size normalized by the

pipe radius varies from 0.0340 to 0.228 among simulated cases.

For an oscillatory flow in a pipe, the solution in the spectral domain is ex-

pressed as [57]
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Figure 3.2: Normalized velocity profiles as a function of the normalized radial distance
for an oscillatory creeping pipe flow (shown in Figure 3.1) predicted using the SCVS
(solid black), the RBVMS (dashed red), and analytical solution (circles). The results on
the left and right columns are at t = T/4 and t = T/2, respectively, and those on the
first, second, and third row correspond to W = 8π, 40π, and 80π, respectively.
Computations are performed on QM4 and LM4 grids for the SCVS and the RBVMS,
respectively. All the results are normalized using the maximum velocity from the
analytical solution umax.
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ũx(r, ω) =



h̃x

4µL
(R2 − r2), ω = 0,

−
ĵh̃x

ρLω

[
1 − J0(Λ)−1J0(Λ

r
R

)
]
, ω , 0,

(3.13)

where Λ2 = − ĵW and J0 is the zero order Bessel function of the first kind. This

solution can be expressed in time using

ux(r, t) = real
{
ũx(r, ω)e ĵωt

}
. (3.14)

Figure 3.2 illustrates ux(r,T/4) and ux(r,T/2) obtained using the SCVS solver, the

RBVMS solver and the analytical formula in Eq. (3.14) at W = 8π, 40π, and 80π.

These results correspond to the finest grids, namely QM4 and LM4 in Table 3.1.

The greater accuracy of SCVS stems from the use of Quadratic shape functions

as compared to the use of linear shape functions for RBVMS. To study mesh

convergence, we define the total error, e as

e(t) =
‖u(x, t) − uh(x, t)‖L2(Ω)

‖u(x, t)‖L2(Ω)
. (3.15)

The overall error is basically the difference between the calculated velocity

uh(x, t) and the reference velocity u(x, t) normalized by the reference velocity

over the entire domain and the L2(Ω) norm is defined as ‖u‖2L2(Ω) =
´

Ω
u · udΩ.

Overall, we see a very good match between the analytical predictions and the

results obtained using SCVS.

Figure 3.3 shows how the error at t = T/2, e(T/2) varies with CPU hours at

Womersley numbers, W = 8π (black), W = 40π (red) and W = 80π (blue). This is

of particular use when we want to see the cost we will incur and the mesh we

want to use for both SCVS and RBVMS for a given flow condition if we want

to achieve a predefined accuracy. For example, the coarsest grid for SCVS has
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a similar accuracy (slightly better) to the finest grid for RBVMS but there is a

reduction of cost by three orders of magnitude for W = 80π.
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Figure 3.3: Relative error e(T/2) as a function of the computational cost tC. Symbols
with the same color should be compared. The solid symbols correspond to the SCVS
and hollow to the RBVMS. The circle, square, diamond, and triangle symbols
correspond to QM4/LM4, QM3/LM3, QM2/LM2, and QM1/LM1 meshes listed in
Table 3.1. The black, red, and blue colors correspond to W = 8π, 40π, and 80π,
respectively. These results show that the SCVS, compared to the RBVMS, always
provides a higher accuracy at a lower cost.

3.3.2 Comparison with MSS

For an apple-to-apple comparison with SCVS, we have solved the unsteady

Stokes equations in time. We call this solver MSS and it is identical to the SCVS

solver, except for the domain in which the equations are solved. The weak form

of the MSS states: find u ∈ S and p ∈ P, such that for all w ∈ W and q ∈ Q

BG (w, q; u, p) = F (w, q) , (3.16)

where

BG =

ˆ
Ω

[
ρw · u̇ + ∇w : (−pI + µ∇su) + q∇ · u

]
dΩ,

F =

ˆ
Γh

w · hdΓ.

(3.17)
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Eq. (3.17) is discretized using tetrahedral elements that were used for the SCVS.

To relate u̇ to u and integrate the resulting equations in time, the second order

implicit generalized-αmethod is adopted [58]. The spectral radius of the infinite

time step, which appears in the generalized-α time integration scheme, is set to

0.2 which is seen to have no influence on the results in this study. The working of

the generalized-α time-integration scheme is explained in greater detail below.

First, we start with zero initial conditions everywhere. At each time step, we

predict unknowns at the next time step as u̇n+1 =
γ−1
γ

u̇n, un+1 = un, and pn+1 = pn.

Next, the unknowns are computed at an intermediate time, namely u̇n+αm , un+α f

and pn+α f as

u̇n+αm = u̇n + αm(u̇n+1 − u̇n),

un+α f = un + α f (un+1 − un),

pn+α f = pn + α f (pn+1 − pn),

(3.18)

where α f = (1+ρ∞)−1, αm = (3−ρ∞)(2+2ρ∞)−1, and γ = 0.5+αm−α f are parameters

that depend on the spectral radius of infinite time step ρ∞ (0.2 in our case). These

values are then employed to calculate BG in Eq. (3.17). After discretization and

Newton-Raphson linearization, we get the following linear systemK G

D 0


∆u̇

∆p

 = −

RM

RC

 , (3.19)

where

K =
∂RM

∂∆u̇
,

G =
∂RM

∂∆p
,

D =
∂RC

∂∆u̇
.

(3.20)

RM and RC are the momentum and continuity residuals and can be evaluated

by substituting Eq. (3.8) in Eq. (3.17). ∆u̇ and ∆p are correction to our initial
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prediction of unknowns at the next time step. Unlike the RBVMS, the MSS does

not have stabilization terms, hence there is a zero block in the matrix in Eq. (3.19)

The continuity equation does not depend on the pressure. The linear system in

Eq. (3.19) is solved iteratively using the GMRES technique. Then the corrections

are applied as follows:

u̇n+1 ← u̇n+1 + ∆u̇,

un+1 ← un+1 + γ∆t∆u̇,

pn+1 ← pn+1 + ∆p.

(3.21)

Following these corrections, the Newton-Raphson iteration loop will be termi-

nated if the norm of the residual is smaller than a specified tolerance. Otherwise,

new intermediate variables are computed via Eq. (3.18) and a new iteration is

performed. As mentioned before, for the linear Stokes equation, only one itera-

tion is enough. This entire process is repeated at each time step.

The MSS needs two nested loops: an outer loop for time-stepping, and an

inner loop for the linear solver.

Table 3.2: Comparison of the different solvers for the 3D pipe flow at W = 8π in terms
of computational cost and overall error. QM1 and LM1 meshes from Table 3.1 were
used for these computations, with the former being used for the SCVS and MSS and
the latter for the RBVMS.

SCVS MSS RBVMS

Mesh QM1 QM1 LM1
The total computational cost (in CPU hours) 1.25 1522 347

The overall error; e(T/2) 6.3 × 10−3 1.79 × 10−2 4.1 × 10−2

In Table 3.2 we compare the overall error, Eq. (3.15) and the cost of MSS with

the SCVS and RBVMS solvers for W = 8π and t = T/2. The details of the meshes

used for these computations are reported in Table 3.1, where we use QM1 for

the SCVS and MSS and LM1 for the RBVMS.
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The huge cost reduction from the MSS to SCVS can be explained by the fact

that the SCVS solver performs just one linear solve, whereas the MSS solver per-

forms 10,000 linear solves (each time step requiring one linear solve). However,

the performance gap between the MSS and SCVS is 1522/1.25 = 1,220 that is

less than 10,000 as the average number of GMRES iterations for the MSS is less

than that of the SCVS (i.e., 2,336.7 versus 7,943). Having pure real operations

as opposed to complex operations for SCVS in the GMRES solver decreases the

performance gap.

To explain the lower performance of the MSS in comparison to the RBVMS,

we must analyze the structure of the linear system for these two solvers. Since

the MSS does not have stablization terms added unlike the RBVMS (see Ap-

pendix A), the discrete form of the continuity equation will not depend on the

pressure. This lack of dependence is in contrast to the RBVMS that through

up · ∇q term in Eq. (A.2) produces a non-zero block in the tangent matrix in Eq.

(3.20). This non-zero block reduces the condition number of the tangent ma-

trix, leading to a much faster convergence rate of the GMRES algorithm for the

RBVMS (493.97 for the RBVMS versus 2,336.7 for the MSS).

In terms of error, the SCVS that does not suffer from the time integration

error and employs quadratic shape functions for velocity is the most accurate

formulation. The SCVS is followed by the MSS solution that contains time inte-

gration error and the RBVMS that on top of that error uses linear elements.

The RBMVS is a more widely adopted formulation than the MSS, thus using

it as a benchmark can provide a better point of reference. Firstly, as confirmed

by the results shown in Table 3.2, in general, the RBVMS performs better than

the MSS. Secondly, the cost and convergence properties of the MSS significantly
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suffer for larger meshes, making the simulation of some of the cases reported in

Section 3.3 nearly impractical.

3.4 Conclusion

In this chapter, we proposed an alternative method for solving time-periodic

flows at low Reynolds number. First we transformed the unsteady Stokes equa-

tion in the time domain into multiple steady state Stokes equations with a com-

plex source term in the spectral domain. For the class of flows we are inter-

ested in, namely cardiovascular flows, we need to solve only a few boundary

value problems, each corresponding to one mode. In this way, we get rid of

the problems associated with time integration schemes. Next, we derived the

weak form of the resultant equations followed by the discrete formulation. Dis-

cretization was carried out using mixed quadratic-linear shape functions. We

finally obtained a linear system out of each boundary value problem. The linear

system is solved using GMRES which had to be modified to accommodate for

the complex-valued source term.

To check the performance of SCVS, we compare it against a standard RBVMS

solver first for time-periodic flows in a 3D pipe. We see an order of magnitude

improvement for accuracy for SCVS compared to RBVMS. We also see two or-

ders of magnitude improvement in CPU hours in comparison to the RBVMS.

For a more direct one-one comparison, we compared SCVS against MSS which

uses same shape functions as SCVS. We see three orders of magnitude difference

in the cost and a better accuracy as well for the SCVS solver. Further improve-

ment in performance through the use of stabilized or penalty formulation as

55



well as the extension to higher Reynolds numbers remain to be explored in the

future.
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CHAPTER 4

PRELIMINARY DISCUSSION ON AN INHERENTLY PARALLEL GMRES

The final chapter introduces a very basic discussion on solving a linear sys-

tem on multiple processors where we want to see whether there is a way of

making use of communications and operations (like matrix-vector products and

dot products) across the shared nodes to converge to the solution faster. The

eventual plan would be to extend this discussion to exascale computing, which

is beyond the scope of this thesis. Our discussion will be limited to Krylov

subspace methods, particularly GMRES [51]. We take the simple example of

a non-dimensional 1D-heat conduction equation to demonstrate our proposed

method. The governing differential equation is given by

d2φ

dx2 + f = 0,

dφ
dx

(0) = −q,

φ(1) = g.

(4.1)

Eq. (4.1) is basically the non-dimensional Poisson Equation in 1D. φ is the non-

dimensional temperature and x ∈ [0,1]. We have a Neumann Boundary con-

dition on the left side and a Dirichlet Boundary condition on the right side as

shown in Figure 4.1. Performing an analysis similar to what we have done in

Figure 4.1: Schematic of a rod with an isothermal boundary on the right and a constant
heat flux boundary on the left. The rod is discretized uniformly. Nodes 1,2 and 3 and
Nodes 3,4 and 5 belong to processors 1 and 2 respectively. Node 3 is shared between
both the processors.
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Section 3.2, we get a linear system of the form, Ax = b . For demonstration, we

have divided the entire domain uniformly into 5 points (with unknown values

of φ) marked as 1, . . . , 5 as shown in Figure 4.1. Point 6 is on the Dirichlet bound-

ary and hence the value is already known. In this linear system, x is the solu-

tion vector which needs to be evaluated and can be written as x = {φ1, . . . , φ5}
T ,

where φi is the unknown temperature at node i. Our test case involves solving

this simple linear system using two processors. The domain is divided into two

partitions with nodes 1, 2 and 3 belonging to Processor 1 and nodes 3, 4 and 5

belonging to Processor 2. Therefore, node 3 in our problem is the shared node

where communications will take place and which we plan to exploit.

The GMRES method is a Krylov subspace method, which means the un-

known vector can be represented as a superposition of several solution can-

didates which belong to an affine space, known as the Krylov subspace. For a

given linear system,Ax = b , v = {b , Ab , A2b , A3b , . . . } is the Krylov subspace.

The GMRES method approximates the solution vector, x as

x ≈
n∑

i=1

civi, (4.2)

where vi are vectors of the Krylov subspace, m is the number of vectors, and

ci are variables that are optimized to get the smallest value of the norm of the

residualAx − b .

For each processor there is a local A and a local b obtained by discretization,

which we will denote by A1 and b1 for processor 1, and A2 and b2 for processor

2, where A1 and b1 are given by

A1 =

A
1
11 A1

12

A1
21 A1

22

 , b1 =

b
1
1

b1
2

 . (4.3)

The superscript 1 indicates that the values are local to processor 1. To make a
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one-to-one correspondence to the global numbering depicted in Figure 4.1, the

blocks of A1 are

A1
11 =

A11 A12

A21 A22

 , A1
12 =

A13

A23

 , A1
21 =

[
A31 A32

]
, A1

22 = A1
33. (4.4)

Note thatA33 has a superscript of 1. This is becauseA33 has contributions from

both processors 1 and 2 while obtaining the linear system since it is shared.

The other terms are local to processor 1. Also, b1
1 = [b 1 b 2 ]T and b1

2 = b 1
3 .

Similarly, A2 and b2 are given by

A2 =

A2
11 A2

12

A2
21 A2

22

 , b2
=

b
2
1

b2
2

 , (4.5)

where the blocks of A2 are given by

A2
11 = A2

33, A2
12 =

[
A34 A35

]
, A2

21 =

A43

A53

 , A2
22 =

A44 A45

A54 A55

 , (4.6)

and the components of the vector b2 are given by b2
1 = b 2

3 and b2
2 = [b 4 b 5 ]T .

A and b in terms of their local components can be written as follows:

A =


A1

11 A1
12 0

A1
21 A1

22 + A2
11 A2

12

0 A2
21 A2

22

 , b =


b1

1

b1
2 + b2

1

b2
2

 . (4.7)

The most basic solution possible for this system,Ax = b is x = cb , where the

solution vector x is represented as c times b , where b is a member of the Krylov

subspace, and c is that value for which the norm of the residual is minimized or

∂
∂c‖Ax − b ‖ = 0. The linear system is said to have one degree of freedom since

we need to find out one unknown value, c. It is straightforward to show that

c = 〈 Ab , b 〉/‖ Ab ‖2, where 〈 •, • 〉 represents the dot product operation and

59



‖ • ‖ represents the norm. To find out c, the first step involves communicating

the value corresponding to the shared node in the vector b so that both the

processors have the correct value of b for that node. The local vectors after

communication, b1
c and b2

c are given by

b1
c =

b
1
1

bs

 , b2
c =

bs

b2
2

, (4.8)

where bs = b1
2 + b2

1 is the correct value corresponding to the shared node that

would have been obtained directly during discretization had there been one

processor. The next step would be to obtain the matrix-vector product locally in

each processor. We denote the vectors obtained in this process as w1 and w2 in

processors 1 and 2, respectively, where w1 = A1b1
c and w2 = A2b2

c . Expanding

this, we get

w1 =

A
1
11 A1

12

A1
21 A1

22


b

1
1

bs

 =

A
1
11b1

1 + A1
12bs

A1
21b1

1 + A1
22bs

 , (4.9)

and

w2 =

A2
11 A2

12

A2
21 A2

22


bs

b2
2

 =

A2
11bs + A2

12b2
2

A2
21bs + A2

22b2
2

 . (4.10)

For simplicity, we represent these components as follows

w1
11,1 = A1

11b1
1, w1

12,s = A1
12bs, w1

21,1 = A1
21b1

1, w1
22,s = A1

22bs,

w2
11,s = A2

11bs, w2
12,2 = A2

12b2
2, w2

21,s = A2
21bs, w2

22,2 = A2
22b2

2.

(4.11)

Therefore Eqs. (4.9) and (4.10) can be rewritten as

w1 =

w
1
11,1 + w1

12,s

w1
21,1 + w1

22,s

 =

w
1
1

w1
2

 , (4.12)

and

w2 =

 w2
11,s + w2

12,2

w2
21,s + w2

22,2

 =

w2
1

w2
2

 . (4.13)
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Since we have only one shared node in this example, w1
2 and w2

1 are scalars.

These values are communicated to get the correct value corresponding to the

shared node in w1 and w2, which are denoted by w1
c and w2

c , and are given by

w1
c =

 w1
1

w1
2 + w2

1

 , w2
c =

w
2
1 + w1

2

w2
2

 . (4.14)

These ideas can be extended to dot products to find the value of c. We now

increase the degree of freedom of the linear system to two by representing the

solution vector x as follows:

x =


c1b1

1

c1bs

c2b2
2

 , (4.15)

where c1 and c2 have to be optimized to get the best solution. Note that we still

have used only one vector from the Krylov subspace. We show in our subse-

quent derivations that we can evaluate c1 and c2 using the vectors we obtained

in Eqs (4.9) and (4.10) without performing extra matrix-vector products that

have the largest contribution to the communication overhead. To find out the

unknowns, first we need to evaluate the residual of the global linear system,

which is given by

Ax − b =


A1

11 A1
12 0

A1
21 A1

22 + A2
11 A2

12

0 A2
21 A2

22




c1b1

1

c1bs

c2b2
2

 −

b1

1

bs

b2
2

 . (4.16)

We want to find out the values of c1 and c2 for which the norm of the residual is

minimized or ∂
∂c1 ‖Ax − b ‖ = 0:(

‖ A1
11b1

1 + A1
12bs ‖

2 + ‖ A1
21b1

1 + A1
22bs + A2

11bs ‖
2 + ‖ A2

21bs ‖
2
)

c1

+
(
〈 (A1

21b1
1 + A1

22bs + A2
11bs),A2

12b2
2 〉 + 〈 A2

21bs,A2
22b2

2 〉
)

c2 =

〈 (A1
11b1

1 + A1
12bs), b1

1 〉 + 〈 (A1
21b1

1 + A1
22bs + A2

11bs), bs 〉 + 〈 A2
21bs, b2

2 〉.

(4.17)
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Similarly, ∂
∂c2 ‖Ax − b ‖ = 0 yields(
〈 (A1

21b1
1 + A1

22bs + A2
11bs),A2

12b2
2 〉 + 〈 A2

22b2
2,A

2
21bs 〉

)
c1+(

‖ A2
12b2

2 ‖
2 + ‖ A2

22b2
2 ‖

2
)

c2 = 〈 A2
12b2

2, bs 〉 + 〈 A2
22b2

2, b
2
2 〉.

(4.18)

Eq. (4.17) and Eq. (4.18) represent a linear system in c1 and c2 which can be

easily evaluated. Using the notations defined in Eq. (4.11) we getB11 B12

B21 B22


c

1

c2

 =

k1

k2

, (4.19)

where B11, B12, B21, B22, k1 and k2 are scalars whose values are as follows:

B11 = ‖w1
1‖

2 + (w1
2 + w2

11,s)
2 + ‖w2

21,s‖
2,

B12 = (w1
2 + w2

11,s) × w2
12,2 + 〈w2

21,s,w
2
22,2〉,

B21 = (w1
2 + w2

11,s) × w2
12,2 + 〈w2

21,s,w
2
22,2〉,

B22 = (w2
12,2)2 + ‖w2

22,2‖
2,

k1 = 〈w1
1, b

1
1〉 + (w1

2 + w2
11,s) × bs + 〈w2

21,s, b
2
2〉,

k2 = w2
12,2 × bs + 〈w2

22,2, b
2
2〉.

(4.20)

We do not need to perform any new matrix-vector product if the degree of free-

dom increases from 1 to 2. All the dot products in Eq. (4.20) involve vectors

which are evaluated in the same processor. In other words, none of the dot

products involve multiplying a vector evaluated by processor 1 with a vector

evaluated by processor 2. Hence, only scalars need to be communicated across

the shared node.

We go back to our 1D-heat conduction problem and assign values to f , q,

and g such that f = 4, q = 0.4, and g = 2. The choice of values is arbitrary

and is simply used to demonstrate that we get a noticeable improvement in

the accuracy. We define the error as the norm of the residual normalized by
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the norm of b . For the one degree of freedom case, the error is 0.5107. When

we increase the degrees of freedom to 2, the error comes out to be 0.4292. All

we did more was communicate some scalars, multiply scalars and solve a 2×2

linear system that hardly adds to the communications and ended up getting up

a more accurate result for one iteration.

To summarize the method, for a given linear system A x = b , we represent

the solution vector in terms of two unknowns c1 and c2 corresponding to each

processor (there are two processors in our test case) instead of one unknown c.

We show that this hardly adds to the communication overhead since we make

use of the matrix-vector products which are already evaluated for the case with

one constant but there is a noticeable improvement in accuracy. Although one

needs to keep in mind that this is a very basic problem with one spatial dimen-

sion, two processors and one vector. The real challenge would be extending

this method to more vectors in the Krylov subspace, or in other words increase

the number of iterations. Other directions that can be explored are the exten-

sion to higher dimensions in space, and solve the system with more than two

processors.
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APPENDIX A

RBVMS FORMULATION

The RBVMS formulation used for comparison is provided in brief below, the

details of which can be found in [37, 38, 54]. The weak formulation of the RB-

VMS is stated as follows. Find u ∈ S and p ∈ P, such that for all w ∈ W and

q ∈ Q

BG (w, q; u, p) + BS (w, q; u, p) = F (w, q) , (A.1)

where

BG =

ˆ
Ω

[
ρw · (u̇ + u · ∇u) + ∇w : (−pI + µ∇su) + q∇ · u

]
dΩ,

BS =
∑
e∈Ie

ˆ
Ωe

[
ρ∇w :

(
τ̄up ⊗ (up · ∇u) − u ⊗ up + τC∇ · uI

)
+ ρw ·

(
up · ∇u

)
− up · ∇q

]
dΩ,

F =

ˆ
Γh

w · hdΓ.

(A.2)

In this equation, BG contains Galerkin’s term whereas BS are the stabilization

added to allow for equal-order velocity and pressure functions and prevent

convective instability associated with Galerkin’s method. Other parameters ap-

pearing in (A.2) are defined as

up = −τM

(
u̇ + u · ∇u +

1
ρ
∇p −

µ

ρ
∇2u − f

)
,

τM =

(2c1

∆t

)2

+ u · ξu + c2

(
µ

ρ

)2

ξ : ξ
− 1

2

,

τ̄ =
(
up · ξup

)− 1
2
,

τC =
[
tr (ξ) τM

]−1

(A.3)

in which c1 = 1 and c2 = 3, ξ ∈ Rnsd × Rnsd is covariant tensor obtained from a

mapping between the physical and parent domains, and ∆t is the time step size.

The resulting equations are discretized using tetrahedral elements. To relate u̇ to
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u and integrate the resulting equations in time, the second order generalized-α

method is adopted that has been explained in great detail earlier. We get a linear

system similar to the MSS. K G

D L


∆u̇

∆p

 = −

RM

RC

 , (A.4)

where

K =
∂RM

∂∆u̇
,

G =
∂RM

∂∆p
,

D =
∂RC

∂∆u̇
,

L =
∂RC

∂∆p
.

(A.5)

Unlike operator splitting techniques that time advance velocity first and then

enforce divergence-free condition by solving a Poisson equation, the RBVMS

solves for both at the same time during a single linear solve as implied by Eq.

(A.4). Despite this difference, the sub-block matrix that relates pressure to con-

tinuity (L in Eq. (A.4) that arises from up · ∇q stabilization term in Eq. (A.2)) is

identical to the discrete Laplacian operator that appears in the operator split-

ting technique. Note that this sub-block was zero in the linear system that arises

from the SCVS formulation due to the lack of any stabilization term in our for-

mulation (c.f., Eq. (3.11)). As a consequence of this zero sub-block, the tangent

matrix is ill-conditioned, resulting in a lower rate of convergence for the SCVS

in comparison to the RBVMS.
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