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ABSTRACT 

Improving the efficiency of irrigation control is crucial for sustainable water management. 

Most existing irrigation control systems are based on the control of soil moisture level. However, 

the stem water potential acts as a straightforward measure of plant water status in contrast to the 

soil moisture level, thereby being a key factor in irrigation control. In this work, we propose a data-

driven robust model predictive control (DDRMPC) framework that utilizes stem water potential 

(SWP) as a basis for effective irrigation control of high value-added crops. By linearizing and 

discretizing a nonlinear dynamic model of water dynamics, we develop a state-space model that 

predicts the dynamic state of SWP. In the model, soil, root, and stem are the three compartments 

to describe current water status of the system. In addition, evapotranspiration and precipitation are 

the driving force and the water inlet, respectively. A robust optimal control problem is formulated 

to maintain SWP above a safe level to avoid detrimental effects on crops. To describe the 

uncertainty within prediction errors of evapotranspiration and precipitation, a data-driven approach 

is adopted, which achieves a desirable tradeoff between constraint satisfaction and water saving. 

Meanwhile, it is shown that the proposed DDRMPC ensures both feasibility and stability. A case 

study based on almond tree is carried out to showcase the effectiveness of the DDRMPC strategy 

relative to on-off control, certainty equivalent MPC and robust MPC. In particular, the control of 

SWP through DDRMPC can reduce the water consumption by 7.9% compared with on-off control 

while maintaining zero probability of constraint violation.
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CHAPTER 1 

INTRODUCTION 

In the era of increasing water demand caused by population expansion and economic growth, 

enhancing irrigation efficiency is an important task because 70% of freshwater withdrawals are 

routinely used for agriculture whereby irrigation consumes the most [1]. In addition, water supply 

in some area is also limited because of climate change and drought, thereby further highlighting 

the importance of irrigation efficiency [2]. In addition to saving valuable water resources, 

improving irrigation efficiency can increase the production and crop yield. The higher yield per 

unit of irrigation water, the more profit gained by farmers. Traditional irrigation strategies attempt 

to maintain soil moisture above a certain level by using open-loop or closed-loop control systems 

[3]. The open-loop irrigation strategy follows the planned irrigation schedule according to daily 

weather, soil water-holding capacity, crop species, and the recent irrigated amount. Although such 

a strategy could be easily implementable, it does not capture the state of soil in real-time. On the 

other hand, closed-loop irrigation strategies such as on-off control and model predictive control 

(MPC) adjust the irrigation amount according to the real-time soil status, thus leading to improved 

irrigation efficiency [4]. 

A significant disadvantage of controlling soil moisture is that, growth performance is in fact 

impacted by stem water potential (SWP) other than the soil moisture level. Although for some 

plants, there is a relationship between SWP and soil moisture level because water in a tree is 

absorbed through soil, delay would occur due to the time required for water to move from soil to 

stem. Soil moisture level could also have a large departure from SWP for some plants that have 

strong dependence on atmospheric conditions [5]. Hence, directly controlling SWP would be a 

better approach to avoid these disadvantages and could make irrigation more efficient, especially 
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for some high value-added plants and crops. In order to collect feedback measurements of SWP 

for closed-loop control, a sensor like the micro-tensiometer could be implemented inside the stem 

of a tree [6]. In this case, a closed-loop control system for controlling SWP is thus of special 

interest. 

MPC is an effective strategy among many feedback control approaches that utilizes prediction 

of state evolution to optimize future system behavior under certain constraints and has been well 

adopted in various applications [7-12]. It is also a desirable framework for irrigation control 

because water potential dynamics is slow and the system model incorporates disturbances and 

constraints that can be derived from first principles models. Disturbances in irrigation control are 

mainly related to weather, including precipitation and evapotranspiration. Therefore, weather 

forecast could serve as a helpful tool to predict disturbances, reduce water consumption and 

improve irrigation efficiency. There are several studies that demonstrated the advantages of MPC 

over conventional methods in irrigation control [3, 4, 13]. However, the imperfection of weather 

forecast might make plants suffer from water stress. For example, when weather forecast indicates 

an expected heavy rain tomorrow, MPC may choose not to irrigate today to save water. However, 

it is likely that no rain occurs at all tomorrow. As a consequence, SWP would drop below an 

acceptable level, leading to a reduced crop yield or poor crop quality. Therefore, uncertainty within 

weather forecast error is a major challenge for implementing MPC for effective irrigation control. 

To tackle the uncertainty of weather forecast errors, robust MPC (RMPC) acts as a viable 

option [14]. This approach first uses a bounded uncertainty set to characterize the support of 

uncertainty, and then utilizes RMPC to ensure that SWP will not violate the constraints during the 

control horizon for all weather forecast errors within the uncertainty set. Although RMPC could 

prevent SWP from dropping significantly, it may lead to over-conservative regulation actions 
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because the geometry of uncertainty set fails to compactly capture the distribution of weather 

forecast errors. On the other hand, over-conservative control actions are not favorable, since more 

water consumption is required in this case with reduced efficiency. To reduce the conservatism of 

RMPC, data-driven robust optimization capturing the high-density region of uncertainties in 

decision-making has established itself as an effective approach to monitoring, control, and 

optimization of industrial processes [15], and has also been widely adopted in various applications 

in process operations and control [16-22]. 

Most existing studies on MPC for irrigation control do not consider robustness, given that 

uncertain disturbances could deviate SWP from the optimal condition [3, 23, 24]. RMPC was 

adopted in [4], but the possibility of over-conservatism due to the oversized uncertainty set is not 

considered. The issue of over-conservatism was addressed in [13]. However, controlling soil 

moisture level is not as direct as controlling SWP. Thus, to fill the knowledge gap, the goal of this 

work is to develop a novel RMPC framework for irrigation control that can (a) control SWP to 

prevent plant from water stress and/or crop damage while balancing between irrigation amount 

minimization and controlling the constraint violation; (b) effectively hedge against uncertain 

disturbances from weather forecast errors including precipitation and evapotranspiration errors; 

and (c) leverage the value of historical weather forecast data to reduce over-conservatism.  

In this work, we propose a novel data-driven robust MPC (DDRMPC) framework for 

controlling SWP that minimizes the water consumption and ensures the constraint on SWP not 

being violated by uncertainty of disturbances. The state-space model of water dynamics in soil-

root-plant system is first formulated to describe the evolution of water potentials in the near future 

with precipitation and evapotranspiration forecast being considered. The three compartments, soil, 

root, and stem, describe the water status of the system. Precipitation replenishes water in the soil, 
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which is further absorbed by the root of a tree thereby alleviating water stress. Evapotranspiration 

is the driving force in soil-root-plant system and could lead to tree water stress when 

evapotranspiration is too heavy. Soil, root, and stem can hold water and repel water flow in the 

sense that they can be viewed as “capacitors” or “resistors” in the system. In order to tackle the 

computation burden caused by the nonlinearity of the water dynamics, the nonlinear state-space 

model is further linearized and discretized. In addition, to address the infeasibility issue of 

controlling SWP, constraints on SWP are softened by introducing slack variables. Next, historical 

weather forecast data and historical weather measurement data are collected for the calculation of 

weather forecast errors. Data-driven uncertainty sets are then constructed by adopting support 

vector clustering (SVC) with weighted generalized intersection kernel (WGIK) [25]. The data-

driven uncertainty sets can be seamlessly incorporated into RMPC to alleviate over-conservatism 

and enhance irrigation efficiency. The affine disturbance feedback (ADF) policy [26] is utilized to 

provide tractable approximations of the optimization problem in DDRMPC, which can be solved 

effectively by off-the-shelf solvers. The stability issue of the proposed control scheme is also 

addressed formally. A case study based on real weather data and almond tree water potential in 

Arbuckle, California, USA, is presented to demonstrate the DDRMPC result comparing with on-

off control, certainty equivalence MPC (CEMPC), and RMPC approaches. 

The main contributions of this work are summarized below:  

• A novel DDRMPC framework for irrigation control through SWP capable of handling 

uncertain disturbances of weather forecast errors; 

• A formal stability guarantee of the DDRMPC framework for irrigation control;  

• A real-world case study utilizing historical weather data to control SWP of an almond tree 

located in Arbuckle, California, USA; 
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• Comprehensive comparisons among rule-based control, CEMPC, RMPC, and DDRMPC 

approaches on SWP control. 

Notations and Definitions: ℕ𝑖:𝑗 is the set of consecutive nonnegative integers {𝑖, … , 𝑗}. The p-

norm of a matrix is denoted by ‖⋅‖𝑝 . ⨂  denotes the Kronecker product operator. The m-

dimensional identity matrix is denoted by Im, and 1m denotes the m-dimensional vector with all 

elements being ones.  
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CHAPTER 2 

PRELIMINARIES 

2.1 System description 

Measuring the amount of water in a system is useful to understand the current state of that 

system. The most common way to measure the water status in plant systems is by water potential 

[27]. Water potential is the potential energy of water compared to pure water, of which the water 

potential is assigned to zero. When a plant encounters water stress, its SWP would be more 

negative than normal condition. Therefore, SWP is a measure to quantify the water stress of a plant. 

Most plants obtain water from soil, and the path of water starts from soil and roots to stems. To 

develop a water dynamic model for soil-root-plant system, water flow passing soil, root, and stem 

can be modelled in a way analogous to electrical circuits [27]. Soil, root, and stem can contain 

water and resist water flow such that these compartments serve as either “capacitors” or “resistors” 

in the system. The dynamics of soil water potential can be described by the following nonlinear 

ordinary differential equation (ODE) [28]: 

1 ( )
( )

( ) ( ) ( )


 

  
= − +soil

root soil

root soil soil soil soil soil

d IR t

dt R C C
  (1)  

 

where Ψsoil and Ψroot are water potentials of soil and root, respectively. Csoil is the “capacitance” of 

soil. Rroot is the “resistance” of root. Both Rroot and Csoil are dependent on Ψsoil because their 

properties are described by certain nonlinear functions [29]. The addition of precipitation and 

irrigation rate is denoted by IR, which is the water inflow. The dynamics of root water potential is 

given by 
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1 1
( ) ( )

( )


   


= − + −root

stem root soil root

stem root root soil root

d

dt R C R C   
(2)  

 

where Ψstem is SWP. Rstem is the “resistance” of stem. Croot is the “capacitance” of root. Finally, the 

dynamics of SWP is described as, 

1 ( )
( )


 = − −stem

root stem

stem stem stem

d ET t

dt R C C   
(3)  

 

where Cstem is the “capacitance” of plant stem. The evapotranspiration rate is denoted by ET and 

can be estimated with the Penman-Monteith equation using weather data [28]. Evapotranspiration, 

i.e. the sum of evaporation and plant transpiration from the canopy to the atmosphere, is the driving 

force of the Resistor-Capacitor (RC) circuit-like model, and the evaporation from bare soil or 

vegetation surrounding the tree of interest is omitted. Basically, the variations of 

evapotranspiration follow a daily pattern. After sunrise, air temperature and solar radiation 

increases, and then the plant opens the stomatal valves in its leaves to capture carbon dioxide while 

losing water vapor to the atmosphere. These and other weather factors (e.g. relative humidity and 

wind velocity) and plant characteristics (e.g. growing stage and plant type) all make 

evapotranspiration during the daytime significantly heavier than that at night. By combining (1)-

(3), the ODE model can be represented as, 

( ) ( ) ( ) ( )= + + +x A x x B x B x v B x wwu vu   (4)  

 

where x is the vector of state variables, which consists of water potentials of soil, root, and stem. 

u is the control input, which is the irrigation rate. v is the vector of deterministic disturbances, 

which are evapotranspiration rate and precipitation rate. w is the vector of uncertain disturbances, 
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which are forecast errors of evapotranspiration rate and precipitation rate. 

{𝑨(𝒙), 𝑩𝑢(𝒙), 𝑩𝑣(𝒙), 𝑩𝑤(𝒙)} are system matrices dependent on water potentials, which involve 

nonlinearity, because capacitances and resistances are functions of water potentials. 

The availability of direct measurement of system states is critical in irrigation control. Soil 

water potential measurement has been extensively studied in literature and could be realized by 

many devices [30]. Beyond that, root water potential measurement is more difficult than soil water 

potential measurement and has attracted less attentions. Nevertheless, root water potential could 

still be measured by certain techniques such as using screen-caged thermocouple psychrometers 

[31]. SWP measurement could be realized by using micro-tensiometer or a more conventional way 

of pressure chamber [6, 32]. In this work, all system states are assumed to be measurable directly 

thanks to these existing sensors and devices. Therefore, the need to reconstruct current state by 

building state observers is alleviated.  

 

2.2 On-off control 

Most modern irrigation systems use open-loop control by setting up the irrigation at certain 

time intervals scheduled in advance [3]. Therefore, there is no feedback on water deficits or 

surpluses. In contrast, closed-loop systems could collect information on plant water status and 

make response. The on-off control strategy is one of the simplest closed-loop irrigation control 

strategies with widespread usage in practice. The on-off control strategy of SWP adjusts irrigation 

amount once the difference between SWP and the minimum acceptable SWP Ψmin is detected to 

be less than a threshold δ. When the condition is satisfied, controller applies a constant amount of 

water uon to soil; otherwise, there is no irrigation action at all. In this way, a threshold δ serves as 

a tuning parameter to prevent SWP from dropping below Ψmin, where plants are considered to 
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suffer from water stress and the crop growth and quality could be affected. The control law can be 

expressed as [33] 

, min

, min

,   if  

0,      if  

  

  

− 
= 

− 

on stem k

k

stem k

u
u

 (5)  

 

Even though on-off control has been an effective strategy in soil moisture control, there is a 

significant challenge in controlling SWP due to a large settling-time of plant dynamics. Because 

there is a significant time delay for water to flow from soil into tree, water potential could still tend 

to decline at the beginning of irrigation. 
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CHAPTER 3 

THE PROPOSED DDRMPC METHOD 

MPC is a control strategy that optimizes the control objectives over a prediction horizon while 

respecting the constraints set for state variables and input variables. One of its characteristics is 

the capability of handling effects of disturbances and of controlling inputs in the near future. After 

solving the optimization problem for the current state, control inputs for current state will be 

implemented and the same procedure again will be repeated at the next sampling instance. MPC 

could be useful in our scenario, because the evapotranspiration rate and the precipitation rate in 

the near future could be forecasted by collecting sufficient amount of data from the weather station. 

In addition, the large settling-time issue in on-off control strategy of SWP can be effectively 

addressed by implementing MPC because the time for water to be absorbed from soil to stem is 

described implicitly by the prediction of future system states, provided that the prediction horizon 

is sufficiently long for the time-delay. However, the nonlinearity of the soil-root-plant water 

dynamic model is an issue for solving the optimization problem that needs to be handled. 

 

3.1 Linearization and discretization of model 

Computational efficiency becomes a critical concern when it comes to solving the nonlinear 

optimization problem in DDRMPC because the system is a nonlinear ODE model. Some studies 

show that certain types of nonlinear robust optimization problems could be solved by off-the-shelf 

solvers after reformulations; however, computation burden remains high when the dimension of 

the uncertainty is high [34, 35]. The high dimensionality of uncertainties in the present study is 

resulted from the uncertainty of forecast errors considered throughout the entire prediction horizon 

H. To address the nonlinearity issue, we first linearize (4) at the point (x0, u0, v0, w0) as a pragmatic 
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approach, where x0 are the initial water potentials, and the system model can be compactly 

represented by a linearized discrete-time state-space model by using Euler’s method 

1 , , ,+ = + + + +x A x B B v B w Ck d k u d k v d k w d k du  (6)  

 

where 𝒙𝑘 ∈ ℝ𝑛𝑥 , 𝑢𝑘 ∈ ℝ𝑛𝑢 , 𝒗𝑘 ∈ ℝ𝑛𝑣 , 𝒘𝑘 ∈ ℝ𝑛𝑤 , k is the time index, and 

{𝑨𝑑 , 𝑩𝑢,𝑑, 𝑩𝑣,𝑑, 𝑩𝑤,𝑑, 𝑪𝑑} are system matrices derived from (4) without much difficulties.  

The state-space model can then be formulated into the following compact expression given a 

prediction horizon H: 

0= + + + +x u v wx A B u B v B w C  (7)  

 

where 𝐱 = [𝑥1
𝑇 … 𝑥𝐻

𝑇 ]𝑇 , 𝐮 = [𝑢0
𝑇 … 𝑢𝐻−1

𝑇 ]𝑇 , 𝐯 = [𝑣0
𝑇 … 𝑣𝐻−1

𝑇 ]𝑇 , 𝐰 =

[𝑤0
𝑇 … 𝑤𝐻−1

𝑇 ]𝑇  are vectors for the state-space model in compact form. System matrices in 

compact form are given by 

, ,

2

, , , ,

1 2 1 2

, , , , , ,

,

, ,

1 2

, ,

0 0 0 0

0 0
     

0 0

0

− − − −

− −

    
    
    = =
    
    
        

u d v dd

d u d u d d v d v dd

H H H HH

d u d d u d u d d v d d v d v dd

w d

d w d w d

H H

d w d d w

B BA

A B B A B BA

A B A B B A B A B BA

B

A B B

A B A B

u v

w

A , B , B = ,

B =

2

,

  

   
   
   
   
   
    

d

d

H

d w d d

C

C

B C

, C =

 (8)  

 

The linearized discrete-time state-space model in (7) is now ready to be integrated in the MPC 

framework. 
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3.2 CEMPC 

CEMPC, which is the simplest MPC strategy, handles disturbances by replacing them by some 

predicted values and does not explicitly consider uncertainty in the MPC optimization formulation. 

In our MPC framework for irrigation control, CEMPC simply replaces disturbances by the values 

of weather forecast. In this way, uncertain disturbances 𝒘 in the problem, viz. the forecast errors, 

are neglected. The MPC problem is therefore simplified to a deterministic control problem. 

Although CEMPC is a suboptimal policy due to the presence of uncertain disturbances, it still finds 

widespread applications due to its implementation simplicity [36, 37]. 

The irrigation control goal is to minimize total water consumption. Therefore, the objective 

function can be intuitively defined as 

1

0

−

=

=
H

i

i

J u  (9)  

 

where H is the control horizon.  

Among three system states (i.e. water potentials of soil, root, and stem), only SWP is 

controlled as the primary objective. Hence, constraints on system states are that SWP should be 

above a minimum acceptable water potential Ψmin to prevent water stress for all SWP in a given 

prediction horizon H. However, sometimes hard constraints could result in infeasible solutions due 

to disturbances or limitations of control inputs. In this case, introducing a slack variable ε allows 

constraints to be slightly violated in order to get a consistently feasible solution for the optimization 

problem, but the penalty of the violation should be incorporated in the objective function to 

minimize the violation [38]. In this work, the slack variable is added to soften the constraint on 

SWP. The slack variable in the objective function is squared to punish harder if SWP violates the 
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constraint more. The state constraints are now defined as 

, min 1:,      − stem k Hk  (10) 

 

where 
, stem k

 is SWP at k-th time step, 
min is the minimum acceptable SWP, and ε is the 

nonnegative slack variable. After softening system state constraints, the objective function (9) 

becomes 

1
2

0


−

=

= +
H

i

i

J u   (11) 

 

where ρ is the constraint violation penalty weight balancing between two conflicting objectives. 

Besides constraints on SWP, constraints on control input should also be considered because there 

is a limitation for control input. The control input at k-th time step is bounded by, 

max 0: 10 ,   −  k Hu u k   (12) 

 

where umax is the maximum of the irrigation rate when a faucet is at the full-on position, and the 

minimum is zero. Unlike state system constraints, softening control input constraints is 

unreasonable because the maximum and minimum of irrigation rate could not be violated. Thus, 

control input constraints are inevitably hard. Eq. (10) and (12) can then be combined in succinct 

expressions as 

,   ,  0 +  x x u uG x g ε G u g ε   (13) 

 

where 𝐆𝑥 = 𝑰𝐻⨂[−1 0 0] and 𝐠𝑥 = 𝟏𝐻⨂[−𝜓𝑚𝑖𝑛 0 0]𝑇 are coefficient matrix and vector 

in water potential constraints, 𝐆𝑢 = 𝑰𝐻⨂[−1 1]𝑇  and 𝐠𝑢 = 𝟏𝐻⨂[0 𝑢𝑚𝑎𝑥]𝑇  are coefficient 
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matrix and vector in irrigation rate constraints, and ε  is the vector of nonnegative slack variables. 

The deterministic optimization problem of the CEMPC framework is formulated as 

1
2

, 
0

0

min  

s.t.  

       

       

       0




−

=

= +

= + + +

 +






H

i

i

x x

u u

J u

x

u

u vx A B u B v C

G x g ε

G u g

ε

  (14) 

 

After the prediction horizon H is initialized, the procedure of CEMPC framework at each time 

step k is summarized as follows: 

• Step 1. Collect the current water potentials xk. 

• Step 2. Linearize and discretize state-space model at xk to obtain the linearized discrete-

time state-space model (7). 

• Step 3. Solve the optimization problem (14) to obtain control input sequence u. 

• Step 4. Implement the first control input u0 to the system. 

 

3.3 RMPC 

Forecast errors of weather forecast need to be considered and are regarded as uncertain 

disturbances in our RMPC problem. Forecast errors in this work consist of precipitation and 

evapotranspiration, and their distributions can be assumed to be similar within a few years when 

forecast accuracy does not have large improvement. Hence, the forecast error distributions of a 

specific year can be captured by the empirical distributions in the previous year. Historical 

evapotranspiration forecast errors could be calculated by 𝑤𝐸𝑇 = 𝑣̃𝐸𝑇 − 𝑣𝐸𝑇  where 𝑣̃𝐸𝑇  is the 
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historical evapotranspiration measurement, and 𝑣𝐸𝑇  is the historical forecast for 

evapotranspiration. Similarly, historical precipitation forecast errors could be calculated by 𝑤𝑃𝑅 =

𝑣̃𝑃𝑅 − 𝑣𝑃𝑅 where 𝑣̃𝑃𝑅 is the historical precipitation measurement, and 𝑣𝑃𝑅 is the historical forecast 

for precipitation. 

RMPC guarantees constraint satisfaction for the worst case of the bounded disturbances [14]. 

Because MPC typically operates in a receding horizon fashion, the sequent control actions are 

essentially dependent on previous uncertainty, leading to an infinite-dimensional optimization 

problem. In order to ensure the tractability of the RMPC problem, ADF policy is adopted, and 

control input uk is parameterized according to the past disturbances [26]. The past disturbance 

sequence w could be calculated as the difference between the predicted and actual states at each 

step. The control inputs are then parameterized as 

+π(w) = h Mw  (15) 

 

where 

0

1,01

1,0 1, 21

,   

− − −−

  
  
  
  
  

   H H HH

h

Mh

M Mh

0 0 0

0 0
h = M =

0

  (16) 

 

become decision variables of the control problem. The lower triangular structure of M could assure 

the causality of ADF policy. 

The optimization problem in RMPC is shown as follows, which is a “robustified” version of 

(14): 
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( )

 
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min  

s.t.  ,

       ,   
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
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+ + + +  +    

+   
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i

x x

u u

J h

x

h M ε

u w u vG A B M + B w B h B v C g ε w

G Mw h g w

ε

  (17) 

 

which be solved efficiently with the ADF policy adopted. In robust optimization and RMPC, the 

budgeted uncertainty set has been mostly used [39], 

 
1

 = w w w   (18) 

 

where Ω is the budget parameter that is used to adjust the conservatism. A larger value of Ω implies 

a bigger size of the uncertainty set.  However, the generic budgeted set cannot accurately capture 

the uncertainty distribution and is thus prone to over-conservatism [40]. In the following section, 

we discuss a more sophisticated strategy for handling uncertainty in RMPC.  

 

3.4 Uncertainty sets formulation based on data-driven approach 

The uncertain disturbance w, as an important ingredient in DDRMPC [40], can be 

characterized by an uncertainty set . There are several data-driven approaches to uncertainty 

set construction, including SVC with WGIK [25, 41], statistical hypothesis tests [40], Dirichlet 

process mixture model [42], copula [43], principal component analysis with kernel density 

estimation [22], probability density contours [44], to name just a few. These mentioned approaches 

can all serve as the uncertainty set basic ingredients for DDRMPC. Furthermore, the resultant 

uncertainty set is a polytope that can be parameterized as  ( ) = D fw w . 
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Uncertainty sets of evapotranspiration and precipitation in this work are formed by SVC with 

WGIK approach. The minimal sphere radius capturing data could be solved by SVC approach, 

and WGIK proposed in [25] is implemented when solving the dual form of SVC optimization 

problem, which is well suited for robust optimization due to its piecewise-linearity. By following 

similar approaches in [13, 45], uncertainty set for evapotranspiration is formed as 

( )

1
SV

( ) 


 
 = −  

 
ET

i

ET ET i ET ET ET

i

Dww w Q w w   (19) 

 

where QET is the weighting matrix obtained from the covariance matrix of 𝐰𝐸𝑇. Model parameters 

 i  and uncertainty set parameters θ are determined after solving the dual form of SVC using 

WGIK. Since (19) is a polytope, solving the resultant robust optimization problem could be 

accomplished without difficulties. The details of constructing uncertainty set with SVC and WGIK 

is introduced in the Appendix. 

The formulation of uncertainty set to describe precipitation is slightly different from the 

previous one because precipitation is always nonnegative. Therefore, precipitation forecast errors 

have dependency on the precipitation forecast value. For example, when precipitation forecast is 

0mm for the next hour, precipitation forecast error can only be nonnegative. However, when 

precipitation forecast is 10mm for the next hour, precipitation forecast error could be -10mm as 

the lowest, which represents no rainfall in the end. In addition, the distribution of precipitation 

forecast errors is asymmetric around zero. To handle asymmetry in robust optimization, the 

approach in [45] is adopted. The technique is to decompose the uncertainty into forward deviation 

+

PRw  and backward deviation −

PRw , shown as: 

,+ −= −PR PR PRw Ew Fw   (20) 
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,   0 , 1+ − + −= −   
PRPR PR PR PR PRDww w w w w   (21) 

 

where 
1diag{ ,..., }= He eE  and 

1diag{ ,..., }= Hf fF contain scaling parameters. The difference 

between E and F helps capturing the asymmetry in 
PRw . 

PRw  can be regarded as the “primitive 

uncertainty” and is governed by a homogeneous distribution that can be described by an SVC-

based uncertainty set: 

( )

1
SV

( ) 


 
= −  
 

PR

i

PR i PR PR PR

i

Dw w Q w w   (22) 

 

In this way, the SVC-based precipitation uncertainty set can be shown as 

                         

,   0 , 1

+ −

+ − + −

 = − 
=  

−     
PR

PR

PR PR PR

PR

PR PR PR PR

D
D

w

w

w Ew Fw
w

w w w w
  (23) 

 

3.5 DDRMPC 

The optimization problem of DDRMPC is based on the uncertainty set captured by SVC with 

WGIK discussed in the previous section to reduce over-conservatism. To ensure the tractability of 

the DDRMPC problem, ADF policy is adopted and the optimization problem is presented as: 
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0

0
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G Mw h g w

ε

  (24) 

 

The optimization problem can now be converted into a convex optimization problem by using 
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the robust counterpart [46]. The worst-case maximization problem on the SVC-based precipitation 

uncertainty set is given by, 

,
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1
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max

s.t.  ( )
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This problem can be reformulated into its dual problem [13] 
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  (26) 

 

where μi, λi, r, s, η are the Lagrange multipliers. Following the similar line, the worst-case 

performance in evapotranspiration uncertainty set can also be found from the dual problem. Hence, 

constraints in (24) can be reconstructed into multiple linear inequalities and equalities. Since the 

objective function in (24) is convex, one can reformulate the original DDRMPC optimization 

problem into a convex problem that can be solved by off-the-shelf solvers efficiently. 

For hard-constrained MPC, the feasibility cannot be always guaranteed, which means that the 

controller may drive system states to a region where the optimal control problem has no feasible 

solutions. Therefore, it is important in practice to guarantee that the control problem remains 

feasible all the time. Obviously, the optimization problem (24) underlying the proposed soft-

constrained DDRMPC is always feasible. When the hard-constrained robust control problem is 
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infeasible, it implies that constraints on system states are not satisfied even when control inputs 

have been pushed to the limit. The introduction of slack variables always preserves the feasibility 

of the problem. The feasibility of the second robust constraint is also guaranteed because one could 

simply choose 𝐌 = 𝟎 and h satisfying 𝐆𝑢𝐡 ≤ 𝐠𝑢, ensuring the feasibility of the problem.  

Another issue is the stability of the proposed soft-constrained DDRMPC. It is known that the 

stability of stochastic system (6) relies on the system matrix A. When A is Schur-stable, the mean-

square stability  
0

2
sup k
k

x


   can be ensured with bounded inputs and bounded covariance of 

w [47]. If there is at least one eigenvalue of A outside the unit circle, then the mean-square stability 

cannot be ensured. The only case that needs to be tackled is a Lyapunov stable matrix A. In this 

case, it suffices to consider an orthogonal A, i.e. ATA = I [48]. Towards this goal, we first define 

𝑋𝑛𝑜𝑚 as the set of initially feasible states for nominal DDRMPC problem, 

𝑋𝑛𝑜𝑚 = {𝑥0|∃h such that (24) is feasible and ε = 0}. 

Some standing assumptions are then made as follows. 

Assumption 1. The stochastic process {𝑤𝑘}𝑘∈ℕ0
 satisfies  

 4

4sup =  kw C  (27) 

 

Assumption 2. For the maximal control input umax in DDRMPC controller, there exists a constant 

𝑟 > ‖𝐵𝑤‖2 ∙ sup
kϵℕ0

𝔼 {‖𝑤𝑘‖} such that 

max ,   + −  −   nom

k k kuAx B u x r x X   (28) 

 

Notice that different from generic robust control techniques, we do not place a bounded assumption 

upon 𝑤𝑘 . This is because 𝑤𝑘  represents the prediction error, which depends on a particular 
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prediction model and is likely to be excessively large. Rather, Assumption 1 requires that the fourth 

moment of {𝑤𝑘}𝑘∈ℕ0
 is finite, which is not restrictive. Assumption 2 postulates that the controller 

is capable of steering the nominal system states towards origin. This can be interpreted as the 

improvement, as measured by r, must overcome the disturbance effect by exceeding the largest 

expectation of ‖𝐵𝑤‖2 ∙ ‖𝑤𝑘‖. The constraint in Assumption 2 is not required to be satisfied 

throughout the whole time, but it must be satisfied when ‖𝑥𝑘‖ is large and the problem in (24) 

without soft-constraints is infeasible.  

 

Lemma 1. [49] Assume {𝜂𝑘}𝑘∈ℕ0
 is a sequence of random variables upper bounded by 𝜂𝑚𝑎𝑥, and 

let {𝜁𝑘}𝑘∈ℕ0
= {𝜂𝑚𝑎𝑥 − 𝜂𝑘}𝑘∈ℕ0

, which is a sequence of nonnegative random variables on some 

probability space (Δ, ℱ, ℙ) and can be regarded as a stochastic process. Let  {ℱ𝑘}𝑘∈ℕ0
 be any 

filtration to which {𝜁𝑘}𝑘∈ℕ0
 is adapted. Suppose that there exist constants 𝑏 > 0, and 𝑍, 𝑀 < ∞, 

such that 𝜁0 < 𝑍, and for all k, 

   1  on the event , and+ −  − k k k kb Zζ ζ ζ  (29) 

 4

01 ,...,+ − k k k Mζ ζ ζ ζ   (30) 

 

Then there exists a constant 𝛾 = 𝛾(𝑏, 𝑍, 𝑀) > 0 such that sup
kϵℕ0

𝔼 {𝜁𝑘
2} < 𝛾.  

Details of the proof can be found in [49] and are omitted here. Now we are ready to establish 

the stability guarantee. 

 

Theorem 1. (Mean-Square Stability) Suppose that admissible control inputs are bounded 

sup
hϵ𝐹𝑢

‖ℎ‖ = 𝑟ℎ < ∞, and Assumptions 1 and 2 are satisfied, then for all initial states 𝑥0 there always 
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exists a constant 𝛾 > 0 such that the closed-loop system admits the mean-square boundedness: 

 
0

2
sup 


=  k
k

x    (31) 

 

Proof. The condition (29) is to be verified first. A non-negative stochastic process is defined as 

{𝜁𝑘 = ‖𝑥𝑘‖}kϵℕ0
. Since 𝑋𝐻

𝐷𝐹 is bounded, we set 𝑍 = sup
𝑥ϵXnom

‖𝑥‖ < ∞. On the event 𝜁𝑘 ≥ 𝑍,  we 

have 
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(32)
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Meanwhile, because ‖𝑦𝑘‖2 = 𝑦𝑘
𝑇𝑦𝑘 = 𝑥𝑘

𝑇𝐴𝑘(𝐴𝑇)𝑘𝑥𝑘 = 𝑥𝑘
𝑇𝑥𝑘 = ‖𝑥𝑘‖2 , we have ‖𝑦𝑘‖ =

‖𝑥𝑘‖. According to the triangle inequality −‖𝑦𝑘+1 − 𝑦𝑘‖ ≤ ‖𝑦𝑘+1‖ − ‖𝑦𝑘‖ ≤ ‖𝑦𝑘+1 − 𝑦𝑘‖, it 

holds that |‖𝑦𝑘+1‖ − ‖𝑦𝑘‖|4 ≤ ‖𝑦𝑘+1 − 𝑦𝑘‖4, which indicates that: 
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  (34) 

 

Therefore, one obtains 𝔼{|𝜁𝑘+1 − 𝜁𝑘|4|𝜁0, … 𝜁𝑘} ≤ 𝔼{(‖𝐵𝑢‖2 ∙ 𝑟ℎ + ‖𝐵𝑤‖2 ∙ ‖𝑤𝑘‖)4} . 

Because of the boundedness of the fourth moment of ‖𝑤𝑘‖, it can be easily deduced that there 

exists a constant 𝑀 = 𝑀(‖𝐵𝑢‖2, 𝑟ℎ, ‖𝐵𝑤‖2, 𝐶4) > 0  such that 𝔼{(‖𝐵𝑢‖2 ∙ 𝑟ℎ + ‖𝐵𝑤‖2 ∙

‖𝑤𝑘‖)4} ≤ 𝑀, which yields the condition (30). Now all constants {𝑏, 𝑍, 𝑀} are well-defined. Note 

that 𝑥0 implies 𝜁0 = ‖𝑥0‖ < 𝑍 . Therefore, in the light of Lemma 1, there exists a constant 𝛾 =

𝛾(𝑏, 𝑍, 𝑀) > 0 such that sup
kϵℕ0

𝔼 {‖𝑥𝑘‖2} = sup
kϵℕ0

𝔼 {𝜁𝑘
2} < 𝛾 . This completes the proof. □ 

 

Figure 1 shows the architecture of the DDRMPC framework in the SWP control problem. 

First, uncertainty sets for forecast errors are constructed offline from the difference between 

historical weather measurement and historical weather forecast. Next, for each time step k, 

DDRMPC solves the optimization problem (24) given current water potentials and weather 

forecast data in prediction horizon H. Afterwards, only the control input in the first time step is 

implemented to the soil-root-plant system, and this procedure is repeated for each time step, which 

is also known as receding horizon control [50, 51]. 
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Figure 1. Schematic of DDRMPC implementation in tree water potential control. 
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CHAPTER 4 

CASE STUDY ON SIMULATED ALMOND TREE 

4.1 Problem description 

In this section, we perform closed-loop simulation case studies based on weather data 

collected at Arbuckle, California, USA. For a comprehensive comparison, on-off control, CEMPC, 

RMPC, and DDRMPC are implemented. The irrigation control goal is to minimize water usage 

while maintaining the SWP above -15 bar, which is a critical value indicating moderate stress and 

could stop plant growth for almond trees [52]. Hence, the constraint for SWP, Ψmin, is set to -15 

bar for all control strategies. For the control input constraint, umax is set as 0.0014 kg/s.  

In the case study, the threshold δ is set as -12 bar for on-off control, which is the minimum 

value that can achieve zero violation. This could be determined according to Figure 2 and 3. 

Among all thresholds that result in zero violation shown in Figure 3, on-off control with the 

threshold δ being -12 bar and the irrigation rate uon at 0.0012 kg/s consumes the least cumulative 

irrigation. These values are therefore chosen as an appropriate threshold and irrigation rate for on-

off control to compare with other control strategies. 

 

 

Figure 2. Heat map of cumulative irrigation amount (kg) with different thresholds and 

irrigation rates in on-off control. 
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Figure 3. Heat map of violation percentage (%) with different thresholds and irrigation rates 

in on-off control. 

 

A series of values are attempted for budget parameter Ω ∈ {0, 10−5, 5 × 10−5, 10−4} in 

RMPC to investigate the tradeoff between robustness and performance. When Ω = 0, RMPC 

provides no allowance for robustness and will be the same as CEMPC. When Ω = 10−4, RMPC 

has zero violation percentage so the value is chosen for RMPC to compare with other control 

strategies. Similarly, a set of penalty weights 𝜌 ∈ {10−6, 10−5, 10−4, 10−3} are used in DDRMPC, 

and 𝜌 = 10−4  gives zero violation percentage for DDRMPC. Since CEMPC, RMPC, and 

DDRMPC all contain penalty weight in the optimization problems, the same value of penalty 

weight 𝜌 = 10−4 is shared over these control strategies such that a fair comparison could be made. 

Uncertainty is tackled in this case by collecting both historical weather data and historical 

weather forecast data from March to June in both 2016 and 2017 from [53]. The length of each 

time step is set as 6 hours, and the prediction horizon H has 4 intervals, which means that weather 

forecast data looking 24-hour ahead are collected. Uncertainty sets for evapotranspiration and 

precipitation can be obtained from the data in 2016, which contain 489 data points with 4 intervals 

for both uncertainty sets. At each instance, the robust control problem is formulated based on the 
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linearized model of the nonlinear dynamical system (7). Evapotranspiration rate ET is estimated 

by the simple model in [54] 

0.50.00023 ( 17.8)=    +cET K RA TD T   (35) 

 

where Kc is an evapotranspiration coefficient that Alta fescue grass is taken as reference crop [54]. 

RA is the extraterrestrial solar radiation. TD stands for annual average daily temperature difference. 

T is the mean temperature in degree Celcius. To calculate RA for every 6 hours, the distribution of 

solar radiation in each day can be estimated according to latitude and the day of the year [55]. By 

taking reference evapotranspiration and almond tree evapotranspiration coefficient from [56], the 

almond tree evapotranspiration amount can be estimated. This estimation model is merely a simple 

example to estimate evapotranspiration by using temperature and extraterrestrial solar radiation. 

Indeed, other factors such as wind speed, relative humidity, and cloud cover could be further 

utilized to enhance prediction accuracy [57-59]. The control problems in the case study are solved 

by YALMIP toolbox [60]. Table 1 reports the computational complexities of solving optimization 

problems in CEMPC, RMPC, and DDRMPC. DDRMPC is significantly more complicated than 

CEMPC and RMPC because of the Lagrange multipliers introduced to transform the infinite-

dimensional problem into its robust counterpart. Nevertheless, the DDRMPC optimization 

problem could still be calculated rapidly due to constraints and inequalities being all linear.  
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Table 1. Comparison of computational performance between CEMPC, RMPC, and DDRMPC 

in terms of number of variables, number of constraints, and average CPU time. 

Criteria 

Control Strategies 

CEMPC RMPC DDRMPC 

Number of Variables 17 53 2197 

Number of Constraints 21 77 2949 

Average CPU Time (s) 0.19 0.21 0.58 

 

4.2 Performance criteria 

Total water consumption is an important criterion to evaluate the control performance. 

Besides water usage, the length of total time when the water potential constraint is violated may 

also cause concerns for the health and productivity of trees. Crops might not grow well or may 

even be damaged if SWP is below -15 bar. To evaluate this deviation quantitatively, we calculate 

the percentage of time that SWP drops under -15 bar. We note that the time frequency of water 

potential constraint violation could not accurately reveal the severity of poor control performance. 

Even when the SWP is below -15 bar for the same length of time, the water potential that is even 

more negative will be more harmful to the tree. Therefore, the third performance criterion we 

consider is the integral of deviation in water potential over time, which is the area below the 

constraint. Similar to thermal comfort violation in the building climate control presented in [61], 

SWP violation amount is calculated as the area below -15 bar, which is described by  

minmax( ,0)− k

k

x x  (36) 

 

There are more criteria that can be considered to evaluate the performance such as crop qualities 
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or amount of runoff flow, but some might require professional knowledge in plant biology and is 

beyond the scope of this work.  

 

4.3 Results and discussion 

Figure 4 shows both daily irrigation amount and cumulative irrigation amount for on-off 

control, RMPC, and DDRMPC. We note that there is a significant difference of daily irrigation 

amount between the three control strategies. For instance, RMPC is the only control strategy that 

irrigates on day 28, but it does not irrigate on day 18 when the two other strategies choose to 

irrigate. Despite the differences of daily irrigation decisions between on-off control, RMPC, and 

DDRMPC, cumulative irrigation amounts of the three control strategies are rather similar. Note 

that DDRMPC consumes the least amount of water while on-off control irrigates the most. The 

result confirms the advantage of utilizing data of weather forecast errors to improve irrigation 

efficiency. Furthermore, the fact that RMPC consumes more irrigation amount than DDRMC 

indicates that DDRMPC could successfully alleviate over-conservatism. 
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Figure 4. Daily and cumulative irrigation amount results under on-off control, RMPC, and 

DDRMPC. 

 

Figures 5 and 6 present the water potential dynamic profiles of each control strategy in March 

and April. The performance of CEMPC and DDRMPC approach the limit of mild stress, which is 

-15 bar. When SWP stays below -15 bar, an almond tree is under moderate stress and plant growth 

may stop. However, SWP controlled by CEMPC violates the constraint occasionally, while 

DDRMPC does not violate it at all. This is because CEMPC neglects weather forecast errors; when 

weather forecast error is significant (e.g., less precipitation than forecasted or larger 

evapotranspiration than forecasted), SWP under CEMPC would drop below -15 bar and could be 

harmful to almond tree growth and almond yield. Figures 5 and 6 also show that on-off control 

fluctuates more intensively than the other three strategies. This characteristic is mainly due to the 

inflexibility of on-off control, which could only irrigate at a constant rate, 0.0012 kg/s, or does not 
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irrigate for the entire time step. Therefore, overshooting is more likely to occur when on-off control 

is implemented. Another factor is that on-off control in this work does not utilize weather forecast. 

As a result, it is possible that when SWP drops to the threshold for on-off controller to trigger the 

irrigation action, it starts to rain, which leads to unnecessary water application. As shown in 

Figures 5 and 6, control profiles of RMPC and DDRMPC show similar trends and no constraint 

violation occurs for both strategies. The major difference is that the control profile of DDRMPC 

is much closer to the limit, -15 bar. This result shows that the data-driven uncertainty sets play a 

crucial role in reducing conservatism while maintaining zero constraint violation. 

 

 

Figure 5. Stem water potential dynamic profiles in March under on-off control, CEMPC, 

RMPC, and DDRMPC. 
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Figure 6. Stem water potential dynamic profiles in April under on-off control, CEMPC, 

RMPC, and DDRMPC. 

 

Table 2 reports the irrigation control results of on-off control, CEMPC, RMPC, and DDRMPC 

in terms of three performance criteria. All control strategies except for CEMPC achieve zero 

constraint violation. Among three control strategies without constraint violations, DDRMPC 

consumes the least amount of water, while on-off control consumes the most irrigation amount. 

The reason is that DDRMPC integrates weather forecast data and information into controller 

design, but on-off control does not account for any weather forecast information. On the other 

hand, CEMPC makes good use of the weather forecast such that it could save water if a rain would 

be expected in the near future. However, CEMPC leads to some constraint violations because 

errors always exist in weather forecast.  
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Table 2. Comparison of performance results between on-off control, CEMPC, RMPC, and 

DDRMPC in terms of cumulative irrigation amount, violation percentage, and violation amount. 

Criteria 

Control Strategies 

On-off CEMPC RMPC DDRMPC 

Cumulative Irrigation Amount (kg) 404.3 349.4 387.2 372.1 

Violation Percentage (%) 0 14.5 0 0 

Violation Amount (bar-hr) 0 249.5 0 0 

 

To quantify how the penalty weight ρ in the objective function would affect the control result, 

sensitivity analysis on penalty weight is conducted. Five different values of penalty weight from 

10-4 to 104 are presented in Table 3. When penalty weight increases, objective function would 

penalize violation more heavily and lead to more conservative result. Cumulative irrigation amount 

would increase to avoid any constraint violations, whereas violation percentage and violation 

amount would decrease. However, there is a limit for CEMPC to avoid constraint violation, 

meaning that CEMPC could not achieve zero violation percentage even though penalty weight has 

been set to a very large value such as 104. The reason is that CEMPC ignores the uncertainty of 

forecast error. Under the situation where the SWP is on the verge of violating the constraint, if 

there is a slight forecast error, the SWP would violate the constraint inevitably. 

 

Table 3. Sensitivity analysis on penalty weight ρ. 

Criteria 

Penalty Weight ρ 

10-4 10-3 10-2 10-1 104 

Cumulative Irrigation Amount (kg) 349.4 372.1 383.3 384.2 384.3 

Violation Percentage (%) 14.58 4.58 3.75 3.75 1.85 

Violation Amount (bar-hr) 249.45 25.22 15.47 14.59 14.50 
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Figure 7. Stem water potential dynamic profiles in March under on-off control, SP tracking 

MPC, RMPC, and DDRMPC. 

 

Table 4. Comparison of performance results between on-off control, SP tracking MPC, RMPC, 

and DDRMPC in terms of cumulative irrigation amount, violation percentage, and violation 

amount. 

Criteria 

Control Strategies 

On-off SP Tracking MPC RMPC DDRMPC 

Cumulative Irrigation Amount (kg) 404.3 392.3 387.2 372.1 

Violation Percentage (%) 0 0 0 0 

Violation Amount (bar-hr) 0 0 0 0 

 

Because the violation percentage of CEMPC could not achieve zero by simply adjusting the 

value of weight penalty, it would not be fair to compare on-off control with CEMPC. Here, we 
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further implement a control strategy, set-point (SP) tracking MPC, on controlling SWP. SP 

tracking MPC is similar to CEMPC, but the difference is that SP tracking MPC tunes the SP so 

that when the SWP is below the SP due to forecast errors, there is still a margin from the constraint. 

The SP is chosen as -13 bar after the tuning. The control profile and the control result of SP tracking 

MPC are presented and compared with on-off control, RMPC, and DDRMPC in Figure 7 and 

Table 4. Unlike CEMPC, SP tracking MPC successfully achieves zero violation percentage, and 

now it is fair to compare on-off control with SP tracking MPC. SP tracking MPC performs better 

than on-off control but worse than RMPC and DDRMPC. This is because the cumulative irrigation 

amount for SP tracking MPC is less than on-off control but more than RMPC and DDRMPC. 

The advantages of DDRMPC are demonstrated through these comparisons. DDRMPC 

consumes the least amount of water among those control strategies with zero constraint violation. 

In addition, DDRMPC does not need as much tuning as on-off control to achieve zero violation. 

Hence, DDRMPC could exploit the data and lead to a desirable balance between saving water and 

avoiding water potential violation. 

 

  



 

 
36 

CHAPTER 4 

CONCLUSION 

In this work, we proposed a DDRMPC framework that could effectively control SWP under 

the uncertainty of weather forecast errors. Instead of controlling soil moisture level, irrigation 

control based on the water potential inside a tree became a possible method. A state-space model 

that could capture water dynamics in soil-root-plant system was first formulated. Soil, root, and 

stem were the three compartments to describe water status of the system. Precipitation in the 

system was the water inflow, and evapotranspiration was the driving force in the system. Soil, root, 

and stem also served as “capacitors” or “resistors” in the system. Next, the state-space model was 

linearized to reduce computation burden caused by nonlinear robust optimization. To avoid SWP 

from dropping to the level indicating moderate water stress for a plant, a robust optimal control 

problem was formulated. SVC approach with WGIK was adopted to describe the uncertainty 

within evapotranspiration and precipitation forecast errors. Optimal irrigation decisions balancing 

between irrigation amount and constraint satisfaction could then be determined by solving the 

DDRMPC optimization problem at each time step. The stability issue was also formally addressed. 

From the simulation results of the case study on almond trees, it was shown that the proposed 

DDRMPC framework followed the diurnal evapotranspiration pattern, and that DDRMPC 

outperformed on-off control, CEMPC, and RMPC due to its ability to capture uncertainties in 

weather forecast errors. 
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APPENDIX 

S1. Support vector clustering with weighted generalized intersection kernel 

SVC is an unsupervised kernel learning approach that finds a sphere with minimal radius to 

capture the majority of data samples. A nonlinear mapping function 𝝓(𝐰) is used to map data 

samples w from a set 𝒟 to a high-dimensional features space. The optimization problem to find 

the sphere is shown as: 
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where c is the center point of the sphere, R is the radius of the sphere, and {𝜉𝑖} are slack variables. 

Slack variables are introduced here to allow some outliers not to be enclosed by the sphere. The 

violations of the outliers are penalized in objective function, and the level of penalization can be 

adjusted by the regularization parameter 𝜐. The dual problem of (37) is shown as: 
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where 𝜶 are Lagrange multipliers, and 𝐾(𝐰(𝑖), 𝐰(𝑗)) = 𝝓(𝐰(𝑖))𝑇𝝓(𝐰(𝑖)) is the kernel function. 

All data samples can be classified into interior points, boundary points, and outliers according to 

their locations. If a data sample is an interior point, 𝛼𝑖 = 0. For boundary points, 0 < 𝛼𝑖 < 1/𝑁𝜐. 
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Outliers would have 𝛼𝑖 = 1. The index set of support vectors, which are boundary points and 

outliers, can be defined as 

 SV | 0,   1=   ii i N

  

(39) 

 

and the index set of boundary points is shown as 

 BSV | 0 1,   1=    ii i N

  

(40) 

 

Some common kernel functions such as radial basis function kernel and polynomial kernel 

contain nonlinear terms and robust optimization problems that incorporates the uncertainty set 

would become intractable. To tackle the intractability issue, weighted generalized intersection 

kernel (WGIK) can be adopted [25]: 

1
( , ) ( )= − −K Lw v Q w v

  

(41) 

 

where matrix 𝐐 = 𝚺−
1

2 and Σ is the covariance matrix of w. Another kernel parameter L does not 

affect the solution {𝛼𝑖} as long as it is sufficiently large and could be determined by w as well.  

The data-driven uncertainty set using WGIK can be presented as a polytope 
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and ( , )v can be further expressed as a series of linear inequalities 
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where {𝐯𝑖}𝑖=1
𝑁  are auxiliary variables introduced to eliminate 1-norm functions. The main 

advantage of the introduced data-driven uncertainty is that it is a polytope so the tractability of 

robust optimization problem can be assured with (44). 

 


