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In the United States, trauma is the leading cause of death for those under the age

of 45, and the fourth leading cause of death for all Americans [121]. In the world

as a whole, according to the World Health Organization, more than 1.3 billion

people die from road traffic related injuries. Of people who are severely injured,

approximately 50% live long enough to receive medical treatment, however,

about a quarter of them will go on to develop acute traumatic coagulopathy

(ATC), a condition which puts these people at four-fold higher risk of death.

Acute traumatic coagulopathy arises when the coagulation and intrinsic im-

mune responses misfire. This work seeks to understand how such dysfunction

can occur. To understand ATC, we have built a small model of coagulation and

fibrinolysis, and then embedded it into a physiologically based pharmacoki-

netic model of the human body. We have also explored the prediction of ATC

from a data science prospective, using two emergency room datasets. Our mod-

eling highlighted the importance of blood as a resuscitation fluid, a possible

mechanism for tranexamic acid efficacy, and addressed how clotting capacity

may be affected by acidosis and hypothermia, two common complications of

injury. Our work to predict ATC from emergency room data demonstrated that

logistic regression performs poorly on the problem, however, a recurrent neu-

ral network joined to a support vector machine may perform well at separating

non-ATC from ATC patients.
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CHAPTER 1

INTRODUCTION

In the United States, trauma is the leading cause of death for those under the age

of 45, and the fourth leading cause of death for all Americans [121]. The costs of

trauma are high, costing approximately $355 billion dollars, between the costs

of treatment and lost productivity [110]. The number of deaths due to traumatic

injury is rising in the United States with the number of trauma deaths increas-

ing 22.8% from 2000 to 2010 (during a period which the US population only

increased by 9.7%) [261]. Furthermore, traumatic injury is the leading cause of

years of life lost in the United States with an estimated 3109 years of life lost per

100,000 members of the population [126]. On a global scale, the World Health

Organization predicts that the global burden of deaths due to conflict, road in-

jury, and homicide will increase at least until 2060 [205].

Of those suffering traumatic injury, 50-60% of those die immediately after

injury, but the remaining 40-50% of deaths occur following arrival at a hospi-

tal with potentially treatable injuries [313]. Of these patients who survive long

enough to be transported to a hospital, about a third deaths were due to hemor-

rhage, a potentially treatable and survivable condition [335]. Numerous stud-

ies have shown that patients who present with acute traumatic coagulopathy

(ATC), a dysfunctional coagulation system, upon admission, are less likely to

survive [196, 38]. While a universal test ATC has yet to be developed, it can be

recognized from a prolonged prothrombin time or activated partial thrombo-

plastin time upon hospital admission [49].
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1.1 Coagulation and Fibrinolysis

1.1.1 Coagulation

The coagulation system, when functioning properly, holds two processes in a

delicate balance-the production of enzymes that build clots and those that break

them down. Following traumatic injury, the endothelium is damaged, expos-

ing tissue factor, a transmembrane protein that is mainly expressed within the

hemostatic envelope. When tissue factor becomes exposed to circulating blood

it is activated [106]. Tissue factor serves as the initiator to the coagulation cas-

cade, which produces thrombin, which converts fibrinogen to its active form,

fibrin, which can polymerize into a clot [198]. This clot is then broken down

through a process called fibrinolysis, in which tPA (tissue plasminogen activa-

tor) and uPA (urokinase plasminogen activator) convert plasminogen into its

active form, plasmin, which degrades the fibrin containing clot [53]. In greater

detail, tissue factor binds to FVIIa, forming the “trigger” complex, which then

converts FX into its active form, FXa. FXa can then convert prothromin (FII)

to its active form (FIIa). Thrombin is a key enzyme in the coagulation cascade,

as it can activate FVIII, FXI, FX, platelets, as well as itself, leading to a posi-

tive feedback loop where a very small amount of initial thrombin can lead to a

large amount of thrombin generation. The thrombin generation process has a

built-in negative feedback-thrombin complexes with thrombomodulin, and this

complex activates protein C, which then inhibits the activities of FVa and FVIIIa

[101]. Antithrombin (ATIII) inhibits the coagulation cascade at several points,

including the conversion of prothombin to thrombin, as well as the formation

of the prothrombinase complex (FV-FX)a [87]. The overall coagulation cascade
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is quite complex, with multiple positive and negative feedback loops, some of

which are shown in Figure 1.1.
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Figure 1.1: A schematic of the coagulation cascade. Red lines denote inhibition,
dashed lines indicate catalysis, and black lines represent reactions occurring.
Inactive zymogens are shown in gray. Image taken from [283].

In the absence of injury, endothelial cells in healthy vasculature oppose clot-

ting through the secretion of plasminogen activators and through the produc-

tion of thrombomodulin, a glycoprotein which promotes the activation of Pro-

tein C, an a protein which impedes coagulation [367].

Coagulation is a complex biochemical process, which mathematical models

can help us to understand and to identify key therapeutic targets. A number of

kinetic models exist that describe the thrombin generation and degradation pro-

cess. One of the first models considered coagulation as a set of first and second
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order reactions, each of which amplified the previous one, and completely ne-

glected any negative feedback [180]. Martonrana and Moro improved upon this

model by adding negative feedback terms, but this model almost completely

neglects the biochemistry of coagulation and is completely linear [203]. Khanin

and Senov developed the first non linear model of coagulation, containing five

differential equations, and examined its fixed points to conclude that if the sys-

tem was not sufficiently stimulated, no fibrin would be produced [170]. One

of the best known models, the the Hockin-Mann model consists of 34 differen-

tial equations and 42 rate constants [143]. One of the largest and most complex

models of coagulation was developed by the Varner lab, containing 92 differ-

ential equations [193]. However, if we wish to embed a thrombin generation

model inside a model that captures the physiology of traumatic injury, it must

be small enough to solve quickly. To that aim, the Varner lab has developed a

reduced order model of thrombin generation that only contains five differential

equations which mostly captured the dynamics of thrombin generation [285].

1.1.2 Fibrinolysis

Fibrinolysis refers to the process of breaking down a clot, of which a key com-

ponent is a protein named fibrin. The thrombin produced by the coagulation

cascade converts fibrinogen into fibrin which then polymerizes into a clot with

the assistance of FXIIIa. The clot is later broken down by plasmin, which can be

activated by either tPA or uPA, enzymes with a short half-lives that can be inhib-

ited by plasminogen activator inhibitor-1 (PAI-1) [54]. Thrombin can help sta-

bilize the clot through its activation of thrombin activated fibrinolysis inhibitor

(TAFI), which removes a C-terminal lysine and arginines from fibrin, reducing
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Figure 1.2: A schematic of the fibrinolysis. Red lines denote inhibition.

the possible number of plasmin binding sites.

Fibrinolysis and fibrin generation has been modeled at a variety of scales.

Longstaff and Thelwell proposed a very simple model for fibrinolysis, in which

the process was represented as two steps, with plasminogen being converted to

plasmin by tPA, and fibrin degraded by plasmin [191]. While computationally

easy to evaluate, this model greatly oversimplifies the process, and completely

neglects the role of PAI-1. Fibrinolysis has been previous modeled in great de-

tail through a 3D stochastic multi-scale model which predicted difference in

lysis speeds based on clot morphology, but this model focuses only clot lysis

rather than formation and degradation [15]. It has also been modeled as a mass-

spring system to expore the effect of tension on lysis, revealing that with higher

tension, fewer fibers (a bundle of polymerized fibrinogen) need to be cleaved

to remove fibrin from a region [73]. Reifman et al modeled fibrin generation

with mass action kinetics using 80 ODEs to investigate the efficacy of different

prothrombin complex concentrates [218]. They used an interesting method to
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model the complex kinetics of TAFI inhibiting fibrinolysis: they empirically fit

a curve to the clot lysis time as a function of TAFI concentration, and then cor-

respondingly reduced the t-PA effective concentration to account for the effects

of TAFI. While this model decently predicted the final fibrin levels, it did a poor

job of capturing the shape of the fibrin generation curves.

1.2 Complement

Complement, which takes it name from the fact it appears to ”complement” the

activity of antibodies in killing bacteria, is a component of the innate immune

response, which can be initiated in one of three known ways [351]. The classical

pathway initiates complement through the binding of the C1 complex to anti-

body bound to antigens on the surface of bacteria, which then cleaves C4 and C2

so that their fragments can form a C3 convertase, C4bC2a [288]. The alternative

pathway does not require the binding of antibodies to pathogens to be triggered,

rather, it is triggered through a process called ”tickover”, where the thioester

inside of C3 slowly undergoes hydrolysis, resulting in a functionally active C3

molecule [232]. The lectin pathway initiates when a mannose binding lectin

binds to lectin on the surface of a bacterial cell, along with mannose-binding

lectin–associated proteases 1 and 2, and this assemble acts as a C3 covertase,

cleaving C3 into its active fragments [351]. Once C3b has been formed by any of

these pathways, it acts as a C5 convertase, cleaving C5 into a and b fragments,

of which C5b will assemble along with other complement associated proteins

(C6, C7, C8, and C7) into the membrane attack complex, the final output of the

complement system [231]. The membrane attack complex is believed to form a

large β barrel pore, leading to cell death through osmotic flux [23].
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The kinetic modeling of complement has not explored in as much detail as

that of thrombin generation owing to the dearth of time series data [282]. Zewde

et al developed a fairly large model of complement, consisting of 107 differen-

tial equations [370], however, they did not validate their model against exper-

imental data. Korotaevskiy and coworkers developed a large model of two of

the classical and alternative pathways of complement and validated it against

the lysis rates of B. burgdorferi through the assembly of the membrane attack

complex [174]. The model developed by the Varner lab includes initiation of

all three pathways in only 18 differential equations with 28 parameters [282].

This model was trained against time series data of C5a and C3a and validated

on unseen time series C5a and C3a data with varying levels of zymosan A, a

complement pathway activator.

Although the interplay between enzymes in the coagulation cascade and the

cross talk between coagulation and complement are exquisitely choreographed,

it is interesting to note that physically, the genes that encode the proteins in-

volved in these systems are scattered throughout the human genome, as seen in

Figure 1.3. This dispersed layout raises questions as to how all of these genes

are activated in the correct manner to produce more or less protein as needed

to respond to injury. Despite the physical dispersed layout of the coagulation

and complement genes throughout the human chromosomes, many of them are

thought to share common transcription factors, which can be seen upon care-

ful examination of Figure 1.4. For example, the transcription factor ATF3 (a

member of the activating transcription factor family), which is hypothesized to

be part of the cellular stress response, serves as a transcription factor for tissue

factor, FXIII, FVIII,FVII, FV, prothrombin, von Willebrand factor, components

of fibrinogen, to name just a few of the proteins in which it may play a role
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in transcription [129]. The large number of edges in Figure 1.4 is indicative of

the high connectivity between these proteins and their associated transcription

factors, with the average degree of the graph exceeding 19. The exact mech-

anisms of how the liver knows how to produce more coagulation factors and

fibrinogen after trauma have not yet been precisely defined, but there is some

evidence that the presence of fibrin degradation productions may stimulate fib-

rinogen production [113] and that fibrinogen production can be increased and

decreased by microRNAs pulled from a library of human microRNAs[111]. The

term ”genomic storm” has been used to describe the changes that occur after

traumatic injury, with more than 5,000 genes in leukocytes whose expression

changed at least two fold after injury, a staggering number [366].1

1To put this number in prospective, E. coli is presently thought to have 4,401 genes [300].
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Figure 1.3: Locations of the genes that code for proteins involved in coagulation,
fibrinolysis, and complement. The colored bands mark location, and are much
wider than than the true length of the genes for illustrative purposes. Chromo-
some 23 represents the X chromosome. The list of genes included was taken
from [166], and their locations were taken from [79].
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Figure 1.4: A hive plot showing the interactions between transcription factors
and coagulation related proteins. The list of genes included was taken from
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bling a list of possible cis-regulatory elements for each gene, and then looking
at the associated transcription factors for each cis-regulatory element, which led
to a list of 328 transcription factors involved with 85 genes.
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1.3 Acute Traumatic Coagulopathy

Acute traumatic coagulopathy (ATC), otherwise known as trauma induced co-

agulopathy (TIC), is loosely defined as a disorder of the homeostasis following

traumatic injury not attributable to any external or environmental factors. Pa-

tients that develop ATC have four fold higher mortality than other patients,

higher transfusion requirements and worse organ failure rates [112]. The ex-

act causes of ATC are an active subject of investigation, and there exist several

competing theories that aim to explain ATC. One theory focuses on protein C, a

protein that works to inhibit the coagulation cascade once it has been activated

by thrombin. In combination with hypoperfusion that may occur due to blood

loss, there may be formation of more thrombin-thrombomodulin complexes,

which activate protein C, leading to increased inhibition of the coagulation sys-

tem, and in this study, low protein C and high thrombomodulin levels were both

significantly associated with increased mortality [36]. However, the levels of ac-

tive protein C were not assessed. Contradicting this narrative, a separate study

demonstrated that even when the concentrations of activated protein C were

two orders higher than physiological levels, fibrinolysis occurred at normal lev-

els [47]. A small study of severely injury patients showed that upon admission,

activated protein C levels were higher in patients with dissiminated intravas-

cular coagulation (DIC) than those without, however, the criteria they used to

separate the patients into DIC and non-DIC groups in unclear [181]. Another

theory posits that ATC arises when fibrin is broken down at accelerated rates,

due the release of tPA from the endothelium. This theory is supported by stud-

ies showing that coagulapathic patients have lower levels of fibrinogen than

non-coagulpathic patients upon hospital admission and that patient who sur-
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vived had higher fibrinogen levels than patients who died from their wounds

[280]. Additionally, this theory is supported by measurements of D-dimer, a

fragment of degraded thrombin in trauma patients with and without ATC, with

the study finding higher levels of D-dimer in the patients with ATC, both upon

the day of injury and three days post injury [117]. A third theory states that ATC

arises from the shedding of the glycocalyx, the negatively charged glycoprotein

and glycolipid layer that lines the endothelium [90]. When this shedding oc-

curs, it can induce auto-heparinization, reducing the tendency of the patient’s

blood to coagulate [62].

ATC is a fairly general term, and there are number of ways in which a pa-

tient’s coagulation and fibrinolytic systems can misfire, resulting in ATC. One

way to stratify trauma patients is by how fast their fibrinolytic system is run-

ning, into fibrinolysis shutdown (clots are barely being broken down, LY30 ≤

.8%), hyperfibrinolysis (clots are being broken down faster than normal, LY30 ≥

3%), and physiological (clots are being broken down at a normal rate, .9 < LY30

<2.9) [226]. Patients who are either in fibrinolysis shutdown or hyperfibrinol-

ysis have higher mortality than those exhibiting normal fibrinolysis [225]. The

extent of clot lysis tells part of the story about clot structure, however, it appears

that trauma patients, even those within the the physiological fibrinolysis group,

develop clots with structure different than that of healthy controls [92].

More recent evidence has highlighted the role of platelets in ATC. When

platelets taken from trauma patients were compared to platelets taken from

healthy controls, the platelets from the trauma patients had impaired aggre-

gation in response to ADP and collagen as well as increased PFA-100 closure
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times [317].2 This platelet dysfunction is also characterized by impaired adhe-

sion and contractile force generation as well as a diminished response to platelet

antagonists [162].

Other studies have indicated that the interplay between coagulation and im-

mune response may play a role in the development of ATC. Thrombin, factors

XIa, Xa, and IXa, in addition to plasmin have been shown to effectively cleave

C3 and C5, two of the proteins associated with the complement cascade, a com-

ponent of the human immune response [7]. The complement system has been

shown to be very active in trauma patients, and the levels of C5b-9, which can

be used as a proxy for the levels of membrane attack complex, the final prod-

uct of complement, are significantly higher in more severely injured patients.

Complement and coagulation may positively feedback on each other, as a study

has shown that following several hours of incubation with C5a, endothelial cells

express much higher levels of tissue factor mRNA [155], which in turn would

stimulate the production of thrombin. A strong piece of evidence that the in-

flamatory response plays an important role in the development in ATC comes

from a retrospective study in which the medications people had taken before

injury was examined, which found that pre-hospital use of nonsteroidal anti-

inflammatory drugs (NSAIDs) was associated with a 72% lower risk of ATC

[237].

One group proposes that ATC is arises from systems failure along the brain-

cardiovascular coupling, which in turn reduces blood flow to the gut, which

can then become ischemic and leaky, allowing gut-resident bacteria and fungi

and their products to enter the general circulation, coupled with shedding of

2The PFA-100 or the Platelet Function Assay measures how long it takes for a platelet plug
to form in a microscopic aperture at the end of a capillary while whole blood flows through at
high shear rates.
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the glycocalyx and mitochondrial dysfunction due to the unavailability of oxy-

gen and insufficient glycogen stores [91]. This mitochondrial dysfunction then

leads to the release of mitochondrial microparticles, which are derived from the

inner membranes of mitochondria, which have been shown to have procoagu-

lant properties in mice [372]. While statistically significant differences between

trauma patients who develop ATC and those who do not in terms of the mi-

croparticle counts [206], exactly what leads to these changes in microparticle

distributions remains unclear.

If we zoom out and examine the entire patient, a severely injured patient

will probably be experiencing a degree of shock, or a lack of blood flow due

to bleeding. This decrease in blood volume leads to hypotension, an increase

in heart rate, and metabolic acidosis, as the body attempts to compensate for

the lost blood volume and reduction in oxygenation capacity [293]. However,

if the injury is severe, and significant blood as been lost, the patient’s microvas-

culature becomes hypoperfused, resulting in increases of plasma thrombodulin

and a reduction in the measured protein C concentrations as well as an increase

in tPA and D-dimer levels [37]. Under current Advanced Trauma Life Support

guidelines, to increase the circulating blood volume within a patient with sig-

nificant bleeding, first responders would give 1-2 liters of isotonic crystalloids

3, followed by red blood cells to increase oxygen carrying capacity [316]. While

this approach solves the immediate problem of the loss of circulating volume, it

dilutes the coagulation capacity of the patient, since the fluid they received con-

tains none of the proteins necessary for clot formation. More recently, the US

military has begun to adopt the practice of damage control resuscitation, a set

3The class of isotonic crystalloids includes normal saline and lactated ringers solution, with
a concentration of salts as to not to cause a volume shift between interstitial fluids, intracellular
fluids, and plasma.
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of resuscitation practices where the patient receives either blood products, such

as red blood cells, plasma, and platelets or whole blood and is resuscitated to a

lower blood pressure, while compressive devices are used to reduce the amount

of bleeding, until it can be controlled surgically [50]. Although this approach

results in a longer period of hypotension and hypoperfusion, resuscitating pa-

tients to a target systolic blood pressure of 70 mmHg instead of 110 mmHg did

not result in a statistically significant difference in mortality [95]. This approach

preserves far more of the patient’s coagulation capacity, however, unless fresh

whole blood is given, it still dilutes the patients blood, as a 570 mL unit of stored

whole blood contains 70 mL of citrate-phosphate-dextrose solution, and unit of

red blood cells is nearly a quarter additive solutions, which increase the lifespan

of the red blood cells in storage, but have no coagulation potential [299].

Hypothermia (a core body temperature less than 35 ◦C) is another poten-

tial concern for trauma patients, as the normal hemostatic processes are greatly

disturbed by injury, as traumatic injury appears to alter normal central ther-

moregulation and blocks the shivering response, resulting in a drop in core body

temperature [320]. Additionally, trauma patients usually have their clothing re-

moved, leading to increased surface area contact with the cool environment,

and are receiving large quantities of resuscitative fluids, which are only rarely

warmed to body temperature. One study of trauma patients reported that the

mortality of hypothermic patients was significantly higher than those who re-

mained warm [164]. As the proteins involved in coagulation are enzymes, the

rates of the reactions they catalyze are temperature dependent, however, it is

unclear if this small decrease in body temperature is large enough to signifi-

cantly effect the clot formation process. One study reported that the activated

partial thromoplastin time showed no significant difference between 33◦ and
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39◦C, nor was there a significant difference between 33◦ and 37◦C in a throm-

bin generation assay in either pooled plasma or synthetic reconstituted plasma,

however, these authors did report changes in platelet aggregation and adhesion

over this temperature range [364]. Another study reports significant changes

in prothrombin time and partial thromboplastin time between 37◦ and 37◦C, in

plasma samples [278]. In a porcine model, where animals were cooled to 34◦

C and rewarmed, prothrombin time and bleeding time were prolonged both

during the cooling period and during rewarming [318].

A lack of oxygen due to reduced blood volume and reduced oxygen carrying

capacity causes cells within the body to switch their metabolism from glycolysis

to substrate level phosphorolation, in which pyruvate is reduced by lactate de-

hydrogenase to produce lactate and NAD+, where the NAD+ is used to produce

ATP, and lactate is exported from the cells and into the blood [341]. Then this

lactate, in solution, tends to give up a proton, making it an Arrhenius acid, and

if produced in amounts larger than it is degraded, it can lower blood pH, a con-

dition called acidosis when pH drops below 7.35. Normal blood pH ranges be-

tween 7.35 and 7.45, but within trauma patients, it can drop below 6.6 [279]. This

drop in pH can effect the activity of the proteins involved in clot formation. For

example, the activity of the FVIIa/TF (trigger) complex was reduced by greater

than 90% at a pH of 7.0 compared to at a pH of 7.4 in synthetic plasma [212].

Reducing pH has been shown to increase prothrombin time, activated partial

thromboplastin time and platelet aggregation, showing that the coagulation cas-

cade is susceptible to pH changes over the range observed in trauma patients.

Some groups are investigating the use of vassopressors, a class of chemicals that

cause an increase in blood pressure and coronary artery perfusion (and therefore

increase oxygen supply to reduce the amount acidification that occurs), such as
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norepinephrine and vasopressin, however, these drugs must be used cautiously,

since there is conflicting evidence that these drugs boost survival [264].

A very recent paper investigated the combined effects of acidification and

hypothermia on coagulation in platelet poor plasma. They performed thrombin

generation assays at differing dilutions, temperatures (in the range of 31-37◦C)

and pHs (6.9, 7.1, and 7.4), and then recorded 5 quantitative parameters to de-

scribe the thrombin trajectory: the lag time (the time to 1
6 of the thrombin peak

height), the time to peak thrombin, the velocity index (the slope of the curve to

the peak), and the endogenous thrombin potential (the area under the thrombin

generation curve), and then performed linear regression on these parameters.

Their regressions showed that within this range, pH had little effect on their

measured parameters of thrombin generation, but that hypothermia increased

the area under the thrombin generation curve, in some cases [217]. As through

as this paper is, it does not provide a definite answer to how much acidification

and hypothermia effect coagulation within a trauma patient, as platelet poor

plasma was used for all of the assays, not whole blood.

It is worth nothing that many of the proteins involved in coagulation require

carboxylation in order to function properly, and as such, are Vitamin K depen-

dant [75], so a severe dietary lack of Vitamin K could predispose a person to

coagulation system dysfunction. Calcium plays a key role in many steps of the

coagulation cascade [114], so if a patient has received many citrated blood prod-

ucts, they may be at risk of hypocalcimia, as citrate binds to calcium and makes

it unavailable 4 which would further inhibit their ability to clot.

While this work focuses on ATC, coagulopathy can arise whenever the body

4This is why blood products are citrated: to prevent them from clotting while they are in
storage.
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is severely perturbed. In a study of patients undergoing highly invasive surgery,

such as a hepatectomy or pancreaticoduodenectomy, approximately 84% de-

veloped coagulopathy following surgery [289]. Coagulopathy can also occur

due to severe infection because of the cross talk between the coagulation and

immune system, and has been reported to occur in patients with Rotavirus,

Varicella, Rubella, Rubeola and Influenza, as well as viral hemorrhagic fevers,

caused by viruses such as Dengue and Ebola [179].

1.4 Assays

1.4.1 PTT and PT

The PTT or partial thromboplastin time was developed in 1953, originally to

serve as a test for diagnosing hemophilia [177]. In this test, a patient’s blood

is citrated to prevent coagulation, then centrifuged to produce platelet poor

plasma and a thromboplastin-kaolin agent is added along with calcium to start

coagulation [256]. The time until a clot forms is then measured, and compared

to a standard to determine if the patient is clotting more slowly or rapidly than

normal. This assay provides a global view of the coagulation system, but does

not identify which factors are lacking or in excess, nor does it provide any in-

formation about the state of the patient’s fibrinolytic system.

The PT or prothrombin time is performed in a similar manner to the PTT, but

a different set of chemicals are added to initiate coagulation, so that it measures

the extrinsic pathway of the coagulation cascade, which consists of factors II,VII,

and X. For a PT measurement, phospholipids, tissue factor and thromboplastin
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extracts are added to the platelet poor plasma sample from the patient to kick off

coagulation [269]. A PT greater than 1.5 times normal can be used to diagnose

ATC [38].

1.4.2 INR

The international normalized ratio, or INR was developed to standardize PT

times, as the contents of thromboplastin extracts are not uniform between dif-

ferent laboratories [269]. The INR is defined as:

INR =

(
Patient PT

Mean Normal PT

)ISI

(1.1)

where the Mean Normal PT is calculated from the plasma of at least twenty

healthy individuals [255]. The ISI, or international sensitivity index is used to

correct for the differences between various thromboplastin extracts. INR is used

to diagnose ATC upon admission, with an INR ≥ 1.5 being used as the cutoff

[243].

1.4.3 ROTEM and TEG

  

a b

Figure 1.5: Typical (a) TEG and (b) ROTEM tracings. The differences in nomin-
clature are circled in red. Images adapted from [302].
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ROTEM and TEG are both techniques that measure the viscoelasticity of

whole blood to assess the state of the coagulation and fibrinolytic systems of

a patient. In a TEG system, a small amount of whole blood is added to a cup

along with reagents to initiate coagulation, to which a pin with a torsion wire are

attached. The cup is oscillated around the pin and as a clot forms, the changes

in the viscoelastic properties of the blood cause an increase in the rotation trans-

mitted to the torsion wire, which is detected by a transducer [360]. A ROTEM

system operates in a similar manner, however, the main difference between the

two systems is that in a ROTEM system, the cup containing the blood is station-

ary and the pin attached to the torsion wire rotates [241]. Both systems produce

a tracing of clot amplitude as a function of time, however, different nomen-

clature is used to describe features of this curve depending on the test system

used, as highlighted in Figure 1.5. The time (in minutes) to reach an amplitude

of 2mm is called the CT in ROTEM and the R in TEG. The time (in minutes)

for a clot to reach an amplitude of 20mm after it has reached an amplitude of

2mm is called CFT in ROTEM and K in TEG. The maximum amplitude a clot

reaches is called MA in TEG and MCF in ROTEM. ROTEM can be used diag-

nose ATC, with a clot amplitude at 5 minutes less than 35 mm used as a cut-off

[76]. Although clot amplitude is reported in units of mm, these units do not

directly correspond to clot diameter or radius, rather they refer to mm of tor-

sional amplitude based on the rotation of either the cup or the pin [130]. This

amplitude can be converted to a sheer modulus, G, the ratio of shear stress to

shear strain using the formula G = 5000A
100−A where A is the measured clot amplitude

[142]. These viscoelastic tests can be used to guide fluid resuscitation, where

an elevated CT/R value can be treated with FFP or PCC, and a decreased α an-

gle can be treated with cyroprecipitate or fibrinogen concentrate, and a lower
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than normal MCF/MA value can be treated with platelets or cryoprecipitate or

fibrinogen concentrate [131].
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CHAPTER 2

PARAMETER ESTIMATION VIA DYNAMIC OPTIMIZATION WITH

PARTICLE SWARMS

2.1 Background

1 Mathematical modeling has evolved as a powerful paradigm to analyze, and

ultimately design complex biochemical networks [11, 338, 160, 172, 145]. Math-

ematical modeling of biochemical networks is often an iterative process. First,

models are formulated from existing biochemical knowledge, and then model

parameters are estimated using experimental data [6, 14, 10]. Parameter estima-

tion is typically framed as a non-linear optimization problem wherein the resid-

ual (or objective function) between experimental measurements and model sim-

ulations is minimized using an optimization strategy [222]. Optimal parameter

estimates are then used to predict unseen experimental data. If the validation

studies fail, model construction and calibration are repeated iteratively until

satisfactory results are obtained. As our biological knowledge increases, model

formulation may not be as significant a challenge, but parameter estimation will

likely remain difficult.

Parameter estimation is a major challenge to the development of biochemical

models. Parameter estimation has been a well studied engineering problem for

decades [242, 25, 369, 24]. However, the complex dynamics of large biological

systems and noisy, often incomplete experimental data sets pose a unique es-

timation challenge. Often optimization problems involving biological systems

are non-linear and multi-modal i.e., typical models have multiple local min-

1This work has been previously published in [283]
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ima or maxima [222, 14]. Non-linearity coupled with multi-modality renders

local optimization techniques such as pattern search [146], Nelder-Mead sim-

plex methods [238], steepest descent or Levenberg-Marquardt [228] incapable

of reliably obtaining globally optimal solutions as these methods often termi-

nate at local minimum. Though deterministic global optimization techniques

(for example algorithms based on branch and bound) can handle non-linearity

and multi-modality [103, 148], the absence of derivative information, discontin-

uous objective functions, non-smooth regions or the lack of knowledge about

the objective function hampers these techniques.

Meta-heuristics like Genetic Algorithms (GAs) [119], Simulated Annealing

(SA) [171], Evolutionary Programming [107] and Differential Evolution (DE)

[321, 336, 352, 244] have all shown promise on non-linear multi-modal problems

[323]. These techniques do not make any assumptions, nor do they require, a pri-

ori information about the structure of the objective function. Meta-heuristics are

often very effective at finding globally optimal or near optimal solutions. For

example, Mendes et al. used SA to estimate rate constants for the inhibition of

HIV proteinase [211], while Modchang et al. used a GA to estimate parame-

ters for a model of G-protein-coupled receptor (GPCR) activity [219]. Parameter

estimates obtained using the GA stratified the effectiveness of two G-protein ag-

onists, N6-cyclopentyladenosine (CPA) and 5’-N-ethylcarboxamidoadenosine

(NECA). Tashkova et al. compared different meta-heuristics for parameter es-

timation on a dynamic model of endocytosis; DE was the most effective of the

approaches tested [328]. Banga and co-workers have also successfully applied

scatter-search to estimate model parameters [343, 276, 96]. Hybrid approaches,

which combine meta-heuristics with local optimization techniques, have also

become popular. For example, Egea et al. developed the enhanced scatter search
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(eSS) method [96], which combined scatter and local search methods, for param-

eter estimation in biological models [344]. However, despite these successes, a

major drawback of most meta-heuristics remains the large number of function

evaluations required to explore parameter space. Performing numerous poten-

tially expensive function evaluations is not desirable (and perhaps not feasible)

for many types of biochemical models. Alternatively, Tolson and Shoemaker

found, using high-dimensional watershed models, that perturbing only a subset

of parameters was an effective strategy for estimating parameters in expensive

models [332]. Their approach, called Dynamically Dimensioned Search (DDS),

is a simple stochastic single-solution heuristic that estimates nearly optimal so-

lutions within a specified maximum number of function (or model) evaluations.

Thus, while meta-heuristics are often effective at estimating globally optimal or

nearly optimal solutions, they require a large number of function evaluations to

converge to a solution.

In this study, we developed Dynamic Optimization with Particle Swarms

(DOPS), a novel hybrid meta-heuristic that combines the global search capabil-

ity of multi-swarm particle swarm optimization with the greedy refinement of

dynamically dimensioned search (DDS). The objective of DOPS is to obtain near

optimal parameter estimates for large biochemical models within a relatively

few function evaluations. DOPS uses multi-swarm particle swarm optimiza-

tion to generate nearly optimal candidate solutions, which are then greedily up-

dated using dynamically dimensioned search. While particle swarm techniques

are effective, they have the tendency to become stuck in small local regions and

lose swarm diversity, so we combined multi-swarm particle optimization with

DDS to escape these local regions and continue towards better solutions [61].

We tested DOPS using a combination of classic optimization test functions, bio-
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chemical benchmark problems and real-world biochemical models. First, we

tested the performance of DOPS on the Ackley and Rosenbrock functions, and

published biochemical benchmark problems. Next, we used DOPS to estimate

the parameters of a model of the human coagulation cascade. On average,

DOPS outperformed other common meta-heuristics like differential evolution,

a genetic algorithm, CMA-ES (Covariance Matrix Adaptation Evolution Strat-

egy), simulated annealing, single-swarm particle swarm optimization, and dy-

namically dimensioned search on the optimization test functions, benchmark

problems and the coagulation model. For example, DOPS recovered the nomi-

nal parameters for the benchmark problems using an order of magnitude fewer

function evaluations than eSS in all cases. It also produced parameter estimates

for the coagulation model that predicted unseen coagulation data sets. Thus,

DOPS is a promising hybrid meta-heuristic for the estimation of biochemical

model parameters in relatively few function evaluations.

2.2 Results

2.2.1 DOPS explores parameter space using a combination of

global methods.

DOPS combines a multi-swarm particle swarm method with the dynamically

dimensioned search approach of Shoemaker and colleagues (Fig. 2.1). The

goal of DOPS is to estimate optimal or near optimal parameter vectors for

high-dimensional biological models within a specified number of function eval-

uations. Toward this objective, DOPS begins by using a multi-swarm parti-

25



PS
O

 P
ha

se
D

D
S 

Ph
as

e

Parameter i

Pa
ra

m
et

er
 j

Error

High

Medium

Low

Particle k in swarm j
Best particle k in swarm j
Global best particle k

Magnitude and direction of 
particle perturbation

Subswarm 1

Subswarm 2

Each subswarm has S 
particles

Subswarm 3

Subswarm 4

Model parameter vector

Parameters perturbed at i = 1

Global best particle from 
PSO phase

Perturbed Unperturbed

Parameters perturbed at i = 2

.

.

.

Parameters perturbed at i = 3

Parameters perturbed at i = N(1-F) 

Figure 2.1: Schematic of the dynamic optimization with particle swarms (DOPS)
approach. A: Each particle represents an N dimensional parameter vector. Par-
ticles are given randomly generated initial solutions and grouped into different
sub-swarms. Within each swarm the magnitude and direction of the movement
a particle is influenced by the position of the best particle and also by its own ex-
perience. After every g number of function evaluations the particles are mixed
and randomly assigned to different swarms. When the error due to the global
best particle (best particle amongst all the sub-swarms) does not drop over a
certain number of function evaluations, the swarm search is stopped and the
search switches to a Dynamically Dimensioned Search with global best particle
as the initial solution vector or candidate vector. B: The candidate vector per-
forms a greedy global search for the remaining number of function evaluations.
The search neighborhood is dynamically adjusted by varying the number of di-
mensions that are perturbed (in black) in each evaluation step. The probability
that a dimension is perturbed decreases as the number of function evaluations
increase.

cle swarm search and then dynamically switches, using an adaptive switching

criteria, to the DDS approach. The particle swarm search uses multiple sub-

swarms wherein the update to each particle (corresponding to a parameter vec-
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tor estimate) is influenced by the best particle amongst the sub-swarm, and the

current globally best particle. Particle updates occur within sub-swarms for a

certain number of function evaluations, after which the sub-swarms are reorga-

nized. This sub-swarm mixing is similar to the regrouping strategy described

by Zhao et al. [371]. DOPS switches out of the particle swarm phase based

upon an adaptive switching criteria that is a function of the rate of error con-

vergence. If the error represented by the best particle does not decrease for a

threshold number of function evaluations, DOPS switches automatically to the

DDS search phase. The DDS search is initialized with the globally best particle

from the particle swarm phase, thereafter, the particle is greedily updated by

perturbing a subset of dimensions for the remaining number of function evalu-

ations. The identity of the parameters perturbed is chosen randomly, with fewer

parameters perturbed the higher the number of function evaluations.

2.2.2 DOPS minimized benchmark problems using fewer func-

tion evaluations.

On average, DOPS performed similarly or outperformed four other meta-

heuristics for the Ackley and Rastrigin test functions (Fig. 2.2). The Ackley and

Rastrigin functions both have multiple local extrema and attain a global mini-

mum value of zero. In each case, the maximum number of function evaluations

was fixed at N = 4000, and T = 25 independent experiments were run with dif-

ferent initial parameter vectors. DOPS found optimal or near optimal solutions

for both the 10-dimensional Ackley (Fig. 2.2A) and Rastrigin (Fig. 2.2B) func-

tions within the budget of function evaluations. In each of the 10-dimensional
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cases, other meta-heurtistics such as DDS and DE also performed well. How-

ever, DOPS consistently outperformed all other approaches tested. This perfor-

mance difference was more pronounced as the dimension of the search prob-

lem increased; for a 300-dimensional Rastrigin function, DOPS was the only

approach to find an optimal or near optimal solution within the function eval-

uation budget (Fig. 2.2B). Taken together, DOPS performed at least as well as

other meta-heuristics on small dimensional test problems, but was especially

suited to large dimensional search spaces. Next, we tested DOPS on benchmark

biochemical models of varying complexity.

Villaverde and co-workers published a set of benchmark biochemical prob-

lems to evaluate parameter estimation methods [344]. They ranked the example

problems by computational cost from most to least expensive. We evaluated

the performance of DOPS on problems from the least and most expensive cat-

egories. The least expensive problem was a metabolic model of Chinese Ham-

ster Ovary (CHO) with 35 metabolites, 32 reactions and 117 parameters [342].

The biochemical reactions were modeled using modular rate laws and gener-

alized Michaelis–Menten kinetics. On the other hand, the expensive problem

was a genome scale kinetic model of Saccharomyces cerevisiae with 261 reactions,

262 variables and 1759 parameters [311]. In both cases, synthetic time series

data generated with known parameter values, was used as training data to es-

timate the model parameters. For the Saccharomyces cerevisiae model, the time

series data consisted of 44 observables, while for the CHO metabolism problem

the data corresponded to 13 different metabolite measurement sets. The num-

ber of function evaluations was fixed at N = 4000, and we trained both models

against the synthetic experimental data. DOPS produced good fits to the syn-

thetic data (Fig. 10.1 and Fig. 10.2), and recapitulated the nominal parameter
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values using onlyN ≤ 4000 function evaluations (Fig. 10.3). On the other hand,

the enhanced scatter search (eSS) with a local optimizer method, took on order

105 function evaluations for the same problems. DOPS required a comprable

amount of time (Fig. 10.4), faster convergence (Fig. 10.5 and Fig. 10.6), and also

had lower variability in the best value obtained (Fig. 10.7) across multiple runs

when compared to other meta-heuristics. Thus, DOPS estimated the parameters

in benchmark biochemical models, and recovered the original parameters from

the synthetic data, using fewer function evaluations. Next, we compared the

performance of DOPS with four other meta-heuristics for a model of the human

coagulation cascade.
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Figure 2.2: Performance of DOPS and other meta-heuristics for the Ackley and
Rastrigin functions. A: Mean scaled error versus the number of function evalu-
ations for the 10-dimensional Ackley function. DOPS, DDS and ESS find opti-
mal or near optimal solutions within the specified number of function evalua-
tions. B: Mean scaled error versus the number of function evaluations for the 10-
dimensional Rastrigin function. Nearly all the techniques find optimal or near
optimal solutions within the specified number of function evaluations. C: Mean
scaled error versus the number of function evaluations for the 300-dimensional
Rastrigin function. DOPS is the only algorithm that finds an optimal or near
optimal solution within the specified number of function evaluations. In all
cases, the maximum number of function evaluations was N = 4000. Mean and
standard deviation were calculated over T = 25 trials. A star denotes that the
average value was less than 1E-6.
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2.2.3 DOPS estimated the parameters of a human coagulation

model.

Coagulation is an archetype biochemical network that is highly interconnected,

containing both negative and positive feedback (Fig. 2.3). The biochemistry of

coagulation, though complex, has been well studied [200, 201, 197, 346, 87, 108,

8], and reliable experimental protocols have been developed to interrogate the

system [143, 55, 199, 193]. Coagulation is mediated by a family proteases in the

circulation, called factors and a key group of blood cells, called platelets. The

central process in coagulation is the conversion of prothrombin (fII), an inactive

coagulation factor, to the master protease thrombin (FIIa). Thrombin genera-

tion involves three phases, initiation, amplification and termination. Initiation

requires a trigger event, for example a vessel injury which exposes tissue factor

(TF), which leads to the activation of factor VII (FVIIa) and the formation of the

TF/FVIIa complex. Two converging pathways, the extrinsic and intrinsic cas-

cades, then process and amplify this initial coagulation signal. There are several

control points in the cascade that inhibit thrombin formation, and eventually

terminate thrombin generation. Tissue Factor Pathway Inhibitor (TFPI) inhibits

upstream activation events, while antithrombin III (ATIII) neutralizes several

of the proteases generated during coagulation, including thrombin. Thrombin

itself also inadvertently plays a role in its own inhibition; thrombin, through in-

teraction with thrombomodulin, protein C and endothelial cell protein C recep-

tor (EPCR), converts protein C to activated protein C (APC) which attenuates

the coagulation response by proteolytic cleavage of amplification complexes.

Termination occurs after either prothrombin is consumed, or thrombin forma-

tion is neutralized by inhibitors such as APC or ATIII. Thus, the human coagu-
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Figure 2.3: Schematic of the extrinsic and intrinsic coagulation cascade. Inac-
tive zymogens upstream (grey) are activated by exposure to tissue factor (TF)
following vessel injury. Tissue factor and activated factor VIIa (FVIIa) form a
complex that activates factor X (fX) and IX (fIX). FXa activates downstream fac-
tors including factor VIII (fVIII) and fIX. Factor V (fV) is primarily activated
by thrombin (FIIa). In addition, we included a secondary fV activation route
involving FXa. FXa and FVa form a complex (prothrombinase) on activated
platelets that converts prothrombin (fII) to FIIa. FIXa and FVIIIa can also form a
complex (tenase) on activated platelets which catalyzes FXa formation. Throm-
bin also activates upstream coagulation factors, forming a strong positive feed-
back ensuring rapid activation. Tissue factor pathway inhibitor (TFPI) down-
regulates FXa formation and activity by sequestering free FXa and TF-FVIIa in a
FXa-dependent manner. Antithrombin III (ATIII) inhibits all proteases. Throm-
bin inhibits itself binding the surface protein thrombomodulin (TM). The IIa-
TM complex catalyzes the conversion of protein C (PC) to activated protein C
(APC), which attenuates the coagulation response by the proteolytic cleavage of
fV/FVa and fVIII/FVIIIa.
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lation cascade is an ideal test case; coagulation is challenging because it contains

both fast and slow dynamics, but also accessible because of the availability of

comprehensive data sets for model identification and validation. In this study,

we used the coagulation model of Luan et al. [193], which is a coupled system of

non-linear ordinary differential equations where biochemical interactions were

modeled using mass action kinetics. The Luan model contained 148 param-

eters and 92 species and has been validated using 21 published experimental

datasets.

DOPS estimated the parameters of a human coagulation model for TF/VIIa

initiated coagulation without anticoagulants (Fig. 2.5a). The objective function

was an unweighted linear combination of two error functions, representing co-

agulation initiated with different concentrations of TF/FVIIa (5pM, 5nM) [143].

The number of function evaluations was restricted to N = 4000 for each algo-

rithm we tested, and we performed T = 25 trials of each experiment to collect

average performance data (Table 2.1). DOPS converged faster and had a lower

final error compared to the other algorithms (Fig. 2.4). Within the first 25%

of function evaluations, DOPS produced a rapid drop in error followed by a

slower but steady decline (Fig. 10.8b). Approximately between 500-1000 func-

tion evaluations DOPS switched to the dynamically dimensioned search phase,

however this transition varied from trial to trial since the switch was based upon

the local convergence rate. On average, DOPS minimized the coagulation model

error to a greater extent than the other meta-heuristics. However, it was unclear

if the parameters estimated by DOPS had predictive power on unseen data.

To address this question, we used the final parameters estimated by DOPS to

simulate data that was not used for training (coagulation initiated with 500pM,

50pM, and 10pM TF/VIIa). The optimal or near optimal parameters obtained by
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Figure 2.4: Error convergence rates of the nine different algorithms on the coag-
ulation model. The objective error is the mean over T= 25 trials. DOPS, SA, PSO
and DOPS-PSO have the steepest drop in error during first 300 function evalua-
tions. Thereafter the error drop in DDS and SA remains nearly constant whereas
DOPS continues to drops further. In the alloted budget of function evaluations
ESS produces a modest reduction in error. At the end of 4000 function evalua-
tions DOPS attains the lowest error.

DOPS predicted unseen coagulation datasets (Fig. 2.5b). The normalized stan-

dard error for the coagulation predictions was consistent with the training error,

with the exception of the 50pM TF/VIIa case which was a factor 2.65 worse (Ta-

ble 2.2). However, this might be expected as coagulation initiation with 50pM
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Figure 2.5: Model fits and predictions on experimental data using DOPS. (a) The
model parameters were estimated using DOPS. Solid black lines indicate the
simulated mean thrombin concentration using parameter vectors from 25 tri-
als. The grey shaded region represents the 99% confidence estimate of the mean
simulated thrombin concentration. The experimental data is reproduced from
the synthetic plasma assays of Mann and co-workers. Thrombin generation
is initiated by adding Factor TF/VIIa (5nM (blue) and 5pM (red)) to synthetic
plasma containing 200 µmol/L of phospholipid vesicles (PCPS) and a mixture
of coagulation factors (II,V,VII,VIII,IX,X and XI) at their mean plasma concentra-
tions. (b) The parameter estimates that were obtained using DOPS were tested
against data that was not used in the model training. Solid black lines indicate
the simulated mean thrombin concentration using parameter vectors from T =
25 trials. The grey shaded region represents the 99% confidence estimate of the
mean simulated thrombin concentration. The experimental data is reproduced
from the synthetic plasma assays of Mann and co-workers. Thrombin genera-
tion is initiated by adding Factor VIIa-TF (500pM - Blue, 50pM - Pink and 10pM
- purple, respectively) to synthetic plasma containing 200 µmol/L of phospho-
lipid vesicles (PCPS) and a mixture of coagulation factors (II,V,VII,VIII,IX,X and
XI) at their mean plasma concentrations.

TF/FVIIa was the farthest away from the training conditions. Taken together,

DOPS estimated parameter sets with predictive power on unseen coagulation

data using fewer function iterations than other meta-heuristics. Next, we ex-

plored how the number of sub-swarms and the switch to DDS influenced the
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performance of the approach.

2.2.4 Phase switching was critical to DOPS performance.

A differentiating feature of DOPS is the switch to dynamically dimensioned

search following stagnation of the initial particle swarm phase. We quantified

the influence of the number of sub-swarms and the switch to DDS on error con-

vergence by comparing DOPS with and without DDS for different numbers of

sub-swarms (Fig. 2.6). We considered multi swarm particle swarm optimiza-

tion with and without the DDS phase for N = 4000 function evaluations and

T = 25 trials on the coagulation model. We used one, two, four, five and eight

sub-swarms, with a total of 40 particles divided evenly amongst the swarms.

Hence, we did not consider swarm numbers of three and seven. All other al-

gorithm parameters remained the same for all cases. Generally, the higher sub-

swarm numbers converged in fewer function evaluations, where the optimum

particle partitioning was in the neighborhood of five sub-swarms. However,

the difference in convergence rate was qualitatively similar for four, five and

eight sub-swarms, suggesting there was an optimal number of particles per

swarm beyond which there was no significant advantage. The multi-swarm

particle swarm optimization stagnated after 25% of the available function eval-

uations irrespective of the number of sub-swarms. However, DOPS (with five

sub-swarms) switched to DDS after detecting the stagnation. The DDS phase re-

fined the globally best particle to produce significantly lower error on average

when compared to multi-swarm particle swarm optimization alone. Thus, the

automated switching strategy was critical to the overall performance of DOPS.

However, it was unclear if multiple strategy switches could further improve
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Figure 2.6: Influence of the switching strategy and sub-swarms on DOPS
performance for the coagulation model. DOPS begins by using a particle
swarm search and then dynamically switches (switch region), using an adap-
tive switching criteria, to the DDS search phase. We compared the performance
of DOPS with and without DDS for different sub-swarm searches to quantify the
effect of number of sub-swarms and DDS. We used one, two, four, five and eight
sub-swarms, with a total of 40 particles divided evenly amongst the swarms.
The results presented are the average of T = 25 trials with N = 4000 function
evaluations each. The convergence rates with higher swarm numbers is typi-
cally higher but there is no pronounced difference amongst four, five and eight.
The multi-swarm with without DDS saturates while DOPS shows a rapid drop
due to a switch to the DDS phase.
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Figure 2.7: Comparison of DOPS and Multiswitch DOPS Performance of DOPS
and Multiswitch DOPS on the CHO metabolism problem (a), the Eggholder
function (b), the 100 dimensional Styblinksi-Tang function (c) and the coagu-
lation problem (d). Both methods have the same initial decrease in error, but
as the number of function evaluations increases, multiswitch DOPS produces a
larger decrease in error. The results presented are the average of T = 250 trials
with for the CHO metabolism problem and T = 250 trials on the Eggholder and
Styblinksi-Tang functions with N = 250 function evaluations each, and T = 25
trials for the coagulation problem.
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performance.

We explored the performance of DOPS if it was permitted to switch be-

tween the PSO (Particle Swarm Optimization) and DDS modes multiple times.

This mode (msDOPS) had comparable performance to DOPS on 10-d Ackley

and Rastrigin functions, as well as on the 300-dimensional Rastrigin function.

However, msDOPS performed better than DOPS on the CHO metabolism prob-

lem (Fig. 2.7a), with the average functional value being nearly half that of

DOPS. To further distinguish DOPS from msDOPS, we compared the perfor-

mance of each algorithm on the Eggholder function, a difficult function to op-

timize given its multiple minima [158]. msDOPS outperformed DOPS on the

Eggholder function, however, neither version reached the true minimum at -

959.6407 on any trial with a budget ofN = 4000 function evaluations (Fig. 2.7b).

We also explored the performance of msDOPS and DOPS on the 100 dimensional

Styblinksi-Tang function [159] (Fig. 2.7c). In this comparison, msDOPS signif-

icantly outperformed DOPS, finding the true minimum before exhausting its

function evaluation budget, while DOPS does not reach the minimum. Since

the performance of msDOPS was promising on these problems, we measured its

performance on the coagulation problem. Surprisingly, DOPS performed simi-

larly to msDOPS on the coagulation problem (Fig. 2.7d); the final average objec-

tive value for DOPS reached 0.9413% of the initial functional value, compared to

0.9428% for msDOPS. Taken together, these results indicate that switching plays

a key role in DOPS’s performance and that for some classes of problems, multi-

ple switching between modes produces a faster drop in objective value. How-

ever, the coagulation model results suggested the advantage of msDOPS was

problem specific.
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2.3 Discussion

In this study, we developed dynamic optimization with particle swarms

(DOPS), a novel meta-heuristic for parameter estimation. DOPS combined

multi-swarm particle swarm optimization, a global search approach, with the

greedy strategy of dynamically dimensioned search to estimate optimal or

nearly optimal solutions in a fixed number of function evaluations. We tested

the performance of DOPS and four widely used meta-heuristics on the Ack-

ley and Rastrigin test functions, a set of biochemical benchmark problems and a

model of the human coagulation cascade. We also compared the performance of

DOPS to enhanced Scatter Search (eSS), another widely used meta-heuristic ap-

proach. As the number of parameters increased, DOPS outperformed the other

meta-heuristics, generating optimal or nearly optimal solutions using signifi-

cantly fewer function evaluations compared with the other methods. We tested

the solutions generated by DOPS by comparing the estimated and true param-

eters in the benchmark studies, and by using the coagulation model to predict

unseen experimental data. For both benchmark problems, DOPS retrieved the

true parameters in significantly fewer function evaluations than other meta-

heuristics. For the coagulation model, we used experimental coagulation mea-

surements under two different conditions to estimate optimal or nearly optimal

parameters. These parameters were then used to predict unseen coagulation

data; the coagulation model parameters estimated by DOPS predicted the cor-

rect thrombin dynamics following TF/FVIIa induced coagulation without an-

ticoagulants. Lastly, we showed the average performance of DOPS improved

when combined with dynamically dimensioned search phase, compared to an

identical multi-swarm approach alone, and that multiple mode switches could
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improve performance for some classes of problems. Taken together, DOPS is a

promising meta-heuristic for the estimation of parameters in large biochemical

models.

Meta-heuristics can be effective tools to estimate optimal or nearly optimal

solutions for complex, multi-modal functions. However, meta-heuristics typi-

cally require a large number of function evaluations to converge to a solution

compared with techniques that use derivative information. DOPS is a combina-

tion of particle swarm optimization, which is a global search method, and dy-

namically dimensioned search, which is a greedy evolutionary technique. Parti-

cle swarm optimization uses collective information shared amongst swarms of

computational particles to search for global extrema. Several particle swarm

variants have been proposed to improve the search ability and rate of con-

vergence. These variations involve different neighborhood structures, multi-

swarms or adaptive parameters. Multi-swarm particle swarm optimization

with small particle neighborhoods has been shown to be better in searching on

complex multi-modal solutions [371]. Multi-swarm methods generate diverse

solutions, and avoid rapid convergence to local optima. However, at least for

the coagulation problem used in this study, multi-swarm methods stagnated

after approximately 25% of the available function evaluations; only the intro-

duction of dynamically dimensioned search improved the rate of error conver-

gence. Dynamically dimensioned search, which greedily perturbs only a sub-

set of parameter dimensions in high dimensional parameter spaces, refined the

globally best particle and produced significantly lower error on average when

compared to multi-swarm particle swarm optimization alone. However, dy-

namically dimensioned search, starting from a initial random parameter guess,

was not as effective on average as DOPS. The initial solutions generated by the
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multi swarm search had a higher propensity to produce good parameter esti-

mates when refined by dynamically dimensioned search. Thus, our hybrid com-

bination of two meta-heuristics produced better results than either constituent

approach, and better results than other meta-heuristic approaches on average.

This was true of not only the convergence rate on the coagulation problem, but

also the biochemical benchmark problems; DOPS required two-orders of magni-

tude fewer function evaluations compared with enhanced Scatter Search (eSS)

to estimate the biochemical benchmark model parameters. What remains to

be explored is the performance of DOPS compared to techniques that utilize

derivative information, either on their own or in combination with other meta-

heuristics, and the performance of DOPS in real-world applications compared

with other meta-heuristics such as hybrid genetic algorithms e.g., see [223]. Gra-

dient methods perform well on smooth convex problems which have either a

closed form of the gradient of the function being minimized, or a form that can

be inexpensively estimated numerically. While the biological problems DOPS is

intended for often do not have this form, perhaps the solutions could be further

improved by following (or potentially replacing) the DDS phase with a gradi-

ent based technique when applicable. Taken together, the combination of parti-

cle swarm optimization and dynamically dimensioned search performed better

than either of these constituent approaches alone, and required fewer function

evaluations compared with other common meta-heuristics.

2.4 Conclusions

DOPS performed well on many different systems with no pre-optimization of

algorithm parameters, however there are many research questions that should
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be pursued further. DOPS comfortably outperformed existing, widely used

meta-heuristics for high dimensional global optimization functions, biochemi-

cal benchmark models and a model of the human coagulation system. However,

it is possible that highly optimized versions of common meta-heuristics could

surpass DOPS; we should compare the performance of DOPS with optimized

versions of the other common meta-heuristics on both test and real-world prob-

lems to determine if a performance advantage exists in practice. Next, DOPS

has a hybrid architecture, thus the particle swarm phase could be combined

with other search strategies such as local derivative based approaches to im-

prove convergence rates. We could also consider multiple phases beyond parti-

cle swarm and dynamically dimensioned search, for example switching to a gra-

dient based search following the dynamically dimensioned search phase. Lastly,

we should update DOPS to treat multi-objective problems. The identification of

large biochemical models sometimes requires training using qualitative, con-

flicting or even contradictory data sets. One strategy to address this challenge is

to estimate experimentally constrained model ensembles using multiobjective

optimization. Previously, we developed Pareto Optimal Ensemble Techniques

(POETs) which integrates simulated annealing with Pareto optimality to iden-

tify models near the optimal tradeoff surface between competing training objec-

tives [21]. Since DOPS consistently outperformed simulated annealing on both

test and real-world problems, we expect a multi-objective form of DOPS would

more quickly estimate solutions which lie along high dimensional trade-off sur-

faces.
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2.5 Methods

2.5.1 Optimization problem formulation.

Model parameters were estimated by minimizing the difference between model

simulations and E experimental measurements. Simulation error is quantified

by an objective function K (p) (typically the Euclidean norm of the difference be-

tween simulations and measurements) subject to problem and parameter con-

straints:

min
p

K(p) =

E∑
i=1

(gi(ti, x,p,u) − yi)2

subject to ẋ = f(t, x(t,p),u(t),p)

x(t0) = x0

c(t, x,p,u) > 0

pL 6 p 6 pU

(2.1)

The term K(p) denotes the objective function (sum of squared error), t denotes

time, gi(ti, x,p,u) is the model output for experiment i, while yi denotes the mea-

sured value for experiment i. The quantity x (t,p) denotes the state variable

vector with an initial state x0, u(t) is a model input vector, f(t, x(t,p),u(t),p) is the

system of model equations (e.g., differential equations or algebraic constraints)

and p denotes the model parameter vector (quantity to be estimated). The pa-

rameter search (or model simulations) can be subject to c(t, x,p,u) linear or non-

linear constraints, and parameter bound constraints where pL and pU denote

the lower and upper parameter bounds, respectively. Optimal model parame-

44



ters are then given by:

p∗ = arg min
p

K (p) (2.2)

In this study, we considered only parameter bound constraints, and did not

include the c(t, x,p,u) linear or non-linear problem constraints. However, addi-

tional these constraints can be handled, without changing the approach, using

a penalty function method.

2.5.2 Dynamic optimization with particle swarms (DOPS).

DOPS combines multi-swarm particle swarm optimization with dynamically

dimensioned search (Fig. 2.1) and (Algo. 1). The goal of DOPS is to estimate op-

timal or near optimal parameter vectors for high-dimensional biological models

within a specified number of function evaluations. Toward this objective, DOPS

begins by using a particle swarm search and then dynamically switches, using

an adaptive switching criteria, to a DDS search phase.

Phase 1: Particle swarm phase.

Particle swarm optimization is an evolutionary algorithm that uses a popula-

tion of particles (solutions) to find an optimal solution [68, 2]. Each particle is

updated based on its experience (particle best) and the experience of all other

particles within the swarm (global best). The particle swarm phase of DOPS be-

gins by randomly initializing a swarm of K-dimensional particles (represented

as zi), wherein each particle corresponded to a K-dimensional parameter vec-

tor. After initialization, particles were randomly partitioned into k equally sized
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input : A randomized swarm of particles of size NP × K and fixed
number of function evaluations N

output: Optimized parameter vector of size 1 × K

1 Initialize the particles randomly and assign particles randomly to various
sub-swarms;

2 while j ≤ N do
3 if mod(j,G)=0 then
4 Reassign particles to different sub-swarms;
5 end
6 for i← 1 to NS do
7 Update particles within sub-swarms according to equation 3;
8 end
9 Find best particle G amongst all sub-swarms;

10 if besterror( j) ≥ 0.99 ∗ besterror( j + 1) then
11 f ailurecounter ← f ailurecounter + 1;
12 else
13 f ailurecounter ← 0;
14 end
15 if f ailurecounter ≥ threshold then
16 G ← DDS (G,N − j);
17 return G
18 else
19 j← j + 1;
20 end
21 return G
22 end
Algorithm 1: Pseudo code for the dynamic optimization with particle
swarms (DOPS) method.

sub-swarms S1, . . . ,Sk. Particles within each sub-swarm Sk were updated ac-

cording to the rule:

zi, j = θ1, j−1zi, j−1 + θ2r1

(
Li − zi, j−1

)
+ θ3r2

(
Gk − zi, j−1

)
(2.3)

where (θ1, θ2, θ3) were adjustable parameters, Li denotes the best solution found

by particle i within sub-swarm Sk for function evaluation 1 → j − 1, and Gk de-

notes the best solution found over all particles within sub-swarm Sk. The quan-

tities r1 and r2 denote uniform random vectors with the same dimension as the

number of unknown model parameters (K × 1). Equation (2.3) is similar to the
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general particle swarm update rule, however, it does not contain velocity terms.

In DOPS, the parameter θ1, j−1 is similar to the inertia weight parameter for the

velocity term described by Shi and Eberhart [305]; Shi and Eberhart proposed a

linearly decreasing inertia weight to improve convergence properties of particle

swarm optimization. Our implementation of θ1, j−1 is inspired by this and the

decreasing perturbation probability proposed by Tolson and Shoemaker [332].

It is an analogous equivalent to inertia weight on velocity. However θ1, j−1 places

inertia on the position rather than velocity and uses the same rule described by

Shi and Eberhart to adaptively change with the number of function evaluations:

θ1, j =
(N − j) ∗ (wmax − wmin))

(N − 1)
+ wmin (2.4)

where N represents the total number of function evaluations, wmax and wmin are

the maximum and minimum inertia weights, respectively. In this study, we

used wmax = 0.9 and wmin = 0.4, however, these values are user configurable and

could be changed depending upon the problem being explored. Similarly, θ2

and θ3 were treated as constants, where θ2 = θ3 = 1.5. While updating the par-

ticles, parameter bounds were enforced using reflection boundary conditions

(Algo. 2).

1 if zold
i, j < zmin

i then
2 znew

i, j = zold
i, j + (zmin

i − zold
i, j ) if znew

i, j > zmax
i then

3 znew
i, j = zmax

i

4 end
5 end
6 if zold

i, j > zmax
i then

7 znew
i, j = zold

i, j + (zold
i, j − zmax

i ) if znew
i, j < zmin

i then
8 znew

i, j = zmin
i

9 end
10 end
Algorithm 2: Pseudo code for the reflective boundary conditions used by
the dynamic optimization with particle swarms (DOPS) method.
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After every M function evaluations, particles were randomly redistributed

to a new sub-swarm, and updated according to Eqn. (2.3). This process contin-

ued for a maximum of FN functions evaluations, where F denotes the fraction

of function evaluations used during the particle swarm phase of DOPS:

F =

(
NP
N

)
j (2.5)

The quantity NP denotes the total number of particles in the swarm, N denotes

the total possible number of function evaluations, while the counter j denotes

the number of successful particle swarm iterations (each costing NP function

evaluations). If the simulation error stagnated e.g., did not change by more

than 1% for a specified number of evaluations (default value of 4), the swarm

phase was terminated and DOPS switched to exploring parameter space using

the DDS approach using the remaining (1 − F )N function evaluations.

Phase 2: DDS phase.

input : Candidate vector G from swarm search and (1 − F )N
evaluations

output: Optimized parameter vector of size 1 × K

1 while j ≤ (1 − F )N do
2 Assign probability of perturbation to each dimension Pi according to

equation 7;
3 Select a subset of dimensions based on a threshold value for perturbation;
4 Update candidate solution G(J) according to equation 5;
5 Ensure updated solution Gnew(J) is within bounds using Algorithm 2;
6 end

Algorithm 3: Pseudo code for the Dynamically Dimensioned Search (DDS)
method.

Dynamically Dimensioned Search (DDS) is a single solution based search

algorithm. DDS is used to obtain good solutions to high-dimensional search

problems within a fixed number of function evaluations. DDS starts as a global
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search algorithm by perturbing all the dimensions. Later the number of dimen-

sions that are perturbed is decreased with a certain probability. The probability

that a certain dimension is perturbed reduces (a minimum of one dimension

is always perturbed) as the iterations increase. This causes the algorithm to

behave as a local search algorithm as the number of iterations increase. The per-

turbation magnitude of each dimension is from normal distribution with zero

mean. The standard deviation that was used in the original DDS paper and

the current study is 0.2. DDS performs a greedy search where the solution is

updated only if it is better than the previous solution. The combination of per-

turbing a subset of dimensions along with greedy search indirectly relies on

model sensitivity to a specific parameter combination. The reader is requested

to refer to the original paper by Tolson and Shoemaker for further detail [332].

At the conclusion of the swarm phase, the overall best particle, Gk, over the k

sub-swarms was used to initialize the DDS phase. DOPS takes at least (1 − F )N

function evaluations during the DDS phase and then terminates the search. For

the DDS phase, the best parameter estimate was updated using the rule:

Gnew(J) =


G(J) + rnormal(J)σ(J), if Gnew(J) < G(J).

G(J), otherwise.
(2.6)

where J is a vector representing the subset of dimensions that are being per-

turbed, rnormal denotes a normal random vector of the same dimensions as G,

and σ denotes the perturbation amplitude:

σ = R(pU − pL) (2.7)

where R is the scalar perturbation size parameter, pU and pL are (K × 1) vectors

that represent the maximum and minimum bounds on each dimension. The
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set J was constructed using a probability function Pi that represents a thresh-

old for determining whether a specific dimension j was perturbed or not; Pi is

monotonically decreasing function of function evaluations:

Pi = 1 − log
[

i
(1 − F )N

]
(2.8)

where i is the current iteration. After Pi is determined, we drew P j from a

uniform distribution for each dimension j. If P j < Pi was included in J. Thus,

the probability that a dimension j was perturbed was inversely proportional to

the number of function evaluations. DDS updates are greedy; Gnew becomes the

new solution vector only if it is better than G.

2.5.3 Multiswitch DOPS

We investigated whether switching search methods more than once would re-

sult in better performance; this DOPS variant is referred to as multiswitch DOPS

or msDOPS. msDOPS begins with the PSO phase and uses the same criteria as

DOPS to switch to the DDS phase. However, msDOPS can switch back to a

PSO search when the DDS phase has reduced the functional value to 90% of

its initial value. Should the DDS phase fail to improve the functional value

sufficiently, this version is identical to DOPS. When the switch from DDS to

PSO occurs, we use the best solution from DDS to seed the particle swarm.

DOPS and msDOPS source code is available for download under a MIT license

at http://www.varnerlab.org.
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2.5.4 Comparison Techniques.

The implementations of particle swarm optimization, simulated annealing, and

genetic algorithms are the ones given in Matlab R2017A (particleswarm,

simulannealbnd and ga). The implementation of DE used was developed

by R.Storn and available at http://www1.icsi.berkeley.edu/˜storn/

code.html. The version of eSS used was Release 2014B - AMIGO2014bench

VERSION WITH eSS MAY-2014-BUGS FIXED - JRB, released by the Process En-

gineering Group IIM-CSIC. The genetic algorithm, particle swarm, and differ-

ential evolution algorithms were run with a 40 particles to be directly compa-

rable to the number of particles used in the PSO phase of DOPS. For compari-

son, the version of CM-AES used was cmaes.m, Version 3.61.beta from https:

//www.lri.fr/˜hansen/cmaes_inmatlab.html. The scripts used to run

the comparison methods are also available at http://www.varnerlab.org.

51

http://www1.icsi.berkeley.edu/~storn/code.html
http://www1.icsi.berkeley.edu/~storn/code.html
https://www.lri.fr/ ~ hansen/cmaes_inmatlab.html
https://www.lri.fr/ ~ hansen/cmaes_inmatlab.html


2.6 Tables

Table 2.1: Table with optimization settings and results for the coagulation prob-
lem, the benchmarks and test functions using DOPS. For each problem the
bounds on the parameter vector, the total number of function evaluations, the
best initial objective value and the best final objective value are specified. Here
pnom indicates the nominal or true parameter vector of the model. Nominal ob-
jective value represents the objective value using the true parameter vector or
the nominal parameter vector. The CPU time is the time taken for the problem
on a 2.4GHz Intel Xeon Architecture running Matlab 2014b.

Coagulation B1 B4 Ackley Rastrigin

Evaluations 4000 4000 4000 4000 4000
Lower Bound 0.001.pnom 0.2.pnom 0.2.pnom -15 -5.12
Upper Bound 1000.pnom 5.pnom 5.pnom 30 5.12

CPU Time 10.1 hrs 38.3 hrs 6.2 min 2.8 s 2.6 s

Scaled initial error 1.0 1.0 1.0 1.0 1.0
Scaled final error < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Scaled nominal error 0.42 0.1 < 0.01 0 0
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Table 2.2: Error analysis for the human coagulation model. The coagulation
model was trained on coagulation initiated with TF/FVIIa at 5 nM and the
5 pM to obtain the optimal parameters. Using these optimal parameters, coag-
ulation dynamics were predicted for varying initiator concentrations (500 pM,
50 pM and 10 pM). Model agreement with measurements was quantified us-
ing normalized squared error. The normalized squared error is defined as
N.S .E. = (1/max(X)) ∗ (‖(Y,X)‖/sqrt(N)) where X is the experimental data, Y is
the model simulation data interpolated onto the experimental time scale and N
is the total number of experimental time points.

TF/FVIIa concentration Normalized S.E. Category

5 nM 0.1336 Training
500 pM 0.2242 Prediction
50 pM 0.3109 Prediction
10 pM 0.2023 Prediction
5 pM 0.1170 Training
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CHAPTER 3

REDUCED ORDER MODELING AND ANALYSIS OF THE HUMAN

COMPLEMENT SYSTEM

Abstract

1 Complement is an important pathway in innate immunity, inflammation, and

many disease processes. However, despite its importance, there are few val-

idated mathematical models of complement activation. In this study, we de-

veloped an ensemble of experimentally validated reduced order complement

models. We combined ordinary differential equations with logical rules to pro-

duce a compact yet predictive model of complement activation. The model,

which described the lectin and alternative pathways, was an order of magni-

tude smaller than comparable models in the literature. We estimated an ensem-

ble of model parameters from in vitro dynamic measurements of the C3a and

C5a complement proteins. Subsequently, we validated the model on unseen

C3a and C5a measurements not used for model training. Despite its small size,

the model was surprisingly predictive. Global sensitivity and robustness anal-

ysis suggested complement was robust to any single therapeutic intervention.

Only the simultaneous knockdown of both C3 and C5 consistently reduced C3a

and C5a formation from all pathways. Taken together, we developed a vali-

dated mathematical model of complement activation that was computationally

inexpensive, and could easily be incorporated into pre-existing or new pharma-

cokinetic models of immune system function. The model described experimen-

tal data, and predicted the need for multiple points of therapeutic intervention

1This chapter has previously been published as [282].
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to fully disrupt complement activation.

3.1 Introduction

Complement is an important pathway in innate immunity. It plays a significant

role in inflammation, host defense as well as many disease processes. Com-

plement was discovered in the late 1880s where it was found to ’complement’

the bactericidal activity of natural antibodies [246]. However, research over

the past decade has suggested the importance of complement extends beyond

innate immunity. For example, complement contributes to tissue homeostasis

[265]. It has also has been linked with several diseases including Alzheimers,

Parkinson’s, multiple sclerosis, schizophrenia, rheumatoid arthritis and sepsis

[266, 272]. Complement also plays positive and negative roles in cancer; at-

tacking tumor cells with altered surface proteins in some cases, while poten-

tially contributing to tumor growth in others [288, 267]. Lastly, several other

important biochemical systems are integrated with complement including the

coagulation cascade, the autonomous nervous system and inflammation [267].

Thus, complement is important in a variety of beneficial and potentially harm-

ful functions in the body. Despite its importance, there have been few approved

complement specific therapeutics, largely because of safety concerns and chal-

lenging pharmacokinetic constraints, however, progress is being made [268].

The complement cascade involves many soluble and cell surface proteins, re-

ceptors and regulators [349, 350]. The outputs of complement are the Membrane

Attack Complex (MAC), and the inflammatory mediator proteins C3a and C5a.

The membrane attack complex, generated during the terminal phase of the re-
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sponse, forms transmembrane channels which disrupt the membrane integrity

of targeted cells, leading to cell lysis and death. On the other hand, the C3a and

C5a proteins act as a bridge between innate and adaptive immunity, and play an

important role in regulating inflammation [288]. Complement activation takes

places through three pathways: the classical, the lectin and the alternate path-

ways. The classical pathway is triggered by antibody recognition of foreign

antigens or other pathogens. A multimeric protein complex C1 binds antibody-

antigen complexes and undergoes a conformational change, leading to an ac-

tivated form with proteolytic activity. The activated C1-complex cleaves solu-

ble complement proteins C4 and C2 into C4a, C4b, C2a and C2b, respectively.

The C4a and C2b fragments bind to form the C4bC2a protease, also known as

the classical pathway C3 convertase (CP C3 convertase). The lectin pathway is

initiated through the binding of L-ficolin or Mannose Binding Lectin (MBL) to

carbohydrates on the surfaces of bacterial pathogens. These complexes, in com-

bination with mannose-associated serine proteases 1 and 2 (MASP-1/2), also

cleave C4 and C2, leading to additional CP C3 convertase. Thus, the classical

and lectin pathways, initiated by different cues on foreign surfaces, converge

at the CP C3 convertase. On the other hand, the alternate pathway is activated

by a ’tickover’ mechanism in which complement protein C3 is spontaneously

hydrolyzed to form an activated intermediate C3w; C3w recruits factor B and

factor D, leading to the formation of C3wBb. C3wBb cleaves C3 into C3a and

C3b, where the C3b fragment further recruits additional factor B and factor D to

form C3bBb, the alternate C3 convertase (AP C3 convertase) [249]. The role of

classical and alternate C3 convertases is varied. First, AP C3 convertases medi-

ate signal amplification. AP C3 convertases cleave C3 into C3a and C3b; the C3b

fragment is then free to form additional alternate C3 convertases, thereby form-
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ing a positive feedback loop. Next, AP/CP C3 convertases link complement ini-

tiation with the terminal phase of the cascade through the formation of C5 con-

vertases. Both classical and alternate C3 convertases can recruit C3b subunits to

form the classical pathway C5 convertase (C4bC2aC3b, CP C5 convertase), and

the alternate pathway C5 convertase (C3bBbC3b, AP C5 convertase), respec-

tively. Both C5 convertases cleave C5 into the C5a and C5b fragments. The C5b

fragment, along with the complement proteins C6, C7, C8 and multiple C9s,

form the membrane attack complex. On the other hand, both C3a and C5a are

important inflammatory signals involved in several responses [349, 350]. Thus,

the complement cascade attacks invading pathogens, while acting as a beacon

for adaptive immunity.

The complement cascade is regulated by plasma and host cell surface pro-

teins which balance host safety with effectiveness. The initiation of the classical

pathway via complement protein C1 is controlled by the C1 Inhibitor (C1-Inh);

C1-Inh irreversibly binds to and deactivates the active subunits of C1, prevent-

ing chronic complement activation [348]. Regulation of upstream processes in

the lectin and alternate pathways also occurs through the interaction of the

C4 binding protein (C4BP) with C4b, and factor H with C3b [31]. Interest-

ingly, both factor H and C4BP are capable of binding their respective targets

while in convertase complexes as well. At the host cell surface, membrane co-

factor protein (MCP or CD46) can interact with C4b and C3b, which protects

the host cell from complement self-activation [270]. Delay accelerating factor

(DAF or CD55) also recognizes and dissociates both C3 and C5 convertases on

host cell surfaces [195]. More generally the well known inflammation regulator

Carboxypeptidase-N has broad activity against the complement proteins C3a,

C4a, and C5a, rendering them inactive by cleavage of carboxyl-terminal argi-

57



nine and lysine residues [186]. Although Carboxypeptidase-N does not directly

influence complement activation, it silences the important inflammatory signals

produced by complement. Lastly, assembly of the MAC complex itself can be in-

hibited by vitronectin and clusterin in the plasma, and CD59 at the host surface

[56, 370]. Thus, there are many points of control which influence complement

across the three activation pathways.

Developing quantitative mathematical models of complement could be cru-

cial to fully understanding its role in the body. Traditionally, complement mod-

els have been formulated as systems of linear or non-linear ordinary differential

equations (ODEs). For example, Hirayama et al., modeled the classical com-

plement pathway as a system of linear ODEs [139], while Korotaevskiy and

co-workers modeled the classical, lectin and alternate pathways as a system of

non-linear ODEs [174]. More recently, large mechanistic models of sections of

complement have also been proposed. For example, Liu et al., analyzed the for-

mation of the classical and lectin C3 convertases, and the regulatory role of C4BP

using a system of 45 non-linear ODEs with 85 parameters [187]. Zewde and

co-workers constructed a detailed mechanistic model of the alternative path-

way which consisted of 107 ODEs and 74 kinetic parameters and delineated

between the fluid, host and pathogen surfaces [370]. However, these previous

studies involved large models with little experimental validation. Thus, while

these models are undoubtably important theoretical tools, it is unclear if they

can describe or quantitatively predict complement measurements. The central

challenge of complement model identification is the estimation of model param-

eters from experimental measurements. Unlike other important cascades, such

as coagulation where there are well developed experimental tools and publicly

available data sets, the data for complement is relatively sparse. Data sets with
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missing or incomplete data, and limited dynamic data also make the identifi-

cation of large mechanistic complement models difficult. Thus, reduced order

approaches which describe the biology of complement using a limited number

of species and parameters could be important for pharmacokinetic model de-

velopment, and for our understanding of the varied role of complement in the

body.
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3.2 Results
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Figure 3.1: Reduced order complement model training. An ensemble of model
parameters were estimated using multiobjective optimization from C3a and C5a
measurements with and without zymosan [227]. The model was trained us-
ing C3a and C5a data generated from the alternative pathway (A–B) and lectin
pathway initiated with 1 mg/ml zymosan (C–D). The solid black lines show the
simulated mean value of C3a or C5a for the ensemble, while the dark shaded
region denotes the 99% confidence interval of mean. The light shaded region de-
notes the 99% confidence interval of the simulated C3a and C5a concentration.
All initial conditions were assumed to be at their physiological serum levels
unless otherwise noted.

In this study, we estimated an ensemble of experimentally validated reduced

order complement models using multiobjective optimization. The modeling ap-

proach combined ordinary differential equations with logical rules to produce

a complement model with a limited number of equations and parameters. The

reduced order model, which described the lectin and alternative pathways, con-
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sisted of 18 differential equations with 28 parameters. Thus, the model was

an order of magnitude smaller and included more pathways than comparable

models in the literature. We estimated an ensemble of model parameters from

in vitro time series measurements of the C3a and C5a complement proteins. Sub-

sequently, we validated the model on unseen C3a and C5a measurements not

used for model training. Despite its size, the model was surprisingly predictive.

After validation, we performed global sensitivity and robustness analysis to es-

timate which parameters and species controlled model performance. Sensitivity

analysis suggested CP C3 and C5 convertase parameters were critical, while ro-

bustness analyses suggested complement was robust to any single therapeutic

intervention; only the knockdown of both C3 and C5 consistently reduced C3a

and C5a formation for all cases. Taken together, we developed a reduced order

complement model that was computationally inexpensive, and could easily be

incorporated into pre-existing or new pharmacokinetic models of immune sys-

tem function. The model described experimental data, and predicted the need

for multiple points of intervention to disrupt complement activation.

3.2.1 Reduced order complement network.

The complement model described the alternate and lectin pathways (Fig. 3.2).

A trigger event initiated the lectin pathway (encoded as a logical rule), which

activated the cleavage of C2 and C4 into C2a, C2b, C4a and C4b, respectively.

Classical Pathway (CP) C3 convertase (C4aC2b) then catalyzed the cleavage of

C3 into C3a and C3b. The alternate pathway was initiated through the sponta-

neous hydrolysis of C3 into C3a and C3b. The C3b fragments generated by hy-

drolysis (or by CP C3 convertase) could then form the alternate pathway (AP)
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C3 convertase (C3bBb). We did not consider C3w, nor the formation of the ini-

tial alternate C3 convertase (C3wBb). Rather, we assumed C3w was equivalent

to C3b and only modeled the formation of the main AP C3 convertase. Both the

CP and AP C3 convertases catalyzed the cleavage of C3 into C3a and C3b. A

second C3b fragment could then bind with either the CP or AP C3 convertase

to form the CP or AP C5 convertase (C4bC2aC3b or C3bBbC3b). Both C5 con-

vertases catalyzed the cleavage of C5 into the C5a and C5b fragments. In this

study, we simplified the model by assuming both factor B and factor D were

in excess. However, we did explicitly account for the action of two other con-

trol proteins, factor H and C4BP. Lastly, we did not consider MAC formation,

instead we stopped at C5a and C5b. Lectin pathway activation, and C3/C5

convertase activity were modeled using a combination of saturation kinetics

and non-linear transfer functions, which resulted in a significant size reduction

of the model, while maintaining performance. Binding interactions were mod-

eled using mass-action kinetics, where we assumed all binding was irreversible.

Thus, while the reduced order complement model encoded significant biology,

it was highly compact consisting of only 18 differential equations and 28 model

parameters. Next, we estimated an ensemble of model parameters from time

series measurements of the C3a and C5a complement proteins.
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Figure 3.2: Simplified schematic of the human complement system. The com-
plement cascade is activated through three pathways: the classical, the lectin,
and the alternate pathways. Complement initiation results in the formation of
classical or alternative C3 convertases, which amplify the initial complement
response and signal to the adaptive immune system by cleaving C3 into C3a
and C3b. C3 convertases further react to form C5 convertases which catalyze
the cleavage of the C5 complement protein to C5a and C5b. C5b is critical to
the formation of the membrane attack complex (MAC), while C5a recruits an
adaptive immune response.
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3.2.2 Estimating an ensemble of reduced order complement

models.

A critical challenge for the development of any dynamic model is the estimation

of model parameters. We estimated an ensemble of complement model param-

eters using in vitro time-series data sets generated with and without zymosan, a

lectin pathway activator [227]. The residual between model simulations and ex-

perimental measurements was minimized using the Pareto Optimal Ensemble

Technique (JuPOETs) [20] starting from a initial guess generated by the dynamic

optimization with particle swarms (DOPS) routine. Unless otherwise specified,

all initial conditions were assumed to be at their mean physiological values.

While we had significant training data, the parameter estimation problem was

underdetermined (we were not able to uniquely determine model parameters).

Thus, instead of using the best-fit yet uncertain parameter set, we estimated an

ensemble of probable parameter sets to quantify model uncertainty (N = 2100,

see materials and methods). The complement model ensemble captured the be-

havior of both the alternate and lectin pathways (Fig. 3.1). To estimate alternate

pathway model parameters, we used C3a and C5a measurements in the absence

of zymosan (Fig. 3.1A and B). On the other hand, lectin pathway parameters

were estimated from C3a and C5a measurements in the presence of 1mg/ml

zymosan (Fig. 3.1C and D). The reduced order model reproduced a panel of

alternate and lectin pathway data sets in the neighborhood of physiological fac-

tor and inhibitor concentrations. The model fit for parameter sets estimated by

JuPOETs, quantified by the Akaike information criterion (AIC), was statistically

significantly different than a random parameter control for each case at a 95%

confidence level. However, it was unclear whether the reduced order model
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could predict new data, without updating the model parameters. To address

this question, we fixed the model parameters and simulated data sets not used

for model training.

We tested the predictive power of the reduced order complement model

with data not used during model training (Fig. 3.4). Six validation cases were

considered, three for C3a and C5a each, respectively. Similar to model train-

ing, we compared the AIC for each prediction case to a randomized parame-

ter family. All model parameters and initial conditions were fixed for the val-

idation simulations (with the exception of zymosan, and other experimentally

mandated changes). The ensemble of reduced order models predicted the qual-

itative dynamics of C3a formation (Fig. 3.4, top), and C5a formation (Fig. 3.4,

bottom) at three inducer concentrations. For each training case, the AIC was

statistically significantly different than the random parameter control for a 95%

confidence level. The rate of C3a formation and C3a peak time were directly

proportional to initiator dose. Similarly, the C5a plateau and rate of formation

were also directly proportional to initiator dose, with the lag time being indi-

rectly proportional to initiator exposure for both C3a and C5a. However, there

were shortcomings with model performance. First, while the overall C3a trend

was captured (within the 99% confidence interval), the C3a dynamics were too

fast with the exception of the low dose case. We believe the C3a time scale was

related to our choice of training data, how we modeled the tickover mecha-

nism, and factor B and D limitation. We trained the model using either no or 1

mg/ml zymosan, but predicted cases in a different initiator range; comparing

training to prediction, the model performance e.g., the shape of the C3a trajec-

tory was biased towards either high or very low initiator doses. Next, tickover

was modeled as a first-order generation processes where C3wBb formation and

65



activity was lumped into the AP C3 convertase. Thus, we skipped an important

upstream step which could influence AP C3 convertase formation by attenu-

ating the rate C3 cleavage into C3a and C3b. We also assumed both factor B

and factor D were not limiting, thereby artificially accelerating the rate of AP

C3 convertase formation. The C5a predictions followed a similar trend as C3a;

we captured the long-time C5a behavior but over predicted the time scale of

C5 cleavage. However, because the C5a time scale depends strongly upon C3

convertase formation, we can likely correct the C5 issues by fixing the rate of C3

cleavage. Despite these shortcomings, we qualitatively predicted experimental

measurements not used for model training typically within the 99% confidence

of the ensemble, for three inducer levels. Next, we used global sensitivity and

robustness analysis to determine which parameters and species controlled the

performance of the complement model.

3.2.3 Global analysis of the reduced order complement model.

We conducted sensitivity analysis to estimate which parameters controlled the

performance of the reduced order complement model. We calculated the total

sensitivity of the C3a and C5a residual to changes in model parameters with

and without zymosan (Fig. 3.3). In the absence of zymosan (where only the al-

ternative pathway is active), the most sensitive parameter was the rate constant

governing the assembly of the AP C3 convertase, as well as the rate constant

controlling basal C3b formation via the tickover mechanism. The C5a trajectory

was sensitive to the AP C5 convertase kinetic parameters (Fig. 3.3A). Interest-

ingly, neither the rate nor the saturation constant governing AP C3 convertase

activity were sensitive in the absence of zymosan. Thus, C3a formation in the al-
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Figure 3.3: Global sensitivity analysis of the reduced order complement model.
Sensitivity analysis was conducted on the two objectives used for model train-
ing. A: Sensitivity of the C3a and C5a residual w/o zymosan. B: Sensitiv-
ity of the C3a and C5a residual with 1 mg/ml zymosan. The bars denote the
mean total sensitivity index for each parameter, while the error bars denote the
95% confidence interval. C: Pathways controlled by the sensitivity parameters.
Bold black lines indicate the pathway involves one or more sensitive parame-
ters, while the red lines show current therapeutics targets. Current complement
therapeutics were taken from the review of Morgan and Harris [229].

ternative pathway was more heavily influenced by the spontaneous hydrolysis

of C3, rather than AP C3 convertase activity, in the absence of zymosan. In the

presence of zymosan, the C3a residual was controlled by the formation and ac-
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tivity of the CP C3 convertase, as well as tickover and degradation parameters.

On the other hand, the C5a residual was controlled by the formation and activ-

ity of CP C5 convertase, and tickover C3b formation in the presence of zymosan

(Fig. 3.3B). The lectin initiation parameters were sensitive, but to a lesser ex-

tent than CP convertase kinetic parameters and tickover C3b formation. Thus,

sensitivity analysis suggested that CP C3/C5 convertase formation and activity

dominated in the presence of zymosan, but tickover parameters and AP C5 con-

vertase were more important without initiator. AP C3 convertase assembly was

important, but its activity was not. Next, we compared the sensitivity results to

current therapeutic approaches; pathways involving sensitive parameters have

been targeted for clinical intervention (Fig. 3.3C). In particular, the sensitivity

analysis suggested AP/CP C5 convertase inhibitors, or interventions aimed at

attenuating C3 or C5 would most strongly influence complement performance.

Thus, there was at least a qualitative overlap between sensitivity and the poten-

tial of biochemical efficacy. However, total sensitivity coefficients quantify how

simultaneous changes in many parameters e.g., rate or saturation constants af-

fect model performance (in this case model fit). To better understand the role of

each parameter, and parameter combination, we explored how finite changes in

parameter combinations influenced model performance.

Pairwise parameter perturbations identified crosstalk within the comple-

ment model (Fig. 3.5). We perturbed each pairwise parameter combination

by 10%, and calculated the distance between the perturbed and nominal state

for each parameter set in the ensemble. We then clustered the mean response

of each parameter combination based upon the euclidian distance between the

perturbed and nominal states into low (green), medium (red) and high (blue) re-

sponse clusters. A low response (white) meant the parameter perturbations did
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not significantly change the system state compared with the nominal case. Four

of the 28 parameters (or approximately 14% of the overall model parameters)

were in the high response cluster (Fig. 3.5, blue cluster). These parameters in-

cluded the rate constant controlling the basal formation of C3b (#12), C3a degra-

dation (#26) as well as the catalytic rate constant governing CP C3 convertase

activity (#22). The only C5 related parameter in the high response group was

the rate constant controlling the formation of CP C5 convertase (#15). Approx-

imately, 36%, or 10 of the 28 model parameters, were clustered in the medium

impact cluster (Fig. 3.5, red cluster). Three parameters (#10, #1, #27) were espe-

cially important in this cluster; The reaction order governing CP C3 convertase

activity was important (#10), along with the rate constant controlling C4a and

C4b formation from C4 in the lectin initiation pathway (#1), and the constant

controlling the inhibitory action of C4BP (#27). Lastly, 50% of the model param-

eters were clustered in the low response cluster (Fig. 3.5, green cluster). Many

of these parameters influenced complement activation; for example, parame-

ter #23 (the CP C3 convertase saturation constant) was important, just not to the

extent of other model parameters. Pairwise synergistic interactions between pa-

rameters were also identified. For example, in the high impact cluster, three syn-

ergistic relationships were identified, a single positive and two negative cases.

Parameters #12 (rate constant governing basal C3b formation) and #15 (forma-

tion of CP C5 conevertase) acted synergistically to increase the system response.

On the other hand, simultaneously changing parameters #12 and #22 or #15 and

#26 decreased the system response relative to a single perturbation. However,

the most striking examples of synergy occurred in the medium impact cluster;

for example, simultaneously increasing parameters #13 (rate constant govern-

ing AP C3 convertase formation) and #19 (saturation constant governing AP
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C5 convertase activity) significantly changed the model state. Changes in pa-

rameter #3 (rate constant governing C2a and C2b formation from C2) showed

both positive and negative synergistic effects depending upon the other param-

eter that was perturbed. Taken together, sensitivity coefficients quantified how

changes in parameters or parameter combinations affected model performance.

However, individual parameters e.g., rate or saturation constants are not easily

druggable. To more closely simulate a clinical intervention e.g., administration

of anti-complement inhibitors, we performed knock-down analysis on the ini-

tial values of C3 and C5 in the absence and presence of flow.

Knock-down analysis in the absence of flow suggested there was no single

intervention that inhibited complement activation in the presence of both ini-

tiation pathways (Fig. 3.6). Robustness coefficients quantify the response of a

protein to a macroscopic structural or operational perturbation to a biochemical

network. Here, we computed how the C3a and C5a trajectories responded to a

decrease in the initial abundance of C3 and/or C5 with and without lectin initia-

tor. We simulated the addition of different doses of anti-complement inhibitor

cocktails by decreasing the initial concentration of C3, C5 or the combination

of C3 and C5 by 50%, 90% and 99%. This would be conceptually analogous

to the administration of a C3 inhibitor e.g., Compstatin alone or combination

with Eculizumab (Fig. 3.3C). The response of the complement model to differ-

ent knock-down magnitudes was non-linear; a 90% knock-down had an order

of magnitude more impact than a 50% knock-down. As expected, a C5 knock-

down had no effect on C3a formation for either the alternate (Fig. 3.6A) or lectin

pathways (Fig. 3.6B). However, C3a and to a greater extent C5a abundance de-

creased with decreasing C3 concentration in the alternate pathway (Fig. 3.6A).

This agreed with the sensitivity results; changes in AP C3-convertase formation
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affected the downstream dynamics of C5a formation. Thus, if we only consid-

ered the alternate pathway, C3 alone could be a reasonable target, especially

given that C5a formation was surprisingly robust to C5 levels in the alternate

pathway. Yet, when both pathways were activated, C5a levels were robust to the

initial C3 concentration (Fig. 3.6B); even 1% of the nominal C3 was able to gen-

erate enough AP/CP C5 convertase to maintain C5a formation. Thus, the only

reliable intervention that consistently reduced both C3a and C5a formation for

all cases was a knockdown of both C3 and C5. For example, a 90% decrease of

both C3 and C5 reduced the formation of C5a by an order of magnitude, while

C3a was reduced to a lesser extent (Fig. 3.6B).
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3.3 Discussion

In this study, we estimated an ensemble of experimentally validated reduced

order complement models using multiobjective optimization. The modeling

approach combined ordinary differential equations with logical rules to pro-

duce a complement model with a limited number of equations and parameters.

The reduced order model, which described the lectin and alternative pathways,

consisted of 18 differential equations with 28 parameters. Thus, the model was

an order of magnitude smaller and included more pathways than comparable

mathematical models in the literature. We estimated an ensemble of model pa-

rameters from in vitro time series measurements of the C3a and C5a comple-

ment proteins. Subsequently, we validated the model on unseen C3a and C5a

measurements that were not used for model training. Despite its small size,

the model was surprisingly predictive. After validation, we performed global

sensitivity and robustness analysis to estimate which parameters and species

controlled model performance. These analyses suggested complement was ro-

bust to any single therapeutic intervention. The only intervention that consis-

tently reduced C3a and C5a formation for all cases was a knockdown of both

C3 and C5. Taken together, we developed a reduced order complement model

that was computationally inexpensive, and could easily be incorporated into

pre-existing or new pharmacokinetic models of immune system function. The

model described experimental data, and predicted the need for multiple points

of intervention to disrupt complement activation.

There has been a paucity of validated mathematical models of complement

pathway activation. To our knowledge, this study is one of the first complement

models that combined multiple initiation pathways with experimental valida-
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tion of important complement products like C5a. However, there have been

several theoretical models of components of the cascade in the literature. Liu

and co-workers modeled the formation of C3a through the classical pathway

using 45 non-linear ODEs [187]. In contrast, in this study we modeled lectin

mediated C3a formation using only five ODEs. Though we did not model all

the initiation interactions in detail, especially the cross-talk between the lectin

and classical pathways, we successfully captured C3a dynamics with respect to

different concentrations of lectin initiators. The model also captured the dynam-

ics of C3a and C5a formed from the alternate pathway using only seven ODEs.

The reduced order model predictions of C5a were qualitatively similar to the

theoretical complement model of Zewde et al., which involved over 100 ODEs

[370]. However, we found that the C3a produced in the alternate pathway was

nearly three orders of magnitude greater than the C5a generated. While this

was in agreement with the experimental data [227], it differed from the theo-

retical predictions made by Zewde et al., who showed C3a was eight orders

of magnitude greater than the C5a concentration [370]. In our model, the time

profile of both C3a and C5a generated changed with respect to the quantity of

zymosan (the lectin pathway initiator). In particular, the C3a peak time was di-

rectly proportional to initiator, while the lag phase for generation was inversely

proportional to the initiator concentration. Korotaevskiy et al. showed a simi-

lar trend using a theoretical model of complement, albeit for much shorter time

scales [174]. Thus, the reduced order complement model performed at least as

well as existing larger mechanistic models, despite being significantly smaller.

Global analysis of the complement model suggested potentially important

therapeutic targets. Complement malfunctions are implicated in a spectrum

of diseases, however the development of complement specific therapeutics has
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been challenging [266, 229]. Previously, we have shown that mathematical mod-

eling and analysis can be useful tools to estimate therapeutically important

mechanisms [194, 236, 329, 262]. In this study, we analyzed a validated ensem-

ble of reduced order complement models to better understand the strengths and

weaknesses of the cascade. In the presence of an initiator, C3a and C5a forma-

tion was sensitive to CP C3/C5 convertase assembly and activity, and to a lesser

extent lectin initiation parameters. Formation of the CP convertases can be in-

hibited by targeting upstream protease complexes like MASP-1,2 from the lectin

pathway (or C1r, C1s from classical pathway). For example, Omeros, a protease

inhibitor that targets the MASP-2 complex, has been shown to inhibit the forma-

tion of downstream convertases [298]. Lampalizumab and Bikaciomab, which

target factor B and factor D respectively, or naturally occurring proteins such as

Cobra Venom Factor (CVF), an analogue of C3b, could also attenuate AP con-

vertase formation [345, 168, 152]. Removing supporting molecules could also

destabilize the convertases. For example, Novelmed Therapeutics developed

the antibody, NM9401 against propedin, a small protein that stabilizes alter-

nate C3 convertase [16]. Lastly, convertase catalytic activity could be attenuated

using small molecule protease inhibitors. All of these approaches are consis-

tent with the results of the sensitivity analysis. On the other hand, robustness

analysis suggested C3a and C5a generation could only be significantly atten-

uated by modulating the free levels of C3 and C5. The most commonly used

anti-complement drug Eculizumab, targets the C5 protein [229]. Several other

antibodies targeting C5 are also being developed; for example, LFG316 targets

C5 in Age-Related Macular Degeneration [277], while Mubodina is used to treat

Atypical Hemolytic-Uremic Syndrome (aHUS) [210]. Other agents such as Cov-

ersin [357] or the aptamer Zimura [97] could also be used to knockdown C5. The
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peptide inhibitor Compstatin and its derivatives are promising approaches for

the inhibition of C3 [204]. However, while the knockdown of C3 and C5 affect

C3a and C5a levels downstream, the abundance, turnover rate and population

variation of these proteins make them difficult targets [310, 325]. For exam-

ple, the eculizumab dosage must be significantly adjusted during the course of

treatment for aHUS [245]. A validated complement model, in combination with

personalized pharmacokinetic models of immune system function, could be an

important development for the field.

The performance of the complement model was impressive given its limited

size. However, there are several questions that should be explored further. A

logical progression for this work would be to expand the network to include the

classical pathway and the formation of the membrane attack complex (MAC).

However, time course measurements of MAC abundance (and MAC formation

dynamics) are scarce, making the inclusion of MAC challenging. On the other

hand, inclusion of classical pathway activation is straightforward. Liu et al.,

have shown cross-talk between the activation of the classical and lectin path-

ways through C reactive proteins (CRP) and L-ficolin (LF) under inflammation

conditions [187]. Thus, inclusion of these species, in addition to a lumped ac-

tivation term for the classical pathway should allow us to capture classical ac-

tivation. Next, we should address the C3a time scale issue. We believe the

C3a time scale was related to our choice of training data, how we modeled

the tickover mechanism, and factor B and D limitation. Tickover was mod-

eled as a first-order generation processes where C3wBb formation and activity

was lumped into the AP C3 convertase. Thus, we skipped an important step

which could strongly influence AP C3 convertase formation by slowing down

the rate C3 cleavage into C3a and C3b. The model should be expanded to in-
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clude the C3wBb intermediate, where C3wBb catalyzes C3 cleavage at a slow

rate compared to normal AP or CP C3 convertases. We also assumed both factor

B and factor D were not limiting, thereby artificially accelerating the rate of AP

C3 convertase formation. This shortcoming could be addressed by including

balances around factor B and D, and including these species in the appropriate

kinetic rates. The C5a predictions also had an accelerated time scale. However,

because the C5a time scale depended strongly upon C3 convertase formation,

we can likely correct the C5 issues by fixing the rate of C3 cleavage. Lastly, we

should also consider including the C2-bypass pathway, which was not included

in the model. The C2-bypass mediates lectin pathway activation, without the

involvement of MASP-1/2. Thus, this pathway could be important for under-

standing the role of MASP-1/2 inhibitors on complement activation.
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3.4 Materials and Methods

3.4.1 Formulation and solution of the complement model equa-

tions.

We used ordinary differential equations (ODEs) to model the time evolution of

complement proteins (xi) in the reduced order model:

1
τi

dxi

dt
=

R∑
j=1

σi jr j (x, ε,k) i = 1, 2, . . . ,M (3.1)

where R denotes the number of reactions andM denotes the number of proteins

in the model. The quantity τi denotes a time scale parameter for species i which

captures unmodeled effects. For the current study, τ scaled with the level of

initiator (z) for C5a and C5b; τi = z/z∗ for i = C5a, C5b where z∗ was 1mg/ml,

τi = 1 for all other species. The quantity r j (x, ε,k) denotes the rate of reaction j.

Typically, reaction j is a non-linear function of biochemical and enzyme species

abundance, as well as unknown model parameters k (K × 1). The quantity σi j

denotes the stoichiometric coefficient for species i in reaction j. If σi j > 0, species

i is produced by reaction j. Conversely, if σi j < 0, species i is consumed by

reaction j, while σi j = 0 indicates species i is not connected with reaction j.

Species balances were subject to the initial conditions x (to) = xo.

Rate processes were written as the product of a kinetic term (r̄ j) and a control

term (v j) in the complement model. The kinetic term for the formation of C4a,

C4b, C2a and C2b, lectin pathway activation, and C3 and C5 convertase activity

was given by:

r̄ j = kmax
j εi

 xηs
Kη

js + xηs

 (3.2)
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where kmax
j denotes the maximum rate for reaction j, εi denotes the abundance of

the enzyme catalyzing reaction j, η denotes a cooperativity parameter, and K js

denotes the saturation constant for species s in reaction j. We used mass action

kinetics to model protein-protein binding interactions within the network:

r̄ j = kmax
j

∏
s∈m−j

x−σs j
s (3.3)

where kmax
j denotes the maximum rate for reaction j, σs j denotes the stoichiomet-

ric coefficient for species s in reaction j, and s ∈ m j denotes the set of reactants

for reaction j. We assumed all binding interactions were irreversible.

The control terms 0 ≤ v j ≤ 1 depended upon the combination of factors

which influenced rate process j. For each rate, we used a rule-based approach to

select from competing control factors. If rate j was influenced by 1, . . . ,m factors,

we modeled this relationship as v j = I j

(
f1 j (·) , . . . , fm j (·)

)
where 0 ≤ fi j (·) ≤ 1 de-

notes a regulatory transfer function quantifying the influence of factor i on rate

j. The function I j (·) is an integration rule which maps the output of regulatory

transfer functions into a control variable. Each regulatory transfer function was

modeled using a Hill function. In this study, we used I j ∈ {min,max} [286]. If

a process has no modifying factors, v j = 1. The model equations were imple-

mented in Julia and solved using the CVODE routine of the Sundials package

[28, 138]. The model code and parameter ensemble is freely available under an

MIT software license and can be downloaded from the Varnerlab website [339].

3.4.2 Estimating complement model parameters.

We estimated a single initial parameter set using the Dynamic Optimization

with Particle Swarms (DOPS) technique [284]. DOPS is a novel hybrid meta-
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Figure 3.4: Reduced order complement model predictions. Simulations of C3a
and C5a generated in the lectin pathway using 0.1 mg/ml, 0.01 mg/ml, and
0.001 mg/ml zymosan were compared with the corresponding experimental
measurements. The solid black lines show the simulated mean value of C3a or
C5a for the ensemble, while the dark shaded region denotes the 99% confidence
interval of mean. The light shaded region denotes the 99% confidence interval of
the simulated C3a and C5a concentration. All initial conditions were assumed
to be at their physiological serum levels unless otherwise noted.

heuristic which combines a multi-swarm particle swarm method with the dy-

namically dimensioned search approach of Shoemaker and colleagues [333].

DOPS minimized the squared residual between simulated and C3a and C5a

measurements with and without zymosan as a single objective. The best fit

set estimated by DOPS served as the starting point for multiobjective ensemble

generation using Pareto Optimal Ensemble Technique in the Julia programming

language (JuPOETs) [20]. JuPOETs is a multiobjective approach which inte-
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grates simulated annealing with Pareto optimality to estimate model ensembles

on or near the optimal tradeoff surface between competing training objectives.

JuPOETs minimized training objectives of the form:

O j(k) =

T j∑
i=1

(
M̂i j − ŷi j(k)

)2

+

M′
i j −max yi j

M′
i j

2

(3.4)

subject to the model equations, initial conditions and parameter bounds L ≤

k ≤ U. The first term in the objective function measured the shape difference

between the simulations and measurements. The symbol M̂i j denotes a scaled

experimental observation (from training set j) while the symbol ŷi j denotes the

scaled simulation output (from training set j). The quantity i denotes the sam-

pled time-index and T j denotes the number of time points for experiment j. The

scaled measurement is given by:

M̂i j =
Mi j −miniMi j

maxiMi j −miniMi j
(3.5)

Under this scaling, the lowest measured concentration become zero while the

highest equaled one, where a similar scaling was defined for the simulation out-

put. The second-term in the objective function quantified the absolute error in

the estimated concentration scale, where the absolute measured concentration

(denoted byM′
i j) was compared with the largest simulated value. In this study,

we minimized two training objectives, the total C3a and C5a residual w/o zy-

mosan (O1) and the total C3a and C5a residual for 1 mg/ml zymosan (O2).

JuPOETs identified an ensemble of N = 2100 parameter sets which were used

for model simulations and uncertainty quantification subsequently. JuPOETs

is open source, available under an MIT software license. The JuPOETs source

code is freely available from the JuPOETs GitHub repository [340]. The objec-

tive functions used in this study are available in the GitHub model repository

[339].
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The simulation and prediction performance of the complement model was

measured using the Akaike information criterion (AIC) [5]. In this study, we

implemented the AIC as:

AIC = 2Np + Nm ln

 1
M

∑
τ

(xτ − yτ)2

 (3.6)

where Np,Nm denotes the number of parameters, and the number of experimen-

tal measurements, respectively. The summation term in Eq. (3.6) denotes the

residual between the model simulation (x) and experimental measurements (y),

where the residual is normalized by the scale of the experimental data (M). We

compared the AIC for the model parameters estimated in this study, with a ran-

dom parameter control generated to have a similar order of magnitude. The

mean and standard deviation of the AIC was calculated over the parameter en-

semble and the random parameter control were reported in this study.

3.4.3 Complement model analysis.

Global sensitivity analysis.

We conducted global sensitivity analysis to estimate which parameters and

species controlled the performance of the reduced order model. We computed

the total variance-based sensitivity index of each parameter relative to the train-

ing residual for the C3a/C5a alternate and C3a/C5a lectin objectives using the

Sobol method [312]. The sampling bounds for each parameter were established

from the minimum and maximum value for that parameter in the parameter

ensemble. We used the sampling method of Saltelli et al. to compute a family

of N (2d + 2) parameter sets which obeyed our parameter ranges, where N was

the number of trials per parameters, and d was the number of parameters in
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the model [287]. In our case, N = 400 and d = 28, so the total sensitivity indices

were computed using 23,200 model evaluations. The variance-based sensitivity

analysis was conducted using the SALib module encoded in the Python pro-

gramming language [135].

Pairwise sensitivity analysis and clustering.
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Figure 3.5: Pairwise sensitivity and clustering of complement model parame-
ters in the presence of 1 mg/ml zymosan. The response of the complement
model was calculated for each parameter combination following a 10% increase
in parameter combinations in the presence of 1 mg/ml zymosan. The model
parameters were clustered into high (blue), medium (red) and low (green) re-
sponse clusters based upon the euclidian distance between the perturbed and
nominal system state.

We perturbed each pair of model parameters by 10% of their nominal value,

and then calculated the euclidian distance between the perturbed and nominal

system states for physiological conditions. We repeated this calculation for each

member of the parameter ensemble, and calculated the mean differences be-

tween the perturbed and nominal states. We then clustered the resulting log10
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transformed mean distances using the Clustergram routine in MATLAB (The

Mathworks, Natick MA). We considered three clusters, high, medium and low

displacement.

Robustness analysis.
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Figure 3.6: Robustness analysis of the complement model. Robustness coeffi-
cients were calculated for a 50%, 90% and 99% reduction in C3, C5, or C3 and
C5 initial conditions. A: Mean robustness index for C3a and C5a generated from
the alternate pathway (w/o zymosan). B: Mean robustness index for C3a and
C5a generated from the lectin and alternate pathway (1 mg/ml zymosan). The
color describes the degree of reduction of C3a or C5a following the network per-
turbation. Robustness coefficients were calculated using all parameter sets with
Pareto rank less than five (N = 65). Mean robustness values were reported.
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Robustness coefficients quantify the response of a marker to a structural or

operational perturbation to the network architecture. Robustness coefficients

were calculated as shown previously [330]. Log-transformed robustness coeffi-

cients denoted by α̂
(
i, j, to, t f

)
were defined as:

α̂
(
i, j, to, t f

)
= log10

(∫ t f

to
xi (t) dt

)−1 (∫ t f

to
x( j)

i (t) dt
) (3.7)

Here, to and t f denote the initial and final simulation time, while i and j de-

note the indices for the marker and the perturbation, respectively. A value of

α̂
(
i, j, to, t f

)
> 0, indicates increased marker abundance, while α̂

(
i, j, to, t f

)
< 0 in-

dicates decreased marker abundance following perturbation j. If α̂
(
i, j, to, t f

)
∼

0, perturbation j did not influence the abundance of marker i. In this study, we

perturbed the initial condition of C3 or C5 or a combination of C3 and C5 by

50%, 90% and 99% and measured the area under the curve (AUC) of C3a or C5a

with and without lectin initiator. We computed the robustness coefficients for

a subset of the parameter ensemble (N = 65) and reported the mean robustness

value.
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CHAPTER 4

KINETIC MODELING OF COAGULATION AND FIBRINOLYSIS IN

PLASMA

4.1 Abstract

1 Rotational thromboelastometry (ROTEM) provides an assessment of a pa-

tient’s coagulation and fibrinolytic systems. ROTEM has become one of the

most important and cost effective point-of-care techniques to rapidly test for

hyper or hypo fibrinolysis. Given the prevalence of ROTEM, it is of tremendous

clinical importance to develop mathematical models that integrate ROTEM

measurements with the underlying biochemistry of coagulation. However, the

development of such models has been slow, and plagued by challenges due to

unavailability and complexity of fibrin degradation products coupled with an

incomplete understanding of the degradation mechanism, missing patient data,

patient variability and a lack of consensus about the mechanisms that contribute

to hyperfibrinolysis or hypofibrinolysis. In this study, we developed an effec-

tive mathematical model which integrates ROTEM measurements with the bio-

chemistry of coagulation and clot formation. The effective model consists of 24

ordinary differential equations combined with logical rules describing unmod-

eled regulatory mechanisms. The effective model describes the three phases of

coagulation, the influence of key regulatory species, as well as thrombin me-

diated formation of cross-linked fibrin. Model parameters were estimated us-

ing thrombin generation curves and ROTEM measurements from platelet poor

plasma isolated from blood taken from healthy individuals. After validating

1Under preparation as ”Effective modeling of the human coagulation and fibrinolytic path-
ways” A. Sagar, R. LeCover, M. Bravo, T. Orfeo, K.E. Brummel-Ziedins, A. Pusateri, J. Varner
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that our model captured the thrombin generation curves, we used them to pre-

dict ROTEM measurements for a separate set of patients. Our model captured

the trends of ROTEM trajectories change shape with increasing concentrations

of tPA, and had the lowest error at high concentrations of tPA. Variance based

sensitivity analysis emphasized the importance of tPA in the area under the

ROTEM curve, and through posing the inverse problem, we found that we

could, on average, recover the protein concentrations within 30% of their true

values.

4.2 Introduction

Trauma is the leading cause of death and disability for persons 36 years old

and younger, surpassing all other causes combined [175]. In addition to its cost

in lives, trauma has a large economic cost; it accounts for approximately $671

billion per year, in health care costs and lost productivity [109]. Hemorrhage

accounts for 40% of all trauma deaths, where the control of bleeding is espe-

cially challenging in the presence of blood coagulation disorders, collectively

known as coagulopathy [291]. Trauma induced coagulopathy can follow from

several mechanisms, for example, coagulation factor depletion, dysregulation

of the protein C pathway, shedding of the glycocalyx, and hyperfibrinolysis

[78]. However, adverse outcomes associated with coagulopathy are not lim-

ited to death from acute blood loss. Too much clotting can also be associated

with a poor prognosis. Organ dysfunction, multiple organ failure and increased

susceptibility to sepsis [102] are all potential consequences of prolonged shock

resulting from coagulopathy [290]. For example, fatal multiple organ failure

in severely injured trauma patients is often characterized by a hypofibrinolytic
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state (fibrinolytic shutdown), in which clot lysis is impaired [208]. In trauma pa-

tients, rapid assessment of the coagulation and fibrinolytic systems could allow

for early detection of coagulopathy.

Rotational thromboelastometry, the family of tests to which ROTEM be-

longs, has been shown capable of assessing coagulation abnormailities and

rapidly predicting which patients would require massive transfusion, at a cost

comperable to the cost of assessing one aspect of the coagulation system [169].

ROTEM has been used to guide treatment of trauma patients to determine the

appropriate doses of fibrinogen concentrate and prothrombin complex concen-

trate, and this ROTEM guided treatment resulted in lower mortality than pre-

dicted by both the trauma injury severity score and the revised injury sever-

ity classification score [296]. Furthermore, when ROTEM is used in combina-

tion with a conventional clotting assay, such as the international normalized

ratio, these assays in combination increase the detection of patients with coagu-

lopathy as well as the senstivity in predicting which patients will need massive

transfusion [70]. Owing to the importance and prevalence ROTEM in hospitals

around the world, we sought to build a mathematical model that could connect

the underlying biochemistry to a ROTEM trajectory.

The immediate response of the body to injury is to activate the coagula-

tion system, which generates a barrier (hemostatic plug) to arrest blood loss.

Damage to the vasculature results in the exposure of circulating blood to tis-

sue factor (TF) expressed by extravascular cells. FVIIa present in plasma in

subnanomolar concentrations binds to TF and the resulting complex (extrin-

sic tenase) triggers a series of enzymatic events leading to thrombin formation

[40]. Thrombin catalyzes the conversion of fibrinogen to fibrin, the activation of
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FXIII to FXIIIa, and the activation of platelets. The resulting hemostatic plug is

composed of activated platelets bound within and to an insoluble protein scaf-

folding constructed of self-assembling, polymerized fibrin molecules covalently

crosslinked by FXIIIa [306]. The clot building response is downregulated by sto-

ichiometric inhibitors present in plasma including antithrombin, which targets a

number of coagulation proteases which propagate the reaction, and TF pathway

inhibitor (TFPI) which inhibits the initiating complex (extrinsic tenase) [87]. A

dynamic feedback pathway of inhibition is also engaged, through the action of

thrombomodulin. Thrombin bound to thrombomodulin, a protein expressed on

the surface of endothelial cells, activates protein C to activated protein C (APC).

APC downregulates coagulation by inactivating the cofactors FVa and FVIIIa

and their precursors FV and FVIII, thereby shutting down the two enzymastic

complexes (prothrombinase and intrinsic tenase) involved in propagating the

coagulant process [101].

Ultimately, repair of the injured vessel requires removal of the platelet-fibrin

structure by fibrinolysis. Fibrinolysis involves the activation of the protease

plasmin from its circulating precursor plasminogen by tissue type plasmino-

gen activator (tPA), and once activated, plasmin catalyzes the proteolysis of

the fibrin matrix. The conversion of plasminogen to plasmin at physiologically

relevant rates proceeds through the assembly of a complex between tPA, plas-

minogen and fibrin, thus localizing plasmin formation to the injury site [116].

The trigger for the initiation of fibrinolysis is the formation of fibrin. As lytic

processes initiate as the clot forms, stabilization of the forming clot requires a

robust system capable of suppressing lysis until a sufficient degree of tissue re-

pair and remodeling is achieved. This is accomplished by two mechanisms:

directly via the action of the stoichiometric inhibitors PAI-1 (plasminogen acti-
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vator inhibitor 1), the primary plasma inhibitor of tPA, and α2-antiplasmin, the

primary plasma inhibitor of plasmin; and indirectly through activation of TAFI,

a carboxypeptidase that modifies fibrin, thereby suppressing lysis by impair-

ing the binding of plasminogen and tPA to fibrin [234]. Thrombin dependent

activation of TAFI appears to be the physiologically relevant pathway and thus

represents the route by which thrombin contributes to clot stabilization [240]. In

TIC, depletion of PAI-1, overexpression of tPA and fibrinogen depletion have all

been hypothesized to contribute to hyperfibrinolyisis [37] while elevated levels

of PAI-1 have been associated with fibrinolytic shutdown [99].

We and many others have worked to understand coagulation and clot for-

mation, using both mechanistic models e.g., [143, 194, 192] and reduced order

modeling approaches [286]. Longstaff and Thelwell proposed a simple two step

model for fibrinolysis in which plasminogen is converted to plasmin by tPA,

and fibrin is then degraded by plasmin [191]. While computationally easy to

evaluate, this model neglected the role of key proteins such as PAI-1. On the

other hand, fibrinolysis has also been modeled in great detail using a three-

dimensional stochastic multiscale approach [15]. The complex model success-

fully predicted the difference in lysis speeds based on clot morphology, but ne-

glected clot formation and degradation. Reifman et al modeled fibrin generation

with mass action kinetics using 80 ODEs to investigate the efficacy of different

prothrombin complex concentrates [218]. They used an interesting method to

model the complex kinetics of TAFI inhibiting fibrinolysis: they empirically fit

a curve to the clot lysis time as a function of TAFI concentration, and then cor-

respondingly reduced the tPA effective concentration to account for the effects

of TAFI. While this model decently predicted the final fibrin levels, it did a poor

job of capturing the shape of the fibrin generation curves. Taken together, this il-
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Figure 4.1: Schematic of the fibrinolysis model. Throbmin, generated by the
presence of tissue factor in the coagulation model converts fibrinogen into its
active form, fibrin. When tPA is present, it activates plasminogen from its inac-
tive form to plasmin, which is capable of degrading plasmin. PAI-1 inhibits tPA
and thus inhibits fibrin degradation.

luminates the need for a combined model of coagulation and fibrinolysis which

can accurately discribe clot formation as well as the clot degradation process.

In this study, we formulated an effective model of coagulation and fibrinoly-

sis. A set of individual platelet poor plasmas were supplemented with varying

concentrations of tPA and subjected to a constant TF stimulus, yielding time

course data reflecting the fibrin forming and lysing capacities of each plasma.

We formulated a logical rules/ordinary differential equation model, trained the

model on ROTEM data collected at various concentrations of tPA, and then suc-

cessfully predicted previously unseen data, with model accuracy increasing as

the concentration of tPA in the plasma increased. Through the use of leave one

out cross validation, we confirmed that our parameter estimation process had

not overfit the data. We used a variance based method to identify the most sen-

sitive parameters, which were found to be related to tPA kinetics. We believe

that this is the first study to connect a kinetic model with ROTEM curves, a key
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development, as ROTEM is playing an increasingly large role both in surgery

and in assessing the coagulation state of a patient. Our model could be es-

pecially relevant through solving the inverse problem, namely, estimating the

concentrations of proteins in the coagulation system from a ROTEM trajectory.

4.3 Materials and methods

4.3.1 Materials

Full-length (residues 1-263) recombinant tissue factor (Tf) was purchased from

Haematologic Technologies (Essex Junction VT, USA). 1,2-Dioleolyl-sn-Glycero-

3-Phospho-L-Serine (PS) and 1,2-Dioleoyl-sn-Glycero-3-Phosphocholine (PC)

were purchased from Avanti Polar Lipids, Inc. (Alabaster AL, USA). Prepa-

rations of phospholipid vesicles (PCPS) composed of 75% PC and 25% PS were

made as described [137] as was the TF/PCPS reagent [51]. Corn trypsin in-

hibitor (CTI) was purified in-house [51] as was D-Phe-Pro-Arg-CH2Cl (FPR-

ck) [361]. Tissue plasminogen activator (tPA) (two chain) was purchased from

Molecular Innovations, Inc., MI, USA). α2-antiplasmin was purchased from En-

zyme Research Labs Inc. (IN, USA) and plasmin from Haematologic Technolo-

gies Inc. (Essex Junction VT,USA). Aprotinin was purchased from Sekisui Di-

agnostics (Stamford CT, USA). Units of transfusion plasma were obtained from

the University of Vermont Medical Center Blood Bank Plasma from each unit

was distributed into aliquots and immediately frozen at -80oC until used.
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4.3.2 Assays

Assays assessing the functional level of fibrinogen were performed by the

University of Vermont Medical Center Clinical Laboratory. ELISA methods

were used to assess protein antigen levels: plasminogen (PG-EIA, Affinity Bi-

ologicals ON, Canada); thrombin activatable fibrinolysis inhibitor (TAFI) (Zy-

mutest (TAFI) Total Ag, Hyphen Biomedical, Nevville sur Olse, FR); plasmino-

gen activator inhibitor 1 (PAI-1) (R&D Systems Inc., MN, USA). α-thrombin-

antithrombin complex (α-TAT) levels were determined via in house ELISA as

described previously [359]. Plasmin-antiplasmin (PAP) complex levels were de-

termined using the Imunoclone PAP ELISA (Sekisui Diagnostics CT, USA) with

the following modification. A stock of 6 µM PAP complex was generated in

house by reacting 9 µM α2 antiplasmin (Enzyme Research Labs Inc., IN, USA)

with 6 µM plasmin (Haematologic Technologies Inc., VT,USA). Quantitative for-

mation of PAP was confirmed via SDS-PAGE analysis. This stock was used in

place of the kit calibrator to generate a standard curve.

4.3.3 Viscoelastometry

Citrate plasmas were recalcified (15 mM CaCl2 final, volume change of 1.5%)

for 3 min at 37oC. The tissue factor reagent (20 µL, 5 pM final) and tPA (20 µL,

2 nM, 4 nM or 8 nM final) or 20 µL buffer (no tPA control) were prealiquoted as

separate drops into 8 ROTEM cups. Each reaction was run in duplicate. 300 µL

of recalcified plasma was then added to each cup and data collection initiated.

The contents of ROTEM cups were collected as described previously [359, 273].
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4.3.4 Formulation and solution of model equations.

The effective model equations described the time evolution of fibrinolysis and

coagulation proteins (xi) using equations of the form:

dxi

dt
=

R∑
j=1

σi jr j (x, ε,k) i = 1, 2, . . . ,M (4.1)

A(x) = Ao +A1(x)
[

F (x)2

K(x)2 + F (x)2

]
(4.2)

The quantity R denotes the number of reactions,M denotes the number of pro-

teins in the model, xi denotes the concentration (nM) of species i, andA denotes

an output function which transforms the biochemical model species concentra-

tions into a ROTEM signal. The quantity r j (x, ε,k) denotes the rate of reaction

j. Typically, reaction j is a non-linear function of biochemical (x) and enzyme

(ε) species abundance, as well as unknown model parameters k (K × 1). The

quantity σi j denotes the stoichiometric coefficient for species i in reaction j. If

σi j > 0, species i is produced by reaction j. Conversely, if σi j < 0, species i is

consumed by reaction j, while σi j = 0 indicates species i is not connected with

reaction j. Species balances were subject to the initial conditions x (to) = xo.

Rate processes were written as the product of a kinetic term (r̄ j) and a con-

trol term (v j). Enzyme catalyzed rates were modeled using multiple saturation

kinetics:

r̄ j = kcat
j εi

∏
s∈m−j

(
xs

K js + xs

)
(4.3)

where kcat
j denotes the catalytic rate constant for reaction j, εi denotes the abun-

dance of the enzyme catalyzing reaction j, K js denotes the saturation constant

for species s in reaction j, and where the product is carried out over s ∈ m−j , the

set of reactants for reaction j. We used mass action kinetics to model protein-
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protein binding interactions within the network:

r̄ j = k+
j

∏
s∈m−j

x−σs j
s (4.4)

where k+
j denotes the on-rate constant for reaction j, σs j denotes the stoichiomet-

ric coefficient for species s in reaction j, and s ∈ m j denotes the set of reactants

for reaction j. We assumed all binding interactions were irreversible.

The control terms 0 ≤ v j ≤ 1 depended upon the combination of factors

which influenced rate process j. For each rate, we used a rule-based approach

to select from competing control factors. If rate j was influenced by 1, . . . ,m

factors, we modeled this relationship as v j = I j

(
f1 j (·) , . . . , fm j (·)

)
where 0 ≤

fi j (·) ≤ 1 denotes a regulatory transfer function quantifying the influence of

factor i on rate j. The function I j (·) is an integration rule which maps the output

of regulatory transfer functions into a control variable. In this study, we used

I j ∈ {min,max} and Hill-like transfer functions [286]. If a rate process had no

modifying factors, v j = 1.

The output functionA(x) transforms the biochemical species abundance pre-

dicted by the model into a ROTEM signal. Modeling the connection between

blood rheology and the local fibrin concentration is complex and beyond the

scope of this study. Instead, we developed an empirical model which consisted

of a scale function, which captured the amplitude of the ROTEM signal, and a

shape function which captured the signal shape. The quantity Ao denotes the

baseline ROTEM measurement which we assumed was constant across plasma

samples (Ao ' 1.5). On the other hand, the shape function:

0 ≤
F (x)2

K(x)2 + F (x)2 ≤ 1 (4.5)

was modified by a scale function. The quantity F (x) denotes the unweighted
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sum of fibrin species in the model, while the saturation function K(x) was given

by:

K(tPA) = 5100 − 615 × (tPA) (4.6)

where these values were estimated from the ROTEM curves. The scale function

A1(x) was given by:

A1(x) =


t ≤ td 0

t > td S ×
[
1 − exp(−τ (t − td))

] (4.7)

where

τ = 0.0035 ×
[
1 −

FIIa
max(FII)

]
(4.8)

The material model delay parameter, td = N (µd, σd), was identified from the

training data. The scale parameter S, modeled as a linear function of tPA abun-

dance, was defined as:

S(tPA) = N (µ1, σ1) − N (µ2, σ2) × (tPA) (4.9)

The intercept and slope distributions were modeled as Gaussian distributions,

where the mean and standard deviation for each distribution (µi, σi) were esti-

mated directly from the training data. The model and output equations were

implemented in the Julia programming language and solved using the ODE23s

routine of the ODE package [28]. The model code and parameter ensemble is

freely available under an MIT software license and can be downloaded from

http://www.varnerlab.org.

4.3.5 Estimating model parameters

We estimated an ensemble of model parameters using Pareto Optimal Ensem-

ble Technique in the Julia programming language (JuPOETs) [21]. JuPOETs is a
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multiobjective approach which integrates simulated annealing with Pareto op-

timality to estimate model ensembles on or near the optimal tradeoff surface

between competing training objectives. JuPOETs minimized training objectives

of the form:

O j(k) =

T j∑
i=1

(
M̂i j − ŷi j(k)

)2

+

M′
i j −max yi j

M′
i j

2

(4.10)

subject to the model equations, initial conditions and parameter bounds L ≤

k ≤ U. The first term in the objective function measured the shape difference

between the simulations and measurements. The symbol M̂i j denotes a scaled

experimental observation (from training set j) while the symbol ŷi j denotes the

scaled simulation output (from training set j). The quantity i denotes the sam-

pled time-index and T j denotes the number of time points for experiment j. The

scaled measurement is given by:

M̂i j =
Mi j −miniMi j

maxiMi j −miniMi j
(4.11)

Under this scaling, the lowest measured concentration became zero while the

highest equaled one, where a similar scaling was defined for the simulation

output. The second term in the objective function quantified the absolute error

in the estimated concentration scale, where the absolute measured concentra-

tion (denoted by M′
i j) was compared with the largest simulated value. In this

study, we minimized three training objectives, the total error estimated for tPA

= 0, 2, 4, 8 nM for three plasmas from our plasma data set. JuPOETs identi-

fied an ensemble of N ' 2500 parameter sets which were used for model sim-

ulations and uncertainty quantification subsequently. JuPOETs is open source,

available under an MIT software license from the JuPOETs GitHub repository

at https://github.com/varnerlab/POETs.jl. The objective functions

used in this study are available in the GitHub model repository available from

http://varnerlab.org.
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Figure 4.2: Fibrinolysis model training and prediction. A Model performance on
test and training data. A redder block indicates that the simulations came closer
to matching the experiential measurements. B Top: Performance of the throm-
bin generation portion of the model. Experimental measurements are shown
in the black dots, the thin black curve represents the mean model performance
and the shaded gray represents the 95% confidence interval for N=266 simula-
tions. Bottom: Performance of the fibrin generation and fibrinolysis portion of
the model. The red curves represent ROTEM curves measured in two different
patients at tPA = 2 nM and tPA = 4nM, the black lines represent the simulated
ROTEM curves for these patients in those cases, and the shaded dark gray rep-
resents the 99% confidence interval for the tPA = 2 nM case, and the shaded light
gray represents the 99% confidence interval for the tPA = 4 nM case for N=266
simulations.

To confirm that we were not over-fitting the experiment data, we performed

leave one out cross validation. In this cross validation step, we minimized the

objectives as defined in Eqn 4.10, over eight of the nine plasmas, and then cal-

culated the mean squared error over the remaining plasma.
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4.3.6 Global sensitivity analysis of model parameters

Global sensitivity analysis was used to estimate which parameters controlled

the performance of the effective model. We computed the total variance-based

sensitivity index of each parameter relative to the area under the ROTEM curve

using the Sobol method [312]. The sampling bounds for each parameter were

established from the minimum and maximum value for that parameter in the

parameter ensemble. We used the sampling method of Saltelli et al. to compute

a family of N (2d + 2) parameter sets which obeyed our parameter ranges, where

N was the number of trials per parameters, and d was the number of parameters

in the model [287]. In the case of fibrinolysis without platelets, N = 400 and d

= 28, so the total sensitivity indices were computed using 23,200 model evalu-

ations. The variance-based sensitivity analysis was conducted using the SALib

module encoded in the Python programming language [135].

4.3.7 Clustering of initial condition dependence

We sought to understand how ROTEM trajectories would change as concentra-

tions of proteins associated with coagulation, fibrin generation, and fibrinolysis

were altered. We perturbed the initial conditions to two times their nominal

values in a pair wise fashion and calculated the distances between the nomi-

nal and perturbed ROTEM curves. We then clustered the log10 transformed

distances between the ROTEM trajectories using the Clustergram routine in

Matlab (The Mathworks, Natick MA). We clustered the log10 distances with a

linear shift to make all of the values positive.
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4.3.8 Relearning Initial Conditions

As ROTEM curves are often summarized by a few descriptive metrics, we de-

cided to investigate if we could estimate the initial protein concentrations that

generated the ROTEM curve from these metrics. To see if we could estimate the

initial conditions, we first generated a simulated ROTEM curve generated by

parameters within the range of a half to two times nominal initial conditions,

and then calculated the CT (coagulation time, the time it takes for the curve to

reach an amplitude of 2 mm, in seconds ), CFT (clot formation time, the time it

takes for the curve to reach an amplitude of 20 mm, after it has reached an am-

plitude of 2mm), the α-Angle (the slope of the line between the CT and CFT on

the ROTEM curve, in degrees), the MCF (the maximum clot firmness reached,

in mm), ML (the amount of lysis that occurs by 120 minutes, described as a per-

cent of the MCF), and area under the ROTEM curve-the target parameters. Our

objective function for the minimization was defined as:
6∑

j=1

β j

(
yt j − ye j

w j

)2

(4.12)

where w j is the scale associated with metric j, yt j is the target value for that

metric and ye j is the current value of that metric based on the present initial con-

dition estimate, and β j is the weight applied to metric j. We weighted the area

under the curve more heavily than the other metrics to better recover curves of

the desired shape.

We then sought to relearn the initial conditions. To do so, we minimized

the difference between the target parameters and the same metrics calculated

for a new curve by altering the initial conditions. We used a particle swarm

technique to perform this optimization to avoid getting stuck in local minima,

as implemented in [221], with a swarm of N = 50 particles for 500 iterations.

100



We approached this process in two ways: (i) we repetitively solved for initial

conditions for the same ROTEM curve and; (ii) we generated a family of nom-

inal ROTEM curves (with initial conditions between 50% and 150% of nominal

values), and estimated the initial conditions for these curves one time for each

curve. In the first approach, we were able to estimate initial conditions for one

ROTEM curve, while under the second approach, we confirmed that this tech-

nique was generalizable to more than one specific ROTEM curve.

4.4 Results

In the model, activated thrombin (FIIa) converted fibrinogen into a series of

fibrin intermediates which are then degraded by plasmin into fibrin degra-

dation products (Fig. 4.1). Thrombin generation is modeled as described in

[286]. Briefly, a trigger compound (FVIIa-TF) activates thrombin, which then

can self-activate (thrombin converts prothrombin to thrombin). Antithrombin-

III (ATIII), tissue factor pathway inhibitor (TFPI), and activated protein C (APC)

oppose thrombin generation, and the effects of factors V, X, VIII, and IX are

modeled via logical control. The generated thrombin then converts fibrinogen

into fibrin monomers, which polymerize through a series of intermediates into

fibrin. However, this model does not account for the full spectrum of possible

fibrin polymers and monomers, rather, it assumes the presence of two pseduo-

intermediates, one of which can be be degraded by plasmin. While the model

does contain equations that account for the action of uPA, the concentration of

uPA in the system was assumed to be zero, so the kinetic parameters for these

equations should not be considered to be accurate. Since this is a simplified

model, it only considers one type of reaction between thrombin and fibrino-
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gen, and accounts for the actions of FXIIIa through a control term. This model

further simplifies the biology by assuming that the concentration of TAFI is con-

stant, and through the use of only one splicing variant of fibrinogen, although

mutiple splice variants exist and interact differently with thrombin [82].

The model was trained using data from three patients and tested using mea-

surements from six patients not used in the model training (Fig. 4.2). The model

consists of two modules, a coagulation model which calculate the activated

thrombin abundance, and a fibrinolysis module describing clot formation. The

ROTEM data sets did not include thrombin trajectories, thus we used historical

data from Mann and coworkers [42] to estimate coagulation model parameters.

The coagulation model captured tissue factor initiated thrombin generation in

the absence of platelets, although it under predicted the peak thrombin concen-

tration (Fig. 4.2B). We then fixed the coagulation model parameters, and esti-

mated the fibrinolysis model parameters by minimizing the squared difference

between model simulated and experimentally measured ROTEM signals for pa-

tients P1, P5 and P16 as a function of tPA (Fig 4.2A, first column). The training

performance of the model varied significantly with patient and tPA concentra-

tion. For example, the model was more consistent with P5 at higher tPA levels,

but P2 was better captured at lower tPA levels. Similarly, the predicted ROTEM

curves varied with patient and tPA concentration in a non obvious way (Fig.

4.2C). For example, the ROTEM signal for P2 was not captured by the sim-

ulation at tPA = 2 nM or less; as the tPA concentration decreased, prediction

performance declined for P2. However, other patients such as P18 exhibited a

more complex pattern with relatively better performance at tPA = 0, 4 and 8 nM

and worse performance at tPA = 2 nM. In general, the model performed best

at high concentrations of tPA, and the performance declined as the amount of
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tPA added decreased. For example, consider P18 and P19 at tPA = 2 nM and

4 nM, respectively (Fig. 4.2C). In the case of P18 tPA = 4 nM, the simulation

captured the clotting initiation time, and the maximum amplitude of clotting

but failed to describe the clot amplitude decay rate. On the other hand, all three

features were captured in the P19 tPA = 4 nM case. Taken together, the com-

bined coagulation and fibrinolysis model captured the clotting initiation time,

maximum clot amplitude and the rate of clot decay for patient samples not used

in model training. However, the training and prediction simulations were con-

ducted with an arbitrary partitioning of the patient data, and the simulation

performance varied significantly with patient and tPA abundance. Thus, it was

unclear if the overall performance of the model could be improved with a dif-

ferent partitioning of the patient data. Toward this question, we used leave-one

out cross validation to systematically vary the makeup of the training and vali-

dation data sets.

Leave-one out cross validation (LOOCV) confirmed that model captured

the ROTEM curves, even when parameters were estimated by an alternative

method (Fig. 4.3). In all cases, the parameter sets found by LOOCV capture the

effects of adding increasing amounts of tPA. The simulated curves decrease in

amplitude and the time at which they begin to turn over decreases as more tPA

is added, and in the absence of tPA (blue), the simulations capture that no de-

crease in amplitude should occur. Many of the plasmas, in the absence of tPA,

show an increase in clot amplitude throughout the experiment, (quickly in the

beginning, and slowing down at the end), but our model predicts that after the

clot reaches its final amplitude following the rapid growth phase, the clot am-

plitude will remain constant. With the exception of plasma 2, the parameter sets

found through LOOCV perform better than those selected randomly (Table 4.1).
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Figure 4.3: Model predictions on the left out plasma. The experimentally mea-
sured trajectory is shown in red, and the mean of N=64 parameter sets found
based on the other plasmas is shown in black, with the 95% confidence interval
shaded. The tPA = 0 case is shown in blue, the tPA = 2 case is shown in light
gray, the tPA = 4 case is shown in dark gray, and the tPA = 8 case is shown in
slate gray.
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However, plasma 2 had significantly lower amplitude than any other plasma at

all values of tPA, so it is not unexpected that when it was left out of the training

case, JuPOETs struggled to find suitable parameters, which resulted in the ran-

domly selected parameter sets performing better. It is interesting to note that

parameters estimated via LOOCV did a better job of capturing ROTEM curves

at lower concentrations of tPA than the parameters estimated by our initial par-

titioning of the data. Taken together, LOOCV confirmed that the our estimated

parameters described fibrin generation and degradation without overfitting the

data. Given that we had developed a model and found parameters which cap-

tured ROTEM curves better (overall) than randomly generated parameters, we

investigated which inputs altered the curves generated by the model.

Global sensitivity analysis confirmed the central role of tPA in fibrinolysis,

both in diluted and undiluted plasma (Fig. 4.4). Global sensitivity coefficients

were calculated for the area under the ROTEM curve in diluted and undiluted

patient samples. The area under the ROTEM curve was largely controlled by

tPA abundance, as well as the rate constant controlling how fast tPA can con-

vert plasminogen into its active form. This result agreed with the large differ-

ences observed in curve shape and amplitude observed experimentally when

differing amounts of tPA are added (Fig. 4.3). The contribution of the TAFI

control parameters to the area under the ROTEM curve decreased when we

simulated diluted plasma, as did the contribution of the initial amount of TAFI,

perhaps because the decreased about of prothromin available in diluted plasma

decreases the amount of thrombin present and available to activate TAFI. The

role of tPA is additionally highlighted by the pairwise perturbations of the ini-

tial conditions (Fig 4.7), where it remained a prime contributor to the difference

in the area under the curve regardless of which other initial condition was al-
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Figure 4.4: Global sensitivity analysis of the fibrinolysis model. Sensivity anal-
ysis was performed by the model of Sobol with respect to the area under the
ROTEM curve for N = 23, 200 parameter sets. 0% dilution means all factors
were at physiological level, 80% dilution means that the factors were diluted to
80% of physiological level.

tered. The contribution of tPA is slightly diminished when the amount of fib-

rinogen is also perturbed. The initial conditions that alter the area under the

ROTEM curve the most when pairwise perturbed (TAFI, PAI-1, fibrinogen, and

tPA) are all directly related to fibrin generation, and not further upstream, re-

lated to thrombin activation. This is logical, as our metric for sensitivity is the

shape of the ROTEM curve, which is directly related to fibrin generation and

degradation. While this process requires the presence of thrombin, as long as

enough thrombin is present to begin the fibrin generation process, a ROTEM

curve of satisfactory amplitude will be generated. Taken together, these sensi-
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Figure 4.5: Simulated ROTEM curve for repeated solving of the same inverse
problem. The black curve shows the true ROTEM curve, where the blue curve
is the average over N=100 attempts to find the initial conditions. The shaded
blue area is the 95% confidence interval of the mean. The gray curves are the
other ROTEM curves generated by the estimated initial conditions.

tivity results indicated likely targets for drugs that seek to alter the fibrin gener-

ation and degradation pathways. While this sensitivity analysis revealed which

initial conditions altered the area under the ROTEM curve, we also sought to

analyze the sensitivity of our model through an alternate approach, by attempt-

ing to see if we could estimate the initial conditions that created a specific curve,

given the commonly reported ROTEM metrics for that curve.

Initial sample composition could be estimated from ROTEM measurements

(Fig 4.5). To estimate the initial sample composition, we formulated an opti-

mization problem which minimized the error between selected ROTEM metrics

as a function of the initial protein concentrations. Through posing the inverse

problem, we discovered that we could learn a possible set of initial conditions

based on limited information about a ROTEM curve. However, since these ini-
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Figure 4.6: Average difference in target and found initial and experimental con-
ditions from solving the inverse problem. The thin lines represent the standard
error of the mean over N = 50 repetitions of solving the inverse problem.

tial conditions are not unique, we repeated posing the inverse problem to learn

which initial conditions could vary the most while still accurately describing the

ROTEM curve based on these metrics. We found it was possible for the initial

amount of fibrinogen to differ greatly-this is probably because as long as there

was sufficient fibrinogen to reach the MCF, it does not matter if it was in excess.

Additionally, the initial concentrations of thrombin and antithrombin were ro-

bust to perturbations. This is possibly because the amounts of thrombin and

antithrombin can balance each other out. A high concentration of thrombin will

be regulated by the presence of antithrombin, and vis-a-versa. Overall, we were

fairly successful at recovering the initial conditions (Fig 4.6), coming within 30%

or closer to their true values. When we focused on one specific ROTEM curve

and repetitively solved for the initial conditions, we came close to recovering the
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initial curve, when all of the found curves were averaged (Fig 4.5). All of the

curves shown in this figure had errors on the same scale as those when we esti-

mated initial conditions for a number of different ROTEM curves. Some of these

curves underestimate the MCF while others tend to overestimate it, but when

averaged, they come close to capturing the MCF of the true initial conditions.

Taken together, these two methods reveal that further analysis of previously re-

ported ROTEM metrics on trauma patients may hold further information about

the state of the patient’s coagulation and fibrinolytic systems.

4.5 Discussion

In this study, we constructed an effective model of fibrinolysis, which consid-

ered the dynamics of thrombin activation. We then created a function to trans-

form the concentrations into ROTEM curves, and estimated kinetic and con-

trol parameters for the models using a Pareto Optimal Ensemble Technique.

We then validated the model by measuring its performance on datasets that

were not used in the parameter estimation. Viscoelastic tests are playing an in-

creasingly important role in identifying the presence of aberrant fibrinolysis in

trauma patients and in evaluating therapeutic responses. Empirically validated

computational models linking the biochemistry of coagulation and fibrinolysis

to physical changes in clot integrity should prove useful in probing the under-

lying mechanisms of aberrant viscoelastic profiles. In addition models that use

individual-specific coagulation/fibrinolytic factor composition data may pro-

vide insight into preconditions favoring the development of trauma induced

coagulopathy.
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We then performed sensitivity analysis to observe which targets in the sys-

tem could potentially be therapeutic targets. In the model of fibrinolysis without

platelets both the total order sensitivity constants and the hierarchical cluster-

ing identify tPA’s kcat as sensitive, even under dilution conditions. Therefore,

tPA could potentially serve as a therapeutic target. Additionally, the initial con-

dition of tPA was very sensitive in both cases, suggesting that if a drug could

render tPA inactive or increase its concentration, clot breakdown times could

be significantly altered. The drug Alteplase (Cathflow Activase) does exactly

that, given that it consists of recombinant version of tPA [213]. The CRASH-2

trial revealed that giving trauma patients tranexamic acid (TXA) within 3 hours

of injury reduced the risk of death from haemorrhage [362]. TXA is believed

to reversibly bind to plasminogen, and once bound, it blocks plasminogen and

plasmin from binding to fibrin, and even if tPA converts plasminogen that is

bound to TXA to plasmin, this plasmin will be unable to degrade fibrin [207].

While TXA is not directly considered in our model, the importance of tPA may

partially explain why TXA is such an effective drug. Even though TXA does

not bind with tPA, it mutes tPA’s effects by deactivating tPA’s target, plasmino-

gen. Additionally, the fibrin control parameters appear to play a large role in

determining the area under the ROTEM curve, as well as the rate constant for

fibrinogen activation.

In the present model, the formation of a clot is represented by the forma-

tion of fiber, which is formed by protofibrils. The polymerization of protofibrils

into oligomers, and the growth of the oligomers into a clot could potentially

be included to further refine the model. Furthermore, the rate at which plas-

min breaks down a clot is a function of the clot’s structure [72]. Future work

could include generating different types of fibers, with differing kinetic proper-
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ties with respect to plasmin. Additionally, the role of platelets was completely

neglected in the clot formation process, as this work focused on plasma, not

whole blood. In the future, we could formulate a thrombin generation model

which includes thrombin generation on activated platelets and then includes

the platelet contribution to the generated clot. We investigated if the initial con-

ditions that generated a particular ROTEM trajectory could be identified from

commonly reported metrics, such as clotting time and alpha angle, and found

that we were able to, on average relearn the initial conditions. In the future, we

could investigate if measuring the concentration of one factor in the patient’s

blood in combination with a ROTEM curve could boost the accuracy of the esti-

mation of the other factors, and which additional measurement would provide

the most information. We could also investigate if another non-gradient de-

pendant optimization method, such as simulated annealing performs better at

estimating factor concentrations from ROTEM metrics.

4.6 Conclusion

In conclusion, we have combined our previous model of thrombin generation

with an effective model of fibrin generation and fibrinolysis to describe ROTEM

curves. We trained the model on three patient plasmas and then predicted

ROTEM curves on six different patient plasmas, with prediction accuracies de-

clining at higher tPA concentrations. Sensitivity analysis of the model eluci-

dated that the area under the ROTEM curve is highly controlled by the con-

centration of tPA, while the shape of the ROTEM curve is highly controlled by

a combination of thrombin generation and fibrin generation parameters. We

found that based on six different ROTEM curve parameters, we could find a
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set of initial conditions which described the curve, but that certain precursor

species could vary greatly while still having the same target metrics.
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Figure 4.7: Clustergram analysis of fibrinolysis model response to changes in
initial conditions. Initial conditions were increased to two times their nominal
values in a pairwise fashion. For diagonal entries, the the factor level was per-
turbed to two times its nominal level.
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Table 4.1

Plasma Training Prediction Random
1 0.0120 ± .008 0.97 ± .3 6.72± .3
2 0.0091 ± .006 2.22 ± 1.4 1.62 ± 1.4
4 0.0107 ± 01 2.00 ± 3 3.09 ± 4
5 0.0104± .007 2.41 ± 6 4.50 ± 6
15 0.0089 ± .008 1.00 ± 1.5 5.13 ±2
16 0.0113 ± .009 1.77 ± 5 5.39 ± 6
17 0.0105 ± .009 1.17 ± 1.3 4.27 ± 1.4
18 0.0126 ± .01 5.04 ± 9 10.21 ± 9
19 0.0128 ± .007 1.27 ± 2 8.51 ± 2

Errors for the leave one out cross validation. The training column includes all
parameter sets in which this plasma was used in the training set, the training
column represents the results when this plasma was not trained on, and the
random column represents model performance on N = 64 parameter sets
randomly selected from the parameters generated for the Morris sampling.
Values are presented as the mean ± one standard deviation.
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Figure 4.8: Morris analysis of fibrinolysis model response. We performed global
sensitivity analysis to determine which parameters controlled the shape of the
ROTEM curve output by the model. We generated parameters using the Morris
method, with the parameters bounded by the minimum and maximum values
they took in the rank one parameter sets generated by JuPOETS [230]. A total of
N (p + 1) parameter sets were generated, with N = 1000 and p = 47 in our case,
for a total of 48,000 model evaluations.We ran the model with the generated pa-
rameter sets, and then transformed the ROTEM curves using fPCA (functional
principle component analysis), as implemented by the R package fdapace, to
extract the principle component scores. This technique allowed us to remove
the time dimension and to observe how the changes in parameters affected the
shape of the ROTEM curve [322]. We then used the principle component scores
to calculate µ∗, the absolute value of the mean of the elementary effect, and σ,
the variance of the elementary effect. We opted to use the absolute values of the
means of the elementary effects so that effects with opposite signs would not
cancel each other out and artificially decrease the estimate of the mean of the el-
ementary effect [48]. We then scaled µ∗ and σ so that the smallest value became
zero and the largest value became one, using the same scaling as used for the
scaled experimental measurements. This method sensitivity analysis was con-
ducted using the SALib module encoded in the Python programming language
[135]. We then used k-means clustering to group the parameters into four clus-
ters, and colored the graph by cluster color. We used four clusters as it resulted
in the best average silhouette score [281].

115



CHAPTER 5

KINETIC MODELING OF COAGULATION AND FIBRINOLYSIS IN

PREGNANCY

5.1 Pregnancy and Coagulation

Pregnancy perturbs the human body in many ways. From the early stages

of pregnancy, the cardiac output increases by 20% by 8 weeks of gestation,

and profound vasodialation occurs, increasing renal plasma flow by more

than 40%, and significant changes occur in the endocrine system, altering glu-

cose metabolism [315]. Pregnancy also vastly alters the coagulation system,

with concentrations of factors VII, VIII, X, XII, XIII and fibrinogenogen rising

throughout pregnancy, and with the concentration of FXI falling [134]. Factor

VIII levels appear to rise dramatically towards the end of pregnancy, and fall

back to normal within eight weeks of delivery [133]. PAI-1 and PAI-2 (plas-

minogen activator inhibitor) levels increase throughout pregnancy, with the vil-

lous cells of the fetus producing PAI-2, so that the concentration of PAI-2 found

in the mother’s blood correlates with the birthweight [34]. Platelet count has

been shown to decline slightly (around 10%) during the course of pregnancy,

both in women with a normal pregnancy, and in women with pregnancy com-

plicated by hypertension or pre-eclampsia [45]. Although platelet count de-

creases in pregnancy, platelet activation (as measured by platelet binding to

wells that were precoated with fibrinogen) is higher in pregnant women, as

well as higher levels of P-selectin, another marker of platelet activation, interest-

ingly, the women with pregnancy induced hypertension had even higher levels

of P-selectin, but their platelets had the same binding affinity as normotensive
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pregnant women [167].

Through the use of thrombin generation assays (Figure 5.1a) and viscoelastic

tests (Figure 5.1b), we can observe how the coagulation system evolves through

the course of pregnancy. The peak amount of thrombin generated increases as

the pregnancy becomes more advanced, both in plasma and plasma supple-

mented with thrombomodulin, in agreement with finding that overall, preg-

nancy is a hypercoagulable state [157]. This hypercoagulable state is also ap-

parent in the ROTEM trajectory, where both in the presence and absence of tPA,

the maximum amplitude of the clot formed increases with pregnancy duration.

Additionally, the further along in the pregnancy, the faster the clot appears to

form. Although it is well accepted that pregnancy results in dramatic changes

to the coagulation system, to the best of our knowledge, no one has developed

a mathematical model specifically focused on coagulation and fibrinolysis in

pregnancy. One model appears to describe how thrombin generation differ-

ences between adult, maternal, and cord blood, however, this model was only

validated against samples taken at the end of pregnancy [263].

117



  

a b

Figure 5.1: The evolution of of the state of the coagulation system throughout
pregnancy in one patient. The more the solid the lines, the further along the
woman is in her pregnancy. (a) Thrombin generation curves, in plasma, as ini-
tiated with 5 pM trigger, in plasma (blue) and in plasma supplemented with
thrombomodulin (green) (b) ROTEM trajectory as initated with 5 pM trigger, in
plasma (orange) and in plasma spiked with 4 nM tPA (pink).

5.2 Pre-Eclampsia

For as long as women have been having babies and there have been writing sys-

tems extant to describe daily life, seizures and convulsions associated with preg-

nancy have been recorded, with one of the oldest records being from approxi-

mately 2200 BC in Egypt, suggesting that something be placed in a woman’s

mouth the day she gives birth to prevent her from biting her tongue [60]. Orig-

inally, the term eclampsia referred to convulsions that occurred but could be

stopped once the precipitating event was removed, namely, these convulsions

could be due to states other than pregnancy, but in the 19th century, a connection

was made between these convulsions during birth and in the weeks following

and premonitory symptoms, such as headache, temporary loss of vision, severe

pain in the stomach, and edema of the hands, arms, neck, and face [26].
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One of the major causes of material mortality is pre-eclampsia (estimated

to contribute to 15-20% of material deaths in developed countries), in addi-

tion to causing perinatal deaths, preterm births, and intraunterine growth re-

sistrictions, it is a condition where the mother’s vascular system responds ab-

normally to placentation, the growth of the placenta [307]. In between two to

eight percent of pregnancies, pre-eclampsia develops, and women of certain

ethnic groups, such as African-American and Filipino women, as well of women

with low socioeconomic status, women with diabetes, chronic hypertension,

and obesity appear to be at higher risk of pre-eclampsia [319]. Pre-eclampsia

is diagnosed when a woman has diastolic blood pressure greater than or equal

to 90 mmHg in addition to proteinuria (a concentration greater than 300 mg/L

of protein in urine) on or after 20 weeks of pregnancy in a woman who was

normotensive prior to pregnancy [214].

The root causes of pre-eclampsia remain an active area of investigation, but

the disease appears to progress in two phases. The first phase relates to poor pla-

centation, where the fetus doesn’t properly connect to the mother’s circulation

system, and placental flow defects have been shown to be an early and power-

ful predictor of pre-eclampsia [254]. The second stage is apparent in the mother,

whose endothelium becomes activated, via the intrinsic system, and changes in

the surface receptors of her monocytes, granulocytes and lymphocytes mirror-

ing that of those observed in sepsis [259]. Although the placenta plays a key role

in our current understanding of pre-eclampsia, having an abnormally sized or

perfused placenta is not sufficient or necessary for pre-eclampsia, rather, phase

two can develop from a variety of different dysfunctions [275].

Women with pre-eclampsia have changes in their coagulation and fibri-
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nolytic systems that exceed those observed in normal pregnancy. Women with

severe pre-eclampsia (blood pressure exceeding 160/110 mmHg before deliv-

ery, proteinuria ranging from .5-10.0 g per day and generalized oedema) had

much higher levels of fibrin degradation products in their sereum as well as

their urine as compared to women with mild pre-eclampsia and normal preg-

nancy, both preceding delivery and 1 day post delivery, interestingly, these

severely pre-eclampsic women also had much higher levels of cyrofibringoen

but lower levels of plasminogen [150]. Anithrombin III (ATIII) levels in patients

with pre-eclampsia have been shown to correlate with the severity of the dis-

order, with woman with more elevated blood pressure having lower levels of

ATIII than women with mild pre-eclampsia, yet women with pre-eclampsia,

regardless of severity had ATIII levels one standard deviation below the aver-

age compared to ATIII levels in normotensive pregnant women [355]. Levels

of thrombomodulin, a glycoprotein which binds to thrombin and deactivates

it, are elevated in women with pre-ecampsia as compared to normal pregnant

women and healthy non-pregnant women [93]. Not only are levels of PAI-1 ele-

vated in women with pre-ecampsia as compared to normal pregnant women,

so are levels of TNFα (tumor necrosis factor) antigen, PAI-1, and tissue fac-

tor mRNA within portions of the placenta, leading the authors to propose that

TNFα may induce production of PAI-1 and tissue factor [104]. Women with pre-

eclampsia are usually hypercoagulable compared to normal pregnancy [94].

Thromboelastic measurements, such as ROTEM and TEG have begun to en-

ter into obstetric practice, and have further documented the hypercoagulable

state of pregnancy, however, the majority of studies in this area have focused on

normal pregnancy, and have not yet been able to distinguish between healthy

pregnant women and women with mild pre-eclampsia [153]. In one report,
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women with pre-eclampsia have higher endogenous thrombin generation po-

tential (area under a thrombin generation curve) than those with normal preg-

nancy, however, this does not appear to be a perfect separating criteria, as some

of the women with pre-eclampsia had lower endogenous thrombin generation

potentially than normotensive women [98].

5.3 Modeling Methodology

To further verify and refine our previously developed reduced order kinetic

models of coagulation [285], we used the matched protein concentrations and

thrombin generation trajectories in patients to re-estimate parameters and ex-

pand the model. As the previous iteration of the model did not consider the

explicit inhibition of thrombin by activated protein C, we added this function-

ality to the model. The data we received consisted of thrombin generation tra-

jectories in plasma, with and without the addition of thrombomodulin as well

as thromoelastic assays, initiated by tissue factor, both without tissue plasmino-

gen activator and with the addition of tissue plasminogen activator to the fi-

nal concentration of 4nM. These dynamic assays were accompanied by a wide

range of coagulation factor measurements, including prothrombin, factors V,

XIII, IX,X,XIII, protein C, antithrombin-III, thrombomodulin, fibrinogen, an-

tiplasmin, PAI-1, and TAFI. We constructed a reduced order model similar to

that described in Chapter 4.6, however, we added an additional species to the

model PAI-2, since PAI-2 is synthesized by the placenta during pregnancy [12].

We also added a switch like function to control the degradation of the formed

clot, since we observed that PAI-1 concentrations correlated well with having

an extended degradation time, as in some women, the time for the ROTEM to

121



complete was close to four hours, while in other women, it only took two hours

for the test to complete because their clot degraded much faster. To capture this

wide variation in clot degradation rates, we added a control term that reduced

the rate that tPA broke down the clot if the initial concentration of PAI-1 in the

sample exceeded a threshold. We also modified the control term for fibrinolysis

to capture the large range in decline times. We formulated this control term as

Cfibrinolysis-new = max(0, tanh(t − tdelay-tPA))Cfibrinolysis (5.1)

where tdelay,tPA = b + m ∗ Progesterone + ε, and b and m were estimated from

linear regression, and ε ∼ N(0, σ2), where σ was also estimated from the same

linear regression.

We estimated parameters for this model in a stepwise fashion. We divided

the experimental data from N = 10 patients into test, training and validation

sets, with the training set consisting of the first and third timepoints from five

patients, while the second timepoint was used as the test set, and the other

five patients remaining as the validation set. We first fit the thrombin genera-

tion without additional thrombomodulin added as a multiobjective optimiza-

tion problem using JuPOETs [20]. To ensure that our parameters accurately

described the observed trajectories, we minimized an objective function which

included the mean squared error between the experimental curves and the sim-

ulated curves and the absolute error between area under the experimental and

simulated curves. Lastly, we added additional penalties if the simulated curves

did not reach an amplitude of 50nM or exceeded and amplitude of 500nM or

if the peak occurred after 9 minutes. After finding a family of 10 parameter

sets that adequately described the thrombin generation process, we then bound
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the thrombin generation parameters within the model above and below by the

largest and smallest values found for these parameters found within this family

of 10 parameter sets and posed another multiobjective optimization problem to

estimate parameters for the fibrin related portion of the model. We minimized

the mean squared error between the ROTEM trajectory with 4nM tPA, with

penalties for no dynamics or for a ROTEM trajectory that didn’t come down

in the presence of tPA for the 5 patients in the training set and the 1st and 3rd

visit, and then checked how our parameters predicted their ROTEM trajectory

at their 2nd visit.

5.4 Results

Initial re-fitting simulations of the matched patient training data sets using

the reduced-order model were consistent with the experimental measurements

(Fig. 5.2). Our model successfully captured the differences in peak thrombin

generation that were induced by the addition of thrombomodulin to the plasma.

However, our model appears to overpredict the height of the thrombin peak

more than it tends to underpredict, and in some cases, it predicts an earlier

peak than is experimentally observed. It appears that our model does not quite

succeed in capturing the amount of variance that is present in the thrombin

generation curves with extra thromomodulin, with our model overpredicting

the amount of thrombin generated. The predictions in the validation and test

set look no worse than those in the training set, indicating that we have not

overfit our model.

Our model succeeded in capturing the differences in shape in ROTEM
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curves between the no tPA case and the 4 nM tPA case, as seen in Figure 5.3,

with the curve not declining in amplitude in the absence of tPA. However, our

method of drawing from a random distribution to determine the control term

for tPA activation is only partially successful in capturing the wide variation in

decline times observed, with the model predicting a faster decline than mea-

sured for patient 1 and 36. This model does succeed in capturing the much

slower decline of patient 36 at the third timepoint. In general, our model, on

average, predicts a higher clot amplitude for the tPA =0 case, but the true am-

plitude is captured in most cases within the 95% confidence interval. The model

mostly succeeds in capturing the variation in maximum clot amplitude, but this

could perhaps be improved by allowing different fibrin species to contribute

varying amounts to the predicted clot amplitude.

Model performance appears to be comparable on the five patients set aside

as a validation set, as shown in Figure 5.4. The model does not completely

capture the huge delay in decline time in patient 139, however, this is not sur-

prising, as there were no patients within the training set that had not declined

in amplitude in 180 minutes. In a few cases, the predicted clot amplitude for the

tPA = 0 case was higher in the model than experimental measured, but in the

majority of the cases, the true amplitude fell with in the 95% confidence interval

of the predictions.

We used the method of Sobol as encoded in the SALib Python package to

estimate the sensitivity of the area under the ROTEM curve of our model. As

seen in Figure 5.5, the area under the curve appears to be controlled largely by

the initial tPA concentration as well as the the initial fibrinogen concentration.

This is a logical result, as the initial amount of tPA present contributes to the
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amount of plasmin that will be produced, which will effect how quickly the clot

is broken down, which will alter the area under the ROTEM curve. It is also ex-

pected that the initial amount of fibrinogen present will play a large role in the

area under the curve, as fibrinogen is the protein that is converted into an active

form which then polymerizes to form the clot. Since we have formulated the

control term which alters the rate that tPA activates to be a function of proges-

terone, the initial progesterone concentration also appears to play an important

role in determining the area under the ROTEM curve.

When we applied the method of Sobol to the area under the ROTEM curve

as a function of the parameters of the model, it revealed that one of the control

parameters for TFPI plays a large role in determining the area under the curve,

as seen in Figure 5.6. This control parameter plays a role in how fast trigger

initiates the thrombin generation process, so in turn, this parameter continues

to be important in determining the area under the ROTEM curve. In the cur-

rent formulation, it appears that the TFPI control term dominates out the other

factors that play into the the control term for trigger initiation. This analysis

also highlighted the importance of Km for the reaction in which plasminogen

is converted to its active form. This is a parameter one would expect to play

a large role in the shape of the ROTEM curve, as plasminogen is the protein

responsible for the degradation of the formed clot, so the rate that this protein

is produced would be expected to shape both the maximum amplitude of the

ROTEM trajectory and the duration of the clot degradation process.
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Figure 5.2: Thrombin generation predictions for the test, train, and validation sets. The experimentally measured thrombin trajectories are shown
in the heavy lines, the average trajectory over 20 estimated parameters sets is shown in the thin line with a shaded 95% confidence interval. The dashed lines
represent the trajectories from each parameter set. Thrombin generation trajectories without additional thrombodoulin are shown in blue, thrombin generation
trajectories with supplemental thrombomodulin are shown in green. (a) and (c) represent the training data (5 patients, timepoints 1 and 3. (c) represents the
test set, the same five patients used for training, at timepoint 2. (d) Validation of thrombin generation portion of the model at timepoint 1 in 5 different patients
(e) Validation of thrombin generation portion of the model at timepoint 2 in 5 different patients (f) of thrombin generation portion of the model at timepoint 3
in 5 different patients.
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Figure 5.3: ROTEM curves on the training set. The first and third time points where used to estimate parameters, and the second time point served
as a test. The heavy curves are the experimental measurement, the thin lines are the average prediction over N = 13 parameter sets, and the shaded area denotes
the 95% confidence interval. ROTEM trajectories with no tPA are orange, ROTEM trajectories with 4 nM tPA are in yellow. The first column represents the first
time point, the second column the second time point, the third column the third timepoint.
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Figure 5.4: ROTEM curves on the validation set. The heavy curves are the experimental measurement, the thin lines are the average prediction over
N = 13 parameter sets, and the shaded area denotes the 95% confidence interval. ROTEM trajectories with no tPA are orange, ROTEM trajectories with 4 nM
tPA are in yellow. The first column represents the first time point, the second column the second time point, the third column the third timepoint.
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Figure 5.5: Preliminary sensitivity analysis using Sobol total order sensitiv-
ity coefficients using N = 100, and p = 27 resulting in the evaluation of
2N(p + 1) = 5600 initial condition combinations evaluated. The blue bars rep-
resent the total order sensitivity coefficients, the error bars represent the confi-
dence interval. Concentrations, when nominally non-zero were perturbed be-
tween 50% and 150% of nominal, with the exception of progesterone, which
was allowed to vary between the minimum and maximum amounts measured.
When the nominal concentration of a species was 0, it was perturbed between 0
and 1 nM.
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Figure 5.6: Preliminary sensitivity analysis using Sobol total order sensitivity
coefficients using N = 500, and p = 54 resulting in the evaluation of 2N(p + 1) =

55000 initial condition combinations evaluated. The blue bars represent the total
order sensitivity coefficients, the error bars represent the confidence interval.
Parameters were perturbed between 50% and 150% of the average value found
in the best 13 parameter families.
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5.4.1 Machine learning can classify pre-eclampsia

One interesting question is whether we could distinguish patients with a history

of pre-eclampsia versus nulliparous women based upon biochemical and clin-

ical data sets gathered during the initial medical visit. Toward this questions,

we used patient data in combination with an unsupervised clustering approach

to classify patient status (Fig. 5.7). The data provided to us for machine learn-

ing comprised of 30 rows, representing 30 patients and 61 columns, representing

measurements of coagulation related proteins, two pregnancy related hormones

(estradiol and progesterone), immune system related proteins, as well as metrics

from a thrombin generation assay (with and without the addition of additional

thromomodulin) and from a viscoelastic assay (with and without the addition of

tPA) all taken at the first medical visit. The objective was to divide the data into

two equal parts using unsupervised learning methods. The dataset consisted

of two groups of women - nulliparous women (never having delivered a child)

and women who were pre-eclamptic in a previous pregnancy resulting in birth.

To get a sense of how non-linear vs linear the relationship among variables was,

we investigated the co-variance of the data. This revealed that some variables

were highly correlated. As to resolve the issue of highly correlated variables,

we used principal component analysis (PCA) on the data. Upon examination of

just two components of the PCA, roughly 60% of the variance in the data could

be explained. In order to retain most information from the data we decided

to keep five components which explained roughly 95% of the variance. After

that, we used the consensus classifier of the k-means and a Gaussian Mixture

Model. The clustered data can be separated using a linear decision boundary

(Fig. 5.7). Surprisingly, we found that using the consensus classifier of k-means

with the Gaussian Mixture Model correctly classified 22 out of the 30 patients (a
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Figure 5.7: Predictions made by consensus clustering on PCA data

73% success rate). To check if this trend of highly linearly correlated variables

sustains in other linearity decomposition methods we used Sparse Coding and

Probabilistic Principle Component Analysis, however, neither of these methods

equally divided the data among the two classes.

5.5 Discussion

Machine learning showed some promise in separating patients with pre-

eclampsia from non-pre-eclampsic patients in a an unsupervised setting. How-
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ever, when the data is reduced in dimensions via PCA, it can be seen that

with the measurements presently available, there is no obvious separation along

these dimensions. It is possible that we could improve the separation between

the two classes of patients by constructing additional features from the time

series measurements (the thrombin generation assays and the thromboelastic

assays) other than the metrics that are normally reported (such as the area un-

der the curve, or MCF). However, if this is not the case, this is also an interesting

result, as it means that clinicians looking for a predictor of pre-eclampsia will

need to consider other biomarkers and examine alternate theories of what leads

to pre-eclampsia. It is also possible that we could see better separation between

patients if we added additional covariates to the data, such as factors previously

known to be associated with pre-eclampsia, and then we could examine if any of

the immune and coagulation associated biomarkers improved accuracy and/or

specificity of the separation.

It is interesting to note that by the third trimester, some women had devel-

oped clots that were very resistant to lysis, for example, Patient 139’s ROTEM

assay took more than 48 hours to run, as her clot took more than twenty hours to

degrade. This stands in sharp contract to other patients, (Patients 100 and 78, for

example), for which the entire assay took less than 14 hours. The time from peak

amplitude to reaching an amplitude of 0 mm (duration of the decline time) does

not appear to be strongly correlated with PAI1 or PAI2 levels (the absolute value

of the Pearson correlation coefficient does not exceed .3 for patients in the third

trimester), however, the duration of the decline time appears to be negatively

correlated with FXIII levels (Pearson correlation coefficient -.51 for patients in

the third trimester), which may indicate that in certain patients, these altered

FXIII levels are changing how the clot is cross linked and making it more resis-
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tant to fibrinolysis. One study reports that FXIII levels are statistically signifi-

cantly lower during the second and third trimesters, however this difference is

not large enough to rise to the level of statistical significance when compared to

non pregnant women [301], so it remains unclear if changes in FXIII concentra-

tion are responsible for the large increase in in the duration of the degradation

time. In addition to a negative correlation with FXIII, this increase in duration

of the decline of clot amplitude may also be associated with an increase in fib-

rinogen (Pearson correlation coefficient .69 in third trimester patients) as well

γ′ fibrinogen (Pearson correlation coefficient of .57 in third trimester patients).

This prolongation of the duration of the decline time occurred in both in normal

pregnancy and pre-eclampsic patients, suggesting the root cause of it is not the

same as the factors that give rise to pre-eclampsia. It may prove informative to

look at the fibrin structures of these clots to see if polymerization has proceeded

differently between these two groups, and to see if the women with the clots

that were more resistant to lysis have more tightly packed clots, or mechani-

cally stronger clots that are less permeable increased amount of γ′ fibrinogen

present [105]. In the future, we may wish to further refine our model by in-

cluding γ′ fibrinogen as a distinct species, with a different rate constant for its

degradation.

It is well known that the coagulation and complement systems are intimately

linked, with proteins in the coagulation cascade in turn activating compounds

in the complement system [7], and with certain components of the coagulation

system deactivating portions of the complement system [19]. In the future, if we

had measurements of complement related proteins, we could further refine this

model to reflect this interplay. Pregnancy offers a unique opportunity to cap-

ture these interactions, because complement levels are known to change over
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the course of pregnancy [13], and have been shown to be somewhat different

between women with normal pregnancies and pre-eclampsic women [85]. We

could further refine the control terms in our model to capture the interactions

between complement and coagulation.

5.6 Conclusions

This work, to the best of our knowledge, presents one of the most detailed mod-

els of coagulation and fibrinolysis during pregnancy. It is strengthened by lon-

gitudinal samples, which allow us to track how the state of a woman’s coagula-

tion system evolves over the course of her pregnancy. Although our model did

not perfectly capture the ROTEM trajectories for each woman and each point

within her pregnancy, it did capture major trends. We discovered that is was

difficult to separate patients with a normal pregnancy from those who would

go on to develop pre-eclampsia in an un-supervised setting with the present set

of thrombin generation, thromboelastic, and biochemical measurements, which

suggests that if there is one master protein that controls the development of pre-

eclampsia, it was not one measured in this study, and strengthens the argument

that pre-eclampsia is a conditions with a complex underlying etiology. We also

discovered that some women, towards the end of their pregnancy begin to de-

velop clots that are very resistant to lysis, however, this phenomenon does not

appear to be linked to pre-eclampsia, as women within both groups developed

this very lysis resistant clots. In the future, microscopy may allow us to confirm

our hypothesis that coagulation proceeded differently in these patients resulting

in tighter packing of the fibrin fibers which form the clot.
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CHAPTER 6

KINETIC MODELING OF COAGULATION AND FIBRINOLYSIS IN

WHOLE BLOOD

1 Thromboelastic testing provides an assessment of a patient’s coagulation and

fibrinolytic systems. In recent years, thromboelastic testing has become an im-

portant point of care technique. However, its direct connection with the under-

lying biochemistry of coagulation and clot formation is not obvious. Toward

this issue, we describe a validated reduced order mathematical model of coag-

ulation and fibrinolysis, consisting of 22 ordinary differential equations, which

described clot formation from initiation of the coagulation cascade through the

degradation of polymerized fibrin by plasmin. We trained the model via leave

one out cross validation on ROTEM measurements, a common thromboelas-

tic test, on four patients, and then predicted ROTEM trajectories on four un-

seen patients, in whole blood and whole blood with the addition of 2 nM tis-

sue plasminogen activator. Following model validation, sensitivity analysis

suggested which biochemical interactions and species controlled the system re-

sponse. Lastly, we investigated if we could estimate protein concentrations from

commonly reported thromboelastic metrics. These estimation studies suggested

we could (on average) relearn the initial fibrinogen concentration to within 20%

of its true value. Taken together, this work presents a model which connects

the underlying biochemistry of coagulation and clot formation in patients to a

common point of care thrombelastographic test.

1This work has been previously published in [178].
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6.1 Introduction

In the United States, traumatic injury is the leading cause of death for those

under 45 years of age. Of those suffering traumatic injury, 50-60% die immedi-

ately after injury, while the remaining 40-50% of deaths occur following arrival

at a hospital with potentially treatable injuries [313]. Of the patients who sur-

vive long enough to be transported to a hospital, about a third die from hem-

orrhage, a potentially treatable and survivable condition [335]. Several stud-

ies have shown that patients who present with acute traumatic coagulopathy

(ATC), a dysfunctional coagulation system, upon admission, are less likely to

survive [196, 38]. Acute traumatic coagulopathy is an open research topic: some

researchers believe that activated protein C plays a key role in ATC by inhibit-

ing coagulation [90], while others believe that the depletion of fibrinogen or

excessive fibrinolysis may be the cause of ATC [209].

Thromboelastic testing is an important tool in assessing ATC, since it can

be used to identify ATC within five minutes, before conventional laboratory

results are available [77]. Rotational thromboelastometry (ROTEM) and Throm-

boelastography (TEG), both thrombelastographic tests, can quickly assess the

viscoelastic properties of blood following traumatic injury [169]. ROTEM as-

sesses thrombin generation, clot formation and fibrinolysis, and when used to

guide transfusion, it reduces the amount of bleeding in patients [3]. Viscoelas-

tic assays can detect hypocoagulability when other commonly performed tests

such as activated partial throboplastin time (APTT), prothrombin time (PT), and

platelet count do not detect any abnormalities [161]. Thus, thromboelastic as-

says such as ROTEM are important tools for the detection of acute traumatic

coagulopathy.
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The coagulation system is a balance between the production of enzymes

that build clots and those that break them down. Following traumatic injury,

damage to the endothelium can result in the exposure of tissue factor, a trans-

membrane protein that is mainly constitutively expressed on cells outside the

hemostatic envelope to circulating blood [106]. Tissue factor serves as the ini-

tiator to the coagulation process, which ultimately produces the enzyme throm-

bin, which in turn converts fibrinogen molecules to fibrin monomers. Fibrin

monomers spontaneously associate, with the resulting insoluble polymer form-

ing the protein scaffolding of a blood clot, a structure which includes activated

platelets and red blood cells [198]. This clot is then broken down through a

process called fibrinolysis, in which tissue plasminogen activator (tPA) and/or

urokinase plasminogen activator (uPA) convert plasminogen into its active

form, plasmin, which degrades the fibrin scaffold of the clot [53]. In greater de-

tail, when tissue factor on the surface of extravascular cells is exposed to blood,

it binds to FVIIa, an enzyme with poor catalytic potential present in blood at

subnanomolar concentrations, forming the “trigger” complex (extrinsic tenase).

The extrinsic tenase then efficiently converts FX and FIX into their active form,

FXa and FIXa. FXa can then convert prothrombin (FII) to its active form, throm-

bin (FIIa). Thrombin is the key enzymatic product of the coagulation process,

as it can activate the procofactors FVIII and FV to their active cofactor forms

(FVIIIa, FVa), as well as FXI, and platelets. The activation of platelets pro-

vides phospholipid surface for the assembly of the two other primary enzymatic

complexes of the coagulant response, the intrinsic tenase (FIXa-FVIIIa complex)

which amplifies factor Xa production, and prothrombinase (FVa-FXa complex)

which generates the vast majority of FIIa. The overall result is a positive feed-

back loop where a very small amount of initial thrombin can lead to a large
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amount of thrombin generation. The thrombin generation process has a built-in

negative feedback loop in vivo. Thrombin complexes with thrombomodulin,

a transmembrane protein expressed on the luminal surface of endothelial cells

and this complex activates protein C, which then proteolytically inactivates of

FVa, FVIIIa, FV and FVIII [101]. This thrombin dependent pathway is the cen-

tral dynamic anticoagulant mechanism limiting clot formation to the injury site.

Negative regulation of thrombin levels is also controlled by Antithrombin, an

abundant plasma protease inhibitor that forms irreversible 1:1 complexes with

most of the proteinases participating in the coagulant response including throm-

bin, factor Xa, factor IXa, TF-FVIIa, factor XIa and the prothrombinase complex

[87]. Of all the proteinase inhibitors in plasma it appears to be the primary in-

hibitor of thrombin. As noted, the thrombin produced by the coagulation pro-

cess converts fibrinogen into fibrin which then polymerizes into a clot with the

assistance of FXIIIa. The clot is later broken down by plasmin, which can be

activated by either tPA or uPA, enzymes with short half-lives that can be inhib-

ited by plasminogen activator inhibitor-1 (PAI-1) [54]. Thrombin can help sta-

bilize the clot through its activation of thrombin activated fibrinolysis inhibitor

(TAFI), which removes a C-terminal lysine and arginines from fibrin, reducing

the possible number of plasmin binding sites.

Mathematical models of coagulation and clot formation can help us under-

stand and identify key therapeutic targets implicated in ATC. Several kinetic

models exist that describe the thrombin generation and degradation process.

One of the best known models, the Hockin-Mann model, consists of 34 ordi-

nary differential equations and 42 rate constants [143]. One of the most complex

models of coagulation, containing 92 differential equations, was developed by

Luan et al., [193]. However, if we wish to embed a thrombin generation model
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inside a model that captures the whole-body physiology of traumatic injury, it

must be small enough to solve quickly. Toward this objective, reduced order

models have been developed which mostly captured thrombin generation dy-

namics [285]. Fibrinolysis and fibrin generation have also been modeled at a

variety of scales. Longstaff and Thelwell proposed a very simple model for fib-

rinolysis, in which the process was represented as two steps, with plasminogen

being converted to plasmin by tPA, and fibrin degraded by plasmin [191]. While

computationally easy to evaluate, this model greatly oversimplified the pro-

cess, and neglected the role of important regulators such as PAI-1. Fibrinolysis

has been previously modeled in great detail through a 3D stochastic multi-scale

model which predicted difference in lysis speeds based on clot morphology, but

this model focused only on clot lysis rather than formation and degradation [15].

Reifman and Mitrophanov modeled fibrin generation with mass action kinetics

using 80 ODEs to investigate the efficacy of different prothrombin complex con-

centrates [218]. They used an interesting method to model the complex kinetics

of TAFI inhibition of fibrinolysis: they empirically fit a curve to the clot lysis

time as a function of TAFI concentration, and then correspondingly reduced the

effective tPA concentration to account for the effects of TAFI. While this model

predicted the final fibrin levels, it failed to capture the shape of the fibrin gener-

ation curves.

In this work, we present a model of coagulation and fibrinolysis which uses

an effective modeling approach to describe the complete coagulation process-

from thrombin generation through fibrin degradation. The results generated by

the model were compared to ROTEM data to test its validity. The model cap-

tured the differences in ROTEM trajectory in the absence and presence of tPA

for four unseen patients. However, there were fine features of the response that
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were not properly captured, potentially because of missing biochemistry in the

model. Sensitivity analysis identified important biochemical components driv-

ing the system response, components that could be useful therapeutic targets.

Lastly, the model could be used, along with thrombelastographic test results,

to estimate some of the biochemical initial conditions in the sample. Taken to-

gether, this study presents one of the first models to connect the underlying

biochemistry of coagulation and clot formation in patients to common point of

care thrombelastographic test results.

6.2 Materials and Methods

6.2.1 Viscoelastometry Materials and Methods

Corn trypsin inhibitor (CTI), a factor XIIa inhibitor used to prevent contact path-

way activation, was prepared as previously described [52]. Recombinant tissue

factor (TF1-263) was purchased from Haematologic Technologies (Essex Junc-

tion, VT) and used to prepare a relipidated TF reagent as described [52]. Recom-

binant two chain tissue plasminogen activator (tPA) was purchased from Molec-

ular Innovations (Novi, Michigan) with a reported specific activity of 2,516,682

IU/mg (relative to WHO International Standard for tPA, NIBSC 98/714).

Eight healthy individuals (4 males/4 females) were recruited for this study.

All participants gave informed consent prior to blood collection. The participa-

tion of all individuals was approved by the University of Vermont Committees

on Human Research. Blood was drawn by venipuncture (19 gauge needle). The

first 3 ml were discarded and the next 10 mL collected and transferred to a 15
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mL conical tube preloaded with 200 µL of 5 mg/mL CTI (0.1 mg/mL final). CTI

treated blood was divided into two 5 mL aliquots and placed in a 37◦C water

bath. Ten uL of a 1 µM t-PA stock (final 2 nM tPA) was added to one 5 mL

aliquot and 10 µL of carrier buffer to the other. 320 µL of CTI treated blood

with or without tPA was transferred to ROTEM cups preloaded with 20 µL of

solution containing 85 pM TF reagent and data collection initiated. Reactions

were run in duplicate. Complete blood cell counts were performed using the

pocH-100i automated hematology analyzer (Sysmex, Mundelein, IL, USA).

6.2.2 Formulation and solution of model equations

The reduced order model consisted of 22 ordinary differential equations of the

form:
1
τi

dxi

dt
=

R∑
j=1

σi jr j(x,k)v j(x,k) (6.1)

The rate of change of species xi, divided by its characteristic time scale, τi is

equal to the rate at which it is produced or consumed by the R reactions in the

system. The quantity σi j denotes the stoichiometric coefficient for species i in

reaction j. If σi j > 0, species i is produced by reaction j. Conversely, if σi j < 0,

species i is consumed by reaction j, while σi j = 0 indicates that species i does not

participate in reaction j. The rate of reaction j, r j(x,k)v j(x,k), is the product of the

kinetics of the reaction (r j) and a logical control term (v j). The quantity k denotes

the (unknown) model parameters. Enzyme catalyzed rates were modeled using

multiple saturation kinetics:

r j = kmax
j εi

∏
s∈m−j

(
xs

K js + xs

)
(6.2)
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where kmax
j denotes the rate constant for reaction j (1/hr), εi denotes the abun-

dance of the enzyme catalyzing reaction j, K js denotes the saturation constant

for species s in reaction j, and s ∈ m−j , the set of reactants that participate in re-

action j. Mass action kinetics were used to model the rate of protein-protein

binding interactions:

r j = kmax
j

∏
s∈m j

x−σs j
s (6.3)

where kmax
j denotes the maximum rate for reaction j, σs j denotes the stoichio-

metric coefficient for species s in reaction j, and m j denotes the set of reactants

for reaction j.

The logical control terms 0≤ v j ≤1 depended upon the combination of factors

which influenced rate process j. For each rate, we used a rule-based approach to

select from competing control factors. If rate j was influenced by 1, . . . , l factors,

we modeled this relationship as v j = I j

(
f1 j (·) , . . . , fm j (·)

)
where 0 ≤ fi j (·) ≤

1 denotes a regulatory transfer function quantifying the influence of factor i

on rate j. The function I j (·) is an integration rule which maps the output of

regulatory transfer functions into a control variable. In this study, we used I j ∈

{min,max} and Hill-like transfer functions. If a rate process had no modifying

factors, v j = 1.

Platelet activation was modeled using the method developed by Chatterjee

et al, [55]. Reactions involving platelets were scaled by η·ε−1, where η ≤ 1 is used

to alter the rate constant for the reaction; we adjusted η to account for differing

platelet counts. The term ε, which is related to the fraction of activated platelets,

is governed by:

dε
dt

= k(εmax − ε) (6.4)

εmax = εmax0 + (1 − εmax0) ∗ f (ℵ) (6.5)
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where:

ℵ = max
t′∈[0,t]

FIIa(t′) (6.6)

and:

f (ℵ) =
ℵα

ℵα + βα
(6.7)

Rate constants for processes involving platelets were then adjusted as k = kη·ε−1,

and α was estimated as a model parameter.

To simulate ROTEM dynamics we developed a function A(. . . ) that mapped

biochemical concentrations to the ROTEM signal (amplitude):

A = A0 + A1

(
R2

K(tPA)2 + R2

)
(6.8)

where A0 denotes the baseline ROTEM measurement, A1 denotes a maximum

amplitude scaling factor (assumed constant across plasmas), and the term in

parentheses denotes an empirical shape function. The shape saturation term

K(tPA) was given by:

K(tPA) = 1000 + 100 × tPA (6.9)

and R denotes the weighted average of the fibrin species contribution (F ) and

the platelet contribution (P) to the ROTEM amplitude; they were assumed to

contribute equally [314, 173]:

R = 1/2 ×F + 1/2 ×P (6.10)

The quantity F is the sum of all fibrin species in the model, while P is given

by:

P =
#platelets

#Nominal platelets
∗ c f ibrin ∗ ε (6.11)

where the patient’s platelet count (#platelets; measured) was normalized by

#Nominal platelets (assumed to be 300,000 per microliter), c f ibrin denotes the fibrin

concentration predicted by the model, and ε is governed by Eqn. (6.4).
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Figure 6.1: Calculated error of the model during leave one out cross validation.
The dots show the average error on the 3 patients used in the training set, the
crosses show the average performance on the left out fourth patient.

Model equations were encoded in Julia (v1.1), and solved using

the DifferentialEquations package. Model equations, initial condi-

tions and parameters are available at https://github.com/varnerlab/

Fibrinolysis_model_w_platelets.

6.2.3 Estimation of model parameters

Model parameters for the thrombin generation portion of the model were es-

timated by minimizing the mean squared error between the thrombin genera-

tion predicted by the model and experimentally measured thrombin generation

profiles in platelet rich plasma (data not shown). Next, we estimated the pa-

rameters for the fibrin generation and degradation based on ROTEM data using

the Pareto Optimal Ensemble Technique (POETs), a multi-objective optimiza-

tion technique [22]. Each objective minimized the mean squared error between
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the observed ROTEM trajectories and the simulated trajectories for each patient

for the tPA = 2 nM case. We utilized leave one out cross validation. We divided

the 8 patients into a training and a test group. We then trained the model on

three patients in the training group (in the presence of tPA) and calculated the

model prediction error on the left out fourth patient. The average error on the

left out patient (the validation error) declined dramatically between the first and

second iteration of POETs, and continued to slowly decline in the subsequent

iterations, with the validation error remaining approximately one order of mag-

nitude larger than the training error. The lowest validation error was found at 10

POETs iterations; thus, we used that parameter set to predict ROTEM curves on

the four unseen patients. The final family of parameter sets consisted of N=24

members; the best two parameter sets per objective were selected throughout

all four cases of the leave one out cross validation.

6.2.4 Identifiability Analysis of Initial Conditions

We sought to estimate the maximum number of initial conditions we could

identify from a ROTEM curve, as this information could be highly valuable

in an emergency room setting to determine what course of treatment should

be given. We numerically calculated sensitivities using central differences, so

that si, j =
dy
dθi
≈

y(t)+−y(t)−
2h , where θi represents initial condition i, and y(t) rep-

resents the simulated ROTEM curve at either the increase or decrease in the

specified initial condition, and h = θ+ − θ−, the step size in parameter space.

We collapsed the time dimension by calculating the root mean squared sensitiv-

ity, smsqr
i =

√
1

ND

∑ND
j=1 s2

i, j, where ND represents the number of time points in our

simulation. Parameters were noted as not sensitive if their magnitude was four
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orders of magnitude smaller than the maximum root mean squared sensitivity

[115]. We can then normalize the root mean squared sensitivities of the sensitive

parameters s̄i =
smsqr

i
||smsqr

i ||
for i = 1, ...,Nθsensitive .

From the the normalized sensitivities, we examined their collinarity, as sug-

gested in [41]. In this approach, we know parameters are linearly independent

if there exist k constants αi , 0 such that:

α1 ¯sK1 + α2 ¯sK2 + ... + αk ¯S Kk = 0 (6.12)

We can calculate the the degree of collinearity among the parameters via the

collinearity index, CIk = 1√
λK,min

, where λK,min is the smallest eigenvalue of ¯S K
T ¯S K ,

where ¯S K is assembled placing each of the k normalized sensitivity vectors in

the columns of ¯S K . Per Brun [41], a subset of parameters are identifiable if their

collinearity index is less than twenty.

We then used algorithm four from [115], to find the largest identifiable subset

of parameters.

6.3 Results

We predicted ROTEM curves on four unseen patients with and without tPA

(Fig. 6.2A). The model captured the change in curve shape with the addition of

tPA, as well as the final amplitude in the absence of tPA. The model approxi-

mately captured the shape of the curves in the absence of tPA; it did not repro-

duce the slight decline in amplitude that occurred after reaching the maximum.

Additionally, the measured ROTEM curves were more symmetric in their in-

crease and decrease than the predictions in the case of tPA = 2 nM, which had a
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A

B

Figure 6.2: Simulation and analysis of the reduced order model. A: Prediction
performance of the reduced order model on four unseen patients. The thick
black line is the true ROTEM measurement, the thin black line represents the
model prediction, and the shaded gray area represents the 95% confidence in-
terval for the N = 24 best parameter sets. B: Total order sensitivity coefficients
with respect to area under the ROETM curve. The gray whiskers show the 95%
confidence interval for the calculated coefficients.

more rapid increase than decline.

We used the global sensitivity analysis [136] to evaluate which parameters

had the largest effect on the simulated ROTEM curve (Fig. 6.2B). To examine the

sensitivity of the model to the p = 77 parameters, we sampled 78,000 parame-

ter families, with the values of the parameter families falling between 50% and

150% of the estimated parameter values. We evaluated the sensitivity of the area

under the curve (AUC) of the ROTEM signal, as that summarizes the ROTEM

curve, as well as commonly reported metrics computed from the ROTEM tra-

jectory. Global sensitivity analysis suggested the area under the ROTEM curve

was largely controlled by FXIII and trigger control parameters.

We found that we could improve the model performance by allowing the
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Figure 6.3: Prediction performance of the reduced order model on four unseen
patients after adjustment of initial conditions. The thick black line is the true
ROTEM measurement, the thin black line represents the model prediction, and
the shaded gray area represents the 95% confidence interval for the N = 24 best
parameter sets.
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B

Figure 6.4: Model performance for reverse engineered initial conditions. A:The
curves generated from minimizing the objective in 6.13. The black line shows
the original generated curve, the gray curves are the curves found from opti-
mization, the blue curve shows the average of the estimated curves, and the
shaded area represents the 95% confidence interval for N = 25 simulations. B:
The differences in initial conditions found as we attempted to relearn initial
conditions based on ROTEM curve metrics. The bars represent the average dif-
ference, and the error bars represent the standard error of the mean for N = 10
simulations.

initial conditions of the 4 unseen patients to vary within 50-150% of normal, a

range that is accepted in humans (Fig. 6.3). However, even with these adjust-

ments, we fail to capture the slight kink observed in the tPA = 0 nM case. Our

model does not reproduce these dynamics because we set the concentration of

uPA equal to zero, and the slight clot amplitude observed could be due to the

action of uPA.

Our theoretical identifiability analysis based on a ROTEM curve as a func-

tion of its initial conditions found six (prothrombin, ATIII, FV FXa, prothrom-

binase platelets, fibrinogen, tPA) of the initial conditions to be sensitive, and

all of these six conditions fell within the largest identifiable subset. However,
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two of these initial conditions (FV FXa and prothrombinase platelets) represent

intermediates which play key roles during coagulation, but do not exist in ap-

preciable quantities outside of activation of the coagulation processes, leaving

us with four useful theoretically identifiable initial conditions. One of the re-

maining four, tPA, is physiologically present at much lower levels than it was

added during the assays conducted for the development of this model, so while

large changes in tPA may be identifiable, we do not believe it will be identifiable

under nominal conditions.

The initial concentration of fibrinogen could be estimated to within 20% of

its true value from the ROTEM curve (Fig. 6.4). A critical question when inter-

preting ROTEM curves is their relationship with the underlying biochemistry

of coagulation and fibrinolysis. Thus, having formulated a model, we wished

to see if we could estimate the biochemical initial conditions that generated a

ROTEM profile by solving an inverse problem; we treated biochemical initial

conditions as unknown parameters to be estimated by repeatedly solving the

model for different initial conditions and minimizing the difference between the

predicted and measured ROTEM curves. However, in the literature, ROTEM

curves are not summarized as trajectories over time, rather certain metrics are

reported, including CT , clot formation time (time from beginning of the test un-

til the clot reaches an amplitude of 2 mm), CFT , the time since the CT until the

clot reaches an amplitude of 20 mm, the α angle, the angle that describes the

slope between the 2 mm and 20 mm points, the maximum amplitude or MCF

(maximum clot firmness), and the maximum lysis, the extent of clot lysis at the

end of the assay [176]. Thus, the objective function (to be minimized) for the
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inverse problem was defined as:

O =

 6∑
j=1

(
yt j − ye j

w j

)2

β j


1/2

(6.13)

where w j is a scale associated with metric j, taken from the median values re-

ported in [292], yt j is the target value for a metric, and ye j is the current value of a

metric based on the present initial condition estimate. Lastly, β j is the weight ap-

plied to metric j. The problem was constrained such that protein concentrations

fell between 0% and 150% of their nominal values. We approached this problem

in two ways: repetitively solving for the initial concentrations for one generated

ROTEM curve (Fig. 6.4A), and by solving for the initial conditions for a num-

ber of different ROTEM curves simultaneously (Fig. 6.4B). The first approach

allowed us to determine the accuracy that could be obtained in re-generating a

ROTEM curve, while the second approach permitted us to observe how close

the re-learned initial conditions were to those that generated the ROTEM curve.

The inverse problem was solved using a particle swarm approach (as coded in

the Julia package Optim.jl [220]) as the gradient is difficult and potentially

expensive to calculate.

6.4 Discussion

The model qualitatively captured the ROTEM curves with and without tPA.

However, there were fine features of the ROTEM response that were not prop-

erly captured by the model. For example, the model slightly over-predicted the

clot amplitude in the case of 2 nM tPA for patient 10 and under-predicted pa-

tient 3 for the same case. This is likely because the same initial conditions, with

the exception of platelet counts which were measured, were used for all pa-
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tients. However, the spectrum of what is considered a normal concentration for

proteins involved in the coagulation and fibrinolysis pathways is quite broad,

with values ranging between 50% and 150% of the normal range [42]. Thus,

if we adjusted the initial conditions within this range, we may be able to find

a set of initial conditions afforded a better model description of the data with-

out adjusting the kinetic parameters. Futhermore, while the model captured

the shape of the curves in the absence of tPA, it failed to capture the asymme-

try of the curves when tPA was added, nor did it capture the slight decline in

amplitude occurring in the absense of tPA. This discrepancy could possibly be

resolved by added uPA to the model; uPA also activates plasmin, leading to clot

degradation. Lastly, the model could be further strengthened by training with

matched ROTEM curves and factor measurements; this would allow us to con-

firm that the model produces the observed ROTEM curves when given the true

initial conditions.

Global sensitivity analysis suggested the area under the ROTEM curve was

largely controlled by FXIII and trigger control parameters. FXIII, when con-

verted to its active form, FXIIIa, plays a large role in determining how resistant

fibrin clots are to fibrinolysis [43]. Thus, it follows that FXIII/FXIIIa would play

a large role in determining the area under the ROTEM curve. This result con-

curs with the results reported by Wettstein et al, in which they reported that de-

creased FXIII availability correlated with unexplained intraoperative bleeding

as well as a decline in MCF [358]. Trigger (tissue factor bound to FVIIa) initi-

ates the coagulation process that catalyzes key steps in the formation of the clot.

Thus, by changing the parameters that control coagulation initiation, we can

dramatically change the area under a ROTEM curve. Global sensitivity analysis

also revealed that the trigger control parameters played a large role in the max-
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imum clot firmness, as do the kinetic parameters involved in the initial burst of

thrombin generation. While ROTEM only directly measures fibrin generation

and lysis, the importance of the thrombin generation process that leads to fibrin

generation can not be neglected. Even if a patient has a clinically normal amount

of fibrin, if they are lacking a key protein in the thrombin generation cascade,

we would expect this to be evident from an altered MCF. Additionally, the trig-

ger control parameters were important to determining the CFT, as well as the

kinetic parameters that determine the rate at which fibrinogen is activated to fib-

rin and the rate constant that determines how quickly plasmin breaks down fib-

rin. Taken together, sensitivity analysis suggests that for maximum efficacy, pa-

tients should receive drugs that target the tissue-factor-FVIIa complex or FXIII.

FXIII represents a particular target of interest, since while FXIIIa helps protect

clots from degradation in the absence of fibrin, it will not prompt clot formation,

and furthermore, through encouraging clot stability, bleeding and transfusion

requirements could be reduced.

Solving the inverse problem revealed which initial conditions could be eas-

ily estimated from commonly reported ROTEM metrics. By attempting to solve

for the initial conditions of one ROTEM curve a number of times, we learned

that we can discover a set of initial conditions that, on average, will repro-

duce a ROTEM curve very close to the curve which we sought. When gener-

alized, this process identified which initial conditions were robust (can toler-

ate a large change in value while still producing a comparable ROTEM curve)

and which were sensitive (a small change in their value completely alters the

ROTEM curve). The initial amount of fibrinogen appeared to be very sensitive,

with it being recovered within 20% of its true value. Fibrinogen is the key pro-

tein that forms the majority of the clot, so it is logical that we recovered close
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to the true fibrinogen concentration, as changes in its concentration would con-

ceivably alter all of the terms in our objective function. Since these curves were

generated at physiological levels of tPA, which are much lower than the 2 nM

level used in the parameter estimation case, it also follows that the initial level of

plasminogen was robust, since very little of it is activated by the trace amount of

tPA present in blood in the absence of injury or pathology. In the future, it may

be interesting to investigate what information is contained within each ROTEM

metric. It is also possible that a different optimization technique would be able

to find better solutions than particle swarm.

6.5 Conclusions

In this work, we have presented a model of coagulation, fibrin generation, and

fibrinolysis which was validated against thrombin generation data and ROTEM

curves. We demonstrated that the model describes clot formation in the pres-

ence and absence of tPA, a key protein in the clot degradation process. We

found that control parameters for FXIII, the precursor of the protein that assists

in fibrin polymerization plays a key role in a number of ROTEM curve metrics.

By solving the inverse problem, we found that we could (on average) recover

a ROTEM curve and discovered which initial conditions (specifically, the ini-

tial concentration of fibrinogen present) must be tightly constrained to recover

a curve with the desired metrics.

The model codes described in this paper are available at https://github.

com/varnerlab/Fibrinolysis_model_w_platelets
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CHAPTER 7

PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELING OF

TRAUMA

7.1 A Brief History of Physiologically Based Pharmacokinetic

Modeling

1 PBPK (physiologically based pharmacokinetic modeling) arose from anaes-

thesiologists seeking to understand the role of ventilation and blood flow rates

on the effects of anaesthetics on their patients in the 1920s [258]. In the 1930s,

Torirell wrote a set of equations to describe all the key processes in drug

metabolism: uptake, distribution, and elimination [331]. However, the com-

putational tools necessary to solve the equations used to describe the concen-

trations over time had not yet been developed (resulting in the interim use of

simplified models), and it wasn’t until 1963 that Mapleson used an analog com-

puter to solve for the distribution of various gases within human tissues that

the equations describing a PBPK model became tractable [202]. With the in-

creasing availability of digital computers, data based models were developed

to model the metabolism of toxic species in rats, and these models were suc-

cessfully scaled up to predict time course response curves with humans dosed

with the same substance [83]. PBPK models are widely used in chemical risk as-

sessments and can be used to create falsifiable predictions of drug metabolism

so that models can be revised when data does not fit predictions, resulting in an

improved model.

1Under preparation as ”A Validated Physiologically Based Pharmacokinetic Model of
Trauma” R. LeCover, M. Bravo, T. Orfeo, K.E. Brummel-Ziedins, J. Varner
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7.2 Mathematical Formulation

PBPK models arise from the basic principle of conservation of mass.

d(ci j ∗ V j)
dt

=
∑

k

Qkcik −
∑

m

Qmci j + Ri j ∗ V j (7.1)

where ci j is the concentration of species i in compartment j, V j is the volume of

compartment j, k represents the set of all compartments connected to compart-

ment j with inflows, m is the set of all outflows from the compartment, and Ri j

is the rate at which i is produced or consumed in compartment j based on the

kinetics of the model describing the species of interest. In many PBPK applica-

tions, the Ri j terms are assumed to be zero in every compartment except for the

liver, in which species are metabolized. Additionally, in many cases, the volume

of all compartments is assumed to be constant, allowing for the mass balances

to be rewritten as:

d(ci j)
dt

=
1
V j

∑
k

Qkcik −
∑

m

Qmci j + Ri j ∗ V j

 (7.2)

However, in the case of trauma, where blood is being lost, this simplification

is not suitable to to the change in compartment volume as blood is lost and as

resuscitation fluids are given.

Within our model, the Ri j terms are described using the reduced order model

of coagulation and fibrinolysis described in the previous chapter.

7.3 Physiologically Based Pharmacokinetic Modeling of Trauma

PBPK models have been previously used to simulate trauma to a limited ex-

tent. Ho et al used a one compartment PBPK model to simulate hemoatocrit
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concentrations following blood loss and resuscitation, but only considered the

loss of factors through blood loss, not through consumption through coagula-

tion [141]. A slightly more complex model by Hirshberg et al. modeled blood

as having three compartments: red cells, plasma, and water, and allowed flow

between these compartments based on systolic blood pressure [140]. They used

prothrombin time to quantify if a patient was at risk for dilutional coagulopathy,

and did not consider the biological mechanisms behind coagulation. A model

without compartments, but containing more physiological functions was de-

veloped by Simpson et al. [309]. Simpson’s model allows for both blood pres-

sure and bleed out rate to change over time, with the bleed out rate decreasing

as blood pressure decreases. This model predicts hematocrit levels over time,

but not the levels of specific proteins. Reisner et al. re-purposed their model

of the cardiovascular system (which was originally created to predict how the

cardiovascular system responds to orthostatic stress) to study hemodynamic re-

sponses to haemorrhage [260]. Their model includes the heart and pulmonary

circulation as well as four peripheral tissue compartments representing the up-

per body, legs, viscera and kidneys, each of which received the same fraction

of the cardiac output. They modeled blood by separating it into two compo-

nents: red blood cells and plasma. This model includes transcapillary fluid ex-

change and lymphatic flow but groups all proteins together. The model devel-

oped by Peng and Sweeny is very complete, using a 15 organ simulated body

and was validated against supplemental fibrinogen given to trauma patients

[252]. Brown an co-workers used a three compartment PBPK model to model

portions of the immune response to trauma, but the data they used to fit their

model was sampled infrequently, and their model fits at some of the later time

points were poor [39]. However, all of these models lack a detailed description
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of coagulation and fibrinolysis, a shortcoming we aim to remedy.

7.4 Modeling different treatments using Seheult bleeding

model

We sought to quantify the effects of different fluid resuscitation treatments on

a patient’s ability to clot. The PROMMTT study showed that high ratios of

plasma to RBCs and platelets to RBCs were independently associated with a

decreased 6-hour mortality rate [144], and another study showed that during

damage control resuscitation, higher volumes of crystalloids were associated

with decreased survival and low volumes of colloids were associated with in-

creased survival [127]. Although the effects of different resuscitation schedules

on mortality had been measured, we wished to see how they effected clotting

ability, which plays a role in mortality outcomes. To perform these simulations,

we used a timeline and model developed by Seheult et al [299]. In this scheme,

the treatment a patient receives is divided into five phases, as shown in Figure

7.1.

At minute 0, the patient begins bleeding out at 135 mL/min, and 10 minutes

later, EMTs arrive and begin resuscitating the patient. At 30 minutes, the patient

arrives at the hospital, and 30 minutes later (at minute 60), the patient receives

surgery to repair the damages, and which concludes at minute 160, and then

bleeding finally stops at minute 240, four hours after the initial injury. Within

this scheme, the patient’s bleeding rate is a function of his blood pressure, so

when fluids are given, the blood pressure increases, also increasing the bleeding
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Figure 7.1: (a) Bleeding rate as a function of time under the Sheult et al sched-
ule. (b) Hemostatic factor as a function of blood pressure. As blood pressure
decreases, so does the hemostatic factor.

rate, as seen in Figure 7.1a. Mathematically,

S BP = (130 ∗ (1 − ((
70 ∗weight − total blood volume

70 ∗weight ∗ 0.67
)1.6))0.625) (7.3)

which empirically relates blood lost to blood pressure. The bleeding rate

was calculated as a function of time and blood pressure.

1 if t < tend operating room then

2 bleed rate = initial bleed rate∗SBP
130∗hemostatic factor ;

3 else if t > tend operating room AND t < tend operating room + 20 then

4 bleed rate = bleed rate at minute 159
(1+.1∗e1+(t−160)/10 ;

5 else if t >= tend operating room + 60 then

6 bleed rate=0.0 ;

7 else

8 return .9*calculateBleedRate(t-1, x, datadictionary) ;

9 end
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The hemostatic factor used in the above algorithm attempts to account for

how much blood has been lost as a function of blood pressure, as shown in

Figure 7.1b.
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Figure 7.2: The simplified body used in the simulations.

We then combined this model of bleeding with a simplified body, as shown

in Figure 7.2. Within this body, blood flows from the arteries, through the the

bulk, liver, and kidney compartments, to the veins, where we can inject IV flu-

ids. Blood flows from the veins, to the heart, through the lungs, and back to the

heart before returning to the arteries, from where the patient is bleeding. Since

these simulations were only run for four hours, net synthesis of proteins was

not included.

We simulated three different courses of treatment. The most realistic case

is the one in which the patient receives saline when the EMTs arrive, in the

pre-hospital phase, and then begins to receive conventional component therapy

(CCT) (units of plasma, packed red blood cells, and platelets). In the second

case, the patient receives saline when the EMTs arrive, but once he arrives at

the hospital, he begins to receive whole blood. In the third case, when the EMTs

arrive, they are carrying whole blood, and immediately begin resuscitation with

it, and the patient continues to receive whole blood throughout the remainder
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of the simulation. To assess the effects of the different treatments, we ran a

simulated ROTEM every ten minutes (using the previously described kinetic

model), taking the blood composition from the patient’s veins.

Figure 7.3: (a) The resulting maximum clot amplitude measurement from draw-
ing blood from the simulated patient’s veins throughout injury, pre-hospital,
emergency room, surgical and recovery phases. The dots represent the mean
maximum clot amplitude, and the shaded area represents the 95% confidence
interval over fifteen selected parameter families. (b) The resulting maximum
clot amplitude measurement from drawing blood from the simulated patient’s
veins throughout injury, pre-hospital, emergency room, surgical and recovery
phases while the patient suffers from acidosis and/or hypothermia. The dots
represent the mean maximum clot amplitude, and the shaded area represents
the 95% confidence interval over fifteen selected parameter families.

As shown in Figure 7.3a, the differences in treatment are most apparent dur-

ing the emergency room and surgical phases of the simulation. During these

periods, the benefits of whole blood appear, as the MCF of the patient has not

declined nearly as much as it has in the case where the patient was initially

resuscitated with saline. However, regardless of the fluids used to resuscitate

the patient, by the end of the simulation, their maximum clot amplitude has

declined, most dramatically in the case when CCT was given, representing a
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reduction in clotting capability. This reduction in clotting capability is due to

the fact that the initiator of coagulation, the ”trigger” complex remained at the

same concentration throughout the simulation, causing the coagulation system

to keep running as the clot degradation system in turn degraded the formed

clot. In short, the system was running in place, with both clot production and

clot degradation systems competing with each other and eating up the proteins

used to form a clot, even those infused when blood was given. From this set of

simulations we learned that if the signal to form a blood clot is not damped, re-

gardless of the resuscitation fluid given, the patient will loose a non-trivial por-

tion of their coagulation capacity. This decline is most dramatic when CCT is

given, as by volume, it contains the most additives, which preserve the lifespan

of the products, but dilute their coagulation boosting capabilities. Additionally,

it appears that the dilutional effects of the initial liter of saline given are still sig-

nificant even when compared to the coagulation system churning in place over

the duration of the simulation, as the patients who received blood and those

who received saline and then blood both have declines in their estimated MCF

by the time they conclude with surgery, but this drop is far more dramatic in the

patients who initially received saline. This finding is agreement with a study

that found there was a significant increase in 30 day mortality among patients

who received pre-hospital crystalloid and blood products compared to patients

who only received blood products [128]. In a study with swine, the swine who

received resuscitation fluids (either lactated ringer’s solution or Hextend) had

higher levels of pro-inflammatory mRNA levels (for IL-6, G-CSF and TNFα)

in their lungs compared to swine who did not receive any resuscitation fluid

[354], so it is possible that this increase in inflammation from fluids also occurs

in humans, and reduced inflammation may be a benefit of allowing a patient to
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remain somewhat hypotensive.

While it would be impossible to measure the rate at which tissue factor expo-

sure declines in humans after injury, this parameter could possibly be estimated

in a porcine or primate model. While I do not believe ”trigger” being stuck in

the on state is the cause of all reported cases of ATC, it could certainly account

for some of the cases, where the patients possess a mutation where tissue factor

pathway inhibitor (TFPI) is produced at low levels, which makes damping the

signal to clot difficult. Alternatively, the TFPI produced could not bind securely

to the exposed tissue factor, allowing the signal to clot to persist for longer then

it should, resulting in the development of ATC.

To assess the effect of acidosis or hypothermia on our patient, we ran the

same set of simulations while modifying the rate constants of the reactions to

simulate slower reactions due to either hypothermia or acidosis, the results of

which are shown in Figure 7.3b. In these simulations, we assumed that the ef-

fects of acidosis and hyporthermia reduced the reaction rates by 10%, that is,

kinetic rate values were set to 90% of the values used in the previous simula-

tion. We also assumed that this hypothermia/acidosis was not corrected when

the viscelastic assay was run, and that it persisted at this level throughout the

the simulation. With this reduction in kinetic rate constants, when can see a

decline in MCF if we compare similar cases from Figures 7.3b and 7.3a with

the cases with the patient receiving whole blood while suffering from acidosis

and hypothermia coming closer to approaching the reduction in MCF observed

when a patient is treated with CCT. It appears that untreated hypothermia and

acidosis negate some of the benefits of blood as a resuscitation fluid, as it does

the patient less good to have coagulation factors available to form a clot if their
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reaction rates are slowed by cold and an acidic environment.

7.5 Simulation of Fibrinogen Supplementation

Fibrinogen is the protein, once activated, that will polymerize and form a clot,

and as such, plays an important role in coagulation. Fibrinogen supplementa-

tion may boost survival rates in trauma patients: in a small study performed

on 31 pairs of propensity matched trauma patients, those who received fibrino-

gen concentrate within one hour of arrival at the emergency department had a

significantly higher in hospital survival rate and a significantly lower 28 day in

hospital mortality rate [156]. In a study conducted at the AUVA Trauma Centre,

Salzburg, Schlimp and coworkers retroactively assessed the effects of giving fib-

rinogen concentrate to trauma patients [294]. Within this study, patients were

first divided into two groups: those who received fibrinogen concentrate (242)

and those who did not (193), and then the group that received fibrinogen con-

centrate was further subdivided by the amount of fibrinogen concentrate they

received. We used the resuscitation fluids and protein concentrations reported

in this study to validate the performance of our model over a longer time period.

We used the average amount of each type of fluid given within a group to run

our simulations. Additionally, since the patients who received no fibrinogen

concentrate were less severely injured than those who did (average reported

injury severity score of 22 versus 34 in the group that did receive fibrinogen

concentrate), we used a lower initial wound volume and trigger concentration

in those simulations.

Within these simulations, we used vascular resistances to determine how
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the blood volume distributed during and post trauma. The resistances used are

shown in Table 7.1.
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With these resistances, we could calculate the flows using Q = ∆P
R . We

switched between using nominal vascular resistances and the trauma vascu-

lar resistances when the blood volume of the simulated patient dropped below

80% of its original value, and used our patient’s mean arterial pressure as the

pressure drop in the flow calculations.

Since these simulations were run over a time period of 48 hours, we did

include coagulation factor synthesis and degradation in these simulations. Syn-

thesis and degradation base rates were taken from literature, when available,

and when not, we calculated from the literature half-lives, where kd =
log(2)
τ 1

2

. The

majority of protein synthesis occurred in the liver, however, tPA was synthe-

sized in the veins, as according to [297]. We also permitted acute phase synthesis

of coagulation factors, where after a lag phase, protein synthesis would ramp up

to a higher level for a period of time before returning to basal levels. Addition-

ally, the trigger levels were set to decay following an initial phase where they

remained at their initial levels (Equation 7.4). The rate of trigger delay as well

as the rate of protein synthesis during the acute phase, and the duration of the

acute phase were tuned so that our data matched experimental measurements.

trigger(t) = trigger0e
t−(trigger begin decline time)

τ (7.4)

As shown in Figure 7.4a, regardless of the amount of supplemental fibrino-

gen given, the patients that received some fibrinogen (3, 6, or 12 g), are all in

about the same place 48 hours later, where the supplemental fibrinogen has all

been chewed up and degraded. We found that we were able to fit the fibrino-

gen trends with a lag phase of two hours, after which synthesis was increased

to 5.8 times the normal synthesis rate and remained at this increased synthe-
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sis rate throughout the duration of the simulation. It would be interesting to

have D-dimer levels from this or a similar study to confirm that the supplemen-

tal fibrinogen is being degraded, and not sequestered in another portion of the

body.

Figure 7.4b shows how platelets are consumed following injury, with the

largest drop in platelet concentration in the most severely injured patients. As

platelet concentration does not appear to rebound within the first 48 hours after

injury, we assumed that the platelet production rate remained at its nominal

level after injury. To fit the platelet concentrations observed, we added a term

that accounted for platelets being incorporated into a clot in addition to the

platelets lost to bleed out. The consumption term was written as

platelets consumed by clot = overall platelet concentration∗Wound Volume∗A0∗e
t
τ

(7.5)

where A0 = .5 and τ describes how quickly platelets stop being incorporated

into the clot.

Figure 7.4c, shows that that at the first time point (assumed to be one hour

after injury) and a day later, ATIII levels appear to be a function of injury sever-

ity, as the most injured patients received the most supplemental fibrinogen. To

fit the ATIII data, we used a one hour lag phase, after which ATIII synthesis

increased to five times its nominal rate, before returning to the normal synthesis

rate 36 hours after injury.
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Figure 7.4: Experimental measurements are shown as dots, with the IQR repre-
sented as error bars, and the simulated mean levels are shown as lines, with the
95% confidence interval shaded over a family of 24 kinetic parameter sets. (a)
Fibrinogen concentrations during the first 48 hours following injury. (b) Platelet
count during the first 48 hours following injury. (c) ATIII concentration during
the first 48 hours following injury.
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7.6 Simulation of Cryroprecipitate Dosing

Cryroprecipitate, a product that can be used as a resuscitation fluid following

injury can either be derived from whole blood or fresh-frozen plasma (FFP),

is a rich source of fibrinogen, factors VIII and XIII as well as von Willebrand

factor, and fibronectin, which is known to bind to fibrin [247]. We used data

from a feasibility study in rapid cryoprecipitate administration to further vali-

date our model [74]. Within this study, adult patients either received standard

haemorrhage therapy or the standard therapy supplemented with two pools

cryoprecipitate. The standard treatment consisted of 6 units of red blood cells

and 4 units of fresh frozen plasma. Patients in both arms received 1 gram of

tranexamic acid as a bolus followed by another gram over 8 hours as infusion.

However, patients in the no-cyroprecipitate group recieved on average 50 mL of

crystalloid prior to randomization, compared to an average of 250 mL of crys-

talloid in the cyroprecipate group prior to randomization.

Our model succeeds in capturing the fibrinogen trajectory with and without

cryoprecipiate being given. In general, our model appears to predict a less steep

decline in fibrinogen concentration than was found to be the mean concentra-

tion found in the twenty patients in the study. During the first hour or so of

the simulation, the control group has a more steep decline in initial fibrinogen

concentration due to the fact that they received more cyrstalloid than the cyro-

precipitate group. It is interesting to note there appears to be a wide variation in

fibrinogen concentrations throughout the first day following injury, especially

at the 25 hour timepoint. Some of this variation may be due to the fact that there

is variation in how the signal to produce fibringoen gets transduced to the liver,

variations in the proportion of each of the subchains of fibrinogen that are pro-
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Figure 7.5: Fibrinogen concentrations over the first day following injury with
and without cryoprecipitate supplementation. The reported concentrations
from [74] are shown in dots with error bars, the simulated concentrations are
shown as lines.

duced, or due to variations of the reserve of fibrinogen available intracellularly.

It may also be due to variations in clot structure, with some people produc-

ing more compact clots which are more resistant to fibrinolysis [4]. Through

genome wide association studies, 41 significant loci affection fibrinogen have

been identified, and it would be interesting to see if any of these 41 loci could

explain some of the variation in fibrinogen levels following injury [81].

7.7 Comparison of Whole Blood and Hextend Resuscitation in

Monkeys

To examine what is occurring within trauma patients at a more granular scale

and to validate our model further, we used data published by Sheppard et al in a
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monkey model of trauma [303]. In this study, male rhesus macaques, weighing

between 6 and 13 kg were anaesthetized, and then given a 15 cm laparotomy

as well as a femur fracture, and then blood was removed until the mean aerial

pressure reached 20 mmHg, to simulate haemorrhage [304]. Ninety minutes

after injury, the monkeys were resuscitated with either citrated whole blood or

Hextend, equivalent to half of the shed blood volume. Following whole blood

or Hextend resuscitation, the monkeys were given additional lactated Ringer’s

solution, equivalent to double the shed blood volume.

For the purposes of our simulation, we simulated a monkey with a weight

of 7 kg, with trigger being exposed both in the wound compartment and within

the liver, however, the trigger factor in the liver was initially expressed at a con-

centration of 3 pM as compared to the 5 pM trigger in the wound compartment.

We assumed that the whole blood used for resuscitation contained 90% of the

coagulation factors measured at baseline, as the study stated that shed blood

was collected in anticoagulant citrate-phosphate-dextrose-adenine solution at a

10:1 ratio [303].

We found if we used the same acute synthesis rates and lag phase durations

as found in humans based on our estimation from the fibrinogen supplemen-

tation study, we recovered the correct trends for monkeys, but underestimated

the amount of most of the factors present by the end of the study. However, if

we adjusted the lag phases and synthesis rates, we could achieve much better

fits. In general, as shown in Table 7.2, the estimated synthesis rates in mon-

keys are much higher than those in humans. This raises the question as to if

studies performed in animals to simulate traumatic injury can easily be gen-

eralized to humans, if the acute phase protein responses are indeed markedly
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Protein Study Lag Time (minutes) Acute Phase Multiplier
FII Fibrinogen Supplementation in Humans 30 2
Fibrinogen Fibrinogen Supplementation in Humans 120 5.8
ATIII Fibrinogen Supplementation in Humans 60 5
FII Hexend vs Blood in Monkeys 90 9
Fibrinogen Hexend vs Blood in Monkeys 120 11.5
ATIII Hexend vs Blood in Monkeys 120 30

Table 7.2: A comparison of estimated human and rhesus macaque acute phase
multipliers and lag times.

different. Humans and the rhesus macaque diverged from a common ancestor

about 25 million years ago, and aligned sequences between humans and rhesus

macaques share 90.6% of identity, allowing for a large number of differences

between the two species to develop [118]. Although swine are commonly used

a models for haemorrhagic shock and trauma, the levels of cytokines TNF-α,

IL-10, and IL-6 in swine in a polytrauma model do not correspond to the time

course levels in humans [337]. The human transcriptome changes that occur

after trauma are just starting to be characterized [366], but as of yet, the gene

regulatory network which controls these changes is poorly understood, and it

is unclear how well this regulatory network is preserved between species. Ad-

ditionally, animals are usually anaesthetized before they are injured, and it is

difficult to quantify how anaesthesia effects the response to injury. Based on

our simulation results, we would take any results generated in an animal model

with a grain of salt, until adjustments are made to account for differing simu-

lation rates and lag phases between different species. Given these unmeasured

differences between species, it might prove worthwhile to develop an under-

standing of the gene regulatory network of trauma in animals that are com-

monly used to simulate trauma so that we can be more certain as to how well

the animal results generalize to humans.
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Figure 7.6: The pink corresponds to initial resuscitation with blood, and the blue
corresponds to initial resuscitation with Hextend. Experimental data shown
as dots, simulations shown as lines with one standard deviation shaded. (a)
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7.8 Dosing with Tranexamic Acid (TXA)

Following the CRASH-2 trial, which showed that patients which received

tranexamic acid less than one hour after injury had a significantly lower risk of

death due to bleeding [71], there was significant interest in treating all trauma

patients with TXA soon after injury. Within this study, patients received 2g of

TXA in total-1 gram as a loading dose, administered in 10 minutes, and then the

second gram was administered over 8 hours [362]. The reason why TXA was

so effective is an open question, and many aspects of its mechanism of action

are still an active area of investigation. Interestingly, while TXA reduced the

risk of bleeding if it was given within three hours of injury, if it was given more

than three hours after injury, it increased the risk of death due to bleeding [274].

TXA binds to plasminogen at several lysine binding sites, one with high affinity

and others with lower affinity [151], and when it binds, it prevents plasmino-

gen from activating and degrading fibrin. TXA inhibits plasmin, the active form

of plasminogen, but much higher doses are needed for this inhibition to occur

[363]. TXA also inhibits uPA (which also activates plasminogen), with half of

the activity of uPA being blocked at a TXA concentration of 3.63± .16 mM, com-

pared with 86.79±2.3 nM necessary to inhibit half of the activity of plasminogen

[365]. TXA is also thought to interact with IL-6 and TNFα, both components of

the immune response, and may result in higher levels of these proteins, along

with others associated with the pro-inflammatory immune response [17].

So that we could investigate the effects of a patient receiving TXA, we used

a previously developed two compartment PBPK model to simulate the concen-

tration of TXA over time. Within this model, the two compartments are the

well perfused compartment and the poorly perfused compartment, where the
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parameters of the model are scaled by bodyweight [123].
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Figure 7.7: TXA concentration in the first day after trauma. The 75 kg patient
receives 1 gram of TXA at 90 minutes, and then another 1 gram in the following
8 hours.

We can then use the concentration of TXA in the well perfused compartment

as the concentration in the blood, and add an additional reaction to the full

body PBPK to account for the deactivation of plasminogen when it complexes

with TXA. To accurately model this process, we need the rate constant which

describes how fast this plasminogen-TXA complex forms. While I am unable

to find an exact value for this rate constant, it was estimated in a computational

study, and we used this estimated value of 1E−6M−1s−1 value in our simulations

[308]. With a rate constant this large, within our model, once TXA is given,

the amount of plasminogen available drops to near zero very rapidly. Since
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Figure 7.8: Fibrin concentration within the wound compartment.

Figure 7.9: The effects of dosing a trauma patient with TXA over the first 25
hours following injury at time zero. The dashed blue lines indicate a patient that
did not receive TXA, and the solid pink lines indicate a patient who received
TXA. (a) Fibrin concentration within the wound compartment. (b)Fibrinogen
concentration within the vein compartment.

the inhibition of plasmin is thought to occur at much higher concentrations of

TXA, I modeled that interaction as occurring one thousand times slower than

the interaction between TXA and plasminogen.

We used the same conditions as the trauma patient who received no sup-

plemental fibrinogen to investigate the effects of receiving TXA on a trauma

dosing schedule. Within our simulations, we found that there was a negligible

effect of TXA on fibrinogen concentration within the first 20 hours, as shown

in Figure 7.8b. This is an expected result, as TXA within our model (and as

far as is known), does not interact directly with thrombin, the protein respon-

sible for converted fibrinogen into its active form. While TXA reacts quickly

to deactivate plasminogen, and the physiological levels of tPA present within
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Figure 7.10: The effects of dosing a trauma patient with TXA over the first 25
hours following injury at time zero with the initial tPA concentration set to ten
times the nominal concentration. The dashed blue lines indicate a patient that
did not receive TXA, and the solid pink lines indicate a patient who received
TXA. (a) Fibrin concentration within the wound compartment. (b)Fibrinogen
concentration within the vein compartment.

our simulated trauma patient, the formed clot is not broken down, as insuffi-

cient plasminogen is activated, which would be necessary to degrade the fibrin

clot, as seen in 7.8a, where the fibrin concentration within the wound compart-

ment increases and then remains flat until 20 hours. Since the clot remains intact

throughout the course of the simulation owing to the low levels of tPA present,

the observed effects of TXA are negligible.

Since we believed that the negligible effects of TXA were due to the low

amounts of tPA present, we simulated a trauma patient with ten times the

amount of nominal tPA present to see if the effects of TXA would become more

pronounced. We found with this increase in available tPA, there were dramatic

changes both within fibrin and fibrinogen concentrations, as seen in Figure 7.10.
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Giving TXA helped preserve the the fibrin clot for a longer period of time, and

increased the maximum fibrin concentration achieved in the wound compart-

ment (Figure 7.10a). However, this dose of TXA did not effect the fibrinogen

concentration with in the patient’s veins (Figure 7.10b). TXA appears to be

helping to preserve the initial clot that forms rather than preserving the pool

of available fibrinogen. The fact that that TXA was so effective in the CRASH-2

trial may be because this sort of dysfunction is common following injury, where

too much tPA is released, causing the over-activation of plasminogen and the

premature degredation of a clot. However, this is only one possible path lead-

ing to the production of excess plasmin-plasmin concentrations could also be-

come elevated if plasminogen synthesis is elevated or if anti-plasmin levels are

reduced, either due to reduced synthesis of anti-plasmin or increased.

Since late dosing has the apparently paradoxical effect of increasing the risk

of death by bleeding if it is given more than three hours post-injury, we com-

pared late doing with on-time dosing of TXA in the case of elevated tPA, where

TXA appears to make a significant difference. To simulate the late dosing, we

used the same dosing schedule, but shifted it forward in time three hours, so

that the late dosed patient received his first dose of TXA four and half hours

following injury. As seen in Figure 7.11, the late dosing of TXA very nearly re-

sembles the case when no TXA was given, with a rapid decline of fibrin within

the wound compartment (Figure 7.11a) and large dip in venous fibrinogen pool

(Figure 7.11b). Although nearly as soon as the patient receives TXA, the amount

of plasminogen is reduced to nearly zero, a significant amount of it has al-

ready been converted to plasminogen by the high concentrations of tPA present,

which TXA does inhibit, but not before this plasminogen has already degraded

the clot that formed in the wound compartment when the dosing of TXA is de-
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Figure 7.11: The effects of dosing a trauma patient with TXA over the first 25
hours following injury at time zero both with the initial tPA concentration set
to ten times the nominal concentration. The dashed blue lines indicate a patient
that received his first dose of TXA three hours and half hours after injury, and
the solid orange line indicates a patient who received his first dose of TXA 90
minutes following injury. (a) Fibrin concentration within wound compartment
(b) Fibrinogen concentration within vein compartment (c) plasmin concentra-
tion within vein compartment (d) Plasminogen concentration in the vein com-
partment
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layed. However, based on our simulations, it is unclear why this would put the

patient at a higher risk of death, because the late dosing appears to resemble

the case when no TXA is given. A possible reason why our late dosed patient

resembles the patient who did not receive TXA is the lack of uPA-TXA interac-

tions within our model, and it is believed that uPA is responsible for the lack of

TXA efficacy outside of the three hour window [365].

While these simulations highlight the potentially dramatic role TXA can play

in altering the state of a patient’s coagulation, they should be treated with cau-

tion. The rate constant for plasmin activation was estimated with a much higher

concentration of tPA (2 nM) versus the approximately .07 nM that is found phys-

iologically [1], so it is possible that there are significant errors in estimating that

rate. Additionally, both the small kinetic model and the PBPK model lack rate

constants for uPA related interactions, and these interactions may significantly

contribute to TXA’s efficacy. Both the kinetic model of coagulation and fibrinol-

ysis and the PBPK model would be significantly strengthened by more informa-

tion about how quickly uPA activates plasminogen (in a way similar to the tPA

titrations that were used to estimate the tPA-plasminogen rate constants) and

how quickly TXA activates uPA [190]. In a recent study, a correlation was found

between peak tPA correlation and injury severity score [69], further highlighting

why TXA may be so effective: in severely injured patients enough tPA is present

to activate large amounts of plasminogen, so the addition of TXA can noticeably

inhibit this activation. Much research remains to be done on how exactly TXA

interacts with all portions of the coagulation system, and how quickly these side

reactions occur. It should also be confirmed that TXA does not significantly ef-

fect synthesis of coagulation and immune related proteins, because if it does,

that could partially explain some of its effectiveness.

182



7.9 Comparison of Massive Transfusion Protocols

A severely injured patient who is admitted to an emergency room will almost

certainly require massive transfusion, however, what fluids are given will vary

depending on which hospital to which they are admitted. We used our simu-

lated person to examine the efficacy of two different massive transfusion pro-

tocols: one from Stanford and another from Parkland. Under the Stanford pro-

tocol, a patient receives blood upon admission, followed by packed red blood

cells, fresh frozen plasma and platelets in a 6:4:1 ratio [271]. Under the Park-

land protocol, a patient first receives packed red blood cells and plasma (in a 5:2

ratio), then the next set of fluids includes platelets, plasma, and packed blood

cells (in a 1:2:5 ratio), and the third shipment includes packed red blood cells,

plasma, and cryoprecipitate (in a 5:2:10 ratio) [248]. We simulated resuscitation

with either one of these protocols following an initial in-transit resuscitation

with 500 mL of saline, with in hospital resuscitation beginning 45 minutes after

injury.

Initially, the Stanford protocol preserves far more of patient’s clotting ca-

pacity, as these patients are receiving blood, which contains far less filler than

segmented blood products (Figure 7.12). However, this initial advantage is lost

around the third hour, when the Parkland patients receive a large dose of cry-

oprecipitate, which is a very potent source of coagulation factors which dra-

matically boosts the patients clotting capacity. These simulations show that the

benefits of blood as a resuscitation fluid will be diluted once fluids that contain

more filler are given, but that cryoprecipitate can make up for these dilute fluids

being used. While we only compared two massive transfusion protocols, many

more are used across the United States and the globe, and if a hospital wishes
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Figure 7.12: Simulated maximum ROTEM amplitude under Stanford (red) or
Parkland (yellow) resuscitation schedules. The mean amplitude is shown as a
point every 30 minutes, and the shaded area represents one standard deviation
over N = 6 parameter families.

to change their protocol, our model could be used as a first step in showing

non-inferiority. This approach could be further validated by performing exper-

iments as in [295], where they simulated treatment by diluting healthy people’s

blood and then added fibrinogen, FFP, FXIII, and Ringer’s acetate, however, in

some respects, our in-silico approach is more complete, as it includes the deple-

tion of the available coagulation factors that would occur in trauma which is not

captured in the use of diluted blood from healthy volunteers.
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7.10 Conclusions

Our PBPK model makes it possible for treatments to be run in-silico before they

are attempted in either an animal in the field on human patients. To our knowl-

edge, this is the first PBPK model to deal combine a detailed description of co-

agulation with TXA, a drug that has shown promise in reducing deaths due to

trauma. It also highlights the cautions that need to be taken when using animal

models of trauma, as their acute phase responses may not correspond to human

responses. We would encourage those who create animal models of trauma

to adapt this model for their model animal so that we can better understand

and model the differences between human and their model animal responses to

trauma and treatment. Our model highlights that more work remains to be done

in understanding how hypothermia and acidosis effect coagulation, however, it

is clear that patients would benefit from having both of these conditions con-

trolled as soon as is possible. As computers become more efficient, it is possible

that this model could be used to solve a scarce resource distribution problem:

how should blood or blood products of a limited a amount be distributed in the

case of mass causalities to best preserve clotting capacity?
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CHAPTER 8

PREDICTION OF ACUTE TRAUMATIC COAGULOPATHY VIA

MACHINE LEARNING

8.1 Machine Learning in Health Care

Machine learning has been applied to numerous problems within health care,

from the prediction of Alzheimer’s from brain MRIs to the prediction of suicide

risk in mental health patients from their electronic health records [215]. The idea

of applying machine learning to health case is not new-in fact, machine learning

was being applied to the problem of determining diagnostic rules for cancer be-

fore the term ”machine learning” became widespread [32]. As electronic health

care records become more wide spread and commonly used, the pool of data

potentially available for learning also increases. However, applying machine

learning to in the health care setting can be challenging due to missing or in-

complete data, many of which has a temporal dimension but is still very highly

dimensional. Furthermore, in many cases, the data is missing not at random,

meaning that interpolation of the missing data must be done carefully. In order

to apply many machine learning algorithms, the data must undergo extensive

preprocessing to fill in missing data points or remove features that are missing

for a certain percentage of the population. Despite these challenges, the use

of machine learning in health care will continue proliferate in the twenty first

century and hopefully guide clinicians to more successful outcomes. However,

we must proceed cautiously to make sure as machine learning continues to be

a boon, and does not reduce the skills of physicians, get taken out of context

(especially when applied to textual data), and capture the inherent uncertainty
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in dealing with complex systems, such as humans [44].

The intensive care unit represents a rich data source for machine learning,

as the patients within it are closely monitored, producing time series data with

a very high temporal resolution. This data can then be used to develop a time

series classification framework, with decision trees [46], or a Weibull-COX pro-

portional hazard model [239], or to predict mortality [9]. Vranas and coworkers

used consensus clustering to see if machine learning was able to group patients

by their similarity, and discovered it was successful in grouping the patients into

human recognizable groups based on ICU admission data [347]. Eshelman and

colleagues used the MIMIC II database to create a RIPER model, which uses a

rules based method, to predict if a patient was at high risk of becoming hemody-

namically unstable [100]. Using a Bayesian nonparameteric learning approach,

Lehman and coworkers found that they could identify the healthiest and un-

healthiest patients in the ICU based on extracted features from blood pressure

time series data [183]. As an increasing amount of ICU data becomes of publicly

available, machine learning will continue to flourish in this space.

Much work has been done to develop classification algorithms which use

health care data to determine if a patient does or does not have a disease, how-

ever, the time dimension of these predictions is just starting to be explored [216].

Time series prediction is not a new field, but many of the time series prediction

methods which have been traditionally used in economics assume that there

exist a seasonality to the data, a pattern which repeats several times within the

measured time period [233], which does not hold true for time series predic-

tion over a span of days within an ICU, and therefore renders techniques like

ARIMA and SARIMA ill-suited [251]. While there exists a collection of datasets
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for benchmarking time series prediction techniques, none of the datasets within

this collection, the only medical time series included are measured at very high

frequency, and not on the scale of an hour to hours, which is the rate at which

the results of laboratory tests would make it back to the treating physician, and

this repository focuses on univariate prediction [250]. Gaussian process mul-

tivariate regression has been used to develop MedGP, an algorithm to predict

several health conditions, including sepsis, however, they severely restricted

the variables used for their predictions and only included patients who had

measurements for their specified variables [59].

Sequence prediction can be divided into three types: many to many, many

to one, and one to many. In many to many, many time series are used to pre-

dict many time series many outputs, in many to one, many inputs are used to

predict one time series, and in one to many, one time series is used to predict

many outputs. In this case, we need a many to many predictor, which can take

in the high dimensional input that is an ICU patient and output a prediction of

their state as a function of time. Although stage recurrent neural networks have

shown promise in sequence prediction, at least when applied to financial data,

they are a many to one technique and not suitable for application to populations

of patients [257]. The GRU-ODE-Bayes technique, which combined gated recur-

rent units with the Fokker-Planck differential equation outperformed a number

of other GRU-ODE methods as well as a variational autoencoder at predicting

several medical time series, however, in this comparison, the data was prepro-

cessed to severely reduce the number of features in the dataset [80].
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8.2 Machine Learning in Trauma

A number of groups have been building machine learning models which aim

to predict survival following traumatic injury and other trauma related metrics.

In an early use of machine learning in trauma, Demsar and colleagues analysed

which patients benefited from damage control surgery by growing classification

trees and through the use of a naive Bayes classifier [84]. Through the use of Su-

perLearner, which combines several machine learning algorithms, Christie and

co-workers were able to predict death as well as transfusion with area under the

curve approaching .9, which indicates good accuracy and precision [67]. Using

a different hybrid algorithm which combined basic detection rules with a multi-

layer perceptron, Liu and coworkers were able to predict which patients would

require a life-saving intervention of 89.8% accuracy [188]. Li and coworkers

compared logistic regression and random forests for the prediction of ATC and

found that both techniques were fairly successful in predicting ATC (F1 score >

90% for both techniques), however, it is unclear how they dealt with the time

aspect of the data [182]. They also only included patients with complete data

in their study, which could bias their results, as it is expected that there will

be significant missingness in medical data, especially in an emergency setting,

as not all data may be collected for patients who die soon after arrival. Tal-

bert and coworkers have proposed to include machine learning in triage via

CATT, however, the results that they report indicate that traditional triage may

be more effective than their predictive model [327]. Machine learning has also

been applied to predict outcomes and severity of traumatic brain injury, using

multivarible logistic regression in children [66], a support vector machine to

predict intercranial pressure [58], with a decision tree with features extracted
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from CT images of the brain [122], just to list a few. A recent review of machine

learning in trauma highlighted that artificial neural networks show promise in

predicting mortality and other outcomes in trauma patients [189].

8.3 Data

8.3.1 MIMIC-III

To predict which patients were at high risk of ATC, we needed a large set of

trauma patients and their health care records. The MIMIC-III database [163]

contains deidentified health care data from approximately 60,000 intensive care

unit admissions from the Beth Israel Deaconess Medical Center in Boston, Mas-

sachusetts. MIMIC contains a wealth of information, including treatments

given, physiological information, lab results, and notes from attending health

care professionals. We selected 3025 unique hospital admissions, based on the

criteria in Figure 8.1.

Pre-Processing

We built a PostgreSQL database to store the MIMIC-III database and made all

queries using this system [163]. We first limited our population to patients with

traumatic injury. To construct our x vector, we concatenated all laboratory test

values, chart event values, input events, and drugs prescribed. We next binned

the data trying multiple window sizes (30 minutes, 1 hour, and 2 hours), where

the first recorded event was defined as time t = 0, as shown in Figure 8.2. For
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Figure 8.1: The details of the patient selection process. Beginning from all the
adult patient admissions in MIMIC-III, we selected only patients who were in
the ICU for unplanned reasons and had at least one INR measurement.
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Figure 8.2: A graphical representation of how patient feature vectors were con-
structed. The Xs denote measurements that were available at time point t, and
the empty boxes represent that that measurement was not available at a time
point for a patient. This missingness pattern was used to construct masks to
describe the missingness of data.
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laboratory and chart events, if more than one event was recorded within a win-

dow, we computed the average value. For drugs, if more than one administra-

tion was recorded within the window, we took the sum of all of the doses within

a window. During data preparation, we also constructed additional masks, as

described by [57], which recorded if a measurement was present within a win-

dow, and if so, at what time it was recorded. With these masks, we aimed to

capture the missingness of the data, which may contain additional informa-

tion, since which tests have been performed or not have be extremely predic-

tive [185]. We constructed our y vector based on internationalized normal ratio

(INR) tests, which is a measure of the body’s ability to form blood clots. The nor-

mal value for a healthy person is 1.0. Specifically, we encoded patients with an

INR ≥ 1.5 as +1 (having ATC) and the patients with an INR< 1.5 as −1 (not hav-

ing ATC). While pre-processing the data, we also removed tests that are some-

times used interchangeably with INR to diagnose ATC, including PTT, aPTT,

and PT. To deal with the missingness of the data, we used linear interpolation

to fill values that were missing in the time series.

8.3.2 Activation of Coagulation and Inflammation in Trauma

Study Dataset

The Activation of Coagulation and Inflammation (ACIT) dataset was collected

between February 2005 and April 2015 originally collected for a single-center

prospective cohort study of severely injured trauma patients [67]. Patients were

included in the dataset if they were over the age of 15, not pregnant, not incar-

cerated, and not transferred from another hospital. The dataset contains clinical
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and laboratory measurements collected at admission as well as 2, 3, 4, 6, 12, 24,

48, 72, 96, and 120 hours after injury. However, the number of INR measure-

ments in this dataset declines dramatically after admission, as at admission,

1380 patients have an INR measurement, whereas the next highest number of

INR measurements are recorded at 6 hours post admission, but only 228 pa-

tients have an INR measurement at a timepoint. Thus, this dataset is much less

rich than MIMIC in terms measurements over time.

Pre-Processing

We characterized the data within the ACIT dataset into 4 categories: demo-

graphic (items that would not evolve with time), hourly measurements, daily

measurements, and summary measurements (measurements that summarized,

for example, the amount of fluids given over a 24 hours period). Since only the

upon admission timepoint had a large number of INR measurements, we de-

cided to focus our analysis upon the 1380 patients who had an admission INR

measurement. Since there were very few patients with complete data, we filled

missing numerical data with the mean of the patients who at a measurement,

and categorical data with the most common case within the category. We then

removed all columns containing long blocks of text, and rescaled the data. For

our admission classification of ATC, we included the demographic data, the 0

hour measurements, the admission day measurements, and the 0 to 24 hour

summary measurements.
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8.4 Classification via Logistic Regression

Logistic regression allows for the separation of data into two groups, which al-

lows us to divide patients into groups based on those who never have ATC dur-

ing the entirety of their ICU visit and those that do have an INR that classifies

them as having ATC during their visit. Formally, logistic regression corresponds

to the model

log(
p(x)

1 − p(x)
) = β0 + x · β (8.1)

which can be solved for p(x), giving

p(x, b,w) =
eβ0+x·β

1 + eβ0+x·β =
1

1 + e−(β0+x·β) (8.2)

We can then classify patients based on Equation 8.2, where they

are in class 1 (having ATC) if p ≥ .5, and in class 0 (not having

ATC) otherwise. While this technique is simple and implemented in

sklearn.linear model.LogisticRegression, it can only separate the

data if a separating hyperplane exists, meaning that the data must be linearly

separable. We can also see which variables are important to the classification

process by looking at which are more heavily weighted, if logistic regression

does a good job of classifying patients. We found that logistic regression was

not very successful at separating patients who had ATC from those that did not,

with logistic regression performing on par with with just classifying by the base

rate, as seen in Table 8.1. This poor performance is obvious when we exam-

ine the F1 scores, none of which exceed .2. The F1 score is the harmonic mean

of precision and recall, such that F1 =
2(precision·recall)
precision+recall , and as such incorporates

the true positive, false negative, false positive, and false negative rates. Another

downside of this technique is that it is incapable of dealing with time series data
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Window Width Base Rate Accuracy Train Accuracy Test F1 Score
30 16.9% 84.2% 79.4% .111
60 20.8% 83.6% 72.6% .109
120 21.9% 81.3% 76.0% .131

Table 8.1: Accuracy of logistic regression for predicting ATC in the MIMIC-III
dataset as a function of bin width. While the accuracy of the training and test
sets are far above the base rate, one can observe they are very close to 1-base
rate, which means if we simply predicted a patient’s likelihood of having ATC
at the first time point at the rate 1-base rate, we would perform nearly as well
as logistic regression.

of different lengths or in dealing with the time dimension of data, so we chose

to apply it to only the first time point.

Although logistic regression did not perform well on the MIMIC-III dataset,

we wanted to see if this technique could be successful on a dataset more focused

on trauma, such as ACIT. The ACIT dataset had another potential advantage-

it was already much smaller in terms of features, with fewer than 500 features

compared to several thousand in MIMIC. However, logistic regression also per-

formed poorly on this dataset, since the base rate was 91.0% (where base rate

is the percentage of patients without ATC), and the test accuracy was 91.6%, a

negligible improvement over the base rate. The F1 score was also poor, coming

in at an average of .566 using five fold cross validation. We also found it difficult

to reduce the dimensionality of the data while preserving its richness, with the

first two components principal component analysis only explaining 24% of the

variance.
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8.5 Classification via Support Vector Machine

Since logistic regression performed poorly, we turned to support vector ma-

chines. In their most basic forms, support vector machines seek to find a sepa-

rating hyperplane by solving

min
‖w‖

s.t. yi(w · (xi + b) ≥ 1
(8.3)

for all i = 1, 2, .., n over n different datapoints. Solving this optimization prob-

lem means that points are correctly classified: if yi = 1, things will be in the class

where w · xi + b ≥ 0 and if if yi = −1, things will be in the class where w · xi + b < 0,

where 1 and -1 represent the two classes. However, this form is only successful

if we can create a separating hyperplane. To deal with the possibility that there

is not a separating hyperplane, we can pose a slightly different problem:

min
w,ξ,b

1
2

w · w + C
n∑

i=1

ξi

s.t. yi(w · (xi + b) ≥ 1 − ξi

ξi ≥ 0

(8.4)

for all i = 1, 2, .., n. This formulation introduces the slack variables ξi, and C,

which controls the trade off between margin (how far away the points are from

the separating hyperplane) and the training error. The larger C is, the more

the model is penalized for having points on the wrong side of the hyperplane.

To move even further away from requiring linear separability, we can use a
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kernel1 (a mathematical function with some nice properties) and take advantage

of strong duality 2 to reformulate the problem yet again. Starting with the dual

form, we solve

max D(α) =

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

yiy jαiα j(xi · xj)

s.t.
n∑

i=1

yiαi = 0

0 ≤ αi ≤ C

(8.5)

where w =
∑n

i=1 αiyixi

Now, solving this problem only requires the evaluation of the dot product

between xi and xj, and we replace this dot product with the calculation of the

kernel between these vectors, K(xi, xj).

max D(α) =

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

yiy jαiα jK(xi, xj)

s.t.
n∑

i=1

yiαi = 0

0 ≤ αi ≤ C

(8.6)

The use of a kernel allows us to find other separating hypersurfaces other

than just a hyperplane. This is especially important for ATC, since it appears

that this data is not linearly separatable. We investigated classification of a sub-

sample of 500 of the MIMIC-III patients at the first timepoint using a support

vector machine with either a linear, polynomial, radial basis function, or sig-

1One definition of a kernel: Let X be a non-empty set. A function is a valid kernel in X if for
all n and all x1, ..., xn in X, it produces a Gram matrix that is symmetric and positive semi-definite

2This is a convex problem, so strong duality holds, so the duality gap will be zero.
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Dataset Linear Polynomial (degree 3) Radial Basis Function Sigmoid
MIMIC-III Bin Width 30 0.273 0.198 * 0.119
MIMIC-III Bin Width 60 0.387 0.267 0.153 0.037
MIMIC-III Bin Width 120 0.374 0.35 0.108 0.162
ACIT 0.526 0.571 * *

Table 8.2: The calculated F1 scores using a SVM on a sample of 500 MIMIC-III
patients or ACIT patients at the first timepoint with various kernel types. A *
denotes an ill-defined F1 score as no patients were predicted to be in one of the
classes. The F1 scores reported are an average over five fold cross validation.

moid kernel.

Overall, support vector machines, regardless of kernel or bin width used per-

formed poorly on classifying patients as ATC or non-ATC at the first timepoint

(Table 8.2). A SVM using a 3rd degree polynomial performed the best overall,

however, this performance comes with a F1 score of only .571, corresponding to

a recall of .62 and a precision of .6, neither of which are high enough to make

this type of prediction clinically useful. Overall, SVMs provided a slight boost

in performance over logistic regression, but not enough of a boost to serve as a

useful predictor or classifier.

8.6 Classification via Recurrent Neural Network

Recurrent neural networks (RNNs) offer promise when applied to health care,

as they have previously been successful in learning representations of sequen-

tial data, such as speech [124]. RNNs have demonstrated success when applied

to electronic health care records, such in DoctorAI, for the prediction of diag-

nosis and medication order, however, in this application, the time windows for

data binning are much wider than than what would be necessary in an ICU

setting, on the order of weeks or months versus hours [64]. A RNN outper-
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formed a number of machine learning techniques, including logistic regression

and a support vector machine at predicting heart failure at an eighteen month

time window [65]. On the time scale of days, long short-term memory (LSTM)

RNNs have shown promise in predicting sepsis as well as myocardial infarction

[165].

RNNs consist of nodes, arranged in layers, which pass information from

layer to layer through connections. Each node applies a non-linear function to

the inputs it receives and the weights that is aiming to learn before passing this

value to the next layer. A unit with a LSTM RNN traditionally has three gates:

the input gate, the output gate, and the forgetting gate [125]. Mathematically,

the forgetting gate calculates

ft = σ(W f · [ht−1, xt] + b f ) (8.7)

where xt is our feature vector at time t, ht−1 is the output at time t − 1, W f are the

weights associated with the forgetting unit, and b f is the bias associated with

the forgetting unit, and σ is the activation function of the forgetting gate. The

input gate calculates

it = σ(Wi · [ht−1, xt] + bi) (8.8)

C̃t = tanh(Wc · [ht−1, xt] + bc) (8.9)

These are combined to calculate Ct

Ct = ft ∗Ct−1 + it ∗ C̃t (8.10)

Finally, all of this information is passed to the output gate which calculates

ot = σ(Wo · [ht−1, xt] + bo) (8.11)

ht = ot ∗ tanh(Ct) (8.12)

which is fed into the next layer of the RNN.
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8.6.1 Prediction of Acute Traumatic Coagulopathy with Recur-

rent Neural Network

We applied a single-layer GRU for binary classification of ATC, as developed in

2014 by [63]. Mathematically, this unit calculates

zt = σ(WZ · [ht−1, xt]) (8.13)

rt = σ(Wr · [ht−1, xt]) (8.14)

h̃ = tanh(W · [rt ∗ ht−1, xt]) (8.15)

and then outputs

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t (8.16)

While this is similar to the ”vanilla” LSTM, the main difference is that the forget

and input gates have been combined into a single update gate.

Our grid search consisted of different methods both to prepare the data and

train the model. We tested different learning rates, including 1e-3, 1e-4, and

1e-5 and used the Adam optimizer. We tested hidden layer initialization using

either samples drawn from a normal distribution or zeros. Hidden layer sizes

tested included 32, 64, and 128 units. We used a linear classifier atop the final

hidden representation, with the binary prediction defined as sign(x). We used

soft margin loss as implemented in PyTorch. Batch normalization was used.

We supplemented our data with additional features so that the neural network

could become aware of patterns within the missingness of the data: we created

a vector of masks and time-since-last measurement as described by Che et al.

and concatenated this to the normalized features to define a feature vector.
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We found that throughout the parameters tested in the grid search, the in-

crease in accuracy over the baseline accuracy was poor, however, we found that

accuracy improved dramatically if we fed the weights of the last layer of our

neural network into a support vector machine and then used those weights to

predict into which class the patients fell. Since there was variation in the base

rate (what percentage of the patients had ATC during their stay) depending

on the method of data preparation used (depending on the minimum sequence

length required for training, some patients were excluded), we used accuracy

over base (AOB) as our metric to compare different metaparameters, where

AOB = (Accuracy of chained LSTM and SVM)-fraction of patients with ATC in the current dataset (8.17)

as well as the F1 score.

As of yet, the features being fed into our machine learning techniques came

from the test values, chart event values, input events, and drugs tables within

MIMIC-III, and we had done nothing with the text that was available in MIMIC

in the noteevents table. We needed a way to convert these notes into features

that could also be fed into a LSTM, so we turned to Latent Dirichlet Allocation

(LDA), a technique based on a generative model of a corpous (a group of docu-

ments). LDA assumes that each document within the corpus is a random mix-

ture of latent topics, where each topic is characterized by a distribution of words

[30]. With LDA, we can take a corpus, and learn the topics which compose it,

and then use the probabilities assigned to these topics as feature to describe a

document within the corpus.

To perform LDA on the free text in MIMIC-III, we once again binned the

notes based on when they were entered, and if there were multiple notes within

the same time window, they were concatenated together. We then lemmatized
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the words with WordNetLemmatizer, and added both bigrams and trigrams

that appeared at least 20 times within the corpus to our vocabulary, so that LDA

would capture terms like ”100 bpm” or ”70 mL saline”. We then filtered out

words that were either too rare (they appeared in fewer than 20 documents) or

overly common (appearing in more than 50% of documents). After creating tri-

and bi-grams, stand alone numbers were removed from the documents. Using

default parameters to perform LDA with 50 topics, and adding these 50 features

as our input to the chained LSTM-SVM boosted our accuracy, in the best case

to 90.3%, or an accuracy over base of .364. This result, in which adding text

data boosted the accuracy of a machine learning method is agreement with the

results of Weissman and colleagues, who found that adding text data boosted

their model’s discrimination [356].

In order to determine the best meta-parameters for our binary classification

system, we used SMAC, a tool which can optimize the parameters or hyper-

parameters of any algorithm [154]. SMAC, which stands for sequential model-

based algorithm configuration, which constructs a random forest model to pre-

dict algorithm performance as it searches through parameter space, and then

uses that constructed model to select promising parameters and then compares

each parameter configuration to the incumbent parameter set which has had

the best performance so far. We can then use CAVE to evaluate the importance

each of the meta-parameters to the error of the model [29, 184] using functional

ANOVA (fANOVA). fANOVA decomposes a function ŷ(θ) =
∑

U⊆N f̂U(θU) so that

we have decomposed ŷ : θi × ... × θn =⇒ R into additive components that only

depend on a subset of the N inputs [147], where ŷ can be the error of the model.

Through the calculation of the variance of ŷ across its domain θ, the importance

of each of the parameters and interactions between the parameters can be quan-

202



Figure 8.3: A low dimensional representation of the weights of the LSTM via
tSNEs which was fairly successful at separating the patients into two groups.
The red dots represent patients who developed ATC at some point within their
stay, the blue ones did not.

tified. So that we did not bias our fANOVA results by discarding configurations

which took a lot of memory to run, we limited the number of patients included

in each sample to 500 if more than 500 fit the selected metaparameters.

The metaparameter which contributes the most to the variance of the

chained LSTM-SVM model is the padding method used, which controls if the

sequences that met the minimum sequence length were either padded to the

length of the median of all the sequences or to the length of the longest sequence

selected, (Table 8.3). Of all of the options of additional information to add to the

model, the text features appear to contribute the most to the variation of the

model performance, followed by the use of the masks as in [57], and finally, the
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Metaparameter Importance
pad method 20.9561 +/- 3.356
use text features 4.5818 +/- 3.2456
min seq len 2.5183 +/- 1.508
lr 1.2108 +/- 1.0397
use masks 1.107 +/- 0.7551
hidden size 0.7842 +/- 0.8512
kernel 0.6223 +/- 1.3248
window width 0.6046 +/- 0.5643
rare feat thresh 0.4409 +/- 0.474
hidden init type 0.2637 +/- 0.3021
use drugs 0.2357 +/- 0.4659

Table 8.3: The estimated importance of the metaparameters in our chained
LSTM-SVM model, ± one standard deviation, over 1000 metaparameter com-
binations.

Metaparameter Best Value
hidden init type ZEROS
hidden size 47
kernel sigmoid
lr 0.00719031
pad method LONGEST
rare feat thresh 0.2875
use masks False
use text features True
min seq len 7
use drugs False
window width 120

Table 8.4: The best metaparameters found via SMAC for binary classification
of MIMIC-III patients using a chained LSTM-SVM via minimizing 1-F1 score,
resulting in an average F1 score of .894 over five fold cross validation.

use of information from the drugs portion of MIMIC-III. The fact that the drugs

information did not contribute very much to variance in the model performance

suggests that at the initial time point, the drugs that a patient has received do

not contribute very much to ATC, perhaps because they have not had time to

become distributed throughout the body or have not had sufficient time to alter

the state of the coagulation system.
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Although the use of drug information only contributed a small portion to the

variance of the performance of the chained LSTM-SVM model, they were not

included in the overall best performing model identified by SMAC (Table 8.4).

The widest bin width was also selected, which suggests that when just trying

to classify patients, how frequently measurements are collected does not play a

key role in producing accurate predictions. The rare feature threshold selected

is rather high-around .3, indicating that it is helpful to remove a large number

of features, and that if features are sparsely populated, they do not help boost

model performance very much. The separation between ATC and non-ATC

patients can been seen in Figure 8.3, where after performing PCA, most of the

patients in the ATC and non-ATC groups cluster together. In future analysis, it

may be interesting to more closely examine the patients which are misclassified

to determine in which dimensions they are outliers.

8.7 Sequence Prediction

While being able to predict which patients develop ATC throughout their hospi-

tal stay is a step in the right direction, it would be far more useful for clinicians

to be able to look at the patient’s chart up to that time point, and then be able

to predict if the patient was at high risk of developing ATC in the near future,

the next day, or in the next time step. This type of problem can be posed as a

sequence prediction problem-given a time series of features, can we predict not

only the next time step, but several time steps into the future?

Sequence prediction is a class of techniques that aim to do more than just

perform static classification, rather, they aim to use the time-series nature of
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Figure 8.4: A generic schematic of an encoder-decoder model, with the low di-
mensional representation shown in blue. The inputs are xi, and the outputs are
yi for timepoints 1, 2, ...T where T is the length of the sequence.

the data and the patterns that occur as a function of time to predict the future

of a variable, given its past and other related time-series measurements. Deep

Neural Networks (DNNs) can be joined together in an encoder-decoder fash-

ion (where one DNN performs the encoding step, and the other performs the

decoding step) to perform machine translation, and this set-up allows for the

production of a low dimensional representation of the input data, which is po-

tentially human understandable [324]. We modelled our sequence prediction

encoder-decoder after one of the most famous architectures-seq2seq, in which

LSTMs are used as both the encoder and decoder models [324]. In our case, we

fed in the features extracted from MIMIC-III that describe patients and output a

sequence of INR values, which we could use to determine if a patient was likely

to have ATC at a given timepoint.

Looking at the best metaparmeter results found via SMAC (Table 8.5), it is

not surprising to note that our model had the best performance when it was
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Parameter Best Value
hidden size 318
lambda r 9.66081e-07
lr 0.0056
min seq len 6
num steps to predict 2
pad method MEDIAN
rare feat thresh 0.167
use drugs false
use masks false
use text features false
window width 30
x fill method nominal

Table 8.5: Best metaparameters found after running SMAC for 908 configura-
tions.

Parameter Estimated Importance via fANOVA
num steps to predict 23.85 +/- 7.40
min seq len 24.10 +/- 7.69
use drugs 00.02 +/- 0.07
use masks 00.01 +/- 0.05
lr 00.90 +/- 1.80
window width 00.17 +/- 0.40
x fill method 00.13 +/- 0.26
rare feat thresh 00.36 +/- 0.63
lambda r 00.13 +/- 0.22

Table 8.6: Single metaparameter importance as estimated by fAONVA via
CAVE for sequence prediction after running SMAC on 908 model configura-
tions with a mean squared error of .26.

only asked to predict only two time steps forward in the future. It is interesting

to note that the model performed best with the narrowest bin size, 30 minutes.

This is possibly because most of these bins would have had a unique measure-

ment in them, unlike the bin width of 120 minutes, many of which would have

in many cases the average of more than one measurement in it. It may be worth

exploring to see if model performance would be even better with narrower bins.

The rare feature threshold found to be the best was around 18%, a fairly low bar,
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Pairwise Parameters Estimated Importance via fANOVA
min seq len & num steps to predict 29.3379 +/- 7.837
num steps to predict & lr 1.0465 +/- 1.5091
min seq len & lr 1.0182 +/- 1.0597
hidden size & lr 0.8743 +/- 3.3682
min seq len & hidden size 0.7967 +/- 0.9077
num steps to predict & hidden size 0.6171 +/- 0.9414
min seq len & rare feat thresh 0.447 +/- 0.8691
num steps to predict & rare feat thresh 0.3524 +/- 0.764
hidden size & rare feat thresh 0.1576 +/- 0.3914
lr & rare feat thresh 0.0866 +/- 0.188

Table 8.7: Pairwise metaparameter importance as estimated by fAONVA for
sequence prediction via CAVE after running SMAC.

meaning that features were included if they were missing in about 82% of pa-

tients. It is also interesting to note in this case that adding the text features didn’t

improve the accuracy of the sequence prediction, possibly because they are not

entered on the same timescale as ATC. We believe this is one of the first cases

to investigate if adding text based features boosted sequence prediction perfor-

mance in an emergency medical setting, in which the time scale is in hours, not

weeks or months.

From our fANOVA results (Table 8.6), it appears that the level that the rare

feature threshold is set at plays a large role in the variance of our predictive

model. A higher rare feature threshold removes more features from our X array,

as it requires that this feature be present in at least this percentage of cases, so

by changing the rare feature threshold, features that only have measurements

for a few patients are discarded. This tuning appears to be important in our

sequence to sequence model, as does the learning rate, the rate at which the

parameters of the model are updated during training. This parameter can be

thought of as analogous to the temperature in simulated annealing or the step

size in Euler integration: if it is too small, you may not get anywhere within a
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reasonable amount of time, but if it is too large, you may skip over possibly good

areas of parameter space, and therefore, it requires careful tuning. Interestingly,

it appears that the window width that we used to bin the patient data had a

minimal effect on the variance of the model, however, the window width behind

the scenes determines the minimum sequence length that can be produced for

a patient, so it is difficult to untangle this effect.

If we examine the pairwise metaparameter contributions to the variance of

the model (Table 8.7), we can see that together, the minimum sequence length

and the number of steps into the future to predict contribute a good deal. Both

of these parameters are indirectly tied to how long a patient’s sequence is, which

is a function of how wide the bins are, which further highlights that perhaps the

effect of bin width should be investigated in a synthetic dataset, where sequence

length is held constant and bin widths are varied with different frequency data

to tease out if there is an ideal bin width.

In the ideal case, clinicians would be able to predict who is at high risk of de-

veloping ATC from measurements that are already taken commonly, frequently,

and non-invasively from patients in an ICU setting, such as blood pressure and

oxygen saturation. Right now, we pulled the majority of the features used in

our model directly from the events that were charted for a patient in the ICU,

but if we were to focus on readily available measurements which are taken at

high frequency (every minute or more frequently), we may want to create arti-

ficial features, such as the rate of change of oxygen saturation over an interval,

or the absolute difference between the maximum and minimum mean arterial

pressure measured within an interval, as these constructed features may con-

tain additional information relevant to the progression of ATC. Unfortunately,
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of our approximately 3,000 trauma patients with an INR measurement, fewer

than 40 of them have matched waveform data available in the MIMIC-III Wave-

form Database Matched Subset [120], giving us too small of a sample to peruse

this question, however, if more trauma patients made it into the matched co-

hort, this would be an avenue worth perusing. In future work in predicting

acute traumatic coagulopathy, practitioners must take care to include a repre-

sentative sample of patients while training their classifiers or predictors, as by

removing patients with missing measurements, they are likely removing the

more severely injured patients who died soon after admission, perhaps of ATC

or related complications, and not including these patients would result in a bi-

ased classifier that would be unlikely to perform well if applied in real time in

an emergency care setting.
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CHAPTER 9

CONCLUSIONS

This work presents the development of a multiscale model of the human

body which can be applied to the investigation of ATC as well as data-science

prospective on the topic. The multiscale model consists of a validated model

of coagulation and fibrinolysis, which is then embedded into a PBPK model,

which was validated against both human and rhesus macaque data. This mul-

tiscale model allowed us to investigate a number of topics that are currently

debated in the field of trauma, among which, the ideal resuscitation fluid, the

impact of hypothermia and acidosis, and the impact of TXA on a trauma pa-

tient. While we only investigated one drug, our model could easily be extended

to include any coagulation altering drug with known kinetics and distribution

patterns.

While much work has been done in describing the molecular interactions

between proteins and molecules involved in coagulation and fibrinolysis and

animal models have been created to simulate ATC, very few models have been

created to link the two levels, a shortcoming that this work aims to address. The

human body is a complex system, and in formulating a mathematical model of

it, we have considerably simplified it and potentially removed details that may

be later revealed to play key roles in the development and resolution of ATC.

Within this model, there is no definition of fatality, and so long as the volume of

none of the compartments goes to zero, the simulation will continue, regardless

if in reality, the patient would have died due to shock or other causes. Transcap-

illary refill is assumed to occur at a constant rate, when in reality, this rate will

be effected by the osmality of the given resuscitation fluids. Trauma is known
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to raise plasma levels of epinephrine and norepinephrine [368], which lead to

vasoconstriction [235], however, our model does not include the vasconstrictive

effects of these chemicals nor any others that are known to alter vascular tone.

While platelets are included within the coagulation model, we have not consid-

ered that platelets may decline in effectiveness due to platelet exhaustion [18].

Our model does not take into account any of the metabolic changes that may be

occurring at either the cellular or organism level following trauma, which may

alter organ perfusion or heart rate. We have not modelled any of the complex

signalling that may occur after trauma which leads to the change in produc-

tion of coagulation related proteins, rather, they have just been assigned a lag

time and an acute synthesis rate. I believe that an understanding of how these

feedback systems work will greatly augment our understanding of the devel-

opment of ATC and perhaps allow us to identify which patients are at high risk

of developing it before injury occurs.

At the present, the term ATC refers to any clinically observed impairment of

the coagulation system following injury, but since this system has many points

of feedback, some redundant mechanisms, and many points of cross-talk with

other biological cascades, I believe that there are many ways in which the coag-

ulation system can break, many of which then fall under the diagnosis of ATC.

If, for instance, a patient has both reduced levels of a procoagulant protein and

an anticoagulant protein, due to genetic variation, they may live their entire life

unaware of this due to the competing effects of these two alterations. However,

in the case of injury, if a point of the feedback system which instructs the liver to

produce more of a certain factor is broken or signaling goes awry within the en-

dothelium, resulting in the dumping of large amounts of tPA hours after injury,

both of these signal transduction errors may result in ATC, although for differ-
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ent reasons. We are just beginning to suss out some of the different dysfunc-

tional states of the coagulation system that may exist through the progression

of ATC, from hypofibrinolysis to fibrinolysis shutdown to hyperfibrinolysis, but

our understanding of what leads to these states in some patients is very shallow

[224]. While these signalling pathways may be difficult to untangle in humans,

chips with several organoids on them could allow investigation into the key

players of these pathways in a non-invasive and easily tunable manner. Using

organoids grown from different animals would potentially allow us to deter-

mine if these signalling pathways are common to all mammals, or if they vary

from species to species, which would inform future work using animal models

of traumatic injury. In-vitro models of trauma exist [88, 89], so as a first step

to building the gene regulatory network of trauma, we can use these existing

model systems along with RNA-seq to construct a preliminary map of what is

occurring in one tissue type [353].

Our work highlighted that efficacy of whole blood over component ther-

apy and showed that a reduction in reaction rates, whether due to hypother-

mia, acidosis, or other factors reduces the clot formation enhancing effects of

whole blood, however, we did not determine what the optimal dosing of com-

ponents would be, if whole blood was unavailable. These simulations could

be strengthened with data showing exactly how each coagulation factor’s ac-

tivity is effected by both a reduction in temperature, a drop in pH, and both of

these perturbations, both in in plasma (no platelets) and in whole blood, where

platelets may also be effected by these changes. However, it appears that mini-

mizing the amount of non-coagulation active fluid (fillers) may be a good rule of

thumb to preserve clotting capability. It may prove informative to explore with

this model if there are any cases where it may be better to give no resuscitation
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fluid rather than component therapy owing to its dilutional effects. These sim-

ulations could guide the practice of permissive hypotension. While most hos-

pitals have a massive transfusion protocol in place, these protocols vary from

hospital to hospital [334], so our model could be use to compare the outcomes

of differing massive transfusion protocols and could be used to asses the cost-

benefit ratio of changes to an already existing massive transfusion protocol or

as a first step in demonstrating non-inferiority.

We simulated the effects of one drug that is known to interact with

fibrinolysis-tranexamic acid, however, there are a number of coagulation inter-

facing drugs available on the market, as well as recombinant coagulation factors

which are traditionally proscribed for treating hemophilia, but which could per-

haps be used to alter the progression of ATC [326]. Our PBPK model could be

expanded to simulate the use of these recombinant coagulation factors or to sim-

ulate drug interactions before clinical trials were undertaken to estimate effect

sizes and recruit an appropriately sized population in order to get statistically

sound outcomes.

In summary, trauma is a significant perturbation to a number of the body’s

systems, including the coagulation system. If a person, either due to genetic

or environmental factors, is robust to this perturbation, they will not go on

to develop ATC, and will recover from their injuries. If a person’s coagula-

tion/immune systems are susceptible to this perturbation, they will go on to

develop ATC. The shape of this perturbation may determine which point of con-

trol fails leading to the development of ATC, as their are many possibilities for

uncorrected dysregulation which could lead to ATC, in various forms: dissemi-

nated intravascular coagulation, hyperfibrinolysis, or fibrinolysis shutdown, or
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other modalities which have yet to be characterized.

The data science portion of this work revealed that ATC can be discerned in

trauma patients without looking at traditional coagulation assays through the

application of machine learning. We found that we were better able to sepa-

rate patients with ATC from patients who never developed ATC during their

hospital stay with an accuracy of greater than ninety percent using a LSTM as

an input to a SVM, and that the addition of features constructed from the free

text data boosted our accuracy. Our text features were constructed using latent

dirchalet allocation over 50 topics, however, it is possible that accuracy could

be boosted even further through the use of another technique to construct fea-

tures from the text, such as ELMo [253], ULMFiT [149], or BERT [86]. It might

prove interesting to try to predict ATC just using text based data and make a

comparison between all of these natural language processing techniques, as a

surprising amount of numerical information about the patient makes it into the

doctor’s notes.

Although logistic regression is a powerful technique for separating data into

groups, it failed at separating patients with ATC from those without ATC, with

two different datasets, which indicates that this data is not linearly separable

nor separable by a hyperplane, and that non-linear techniques will probably be

more successful in the future, such as using a support vector machine with a

kernel. This lack of linear separability partially explains why the prediction of

ATC is a difficult problem.

We found that using a neural network in combination with a support vec-

tor machine is effective in separating patients who never develop ATC from

those do. Its possible that this combination of techniques is successful because
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the neural network highlights which features are useful, and then the support

vector machine can make use of these futures to separate the patients into two

groups. We also had some success with the sequence prediction problem, but

much validation could be needed before this type of method could be deployed

in an emergency room setting.

Although we did not explore the direct application of machine learning to

discovering the mechanisms behind ATC, it might prove illuminating to use a

human understandable technique to see what features this technique finds im-

portant. One possible way of approaching this problem would be to try to back

calculate which factor concentrations lead to a ROTEM curve. If this approach

is successful, it would allow clinicians to quickly identify how a patient’s coag-

ulation system has misfired and treat that specific mode of dysfunction to treat

ATC.

To conclude, it is my belief that ATC is a manifestation of one or more ways

that the coagulation system can misfire following a large perturbation, such as

injury. Treatments that are broad (giving blood or cyroprecipitate) are likely to

be successful, as they contain a large amount of several coagulation related pro-

teins, allowing for treatment of many possible dysfunctions. Machine learning,

if applied carefully, shows potential in separating patients with ATC from those

without, and could potentially allow for faster diagnosis and treatment.
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CHAPTER 10

APPENDIX

Additional file 10.1-(Data fits for CHO metabolism problem)
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Figure 10.1: (Data fits for CHO metabolism problem) Pseudo-experimental
data (red x) vs. optimal solution obtained using DOPS (solid blue lines) for
the 44 observed states. X axis: time [s]; Y axis: metabolite concentrations [mM].
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Additional file 10.2-(Data fits for S.cerevisiae metabolism prob-

lem)
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Figure 10.2: (Data fits for S.cerevisiae metabolism problem) Pseudo-
experimental data (red x) vs. optimal solution obtained using DOPS (solid blue
lines) for the 13 observed states. X axis: time [s]; Y axis: metabolite concentra-
tions [mM].
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Additional file 10.3-(Comparison of states and parameters)

  

a b

c d

Figure 10.3: (A) Difference between nominal and optimal parameters for
genome wide kinetic model of S.cerevisiae with 1759 unknown parameters us-
ing DOPS. (B) Difference between experimental (measured) data and data sim-
ulated with optimal parameters for genome wide kinetic model of S.cerevisiae
with 1759 unknown parameters using DOPS. (C) Difference between nomi-
nal and optimal parameters for metabolic model of Chinese Hamster Ovary
Cells (CHO) cells with 117 parameters using DOPS. (D) Difference between ex-
perimental (measured) data and data simulated with optimal parameters for
metabolic model of Chinese Hamster Ovary Cells (CHO) cells with 117 param-
eters using DOPS.
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Additional file 10.4-(Time Comparison)

  

Figure 10.4: Comparison of the runtime of the different optimization methods
used for comparison with T = 25 trials per method. All methods used take
about the same amount of time to perform 4,000 function evaluations on the
coagulation problem, as this problem is very stiff, so the majority of the time is
spent solving the system of differential equations.
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Additional file 10.5-(Convergence Curves)
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Figure 10.5: Mean convergence curves for different metaheuristics for (a) Ack-
ley 300 dimensional and (b) Rastrigin 300 dimensional with T = 25 trials per
method. DOPS not only finds a better solution than any other technique, it
finds it with fewer function evaluations

Additional file 10.6-(Comparison of DOPS to ESS)
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Figure 10.6: Mean convergence curves for DOPS and ESS for the (a) CHO model
and (b) the coagulation model with T = 25 trials per method.

Additional file 10.7-(Comparison of functional values)
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Figure 10.7: Variability analysis in best objective value for T = 25 trials. (a)
Ackley 300 dimensional (b) Rastrigin 300 dimensional (c) CHO model (d) coag-
ulation.

Additional file 10.8-(Dispersion Curves)
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Figure 10.8: Dispersion curves for DOPS on (a) CHO model (b) coagulation with
T = 25 trials per problem .
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[133] M Hellgren and M Blombäck. Studies on blood coagulation and fibrinol-
ysis in pregnancy, during delivery and in the puerperium. Gynecologic and
obstetric investigation, 12(3):141–154, 1981.

[134] Margareta Hellgren. Hemostasis during normal pregnancy and puer-
perium. In Seminars in thrombosis and hemostasis, volume 29, pages 125–
130. Copyright c© 2003 by Thieme Medical Publishers, Inc., 333 Seventh
Avenue, New . . . , 2003.

[135] JD Herman. Salib: Sensitivity analysis library in python (numpy). con-
tains sobol, morris, fractional factorial and fast methods. available online:
https://github.com/jdherman/salib.

[136] Jon Herman and Will Usher. Salib: an open-source python library for
sensitivity analysis. The Journal of Open Source Software, 2(9), 2017.

239



[137] D L Higgins and K G Mann. The interaction of bovine factor v and factor
v-derived peptides with phospholipid vesicles. J Biol Chem, 258(10):6503–
8, May 1983.

[138] Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L. Lee, Radu
Serban, Dan E. Shumaker, and Carol S. Woodward. Sundials: Suite of
nonlinear and differential/algebraic equation solvers. ACM Trans. Math.
Softw., 31(3):363–396, September 2005.

[139] Hirohumi Hirayama, Kiyono Yoshii, Hidetomo Ojima, Norikazu Kawai,
Shintaro Gotoh, and Yuzo Fukuyama. Linear systems analysis of activat-
ing processes of complement system as a defense mechanism. Biosystems,
39(3):173–185, 1996.

[140] Asher Hirshberg, Mark Dugas, Eugenio I Banez, Bradford G Scott,
Matthew J Wall Jr, and Kenneth L Mattox. Minimizing dilutional coag-
ulopathy in exsanguinating hemorrhage: a computer simulation. Journal
of Trauma and Acute Care Surgery, 54(3):454–463, 2003.

[141] Anthony MH Ho, Peter W Dion, Claudia AY Cheng, Manoj K Karmakar,
Gregory Cheng, Zhiyong Peng, and Yu Wai Ng. A mathematical model
for fresh frozen plasma transfusion strategies during major trauma resus-
citation with ongoing hemorrhage. Canadian journal of surgery, 48(6):470,
2005.

[142] Gerald Hochleitner, Ken Sutor, Caroline Levett, Harald Leyser,
Christoph J Schlimp, and Cristina Solomon. Revisiting hartert’s 1962 cal-
culation of the physical constants of thrombelastography. Clinical and Ap-
plied Thrombosis/Hemostasis, 23(3):201–210, 2017.

[143] Matthew F Hockin, Kenneth C Jones, Stephen J Everse, and Kenneth G
Mann. A model for the stoichiometric regulation of blood coagulation.
Journal of Biological Chemistry, 277(21):18322–18333, 2002.

[144] John B Holcomb, Deborah J Del Junco, Erin E Fox, Charles E Wade,
Mitchell J Cohen, Martin A Schreiber, Louis H Alarcon, Yu Bai, Karen J
Brasel, Eileen M Bulger, et al. The prospective, observational, multicenter,
major trauma transfusion (prommtt) study: comparative effectiveness of
a time-varying treatment with competing risks. JAMA surgery, 148(2):127–
136, 2013.

[145] Leroy Hood, James R Heath, Michael E Phelps, and Biaoyang Lin. Sys-

240



tems biology and new technologies enable predictive and preventative
medicine. Science, 306(5696):640–643, 2004.

[146] Robert Hooke and To A Jeeves. “direct search”solution of numerical and
statistical problems. Journal of the ACM (JACM), 8(2):212–229, 1961.

[147] Holger Hoos and Kevin Leyton-Brown. An efficient approach for as-
sessing hyperparameter importance. In International conference on machine
learning, pages 754–762, 2014.

[148] Reiner Horst and Hoang Tuy. Global optimization: Deterministic approaches.
Springer Science & Business Media, 2013.

[149] Jeremy Howard and Sebastian Ruder. Universal language model fine-
tuning for text classification. arXiv preprint arXiv:1801.06146, 2018.

[150] PW Howie, CRM Prentice, and GP McNicol. Coagulation, fibrinolysis and
platelet function in pre-eclampsia, essential hypertension and placental
insufficiency. BJOG: An International Journal of Obstetrics & Gynaecology,
78(11):992–1003, 1971.

[151] Marc Hoylaerts, Henri Roger Lijnen, and Désiré Collen. Studies on the
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[296] Herbert Schöchl, Ulrike Nienaber, Georg Hofer, Wolfgang Voelckel,
Csilla Jambor, Gisela Scharbert, Sibylle Kozek-Langenecker, and Cristina
Solomon. Goal-directed coagulation management of major trauma pa-
tients using thromboelastometry (rotem R©)-guided administration of fib-
rinogen concentrate and prothrombin complex concentrate. Critical care,
14(2):R55, 2010.

[297] Y Schrauwen, REM De Vries, T Kooistra, and JJ Emeis. Acute release of
tissue-type plasminogen activator (t-pa) from the endothelium; regula-
tory mechanisms and therapeutic target. Fibrinolysis, 8:8–12, 1994.

[298] Hans-Wilhelm Schwaeble, Cordula Margaret Stover, Clark E Tedford,
James B Parent, and Teizo Fujita. Methods for treating conditions associ-
ated with masp-2 dependent complement activation. US Patent 7,919,094,
April 2011.

[299] Jansen N Seheult, Michelle N Stram, Jason Sperry, Philip C Spinella, Dar-
rell J Triulzi, and Mark H Yazer. In silico model of the dilutional effects of
conventional component therapy versus whole blood in the management
of massively bleeding adult trauma patients. Transfusion, 2018.

[300] Margrethe H Serres, Shuba Gopal, Laila A Nahum, Ping Liang, Terry
Gaasterland, and Monica Riley. A functional update of the escherichia
coli k-12 genome. Genome biology, 2(9):research0035–1, 2001.

[301] LT Sharief, AS Lawrie, IJ Mackie, C Smith, F Peyvandi, and RA Kadir.
Changes in factor xiii level during pregnancy. Haemophilia, 20(2):e144–
e148, 2014.

[302] Liang Shen, Sheida Tabaie, and Natalia Ivascu. Viscoelastic testing inside
and beyond the operating room. Journal of thoracic disease, 9(Suppl 4):S299,
2017.

[303] Forest R Sheppard, Thomas A Mitchell, Andrew P Cap, Leasha J Schaub,
Antoni R Macko, and Jacob J Glaser. Prehospital whole blood resusci-
tation prevents coagulopathy and improves acid–base status at hospital

256



arrival in a nonhuman primate hemorrhagic shock model. Transfusion,
2019.

[304] Forest R Sheppard, Thomas A Mitchell, Antoni R Macko, Darren M Fryer,
Leasha J Schaub, Kassandra M Ozuna, and Jacob J Glaser. Whole blood
and hextend: Bookends of modern tactical combat casualty care field re-
suscitation and starting point for multifunctional resuscitation fluid de-
velopment. Journal of Trauma and Acute Care Surgery, 85(1S):S33–S38, 2018.

[305] Yuhui Shi and Russell C Eberhart. Empirical study of particle swarm op-
timization. In Proceedings of the 1999 Congress on Evolutionary Computation,
1999. CEC 99., volume 3, page 1950, 1999.

[306] ML Shwartz, SV Pizzo, RL Hill, and PA McKee. Human factor xiii from
plasma and platelets. J. Biol. Chem, 248:1395–1407, 1973.

[307] Baha Sibai, Gus Dekker, and Michael Kupferminc. Pre-eclampsia. The
Lancet, 365(9461):785–799, 2005.

[308] MMCG Silva, C Thelwell, SC Williams, and C Longstaff. Regulation of
fibrinolysis by c-terminal lysines operates through plasminogen and plas-
min but not tissue-type plasminogen activator. Journal of Thrombosis and
Haemostasis, 10(11):2354–2360, 2012.

[309] SH Simpson, G Menezes, SN Mardel, S Kelly, R White, and T Beattie. A
computer model of major haemorrhage and resuscitation. Medical engi-
neering & physics, 18(4):339–343, 1996.

[310] JG Sissons, J Liebowitch, N Amos, and DK Peters. Metabolism of the
fifth component of complement, and its relation to metabolism of the
third component, in patients with complement activation. J Clin Invest.,
59(4):704, 1977.

[311] Kieran Smallbone and Pedro Mendes. Large-scale metabolic models:
From reconstruction to differential equations. Industrial Biotechnology,
9(4):179–184, 2013.

[312] I.M Sobol. Global sensitivity indices for nonlinear mathematical models
and their Monte Carlo estimates. Math Comput Simulat, 55:271 – 280, 2001.

[313] Justin Sobrino and Shahid Shafi. Timing and causes of death after injuries.

257



In Baylor University Medical Center Proceedings, volume 26, pages 120–123.
Taylor & Francis, 2013.

[314] Cristina Solomon, Marco Ranucci, Gerald Hochleitner, Herbert Schöchl,
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