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In the United States, trauma is the leading cause of death for those under the age
of 45, and the fourth leading cause of death for all Americans [121]. In the world
as a whole, according to the World Health Organization, more than 1.3 billion
people die from road traffic related injuries. Of people who are severely injured,
approximately 50% live long enough to receive medical treatment, however,
about a quarter of them will go on to develop acute traumatic coagulopathy
(ATC), a condition which puts these people at four-fold higher risk of death.
Acute traumatic coagulopathy arises when the coagulation and intrinsic im-
mune responses misfire. This work seeks to understand how such dysfunction
can occur. To understand ATC, we have built a small model of coagulation and
tibrinolysis, and then embedded it into a physiologically based pharmacoki-
netic model of the human body. We have also explored the prediction of ATC
from a data science prospective, using two emergency room datasets. Our mod-
eling highlighted the importance of blood as a resuscitation fluid, a possible
mechanism for tranexamic acid efficacy, and addressed how clotting capacity
may be affected by acidosis and hypothermia, two common complications of
injury. Our work to predict ATC from emergency room data demonstrated that
logistic regression performs poorly on the problem, however, a recurrent neu-
ral network joined to a support vector machine may perform well at separating

non-ATC from ATC patients.
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Fibrinolysis model training and prediction. A Model perfor-
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surements. B Top: Performance of the thrombin generation por-

tion of the model. Experimental measurements are shown in the
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tormance and the shaded gray represents the 95% confidence in-

terval for N=266 simulations. Bottom: Performance of the fibrin
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P.1  The evolution of of the state of the coagulation system through-
out pregnancy in one patient. The more the solid the lines, the
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p.2

Thrombin generation predictions for the test, train, and validation sets. The experimentally measured thrombin trajectories are

shown in the heavy lines, the average trajectory over 20 estimated parameters sets is shown in the thin line with a shaded 95%

confidence interval. The dashed lines represent the trajectories from each parameter set. Thrombin generation trajectories without

additional thrombodoulin are shown in blue, thrombin generation trajectories with supplemental thrombomodulin are shown in

green. (a) and (c) represent the training data (5 patients, timepoints 1 and 3. (c) represents the test set, the same five patients used

for training, at timepoint 2. (d) Validation of thrombin generation portion of the model at timepoint 1 in 5 ditferent patients (e)
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CHAPTER 1
INTRODUCTION

In the United States, trauma is the leading cause of death for those under the age
of 45, and the fourth leading cause of death for all Americans [121]. The costs of
trauma are high, costing approximately $355 billion dollars, between the costs
of treatment and lost productivity [110]. The number of deaths due to traumatic
injury is rising in the United States with the number of trauma deaths increas-
ing 22.8% from 2000 to 2010 (during a period which the US population only
increased by 9.7%) [261]. Furthermore, traumatic injury is the leading cause of
years of life lost in the United States with an estimated 3109 years of life lost per
100,000 members of the population [126]. On a global scale, the World Health
Organization predicts that the global burden of deaths due to conflict, road in-

jury, and homicide will increase at least until 2060 [205]].

Of those suffering traumatic injury, 50-60% of those die immediately after
injury, but the remaining 40-50% of deaths occur following arrival at a hospi-
tal with potentially treatable injuries [313]]. Of these patients who survive long
enough to be transported to a hospital, about a third deaths were due to hemor-
rhage, a potentially treatable and survivable condition [335]. Numerous stud-
ies have shown that patients who present with acute traumatic coagulopathy
(ATC), a dysfunctional coagulation system, upon admission, are less likely to
survive [196, 38]. While a universal test ATC has yet to be developed, it can be
recognized from a prolonged prothrombin time or activated partial thrombo-

plastin time upon hospital admission [49].



1.1 Coagulation and Fibrinolysis

1.1.1 Coagulation

The coagulation system, when functioning properly, holds two processes in a
delicate balance-the production of enzymes that build clots and those that break
them down. Following traumatic injury, the endothelium is damaged, expos-
ing tissue factor, a transmembrane protein that is mainly expressed within the
hemostatic envelope. When tissue factor becomes exposed to circulating blood
it is activated [106]. Tissue factor serves as the initiator to the coagulation cas-
cade, which produces thrombin, which converts fibrinogen to its active form,
fibrin, which can polymerize into a clot [198]. This clot is then broken down
through a process called fibrinolysis, in which tPA (tissue plasminogen activa-
tor) and uPA (urokinase plasminogen activator) convert plasminogen into its
active form, plasmin, which degrades the fibrin containing clot [53]. In greater
detail, tissue factor binds to FVIla, forming the “trigger” complex, which then
converts FX into its active form, FXa. FXa can then convert prothromin (FII)
to its active form (FIla). Thrombin is a key enzyme in the coagulation cascade,
as it can activate FVIII, FXI, FX, platelets, as well as itself, leading to a posi-
tive feedback loop where a very small amount of initial thrombin can lead to a
large amount of thrombin generation. The thrombin generation process has a
built-in negative feedback-thrombin complexes with thrombomodulin, and this
complex activates protein C, which then inhibits the activities of FVa and FVIIla
[101]. Antithrombin (ATIII) inhibits the coagulation cascade at several points,
including the conversion of prothombin to thrombin, as well as the formation

of the prothrombinase complex (FV-FX)a [87]. The overall coagulation cascade



is quite complex, with multiple positive and negative feedback loops, some of

which are shown in Figure

Tissue factor (TF) is exposed at the injury site.
TF binds FVlla to initiate extrinsic coagulation

Unactivated Activated
Platelet Platelet

Figure 1.1: A schematic of the coagulation cascade. Red lines denote inhibition,
dashed lines indicate catalysis, and black lines represent reactions occurring.
Inactive zymogens are shown in gray. Image taken from [283].

In the absence of injury, endothelial cells in healthy vasculature oppose clot-
ting through the secretion of plasminogen activators and through the produc-
tion of thrombomodulin, a glycoprotein which promotes the activation of Pro-

tein C, an a protein which impedes coagulation [367].

Coagulation is a complex biochemical process, which mathematical models
can help us to understand and to identify key therapeutic targets. A number of
kinetic models exist that describe the thrombin generation and degradation pro-

cess. One of the first models considered coagulation as a set of first and second



order reactions, each of which amplified the previous one, and completely ne-
glected any negative feedback [180]. Martonrana and Moro improved upon this
model by adding negative feedback terms, but this model almost completely
neglects the biochemistry of coagulation and is completely linear [203]. Khanin
and Senov developed the first non linear model of coagulation, containing five
differential equations, and examined its fixed points to conclude that if the sys-
tem was not sufficiently stimulated, no fibrin would be produced [170]. One
of the best known models, the the Hockin-Mann model consists of 34 differen-
tial equations and 42 rate constants [143]]. One of the largest and most complex
models of coagulation was developed by the Varner lab, containing 92 differ-
ential equations [193]. However, if we wish to embed a thrombin generation
model inside a model that captures the physiology of traumatic injury, it must
be small enough to solve quickly. To that aim, the Varner lab has developed a
reduced order model of thrombin generation that only contains five differential

equations which mostly captured the dynamics of thrombin generation [285].

1.1.2 Fibrinolysis

Fibrinolysis refers to the process of breaking down a clot, of which a key com-
ponent is a protein named fibrin. The thrombin produced by the coagulation
cascade converts fibrinogen into fibrin which then polymerizes into a clot with
the assistance of FXIIIa. The clot is later broken down by plasmin, which can be
activated by either tPA or uPA, enzymes with a short half-lives that can be inhib-
ited by plasminogen activator inhibitor-1 (PAI-1) [54]. Thrombin can help sta-
bilize the clot through its activation of thrombin activated fibrinolysis inhibitor

(TAFI), which removes a C-terminal lysine and arginines from fibrin, reducing
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Figure 1.2: A schematic of the fibrinolysis. Red lines denote inhibition.
the possible number of plasmin binding sites.

Fibrinolysis and fibrin generation has been modeled at a variety of scales.
Longstaff and Thelwell proposed a very simple model for fibrinolysis, in which
the process was represented as two steps, with plasminogen being converted to
plasmin by tPA, and fibrin degraded by plasmin [191]. While computationally
easy to evaluate, this model greatly oversimplifies the process, and completely
neglects the role of PAI-1. Fibrinolysis has been previous modeled in great de-
tail through a 3D stochastic multi-scale model which predicted difference in
lysis speeds based on clot morphology, but this model focuses only clot lysis
rather than formation and degradation [15]. It has also been modeled as a mass-
spring system to expore the effect of tension on lysis, revealing that with higher
tension, fewer fibers (a bundle of polymerized fibrinogen) need to be cleaved
to remove fibrin from a region [73]. Reifman et al modeled fibrin generation
with mass action kinetics using 80 ODEs to investigate the efficacy of different

prothrombin complex concentrates [218]. They used an interesting method to



model the complex kinetics of TAFI inhibiting fibrinolysis: they empirically fit
a curve to the clot lysis time as a function of TAFI concentration, and then cor-
respondingly reduced the t-PA effective concentration to account for the effects
of TAFI. While this model decently predicted the final fibrin levels, it did a poor

job of capturing the shape of the fibrin generation curves.

1.2 Complement

Complement, which takes it name from the fact it appears to “complement” the
activity of antibodies in killing bacteria, is a component of the innate immune
response, which can be initiated in one of three known ways [351]. The classical
pathway initiates complement through the binding of the C1 complex to anti-
body bound to antigens on the surface of bacteria, which then cleaves C4 and C2
so that their fragments can form a C3 convertase, C4bC2a [288]. The alternative
pathway does not require the binding of antibodies to pathogens to be triggered,
rather, it is triggered through a process called “tickover”, where the thioester
inside of C3 slowly undergoes hydrolysis, resulting in a functionally active C3
molecule [232]. The lectin pathway initiates when a mannose binding lectin
binds to lectin on the surface of a bacterial cell, along with mannose-binding
lectin—associated proteases 1 and 2, and this assemble acts as a C3 covertase,
cleaving C3 into its active fragments [351]. Once C3b has been formed by any of
these pathways, it acts as a C5 convertase, cleaving C5 into a and b fragments,
of which C5b will assemble along with other complement associated proteins
(C6, C7, C8, and C7) into the membrane attack complex, the final output of the
complement system [231]. The membrane attack complex is believed to form a

large 8 barrel pore, leading to cell death through osmotic flux [23]].



The kinetic modeling of complement has not explored in as much detail as
that of thrombin generation owing to the dearth of time series data [282]. Zewde
et al developed a fairly large model of complement, consisting of 107 differen-
tial equations [370], however, they did not validate their model against exper-
imental data. Korotaevskiy and coworkers developed a large model of two of
the classical and alternative pathways of complement and validated it against
the lysis rates of B. burgdorferi through the assembly of the membrane attack
complex [174]. The model developed by the Varner lab includes initiation of
all three pathways in only 18 differential equations with 28 parameters [282].
This model was trained against time series data of C5a and C3a and validated
on unseen time series C5a and C3a data with varying levels of zymosan A, a

complement pathway activator.

Although the interplay between enzymes in the coagulation cascade and the
cross talk between coagulation and complement are exquisitely choreographed,
it is interesting to note that physically, the genes that encode the proteins in-
volved in these systems are scattered throughout the human genome, as seen in
Figure This dispersed layout raises questions as to how all of these genes
are activated in the correct manner to produce more or less protein as needed
to respond to injury. Despite the physical dispersed layout of the coagulation
and complement genes throughout the human chromosomes, many of them are
thought to share common transcription factors, which can be seen upon care-
ful examination of Figure For example, the transcription factor ATF3 (a
member of the activating transcription factor family), which is hypothesized to
be part of the cellular stress response, serves as a transcription factor for tissue
factor, FXIII, FVIILFVII, FV, prothrombin, von Willebrand factor, components

of fibrinogen, to name just a few of the proteins in which it may play a role



in transcription [129]. The large number of edges in Figure [1.4]is indicative of
the high connectivity between these proteins and their associated transcription
factors, with the average degree of the graph exceeding 19. The exact mech-
anisms of how the liver knows how to produce more coagulation factors and
tibrinogen after trauma have not yet been precisely defined, but there is some
evidence that the presence of fibrin degradation productions may stimulate fib-
rinogen production [113]] and that fibrinogen production can be increased and
decreased by microRNAs pulled from a library of human microRNAs[111]. The
term ”“genomic storm” has been used to describe the changes that occur after
traumatic injury, with more than 5,000 genes in leukocytes whose expression

changed at least two fold after injury, a staggering number [366]

'To put this number in prospective, E. coli is presently thought to have 4,401 genes [300].
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Figure 1.3: Locations of the genes that code for proteins involved in coagulation,
fibrinolysis, and complement. The colored bands mark location, and are much
wider than than the true length of the genes for illustrative purposes. Chromo-
some 23 represents the X chromosome. The list of genes included was taken
from [166], and their locations were taken from [79].
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Figure 1.4: A hive plot showing the interactions between transcription factors
and coagulation related proteins. The list of genes included was taken from
[166], and their associated transcription factors were taken from [79] by assem-
bling a list of possible cis-regulatory elements for each gene, and then looking
at the associated transcription factors for each cis-regulatory element, which led
to a list of 328 transcription factors involved with 85 genes.
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1.3 Acute Traumatic Coagulopathy

Acute traumatic coagulopathy (ATC), otherwise known as trauma induced co-
agulopathy (TIC), is loosely defined as a disorder of the homeostasis following
traumatic injury not attributable to any external or environmental factors. Pa-
tients that develop ATC have four fold higher mortality than other patients,
higher transfusion requirements and worse organ failure rates [112]. The ex-
act causes of ATC are an active subject of investigation, and there exist several
competing theories that aim to explain ATC. One theory focuses on protein C, a
protein that works to inhibit the coagulation cascade once it has been activated
by thrombin. In combination with hypoperfusion that may occur due to blood
loss, there may be formation of more thrombin-thrombomodulin complexes,
which activate protein C, leading to increased inhibition of the coagulation sys-
tem, and in this study, low protein C and high thrombomodulin levels were both
significantly associated with increased mortality [36]. However, the levels of ac-
tive protein C were not assessed. Contradicting this narrative, a separate study
demonstrated that even when the concentrations of activated protein C were
two orders higher than physiological levels, fibrinolysis occurred at normal lev-
els [47]. A small study of severely injury patients showed that upon admission,
activated protein C levels were higher in patients with dissiminated intravas-
cular coagulation (DIC) than those without, however, the criteria they used to
separate the patients into DIC and non-DIC groups in unclear [181]. Another
theory posits that ATC arises when fibrin is broken down at accelerated rates,
due the release of tPA from the endothelium. This theory is supported by stud-
ies showing that coagulapathic patients have lower levels of fibrinogen than

non-coagulpathic patients upon hospital admission and that patient who sur-
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vived had higher fibrinogen levels than patients who died from their wounds
[280]. Additionally, this theory is supported by measurements of D-dimer, a
fragment of degraded thrombin in trauma patients with and without ATC, with
the study finding higher levels of D-dimer in the patients with ATC, both upon
the day of injury and three days post injury [117]. A third theory states that ATC
arises from the shedding of the glycocalyx, the negatively charged glycoprotein
and glycolipid layer that lines the endothelium [90]. When this shedding oc-
curs, it can induce auto-heparinization, reducing the tendency of the patient’s

blood to coagulate [62].

ATC is a fairly general term, and there are number of ways in which a pa-
tient’s coagulation and fibrinolytic systems can misfire, resulting in ATC. One
way to stratify trauma patients is by how fast their fibrinolytic system is run-
ning, into fibrinolysis shutdown (clots are barely being broken down, LY30 <
.8%), hyperfibrinolysis (clots are being broken down faster than normal, LY30 >
3%), and physiological (clots are being broken down at a normal rate, .9 < LY30
<2.9) [226]. Patients who are either in fibrinolysis shutdown or hyperfibrinol-
ysis have higher mortality than those exhibiting normal fibrinolysis [225]. The
extent of clot lysis tells part of the story about clot structure, however, it appears
that trauma patients, even those within the the physiological fibrinolysis group,

develop clots with structure different than that of healthy controls [92].

More recent evidence has highlighted the role of platelets in ATC. When
platelets taken from trauma patients were compared to platelets taken from
healthy controls, the platelets from the trauma patients had impaired aggre-

gation in response to ADP and collagen as well as increased PFA-100 closure
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times [317]P] This platelet dysfunction is also characterized by impaired adhe-
sion and contractile force generation as well as a diminished response to platelet

antagonists [162].

Other studies have indicated that the interplay between coagulation and im-
mune response may play a role in the development of ATC. Thrombin, factors
Xla, Xa, and IXa, in addition to plasmin have been shown to effectively cleave
C3 and C5, two of the proteins associated with the complement cascade, a com-
ponent of the human immune response [7]. The complement system has been
shown to be very active in trauma patients, and the levels of C5b-9, which can
be used as a proxy for the levels of membrane attack complex, the final prod-
uct of complement, are significantly higher in more severely injured patients.
Complement and coagulation may positively feedback on each other, as a study
has shown that following several hours of incubation with C5a, endothelial cells
express much higher levels of tissue factor mRNA [155], which in turn would
stimulate the production of thrombin. A strong piece of evidence that the in-
flamatory response plays an important role in the development in ATC comes
from a retrospective study in which the medications people had taken before
injury was examined, which found that pre-hospital use of nonsteroidal anti-
inflammatory drugs (NSAIDs) was associated with a 72% lower risk of ATC
[237].

One group proposes that ATC is arises from systems failure along the brain-
cardiovascular coupling, which in turn reduces blood flow to the gut, which
can then become ischemic and leaky, allowing gut-resident bacteria and fungi

and their products to enter the general circulation, coupled with shedding of

2The PFA-100 or the Platelet Function Assay measures how long it takes for a platelet plug
to form in a microscopic aperture at the end of a capillary while whole blood flows through at
high shear rates.
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the glycocalyx and mitochondrial dysfunction due to the unavailability of oxy-
gen and insufficient glycogen stores [91]. This mitochondrial dysfunction then
leads to the release of mitochondrial microparticles, which are derived from the
inner membranes of mitochondria, which have been shown to have procoagu-
lant properties in mice [372]. While statistically significant differences between
trauma patients who develop ATC and those who do not in terms of the mi-
croparticle counts [206], exactly what leads to these changes in microparticle

distributions remains unclear.

If we zoom out and examine the entire patient, a severely injured patient
will probably be experiencing a degree of shock, or a lack of blood flow due
to bleeding. This decrease in blood volume leads to hypotension, an increase
in heart rate, and metabolic acidosis, as the body attempts to compensate for
the lost blood volume and reduction in oxygenation capacity [293]. However,
if the injury is severe, and significant blood as been lost, the patient’s microvas-
culature becomes hypoperfused, resulting in increases of plasma thrombodulin
and a reduction in the measured protein C concentrations as well as an increase
in tPA and D-dimer levels [37]. Under current Advanced Trauma Life Support
guidelines, to increase the circulating blood volume within a patient with sig-
nificant bleeding, first responders would give 1-2 liters of isotonic crystalloids
F} followed by red blood cells to increase oxygen carrying capacity [316]. While
this approach solves the immediate problem of the loss of circulating volume, it
dilutes the coagulation capacity of the patient, since the fluid they received con-
tains none of the proteins necessary for clot formation. More recently, the US

military has begun to adopt the practice of damage control resuscitation, a set

3The class of isotonic crystalloids includes normal saline and lactated ringers solution, with
a concentration of salts as to not to cause a volume shift between interstitial fluids, intracellular
fluids, and plasma.
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of resuscitation practices where the patient receives either blood products, such
as red blood cells, plasma, and platelets or whole blood and is resuscitated to a
lower blood pressure, while compressive devices are used to reduce the amount
of bleeding, until it can be controlled surgically [50]. Although this approach
results in a longer period of hypotension and hypoperfusion, resuscitating pa-
tients to a target systolic blood pressure of 70 mmHg instead of 110 mmHg did
not result in a statistically significant difference in mortality [95]. This approach
preserves far more of the patient’s coagulation capacity, however, unless fresh
whole blood is given, it still dilutes the patients blood, as a 570 mL unit of stored
whole blood contains 70 mL of citrate-phosphate-dextrose solution, and unit of
red blood cells is nearly a quarter additive solutions, which increase the lifespan

of the red blood cells in storage, but have no coagulation potential [299].

Hypothermia (a core body temperature less than 35 °C) is another poten-
tial concern for trauma patients, as the normal hemostatic processes are greatly
disturbed by injury, as traumatic injury appears to alter normal central ther-
moregulation and blocks the shivering response, resulting in a drop in core body
temperature [320]. Additionally, trauma patients usually have their clothing re-
moved, leading to increased surface area contact with the cool environment,
and are receiving large quantities of resuscitative fluids, which are only rarely
warmed to body temperature. One study of trauma patients reported that the
mortality of hypothermic patients was significantly higher than those who re-
mained warm [164]. As the proteins involved in coagulation are enzymes, the
rates of the reactions they catalyze are temperature dependent, however, it is
unclear if this small decrease in body temperature is large enough to signifi-
cantly effect the clot formation process. One study reported that the activated

partial thromoplastin time showed no significant difference between 33° and
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39°C, nor was there a significant difference between 33° and 37°C in a throm-
bin generation assay in either pooled plasma or synthetic reconstituted plasma,
however, these authors did report changes in platelet aggregation and adhesion
over this temperature range [364]. Another study reports significant changes
in prothrombin time and partial thromboplastin time between 37° and 37°C, in
plasma samples [278]. In a porcine model, where animals were cooled to 34°
C and rewarmed, prothrombin time and bleeding time were prolonged both

during the cooling period and during rewarming [318].

Alack of oxygen due to reduced blood volume and reduced oxygen carrying
capacity causes cells within the body to switch their metabolism from glycolysis
to substrate level phosphorolation, in which pyruvate is reduced by lactate de-
hydrogenase to produce lactate and NAD*, where the NAD" is used to produce
ATDP, and lactate is exported from the cells and into the blood [341]. Then this
lactate, in solution, tends to give up a proton, making it an Arrhenius acid, and
if produced in amounts larger than it is degraded, it can lower blood pH, a con-
dition called acidosis when pH drops below 7.35. Normal blood pH ranges be-
tween 7.35 and 7.45, but within trauma patients, it can drop below 6.6 [279]. This
drop in pH can effect the activity of the proteins involved in clot formation. For
example, the activity of the FVIla/TF (trigger) complex was reduced by greater
than 90% at a pH of 7.0 compared to at a pH of 7.4 in synthetic plasma [212].
Reducing pH has been shown to increase prothrombin time, activated partial
thromboplastin time and platelet aggregation, showing that the coagulation cas-
cade is susceptible to pH changes over the range observed in trauma patients.
Some groups are investigating the use of vassopressors, a class of chemicals that
cause an increase in blood pressure and coronary artery perfusion (and therefore

increase oxygen supply to reduce the amount acidification that occurs), such as
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norepinephrine and vasopressin, however, these drugs must be used cautiously,

since there is conflicting evidence that these drugs boost survival [264].

A very recent paper investigated the combined effects of acidification and
hypothermia on coagulation in platelet poor plasma. They performed thrombin
generation assays at differing dilutions, temperatures (in the range of 31-37°C)
and pHs (6.9, 7.1, and 7.4), and then recorded 5 quantitative parameters to de-
scribe the thrombin trajectory: the lag time (the time to ¢ of the thrombin peak
height), the time to peak thrombin, the velocity index (the slope of the curve to
the peak), and the endogenous thrombin potential (the area under the thrombin
generation curve), and then performed linear regression on these parameters.
Their regressions showed that within this range, pH had little effect on their
measured parameters of thrombin generation, but that hypothermia increased
the area under the thrombin generation curve, in some cases [217]. As through
as this paper is, it does not provide a definite answer to how much acidification
and hypothermia effect coagulation within a trauma patient, as platelet poor

plasma was used for all of the assays, not whole blood.

It is worth nothing that many of the proteins involved in coagulation require
carboxylation in order to function properly, and as such, are Vitamin K depen-
dant [75], so a severe dietary lack of Vitamin K could predispose a person to
coagulation system dysfunction. Calcium plays a key role in many steps of the
coagulation cascade [114], so if a patient has received many citrated blood prod-
ucts, they may be at risk of hypocalcimia, as citrate binds to calcium and makes

it unavailable ﬁwhich would further inhibit their ability to clot.

While this work focuses on ATC, coagulopathy can arise whenever the body

“This is why blood products are citrated: to prevent them from clotting while they are in
storage.
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is severely perturbed. In a study of patients undergoing highly invasive surgery,
such as a hepatectomy or pancreaticoduodenectomy, approximately 84% de-
veloped coagulopathy following surgery [289]. Coagulopathy can also occur
due to severe infection because of the cross talk between the coagulation and
immune system, and has been reported to occur in patients with Rotavirus,
Varicella, Rubella, Rubeola and Influenza, as well as viral hemorrhagic fevers,

caused by viruses such as Dengue and Ebola [179].

1.4 Assays

1.4.1 PTT and PT

The PTT or partial thromboplastin time was developed in 1953, originally to
serve as a test for diagnosing hemophilia [177]. In this test, a patient’s blood
is citrated to prevent coagulation, then centrifuged to produce platelet poor
plasma and a thromboplastin-kaolin agent is added along with calcium to start
coagulation [256]. The time until a clot forms is then measured, and compared
to a standard to determine if the patient is clotting more slowly or rapidly than
normal. This assay provides a global view of the coagulation system, but does
not identify which factors are lacking or in excess, nor does it provide any in-

formation about the state of the patient’s fibrinolytic system.

The PT or prothrombin time is performed in a similar manner to the PTT, but
a different set of chemicals are added to initiate coagulation, so that it measures
the extrinsic pathway of the coagulation cascade, which consists of factors II,VII,

and X. For a PT measurement, phospholipids, tissue factor and thromboplastin
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extracts are added to the platelet poor plasma sample from the patient to kick off
coagulation [269]. A PT greater than 1.5 times normal can be used to diagnose

ATC [38].

1.4.2 INR

The international normalized ratio, or INR was developed to standardize PT
times, as the contents of thromboplastin extracts are not uniform between dif-

ferent laboratories [269]]. The INR is defined as:

(1.1)

) ISI
INR = ( Patient PT )

Mean Normal PT

where the Mean Normal PT is calculated from the plasma of at least twenty
healthy individuals [255]. The ISI, or international sensitivity index is used to
correct for the differences between various thromboplastin extracts. INR is used
to diagnose ATC upon admission, with an INR > 1.5 being used as the cutoff
[243].

1.4.3 ROTEM and TEG
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Figure 1.5: Typical (a) TEG and (b) ROTEM tracings. The differences in nomin-
clature are circled in red. Images adapted from [302].
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ROTEM and TEG are both techniques that measure the viscoelasticity of
whole blood to assess the state of the coagulation and fibrinolytic systems of
a patient. In a TEG system, a small amount of whole blood is added to a cup
along with reagents to initiate coagulation, to which a pin with a torsion wire are
attached. The cup is oscillated around the pin and as a clot forms, the changes
in the viscoelastic properties of the blood cause an increase in the rotation trans-
mitted to the torsion wire, which is detected by a transducer [360]. A ROTEM
system operates in a similar manner, however, the main difference between the
two systems is that in a ROTEM system, the cup containing the blood is station-
ary and the pin attached to the torsion wire rotates [241]. Both systems produce
a tracing of clot amplitude as a function of time, however, different nomen-
clature is used to describe features of this curve depending on the test system
used, as highlighted in Figure The time (in minutes) to reach an amplitude
of 2mm is called the CT in ROTEM and the R in TEG. The time (in minutes)
for a clot to reach an amplitude of 20mm after it has reached an amplitude of
2mm is called CFT in ROTEM and K in TEG. The maximum amplitude a clot
reaches is called MA in TEG and MCF in ROTEM. ROTEM can be used diag-
nose ATC, with a clot amplitude at 5 minutes less than 35 mm used as a cut-off
[76]. Although clot amplitude is reported in units of mm, these units do not
directly correspond to clot diameter or radius, rather they refer to mm of tor-
sional amplitude based on the rotation of either the cup or the pin [130]. This

amplitude can be converted to a sheer modulus, G, the ratio of shear stress to

50004
100-A

shear strain using the formula G = where A is the measured clot amplitude
[142]. These viscoelastic tests can be used to guide fluid resuscitation, where
an elevated CT /R value can be treated with FFP or PCC, and a decreased « an-

gle can be treated with cyroprecipitate or fibrinogen concentrate, and a lower
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than normal MCF/MA value can be treated with platelets or cryoprecipitate or

fibrinogen concentrate [131].
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CHAPTER 2
PARAMETER ESTIMATION VIA DYNAMIC OPTIMIZATION WITH
PARTICLE SWARMS

2.1 Background

[[Mathematical modeling has evolved as a powerful paradigm to analyze, and
ultimately design complex biochemical networks [11} 338, 160, 172, 145]. Math-
ematical modeling of biochemical networks is often an iterative process. First,
models are formulated from existing biochemical knowledge, and then model
parameters are estimated using experimental data [6} 14}, 10]. Parameter estima-
tion is typically framed as a non-linear optimization problem wherein the resid-
ual (or objective function) between experimental measurements and model sim-
ulations is minimized using an optimization strategy [222]. Optimal parameter
estimates are then used to predict unseen experimental data. If the validation
studies fail, model construction and calibration are repeated iteratively until
satisfactory results are obtained. As our biological knowledge increases, model
formulation may not be as significant a challenge, but parameter estimation will

likely remain difficult.

Parameter estimation is a major challenge to the development of biochemical
models. Parameter estimation has been a well studied engineering problem for
decades [242] 25| 369, 24]. However, the complex dynamics of large biological
systems and noisy, often incomplete experimental data sets pose a unique es-
timation challenge. Often optimization problems involving biological systems

are non-linear and multi-modal i.e., typical models have multiple local min-

!This work has been previously published in [283]
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ima or maxima [222, 14]. Non-linearity coupled with multi-modality renders
local optimization techniques such as pattern search [146], Nelder-Mead sim-
plex methods [238], steepest descent or Levenberg-Marquardt [228] incapable
of reliably obtaining globally optimal solutions as these methods often termi-
nate at local minimum. Though deterministic global optimization techniques
(for example algorithms based on branch and bound) can handle non-linearity
and multi-modality [103] 148], the absence of derivative information, discontin-
uous objective functions, non-smooth regions or the lack of knowledge about

the objective function hampers these techniques.

Meta-heuristics like Genetic Algorithms (GAs) [119], Simulated Annealing
(SA) [171], Evolutionary Programming [107] and Differential Evolution (DE)
[321},1336, 352} 244] have all shown promise on non-linear multi-modal problems
[323]. These techniques do not make any assumptions, nor do they require, a pri-
ori information about the structure of the objective function. Meta-heuristics are
often very effective at finding globally optimal or near optimal solutions. For
example, Mendes et al. used SA to estimate rate constants for the inhibition of
HIV proteinase [211], while Modchang et al. used a GA to estimate parame-
ters for a model of G-protein-coupled receptor (GPCR) activity [219]. Parameter
estimates obtained using the GA stratified the effectiveness of two G-protein ag-
onists, N6-cyclopentyladenosine (CPA) and 5-N-ethylcarboxamidoadenosine
(NECA). Tashkova et al. compared different meta-heuristics for parameter es-
timation on a dynamic model of endocytosis; DE was the most effective of the
approaches tested [328]. Banga and co-workers have also successfully applied
scatter-search to estimate model parameters [343, 276, 96]. Hybrid approaches,
which combine meta-heuristics with local optimization techniques, have also

become popular. For example, Egea et al. developed the enhanced scatter search
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(eSS) method [96], which combined scatter and local search methods, for param-
eter estimation in biological models [344]. However, despite these successes, a
major drawback of most meta-heuristics remains the large number of function
evaluations required to explore parameter space. Performing numerous poten-
tially expensive function evaluations is not desirable (and perhaps not feasible)
for many types of biochemical models. Alternatively, Tolson and Shoemaker
found, using high-dimensional watershed models, that perturbing only a subset
of parameters was an effective strategy for estimating parameters in expensive
models [332]. Their approach, called Dynamically Dimensioned Search (DDS),
is a simple stochastic single-solution heuristic that estimates nearly optimal so-
lutions within a specified maximum number of function (or model) evaluations.
Thus, while meta-heuristics are often effective at estimating globally optimal or
nearly optimal solutions, they require a large number of function evaluations to

converge to a solution.

In this study, we developed Dynamic Optimization with Particle Swarms
(DOPS), a novel hybrid meta-heuristic that combines the global search capabil-
ity of multi-swarm particle swarm optimization with the greedy refinement of
dynamically dimensioned search (DDS). The objective of DOPS is to obtain near
optimal parameter estimates for large biochemical models within a relatively
few function evaluations. DOPS uses multi-swarm particle swarm optimiza-
tion to generate nearly optimal candidate solutions, which are then greedily up-
dated using dynamically dimensioned search. While particle swarm techniques
are effective, they have the tendency to become stuck in small local regions and
lose swarm diversity, so we combined multi-swarm particle optimization with
DDS to escape these local regions and continue towards better solutions [61].

We tested DOPS using a combination of classic optimization test functions, bio-
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chemical benchmark problems and real-world biochemical models. First, we
tested the performance of DOPS on the Ackley and Rosenbrock functions, and
published biochemical benchmark problems. Next, we used DOPS to estimate
the parameters of a model of the human coagulation cascade. On average,
DOPS outperformed other common meta-heuristics like differential evolution,
a genetic algorithm, CMA-ES (Covariance Matrix Adaptation Evolution Strat-
egy), simulated annealing, single-swarm particle swarm optimization, and dy-
namically dimensioned search on the optimization test functions, benchmark
problems and the coagulation model. For example, DOPS recovered the nomi-
nal parameters for the benchmark problems using an order of magnitude fewer
function evaluations than eSS in all cases. It also produced parameter estimates
for the coagulation model that predicted unseen coagulation data sets. Thus,
DOPS is a promising hybrid meta-heuristic for the estimation of biochemical

model parameters in relatively few function evaluations.

2.2 Results

2.2.1 DOPS explores parameter space using a combination of

global methods.

DOPS combines a multi-swarm particle swarm method with the dynamically
dimensioned search approach of Shoemaker and colleagues (Fig. 2.I). The
goal of DOPS is to estimate optimal or near optimal parameter vectors for
high-dimensional biological models within a specified number of function eval-

uations. Toward this objective, DOPS begins by using a multi-swarm parti-
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Figure 2.1: Schematic of the dynamic optimization with particle swarms (DOPS)
approach. A: Each particle represents an N dimensional parameter vector. Par-
ticles are given randomly generated initial solutions and grouped into different
sub-swarms. Within each swarm the magnitude and direction of the movement
a particle is influenced by the position of the best particle and also by its own ex-
perience. After every g number of function evaluations the particles are mixed
and randomly assigned to different swarms. When the error due to the global
best particle (best particle amongst all the sub-swarms) does not drop over a
certain number of function evaluations, the swarm search is stopped and the
search switches to a Dynamically Dimensioned Search with global best particle
as the initial solution vector or candidate vector. B: The candidate vector per-
forms a greedy global search for the remaining number of function evaluations.
The search neighborhood is dynamically adjusted by varying the number of di-
mensions that are perturbed (in black) in each evaluation step. The probability
that a dimension is perturbed decreases as the number of function evaluations
increase.

cle swarm search and then dynamically switches, using an adaptive switching
criteria, to the DDS approach. The particle swarm search uses multiple sub-

swarms wherein the update to each particle (corresponding to a parameter vec-
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tor estimate) is influenced by the best particle amongst the sub-swarm, and the
current globally best particle. Particle updates occur within sub-swarms for a
certain number of function evaluations, after which the sub-swarms are reorga-
nized. This sub-swarm mixing is similar to the regrouping strategy described
by Zhao et al. [371]. DOPS switches out of the particle swarm phase based
upon an adaptive switching criteria that is a function of the rate of error con-
vergence. If the error represented by the best particle does not decrease for a
threshold number of function evaluations, DOPS switches automatically to the
DDS search phase. The DDS search is initialized with the globally best particle
from the particle swarm phase, thereafter, the particle is greedily updated by
perturbing a subset of dimensions for the remaining number of function evalu-
ations. The identity of the parameters perturbed is chosen randomly, with fewer

parameters perturbed the higher the number of function evaluations.

2.2.2 DOPS minimized benchmark problems using fewer func-

tion evaluations.

On average, DOPS performed similarly or outperformed four other meta-
heuristics for the Ackley and Rastrigin test functions (Fig. [2.2). The Ackley and
Rastrigin functions both have multiple local extrema and attain a global mini-
mum value of zero. In each case, the maximum number of function evaluations
was fixed at N = 4000, and 7~ = 25 independent experiments were run with dif-
ferent initial parameter vectors. DOPS found optimal or near optimal solutions
for both the 10-dimensional Ackley (Fig. 2.2A) and Rastrigin (Fig. [2.2B) func-

tions within the budget of function evaluations. In each of the 10-dimensional
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cases, other meta-heurtistics such as DDS and DE also performed well. How-
ever, DOPS consistently outperformed all other approaches tested. This perfor-
mance difference was more pronounced as the dimension of the search prob-
lem increased; for a 300-dimensional Rastrigin function, DOPS was the only
approach to find an optimal or near optimal solution within the function eval-
uation budget (Fig. [2.2B). Taken together, DOPS performed at least as well as
other meta-heuristics on small dimensional test problems, but was especially
suited to large dimensional search spaces. Next, we tested DOPS on benchmark

biochemical models of varying complexity.

Villaverde and co-workers published a set of benchmark biochemical prob-
lems to evaluate parameter estimation methods [344]. They ranked the example
problems by computational cost from most to least expensive. We evaluated
the performance of DOPS on problems from the least and most expensive cat-
egories. The least expensive problem was a metabolic model of Chinese Ham-
ster Ovary (CHO) with 35 metabolites, 32 reactions and 117 parameters [342].
The biochemical reactions were modeled using modular rate laws and gener-
alized Michaelis-Menten kinetics. On the other hand, the expensive problem
was a genome scale kinetic model of Saccharomyces cerevisiae with 261 reactions,
262 variables and 1759 parameters [311]. In both cases, synthetic time series
data generated with known parameter values, was used as training data to es-
timate the model parameters. For the Saccharomyces cerevisine model, the time
series data consisted of 44 observables, while for the CHO metabolism problem
the data corresponded to 13 different metabolite measurement sets. The num-
ber of function evaluations was fixed at N = 4000, and we trained both models
against the synthetic experimental data. DOPS produced good fits to the syn-
thetic data (Fig. and Fig. [10.2), and recapitulated the nominal parameter
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values using only N < 4000 function evaluations (Fig. [10.3). On the other hand,
the enhanced scatter search (eSS) with a local optimizer method, took on order
10° function evaluations for the same problems. DOPS required a comprable
amount of time (Fig. [10.4), faster convergence (Fig. and Fig. [10.6), and also
had lower variability in the best value obtained (Fig. across multiple runs
when compared to other meta-heuristics. Thus, DOPS estimated the parameters
in benchmark biochemical models, and recovered the original parameters from
the synthetic data, using fewer function evaluations. Next, we compared the
performance of DOPS with four other meta-heuristics for a model of the human

coagulation cascade.
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Figure 2.2: Performance of DOPS and other meta-heuristics for the Ackley and
Rastrigin functions. A: Mean scaled error versus the number of function evalu-
ations for the 10-dimensional Ackley function. DOPS, DDS and ESS find opti-
mal or near optimal solutions within the specified number of function evalua-
tions. B: Mean scaled error versus the number of function evaluations for the 10-
dimensional Rastrigin function. Nearly all the techniques find optimal or near
optimal solutions within the specified number of function evaluations. C: Mean
scaled error versus the number of function evaluations for the 300-dimensional
Rastrigin function. DOPS is the only algorithm that finds an optimal or near
optimal solution within the specified number of function evaluations. In all
cases, the maximum number of function evaluations was N = 4000. Mean and
standard deviation were calculated over 7~ = 25 trials. A star denotes that the
average value was less than 1E-6.
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2.2.3 DOPS estimated the parameters of a human coagulation

model.

Coagulation is an archetype biochemical network that is highly interconnected,
containing both negative and positive feedback (Fig. 2.3). The biochemistry of
coagulation, though complex, has been well studied [200, 201} 197, 346, 187, [108),
8], and reliable experimental protocols have been developed to interrogate the
system [143} 55,199, 193]. Coagulation is mediated by a family proteases in the
circulation, called factors and a key group of blood cells, called platelets. The
central process in coagulation is the conversion of prothrombin (fII), an inactive
coagulation factor, to the master protease thrombin (FIla). Thrombin genera-
tion involves three phases, initiation, amplification and termination. Initiation
requires a trigger event, for example a vessel injury which exposes tissue factor
(TF), which leads to the activation of factor VII (FVIla) and the formation of the
TF/FVIla complex. Two converging pathways, the extrinsic and intrinsic cas-
cades, then process and amplify this initial coagulation signal. There are several
control points in the cascade that inhibit thrombin formation, and eventually
terminate thrombin generation. Tissue Factor Pathway Inhibitor (TFPI) inhibits
upstream activation events, while antithrombin III (ATIII) neutralizes several
of the proteases generated during coagulation, including thrombin. Thrombin
itself also inadvertently plays a role in its own inhibition; thrombin, through in-
teraction with thrombomodulin, protein C and endothelial cell protein C recep-
tor (EPCR), converts protein C to activated protein C (APC) which attenuates
the coagulation response by proteolytic cleavage of amplification complexes.
Termination occurs after either prothrombin is consumed, or thrombin forma-

tion is neutralized by inhibitors such as APC or ATIIL Thus, the human coagu-
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Tissue factor (TF) is exposed at the injury site.
TF binds FVlla to initiate extrinsic coagulation

.3;?}).‘.’?4?.5331‘..

Unactivated Activated
Platelet Platelet

Figure 2.3: Schematic of the extrinsic and intrinsic coagulation cascade. Inac-
tive zymogens upstream (grey) are activated by exposure to tissue factor (TF)
following vessel injury. Tissue factor and activated factor VIla (FVIla) form a
complex that activates factor X (fX) and IX (fIX). FXa activates downstream fac-
tors including factor VIII (fVIII) and fIX. Factor V (fV) is primarily activated
by thrombin (FIla). In addition, we included a secondary fV activation route
involving FXa. FXa and FVa form a complex (prothrombinase) on activated
platelets that converts prothrombin (fII) to Flla. FIXa and FVIIIa can also form a
complex (tenase) on activated platelets which catalyzes FXa formation. Throm-
bin also activates upstream coagulation factors, forming a strong positive feed-
back ensuring rapid activation. Tissue factor pathway inhibitor (TFPI) down-
regulates FXa formation and activity by sequestering free FXa and TF-FVIIain a
FXa-dependent manner. Antithrombin III (ATIII) inhibits all proteases. Throm-
bin inhibits itself binding the surface protein thrombomodulin (TM). The Ila-
TM complex catalyzes the conversion of protein C (PC) to activated protein C
(APC), which attenuates the coagulation response by the proteolytic cleavage of
fV/FVa and {VIII/FVIla.
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lation cascade is an ideal test case; coagulation is challenging because it contains
both fast and slow dynamics, but also accessible because of the availability of
comprehensive data sets for model identification and validation. In this study,
we used the coagulation model of Luan et al. [193], which is a coupled system of
non-linear ordinary differential equations where biochemical interactions were
modeled using mass action kinetics. The Luan model contained 148 param-
eters and 92 species and has been validated using 21 published experimental

datasets.

DOPS estimated the parameters of a human coagulation model for TF/VIIa
initiated coagulation without anticoagulants (Fig. [2.5a). The objective function
was an unweighted linear combination of two error functions, representing co-
agulation initiated with different concentrations of TF/FVIla (5pM, 5nM) [143].
The number of function evaluations was restricted to N' = 4000 for each algo-
rithm we tested, and we performed 7~ = 25 trials of each experiment to collect
average performance data (Table 2.1). DOPS converged faster and had a lower
tinal error compared to the other algorithms (Fig. . Within the first 25%
of function evaluations, DOPS produced a rapid drop in error followed by a
slower but steady decline (Fig. [10.8b). Approximately between 500-1000 func-
tion evaluations DOPS switched to the dynamically dimensioned search phase,
however this transition varied from trial to trial since the switch was based upon
the local convergence rate. On average, DOPS minimized the coagulation model
error to a greater extent than the other meta-heuristics. However, it was unclear
if the parameters estimated by DOPS had predictive power on unseen data.
To address this question, we used the final parameters estimated by DOPS to
simulate data that was not used for training (coagulation initiated with 500pM,

50pM, and 10pM TF/VIIa). The optimal or near optimal parameters obtained by
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Figure 2.4: Error convergence rates of the nine different algorithms on the coag-
ulation model. The objective error is the mean over 7 = 25 trials. DOPS, SA, PSO
and DOPS-PSO have the steepest drop in error during first 300 function evalua-
tions. Thereafter the error drop in DDS and SA remains nearly constant whereas
DOPS continues to drops further. In the alloted budget of function evaluations
ESS produces a modest reduction in error. At the end of 4000 function evalua-
tions DOPS attains the lowest error.

DOPS predicted unseen coagulation datasets (Fig. 2.5b). The normalized stan-
dard error for the coagulation predictions was consistent with the training error,
with the exception of the 50pM TF/VIla case which was a factor 2.65 worse (Ta-

ble 2.2). However, this might be expected as coagulation initiation with 50pM
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Figure 2.5: Model fits and predictions on experimental data using DOPS. (a) The
model parameters were estimated using DOPS. Solid black lines indicate the
simulated mean thrombin concentration using parameter vectors from 25 tri-
als. The grey shaded region represents the 99% confidence estimate of the mean
simulated thrombin concentration. The experimental data is reproduced from
the synthetic plasma assays of Mann and co-workers. Thrombin generation
is initiated by adding Factor TF/VIla (5nM (blue) and 5pM (red)) to synthetic
plasma containing 200 umol/L of phospholipid vesicles (PCPS) and a mixture
of coagulation factors (IL,V,VIL, VIILIX,X and XI) at their mean plasma concentra-
tions. (b) The parameter estimates that were obtained using DOPS were tested
against data that was not used in the model training. Solid black lines indicate
the simulated mean thrombin concentration using parameter vectors from 7~ =
25 trials. The grey shaded region represents the 99% confidence estimate of the
mean simulated thrombin concentration. The experimental data is reproduced
from the synthetic plasma assays of Mann and co-workers. Thrombin genera-
tion is initiated by adding Factor VIIa-TF (500pM - Blue, 50pM - Pink and 10pM
- purple, respectively) to synthetic plasma containing 200 umol/L of phospho-
lipid vesicles (PCPS) and a mixture of coagulation factors (II,V,VIL VIILIX, X and
XI) at their mean plasma concentrations.

TF/FVIla was the farthest away from the training conditions. Taken together,
DOPS estimated parameter sets with predictive power on unseen coagulation
data using fewer function iterations than other meta-heuristics. Next, we ex-

plored how the number of sub-swarms and the switch to DDS influenced the
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performance of the approach.

2.2.4 Phase switching was critical to DOPS performance.

A differentiating feature of DOPS is the switch to dynamically dimensioned
search following stagnation of the initial particle swarm phase. We quantified
the influence of the number of sub-swarms and the switch to DDS on error con-
vergence by comparing DOPS with and without DDS for different numbers of
sub-swarms (Fig. [2.6). We considered multi swarm particle swarm optimiza-
tion with and without the DDS phase for N' = 4000 function evaluations and
7 = 25 trials on the coagulation model. We used one, two, four, five and eight
sub-swarms, with a total of 40 particles divided evenly amongst the swarms.
Hence, we did not consider swarm numbers of three and seven. All other al-
gorithm parameters remained the same for all cases. Generally, the higher sub-
swarm numbers converged in fewer function evaluations, where the optimum
particle partitioning was in the neighborhood of five sub-swarms. However,
the difference in convergence rate was qualitatively similar for four, five and
eight sub-swarms, suggesting there was an optimal number of particles per
swarm beyond which there was no significant advantage. The multi-swarm
particle swarm optimization stagnated after 25% of the available function eval-
uations irrespective of the number of sub-swarms. However, DOPS (with five
sub-swarms) switched to DDS after detecting the stagnation. The DDS phase re-
fined the globally best particle to produce significantly lower error on average
when compared to multi-swarm particle swarm optimization alone. Thus, the
automated switching strategy was critical to the overall performance of DOPS.

However, it was unclear if multiple strategy switches could further improve
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Figure 2.6: Influence of the switching strategy and sub-swarms on DOPS
performance for the coagulation model. DOPS begins by using a particle
swarm search and then dynamically switches (switch region), using an adap-
tive switching criteria, to the DDS search phase. We compared the performance
of DOPS with and without DDS for different sub-swarm searches to quantify the
effect of number of sub-swarms and DDS. We used one, two, four, five and eight
sub-swarms, with a total of 40 particles divided evenly amongst the swarmes.
The results presented are the average of 7~ = 25 trials with &' = 4000 function
evaluations each. The convergence rates with higher swarm numbers is typi-
cally higher but there is no pronounced difference amongst four, five and eight.
The multi-swarm with without DDS saturates while DOPS shows a rapid drop
due to a switch to the DDS phase.
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Figure 2.7: Comparison of DOPS and Multiswitch DOPS Performance of DOPS
and Multiswitch DOPS on the CHO metabolism problem (a), the Eggholder
function (b), the 100 dimensional Styblinksi-Tang function (c) and the coagu-
lation problem (d). Both methods have the same initial decrease in error, but
as the number of function evaluations increases, multiswitch DOPS produces a
larger decrease in error. The results presented are the average of 7~ = 250 trials
with for the CHO metabolism problem and 7~ = 250 trials on the Eggholder and
Styblinksi-Tang functions with &' = 250 function evaluations each, and 7~ = 25

trials for the coagulation problem.
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performance.

We explored the performance of DOPS if it was permitted to switch be-
tween the PSO (Particle Swarm Optimization) and DDS modes multiple times.
This mode (msDOPS) had comparable performance to DOPS on 10-d Ackley
and Rastrigin functions, as well as on the 300-dimensional Rastrigin function.
However, msDOPS performed better than DOPS on the CHO metabolism prob-
lem (Fig. [2.7p), with the average functional value being nearly half that of
DOPS. To further distinguish DOPS from msDOPS, we compared the perfor-
mance of each algorithm on the Eggholder function, a difficult function to op-
timize given its multiple minima [158]. msDOPS outperformed DOPS on the
Eggholder function, however, neither version reached the true minimum at -
959.6407 on any trial with a budget of N = 4000 function evaluations (Fig. 2.7p).
We also explored the performance of msDOP S and DOPS on the 100 dimensional
Styblinksi-Tang function [159] (Fig. 2.7k). In this comparison, msDOPS signif-
icantly outperformed DOPS, finding the true minimum before exhausting its
function evaluation budget, while DOPS does not reach the minimum. Since
the performance of msDOP S was promising on these problems, we measured its
performance on the coagulation problem. Surprisingly, DOPS performed simi-
larly to msDOPS on the coagulation problem (Fig. [2.7d); the final average objec-
tive value for DOPS reached 0.9413% of the initial functional value, compared to
0.9428% for msDOPS. Taken together, these results indicate that switching plays
a key role in DOPS’s performance and that for some classes of problems, multi-
ple switching between modes produces a faster drop in objective value. How-
ever, the coagulation model results suggested the advantage of msDOPS was

problem specific.
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2.3 Discussion

In this study, we developed dynamic optimization with particle swarms
(DOPS), a novel meta-heuristic for parameter estimation. DOPS combined
multi-swarm particle swarm optimization, a global search approach, with the
greedy strategy of dynamically dimensioned search to estimate optimal or
nearly optimal solutions in a fixed number of function evaluations. We tested
the performance of DOPS and four widely used meta-heuristics on the Ack-
ley and Rastrigin test functions, a set of biochemical benchmark problems and a
model of the human coagulation cascade. We also compared the performance of
DOPS to enhanced Scatter Search (eSS), another widely used meta-heuristic ap-
proach. As the number of parameters increased, DOPS outperformed the other
meta-heuristics, generating optimal or nearly optimal solutions using signifi-
cantly fewer function evaluations compared with the other methods. We tested
the solutions generated by DOPS by comparing the estimated and true param-
eters in the benchmark studies, and by using the coagulation model to predict
unseen experimental data. For both benchmark problems, DOPS retrieved the
true parameters in significantly fewer function evaluations than other meta-
heuristics. For the coagulation model, we used experimental coagulation mea-
surements under two different conditions to estimate optimal or nearly optimal
parameters. These parameters were then used to predict unseen coagulation
data; the coagulation model parameters estimated by DOPS predicted the cor-
rect thrombin dynamics following TF/FVIla induced coagulation without an-
ticoagulants. Lastly, we showed the average performance of DOPS improved
when combined with dynamically dimensioned search phase, compared to an

identical multi-swarm approach alone, and that multiple mode switches could
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improve performance for some classes of problems. Taken together, DOPS is a
promising meta-heuristic for the estimation of parameters in large biochemical

models.

Meta-heuristics can be effective tools to estimate optimal or nearly optimal
solutions for complex, multi-modal functions. However, meta-heuristics typi-
cally require a large number of function evaluations to converge to a solution
compared with techniques that use derivative information. DOPS is a combina-
tion of particle swarm optimization, which is a global search method, and dy-
namically dimensioned search, which is a greedy evolutionary technique. Parti-
cle swarm optimization uses collective information shared amongst swarms of
computational particles to search for global extrema. Several particle swarm
variants have been proposed to improve the search ability and rate of con-
vergence. These variations involve different neighborhood structures, multi-
swarms or adaptive parameters. Multi-swarm particle swarm optimization
with small particle neighborhoods has been shown to be better in searching on
complex multi-modal solutions [371]. Multi-swarm methods generate diverse
solutions, and avoid rapid convergence to local optima. However, at least for
the coagulation problem used in this study, multi-swarm methods stagnated
after approximately 25% of the available function evaluations; only the intro-
duction of dynamically dimensioned search improved the rate of error conver-
gence. Dynamically dimensioned search, which greedily perturbs only a sub-
set of parameter dimensions in high dimensional parameter spaces, refined the
globally best particle and produced significantly lower error on average when
compared to multi-swarm particle swarm optimization alone. However, dy-
namically dimensioned search, starting from a initial random parameter guess,

was not as effective on average as DOPS. The initial solutions generated by the
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multi swarm search had a higher propensity to produce good parameter esti-
mates when refined by dynamically dimensioned search. Thus, our hybrid com-
bination of two meta-heuristics produced better results than either constituent
approach, and better results than other meta-heuristic approaches on average.
This was true of not only the convergence rate on the coagulation problem, but
also the biochemical benchmark problems; DOPS required two-orders of magni-
tude fewer function evaluations compared with enhanced Scatter Search (eSS)
to estimate the biochemical benchmark model parameters. What remains to
be explored is the performance of DOPS compared to techniques that utilize
derivative information, either on their own or in combination with other meta-
heuristics, and the performance of DOPS in real-world applications compared
with other meta-heuristics such as hybrid genetic algorithms e.g., see [223]. Gra-
dient methods perform well on smooth convex problems which have either a
closed form of the gradient of the function being minimized, or a form that can
be inexpensively estimated numerically. While the biological problems DOPS is
intended for often do not have this form, perhaps the solutions could be further
improved by following (or potentially replacing) the DDS phase with a gradi-
ent based technique when applicable. Taken together, the combination of parti-
cle swarm optimization and dynamically dimensioned search performed better
than either of these constituent approaches alone, and required fewer function

evaluations compared with other common meta-heuristics.

2.4 Conclusions

DOPS performed well on many different systems with no pre-optimization of

algorithm parameters, however there are many research questions that should
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be pursued further. DOPS comfortably outperformed existing, widely used
meta-heuristics for high dimensional global optimization functions, biochemi-
cal benchmark models and a model of the human coagulation system. However,
it is possible that highly optimized versions of common meta-heuristics could
surpass DOPS; we should compare the performance of DOPS with optimized
versions of the other common meta-heuristics on both test and real-world prob-
lems to determine if a performance advantage exists in practice. Next, DOPS
has a hybrid architecture, thus the particle swarm phase could be combined
with other search strategies such as local derivative based approaches to im-
prove convergence rates. We could also consider multiple phases beyond parti-
cle swarm and dynamically dimensioned search, for example switching to a gra-
dient based search following the dynamically dimensioned search phase. Lastly,
we should update DOPS to treat multi-objective problems. The identification of
large biochemical models sometimes requires training using qualitative, con-
flicting or even contradictory data sets. One strategy to address this challenge is
to estimate experimentally constrained model ensembles using multiobjective
optimization. Previously, we developed Pareto Optimal Ensemble Techniques
(POETs) which integrates simulated annealing with Pareto optimality to iden-
tify models near the optimal tradeoff surface between competing training objec-
tives [21]]. Since DOPS consistently outperformed simulated annealing on both
test and real-world problems, we expect a multi-objective form of DOPS would
more quickly estimate solutions which lie along high dimensional trade-off sur-

faces.
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2.5 Methods

2.5.1 Optimization problem formulation.

Model parameters were estimated by minimizing the difference between model
simulations and & experimental measurements. Simulation error is quantified
by an objective function K (p) (typically the Euclidean norm of the difference be-
tween simulations and measurements) subject to problem and parameter con-

straints:

&
Z (gi(th X, p, ll) - yi)2

min K(p)
P i=1

subjectto % = f(z,x(z, p), u(?), p)

2.1
X(f) = X @D

c(t,x,p,u) >0

p'<p<p’
The term K(p) denotes the objective function (sum of squared error), t denotes
time, g;(#;, X, p, u) is the model output for experiment i, while y; denotes the mea-
sured value for experiment i. The quantity x(z, p) denotes the state variable
vector with an initial state x,, u(¢) is a model input vector, f(z, x(¢, p), u(?), p) is the
system of model equations (e.g., differential equations or algebraic constraints)
and p denotes the model parameter vector (quantity to be estimated). The pa-
rameter search (or model simulations) can be subject to ¢(z, x, p, u) linear or non-
linear constraints, and parameter bound constraints where p* and pY denote

the lower and upper parameter bounds, respectively. Optimal model parame-
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ters are then given by:

p’ = argmin K (p) (2.2)
P

In this study, we considered only parameter bound constraints, and did not
include the c(z,x, p, u) linear or non-linear problem constraints. However, addi-
tional these constraints can be handled, without changing the approach, using

a penalty function method.

2.5.2 Dynamic optimization with particle swarms (DOPS).

DOPS combines multi-swarm particle swarm optimization with dynamically
dimensioned search (Fig. and (Algo. [I). The goal of DOPS is to estimate op-
timal or near optimal parameter vectors for high-dimensional biological models
within a specified number of function evaluations. Toward this objective, DOPS
begins by using a particle swarm search and then dynamically switches, using

an adaptive switching criteria, to a DDS search phase.

Phase 1: Particle swarm phase.

Particle swarm optimization is an evolutionary algorithm that uses a popula-
tion of particles (solutions) to find an optimal solution [68, 2]. Each particle is
updated based on its experience (particle best) and the experience of all other
particles within the swarm (global best). The particle swarm phase of DOPS be-
gins by randomly initializing a swarm of K-dimensional particles (represented
as z;), wherein each particle corresponded to a K-dimensional parameter vec-

tor. After initialization, particles were randomly partitioned into k equally sized
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input : A randomized swarm of particles of size NP x K and fixed
number of function evaluations N
output: Optimized parameter vector of size 1 x K

1 Initialize the particles randomly and assign particles randomly to various
sub-swarms;

2 while j < N do

3 if mod(j,G)=0 then

4 | Reassign particles to different sub-swarms;

5 end

6 fori < 1to NS do

7 | Update particles within sub-swarms according to equation 3;

8 end

9 | Find best particle G amongst all sub-swarms;

10 if besterror(j) > 0.99 x besterror(j + 1) then

1 ‘ failurecounter < failurecounter + 1;
12 else

13 ‘ failurecounter « (;

14 end

15 if failurecounter > threshold then
16 G «— DDS(G,N — ));

17 return G

18 else

19 ‘ je—j+1;

20 end

21 return G

2 end

Algorithm 1: Pseudo code for the dynamic optimization with particle
swarms (DOPS) method.

sub-swarms Sy, ...,S;. Particles within each sub-swarm S; were updated ac-

cording to the rule:
zij = 01,j12ij-1 + 6y (L’ - Zi,j—l) + 631, (gk - Z,',j_l) (2.3)

where (6, 6,, 6;) were adjustable parameters, £; denotes the best solution found
by particle i within sub-swarm S; for function evaluation 1 — j - 1, and G, de-
notes the best solution found over all particles within sub-swarm S;. The quan-
tities r; and r, denote uniform random vectors with the same dimension as the

number of unknown model parameters (X X 1). Equation (2.3) is similar to the
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general particle swarm update rule, however, it does not contain velocity terms.
In DOPS, the parameter 6, ;_; is similar to the inertia weight parameter for the
velocity term described by Shi and Eberhart [305]]; Shi and Eberhart proposed a
linearly decreasing inertia weight to improve convergence properties of particle
swarm optimization. Our implementation of 6, ;_; is inspired by this and the
decreasing perturbation probability proposed by Tolson and Shoemaker [332].
It is an analogous equivalent to inertia weight on velocity. However 6, ;_; places
inertia on the position rather than velocity and uses the same rule described by

Shi and Eberhart to adaptively change with the number of function evaluations:

(N - .]) * (Wmax - Wmin)) W
(N— 1) min

01 (2.4)

where N represents the total number of function evaluations, w;,,, and w,,;, are
the maximum and minimum inertia weights, respectively. In this study, we
used Wy = 0.9 and wy,;, = 0.4, however, these values are user configurable and
could be changed depending upon the problem being explored. Similarly, 6,
and 65 were treated as constants, where 6, = 6; = 1.5. While updating the par-

ticles, parameter bounds were enforced using reflection boundary conditions
(Algo.[2).

if z;’lf < Z;’”" then

[y

2 sz.W = zzljd + (z;"i” - zzljfi) if zgj.w > 7 then
= 4

4 end

5 end

6 if zfj.d > 7" then

7 7o = Z;’,ljd + (Zzzd — ") if 7 < Z"" then

8 i ="

9 end

10 end
Algorithm 2: Pseudo code for the reflective boundary conditions used by
the dynamic optimization with particle swarms (DOPS) method.
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After every M function evaluations, particles were randomly redistributed
to a new sub-swarm, and updated according to Eqn. (2.3). This process contin-
ued for a maximum of F N functions evaluations, where F denotes the fraction

of function evaluations used during the particle swarm phase of DOPS:

NP) .

The quantity NP denotes the total number of particles in the swarm, N denotes
the total possible number of function evaluations, while the counter j denotes
the number of successful particle swarm iterations (each costing NP function
evaluations). If the simulation error stagnated e.g., did not change by more
than 1% for a specified number of evaluations (default value of 4), the swarm
phase was terminated and DOPS switched to exploring parameter space using

the DDS approach using the remaining (1 — ¥) N function evaluations.

Phase 2: DDS phase.

input : Candidate vector G from swarm search and (1 - F) N
evaluations
output: Optimized parameter vector of size 1 x K

while j < (1 -F)N do

2 | Assign probability of perturbation to each dimension P; according to
equation 7;

3 Select a subset of dimensions based on a threshold value for perturbation;

4 Update candidate solution G(J) according to equation 5;

5 Ensure updated solution G,.,,(J) is within bounds using Algorithm 2;

6 end

Algorithm 3: Pseudo code for the Dynamically Dimensioned Search (DDS)

method.

[y

Dynamically Dimensioned Search (DDS) is a single solution based search
algorithm. DDS is used to obtain good solutions to high-dimensional search

problems within a fixed number of function evaluations. DDS starts as a global

48



search algorithm by perturbing all the dimensions. Later the number of dimen-
sions that are perturbed is decreased with a certain probability. The probability
that a certain dimension is perturbed reduces (a minimum of one dimension
is always perturbed) as the iterations increase. This causes the algorithm to
behave as a local search algorithm as the number of iterations increase. The per-
turbation magnitude of each dimension is from normal distribution with zero
mean. The standard deviation that was used in the original DDS paper and
the current study is 0.2. DDS performs a greedy search where the solution is
updated only if it is better than the previous solution. The combination of per-
turbing a subset of dimensions along with greedy search indirectly relies on
model sensitivity to a specific parameter combination. The reader is requested

to refer to the original paper by Tolson and Shoemaker for further detail [332].

At the conclusion of the swarm phase, the overall best particle, G, over the k
sub-swarms was used to initialize the DDS phase. DOPS takes at least (1 — ) N
function evaluations during the DDS phase and then terminates the search. For
the DDS phase, the best parameter estimate was updated using the rule:

G + Yworma Do (), if Grew ) < GA).
gnew(J) = (26)

G, otherwise.

where J is a vector representing the subset of dimensions that are being per-
turbed, r,,..a denotes a normal random vector of the same dimensions as G,

and o denotes the perturbation amplitude:
o =R(p"-p") 2.7)

where R is the scalar perturbation size parameter, p” and p* are (X X 1) vectors

that represent the maximum and minimum bounds on each dimension. The
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set J was constructed using a probability function #; that represents a thresh-
old for determining whether a specific dimension j was perturbed or not; #; is

monotonically decreasing function of function evaluations:

Pi=1- log[ (2.8)

i
(1-FIN ]
where i is the current iteration. After #; is determined, we drew #; from a
uniform distribution for each dimension j. If £; < $; was included in J. Thus,
the probability that a dimension j was perturbed was inversely proportional to

the number of function evaluations. DDS updates are greedy; G,... becomes the

new solution vector only if it is better than G.

2.5.3 Multiswitch DOPS

We investigated whether switching search methods more than once would re-
sult in better performance; this DOPS variant is referred to as multiswitch DOPS
or msDOPS. msDOPS begins with the PSO phase and uses the same criteria as
DOPS to switch to the DDS phase. However, msDOPS can switch back to a
PSO search when the DDS phase has reduced the functional value to 90% of
its initial value. Should the DDS phase fail to improve the functional value
sufficiently, this version is identical to DOPS. When the switch from DDS to
PSO occurs, we use the best solution from DDS to seed the particle swarm.
DOPS and msDOPS source code is available for download under a MIT license

at http:/ /www.varnerlab.org.
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2.54 Comparison Techniques.

The implementations of particle swarm optimization, simulated annealing, and
genetic algorithms are the ones given in Matlab R2017A (particleswarm,
simulannealbnd and ga). The implementation of DE used was developed
by R.Storn and available at http://wwwl.icsi.berkeley.edu/~storn/
code.html. The version of eSS used was Release 2014B - AMIGO2014bench
VERSION WITH eSS MAY-2014-BUGS FIXED - JRB, released by the Process En-
gineering Group IIM-CSIC. The genetic algorithm, particle swarm, and differ-
ential evolution algorithms were run with a 40 particles to be directly compa-
rable to the number of particles used in the PSO phase of DOPS. For compari-
son, the version of CM-AES used was cmaes .m, Version 3.61.beta from https:
//www.lri.fr/~hansen/cmaes_inmatlab.html. The scripts used to run

the comparison methods are also available at http:/ /www.varnerlab.org.
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2.6 Tables

Table 2.1: Table with optimization settings and results for the coagulation prob-
lem, the benchmarks and test functions using DOPS. For each problem the
bounds on the parameter vector, the total number of function evaluations, the
best initial objective value and the best final objective value are specified. Here
pnom indicates the nominal or true parameter vector of the model. Nominal ob-
jective value represents the objective value using the true parameter vector or
the nominal parameter vector. The CPU time is the time taken for the problem
on a 2.4GHz Intel Xeon Architecture running Matlab 2014b.

Coagulation Bl B4 Ackley Rastrigin

Evaluations | 4000 4000 4000 4000 4000
Lower Bound | 0.001.pnom 0.2.pnom 0.2.pnom -15 -5.12

Upper Bound | 1000.pnom  5.pnom  5.pnom 30 5.12

CPU Time | 10.1 hrs 38.3 hrs 6.2 min 2.8s 26s

Scaled initial error | 1.0 1.0 1.0 1.0 1.0
Scaled final error | < 0.01 <0.01 <0.01 <0.01 <0.01
Scaled nominal error | 0.42 0.1 <0.01 0 0
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Table 2.2: Error analysis for the human coagulation model. The coagulation
model was trained on coagulation initiated with TF/FVIIa at 5 nM and the
5 pM to obtain the optimal parameters. Using these optimal parameters, coag-
ulation dynamics were predicted for varying initiator concentrations (500 pM,
50 pM and 10 pM). Model agreement with measurements was quantified us-
ing normalized squared error. The normalized squared error is defined as
N.S.E. = (1/max(X)) = (|I(Y, X)|l/sqgrt(N)) where X is the experimental data, Y is
the model simulation data interpolated onto the experimental time scale and N
is the total number of experimental time points.

TF/FVIla concentration | Normalized S.E. Category

5nM | 0.1336 Training
500 pM | 0.2242 Prediction
50 pM | 0.3109 Prediction
10 pM | 0.2023 Prediction

5pM | 0.1170 Training
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CHAPTER 3
REDUCED ORDER MODELING AND ANALYSIS OF THE HUMAN
COMPLEMENT SYSTEM

Abstract

[|Complement is an important pathway in innate immunity, inflammation, and
many disease processes. However, despite its importance, there are few val-
idated mathematical models of complement activation. In this study, we de-
veloped an ensemble of experimentally validated reduced order complement
models. We combined ordinary differential equations with logical rules to pro-
duce a compact yet predictive model of complement activation. The model,
which described the lectin and alternative pathways, was an order of magni-
tude smaller than comparable models in the literature. We estimated an ensem-
ble of model parameters from in vitro dynamic measurements of the C3a and
C5a complement proteins. Subsequently, we validated the model on unseen
C3a and Cba measurements not used for model training. Despite its small size,
the model was surprisingly predictive. Global sensitivity and robustness anal-
ysis suggested complement was robust to any single therapeutic intervention.
Only the simultaneous knockdown of both C3 and C5 consistently reduced C3a
and C5a formation from all pathways. Taken together, we developed a vali-
dated mathematical model of complement activation that was computationally
inexpensive, and could easily be incorporated into pre-existing or new pharma-
cokinetic models of immune system function. The model described experimen-

tal data, and predicted the need for multiple points of therapeutic intervention

!This chapter has previously been published as [282].
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to fully disrupt complement activation.

3.1 Introduction

Complement is an important pathway in innate immunity. It plays a significant
role in inflammation, host defense as well as many disease processes. Com-
plement was discovered in the late 1880s where it was found to ‘complement’
the bactericidal activity of natural antibodies [246]. However, research over
the past decade has suggested the importance of complement extends beyond
innate immunity. For example, complement contributes to tissue homeostasis
[265]. It has also has been linked with several diseases including Alzheimers,
Parkinson’s, multiple sclerosis, schizophrenia, rheumatoid arthritis and sepsis
[266] 272]. Complement also plays positive and negative roles in cancer; at-
tacking tumor cells with altered surface proteins in some cases, while poten-
tially contributing to tumor growth in others [288] 267]. Lastly, several other
important biochemical systems are integrated with complement including the
coagulation cascade, the autonomous nervous system and inflammation [267].
Thus, complement is important in a variety of beneficial and potentially harm-
ful functions in the body. Despite its importance, there have been few approved
complement specific therapeutics, largely because of safety concerns and chal-

lenging pharmacokinetic constraints, however, progress is being made [268].

The complement cascade involves many soluble and cell surface proteins, re-
ceptors and regulators [349,350]. The outputs of complement are the Membrane
Attack Complex (MAC), and the inflammatory mediator proteins C3a and C5a.

The membrane attack complex, generated during the terminal phase of the re-
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sponse, forms transmembrane channels which disrupt the membrane integrity
of targeted cells, leading to cell lysis and death. On the other hand, the C3a and
Cba proteins act as a bridge between innate and adaptive immunity, and play an
important role in regulating inflammation [288]. Complement activation takes
places through three pathways: the classical, the lectin and the alternate path-
ways. The classical pathway is triggered by antibody recognition of foreign
antigens or other pathogens. A multimeric protein complex C1 binds antibody-
antigen complexes and undergoes a conformational change, leading to an ac-
tivated form with proteolytic activity. The activated Cl-complex cleaves solu-
ble complement proteins C4 and C2 into C4a, C4b, C2a and C2b, respectively.
The C4a and C2b fragments bind to form the C4bC2a protease, also known as
the classical pathway C3 convertase (CP C3 convertase). The lectin pathway is
initiated through the binding of L-ficolin or Mannose Binding Lectin (MBL) to
carbohydrates on the surfaces of bacterial pathogens. These complexes, in com-
bination with mannose-associated serine proteases 1 and 2 (MASP-1/2), also
cleave C4 and C2, leading to additional CP C3 convertase. Thus, the classical
and lectin pathways, initiated by different cues on foreign surfaces, converge
at the CP C3 convertase. On the other hand, the alternate pathway is activated
by a “tickover” mechanism in which complement protein C3 is spontaneously
hydrolyzed to form an activated intermediate C3w; C3w recruits factor B and
factor D, leading to the formation of C3wBb. C3wBb cleaves C3 into C3a and
C3b, where the C3b fragment further recruits additional factor B and factor D to
form C3bBb, the alternate C3 convertase (AP C3 convertase) [249]. The role of
classical and alternate C3 convertases is varied. First, AP C3 convertases medi-
ate signal amplification. AP C3 convertases cleave C3 into C3a and C3b; the C3b

fragment is then free to form additional alternate C3 convertases, thereby form-
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ing a positive feedback loop. Next, AP /CP C3 convertases link complement ini-
tiation with the terminal phase of the cascade through the formation of C5 con-
vertases. Both classical and alternate C3 convertases can recruit C3b subunits to
form the classical pathway C5 convertase (C4bC2aC3b, CP C5 convertase), and
the alternate pathway C5 convertase (C3bBbC3b, AP C5 convertase), respec-
tively. Both C5 convertases cleave C5 into the C5a and C5b fragments. The C5b
fragment, along with the complement proteins C6, C7, C8 and multiple C9s,
form the membrane attack complex. On the other hand, both C3a and C5a are
important inflammatory signals involved in several responses [349, 350]. Thus,
the complement cascade attacks invading pathogens, while acting as a beacon

for adaptive immunity.

The complement cascade is regulated by plasma and host cell surface pro-
teins which balance host safety with effectiveness. The initiation of the classical
pathway via complement protein C1 is controlled by the C1 Inhibitor (C1-Inh);
Cl-Inh irreversibly binds to and deactivates the active subunits of C1, prevent-
ing chronic complement activation [348]. Regulation of upstream processes in
the lectin and alternate pathways also occurs through the interaction of the
C4 binding protein (C4BP) with C4b, and factor H with C3b [31]. Interest-
ingly, both factor H and C4BP are capable of binding their respective targets
while in convertase complexes as well. At the host cell surface, membrane co-
factor protein (MCP or CD46) can interact with C4b and C3b, which protects
the host cell from complement self-activation [270]. Delay accelerating factor
(DAF or CD55) also recognizes and dissociates both C3 and C5 convertases on
host cell surfaces [195]. More generally the well known inflammation regulator
Carboxypeptidase-N has broad activity against the complement proteins C3a,

C4a, and Cb5a, rendering them inactive by cleavage of carboxyl-terminal argi-
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nine and lysine residues [186]. Although Carboxypeptidase-N does not directly
influence complement activation, it silences the important inflammatory signals
produced by complement. Lastly, assembly of the MAC complex itself can be in-
hibited by vitronectin and clusterin in the plasma, and CD59 at the host surface
[56, 370]. Thus, there are many points of control which influence complement

across the three activation pathways.

Developing quantitative mathematical models of complement could be cru-
cial to fully understanding its role in the body. Traditionally, complement mod-
els have been formulated as systems of linear or non-linear ordinary differential
equations (ODEs). For example, Hirayama et al., modeled the classical com-
plement pathway as a system of linear ODEs [139], while Korotaevskiy and
co-workers modeled the classical, lectin and alternate pathways as a system of
non-linear ODEs [174]. More recently, large mechanistic models of sections of
complement have also been proposed. For example, Liu et al., analyzed the for-
mation of the classical and lectin C3 convertases, and the regulatory role of C4BP
using a system of 45 non-linear ODEs with 85 parameters [187]. Zewde and
co-workers constructed a detailed mechanistic model of the alternative path-
way which consisted of 107 ODEs and 74 kinetic parameters and delineated
between the fluid, host and pathogen surfaces [370]. However, these previous
studies involved large models with little experimental validation. Thus, while
these models are undoubtably important theoretical tools, it is unclear if they
can describe or quantitatively predict complement measurements. The central
challenge of complement model identification is the estimation of model param-
eters from experimental measurements. Unlike other important cascades, such
as coagulation where there are well developed experimental tools and publicly

available data sets, the data for complement is relatively sparse. Data sets with
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missing or incomplete data, and limited dynamic data also make the identifi-
cation of large mechanistic complement models difficult. Thus, reduced order
approaches which describe the biology of complement using a limited number
of species and parameters could be important for pharmacokinetic model de-
velopment, and for our understanding of the varied role of complement in the

body.
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3.2 Results
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Figure 3.1: Reduced order complement model training. An ensemble of model
parameters were estimated using multiobjective optimization from C3a and Cba
measurements with and without zymosan [227]. The model was trained us-
ing C3a and C5a data generated from the alternative pathway (A-B) and lectin
pathway initiated with 1 mg/ml zymosan (C-D). The solid black lines show the
simulated mean value of C3a or Cb5a for the ensemble, while the dark shaded
region denotes the 99% confidence interval of mean. The light shaded region de-
notes the 99% confidence interval of the simulated C3a and C5a concentration.
All initial conditions were assumed to be at their physiological serum levels
unless otherwise noted.

In this study, we estimated an ensemble of experimentally validated reduced
order complement models using multiobjective optimization. The modeling ap-
proach combined ordinary differential equations with logical rules to produce
a complement model with a limited number of equations and parameters. The

reduced order model, which described the lectin and alternative pathways, con-
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sisted of 18 differential equations with 28 parameters. Thus, the model was
an order of magnitude smaller and included more pathways than comparable
models in the literature. We estimated an ensemble of model parameters from
in vitro time series measurements of the C3a and C5a complement proteins. Sub-
sequently, we validated the model on unseen C3a and C5a measurements not
used for model training. Despite its size, the model was surprisingly predictive.
After validation, we performed global sensitivity and robustness analysis to es-
timate which parameters and species controlled model performance. Sensitivity
analysis suggested CP C3 and C5 convertase parameters were critical, while ro-
bustness analyses suggested complement was robust to any single therapeutic
intervention; only the knockdown of both C3 and C5 consistently reduced C3a
and C5a formation for all cases. Taken together, we developed a reduced order
complement model that was computationally inexpensive, and could easily be
incorporated into pre-existing or new pharmacokinetic models of immune sys-
tem function. The model described experimental data, and predicted the need

for multiple points of intervention to disrupt complement activation.

3.2.1 Reduced order complement network.

The complement model described the alternate and lectin pathways (Fig. [3.2).
A trigger event initiated the lectin pathway (encoded as a logical rule), which
activated the cleavage of C2 and C4 into C2a, C2b, C4a and C4b, respectively.
Classical Pathway (CP) C3 convertase (C4aC2b) then catalyzed the cleavage of
C3 into C3a and C3b. The alternate pathway was initiated through the sponta-
neous hydrolysis of C3 into C3a and C3b. The C3b fragments generated by hy-

drolysis (or by CP C3 convertase) could then form the alternate pathway (AP)
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C3 convertase (C3bBb). We did not consider C3w, nor the formation of the ini-
tial alternate C3 convertase (C3wBb). Rather, we assumed C3w was equivalent
to C3b and only modeled the formation of the main AP C3 convertase. Both the
CP and AP C3 convertases catalyzed the cleavage of C3 into C3a and C3b. A
second C3b fragment could then bind with either the CP or AP C3 convertase
to form the CP or AP C5 convertase (C4bC2aC3b or C3bBbC3b). Both C5 con-
vertases catalyzed the cleavage of C5 into the C5a and C5b fragments. In this
study, we simplified the model by assuming both factor B and factor D were
in excess. However, we did explicitly account for the action of two other con-
trol proteins, factor H and C4BP. Lastly, we did not consider MAC formation,
instead we stopped at C5a and C5b. Lectin pathway activation, and C3/C5
convertase activity were modeled using a combination of saturation kinetics
and non-linear transfer functions, which resulted in a significant size reduction
of the model, while maintaining performance. Binding interactions were mod-
eled using mass-action kinetics, where we assumed all binding was irreversible.
Thus, while the reduced order complement model encoded significant biology,
it was highly compact consisting of only 18 differential equations and 28 model
parameters. Next, we estimated an ensemble of model parameters from time

series measurements of the C3a and C5a complement proteins.
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Figure 3.2: Simplified schematic of the human complement system. The com-
plement cascade is activated through three pathways: the classical, the lectin,
and the alternate pathways. Complement initiation results in the formation of
classical or alternative C3 convertases, which amplify the initial complement
response and signal to the adaptive immune system by cleaving C3 into C3a
and C3b. C3 convertases further react to form C5 convertases which catalyze
the cleavage of the C5 complement protein to C5a and C5b. C5b is critical to
the formation of the membrane attack complex (MAC), while C5a recruits an
adaptive immune response.
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3.2.2 Estimating an ensemble of reduced order complement

models.

A critical challenge for the development of any dynamic model is the estimation
of model parameters. We estimated an ensemble of complement model param-
eters using in vitro time-series data sets generated with and without zymosan, a
lectin pathway activator [227]. The residual between model simulations and ex-
perimental measurements was minimized using the Pareto Optimal Ensemble
Technique (JuPOETs) [20] starting from a initial guess generated by the dynamic
optimization with particle swarms (DOPS) routine. Unless otherwise specified,
all initial conditions were assumed to be at their mean physiological values.
While we had significant training data, the parameter estimation problem was
underdetermined (we were not able to uniquely determine model parameters).
Thus, instead of using the best-fit yet uncertain parameter set, we estimated an
ensemble of probable parameter sets to quantify model uncertainty (N = 2100,
see materials and methods). The complement model ensemble captured the be-
havior of both the alternate and lectin pathways (Fig. 3.1). To estimate alternate
pathway model parameters, we used C3a and C5a measurements in the absence
of zymosan (Fig. and B). On the other hand, lectin pathway parameters
were estimated from C3a and C5a measurements in the presence of 1mg/ml
zymosan (Fig. and D). The reduced order model reproduced a panel of
alternate and lectin pathway data sets in the neighborhood of physiological fac-
tor and inhibitor concentrations. The model fit for parameter sets estimated by
JuPOETs, quantified by the Akaike information criterion (AIC), was statistically
significantly different than a random parameter control for each case at a 95%

confidence level. However, it was unclear whether the reduced order model
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could predict new data, without updating the model parameters. To address
this question, we fixed the model parameters and simulated data sets not used

for model training.

We tested the predictive power of the reduced order complement model
with data not used during model training (Fig. [3.4). Six validation cases were
considered, three for C3a and Cba each, respectively. Similar to model train-
ing, we compared the AIC for each prediction case to a randomized parame-
ter family. All model parameters and initial conditions were fixed for the val-
idation simulations (with the exception of zymosan, and other experimentally
mandated changes). The ensemble of reduced order models predicted the qual-
itative dynamics of C3a formation (Fig. top), and Cba formation (Fig.
bottom) at three inducer concentrations. For each training case, the AIC was
statistically significantly different than the random parameter control for a 95%
confidence level. The rate of C3a formation and C3a peak time were directly
proportional to initiator dose. Similarly, the C5a plateau and rate of formation
were also directly proportional to initiator dose, with the lag time being indi-
rectly proportional to initiator exposure for both C3a and C5a. However, there
were shortcomings with model performance. First, while the overall C3a trend
was captured (within the 99% confidence interval), the C3a dynamics were too
fast with the exception of the low dose case. We believe the C3a time scale was
related to our choice of training data, how we modeled the tickover mecha-
nism, and factor B and D limitation. We trained the model using either no or 1
mg/ml zymosan, but predicted cases in a different initiator range; comparing
training to prediction, the model performance e.g., the shape of the C3a trajec-
tory was biased towards either high or very low initiator doses. Next, tickover

was modeled as a first-order generation processes where C3wBb formation and
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activity was lumped into the AP C3 convertase. Thus, we skipped an important
upstream step which could influence AP C3 convertase formation by attenu-
ating the rate C3 cleavage into C3a and C3b. We also assumed both factor B
and factor D were not limiting, thereby artificially accelerating the rate of AP
C3 convertase formation. The Cb5a predictions followed a similar trend as C3a;
we captured the long-time C5a behavior but over predicted the time scale of
C5 cleavage. However, because the C5a time scale depends strongly upon C3
convertase formation, we can likely correct the C5 issues by fixing the rate of C3
cleavage. Despite these shortcomings, we qualitatively predicted experimental
measurements not used for model training typically within the 99% confidence
of the ensemble, for three inducer levels. Next, we used global sensitivity and
robustness analysis to determine which parameters and species controlled the

performance of the complement model.

3.2.3 Global analysis of the reduced order complement model.

We conducted sensitivity analysis to estimate which parameters controlled the
performance of the reduced order complement model. We calculated the total
sensitivity of the C3a and Cba residual to changes in model parameters with
and without zymosan (Fig. [3.3). In the absence of zymosan (where only the al-
ternative pathway is active), the most sensitive parameter was the rate constant
governing the assembly of the AP C3 convertase, as well as the rate constant
controlling basal C3b formation via the tickover mechanism. The C5a trajectory
was sensitive to the AP C5 convertase kinetic parameters (Fig. [3.3A). Interest-
ingly, neither the rate nor the saturation constant governing AP C3 convertase

activity were sensitive in the absence of zymosan. Thus, C3a formation in the al-
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Figure 3.3: Global sensitivity analysis of the reduced order complement model.
Sensitivity analysis was conducted on the two objectives used for model train-
ing. A: Sensitivity of the C3a and Cba residual w/o zymosan. B: Sensitiv-
ity of the C3a and Cba residual with 1 mg/ml zymosan. The bars denote the
mean total sensitivity index for each parameter, while the error bars denote the
95% confidence interval. C: Pathways controlled by the sensitivity parameters.
Bold black lines indicate the pathway involves one or more sensitive parame-
ters, while the red lines show current therapeutics targets. Current complement
therapeutics were taken from the review of Morgan and Harris [229].

ternative pathway was more heavily influenced by the spontaneous hydrolysis
of C3, rather than AP C3 convertase activity, in the absence of zymosan. In the

presence of zymosan, the C3a residual was controlled by the formation and ac-
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tivity of the CP C3 convertase, as well as tickover and degradation parameters.
On the other hand, the C5a residual was controlled by the formation and activ-
ity of CP C5 convertase, and tickover C3b formation in the presence of zymosan
(Fig. [3.3B). The lectin initiation parameters were sensitive, but to a lesser ex-
tent than CP convertase kinetic parameters and tickover C3b formation. Thus,
sensitivity analysis suggested that CP C3/C5 convertase formation and activity
dominated in the presence of zymosan, but tickover parameters and AP C5 con-
vertase were more important without initiator. AP C3 convertase assembly was
important, but its activity was not. Next, we compared the sensitivity results to
current therapeutic approaches; pathways involving sensitive parameters have
been targeted for clinical intervention (Fig. B.3C). In particular, the sensitivity
analysis suggested AP/CP C5 convertase inhibitors, or interventions aimed at
attenuating C3 or C5 would most strongly influence complement performance.
Thus, there was at least a qualitative overlap between sensitivity and the poten-
tial of biochemical efficacy. However, total sensitivity coefficients quantify how
simultaneous changes in many parameters e.g., rate or saturation constants af-
tect model performance (in this case model fit). To better understand the role of
each parameter, and parameter combination, we explored how finite changes in

parameter combinations influenced model performance.

Pairwise parameter perturbations identified crosstalk within the comple-
ment model (Fig. 3.5). We perturbed each pairwise parameter combination
by 10%, and calculated the distance between the perturbed and nominal state
for each parameter set in the ensemble. We then clustered the mean response
of each parameter combination based upon the euclidian distance between the
perturbed and nominal states into low (green), medium (red) and high (blue) re-

sponse clusters. A low response (white) meant the parameter perturbations did
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not significantly change the system state compared with the nominal case. Four
of the 28 parameters (or approximately 14% of the overall model parameters)
were in the high response cluster (Fig. blue cluster). These parameters in-
cluded the rate constant controlling the basal formation of C3b (#12), C3a degra-
dation (#26) as well as the catalytic rate constant governing CP C3 convertase
activity (#22). The only C5 related parameter in the high response group was
the rate constant controlling the formation of CP C5 convertase (#15). Approx-
imately, 36%, or 10 of the 28 model parameters, were clustered in the medium
impact cluster (Fig. red cluster). Three parameters (#10, #1, #27) were espe-
cially important in this cluster; The reaction order governing CP C3 convertase
activity was important (#10), along with the rate constant controlling C4a and
C4b formation from C4 in the lectin initiation pathway (#1), and the constant
controlling the inhibitory action of C4BP (#27). Lastly, 50% of the model param-
eters were clustered in the low response cluster (Fig. green cluster). Many
of these parameters influenced complement activation; for example, parame-
ter #23 (the CP C3 convertase saturation constant) was important, just not to the
extent of other model parameters. Pairwise synergistic interactions between pa-
rameters were also identified. For example, in the high impact cluster, three syn-
ergistic relationships were identified, a single positive and two negative cases.
Parameters #12 (rate constant governing basal C3b formation) and #15 (forma-
tion of CP C5 conevertase) acted synergistically to increase the system response.
On the other hand, simultaneously changing parameters #12 and #22 or #15 and
#26 decreased the system response relative to a single perturbation. However,
the most striking examples of synergy occurred in the medium impact cluster;
for example, simultaneously increasing parameters #13 (rate constant govern-

ing AP C3 convertase formation) and #19 (saturation constant governing AP
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C5 convertase activity) significantly changed the model state. Changes in pa-
rameter #3 (rate constant governing C2a and C2b formation from C2) showed
both positive and negative synergistic effects depending upon the other param-
eter that was perturbed. Taken together, sensitivity coefficients quantified how
changes in parameters or parameter combinations affected model performance.
However, individual parameters e.g., rate or saturation constants are not easily
druggable. To more closely simulate a clinical intervention e.g., administration
of anti-complement inhibitors, we performed knock-down analysis on the ini-

tial values of C3 and C5 in the absence and presence of flow.

Knock-down analysis in the absence of flow suggested there was no single
intervention that inhibited complement activation in the presence of both ini-
tiation pathways (Fig. B.6). Robustness coefficients quantify the response of a
protein to a macroscopic structural or operational perturbation to a biochemical
network. Here, we computed how the C3a and Cba trajectories responded to a
decrease in the initial abundance of C3 and/or C5 with and without lectin initia-
tor. We simulated the addition of different doses of anti-complement inhibitor
cocktails by decreasing the initial concentration of C3, C5 or the combination
of C3 and C5 by 50%, 90% and 99%. This would be conceptually analogous
to the administration of a C3 inhibitor e.g., Compstatin alone or combination
with Eculizumab (Fig. 3.3C). The response of the complement model to differ-
ent knock-down magnitudes was non-linear; a 90% knock-down had an order
of magnitude more impact than a 50% knock-down. As expected, a C5 knock-
down had no effect on C3a formation for either the alternate (Fig. [3.6/A) or lectin
pathways (Fig. 3.6B). However, C3a and to a greater extent C5a abundance de-
creased with decreasing C3 concentration in the alternate pathway (Fig. 3.6/A).

This agreed with the sensitivity results; changes in AP C3-convertase formation
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affected the downstream dynamics of Cba formation. Thus, if we only consid-
ered the alternate pathway, C3 alone could be a reasonable target, especially
given that C5a formation was surprisingly robust to C5 levels in the alternate
pathway. Yet, when both pathways were activated, C5a levels were robust to the
initial C3 concentration (Fig. 3.6B); even 1% of the nominal C3 was able to gen-
erate enough AP/CP C5 convertase to maintain C5a formation. Thus, the only
reliable intervention that consistently reduced both C3a and C5a formation for
all cases was a knockdown of both C3 and C5. For example, a 90% decrease of
both C3 and C5 reduced the formation of C5a by an order of magnitude, while
C3a was reduced to a lesser extent (Fig. B.6B).
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3.3 Discussion

In this study, we estimated an ensemble of experimentally validated reduced
order complement models using multiobjective optimization. The modeling
approach combined ordinary differential equations with logical rules to pro-
duce a complement model with a limited number of equations and parameters.
The reduced order model, which described the lectin and alternative pathways,
consisted of 18 differential equations with 28 parameters. Thus, the model was
an order of magnitude smaller and included more pathways than comparable
mathematical models in the literature. We estimated an ensemble of model pa-
rameters from in vitro time series measurements of the C3a and C5a comple-
ment proteins. Subsequently, we validated the model on unseen C3a and Cba
measurements that were not used for model training. Despite its small size,
the model was surprisingly predictive. After validation, we performed global
sensitivity and robustness analysis to estimate which parameters and species
controlled model performance. These analyses suggested complement was ro-
bust to any single therapeutic intervention. The only intervention that consis-
tently reduced C3a and C5a formation for all cases was a knockdown of both
C3 and C5. Taken together, we developed a reduced order complement model
that was computationally inexpensive, and could easily be incorporated into
pre-existing or new pharmacokinetic models of immune system function. The
model described experimental data, and predicted the need for multiple points

of intervention to disrupt complement activation.

There has been a paucity of validated mathematical models of complement
pathway activation. To our knowledge, this study is one of the first complement

models that combined multiple initiation pathways with experimental valida-
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tion of important complement products like C5a. However, there have been
several theoretical models of components of the cascade in the literature. Liu
and co-workers modeled the formation of C3a through the classical pathway
using 45 non-linear ODEs [187]. In contrast, in this study we modeled lectin
mediated C3a formation using only five ODEs. Though we did not model all
the initiation interactions in detail, especially the cross-talk between the lectin
and classical pathways, we successfully captured C3a dynamics with respect to
different concentrations of lectin initiators. The model also captured the dynam-
ics of C3a and Cba formed from the alternate pathway using only seven ODEs.
The reduced order model predictions of C5a were qualitatively similar to the
theoretical complement model of Zewde et al., which involved over 100 ODEs
[370]. However, we found that the C3a produced in the alternate pathway was
nearly three orders of magnitude greater than the C5a generated. While this
was in agreement with the experimental data [227], it differed from the theo-
retical predictions made by Zewde et al., who showed C3a was eight orders
of magnitude greater than the C5a concentration [370]. In our model, the time
profile of both C3a and C5a generated changed with respect to the quantity of
zymosan (the lectin pathway initiator). In particular, the C3a peak time was di-
rectly proportional to initiator, while the lag phase for generation was inversely
proportional to the initiator concentration. Korotaevskiy et al. showed a simi-
lar trend using a theoretical model of complement, albeit for much shorter time
scales [174]. Thus, the reduced order complement model performed at least as

well as existing larger mechanistic models, despite being significantly smaller.

Global analysis of the complement model suggested potentially important
therapeutic targets. Complement malfunctions are implicated in a spectrum

of diseases, however the development of complement specific therapeutics has
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been challenging [266,229]. Previously, we have shown that mathematical mod-
eling and analysis can be useful tools to estimate therapeutically important
mechanisms [194), 236, 329, 262]. In this study, we analyzed a validated ensem-
ble of reduced order complement models to better understand the strengths and
weaknesses of the cascade. In the presence of an initiator, C3a and C5a forma-
tion was sensitive to CP C3/C5 convertase assembly and activity, and to a lesser
extent lectin initiation parameters. Formation of the CP convertases can be in-
hibited by targeting upstream protease complexes like MASP-1,2 from the lectin
pathway (or Clr, C1s from classical pathway). For example, Omeros, a protease
inhibitor that targets the MASP-2 complex, has been shown to inhibit the forma-
tion of downstream convertases [298]. Lampalizumab and Bikaciomab, which
target factor B and factor D respectively, or naturally occurring proteins such as
Cobra Venom Factor (CVF), an analogue of C3b, could also attenuate AP con-
vertase formation [345, [168| 152]. Removing supporting molecules could also
destabilize the convertases. For example, Novelmed Therapeutics developed
the antibody, NM9401 against propedin, a small protein that stabilizes alter-
nate C3 convertase [16]. Lastly, convertase catalytic activity could be attenuated
using small molecule protease inhibitors. All of these approaches are consis-
tent with the results of the sensitivity analysis. On the other hand, robustness
analysis suggested C3a and Cba generation could only be significantly atten-
uated by modulating the free levels of C3 and C5. The most commonly used
anti-complement drug Eculizumab, targets the C5 protein [229]. Several other
antibodies targeting C5 are also being developed; for example, LFG316 targets
C5 in Age-Related Macular Degeneration [277], while Mubodina is used to treat
Atypical Hemolytic-Uremic Syndrome (aHUS) [210]. Other agents such as Cov-

ersin [357] or the aptamer Zimura [97] could also be used to knockdown C5. The
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peptide inhibitor Compstatin and its derivatives are promising approaches for
the inhibition of C3 [204]. However, while the knockdown of C3 and C5 affect
C3a and Cba levels downstream, the abundance, turnover rate and population
variation of these proteins make them difficult targets [310) 325]. For exam-
ple, the eculizumab dosage must be significantly adjusted during the course of
treatment for aHUS [245]. A validated complement model, in combination with
personalized pharmacokinetic models of immune system function, could be an

important development for the field.

The performance of the complement model was impressive given its limited
size. However, there are several questions that should be explored further. A
logical progression for this work would be to expand the network to include the
classical pathway and the formation of the membrane attack complex (MAC).
However, time course measurements of MAC abundance (and MAC formation
dynamics) are scarce, making the inclusion of MAC challenging. On the other
hand, inclusion of classical pathway activation is straightforward. Liu et al.,
have shown cross-talk between the activation of the classical and lectin path-
ways through C reactive proteins (CRP) and L-ficolin (LF) under inflammation
conditions [187]. Thus, inclusion of these species, in addition to a lumped ac-
tivation term for the classical pathway should allow us to capture classical ac-
tivation. Next, we should address the C3a time scale issue. We believe the
C3a time scale was related to our choice of training data, how we modeled
the tickover mechanism, and factor B and D limitation. Tickover was mod-
eled as a first-order generation processes where C3wBb formation and activity
was lumped into the AP C3 convertase. Thus, we skipped an important step
which could strongly influence AP C3 convertase formation by slowing down

the rate C3 cleavage into C3a and C3b. The model should be expanded to in-
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clude the C3wBb intermediate, where C3wBDb catalyzes C3 cleavage at a slow
rate compared to normal AP or CP C3 convertases. We also assumed both factor
B and factor D were not limiting, thereby artificially accelerating the rate of AP
C3 convertase formation. This shortcoming could be addressed by including
balances around factor B and D, and including these species in the appropriate
kinetic rates. The Cba predictions also had an accelerated time scale. However,
because the C5a time scale depended strongly upon C3 convertase formation,
we can likely correct the C5 issues by fixing the rate of C3 cleavage. Lastly, we
should also consider including the C2-bypass pathway, which was not included
in the model. The C2-bypass mediates lectin pathway activation, without the
involvement of MASP-1/2. Thus, this pathway could be important for under-

standing the role of MASP-1/2 inhibitors on complement activation.
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3.4 Materials and Methods

3.4.1 Formulation and solution of the complement model equa-

tions.

We used ordinary differential equations (ODEs) to model the time evolution of

complement proteins (x;) in the reduced order model:

R
%%:;mjrj(x,e,k) i=1,2,....M (3.1)
where R denotes the number of reactions and M denotes the number of proteins
in the model. The quantity 7; denotes a time scale parameter for species i which
captures unmodeled effects. For the current study, 7 scaled with the level of
initiator (z) for C5a and C5b; 1; = z/z* for i = C5a, C5b where z* was Img/ml,
7; = 1 for all other species. The quantity r; (x, €, k) denotes the rate of reaction ;.
Typically, reaction j is a non-linear function of biochemical and enzyme species
abundance, as well as unknown model parameters k (K x 1). The quantity o;
denotes the stoichiometric coefficient for species i in reaction j. If o;; > 0, species
i is produced by reaction j. Conversely, if o;; < 0, species i is consumed by
reaction j, while o;; = 0 indicates species i is not connected with reaction j.

Species balances were subject to the initial conditions x (z,) = x,.

Rate processes were written as the product of a kinetic term (7;) and a control
term (v;) in the complement model. The kinetic term for the formation of C4a,
C4b, C2a and C2b, lectin pathway activation, and C3 and C5 convertase activity

was given by:

n
Fj = kK (—XS ) (3.2)

] ]
st + X
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where ke denotes the maximum rate for reaction j, ¢; denotes the abundance of

the enzyme catalyzing reaction j, n denotes a cooperativity parameter, and Kj;

denotes the saturation constant for species s in reaction j. We used mass action

kinetics to model protein-protein binding interactions within the network:
=k | ] A (3.3)

sem;
where ke denotes the maximum rate for reaction j, o;; denotes the stoichiomet-
ric coefficient for species s in reaction j, and s € m; denotes the set of reactants

for reaction j. We assumed all binding interactions were irreversible.

The control terms 0 < v; < 1 depended upon the combination of factors
which influenced rate process j. For each rate, we used a rule-based approach to
select from competing control factors. If rate j was influenced by 1, ..., m factors,
we modeled this relationship asv; = 7 (fu (O Uy (-)) where 0 < f;; (-) < 1 de-
notes a regulatory transfer function quantifying the influence of factor i on rate
J. The function 7 (-) is an integration rule which maps the output of regulatory
transfer functions into a control variable. Each regulatory transfer function was
modeled using a Hill function. In this study, we used 7, € {min, max} [286]. If
a process has no modifying factors, v; = 1. The model equations were imple-
mented in Julia and solved using the CVODE routine of the Sundials package
[28],138]. The model code and parameter ensemble is freely available under an

MIT software license and can be downloaded from the Varnerlab website [339].

3.4.2 Estimating complement model parameters.

We estimated a single initial parameter set using the Dynamic Optimization

with Particle Swarms (DOPS) technique [284]. DOPS is a novel hybrid meta-

78



0.1 mg/ml zymosan

0.01 mg/ml zymosan

0.001 mg/ml zymosan

Ensemble: 50.9 + 1.0
Random: 60.5 + 4.7

Ensemble: 44.8 + 1.6
Random: 66.6 + 4.5

Concentration (u

Ensemble: 44.1 + 1.4
Random: 64.6 + 5.3

0035 Ensemble: 29.1 + 0.3 Ensemble: 11.5 + 4.3 Ensemble: 9.13 + 6.3
. Random: 68.3 + 0.6 Random: 87.0 + 0.8 Random: 87.8 + 0.4
= 0.030 0.015 0.015
\;_:/ou 5
2 . ©
g 0.020 0.010 0.010 8
c
D 0.015
o
6
O 0.010 0.005 0.005

0.005

Wl
0.000, 5 10 15 20 750' 5 10 15 20 0.000 10 15
Time (hrs) Time (hrs) Time (hrs)

Figure 3.4: Reduced order complement model predictions. Simulations of C3a
and Cba generated in the lectin pathway using 0.1 mg/ml, 0.01 mg/ml, and
0.001 mg/ml zymosan were compared with the corresponding experimental
measurements. The solid black lines show the simulated mean value of C3a or
Cba for the ensemble, while the dark shaded region denotes the 99% confidence
interval of mean. The light shaded region denotes the 99% confidence interval of
the simulated C3a and Cba concentration. All initial conditions were assumed
to be at their physiological serum levels unless otherwise noted.

heuristic which combines a multi-swarm particle swarm method with the dy-
namically dimensioned search approach of Shoemaker and colleagues [333].
DOPS minimized the squared residual between simulated and C3a and Cba
measurements with and without zymosan as a single objective. The best fit
set estimated by DOPS served as the starting point for multiobjective ensemble
generation using Pareto Optimal Ensemble Technique in the Julia programming

language (JuPOETs) [20]. JuPOETs is a multiobjective approach which inte-
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grates simulated annealing with Pareto optimality to estimate model ensembles
on or near the optimal tradeoff surface between competing training objectives.

JuPOETs minimized training objectives of the form:

7 2 (M, —maxy;; )
+(—” y]] (3.4)

01(k) = ;(M,-, - 55(K) A

subject to the model equations, initial conditions and parameter bounds £ <
k < U. The first term in the objective function measured the shape difference
between the simulations and measurements. The symbol Mi ; denotes a scaled
experimental observation (from training set j) while the symbol ;; denotes the
scaled simulation output (from training set j). The quantity i denotes the sam-

pled time-index and 7; denotes the number of time points for experiment j. The

scaled measurement is given by:

~ M,j—min,-M,'j
M,’j =

3.5
max; M;; — min; M;; (35)

Under this scaling, the lowest measured concentration become zero while the
highest equaled one, where a similar scaling was defined for the simulation out-
put. The second-term in the objective function quantified the absolute error in
the estimated concentration scale, where the absolute measured concentration
(denoted by M;;) was compared with the largest simulated value. In this study,
we minimized two training objectives, the total C3a and Cba residual w/o zy-
mosan (O;) and the total C3a and C5a residual for 1 mg/ml zymosan (O,).
JuPOETs identified an ensemble of N = 2100 parameter sets which were used
for model simulations and uncertainty quantification subsequently. JuPOETs
is open source, available under an MIT software license. The JuPOETs source
code is freely available from the JuPOETs GitHub repository [340]. The objec-
tive functions used in this study are available in the GitHub model repository

[339].
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The simulation and prediction performance of the complement model was
measured using the Akaike information criterion (AIC) [5]. In this study, we

implemented the AIC as:

1
AIC = 2N, + N,,In (M Z (x, — y,)z) (3.6)

where N,, N,, denotes the number of parameters, and the number of experimen-
tal measurements, respectively. The summation term in Eq. denotes the
residual between the model simulation (x) and experimental measurements (y),
where the residual is normalized by the scale of the experimental data (M). We
compared the AIC for the model parameters estimated in this study, with a ran-
dom parameter control generated to have a similar order of magnitude. The
mean and standard deviation of the AIC was calculated over the parameter en-

semble and the random parameter control were reported in this study.

3.4.3 Complement model analysis.
Global sensitivity analysis.

We conducted global sensitivity analysis to estimate which parameters and
species controlled the performance of the reduced order model. We computed
the total variance-based sensitivity index of each parameter relative to the train-
ing residual for the C3a/Cba alternate and C3a/Cba lectin objectives using the
Sobol method [312]. The sampling bounds for each parameter were established
from the minimum and maximum value for that parameter in the parameter
ensemble. We used the sampling method of Saltelli ef al. to compute a family
of N (2d + 2) parameter sets which obeyed our parameter ranges, where N was

the number of trials per parameters, and d was the number of parameters in
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the model [287]. In our case, N = 400 and d = 28, so the total sensitivity indices
were computed using 23,200 model evaluations. The variance-based sensitivity

analysis was conducted using the SALib module encoded in the Python pro-

gramming language [135].

Pairwise sensitivity analysis and clustering.
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Figure 3.5: Pairwise sensitivity and clustering of complement model parame-
ters in the presence of 1 mg/ml zymosan. The response of the complement
model was calculated for each parameter combination following a 10% increase
in parameter combinations in the presence of 1 mg/ml zymosan. The model
parameters were clustered into high (blue), medium (red) and low (green) re-
sponse clusters based upon the euclidian distance between the perturbed and
nominal system state.

We perturbed each pair of model parameters by 10% of their nominal value,
and then calculated the euclidian distance between the perturbed and nominal
system states for physiological conditions. We repeated this calculation for each
member of the parameter ensemble, and calculated the mean differences be-

tween the perturbed and nominal states. We then clustered the resulting 10g10
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transformed mean distances using the Clustergram routine in MATLAB (The

Mathworks, Natick MA). We considered three clusters, high, medium and low

displacement.

Robustness analysis.
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Figure 3.6: Robustness analysis of the complement model. Robustness coeffi-
cients were calculated for a 50%, 90% and 99% reduction in C3, C5, or C3 and
C5 initial conditions. A: Mean robustness index for C3a and C5a generated from
the alternate pathway (w/o zymosan). B: Mean robustness index for C3a and
Cba generated from the lectin and alternate pathway (1 mg/ml zymosan). The
color describes the degree of reduction of C3a or C5a following the network per-
turbation. Robustness coefficients were calculated using all parameter sets with
Pareto rank less than five (N = 65). Mean robustness values were reported.



Robustness coefficients quantify the response of a marker to a structural or
operational perturbation to the network architecture. Robustness coefficients
were calculated as shown previously [330]. Log-transformed robustness coeffi-

cients denoted by & (i, Jrtos tf) were defined as:

ty Ly
a (i, j,t(,,tf):logml( f xl-(t)dt) ( f xf”(z)dz)l (3.7)

Here, t, and t; denote the initial and final simulation time, while i and j de-
note the indices for the marker and the perturbation, respectively. A value of
& (i, Jrty, tf) > 0, indicates increased marker abundance, while & (i, Jrty, tf) < 0in-
dicates decreased marker abundance following perturbation j. If & (i, Jr by, tf) ~
0, perturbation j did not influence the abundance of marker i. In this study, we
perturbed the initial condition of C3 or C5 or a combination of C3 and C5 by
50%, 90% and 99% and measured the area under the curve (AUC) of C3a or Cha
with and without lectin initiator. We computed the robustness coefficients for
a subset of the parameter ensemble (N = 65) and reported the mean robustness

value.

84



Funding
This material is based upon work supported by, or in part by, the U. S. Army

Research Laboratory and the U. S. Army Research Office under contract/grant

number W911NF1020114.

85



CHAPTER 4
KINETIC MODELING OF COAGULATION AND FIBRINOLYSIS IN
PLASMA

4.1 Abstract

E| Rotational thromboelastometry (ROTEM) provides an assessment of a pa-
tient’s coagulation and fibrinolytic systems. ROTEM has become one of the
most important and cost effective point-of-care techniques to rapidly test for
hyper or hypo fibrinolysis. Given the prevalence of ROTEM, it is of tremendous
clinical importance to develop mathematical models that integrate ROTEM
measurements with the underlying biochemistry of coagulation. However, the
development of such models has been slow, and plagued by challenges due to
unavailability and complexity of fibrin degradation products coupled with an
incomplete understanding of the degradation mechanism, missing patient data,
patient variability and a lack of consensus about the mechanisms that contribute
to hyperfibrinolysis or hypofibrinolysis. In this study, we developed an effec-
tive mathematical model which integrates ROTEM measurements with the bio-
chemistry of coagulation and clot formation. The effective model consists of 24
ordinary differential equations combined with logical rules describing unmod-
eled regulatory mechanisms. The effective model describes the three phases of
coagulation, the influence of key regulatory species, as well as thrombin me-
diated formation of cross-linked fibrin. Model parameters were estimated us-
ing thrombin generation curves and ROTEM measurements from platelet poor

plasma isolated from blood taken from healthy individuals. After validating

'Under preparation as “Effective modeling of the human coagulation and fibrinolytic path-
ways” A. Sagar, R. LeCover, M. Bravo, T. Orfeo, K.E. Brummel-Ziedins, A. Pusateri, J]. Varner
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that our model captured the thrombin generation curves, we used them to pre-
dict ROTEM measurements for a separate set of patients. Our model captured
the trends of ROTEM trajectories change shape with increasing concentrations
of tPA, and had the lowest error at high concentrations of tPA. Variance based
sensitivity analysis emphasized the importance of tPA in the area under the
ROTEM curve, and through posing the inverse problem, we found that we
could, on average, recover the protein concentrations within 30% of their true

values.

4.2 Introduction

Trauma is the leading cause of death and disability for persons 36 years old
and younger, surpassing all other causes combined [175]. In addition to its cost
in lives, trauma has a large economic cost; it accounts for approximately $671
billion per year, in health care costs and lost productivity [109]. Hemorrhage
accounts for 40% of all trauma deaths, where the control of bleeding is espe-
cially challenging in the presence of blood coagulation disorders, collectively
known as coagulopathy [291]. Trauma induced coagulopathy can follow from
several mechanisms, for example, coagulation factor depletion, dysregulation
of the protein C pathway, shedding of the glycocalyx, and hyperfibrinolysis
[78]. However, adverse outcomes associated with coagulopathy are not lim-
ited to death from acute blood loss. Too much clotting can also be associated
with a poor prognosis. Organ dysfunction, multiple organ failure and increased
susceptibility to sepsis [102] are all potential consequences of prolonged shock
resulting from coagulopathy [290]. For example, fatal multiple organ failure

in severely injured trauma patients is often characterized by a hypofibrinolytic
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state (fibrinolytic shutdown), in which clot lysis is impaired [208]. In trauma pa-
tients, rapid assessment of the coagulation and fibrinolytic systems could allow

for early detection of coagulopathy.

Rotational thromboelastometry, the family of tests to which ROTEM be-
longs, has been shown capable of assessing coagulation abnormailities and
rapidly predicting which patients would require massive transfusion, at a cost
comperable to the cost of assessing one aspect of the coagulation system [169].
ROTEM has been used to guide treatment of trauma patients to determine the
appropriate doses of fibrinogen concentrate and prothrombin complex concen-
trate, and this ROTEM guided treatment resulted in lower mortality than pre-
dicted by both the trauma injury severity score and the revised injury sever-
ity classification score [296]. Furthermore, when ROTEM is used in combina-
tion with a conventional clotting assay, such as the international normalized
ratio, these assays in combination increase the detection of patients with coagu-
lopathy as well as the senstivity in predicting which patients will need massive
transfusion [70]. Owing to the importance and prevalence ROTEM in hospitals
around the world, we sought to build a mathematical model that could connect

the underlying biochemistry to a ROTEM trajectory.

The immediate response of the body to injury is to activate the coagula-
tion system, which generates a barrier (hemostatic plug) to arrest blood loss.
Damage to the vasculature results