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While there has been progresscontrolling many diseaseas the past decade the

United Stateschronic liver disease mortality rate has increasabrding to Centsffor
Disease Control and PreventionThere is an urgent need fateveloping new
technologies and more sensitive methimd®arly diagnosis of liver disease. This thesis
proposs quantitative magnetiesonanceémaging technigues to leverage the existing
methods ad increase sensitivity and specificityr liver diseasediagnosis First, we
proposed a numerical optimization technique for efficient and ammeratecalculation

of perfusionmaps in the liver. Weroposeda new algorithm for water/fat separation
resultingin a rapid robust method of quantitatisesceptibilitymappirg (QSM) in the

liver. We investigated deep learning approaches in water/fat separation to replace the
current classical solvers and finally we investigated a machine learning approach to use
QSM and R2* teenhancdibrosis detection.The proposed framewks were tested in

both healthy volunteers and patigfar cancer diagnosis, iron measurement and fibrosis

detectionwith the possillity of translation into clinical practice.
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CHAPTER1
1 INTRODUCTION
1.1 MRI Principle to Signal Model

An MRI systemis comprisedf a magnet, gradient and radiofrequency coils, and a control unit.
In MRI images are produced using a pulse sequeitbea specific order, timing and duratio
playout ofgradient and radiofrequency comporsetttcharactéze theproperties of thenainly
hydrogen in water and fat which makgs~70%of thehuman bodyTheintrinsic property of
hydrogemucleusknown as spinonceplaced inside magnetic fiéd, generates a magnetization
that can be measured by MRhe two characteristic times of hydrogen measured by MRI are

called spinlattice relaxation time and spspin relaxation time, denotdxy T1 and T2.

The Bloch equation explains the behavior of megation (0 ) gerated by spins insidee

magnetic field B):
— fo — & O » —a e (G «8 [1.9

In an external field generated by the magnet precesses clockwise arouBdvith an angular
velocityo. o || O is precession frequengyown ad_armor frequency, is aconstant
referred to as the gyromagnetic ratog. 42.58 MHz/T fotH. Solutions to e Bloch equation
corresponding to Tfor transverse magnetizatigd ) and T1 for the longitudal component

(& ) is shown below



a a Q7 [1.7]

a a Qf a p QF [1.3]
The magnetic fielq| in the Bloch equation includes all noemndom macroscopic fields. This
nonrandom macroscopic field is generatedrstrument imperfection in the main field (BO),
gradient fielé (G), andinhomogeneityfield generated by the tissue itself causing intravox

dephasing which leads to a rapid signal decay with a time constaft@mbining”Y and™Y

results in the toal voxel signal decay:
= - - [1.4]

With gradient rephasing and dephasingisgiatial encoding and signali ) samplingat timeo

MRI equation for Gradientecalled echdGRE)sequencequals(1):
io _a»Q B “»iq B [1.5

whe

t» 4 t»Ic" . Given tissue magnetization can be considered as a collection of
magnetic dipole momentsdipolem located at> gereratesa magneti field & » at an
observasstion locatian

A e > [1.6]

The unit dipole field islefined:

Q» —

S [1.7]



where—is the angle between the location veagkand the main magnetic fietd » . Magnetic

field (scaled to|| ) is the sum of contrbutions from all dipole momems »):

A _* > Y AQa » [1.8

> >3

H

With Lorentz Spere correctia this leads to inverse problem saisceptibilitymeasurement from

measured field given the dipole kerg):
"H Qz ... » [1.9]

Field contribution inaddition to magnitude, modify the phaskich can be addew theGRE

signalmodel
io _a»rqQ *>Ha B "riq Bq» [1.10]
1.2 Summary of Contributions

The work in this thesis isomprised of numericaptimizationmethods, image processing, and
deep learning techniques in MRIgoopose new quantitative techniquesl improve sensitivity

and specificityof the currentnethods in liver diseasbagnosigo improve patient care

1. Liver Perfusion Mapping. Chapter2 presents novel method for perfusion mappiaging
dynamiccontrast enhanced MRUse of numerical optimization along with linearization of the
problemthe proposed perfusion mappingethodwas performed about Q@imesfaster
compared to the traditional mapping approach. This allowed to improve the accuracy of
perfusion mapping by including delaythe model to compensate for tirae it takes for the

blood fromsourceto travelto the regon of interestThe proposed algorithm yields similar



results comparetb traditional approaches while being computatignetficient and more

accuratevith potential translatiomto clinical applications.

2. Liver Quantitative Susceptibility Mappin g. Chapter3 proposes a new method for rapid,
robust, and automated generation of quantitaiweeptibilitymapping in the liverSolving
waterfat separatiomptimization a nonlinear nonconvex problem highly dependertheinitial
guess, is necessaxyremove the associated contributions otfamicalshift to the field. We
proposed an Hphase echdasedacquisitiontechnique tayenerate a rapid robust way of initial
guesgeneratiorfor the problem. In addition, QSkéquires choosing source with known
susceptibilityto convert relative to absolute measurement. An algofithsed on Hough
transformwas proposetbr automated segmentation of aorta as a reference sdimegroposed
methods showed greagproducibilityamong different scanners in healthy volunteers and

feasibility was shown in a patient population.

3. Deep Learning WaterFat Separationin Abdomen. Chapterd proposes novel deep

learning method to solve the optiration problem of watefiat separation. While conventional
techniquesequiregeneration of amitial guess anthumericattechniquego linearize and update

the unknownsteratively, theproposed method is free from these assumptions and a replacement
for conventionamethods of optimization. The proposed deep learning method does not require
reference images for training and given pingsicalcost function and inputs, the network is able

to update the weights and estimate the output afi¢h&orksimultaneouslyThe proposa

method was tested in both healtlglunteersanda patient population with very good agreement

with the reference images generated from conventional method



5. Fibrosis Detectionwith Quantitative Susceptibility Mapping. Chapte 5 proposes new
method for fibrosis detection using machine learnilbile collagen increases R2* relaxatjon

its diamagnetic characteristic decreases susceptibility. The proposed method investigates a
differentialapproach bysing logisticregressiorwith stepwise feature selection to maximize the
difference between the twilVe tested this hypothesis in-eixo human liver sampleshich
showedhigher sensitivity and spediity for fibrosis detection compared to use of individual

paraneters



CHAPTERZ2

2 ADVANCED METHODS FOR LIVER PERFUSION MAPPING

2.1 Abstract

In this chapter w@ropose an efficient algorithto perform duainput singlecompartment

modeling for generating perfusion maps in the livée implemented whole field of view linear
leastsquares (LLS) to fit a delay compensated dual input single compartment model to very high
temporal resolution (4 frames per second) contrast enhanced 3D liver data in order to calculate
kinetic parameter maps. Using simulated data and experimental dia@timy subjects and
patientsthe proposeavholefield LLS was compared to the conventional vewgde nonlinear

least squares (NLLS) approach in terms of accupaefprmanceand computation time.
Simulations showed good agreement between LLIN&E for a range of kinetic parameters.

The wholefield LLS method allowed generating liver perfusion maps abouffdl@Cfaster than
voxelwise NLLS, while obtaining similar perfusion paramet&slay compensated dual input

liver perfusion analysis usingholefield LLS allows generating perfusion maps with a

considerable speedup compared to conventional weisel nonlinear fitting.

2.2 Introduction

In dynamic contrastnhanced magnetic resonance imaging (EM), a differential equation
based on conservah of mass relates the temporal dynamics of contrast agent concentration to
perfusion parameters that describe the transport processes within theTtiaditenally,

nonlinear least squares (NLLS) techniques are used to derive perfusion parametergby fi

enhancement curves to the integral solution of the differential eqyajiorhis approach is

6



computationally expensive and reaesra good initial guess or multiple starting points to avoid
convergence to local minima. An alternative to this nonlinear method is to fit the differential
equation directly in a linear least squares (LLS) sense. Solving the differential equation directly
instead of working with the integral solution has been applied to Positron Emission Tomography
(PET)(3-6) demonstrating efficient performance for data acquired gh temporal resolution.
Implementation and comparison of LLS and NLLS techniques have similarly been investigated

in DCE-MRI (7-12) demonstrating increased efficiency while maintaining accuracy.

In liver kinetic modeling and perfusion imaging in MRI, aorta and portal vein known as the input
functions supply blood to the liver. These input functions are typically selected at the main
arteries which may not be at the vicinity of the tissue region where perfusimasired. The

time it takesfor the blood traviefrom thesourceinput function to the tissue of interesknown
asadelay. Estimating and correcting the input function delay is important, since ignoring it can
introduce large errors in the true vabfeperfusion parameters, such as up to 35%
underestimation of flow, and up to 60% of overestimation of mean transi{tBheMaterne et

al. implemented a delay compensated dual input model using nonlinear fitting. In this approach,
the nonlinear fit is repeated for several time shifinput functions and the delay that minimizes
the residual error is select€¥). Accurate liver perfusion quantification requikesrection for

both arterial input function (AIF) and portal venous input function (PVIF) d€lEg)s This,

however, considerably increases toenputational cost for the current NLLS fitting approach
because of the many combinations of delays for which a NLLS fit needs to be carried out.
Therefore, a dual delay correction is performed only on a regfiamterest (ROI) basis, and not

for whole liver perfusion mappingL6).



The current work proposes a whdield LLS method that uses efficient large scale solvers to fit
the perfusion parameteiar all voxels within the field of view simultaneougli/7).

Additionally, a method is proposed to efficiently combine this with dual input function delay
compensation. This method is demonstrated for high spatial and temporal 4D liver contrast
enhanced datd 8-20). Compared to NLLS, LLS is shown to drastically decrease computational

cost, making delay correction practical.

2.3 Methods

DCE-MRI signalintensitywas converted to relative enhancement assuming a linear relationship
between relaxation rate and concentration. Conversion from signal inte®sity énhancement

(X) for a spoiled gradient echo sequetS8PGR) is given b{21).

, [2.1]

whereYO  and"Yo denote signal intensity before and after the arrival of contrast agent.
Signal enhancement was further converted from blood to plasma assuming a hematocrit of 45%
(22). Routine clinical image data acquired for 7 liver donors and 7 patients with liver lesions
including metastasis (1), adenoma (1), focal nodular hyperplasia (1), and hepatocellular
carcinoma (4) were inctled in this study after removing all patient identifiers:idighted

images using 3D stack of spiral sequefi@® were acquired at 1.5 Tesla (GE Health¢are

SIGNA HD) before and after the injection of contrast agent (10 ml gadoxatatml/s). Whole

liver 4D images with 5 mm slice thickness at a temporal frame rate of 0.23 seconds, and duration
of 67 seconds were reconstructed using the Patch Based Reconstruction of Undersampled Data

(PROUD) algorithm(20) for enhanced signdb-noise ratio and high temporal frame rate. Image



parameters included: 15° flip angle, 1.56x1.56x5’mmel size, TR 6 ms, TE.6 ms. Slices
with the most prominent tumors (size and enhancement) were selected by a radiologist with 4

years of experience.

In this liver perfusion study, we incorporated a dual input single compartment model with both

AIF and PVIF delaysT( fit ) to account for input functions transit time:

— M6 0t Q6 0t Q6 oh [2.2]
where changes of contrast agent concentrati@n during the time course equals ingoing
contrast agent concentration from the adrtad and portal veird 0 multiplied with the

corresponding flow rate constanf@hQ minus the outgoing concentration multiplied with the

outflow rate congnt Q . We minimized the cost function:

AOCi Bi6o Q6 ot M6 o6 t Q60 8 [23
h h h

[ ETR  AOCI
h h h h

|
R

0 0 denotes the time derivative @ 0 . Here, the spatiaimension is implied in the L2 norm.
Equation2.2 is a function of both perfusion paramefiers ‘QhHQRQ and delays T ht
We minimize the cost function by setting its gradient to zero with respediperfusion

parameters) for known d®js ():

iR om [2.4]



This forms an overdetermined linear inverse problem which was solved numerically by taking
the integral of both sides Equation2.2 and forming matrices comprising of enhancement
profile time series witls time points A matrix representation of the fialem is

6T o h 6To holo Q
& & g 0 . [25]
0

~

60 o h ol o halo

o- M O-

whered denoteghe system matrix which relates measurementso(model parameters) and
overbar indicates numerical integratioiWhile previous approaches have solved the linear
system in Egation2.5 of voxel by voxel basis, a conjugate gradient method is used to solve
Equation2.5 for the whole field of view simultaneously. This farkation is referred to for the
remainder of the text as whefield LLS. This method has the advantage of allowing adding
additional regularizations, such as spatial smoothing. In this work, however, avEikisenov

regularization with a small regularizan parametey :

d 00 _"006 a8 [2.6]

The use of a small regularization parameter was empirically found to accelerate convergence

while obtaining a solution that was nearly identical to_the rtcase.

Once rate constant®XAQHQ) were calculated, maps of the arterial fraction@ Q¥ Q
Q ), extracellular volume® 6 @ Q "Q 7Q) and mean transit tim& ('Y'Y p¥Q) were

computed as follows:
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AOCi Bl Qd6'00Q ,AO0CI€06w @ 0 ,AOCKED Y'Y pa [2.7]

The second paof this problem consists of finding optimum delays. Minimizing the cost

function (Equation2.3) with respect to delays is nonconvex and forms a nonlinear inverse

problem which is dependent on the initial guess and may suffer from convergence to local

minima. To overcome this, a discrete set of physiological delays for both AIF and PVIF ranging
between 0 to 20 seconds with I-décond intervals (a multiple of the temporal frame rate) were
considered16). For a pair of input function delays (one for AIF and one for PVIF), a whole

field LLS problem was solved assuming that each voxelttiiadame given pair of input

function delays. The L2 norm between the measured and the calculated enhancement curves was
used to compute a residual for each voxel for this particular pair of delays. After repeating this
whole field of view calculation foall considered pairs of delays, the smallest residual and

corresponding delays were selected for each voxel separately across all obtained solutions.

To compare the performance of voxéke LLS and voxelvise NLLS methods, synthetic data

were generatednder different scenarios including variation of temporal resolution and contras
to-noise ratio (CNR) for two typical cases. The first case represented a hypervascular tumor such
as hepatocellular carcinoma and assumé@® wm POO w P ™ Fp mdtcandd Y'Y p 1.

The secondase represented healthy liver witHO ¢ T PO6 w ¢ ™ &p mdng andd "Y'Y

o 1. The curves were reconstructed at 4 frames per second @ed@7d duration to mimic
acquisition protocol in the experimental data. Input (ANIF) curves and corresponding tissue
enhancement curves are showirigure 2-1. Next noise was simulated by adding complex

Gaussian noise to these curves andhtakine absolute value. CNR was defined as the peak of

11



tissue enhancement curve divided by the standard deviation of the added Gaussian noise. CNR
was varied between 10 to 100 and fitting was repeated 100 times for each CNR. Relative error
for each perfusio parameters was recorded and averaged over the repetitions. Next this
simulation was repeated by introducing a pair of delays for the tumor case (AIF delay=0 s, PVIF
delay=12 s) and for the healthy liver case (AIF delay=12 s, PVIF delay=0 s). Finadglessi

data was downsampled to study the effect of temporal resolution which ranged from 0.23 to 4

seconds.

a . Synthetic Curves
—Aora
- b Portal Vein
5 — Liver
E Sr —Tumor
o
Sat
=
c
W3
@
=
© 2
[iT]
o
1
D 1 i i i i
0 10 20 30 40 50 60

Time (sec)

Figure 2-1. Input curves (aorta and portal vein) used in dugdut single compartment model to
generate synthetic tissues including a healthy liver (AF=30%, ECV=30 ml/100ml, MTT=30 s)
and a hypervascular tumor (AF=90%, ECV=80 ml/100ml, MTT=10 s) and correspondsng tis

enhancement curves.
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To investigate the effect of input function delays on the estimated perfusion parameters, noisy
synthetic curves (CNR=50) were generated (see above) now using various combinations of
delays ranging from O to 16 seconds witee2ond intervals for both AIF and PVIF. Average

error for each perfusion parameter across 100 repetitions was recorded for each pair of delays

and compared between voxeise LLS and voxelvise NLLS.

To compare voxelise LLS to wholefield LLS, noisy synthtic tissue curves were generated
with variable CNR ranging from 10 t0100 for various combinations of delays ranging from 0 to
16 seconds (for both AIF and PVIF) similar to the simulations above. For each of the 100
repetitions, a single image was constedecontaining all possible combinations of delays and
solved using both wholgeld LLS and voxelwise LLS. The estimation error for each perfusion

parameter was then averaged across all delays and all 100 repetitions for both methods.

To compare voxelise LLS and voxewise NLLS fitting in experimental data, R®hsed
analysis was performed on the images acquired in the 7 healthy subjects and 7 patients described
above. In each subject, 3 masks including the lesion (patient) or liver (healthy shigjeatic
artery, and portal vein were drawn and corresponding enhancement curves were obtained. These
curves were selected to calculate perfusion parameters and delays. Finally, for one healthy
subject (liver donor) and omeetastasis patient, perfusipaametric maps were generated using
both wholefield LLS and voxeiwise NLLS fitting. All algorithms were implemented in
MATLAB (Mathworks, Natick, MA) and calculations were performed on &&4Nindows

Machine with 6 cores (Intel 3.3 GHz) and 64 GB of RM.
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2.4 Results

Computation time in estimating delays and perfusion mapping for a slice with 256x256 voxels
and 288 time frames, was 146 for voxelwise NLLS, 8.5 hrgor voxelwise LLS (resulting in

a 17 fold speedp) and 0.88 hrs for wholgeld LLS (resulting in a 166 fold speea).

Figure 2-2 compares the performance of vbxgse LLS and voxeWise NLLS as a function of
CNR for a simulated tumor enhancement curve without AIF or PVIF dalaysvith delays.

Figure 2-3 shows the correspoimd) results for a healthy liver. These figures show that for high
enough CNR (>30), the relative error in the estimated perfusion parameters are small and similar
for both methods. Arterial fraction and mean transit time generally have higher relative erro
compared to extracellular volume fraction. Adding déteyeases uncertainty in parameter
estimation by introducing additional unknownsgguation2.2. For high CNR (>30), the AIF
delay error is smaller compared to PVIF delay error since the tissuesity arterially supplied
(AF=90%). Dependency of voxglise LLS and voxelvise NLLS methods on temporal
resolution is shown ifigure 2-4. Higher temporal resolution is associated with perfusion
parameter estimation accuracy. Among the perfusion parameters, extracellular volume is the

least susceptible to changes in temporalltg®n andchoice offitting method.
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Figure 2-2. Simulation results for a simulated hypervasculanor (AF=90%, ECV=80
ml/100ml, MTT=10 s) comparing performance of vexide LLS vs. voxalise NLLS as a
function of CNR. Shown are relative errors (%) for ECV (Extracellular volume), AF (Arterial
Fraction), MTT (Mean Transit Time) and errors (s) foFARArterial Input Function) delay and
PVIF (Portal Venous Input Function) delay a) without delay b) with AIF delay=0 s, PVIF

delay=12 s.
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Figure 2-3. Simulation results for a healthy liver (AF=30%CV=30 mI/100ml, MTT=30 s)
comparing performance of voxeise LLS vs. voxelise NLLS as a function of CNR. Shown are
relative errors (%) for ECV (Extracellular volume), AF (Arterial Fraction), MTT (Mean Transit

Time) and errors (s) for AIF (Arterial Inpdrunction) delay and PVIF (Portal Venous Input

Function) delay a) without delay b) with AIF delay=12 s, PVIF delay=0 s.
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Figure 2-4. Dependency of vox&lise LLS and voxalise NLLS on temporal resolutiam

calculating perfusion parameters for a simulated healthy liver (AF=30%, ECV=30 ml/100ml,

MTT=30 s) shown in (a) and a simulated tumor (AF=90%, ECV=80 ml/100ml, MTT=10 s)

shown in (b). Original noiseless enhancement curves were generated with 4 frasesope

temporal resolution and duration of 67 seconds and downsampled to simulated lower temporal

resolution.

Figure 2-5 compares the errors in estimated perfusion parameters betweemwsxelLS and

voxelwise NLLSfor a simulated tumor for various pairs of true AIF and PVIF delays. While

there is no error iAIF delay maps, the larger PVIF delay error has limited effegteafiision

estimation since with AF=90% the portal vein minimally supplies the ti€»erall voxelwise
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LLS and voxelwise NLLS agree well with the extracellular volume yielding the Idwe®r.

Figure 2-6 shows the corresponding results for the simulated healthy liver case. Errors in the

estimated delays for both AlIF and PVIF are below 3s in absiurtes, while the error in

estimated AF is slightly larger compared to the tumor case. Again, overall performance was very

similar between voxelise LLS and voxelvise NLLS.
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Figure 2-5. Comparison of voxekise LLS (a) and voxelise NLLS (b) methods for a simulated

tumor case (AF=90%, ECV=80 ml/100ml, MTT=10 s) including delays at CNR = 50. The

horizontal and vertical axes indicate the true PVIF and Adkags, respectively. Shown are the

mean relative error (%) for the perfusion parameters and corresponding mean error (s) in the

estimated AIF and PVIF delays.
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Figure 2-6. Comparison of voxekise LLS (a) ad voxelwise NLLS (b) methods for a simulated
healthy liver (AF=30%, ECV=30 mI/100ml, MTT=30 s) including delays at CNR = 50. The
horizontal and vertical axes indicate the true PVIF and AIF delays, respectively. Shown are the
mean relative error (%) forhie perfusion parameters and corresponding mean error (s) in the

estimated AIF and PVIF delays.

Figure 2-7 shows a comparison between whotdd LLS and voxelwise LLS for the simulated
tumor case as a function of CNR. Extracellular volume is the most robust in low CNR followed
by mean transit time and arterial fraction. For each CNR the results are avaragdte range

of AIF and PVIF delaygrigure 2-8 shows the corresponding results for the simulated healthy
liver case. Overall, estimation performance is nearly idahbietween wholéeld LLS and

voxeklwise LLS.
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Figure 2-7. Comparison of wholéeld LLS and voxeby-voxel LLS in estimating perfusion
parameters and associated input function delays for a hypervasauatar (AF=90%, ECV=80
ml/100ml, MTT=10 s) as a function of CNR. Note that for each CNR, the results are averaged

over a range of AIF and PVIF delays (see text for details).
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Figure 2-8. Comparison of wholéield LLS and voxeby-voxel LLS in estimating perfusion
parameters and associated input function delays for a healthy liver (AF=30%, ECV=30
ml/100ml, MTT=30 s) as a function of CNR. Note that for eddR Qhe results are averaged

over a range of AIF and PVIF delays (see text for details).

Table2-1 shows a comparison of voxeise LLS and voxeWise NLLS applied on the single
curves obtained after ROl averaging. Good agreement is observed in the estimated perfusion

parameters between voxwise LLS and voxelWise NLLS fitting. Although delays chan@g®m
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one subject to another within each category, AlIF delays tend to be larger in healthy liver

compared to lesions while the opposite trend is observed for the PVIF delays. A Wilcoxon

signed rank test fail to reject the hypothesis that difference betlde® and LLS perfusion

parameters come from a distribution with zero median for each perfusion parameters with the

p-values.

Table2-1. Comparison between LLS and NLLS of R@sed perfusion parameters fohealthy

liver donors and 7 patients.

MTT (s) ECV (ml/100ml) AF (%) AIF Delay () PVIF Delay (s)
Lesion
NLLS LLS | NLLS LLS NLLS LLS NLLS LLS NLLS LLS
Healthy Liveq 30.7 32.6 17.7 17 18 211 3.2 0 0 0
Healthy Livey 22.8 29.8 37.8 42.9 48.4 44.4 4.6 4.1 0 2
Healthy Liveq 13.1 14.3 18.4 19.3 221 23.1 0 0 0 2.3
Healthy Liveq 46.3 43.5 24.4 221 27.6 23.3 7.3 6.9 0 0
Healthy Liven 25.3 23.9 314 33.6 15.3 17.2 2.3 2.3 34 3.5
Healthy Liveq 21.7 18.9 15.9 14.8 19.3 19 2.3 2.3 0 0
Healthy Liveq 19.5 23.8 31.9 31.4 18.5 20.1 4.6 4.3 0 0
Metastasis 8 11.2 17.14 17.17 36.3 40 0 0 15.2 15
Adenoma | 11.1 11.3 29.6 28.5 79.3 80 2.3 2 14.9 11.5
FNH 8.7 8.9 64.9 65.4 69 72.2 0 0.9 15.2 15.2
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HCC 13.2 123 91 89.3 91.6 90 0 0 11.5 11.5
HCC 7.4 10.1 355 374 30 33.8 14.9 15 0 0
HCC 38.8 36.5 38.8 39 94 90 0 0 14.9 151
HCC 10.1 15 43.4  48.6 85.5 89.5 10.3 8.9 15.2 15.2
P-Value 0.26 0.64 0.59 0.15 1

Figure 2-9 shows a comparison of perfusion parametric maps superimposed on the first frame of
the dynamic DCE MR acquisition for the metastasis patient using vibtdd_LS (a) and voxel

wise NLLS (b).Overall a good agreement between the two methods is observed across the liver.
The AIF delay in the lesion (arrows) is lower (~5 s) compared to the surrounding liver (~15 s).
The opposite trend is observed in the PVIF delay maps. The metastasis, comparezlinding

liver, had an average extracellular volume that was about 3 times larger, an average arterial
fraction that was about 4 times higher, ranging between 45% to 80% and indicating that the
tumor was supplied by the hepatic arté2g), and a mean transit time that was 2 times higher.
NLLS fitting was limited to the voxels within the liver ROI and required 32 hrs of computation
time. Wholefield LLS required 55m of computation time but only the results within the liver

ROI are shown in Figure 4. The corresponding result for a healthy subject is sHéiguaran

2-10with obtained perfusion parameters in agreement with normal values reported in the
literature. Again, good agreement was observed across the liver betweesiigiidleS and

voxeklwise NLLS.
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Figure 2-9. Comparison of perfusion parameters using wiatl LLS (a) and voxelise NLLS

(b) methods in the metastasis subject (see Table 1). Perfusion parameters in metastasis (white
arrows in a)reveal increased extracellular volume (ml/100ml), arterial fraction (%), and mean
transit time (s) in the tumor compared to the surrounding liver. Arterial input function delay (s)

is smaller in the in the metastasis compared to the liver and oppositeisrebserve red in the

portal venous input function delay (s). Good agreement was found betweerfielddleéS and

voxetlwise NLLS in perfusion parametric maps.
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Figure 2-10. Comparison operfusion parameters using whdield LLS (a) and voxelise
NLLS (b) methods in the liver donor subject (see Table 1). Perfusion parameters in both methods
are similar to that of a normal liver and consistent with reported values in the literature (1)
including an average of 20 ml/2100ml in extracellular volume, an arterial fraction, ranging
between 15%25% and an average of 20 s for mean transit time. Good agreement was found

between wholéield LLS and voxelvise NLLS in perfusion and delay maps.

2.5 Discusson

The results in this work demonstrate the feasibility of significantly accelerating the fitting of
DCE-MRI of the liver to a delay compensated dual input single compartment model. The
proposed whole field LLS method uses conjugate gradient to redugai@iion time by a
factor of about 160 as compared to vewgde nonlinear least squares fitting. The estimates
obtained using the wholeeld LLS method are similar to the ones obtained using the current
NLLS method. The wholéeld LLS method enablesver perfusion mapping with corrected
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