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While there has been progress in controlling many diseases in the past decade in the 

United States, chronic liver disease mortality rate has increased according to Centers for 

Disease Control and Prevention. There is an urgent need for developing new 

technologies and more sensitive methods for early diagnosis of liver disease. This thesis 

proposes quantitative magnetic resonance imaging techniques to leverage the existing 

methods and increase sensitivity and specificity for liver disease diagnosis. First, we 

proposed a numerical optimization technique for efficient and more accurate calculation 

of perfusion maps in the liver. We proposed a new algorithm for water/fat separation 

resulting in a rapid robust method of quantitative susceptibility mapping (QSM) in the 

liver. We investigated deep learning approaches in water/fat separation to replace the 

current classical solvers and finally we investigated a machine learning approach to use 

QSM and R2* to enhance fibrosis detection.  The proposed frameworks were tested in 

both healthy volunteers and patients for cancer diagnosis, iron measurement and fibrosis 

detection with the possibility of  translation into clinical practice.        
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CHAPTER 1 

 INTRODUCTION  

1.1 MRI Principle to Signal Model 

An MRI system is comprised of a magnet, gradient and radiofrequency coils, and a control unit.  

In MRI images are produced using a pulse sequence with a specific order, timing and duration  

playout of gradient and radiofrequency components to characterize the properties of the mainly 

hydrogen in water and fat which makes up ~70% of the human body. The intrinsic property of 

hydrogen nucleus known as spin, once placed inside a magnetic field, generates a magnetization 

that can be measured by MRI. The two characteristic times of hydrogen measured by MRI are 

called spin-lattice relaxation time and spin-spin relaxation time, denoted by T1 and T2. 

The Bloch equation explains the behavior of magnetization (□) gerated by spins inside the 

magnetic field (B):  

□
ⱷ ά ά ◑ ά ● ά ◐Ȣ     [1.1] 

In an external field B generated by the magnet, m precesses clockwise around B with an angular 

velocity ⱷ.  ⱷ ║ □ is precession frequency known as Larmor frequency,  is a constant 

referred to as the gyromagnetic ratio, e.g. 42.58 MHz/T for 1H. Solutions to the Bloch equation 

corresponding to T2 for transverse magnetization (ά ) and T1 for the longitudal component 

(ά ) is shown below: 
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ά ά Ὡ Ⱦ                                                                [1.2] 

ά ά Ὡ Ⱦ ά ρ Ὡ Ⱦ                                                 [1.3] 

The magnetic field ║ in the Bloch equation includes all non-random macroscopic fields. This 

non-random macroscopic field is generated by instrument imperfection in the main field (B0), 

gradient fields (G), and inhomogeneity field generated by the tissue itself causing intravoxel 

dephasing which leads to a rapid signal decay with a time constant of Ὕ. Combining Ὕ and Ὕ 

results in the toal voxel signal decay: 

ᶻ       [1.4] 

With gradient rephasing and dephasing spin, spatial encoding, and signal (ί) sampling at time ὸ  

MRI equation for Gradient-recalled echo (GRE) sequence equals (1): 

ίὸ ά᷿ ►Ὡ ▓ ᶻ►ϳ ẗὩ ▓ẗ►Ὠ►ȟ                                        [1.5] 

where ▓ẗ► ╖ẗ►Ⱦς“ . Given tissue magnetization can be considered as a collection of 

magnetic dipole moments, a dipole m located at ► generates a magnetic field ὦ► at an 

observasstion location ὶ: 

ἪἺ
А
 
 ἵȢ►►ἵ

        ►    [1.6] 

The unit dipole field is defined: 

Ὠ►  
ȿ►ȿ

ȟ        ►    [1.7] 
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where — is the angle between the location vector ► and the main magnetic field ὦ►. Magnetic 

field (scaled to ║ ) is the sum of contrbutions from all dipole moments (► Í ►): 

 ἪἺ
А
᷿

►
►►

ἵ ►

ȿ►►ȿ
А Ὠz ά ►    [1.8] 

With Lorentz Sphere correction this leads to inverse problem of susceptibility measurement from 

measured field given the dipole kernel (1): 

 ἪἺ Ὠz … ►      [1.9] 

Field contribution in addition to magnitude, modify the phase which can be added to the GRE 

signal model: 

ίὸ ά᷿ ►Ὡ ► ▓ȢὩ ▓ ᶻ►ϳ ẗὩ ▓ẗ►Ὠ►                                [1.10] 

1.2 Summary of Contributions 

The work in this thesis is comprised of numerical optimization methods, image processing, and 

deep learning techniques in MRI to propose new quantitative techniques and improve sensitivity 

and specificity of the current methods in liver disease diagnosis to improve patient care. 

1. Liver Perfusion Mapping. Chapter 2 presents a novel method for perfusion mapping using 

dynamic-contrast enhanced MRI. Use of numerical optimization along with linearization of the 

problem the proposed perfusion mapping method was performed about 160 times faster 

compared to the traditional mapping approach. This allowed to improve the accuracy of 

perfusion mapping by including delay in the model to compensate for the time it takes for the 

blood from source to travel to the region of interest. The proposed algorithm yields similar 
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results compared to traditional approaches while being computationally efficient and more 

accurate with potential translation into clinical applications.     

2. Liver Quantitative Susceptibility Mappin g. Chapter 3 proposes a new method for rapid, 

robust, and automated generation of quantitative susceptibility mapping in the liver. Solving 

water-fat separation optimization, a nonlinear nonconvex problem highly dependent on the initial 

guess, is necessary to remove the associated contributions of fat chemical shift to the field. We 

proposed an in-phase echo-based acquisition technique to generate a rapid robust way of initial 

guess generation for the problem. In addition, QSM requires choosing a source with known 

susceptibility to convert relative to absolute measurement. An algorithm based on Hough 

transform was proposed for automated segmentation of aorta as a reference source. The proposed 

methods showed great reproducibility among different scanners in healthy volunteers and 

feasibility was shown in a patient population.     

3. Deep Learning Water-Fat Separation in Abdomen. Chapter 4 proposes a novel deep 

learning method to solve the optimization problem of water-fat separation. While conventional 

techniques require generation of an initial guess and numerical techniques to linearize and update 

the unknowns iteratively, the proposed method is free from these assumptions and a replacement 

for conventional methods of optimization. The proposed deep learning method does not require 

reference images for training and given the physical cost function and inputs, the network is able 

to update the weights and estimate the output of the network simultaneously. The proposed 

method was tested in both healthy volunteers and a patient population with very good agreement 

with the reference images generated from conventional method. 
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5. Fibrosis Detection with  Quantitative Susceptibility Mapping. Chapter 5 proposes a new 

method for fibrosis detection using machine learning. While collagen increases R2* relaxation, 

its diamagnetic characteristic decreases susceptibility. The proposed method investigates a 

differential approach by using logistic regression with stepwise feature selection to maximize the 

difference between the two. We tested this hypothesis in ex-vivo human liver samples which 

showed higher sensitivity and specificity for fibrosis detection compared to use of individual 

parameters. 
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CHAPTER 2 

 ADVANCED METHODS FOR LIVER PERFUSION MAPPING   

2.1 Abstract 

In this chapter we propose an efficient algorithm to perform dual-input single compartment 

modeling for generating perfusion maps in the liver. We implemented whole field of view linear 

least squares (LLS) to fit a delay compensated dual input single compartment model to very high 

temporal resolution (4 frames per second) contrast enhanced 3D liver data in order to calculate 

kinetic parameter maps. Using simulated data and experimental data in healthy subjects and 

patients, the proposed whole-field LLS was compared to the conventional voxel-wise nonlinear 

least squares (NLLS) approach in terms of accuracy, performance, and computation time. 

Simulations showed good agreement between LLS and NLLS for a range of kinetic parameters. 

The whole-field LLS method allowed generating liver perfusion maps about 160-fold faster than 

voxel-wise NLLS, while obtaining similar perfusion parameters. Delay compensated dual input 

liver perfusion analysis using whole-field LLS allows generating perfusion maps with a 

considerable speedup compared to conventional voxel-wise nonlinear fitting. 

2.2 Introduction  

In dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), a differential equation 

based on conservation of mass relates the temporal dynamics of contrast agent concentration to 

perfusion parameters that describe the transport processes within the tissue. Traditionally, 

nonlinear least squares (NLLS) techniques are used to derive perfusion parameters by fitting 

enhancement curves to the integral solution of the differential equation (2). This approach is 
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computationally expensive and requires a good initial guess or multiple starting points to avoid 

convergence to local minima. An alternative to this nonlinear method is to fit the differential 

equation directly in a linear least squares (LLS) sense. Solving the differential equation directly 

instead of working with the integral solution has been applied to Positron Emission Tomography 

(PET) (3-6) demonstrating efficient performance for data acquired with high temporal resolution. 

Implementation and comparison of LLS and NLLS  techniques have similarly been investigated 

in DCE-MRI (7-12) demonstrating increased efficiency while maintaining accuracy. 

In liver kinetic modeling and perfusion imaging in MRI, aorta and portal vein known as the input 

functions supply blood to the liver. These input functions are typically selected at the main 

arteries which may not be at the vicinity of the tissue region where perfusion is measured. The 

time it takes for the blood travel from the source input function to the tissue of interest is known 

as a delay.  Estimating and correcting the input function delay is important, since ignoring it can 

introduce large errors in the true value of perfusion parameters, such as up to 35% 

underestimation of flow, and up to 60% of overestimation of mean transit time (13). Materne et 

al. implemented a delay compensated dual input model using nonlinear fitting. In this approach, 

the nonlinear fit is repeated for several time shifted input functions and the delay that minimizes 

the residual error is selected (14). Accurate liver perfusion quantification requires correction for 

both arterial input function (AIF) and portal venous input function (PVIF) delays (15). This, 

however, considerably increases the computational cost for the current NLLS fitting approach 

because of the many combinations of delays for which a NLLS fit needs to be carried out. 

Therefore, a dual delay correction is performed only on a region-of-interest (ROI) basis, and not 

for whole liver perfusion mapping (16). 
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The current work proposes a whole-field LLS method that uses efficient large scale solvers to fit 

the perfusion parameters for all voxels within the field of view simultaneously (17). 

Additionally, a method is proposed to efficiently combine this with dual input function delay 

compensation. This method is demonstrated for high spatial and temporal 4D liver contrast 

enhanced data (18-20). Compared to NLLS, LLS is shown to drastically decrease computational 

cost, making delay correction practical. 

2.3 Methods 

DCE-MRI signal intensity was converted to relative enhancement assuming a linear relationship 

between relaxation rate and concentration. Conversion from signal intensity (S) to enhancement 

(X) for  a spoiled gradient echo sequence (SPGR) is given by (21): 

     ῾  ,      [2.1] 

where Ὓὸ  and Ὓὸ  denote signal intensity before and after the arrival of contrast agent. 

Signal enhancement was further converted from blood to plasma assuming a hematocrit of 45% 

(22). Routine clinical image data acquired for 7 liver donors and 7 patients with liver lesions 

including metastasis (1), adenoma (1), focal nodular hyperplasia (1), and hepatocellular 

carcinoma (4) were included in this study after removing all patient identifiers. T1-weighted 

images using 3D stack of spiral sequence (18) were acquired at 1.5 Tesla (GE Healthcare, 

SIGNA HD) before and after the injection of contrast agent (10 ml gadoxetate at 1 ml/s). Whole 

liver 4D images with 5 mm slice thickness at a temporal frame rate of 0.23 seconds, and duration 

of 67 seconds were reconstructed using the Patch Based Reconstruction of Undersampled Data 

(PROUD) algorithm (20) for enhanced signal-to-noise ratio and high temporal frame rate. Image 
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parameters included: 15º flip angle, 1.56×1.56×5 mm3 voxel size, TR 6 ms, TE 0.6 ms. Slices 

with the most prominent tumors (size and enhancement) were selected by a radiologist with 4 

years of experience.  

In this liver perfusion study, we incorporated a dual input single compartment model with both 

AIF and PVIF delays (†ȟ†) to account for input functions transit time: 

Ὧὅ ὸ † Ὧὅ ὸ † Ὧὅ ὸȟ   [2.2] 

where changes of contrast agent concentration ὅὸ during the time course equals ingoing 

contrast agent concentration from the aorta ὅ ὸ  and portal vein ὅ ὸ  multiplied with the 

corresponding flow rate constants ὯȟὯ  minus the outgoing concentration multiplied with the 

outflow rate constant Ὧ . We minimized the cost function: 

 ÁÒÇÍÉÎ
ȟ ȟ ȟȟ

‐ἳȟ ÁÒÇÍÉÎ
ȟ ȟ ȟȟ

В ὅὸ Ὧὅ ὸ † Ὧὅ ὸ † Ὧὅὸ Ȣ  [2.3] 

 

ὅὸ denotes the time derivative of  ὅὸ. Here, the spatial dimension is implied in the L2 norm. 

Equation 2.2 is a function of both perfusion parameters ἳ ὯȟὯȟὯ  and delays †ȟ† . 

We minimize the cost function by setting its gradient to zero with respect to ἳ (perfusion 

parameters) for known delays ( ): 

‐ἳȟ π.     [2.4] 
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This forms an overdetermined linear inverse problem which was solved numerically by taking 

the integral of both sides in Equation 2.2 and forming matrices comprising of enhancement 

profile time series with ὲ time points. A matrix representation of the problem is    

ὅὸ
ể

ὅὸ

ὅӶὸȟ   
ể

ὅӶὸ ȟ    

ὅӶὸȟ   

ể
ὅӶὸ ȟ    

ὅӶὸ
ể

ὅӶὸ

Ὧ
Ὧ

Ὧ
,  [2.5] 

                     

where ὃ denotes the system matrix which relates measurements (ὦ) to model parameters (ὼ) and 

overbar indicates numerical integration.  While previous approaches have solved the linear 

system in Equation 2.5 of voxel by voxel basis, a conjugate gradient method is used to solve 

Equation 2.5 for the whole field of view simultaneously. This formulation is referred to for the 

remainder of the text as whole-field LLS. This method has the advantage of allowing adding 

additional regularizations, such as spatial smoothing. In this work, however, we used Tikhonov 

regularization with a small regularization parameter ‗:  

ὢ ὃὃ ‗Ὅ ὃὦȢ     [2.6] 

 

The use of a small regularization parameter was empirically found to accelerate convergence 

while obtaining a solution that was nearly identical to the ‗ π case. 

Once rate constants (ὯȟὯȟὯ) were calculated, maps of the arterial fraction (ὃὊ ὯȾὯ

Ὧ ), extracellular volume (Ὁὅὠ Ὧ Ὧ ȾὯ) and mean transit time (ὓὝὝ ρȾὯ) were 

computed as follows: 
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ÁÒÇÍÉÎ
 

Ὧ Ὧ ὃὊ Ὧ , ÁÒÇÍÉÎ
 
ὯϽὉὅὠ Ὧ Ὧ , ÁÒÇÍÉÎᴁὯϽὓὝὝ ρᴁ     [2.7] 

 

The second part of this problem consists of finding optimum delays. Minimizing the cost 

function (Equation 2.3) with respect to delays is nonconvex and forms a nonlinear inverse 

problem which is dependent on the initial guess and may suffer from convergence to local 

minima. To overcome this, a discrete set of physiological delays for both AIF and PVIF ranging 

between 0 to 20 seconds with 1.15-second intervals (a multiple of the temporal frame rate) were 

considered (16). For a pair of input function delays (one for AIF and one for PVIF), a whole-

field LLS problem was solved assuming that each voxel had the same given pair of input 

function delays. The L2 norm between the measured and the calculated enhancement curves was 

used to compute a residual for each voxel for this particular pair of delays. After repeating this 

whole field of view calculation for all considered pairs of delays, the smallest residual and 

corresponding delays were selected for each voxel separately across all obtained solutions.   

To compare the performance of voxel-wise LLS and voxel-wise NLLS methods, synthetic data 

were generated under different scenarios including variation of temporal resolution and contras-

to-noise ratio (CNR) for two typical cases. The first case represented a hypervascular tumor such 

as hepatocellular carcinoma and assumed ὃὊ ωπϷ, Ὁὅὠψπ άὰȾρππάὰ and ὓὝὝ ρπ ί. 

The second case represented healthy liver with ὃὊ σπϷ, Ὁὅὠσπ άὰȾρππάὰ,  and ὓὝὝ

σπ ί. The curves were reconstructed at 4 frames per second and 67-second duration to mimic 

acquisition protocol in the experimental data. Input (AIF, PVIF) curves and corresponding tissue 

enhancement curves are shown in Figure 2-1.  Next noise was simulated by adding complex 

Gaussian noise to these curves and taking the absolute value. CNR was defined as the peak of 
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tissue enhancement curve divided by the standard deviation of the added Gaussian noise. CNR 

was varied between 10 to 100 and fitting was repeated 100 times for each CNR. Relative error 

for each perfusion parameters was recorded and averaged over the repetitions. Next this 

simulation was repeated by introducing a pair of delays for the tumor case (AIF delay=0 s, PVIF 

delay=12 s) and for the healthy liver case (AIF delay=12 s, PVIF delay=0 s). Finally, noiseless 

data was downsampled to study the effect of temporal resolution which ranged from 0.23 to 4 

seconds.  

 

Figure 2-1. Input curves (aorta and portal vein) used in dual-input single compartment model to 

generate synthetic tissues including a healthy liver (AF=30%, ECV=30 ml/100ml, MTT=30 s) 

and a hypervascular tumor (AF=90%, ECV=80 ml/100ml, MTT=10 s) and corresponding tissue 

enhancement curves.   
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To investigate the effect of input function delays on the estimated perfusion parameters, noisy 

synthetic curves (CNR=50) were generated (see above) now using various combinations of 

delays ranging from 0 to 16 seconds with 2-second intervals for both AIF and PVIF.  Average 

error for each perfusion parameter across 100 repetitions was recorded for each pair of delays 

and compared between voxel-wise LLS and voxel-wise NLLS. 

To compare voxel-wise LLS to whole-field LLS, noisy synthetic tissue curves were generated 

with variable CNR ranging from 10 to100 for various combinations of delays ranging from 0 to 

16 seconds (for both AIF and PVIF) similar to the simulations above. For each of the 100 

repetitions, a single image was constructed containing all possible combinations of delays and 

solved using both whole-field LLS and voxel-wise LLS. The estimation error for each perfusion 

parameter was then averaged across all delays and all 100 repetitions for both methods.  

To compare voxel-wise LLS and voxel-wise NLLS fitting in experimental data, ROI-based 

analysis was performed on the images acquired in the 7 healthy subjects and 7 patients described 

above. In each subject, 3 masks including the lesion (patient) or liver (healthy subject), hepatic 

artery, and portal vein were drawn and corresponding enhancement curves were obtained. These 

curves were selected to calculate perfusion parameters and delays. Finally, for one healthy 

subject (liver donor) and one metastasis patient, perfusion parametric maps were generated using 

both whole-field LLS and voxel-wise NLLS fitting. All algorithms were implemented in 

MATLAB (Mathworks, Natick, MA) and calculations were performed on a 64-bit Windows 

Machine with 6 cores (Intel i7-3.3 GHz) and 64 GB of RAM. 
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2.4 Results  

Computation time in estimating delays and perfusion mapping for a slice with 256×256 voxels 

and 288 time frames, was 146 hrs for voxel-wise NLLS, 8.5 hrs for voxel-wise LLS (resulting in 

a 17 fold speed-up) and 0.88 hrs for whole-field LLS (resulting in a 166 fold speed-up).  

Figure 2-2 compares the performance of voxel-wise LLS and voxel-wise NLLS as a function of 

CNR for a simulated tumor enhancement curve without AIF or PVIF delays and with delays. 

Figure 2-3 shows the corresponding results for a healthy liver. These figures show that for high 

enough CNR (>30), the relative error in the estimated perfusion parameters are small and similar 

for both methods. Arterial fraction and mean transit time generally have higher relative error 

compared to extracellular volume fraction. Adding delay increases uncertainty in parameter 

estimation by introducing additional unknowns to Equation 2.2. For high CNR (>30), the AIF 

delay error is smaller compared to PVIF delay error since the tissue is mostly arterially supplied 

(AF=90%). Dependency of voxel-wise LLS and voxel-wise NLLS methods on temporal 

resolution is shown in Figure 2-4. Higher temporal resolution is associated with perfusion 

parameter estimation accuracy. Among the perfusion parameters, extracellular volume is the 

least susceptible to changes in temporal resolution and choice of fitting method.  
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Figure 2-2. Simulation results for a simulated hypervascular tumor (AF=90%, ECV=80 

ml/100ml, MTT=10 s) comparing performance of voxel-wise LLS vs. voxel-wise NLLS as a 

function of CNR. Shown are relative errors (%) for ECV (Extracellular volume), AF (Arterial 

Fraction), MTT (Mean Transit Time) and errors (s) for AIF (Arterial Input Function) delay and 

PVIF (Portal Venous Input Function) delay  a) without delay b) with AIF delay=0 s, PVIF 

delay=12 s. 
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Figure 2-3. Simulation results for a healthy liver (AF=30%, ECV=30 ml/100ml, MTT=30 s) 

comparing performance of voxel-wise LLS vs. voxel-wise NLLS as a function of CNR. Shown are 

relative errors (%) for ECV (Extracellular volume), AF (Arterial Fraction), MTT (Mean Transit 

Time) and errors (s) for AIF (Arterial Input Function) delay and PVIF (Portal Venous Input 

Function) delay a) without delay b) with AIF delay=12 s, PVIF delay=0 s. 
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Figure 2-4. Dependency of voxel-wise LLS and voxel-wise NLLS on temporal resolution in 

calculating perfusion parameters for a simulated healthy liver (AF=30%, ECV=30 ml/100ml, 

MTT=30 s) shown in (a) and a simulated tumor (AF=90%, ECV=80 ml/100ml, MTT=10 s) 

shown in (b). Original noiseless enhancement curves were generated with 4 frames per second 

temporal resolution and duration of 67 seconds and downsampled to simulated lower temporal 

resolution. 

 

Figure 2-5 compares the errors in estimated perfusion parameters between voxel-wise LLS and 

voxel-wise NLLS for a simulated tumor for various pairs of true AIF and PVIF delays. While 

there is no error in AIF delay maps, the larger PVIF delay error has limited effect on perfusion 

estimation since with AF=90% the portal vein minimally supplies the tissue. Overall, voxel-wise 
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LLS and voxel-wise NLLS agree well with the extracellular volume yielding the lowest error. 

Figure 2-6 shows the corresponding results for the simulated healthy liver case. Errors in the 

estimated delays for both AIF and PVIF are below 3s in absolute terms, while the error in 

estimated AF is slightly larger compared to the tumor case. Again, overall performance was very 

similar between voxel-wise LLS and voxel-wise NLLS. 

 

Figure 2-5. Comparison of voxel-wise LLS (a) and voxel-wise NLLS (b) methods for a simulated 

tumor case (AF=90%, ECV=80 ml/100ml, MTT=10 s) including delays at CNR = 50. The 

horizontal and vertical axes indicate the true PVIF and AIF delays, respectively. Shown are the 

mean relative error (%) for the perfusion parameters and corresponding mean error (s) in the 

estimated AIF and PVIF delays. 
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Figure 2-6. Comparison of voxel-wise LLS (a) and voxel-wise NLLS (b) methods for a simulated 

healthy liver (AF=30%, ECV=30 ml/100ml, MTT=30 s) including delays at CNR = 50. The 

horizontal and vertical axes indicate the true PVIF and AIF delays, respectively. Shown are the 

mean relative error (%) for the perfusion parameters and corresponding mean error (s) in the 

estimated AIF and PVIF delays. 

Figure 2-7 shows a comparison between whole-field LLS and voxel-wise LLS for the simulated 

tumor case as a function of CNR. Extracellular volume is the most robust in low CNR followed 

by mean transit time and arterial fraction. For each CNR the results are averaged over the range 

of AIF and PVIF delays. Figure 2-8 shows the corresponding results for the simulated healthy 

liver case. Overall, estimation performance is nearly identical between whole-field LLS and 

voxel-wise LLS.   
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Figure 2-7. Comparison of whole-field LLS and voxel-by-voxel LLS in estimating perfusion 

parameters and associated input function delays for a hypervascular tumor (AF=90%, ECV=80 

ml/100ml, MTT=10 s)  as a function of CNR. Note that for each CNR, the results are averaged 

over a range of AIF and PVIF delays (see text for details). 

 

Figure 2-8. Comparison of whole-field LLS and voxel-by-voxel LLS in estimating perfusion 

parameters and associated input function delays for a healthy liver (AF=30%, ECV=30 

ml/100ml, MTT=30 s) as a function of CNR. Note that for each CNR, the results are averaged 

over a range of AIF and PVIF delays (see text for details). 

 

Table 2-1 shows a comparison of voxel-wise LLS and voxel-wise NLLS applied on the single 

curves obtained after ROI averaging. Good agreement is observed in the estimated perfusion 

parameters between voxel-wise LLS and voxel-wise NLLS fitting. Although delays change from 
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one subject to another within each category, AIF delays tend to be larger in healthy liver 

compared to lesions while the opposite trend is observed for the PVIF delays. A Wilcoxon 

signed rank test fail to reject the hypothesis that difference between NLLS and LLS perfusion 

parameters come from a distribution with zero median for each perfusion parameters with the 

p-values.    

Table 2-1. Comparison between LLS and NLLS of ROI-based perfusion parameters for 7 healthy 

liver donors and 7 patients. 

Lesion 

MTT (s) ECV (ml/100ml) AF (%) AIF Delay (s) PVIF Delay (s) 

NLLS LLS NLLS LLS NLLS LLS NLLS LLS NLLS LLS 

Healthy Liver 30.7 32.6 17.7 17 18 21.1 3.2 0 0 0 

Healthy Liver 22.8 29.8 37.8 42.9 48.4 44.4 4.6 4.1 0 2 

Healthy Liver 13.1 14.3 18.4 19.3 22.1 23.1 0 0 0 2.3 

Healthy Liver 46.3 43.5 24.4 22.1 27.6 23.3 7.3 6.9 0 0 

Healthy Liver 25.3 23.9 31.4 33.6 15.3 17.2 2.3 2.3 3.4 3.5 

Healthy Liver 21.7 18.9 15.9 14.8 19.3 19 2.3 2.3 0 0 

Healthy Liver 19.5 23.8 31.9 31.4 18.5 20.1 4.6 4.3 0 0 

Metastasis 8 11.2 17.14 17.17 36.3 40 0 0 15.2 15 

Adenoma 11.1 11.3 29.6 28.5 79.3 80 2.3 2 14.9 11.5 

FNH 8.7 8.9 64.9 65.4 69 72.2 0 0.9 15.2 15.2 
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HCC 13.2 12.3 91 89.3 91.6 90 0 0 11.5 11.5 

HCC 7.4 10.1 35.5 37.4 30 33.8 14.9 15 0 0 

HCC 38.8 36.5 38.8 39 94 90 0 0 14.9 15.1 

HCC 10.1 15 43.4 48.6 85.5 89.5 10.3 8.9 15.2 15.2 

P-Value 0.26 0.64 0.59 0.15 1 

   

Figure 2-9 shows a comparison of perfusion parametric maps superimposed on the first frame of 

the dynamic DCE MR acquisition for the metastasis patient using whole-field LLS (a) and voxel-

wise NLLS (b). Overall a good agreement between the two methods is observed across the liver. 

The AIF delay in the lesion (arrows) is lower (~5 s) compared to the surrounding liver (~15 s). 

The opposite trend is observed in the PVIF delay maps. The metastasis, compared to surrounding 

liver, had an average extracellular volume that was about 3 times larger, an average arterial 

fraction that was about 4 times higher, ranging between 45% to 80% and indicating that the 

tumor was supplied by the hepatic artery (23), and a mean transit time that was 2 times higher. 

NLLS fitting was limited to the voxels within the liver ROI and required 32 hrs of computation 

time. Whole-field LLS required 55m of computation time but only the results within the liver 

ROI are shown in Figure 4. The corresponding result for a healthy subject is shown in Figure 

2-10 with obtained perfusion parameters in agreement with normal values reported in the 

literature. Again, good agreement was observed across the liver between whole-field LLS and 

voxel-wise NLLS. 
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Figure 2-9. Comparison of perfusion parameters using whole-field LLS (a) and voxel-wise NLLS 

(b) methods in the metastasis subject (see Table 1). Perfusion parameters in metastasis (white 

arrows in a) reveal increased extracellular volume (ml/100ml), arterial fraction (%), and mean 

transit time (s) in the tumor compared to the surrounding liver. Arterial input function delay (s) 

is smaller in the in the metastasis compared to the liver and opposite trend is observe red in the 

portal venous input function delay (s). Good agreement was found between whole-field LLS and 

voxel-wise NLLS in perfusion parametric maps. 
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Figure 2-10. Comparison of perfusion parameters using whole-field LLS (a) and voxel-wise 

NLLS (b) methods in the liver donor subject (see Table 1). Perfusion parameters in both methods 

are similar to that of a normal liver and consistent with reported values in the literature (1) 

including an average of 20 ml/100ml in extracellular volume, an arterial fraction, ranging 

between 15%-25% and an average of 20 s for mean transit time. Good agreement was found 

between whole-field LLS and voxel-wise NLLS in perfusion and delay maps. 

2.5 Discussion 

The results in this work demonstrate the feasibility of significantly accelerating the fitting of 

DCE-MRI of the liver to a delay compensated dual input single compartment model. The 

proposed whole field LLS method uses conjugate gradient to reduce computation time by a 

factor of about 160 as compared to voxel-wise nonlinear least squares fitting. The estimates 

obtained using the whole-field LLS method are similar to the ones obtained using the current 

NLLS method.  The whole-field LLS method enables liver perfusion mapping with corrected 










































































































































