ON THE FOUNDATIONS OF MULTIVARIATE HEAVY TAIL ANALYSIS
SIDNEY RESNICK

ABSTRACT. Univariate heavy tailed analysis rests on the analytic notion of regularly varying
functions. For multivariate heavy tailed analysis, reliance on functions is awkward because
multivariate distribution functions are not natural objects for many purposes and are difficult
to manipulate. An approach based on vague convergence of measures makes the differences
between univariate and multivariate analysis evaporate. We survey the foundations of the
subject and discuss statistical attempts to assess dependence.

1. INTRODUCTION

One of the many admirable aspects of Chris Heyde’s research career is the effortless way he
would follow research problems back and forth across the boundary between probability and
statistics. In fact, it would seem that Professor Heyde’s healthy outlook did not even recog-
nize a boundary between the two subjects. To me, and no doubt to many like minded col-
leagues who found a comfortable home in the applied probability community, Chris Heyde’s
example was important to our developing tastes and scientific outlooks. Hopefully, this
contribution in Chris’ honor, will exhibit some of these characteristics of containing both
interesting probability and useful statistical techniques.

Heavy tailed analysis has been stimulated over the last 10 year or so due to an increasing
number of real world examples that seem to exhibit heavy tailed characteristics. Finance,
economics, data networks, insurance, risk analysis are all subjects which have become heavy
consumers of heavy tailed methods. Useful surveys by Mikosch [33] and Resnick [37] appear
in a forthcoming SemStat volume or on the authors web sites.

The networking story began around 1993 with the publication of what is now known as
the Bellcore study ([24, 29, 49]). Traditional queueing models had thrived on assumptions of
exponentially bounded tails, Poisson inputs and assumed independence. Collected network
data, studied at what was then Bellcore (now Telcordia), exhibited properties which were
inconsistent with traditional queueing models. These anomalies were also found in world
wide web downloads in the Boston University study ([15, 7, 8, 9, 12, 10, 11]). The unusual
properties found in the data traces included:

e self-similarity (ss) and long-range dependence (LRD) of various transmission rates:
— packet counts per unit time,
— www bits/time.

e heavy tails of quantities such as
— file sizes,
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— transmission rates, transmission durations,
— CPU job completion times,
— call lengths

The Bellcore study resulted in a paradigm shift and after some resistence to the presence
of long range dependence, there was widespread acceptance of the statement that packet
counts per unit time exhibit self similarity and long range dependence. Research goals then
shifted from detection of the phenomena to greater understanding of the causes. Today there
is fairly wide spread acceptance that a high level explanation is that heavy tailed file sizes
causes long range dependence in network traffic [48, 49, 37].

In finance, ARCH and GARCH models were developed by Engle, Bollerslev and others
to explain volatility or a constantly changing variance [26, 6, 5]. These models have Pareto
univariate tails ([28, 47, 27]) and even exhibit multivariate regular variation [16, 45, 46].
Insurance, especially re-insurance is also a natural setting for heavy tailed analysis.

Our focus here is on multivariate problems and is primarily didactic. We show that
with the right formulation, multivariate heavy tailed analysis can be framed so that it is
indistinguishable from the univariate case. We highlight some inference problems special to
the multivariate case and discuss some current developments.

Heavy tailed analysis is dependent for it analytical underpinnings on the theory of regularly
varying functions. Such functions are, roughly speaking, functions which behave asymptoti-
cally like power functions. We start by considering real functions of a real variable. Consid-
eration of multivariate cases and probability concepts suggests recasting definitions in terms
of vague convergence of measures but we will consider this reformulation a bit later. More
formally, a measurable function U : R, +— R, is regularly varying at oo with index p € R
(written U € RV,) if for x > 0

p

. Ultx)
(1.1) tliglo Ut)
We call p the exponent of variation. If p = 0 we say U is slowly varying. Slowly varying
functions are generically denoted by L(z). If U € RV, then we write U(z) = 2’ L(z).

The canonical p-varying function is 2. The functions log(l + z), loglog(e + z) are
slowly varying, as is exp{(logz)®},0 < a < 1. In probability applications we are concerned
with distributions whose tails are regularly varying. Examples are the standard Pareto, the
extreme value Frechet distribution, the stable distribution, and most familiarly, the Cauchy
distribution tail with density f(z) = (7(1 + z?))~%.

Distributions with regularly varying tails are called heavy tailed distributions. In proba-
bility theory, the property of regularly varying tails serves as exact necessary and sufficient
condition for a variety of limit theorems and in statistics provides a semi-parametric family
of distributions that can be reasonably fit to data.

2. MULTIVARIATE REGULAR VARIATION FOR FUNCTIONS

The obvious way to generalize (1.1) is to replace the scalar vector x by the vector .
Before doing this, we review notational conventions which aid a dimensionless treatment of
the theory.
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2.1. Notation review. Vectors are denoted by bold letters, capitals for random vectors
and lower case for non-random vectors. For example:

z=(zV,...,29) e R

Operations between vectors should (almost) always be interpreted componentwise so that for
two vectors & and z

z < z means z% <z(i), 1=1,...,d,

z < z means z(?) §z(i), 1=1,...,d,

T = z means :v(i) :z(i), 1=1,...,d,

zx =(zY O

:B\/ZZ(x(l)VZ ,z@ v @D
( x(d
=(z )
Also 0 = (0,...,0), 1 =(1,..., (O,...,l,...,O) for i =1,...,d. For a real number
¢, denote as usual
ce = (ca™ ,cx(@)

We denote rectangles by
[a,bj={xeR:a<x<b}
so that for £ > 0 and E = [0, 00| \ {0},

0
c y
[0, z] :]E\[O,m]:{yelE:\/—x(i) >1
=1

2.2. Multivariate regularly varying functions. A subset C C R? is a cone if whenever
x € C also te € C for any t > 0. A function h : C +— (0,00) is monotone if it is either non-
decreasing in each component or non-increasing in each component. For h non-decreasing,
this is equivalent to saying that whenever ,y € C and & < y we have h(xz) < h(y). The
natural domain for a multivariate regularly varying function is a cone.

Suppose h(-) > 0 is measurable and defined on C. Suppose 1 = (1,...,1) € C. Call h
multivariate reqularly varying on C with limit function \(-) if A(x) > 0 for ¢ € C and for
all x € C we have

. h(tx)
(2.1) e

= A\(x).
Note A(1) = 1. A simple scaling argument shows that A(-) is homogeneous:
(2.2) Asz)=s"Az), s>0,zeC, peRrR

For multivariate distributions F' concentrating on [0, 00)¢ =: [0, 00), it is ambiguous what
we mean by distribution tail. The usual interpretation has been to consider 1 — F'(x) for
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x > 0 but  # 0 and so it is required that

. 1—F(te)
(2.3) tlirglo T Fa1) Az).

It is awkward to deal with distribution functions and more natural to deal with measures.

3. REGULAR VARIATION FORMULATED IN TERMS OF MEASURES.

It is possible to reformulate the regular variation of distribution tails in terms of vague
convergence of families of measures which give a dimensionless and elegant treatment. This
is facilitated by considering random elements in various complete separable metric spaces as
discussed in Billingsley [3, 4]. The spaces we need are summarized in the following Table 1.

| Metric space S \

R, R?, Euclidean spaces

C[0, ), the space of real valued, continuous functions on [0, 00)
DJ0, 00), the space of real valued, right continuous functions on
[0, 00) with finite left limits existing on (0, c0)

M, (E), the space of point measures on a nice state space E

M (E), the space of Radon measures on a nice state space E
K(S), the compact subsets of S.

TABLE 1. Various metric spaces.

Examples of state spaces E that are useful for us are (0, o], [0, 00] \ {0}, [0, co] \ {0}.
All these examples are compact sets punctured by removal of one point which is an example
of the one-point un-compactification. This unconventional topology is necessitated by the
fact that we consider regular variation at oco. For instance in the case d = 1 we need a way
for sets of the form (x,00) to be considered relatively compact. More later in Subsection 3.3.

3.1. Basic convergences. We now give two criteria for convergence. One gives necessary
and sufficient conditions for empirical measures of scaled observations to converge to a Pois-
son random measure limit and the other discusses convergence to a constant limit measure.
The first is the basis for manipulating iid random variables with regularly varying tails by
means of the Poisson transform and the second is the basis for consistency of estimators
of heavy tailed parameters. Here, and in what follows, PRM(u) means Poisson random
measure with mean measure p and E is a nice metric space which for us means a finite
dimensional Euclidean space.

Theorem 1 (Basic convergence). Suppose that for each n > 1 we have {X, ,j > 1} is a
sequence of iid random elements of (E,E). Let & be PRM(p) on M,(E).
(i) We have

n

(3.1) Y ex,, = &= PRM(p)

J=1
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on M,(E), iff in M, (E)

(3.2) nP[X,, €] =E (Z eXW.(-)) 5 .

=1

(i1) Suppose additionally that 0 < a,, 1 co. Then for a measure p € M, (E) we have
1 n
(3.3) — D ex,, = n
n i
on M, (E) iff in M, (E)
n 1 « v
(3.4) —P[X, € ]=E (a— Zexn,j(~)> = .
The proofs are readily handled using Laplace functionals. See [40, 41].

3.2. The polar coordinate transformation. To state the equivalent forms of multivariate
regular variation for the distribution of a random vector, we need the polar coordinate
transformation.

Suppose || - || : R + [0, 00) is a norm on R?. The most useful norms for us are the usual
Euclidean L, norm, the L, norm for p > 0 and the Ly, norm: |lz|| = Vi, |z@|. Given a
chosen norm || - ||, the unit sphere is

= {z:||z| = 1}.

For the Euclidean norm, the unit sphere is really a sphere. If d = 2, the L; norm is a
diamond, and the L., norm is a square.Norms on R?¢ are all topologically equivalent in that
convergence in one norm implies convergence in another.

Now fix a norm. Define the polar coordinate transformation 7' : R? \ {0} — (0, 00) x R by

7(2) = (el 7o) = (@),

and the inverse transformation 7 : (0,00) x X — R4 \ {0} by
T (r,a) = ra.

Think of @ € N as defining a direction and r telling how far in direction a@ to proceed. Since
we excluded 0 from the domain of 7', both 7" and T are continuous bijections.

When d = 2, it is customary, but not obligatory, to write 7'(x) = (r cos 8, rsinf), where
0 < @ < 2, rather than the more consistent notation 7(X) = (r, (cos,7sinf)). For a
random vector X in R? we sometimes write T'(X) = (R, ©).



6 SIDNEY RESNICK

3.3. Topology: The one point uncompactification. In reformulating the function the-
ory concept of regularly varying functions into a measure theory concept, there is continual
need to deal with infinite sets which are neighborhoods of co. Such sets need to be regarded
as “bounded” in an appropriate topology so sequences of measures of such sets can converge
non-trivially. For example, when d = 1 tail probabilities of sets of the form (x,oc) are con-
sidered and because vaguely converging measures only guarantee convergence of relatively
compact sets, we need a topology which renders (z,00) as relatively compact. A convenient
way to think about such issues is by means of the one point un-compactification.

Let (X, 7") be a nice topological space; X is the set and 7 is the topology. For our purposes,
X would be a subset of Euclidean space. Consider a subset D C X and define X* = X\ D
and give X* the relative topology

T#=T[\D" =T[)X*.

So a set is open in X* if it is an open subset of X intersected with X#.
We need to identify the compact subsets of X#.

Proposition 1. The compact subsets of X* are
K(X#)={K e K(X): KD = 0}.

The compact sets of X*# are the original compact sets of X, provided they do not in-
tersect the piece D chopped away from X to form X#. Specialize this to the one point
un-compactification, which describes what are the compact sets when a compact space is
punctured by the removal of a point: Suppose E is a compact set and e € E. Give E\{e}
the relative topology consisting of sets in E\{e} of the form G\{e}, where G is open in E.
The compact sets of E\{e} are those compact subsets K C E such that e ¢ K.

Consider the following special cases:

(1) The compact sets of [0, co] consist of any closed set. The compact subsets of [0, co] \
{0} are closed subsets of [0, 0] bounded away from 0.

(2) The compact sets of [—o0,00] consist of any closed set. The compact subsets of
[—00, 00| \ {0} are closed subsets of [—00, 00| bounded away from 0. This punctured
space E | and the associated space of Radon measures M (E) is needed for considering
weak convergence of partial sums to Lévy processes.

(3) The compact sets of [0, oo] consist of any closed set. The compact subsets of [0, 00|\
{0} are closed subsets of [0, co] bounded away from 0. Similarly, the compacta of
[—00, 00| \ {0} are those closed subsets of [—00, oo] bounded away from 0.

3.4. Multivariate regularly varying tail probabilities. We now state various equiva-
lences which can define multivariate regularly varying tail probabilities. To deal with multi-
variate regular variation of tail probabilities, we have to consider a punctured space with a
one-point un-compactification such as [0, 00] \ {0}. Equivalences in terms of polar coordi-
nates are then problematic since the polar coordinate transformation is not defined on the
lines through oo, so some sort of restriction argument is necessary. A different treatment of
the polar coordinate transformation is given in [1, 2, 33].
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For what follows we restrict attention to the case of random vectors with non-negative
components. Suppose {Z,,n > 1} are iid random elements of R¢ with common distribution
F(-). We set E = [0,00] \ {0}. Recall [0,z]¢ = E \ [0, z]. We also define the measure on
(0, oc]

Vo(z,00] =27% x>0, a>0.
Set X, = XN E. Vague convergence of measures is denoted by —.

Theorem 2 (Multivariate regularly varying tail probabilities). The following statements are
equivalent. (In each, we understand the phrase Radon measure to mean a not identically zero
Radon measure.)

(1) There exists a Radon measure v on E such that

. 1—F(tx) s P[% € [Oaw]c] _ c
My F(t1) i P[Z €0, 1] cy([O, i )

for some ¢ > 0 and for all points & € [0,00) \ {0} which are continuity points of

v([0, -]°).

(2) There exists a function b(t) — oo and a Radon measure v on B such that in M (E)
Zl v
tPl—~ €| — t — oo.
by €17 >
(3) There exists a sequence b, — oo and a Radon measure v on E such that in M, (E)
Z v
n]P’[b—1 € ] — v, t— oo.
(4) There exists a probability measure S(-) on Ry and a function b(t) — oo such that for

(R1,0) = (||Z1||, Hg—i”> we have
R v
ﬂP’[(—b(L}),el) €] cvy xS

in My (((0,00] x ;) , where ¢ > 0.
(5) There exists a probability measure S(-) on Ry and a sequence b, — 0o such that for

(Ry,0,) = (||Z1||, ”g—;”) we have
R v
nIF’[(b—l, ©1) €] >, xS

in M4 ((0,00] x N), where ¢ > 0.
(6) There exists b, — oo such that in M,(E)

n

Zezi/bn = PRM(Z/)

i=1
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(7) There exists a sequence b, — 0o such that in M,((0,00] x V)

n

Ze(Ri/bm@i) = PRM(CI/a X S)

i=1
These conditions imply that for any sequence k = k(n) — oo such that n/k — oo we have
(8) In M, (E)
1 n

F 2 Czn(z) <Y

i=1

(3.5)

and 8 is equivalent to any of 1-7, provided k(-) satisfies k(n) ~ k(n-+1). Similar statements
to (3.5) can be made in terms of polar coordinates.

Before discussing elements of the proof of Theorem 2, we need to understand how vague
convergence of a sequence of measures is affected by a continuous transformation of the state
space.

3.4.1. Preservation of weak convergence under mappings: Consider two state spaces E; and
E, with a mapping 7" : E; — E, taking one into the other. A measure u € M, (E;) has an

image T'(p) € M, (E,) given by the map
T(p) =poT ™.

If T is a continuous point transformation, is 7' : M, (E;) — M, (E,) continuous? Note, if
m € M,(E) is a point measure of the form ), €;,, then

T(m)=moT '= Z €T(w3)-

i

Continuity of T does not guarantee continuity of 7" without a condition. See [41] for the
simple proof of the following.

Proposition 2. Suppose T : E, — Ey is a continuous function such that
(3.6) T YK, € K(Ey), VK, € K(E).
Then if i, — po in M, (E;), we have that

Tn = ptn 0T piy o T™" = T'pto.

3.4.2. Elements of the proof of Theorem 2. The equivalence between mean measure conver-
gence in {1, 2, 3} and convergence to a Poisson random measure in 1 is given by the basic
convergences Theorem 1 (i). Similarly, Theorem 1 (ii) shows mean measure convergence is
equivalent to (3.5) under the stated conditions.

To understand how to go from cartesian to polar coordinates and back we outline the
proof of 5—3. We break this into steps.
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STEP 1. RESTRICT THE SPACE TO THE NATURAL DOMAIN OF THE POLAR COORDINATE
TRANSFORMATION. By applying a restriction functional, the vague convergence statement
in item 5 implies

(3.7) nIF’[(%, ©) €] > cve xS, in M;((0,00) x X,).

n

STEP 2. Recall the polar coordinate transform was denoted by 7. Apply T to (3.7).
Recall
T :(0,00) x Xy = [0,00)\ {0}, T(r,0)=r6.
Let K € K([0,00) \ {0}). Then for some small § > 0 and large M > 0 we have
Kc{z:<|z| < M}.
Then
(T)N(K) ={(r,0) : 70 € K}
C{(r,0):0 <r <M} e K((0,00) X Ny).
Now (T) !(K) is closed and contained in a compact set so is compact.
Using Proposition 2, we apply 7¢ to (3.7) and obtain

R,® Z v _ .

e = nIP’[b—l €] vy x So(TH) ™ =v(-) in M([0,00)\ {0})
where we called the limit v.

STEP 3. EXTEND TO THE BOUNDARIES: Let f € C¥(E). It suffices to show

(3.8) nP]

(3.9 nEF(2L) = ().

n
This is done using a smooth truncation, appealing to Step 2, and then letting the truncation
level float to infinity. O

4. AMPLIFICATION.

Here are some additional remarks to flesh out the theory.

4.1. What if the natural state space is not the positive orthant? What if E is the
closed cone [—o0o, 00] \ {0}7 Item 1 of Theorem 2 in terms of multivariate regular variation
of the distribution function tail no longer has an easy analogue, except in d = 1, but there
is no trouble extending items 2-7 of Theorem 2 to the more general cone, provided ¥, is
replaced by R N E.

Ifd =1, then

(4.1) nP[? €-]>v, on M.([-o00,00]\ {0})

n

is the basic condition. This means for z > 0,

(4.2) n]P’[% > z] > v(z, 0], (n— o)

n
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S0
v(iz,00] =cyz™ ¢ >0.
Also, for x > 0
A -7
(4.3) nIP’[b—1 < —z] =nP| b L> 2] = v[—o00,—2), (n— o)

and we get
v[—oo,—x) =c_z % c¢_>0.

The « for the right tail must be the same as for the left tail since the same b,, works for both
tails and b, relates to « through the fact that b, = b(n) where the function b(-) € RV;/4. So

v(dz) = craz® 'zl (g 0 (z) + coalz| Tzl (— o0 0) ().

For this d =1 case, X = {—1,1} and
S{1) = . S(-1)

C++C,’

C_
Cy + C_ )

4.2. I hate multivariate distribution functions and love densities. What’s in this
for me? Glad you asked. Most multivariate distributions are specified by densities, not
distribution functions so it would be nice to have workable criteria for when regular vari-
ation of the density implies the equivalent conditions of Theorem 2. When d = 1, regular
variation of the density implies the distribution tail is a regularly varying function because
of Karamata’s theorem. In higher dimensions, some regularity is needed.

Roughly speaking, multivariate regular variation knits together one-dimensional regular
variation along rays but does not control what happens as we hop from ray to ray. Imposing a
uniformity condition as we move across rays overcomes this difficulty. The following is given
in [21] and discussed in [41]. Related work is in [20, 17, 18]. We return to the assumption
that E = [0, 00] \ {0}.

Theorem 3. Suppose F is a probability distribution on E with density F' which is reqularly
varying with the limit function \(-) on [0,00) \ {0}. That is, we suppose for some reqularly
varying function V (t) € RV,, p < 0, we have for € [0,00) \ {0}

. F'(tx)
Necessarily \ satisfies M(tx) = tP~\(z), for £ € [0,00) \ {0}. Further suppose that X is
bounded on Ny and that the following uniformity condition holds

) F'(tx)
4. | - =0.
(45 fim sup | £ay g~ )| =0
It then follows that for any § > 0
F'(tx)

(4.6) lim sup

E=00 ||| >0

V(D) (m)‘ =0
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Furthermore, A(-) is integrable on [0, )¢ for & > 0 and 1 — F is a regularly varying function
on (0, 00) which takes the form

. 1—F(te) _
(4.7) Hm V) /[O’w]j(y)dy-

4.3. My bivariate data looks heavy tailed but the o’s do not look the same for
each component. What do I do? Glad you asked. The phrasing of the regular variation
condition so far in Theorem 2 assumes tail equivalence among the components in the following
sense. The requirement that

Z v .
]P’[b—l e ]Sv, in M.(E),
implies that
Z(i) ;
n]P’[b—1 €] cive, in M4 ((0,00]),

for ¢; > 0and i = 1,...,d. Note we have not ruled out the possibility that for some (but
not all) 4, ¢; could be zero. For those components with ¢; > 0, the a’s are the same because
bn, = b(n) and b(-) € RV;/q. The marginal convergences with the same scaling function by,
in turn imply that for 1 <i< j <d
]P’[ZY) >zl ¢
w00 P29 > g] ¢
While the theory is most elegantly developed using the single normalization of Theorem
2, in practice this is not adequate and sensitivity to tails with different weights is needed.

Theorem 4. Suppose {Z,,,n > 1} are iid non-negative random vectors and E = [0, oo]\{0}.
Suppose there exist sequences {buy(n),n > 1,1 <1 < d} satisfying

lim bg)(n) =00, 1=1,...,d

n—oo

and such that the following are true:

(i) MARGINAL CONDITION: For eachi=1,...,d
7 ;
(4.8) nP[—— € -] > vy, a; >0,
b(i) (n)

in M, ((0,00]), and
(ii) GLOBAL CONDITION: There ezists a measure v on Borel subsets of E such that

Z1 c-15v
(bay(n), ..., ba(n)) ’

(4.9) nP|

in M, (E).
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Let Fy)(z) = IP’[Z@ > x| be the ith marginal distribution tail and define

1 <
Ui:v=<_ ) (x), =z>1
Then we have

(i) STANDARD GLOBAL CONVERGENCE:

U (21) ;
(4.10) nF.(n) = nIF’[ =1 n) € ] %y, in M, (E),

where
(4.11) v, (t) =t (),

on Borel subsets of E, and
(ii) STANDARD MARGINAL CONVERGENCE:

(%)

(4.12) >zl =2, z>0.

The marginal condition (4.8) rules out tails that are not heavy. The global condition
(4.9) describes dependence among the components. The standard case is where we have tail
equivalent marginal tails, each of which is regularly varying with index —1 and normalization
by the same constant b,(n) = n is adequate. See [41, Chapter 5].

5. ESTIMATION

We now survey several estimation problems. After initiating the section with discussion
of the Hill estimator, we emphasize multivariate problems.

5.1. The Hill estimator. Suppose d = 1 and consider the problem of estimating «, the in-

dex of regular variation, based on a sample {71, ..., Z,} of non-negative iid random variables
when the tail probability
(5.1) F(z)=P|Z; > 2] ~27*L(x), 1z — oo.

A popular estimator is the Hill estimator which is close in spirit to a peaks over threshhold
maximum likelihood estimator. For 1 < ¢ < n, write Z;) for the ith largest value of

Z1, 2, ...,%,. and then Hill’s estimator based on k upper order statistics is defined as:
k
1 Z)
5.2 Hy, =~ E lo .
(5:2) k k — & Z(k+1)

The quantile function is

(5.3) b(t) = (——=)"(t) = F~(1—3>), t>1.
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The random measure
n

1
(5.4) Vn =t Z €2;/b(n/k) = Va(*)
i=1
is a random element of M, (0,00] and is a consistent estimator (in the vague topology) of
the measure v, € M, (0, ] defined by v,(z,00] = 2, provided n — oo, and k/n — 0.
(See Theorem 2, (8).) Because b(-) is unknown, b(n/k) will be estimated by a consistent

estimator, b(n/k) to be specified, and we will denote

o1
(5-5) In =11 D ity
=1

We now have ingredients in place to quickly show
1
Hk,ni—, n — oo, k — o0, k/n — 0.
«
The verification of consistency proceeds by a series of steps.
STEP 1. Consistency of the empirical measure given in (5.4) implies

Z(kt) P -1
9.6 =St /a,
>0 b(n/F)

where [£t] is the smallest integer greater than or equal to kt. Assertion (5.6) is proved via
the continuous mapping theorem by applying two almost surely continuous maps to (5.4).
First apply the map from M, ((0, 00]) — D[0,c0) defined by

in D(0, o],

p— u(ttoo], t>0,
and then the map which takes a non-decreasing function in D[0, c0) into its inverse.

STEP 2. Next show 7, —+ v,, as n — 00, k — 0o and k/n — 0. From (5.4) and Step 1,
we have

(5.7) (Vn,
in M, (0,00] x (0,00). Since
e (85 )7 (B

the conclusion will follow by the continuous mapping theorem, applied using the scaling
operator

—~
k)

1) = (Vs 1)

b(%)

>3

T:M,(E)x (0,00) — M,(E)
defined by

T, 2)(A) = p(zA).
STEP 3. Finish by showing

o o0 1
Hk,n = / l,)n(x, OO]{Eild(E £> / l/a(_fE’ Oo]xfldx —
1 1

(07
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O

Asymptotic normality is usually considered under a second order condition which controls
the bias F(Hy,) — o ! and yields asymptotic variance 1/a?:

VE(Hpp — a7t = N(0,a72).

The condition is uncheckable but probably a reasonable thing to assume. There are many
problems associated with the Hill estimator: lack of location invariance, choice of k, effect of
the slowly varying component. See [39, 42, 36, 35, 43, 38, 37, 23, 22, 19, 30, 31, 32, 13, 14].

5.2. Multivariate modeling: Dependence among extreme events. Now consider es-
timation problems in the multivariate heavy tailed case. For such problems, one can estimate
something about the one-dimensional marginal distributions relatively easily using a combi-
nation of QQ-plotting techniques and various estimators such as Hill’s. It is more difficult
to say something informative about the dependence structure.

Bivariate time series of financial returns often show little dependence when returns are
small. However, when returns are larger and more extreme in absolute value, then there is
more pronounced dependence between the components.

The file fm-exchl.dat included with the program Xtremes (cf [34]), gives daily spot ex-
change rates of the currencies of France, Germany, Japan, Switzerland and the UK against
the US dollar over a period of 6041 days from January 1971 to February 1994.

Figure 1 gives on the left, a scatter plot of the absolute log daily returns for the French
Franc against the absolute log daily returns for the German Deutchmark. Small log absolute
returns for one currency are matched by a wide range of values for the other currency.
Visually, however, dependence increases as the size of the absolute returns for the pair
increases. The pattern varies, however, between different exchange rate processes. The
dependence among large daily absolute returns between Japan and Germany (right) is much
less pronounced than between France and Germany.

One of the ways to measure dependence components in bivariate data is to compute corre-
lations (assuming they exist). However, correlation is a crude summary of dependence which
is most informative only between jointly normal variables. It is a meat cleaver which does
not distinguish between the dependence between large values and the dependence between
small values. The correlation between the original exchange rate data for Germany and
France is 0.579. The correlation between Japan and Germany is higher, namely 0.882. The
large dependence between Germany and Japan as measured by correlation is not reflected
in the scatterplot indicated in the right side of Figure 1 which indicates less dependence
between extremes. The smaller correlation between France and Germany does not indicate
the stronger dependence shown in the left plot of Figure 1 for the large absolute values of
log returns.

Examine the tails of the squared log returns for France and Germany individually. Based
on a combination of QQ plots and Hill plots, we conclude that squared log returns of France

and Germany are each heavy tailed with
2 = 1.75.

Ogermany? = 1.98, Cfrance
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AbsRet(FR) vs AbsRet(Ger) AbsRet(Japan) vs AbsRet(Ger)
8 4 8
S 0 c o
d ] 8]
=} =}

abs(diff(log(xchr$Germany)))
o
abs(diff(log(xchr$Germany)))

0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.0 0.01 0.02 0.03 0.04 0.05 0.06
abs(diff(log(xchr$France))) abs(diff(log(xchr$Japan)))

FIGURE 1. Scatter plots of absolute returns of (left) the French Franc against
the German Deutschmark and (right) absolute returns of the Japanese Yen
against the German Deutschmark.

Figure 2 gives the QQ-plots, which match empirical quantiles of the log transformed data
with theoretical quantiles of the exponential distribution.

Parfit France sq resid,200 Parfit Germany sq resid,200

-6.0

log sorted data
log sorted data

0
~

T T T T T
4 5 6 7 8 4 5 6 7 8
quantiles of exponential quantiles of exponential

Ficure 2. QQ plot fitting of o to squared log returns for French exchange
rates (left) and German exchange rates.

5.3. How to choose £? The Starica plot. The achilles heel of many heavy tailed methods
is the difficulty in choosing k. Suppose v, is a standard limit measure with the the scaling
property (4.11). Suppose 7y, is our estimator of v,. We pick k so that v,, mimics the
scaling. We try to use the set

N> ={zekE: || > 1},
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thinking such a set encompasses information from all directions. So for a fixed &k, we graph

UDy  (UR”)

(5.8) {W,uz 0.1},

which we call the Starica plot. The idea [45] is the ratio should be roughly constant for v in
a neighborhood of 1 if £ is chosen wisely so that 7, , is close to v,. If u is too small, we are
using too many small observations from the center of the distribution which are not likely
to carry accurate information about the tail.

In practice, we make the Starica plot (5.8) for various values of £ and choose the k& which
seems to have the plot most closely hugging the horizontal line at height 1. In the standard
case, based on the non-negative iid vectors {Z;,1 < i < n} from a distribution F'(x) with
multivariate regularly varying tail, we make the Starica plot as follows. Estimate v, with
the tail empirical measure 7, ,. Evaluate (5.8):

Uy (uR”) U Doie1 €2, iy (UR7)
D (R>) % Z?:l €2, /b(n/k) (R>)
where b(n/k) = | Z||(k+1), the k-th largest among the one-dimensional set {||Z;[[,1 < i < n}.
Since the sum in the denominator of the ratio is k, if we set u = ||Z||(j+1)/13(n/k), we get for

the ratio ”zz”ﬁ : % So, to get the Starica plot, we graph
Z||; VAR :
(5.9) {(” ||(.7+1)7 1Z]]+1) 'l>,0§j§n—1},
||Z||(k+1) ||Z||(k+1) k

but look closely at values of the abscissa in a neighborhood of 1. The plots will look different
for various values of k£ and some experimentation can be done. It would be desirable to
automate this procedure for choosing k£ and to prove the Starica plot technique for choosing
k is sensible.

Figure 3 gives 4 views of a Starica plot for 5000 independent pairs of iid observations
simulated from a Pareto distribution with o = 1 and using k£ = 1000, 2000, 3000, 3500.

5.4. Diagnostics based on ranks. To estimate the angular measure S one first must
estimate v, which may require transformations which depend on information on the marginal
tails. A method based on ranks [44, 25] overcomes some of the discomfort inherent in tail
estimation since it does not require marginal tail estimates.

Continue to suppose multivariate regular variation (without tail equivalent marginal dis-
tributions) and that

(510 m%ie( EACEY

=1 b(1)(n/k) > b(gy(n/k)

in M, (E), where E = [0,00] \ {0}. From our knowledge of marginal properties we know
(see (5.6)) for each j, that

Z((?) @1)

k) P () 1/a

= (t(])) e,

bi)(n/k)
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FIGURE 3. Four views of the Starica plot for 5000 simulated Pareto indepen-
dent pairs, each with oo = 1.

in D(0, c0]. Because convergence is to a constant limit, we may append this to (5.10) to get

77 ) _
(5.11) (,,n(.)’ (%;j =1,.. .,d)) = (z/, ((t(J))—l/Oéj;j =1,. ..,d)

in M, (E) x D(0,00] x ---x D(0, 00].

The measure v in (4.9) is related to v, by the relationship
(5.12) ([0, £/%)¢) =: 1,([0, =]°).
Convert (5.11) into

()

Z ([ktl) c iN—1/aj. ;
(5.13) (Vn([o 2, (; f( /11)) 1,...,d)):>(y([0,m] ), ((tD)Y/ ,321,...,d)

annd then apply the contmuous map

(v([0,2]%), ) = v([0,#])
o (5.13) to get

Z(J)
([kt@)]) . ¢ ~1/aqe
(5.14) va | [0, (2D 5 1,...,d) = ([0, V/2)°).
-Gy vy )]
Unpacking the left side of (5.14), we get
1 n
5.15 - 1 .
( ) k ,L:ZI Z(]) Ef_;ct(]).l) d]c k Z Zl(J), ((?])ct(J)])J 1,...,d]c

[b(.])(n/k) < b(])(n/k) ii=1,...,
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Define the (anti)-ranks for j =1,...,d

n
TZ(J) = Z 1[Zl(j)zzi(j)}
=1

to be the number of j-th components bigger than Zi(j). Rephrase (5.15) as

1 n

7 E 1 & ()e 7 .

k [r;?/ >ktl); j=1,...,d]°
i=1

Change variables s — ¢! to get

1 n
E Z 1[1"1(1')2]9(30))71; j=1,ed]e = 1/([0, Sl/a]c>
i=1
or in M, (E)
n
doel,
i=1 (T@;j:l,...,d

To estimate S, apply the polar coordinate transformation

(5.16)

;=

>:>l/*.

T(%; j = 1,...,d> = (Ri,ka@i,k)

Ty

and then
1 n
A Y R = v X S
i=1

and the estimator of S is

> ) (1,001 % )

i=1€
(Ri”w@i’k _ Z?:l 1[Ri,k>1]e®i,k(')
Z?:l €R; ((1’ OO]) Z?:l €R; ((1’ OO])
5.5. Asymptotic independence. Suppose {Z,,n > 1} are iid and satisfy the conditions

of Theorem 4. The distribution F' of Z; possesses the property of asymptotic independence
if

= 5.

(5.17) Sa(-) =

(1) v.((0,00)) = 0 so that v, concentrates on the axes;
OR
(2) S concentrates on {e;,i =1,...,d.

The distribution F' of Z; possesses the property of asymptotic dependence if

1

i t> 0}, the diagnonal line,

(1) v, concentrates on {¢
or

(2) S concentrates on {ﬁ}
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FIGURE 4. Returns from the German mark vs French frank: Starica plot (left)
and spectral density estimation.

If d = 2 and components of the random vector are tail equivalent, then asymptotic inde-
pendence corresponds to

PzV > b, 72 > b,
P20 > 5,120 > b,) = B4 O ]
P[Z)7 > by]

Hence the name, asymptotic independence. The extreme value background is discussed [41,
page 290].

It appears from the scatterplots in Figure 1, that exchange rate returns for (Japan, Ger-
many) might be modelled as asymptotically independent whereas (Germany, France) might
be from an asymptotically dependent model.

— v((1,00)) = 0.

5.6. Estimating the angular measure. The interpretation of (5.17) is that the empirical
measure of those ®@’s whose radius vector is greater than 1 is approximately proportional to
S. Apart from normalization of the plot, if we consider the points

6" R > 1}

and make a density plot, we should get an estimate of the density of S(-). A notable mode
in the density at m/4 reveals a tendency toward dependence. Modes at 0 and 7/2 show
a tendency toward independence, or at least asymptotic independence. Of course, we do
not know that S has a density and we could proceed by making plots for the distribution
function S[0,6],0 < 6 < 7/2. However, often, density estimate plots are striking and show
qualitative differences effectively.

Figure 4 shows the spectral density estimate for the German and French exchange rate
returns using ranks. Based on the Starica plot applied to the points in (5.16), we used
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k = 4500. Note the mode at approximately 7 /4, which is indicated by the vertical line. This
bears out the promise of the plot in Figure 1 where it seemed that large values seemed to
be highly dependent.

Contrast this with the returns from the German mark jointly with those of the Japanese
yen. Large values are much less dependent and in fact appear to exhibit asymptotic inde-
pendence. Figure 5 shows the Starica plot which helps in choosing £ = 1000 and on the
right there is the density estimate which shows a clear tendency towards having 2 modes at
0 and 7/2.

0.85 0.95 1.05

075

0.85 0.95

0.75

Japan-Ger; k=500

Japan-Ger; k=1000

o

0.85 0.95

0.75

(T e s ST

scaling constant

Japan-Ger; k=2000

scaling constant

Japan-Ger; k=3000

I et

ratio

0.95 1.05

0.85

scaling constant
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scaling constant

angular measure density

1.2

1.0

0.6 0.8
L

0.4

0.2
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FIGURE 5. Returns from the German mark vs Japanese yen: Starica plot
(left) and spectral density estimation.
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