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ABSTRACT

Prostate-specific antigen (PSA) is an important indicator of the presence of
prostate disease, When the volume of the prostate increases, as when cancer
is present, the levels of PSA in the blood alsc increase. Our work focuses
on using PSA levels as a biomarker for the recurrence of prostate cancer in
patients that have been previously diagnosed and treated by radiotherapy.
We fit a fully Bayesian hierarchical changepoint model to the longitudinal
PSA readings. Our objective is twofold; to better understand the natural
history of PSA levels in patients who have completed treatment, and fo
use the model to identify individual changepoinis that are indicative of
recurrence. With the goal of accurate early detection of recurrence, we
perform a prospective sequential analysis to compare several diagnostic
rules, including = rule based on the posterior distributiorn of individual
changepoints.

1 Introduction

Garnick (1994) discusses the importance of research in the detection and
treatment of prostate cancer, a disease the American Cancer Society pre-
dicts will strike 244,000 men and kill 40,400 men in the United States
in 1995. Prostate specific antigen (PSA) is a glycoprotein produced by the
prostate gland that increases with the volume of the prostate. Many papers
have examined the usefulness of PSA as a biomarker for prostate cancer.
The work of Catalona et al {1991, 1993) supported the usefulness of PSA
levels as a diagnostic marker for prostate cancer. Gerber (1991) discussed
the value of screening along with a review of current screening methods.
Oesterling et al. {1993) performed a prospective study to understand the
link between PSA and age. They concluded that PSA increases gradually
with age in healthy men and suggested normal ranges of PSA for different
age groups. Whittemore et al. (1995) compare diagnostic rules based on
PSA levels in black men and white men. They conclude that a single cur-
rent PSA reading outperforms changes in past PSA readings in identifying
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men who will develop prostate cancer in the next 7 years.

A few papers have modeled longitudinal PSA readings to better under-
stand the natural history of the PSA trajectories in those who do and do
not develop prostate cancer. Carter et al. (1992), and Pearson et al (1991,
1994) looked at serial PSA readings for men over a period of 7 to 25 years.
They used a mixed-effects regression model to test whether the changes
in PSA readings were different in men with and without prostate disease.
Model parameters were estimated using a Newton-Raphson restricted max-
imum likelihood method. Carter et al. (1992) observed that PSA increases
only very slowly with age before the onset of cancer and then increases
more rapidly when cancer is present.

Morrell et al. (1995) investigated whether the natural history of PSA pro-
gression in men with locally confined prostate cancer differs from that in
men with metastatic tumors. They used a mixed-effects model with a ran-
dom changepoint for longitudinal PSA readings. Approximate maximum
likelihood methods were used to estimate model parameters. They con-
cluded that the difference between local/regional and advanced/metastic
cancers is that advanced/metastic cases are diagnosed later in the progres-
ston.

We generalize the mixed-effects models introduced by Laird and Ware
(1982) to include random changepoints to model longitudinal PSA read-
ings. There is a great deal of literature on identifying when a process has
changed and estimating the changepoint. Page (1955) used non-parametric
methods to test the hypothesis that all observations are from the same
distribution. Hinkley {1969, 1970) used maximum likelihood estimation to
identify a shift in process mean and the intersection of a two-phase regres-
sion. Smith (1975) presented a Bayesian approach to estimating change-
points for normal and binomial distributions along with an informal se-
quential procedure. Carlin et al. (1992) gave a fully Bayesian hierarchical
analysis of changepoint problems, including the use of the Gibbs sampler to
solve for the posterior distributions of model parameters. Stephens (1994)
looked at continuously distributed changepoints and multiple changepoint
identification from a retrospective viewpoint.

We analyze longitudinal PSA readings recorded for patients treated by
radiotherapy for prostate cancer. We start with a fully Bayesian hierar-
chical model with a single random changepoint representing the onset of
a recurrence of cancer. The hierarchical approach permits the “borrowing
of strength” from the population to estimate the subject-specific parame-
ters while accounting for the within-subject serial correlation. This single-
changepoint model was found to have several shortcomings when applied
to our data set. We then expand the model to include two random change-
points; the first representing the end of the transient effects of radiotherapy,
and the second representing the onset of recurrence. We use these models
to perform a prospective sequential analysis and compare the timeliness of
changepoint detection with other proposed diagnostic rules using receiver
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operator characteristic (ROC) curves.

2 Data description

A study at the University of Michigan currently follows patients that have
been diagnosed and treated for prostate cancer. The patients are treated
with radiotherapy and then closely monitored for signs of recurrence. The
data consist of longitudinal PSA readings recorded from May 7, 1987
through January 6, 1995 for these patients, beginning upon completion of
radiotherapy. For individuals experiencing a recurrence of prostate cancer,
the date of recurrence and the date when subsequent treatment (hormone
therapy) began are also available. Recurrence is classified as a distant (out-
side the prostate), local {within the treatment field) or chemical (rising PSA
levéls) failure. A distant failure occurs when cancer is detected outside the
prostate by bone scan, imaging or biopsy. A local failure happens when
cancer is detected within the radiation treatment field by biopsy, digital
rectal exam, or both. A chemical failure is determined to have occurred
when either of the following happen:

e there is a sustained rise in the PSA readings of greater than 50% of
the post radiotherapy nadir reaching at least 4 ng/ml,

e when the post radiotherapy nadir is not less than 4 ng/ml, there are
two successive rises or two non-successive rises with no intervening
decline in the PSA readings.

Those individuals experiencing a non-chemical recurrence are called cases
here. Cases will be said to have encountered a “recurrence of cancer” to
indicate that cancer has been detected after radiotherapy. Subjects remain-
ing cancer-free during the time period of our data (cancer has not been
detected) are termed controls. Because we are investigating the utility of
using PSA to aid the detection of recurrence of cancer, subjects experi-
encing chemical failures are controls rather than cases since recurrence of
cancer has not been confirmed.

Radiation therapy uses high-energy ionizing radiation to kill cancer cells
within a carefully specified treatment field. The radiation damages one or
both strands of the DNA inside the cells, thereby preventing the cells from
growing and dividing. While cells in all phases of the cell cycle can be
damaged by radiation, the lethal effect of radiation may not be apparent
until after one or more cell divisions have occurred. This accounts for the
initial decrease in PSA levels that is seen in both cases and controls (see
Figures 1 and 2). After the initial decrease, the PSA levels are expected
to remain relatively constant if treatment is effective. However, a rising
PSA level is often experienced in the case of a recurrence of cancer. The
single-changepoint model uses only those observations after the PSA has
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returned to a normal level, while the two-changepoint model looks at the
natural history of PSA from the completion of radiotherapy.

We have included subjects in the analysis whose PSA trajectories meet
both of the following conditions:

o The post radiotherapy nadir is no more than 4 ng/ml. Because healthy
men typically have PSA levels less than 4 ng/ml, this is an indication
of some success of the treatment.

o There are at least two PSA observations after the first PSA read-
ing not exceeding 4 ng/ml and before the beginning of hormone
treatment, if present. Readings taken after the beginning of hormone
treatment are excluded because it is believed that hormone therapy
directly affects PSA levels.

After applying these inclusion criteria, our data consist of 411 patients,
47 of which are cases (i.e. recurrence of cancer was confirmed during our
followup period).

For the single-changepoint model, we use the longitudinal observations
starting with the first reading not exceeding 4 ng/mi and stopping with
either the last observation available or the start of hormone treatment.
These conditions yield 2402 records for the 411 subjects, with a median of
5 readings per subject (medians of 7 readings per case and 5 readings per
control). For the two-changepoint model, we use the longitudinal readings
starting upon completion of radiotherapy and stopping with either the last
observation or the start of hormone therapy. In this case the total number
of PSA readings for the 411 patients is 2755, with a median of 6 readings
per patient overall and median number of readings of 9 for the 47 cases
and 6 for the 364 controls. '

Figures 1 and 2 illustrate typical PSA trajectories for cases and controls.
The plots for control subjects 6710931 and 12316045 and case subjects
88226 and 89018 show the effect of the truncation of the initial readings for
the single-changepoint model: the points marked by open circles are not
included in the single-changepoint analysis.

3 Hierarchical model

3.1 Single-changepoint model

The mixed-effects model for linear growth before and after the changepoint,
t;, can be written as

Yi; = au + oz + b (x.-j - t,;)+ + €5, (1.1)

where y;; is the In(PSA) value for subject ¢ at observation j, z;; is the time
in months since completion of radiotherapy of observation j for subject
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FIGURE 1. PSA trajectories for selected controls. The character ¢ denotes the
time of chemical failure for subject 6710931, For subjects 6710931 and 12316045,
the open point is a reading that is not included for the single-changepoint model
but is included for the two-changepoint model.
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FIGURE 2. PSA trajectories for selected cases. The charactexrs L, D, C and H
denote the times of local failure, distant failure, chemical failure and the start of
hormone treatment, respectively. The open points for subjects 88226 and 89018
are readings that are not included for the single-changepoint model but are in-
cluded for the two-changepoint model.
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i, and z* = max(0,z). The index i takes values 1,...,N and j takes
values 1,...,n; when there are N subjects in the study and the ith has
n; observations. A model for PSA that is approximately linear on the log
scale has been used by many researchers (see, for example, Carter et al.
1992, Pearson et al. 1991, 1994, and Whittemore ef al. 1995). The complete
model assumes the following distributions:

() ]() 2 ~ m{ (&).2.) (12)
ay 4 @
(ao) —~ N2 { (#Oﬁg) , Za}
41 o
o0 o~ W{(pV) Y, p}, Wishart with scale (pV)7Y, p df

b8t ~ N80}
B~ Nlus.c2)I(8 > k)

1
;_—2 ~ Gamma(Ab,rg,)
1]

tilr,of ~ N(r, al)

o~ Nigr,o?)

5_13- ~  Gamma{ A, ;)
t
eilo?, ~ N(0,02)
1
p Gamma(A,, r,).

The subject-specific parameters are conditionally independent, as are the
within-subject errors. The prior distributions for (ao,a)T, 4 8, o, z
o7 %, and o* are assumed known,

‘The Gibbs sampler, as described in Gelfand and Smith (1990), is used to
solve for the posterior distributions of the model parameters. The procedure
is similar to that in Lange ef al. (1992), but with a continuous changepoint
as described in Stephens (1994). The complete conditional distributions
for each parameter, with the exception of the {t;}, are standard parametric
distributions and can be easily sampled. Although the form of the complete
conditional distribution for #; changes at each observation time, the form
of the distribution between observation times is known. Hence the {t;} can
be generated in a two step procedure which first generates an interval and
then generates a value within that interval. Thus it is straightforward to
generate from all the complete conditional distributions. This procedure
leads to estimates of the subject specific parameters, including the {t:},
based on posterior distributions.

Our choice of the form for the prior distributions was motivated primar-
ily by computational ease. Nevertheless, we sought to accurately represent
known information about PSA within these classes of distributions (specif-
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ically, we drew heavily on the results of Catalona et al.,, 1991 and 1993)
without being overly informative. Our prior distributions are given in Ap-
pendix 1.

Figure 3 shows the estimated posterior distributions for the population
parameters after 100, 300 and 500 iterations of the Gibbs sampler. The
distribution of a, the mean of the slopes before recurrence, is centered
slightly below —0.02 showing the lingering effects of the radiotherapy; even
once below the normal reading of 4 ng/ml the PSA readings continue to
decrease for many patients. The parameter 7 is the mean time to recurrence
for the mix of cases and controls in the population being modeled. There
is an implicit assumption that every subject will experience a recurrence
of cancer eventually, although the time to recurrence may be extremely
long for some. The posterior distribution of 7 shown in Figure 3 shows
that, for this population consisting of about 89% controls, the mean time
to recurrence is a bit longer than 50 months. '

Figure 4 shows the evolution of the posterior distribution of the change-
point for a selected case as readings are accumulated. The PSA readings
for this case are shown in the first panel of Figure 2. The posterior distri-
bution for the changepoint puts substantial mass to the left of the current
observation time by 31.4 months after completion of radiotherapy (13.06
months after the nadir), indicating that a recurrence is likely. There can be
little doubt by the final panel, which is when local failure was diagnosed for
this patient. Although the posterior distribution indicates that the change-
point has occurred, it does not accurately indicate when this changepoint
occurred. Rather, the location of the distribution appears to be unstable,
shifting to the right as more PSA readings are obtained. There are two
factors contributing to this behavior: the characteristics of the data being
fit, specifically the mix of cases and controls, and the model restriction
that the post-changepoint slope of the In(PSA) trajectory be at least 0.2.
The large proportion of control subjects in our data (about 89%) causes
the posterior distribution of 7, the mean of the changepoints, to be shifted
toward larger values, which in turn leads the model to expect larger rather
than smaller changepoints. As more readings are accumulated beyond the
time of cancer recurrence for a case, the slope of the In(PSA) trajectory
typically increases so that a more recent estimated changepoint permits a
larger estimated post-changepoint slope.

There are two major shortcomings of the single-changepoint model. The
first is that the model does not capture the initial decrease in PSA levels
caused by radiotherapy. Although we tried to eliminate this problem by
excluding initial readings greater than 4 ng/ml, the PSA readings continued
to decrease for many cases and controls. The second shortcoming is that
the incremental inerease in slope b; is poorly distinguished. The slope after
the changepoint is a; + b; where a; is often estimated to be negative. Thus
the value of k, the lower bound for §, had to remain large to separate cases
and controls.
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denote the posterior after 100, 300 and 500 iterations of the Gibbs sampler.



16 Elizabeth H. Slate, Kathleen A. Cronin

At nadir 10.2 months after nadir
o | o
1 -
o | “
s & i
¥ % i
1
i
2 tE !
1
T S [ S
R - -
] i = |
s
t T T v T ¢ T T
[ 20 -0 ] 3 20 « )
ronTt aled [aaOTRTRY montha slter radiohetay
13.06 months after nadir 20.7 months after nadir
= | =
S 2
a -
£ S
2 . 2 o
- . - e '
g g
T H :
o o k.
1
3 E b
1,
[N
[
o o ' SS——
a 3
T T T v T T T T
] 20 - L3 o 2 - 8
manths efer 7adoleispy maonths ler radoeracy
48,0 months after nadir
o
H
-
.
< =
£
z
Ll
s
o
2

months aRsr IEAOTWIRDY

FIGURE 4. Evolution of the posterior distribution of the changepoint for a sam-
ple case (898326) for the single-changepoint model. The solid line is the In(PSA)
trajectory, the dotted line is the estimated posterior distribution of the change-
point {arbitrarily scaled) and the dashed vertical line indicates the current time.
Local failure was diagnosed for this patient 66.5 months after completion of ra-
diotherapy.
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3.2  Two-changepoint model

The two-changepoint model addresses the shortcomings of the single-changepoint
model. A new changepoint is introduced to enable the model to capture

the initial decrease in the PSA readings after radiotherapy. Once this first
changepoint has been encountered, the model is as for the single change-
point: the transformed PSA trajectories are linear with a small slope un-

til recurrence, when the slope becomes markedly positive. Thus the first
changepoint represents the end of the transient effects of radiotherapy and

the second changepoint marks recurrence of cancer. To help make parame-

ters more distinguishable, we parameterize the model in terms of the slopes

of the trajectories rather than incremental slopes:

Yij = aoi +aizi; + (b — ai) (zij — )T + (e — bi){zij — tiz)t + €55

Here a; is the slope unti! the end of the transient effects of radiotherapy
at i3, b; is the slope between changepoints and ¢; is the slope after re-
currence of cancer at f;3. An additional change for our analysis using the
two-changepoint model is that here we use In(PSA + 1) as the response
rather than In(PSA), following Whittemore (1995). This transformation
diminishes the effect of very low PSA readings, for which the exact value
is typically unreliable.

For this two-changepoint model, we use the longitudinal readings begin-
ning after the completion of radiotherapy and ending with either the last
observation or the start of hormone therapy.

Primarily for computational simplicity we used a discrete distribution on
the observation times for the two changepoints. Our model is

(IE)= ~ m{() =}
a; o «
(o)~ ={C) =)
x Ho
;! ~ W{(pV)!,p}, Wishart with scale (pV)~1, p df
b | Byoi ~ N(8,03) I{Ibi] < B)
(t1:,82;) ~ Uniform on observation times
e x N(v,0)I(e; > k)
eijlof ~ N(0,0})

~  GammalA,,r).

-

Because the changepoints ;1 and t;» have the discrete uniform distribu-
tion on observation times, there is no additional level to the hierarchy for
the parameters of this distribution as there was in the single-changepoint
model. Furthermore, 3 and o} are specified here rather than being given
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distributions. The full specification of the prior distributions is given in
Appendix 2.

The Gibbs sampler is again used to fit this model. The complete condi-
tional distributions are again of standard form, except for these for the
changepoints. However, by reparameterizing to t;; and d;, where d; =
t;2 — ti1, a set of intervals can be defined for each subject so that the
techniques used in the single-changepoint model can be applied to both ti;
and d;.

Figure 5 shows the estimated posterior distributions for the population
parameters ¢, and «. The distribution for «, the mean of the subject-
specific slopes before the first changepoint puts most of its mass below zero,
as was expected. Figure 6 shows the evolution of the posterior distribution
of the second changepoint for the selected case examined for the single-
changepoint model. Recall that the distributions for the changepoints are
discrete on the ohservation times. For this subject, at approximately 13
months after the nadir there is substantial mass for an observation other
than the most recent. This is an indication that the (second) changepoint
has occurred, since otherwise all mass will be placed on the most recent ob-
servation time. The mass again concentrates on the most recent observation
time in the following panels, however, partly because of our restriction that
the slope after the changepoint be larger than k = 0.15 and partly because
of the preponderance of controls in these data. For comparison, Figure 7
shows the evolution for a second case. Ifere the posterior distribution of
the changepoint is less concentrated on a single observation time.
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FIGURE 5. Convergence of the posterior distributions for the populatien param-
eters in the two-changepoint model. The solid, dotted and dashed lines denote
the posterior after 1000, 2000 and 3000 iterations of the Gibbs sampler.
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4 Comparison of diagnostic rules

We compare three diagnostic rules for identifying a recurrence of cancer.
The first rule is based on a normal range, whereby any PSA reading above a
threshold value (typically 4 ng/ml) is considered to be a positive test result.
The second rtule is based on the definition of a chemical failure currently
used when monitoring patients. In our analysis the definition of a chemical
failure is a sustained increase (two or more observations) in PSA levels
of more than 50% from the post-radiotherapy nadir reaching 4 ng/ml or
more. The formulation we have proposed leads naturally to a third rule.
At the time of the current test for a particular subject, we compute the
posterior probability that the changepoint has already occurred. For the
two-changepoint model, the second changepoint is used. If the probability
exceeds some specified cutoff, then a positive result is indicated. We would
like to compare these suggested criteria—threshold, chemical failure and
posterior probability.

A standard method for comparing diagnostic rules is to use receiver op-
erator characteristic (ROC) curves {Centor, 1991). ROC curves plot sen-
sitivity versus (1—specificity) as the cutoff for the given criterion varies.
Specificity is defined as the proportion of non-diseased subjects that test
negative, and sensitivity as the proportion of diseased subjects that test
positive. These definitions were developed for a single test and do not ap-
ply directly to a sequence of tests taken periodically over time. This is
because, with longitudinal data, one subject may yield a false positive test
result at one observation time and a true positive test result at a later ob-
servation time. Murtaugh ef al. (1991) discussed ROC curves for repeated
markers. They classified each subject as either true positive, false positive,
true negative or false negative using the series of test results, thus effectively
reducing the problem to the single test case.

We define a specificity rate for each subject as the proportion of negative
test results obtained while the subject is disease-free. Thus, the specificity
rate for subject ¢ is

the number of negative test results before recurrence of cancer

spec; = 3

the number of tests before recurrence of cancer

where all tests have been performed on subject 7. An estimate of the pop-
ulation specificity is obtained by averaging the subjects’ rates, so that the
information available from different subjects is weighted equally. If the
times of recurrence of cancer were known for the cases, then this defini-
tion permits the use of data from both cases and controls, incorporating
all information available for specificity. Because the times of recurrence of
cancer are not known, however, we calculate the specificity rates for only
the control subjects {those remaining cancer-free for the time frame of our
data) and average only these specificity rates to obtain our estimate of
population specificity.
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We use a different approach to define sensitivity than we do specificity
for two reasons. The first is that sensitivity is time-dependent; a nega-
tive result ten years after recurrence of cancer cannot be compared with
a negative result within two years of recurrence. Second, a true positive
result ends the series of observations. This leads us to define a sensitivity
indexed by time, K-period sensitivity, where a period is the time between
tests. Here, for convenience, we assume the same period for all subjects. K-
period sensitivity is the proportion of diseased subjects that test positive at
any {ime within K periods after recurrence of cancer. Thus, for K-period
sensitivity, a subject is classified as a true positive if he has any positive
test results within K periods after recurrence of cancer, and he is classified
as a false negative if he has no positive test results within K periods af-
ter recurrence of cancer. We use only cases in our calculation of K-period
sensitivity and, because the times of recurrence of cancer are unknown, we
begin the K-period sensitivity calculation at the post radiotherapy nadir.
This substitution of the nadir for the unknown time of cancer recurrence
may introduce bias in the sensitivity estimates, but it does not affect the
comparability of the detection rules.

Figure 8 shows the ROC curves for the threshold, chemical failure, and
posterior probability diagnostic rules based on these definitions of sensi-
tivity and specificity. The heading for each plot gives the value of K that
was used for the calculation of K-period sensitivity. The ideal ROC curve
would hug the vertical axis, jumping to a sensitivity of one as soon as the
specificity became less than one. The posterior probability rule based on
the single-changepoint model (dotted line) outperforms the threshold rule
(sold line) consistently. The posterior probability rule based on the sec-
ond changepoint in the two-changepoint model performs better than the
single-changepoint rule for short periods (6 and 12 months), but otherwise
is comparable to or worse than the threshold rule. This is most likely due
to too large a lower bound specified for the slopes of the In(PSA + 1) tra-
jectories after the second changepoint. Our model set this lower bound to
k = 0.15. We are investigating the behavior of the posterior probability rule
when this bound is lowered. The chemical failure rule performs consistently
better than the threshold rule (at the corresponding specificity), but not
as well as the single-changepoint rule.

5 Discussion

It is now becoming standard clinical practice to monitor PSA levels in men
after radiation treatment for prostate cancer. Through appropriate mod-
eling of the PSA trajectories in a dynamic fashion, it may be possible to
speed the detection of the recurrence of cancer. We analyzed the PSA read-
ings after the transient effects of radiotherapy dissipated using a Bayesian
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hierarchical model with a single changepoint. We have also used a two-
changepoint model for the post-radiotherapy PSA readings, in which the
first changepoint marks the end of the transient effects of radiotherapy and
the second indicates cancer recurrence. We defined notions of sensitivity
and specificity for longitudinal tests and used ROC curves to compare di-
agnostics rules for detecting cancer recurrence. The detection rules based on
the posterior probability of the changepoint signifying recurrence perform
better than a threshold rule, which is commeon in practice.

Our emphasis is on the posterior distribution of the subject-specific
changepoint as it evolves in time. The Bayesian framework is ideal for
our purposes because this posterior distribution enables us to answer the
most natural and arguably most important question (at least to the sub-
jects): What is the probability that cancer is present now? We have not
emphasized the distributions of the population parameters {e.g. the mean
of the changepoints or the mean slopes of the trajectories). Although they
may be extremely important for health policy issues, care must be taken
in the interpretation of the population parameters here because their dis-
tributions are heavily influenced by the proportion of cases in the data set,
which may not be representative of the proportion of recurrences in the
general population.

Another benefit of the Bayesian framework is the incorporation of expert
opinion or prior information. Our prior distributions contain information
drawn from many studies of PSA {especially Carter et al. 1992, Pearson et
al. 1991, 1994, Oesterling et al. 1993 and Whittemore et al. 1995). Our pos-
terior distributions incorporate this prior information plus that contained
in the data we analyzed, and now serve as a database for the analysis of
pew data. For example, a physician wishing to use our techniques to en-
hance the monitoring of patients after radiotherapy may use our posterior
distributions as the prior distributions for his analyses, updating these as
he collects data from his patient population. At some time his posterior dis-
tributions may be used as the prior information for the analysis of another
physician’s patients. In this way the posterior distributions can evolve into
a comprehensive database for the behavior of PSA following radiotherapy
for prostate cancer.

The two-changepoint model can be generalized easily in a number of
ways. We are currently fitting continuous distributions for the two change-
points that permit more fexibility in the modeling. Our choice of discrete
distributions here was motivated by the desire to speed convergence of
the Gibbs sampler. A major hindrance to convergence is the tendency for
the generated changepoints to change very slowly due to high correlations
among the changepoints. The speed of convergence can be enhanced by
sampling the changepoints simultaneously. The models extend easily to
multiple changepoints, also, as discussed from a retrospective viewpoint by
Stephens (1994).

The prospective use of these hierarchical models for changepoint detec-
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tion may be applied in screening for prostate cancer in healthy men. We
are applying these techniques to PSA readings obtained from {a priori)
healthy men in the Nutritional Prevention of Cancer Trial (Abu-Libdeh et
al. 1990, Clark et el. 1991).
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1 Prior distributions for the single changepoint
model

These are the prior distributions used for the single changepoint model
described in Section 3.1.

(%) ~ {0 G 9}
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2 Prior distributions for the two changepoint

model

These are the prior distributions used for the two changepoint model de-
scribed in Section 3.2.

(%) ~ ®{(o0)- G 52)}
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