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ABSTRACT. A common visual technique for assessing goodness of fit and estimating location and scale is the
qq—plot. We apply this technique to data from a Pareto distribution and more generally to data generated by
a distribution with a heavy tail. A procedure for assessing the presence of heavy tails and for estimating the
parameter of regular variation is discussed which can supplement other standard techniques such as the Hill plot.

1. Introduction.

A graphical technique called the qg-plot is a commonly used method of visually assessing goodness of fit
and of estimating location and scale parameters. The method is standard and ubiquitious in various forms.
See for example Rice (1988) and Castillo (1988). The method is based on the following simple observation:
If

Ul,n S U2,n S . ~Un,n

are the order statistics from n iid observations which are uniformly distributed on [0, 1], then by symmetry

1

E(Ui+1,n - Uz,n) = n+1

and hence ]
EUip = ——.
’ n+1

Thus since U; , should be close to its mean i/(n + 1), the plot of {(i/(n + 1),U;,),1 < i < n} should be
roughly linear. Now suppose that

Xl,n S X2,n S L ~Xn,n

are the order statistics from an iid sample of size n which we suspect comes from a particular continuous dis-
tribution G. If our suspicion is correct, the plot of {(i/(n+1), G(X; ,)),1 < i < n} should be approximately
linear and hence also the plot of {G(i/(n + 1),X;,),1 < i < n} should be approximately linear. Note
G (i/(n + 1)) is a theoretical quantile and X , is the correponding quantile of the empirical distribution
function and hence the name ¢g¢-plot.

Suppose we suspect the data comes from a location-scale family

Guo(z) = Goa(Z=H)

o
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where p, o are unknown. The plot of

(G (i/(n + 1), Xi), 1 < i < n)
should be approximately a line through 0 of slope 1 and since

G, (y) = oG (y) +p

the plot of
{(Go(i/(n+1),X; ), 1 <i < n}

should be approximately a line of slope ¢ and intercept u. Thus visually we can assess the goodness of fit of
the location—scale family and provide estimates of p, o.

The relevance of this technique to heavy tails is the following. Suppose we suspect that 7, , <--- < 7, ,,
are the order statistics from a random sample from a Pareto family indexed by its shape parameter a > 0:

Fa(;l‘)zl—;l‘_a, z > 1.
Then of course for y > 0
Goa(y) = PllogZ; > y] = e~
and the plot of
UGGy o Zin) 1 S TS = {(=log1 = o) log Zin) LS F <)

should be approximately a line with intercept 0 and slope o~ *.

If {(#i,y:),1 <i < n} are n points in the plane, a standard textbook calculation yields that the slope of
the least squares line through these points is

. S:c _fg
(L.1) SL({(xi,yi),1 <i<n})= m
where as usual
Sxy = Z LilYi, See = JJZQ
i=1 i=1

and “bar” indicates average. Thus for the Pareto example, if we set

?
vi=—log(l~ — ),y =logZ,

then an estimator of a~! is

(12) = Xim —log(;ip){nlog Zn—it1,n — 327_; 108 Zn-jt1,n}

n Y oioy (= log(H))? — (7 —log(47))?

which we call the gg—estimator.
In Figure 1.1 we present a qq-plot of a random sample of size 1000 from the Pareto distribution with
a = 1. The qq-estimator gives an estimate of 0.9722397.
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log sorted data

0 2 4 6
quantiles of exponential

Figure 1.1

Because of the frequency with which the qq—plot is used, we sought to investigate the properties of the plot
and the estimator when the underlying distribution was not exactly Pareto. If one wishes to drop the Pareto
assumption but stay within the heavy tail class, one can assume the distribution is only Pareto from some
point on (see, for example Feigin, Resnick and Starica (1994)) but we decided to make the more general and
less ad-hoc assumption that tails were regularly varying. So we suppose we have a random sample 73, ..., Z,
from a distribution F' satisfying

(L.3) 1-F(z)~2"“L(z), (z— 00)
where L is a slowly varying function satisfying

L(tx)

=t L{t) L

We now modify (1.2) to make it suitable for the regularly varying case. Here is the rationale for the
modification. Observe that since 1 — F' is regularly varying, we have for large ¢.
1-F(te)
1-F()

Z
= P[—l > $|Zl > t] ~r ?.

(1.4) :

Now choose k = k(n) — oo such that k/n — 0. Then the k + 1st largest order statistic Z,_j , satisfies

Zn—k.n L 5 as n — co. This follows, for example, from Smirnov, (1952). Conditional on Z,_j , we have
that Z, n, Zn—1n,---, Zn—k+1,n have the distribution of the order statistics from a random sample of size
k from a distribution concentrating on (Z,_ n,00) of the form F(-)/(1 — F(Zn_k ). Thus conditional on

Zn—k,na
Zn—k+in .
——t=1,...,k
( Zn—kyn X ’ ’

behave like the order statistics from a sample of size k from the distribution concentrating on (1, c0) with
tail
1= F(Zp_knx)
— Iz
1—F(Zn_kn)
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where the approximation follows from (1.4). So in the notation of (1.1) it is reasonable to define the qq-
estimator based on the upper k order statistics to be

Zn— in .
() 1 <i< k).
Zn—k n

)

(1.5) a1 =a-i(k) = SL({(—log(1 — log

i
k+1)’

Some modest simplification of (1.4) is possible if we note the following readily checked properties of the
SL function: For any real numbers a, b we have

(1.6) SL{(zi,y:),1 <i<n})=SL{{(z; +a,y; +b),1 <i<n}).

Thus (1.4) simplifies to

(1.7) a1 = SL({(~log(1 — ﬁ),log Znpin), 1 <i <k}

In practice we would make a qq—plot of all the data and choose k& based on visual observation of the
portion of the graph which looked linear. Then we would compute the slope of the line through the chosen
upper k order statistics and the corresponding exponential quantiles. Choosing k is an art as well as a
sciengc;and the estimate of a is usually rather sensitive to the choice of k. Alternatively, one can plot
{(k,a=1(k)),1 < k < n} and look for a stable region of the graph as representing the true value of a~1.
This is analogous to what is done with the Hill estimator of o~}

Lo~ Zpgi
(1.8) Hip =33 log(——=0).

Choosing k is the Achilles heel of all these procedures; the difficulty can sometimes be lessened by smoothing.
See Resnick and Starica (1995).

In Section 2 we prove weak consistency of a~! under the regular variation assumption (1.3). Section 3
concentrates on proving asymptotic normality under a second order strengthening of (1.3). Section 4 contains
some additional examples and comments.

2. Consistency of the qq—estimator.

In this Section we prove the weak consistency of the qg-estimator. In view of (1.5), (1.6) and (1.8) we

—

may write the estimator a—1 as
k i Zn—k4in k i
2.1) -5 %Ei:l(_ log(1 — k+1)) log(ﬁ) - %Ei:l(_ log(1 — m))Hk
. ¢4 = I3 i k i
F iz (—log(l = £57))? = (5 iz (= log(1 — 47))?

where the Hill estimator Hj was defined in (1.8).

Theorem 2.1. Suppose k = k(n) — oo in such a way that as n — oo we have k/n — 0. Suppose
Z1, ..., 2y are a random sample from F', a distribution with regularly varying tail satisfying (1.3). Then the

qgq—estimator a-1 given in (2.1) is weakly consistent for 1/c:

e

P _
a-l = a7t

as n — 0.

Proof. Write the denominator in (2.1) as
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where as n — oo

)

k . 1
1 1 )
—Spe ==Y (= log(1— 2~ [ (—logz)d:
e k;( og( k—i—l)) /0( ogx)dx
(o]

(2.2) :/ yle Vdy =2
0

(o]
(2.3) :/ ye Ydy = 1.
0

Furthermore as n — oo

k . 1
S(~log(l = i~ [ (~loga)dotty Za™
i=1 k + 1 0

e

by the weak consistency of the Hill estimator (Mason, 1982). So for consistency of the qq—estimator it suffices
to show

(2.4) Ap =

k )

1 Zn_ktin, P 2

—log(1 — | . —.

> (- log(1 — ) log( =kt 2. 2
=1 )

| =

We do this by using Potter’s inequalities (Bingham, Goldie and Teugels, 1986) and Renyi’s representation
of order statistics (Resnick, 1992, page 439). Potter’s inequalities take the following form: Since 1/(1 — F')
is regularly varying with index «, the inverse U = (1/(1 — F'))* is regularly varying with index 1/« and for
€ > 0, there exists tg = to(€) such that if y > 1 and ¢ > #g

(2:5) (- aye™ e < LU o (1 4 gyetee,

We now rephrase this in terms of the function
R=—log(l—F)=logU~.

Then U = R~ olog and taking logarithms in (2.5) and then converting from a multiplicative to an additive
form yields that

(2.6) log(1 —¢)+ (a7 — )y <log R (s + y) — log R (s) < log(1+¢) + (a™" + )y

for s > logtg, and y > 0.
The reason for introducing the R function is that if Fq, Fs, ... E, are iid unit exponentially distributed
random variables then

(Z1,Z5,. .., Zy) £ (R™(E;),j=1,...,n).

The Renyi representation (Resnick, 1992, Lemma 5.11.1) states that if £y, < Ey, < --- < Ej, , are the
order statistics associated to Ey, Fs,...FE,, then

d
(2-7) (El,naEZ,n_El,n:~~~aEnn_En—l,n) = (_a

)
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For A,, we have

3 )
1 ? Ln—k+in
Ap == 5 (= log(1 — 1 ’
(- los(l — i) los(
3 )
a1 i R™(En_k+in)
=— —log(1 — 1 :
k i:l( Og( k + 1)) Og( R‘_(En—k,n)

k .
1 1 - -
= 2081 = ) (0B(R™ (Bt 4 (Bnmigin = i) = 108 R (Bn-t.)

and applying the Potter inequality (2.6) we have the upper bound

(~log(1 - ﬁ» (1081 + ) + (™" + ) (En-tin = Fu-)

| =
-

=1
(1t o) log(1 + ) + (0™ + )7 Z log(1 = ) (Fa—ktin — Bt
where we have applied (2.3). Of course a smnlar lower bound is obtained using the other half of the Potter
inequalities. From the Renyi representation, for e =1,... )k
n—k+i
En—k+i,n - En—k,n = Z (E],n - Ej—l,n)
j=n—k+1
n—k+i
j=n—k+1 n=J + 1
j=k—i+1 J

k . k
1 1 cop
2. - —log(—— = 5.
(28) P2 lon( )
For the proof of 2.8 we need two simple lemmas.
Lemma 2.2. We have that
k

1 1 1

(2.9) z ]2_1 logj =—1+logk+ E{log\/?ﬂ' +3 logk} + o(1).

Proof of Lemma 2.2. From Stirling’s formula
k! ~ e~ FRpEH2/or
so that
logk!— (—k+ (k + 2)log/€ + logV2m) — 0.

Since
L&
logk' z E_ log j,

the result follows. O
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Lemma 2.3. If {E},j > 1} are iid unit exponentially distributed random variables

k
1 1
Z jlogj=op(1)+ (—1+logk+ Z{log\/?ﬂ'—i— §logk}.

?vl»—-

Proof of Lemma 2.3. By the classical Kolmogorov convergence criterion, the series

(oo}

Zlogj B —1)

j=1 J

converges a.s. since taking variances yields

00 logj 2
Z( j ) =

Thus by Kronecker’s Lemma (see, for example, Port, 1994)
1t
%Z(EJ —1)logj —0
ji=1

almost surely as k — oco. Thus %Zle(Ej —1)logj = 0p(1) and thus

?vl»—-

k L&
E i logj = op( )—|—E210gj.
j=1 ji=1

An appeal to Lemma 2.2 finishes the proof. O
Proof of (2.8). We now complete the proof of Theorem 2.1 by verifying (2.8). For what follows set

?vl»—k

Then for (2.8) we have

and applying Lemma 2.2 we get
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k
Z( 1 +1logj+ O( O;“)) E;

j=1

?rl»—-

=log(k+ 1)E

=log(k + 1)E) + Ey —

?rl»—-

k 1<~ logj
Zlogj _EZO( j VE;.
j=1 ji=1

The last term on the right is 0,(1). Applying Lemma 2.3 we get

o log k
=log(k + 1)Ey + Ey — <op(1) —1+logk +O(2 )

=log(k + 1)Ey —logk + (Ex + 1) + 0,(1)
=2+ log(k + 1)Ey, — logk + 0, (1).
It remains to show that
log(k + 1)Ey — logk L.

This is easy since
log(k + 1)Ey — logk =log(k + 1)(Ex — 1) + log(k + 1) — logk

_log(k+1) - =
7 = T VE(By — 1) + o(1)

P

—0,

by the Central Limit Theorem. This completes the proof. O

3. Asymptotic normality of the qq-estimator.
We continue to suppose that {Z,,,n > 1} is iid with common distribution F' such that 1 — F' is regularly
varying at infinity of order —o, with o > 0. 71, < 72, < ... < Z, , are the order statistics of 71,...,7,.

We investigate the limit distribution of the qq-estimator a-1 defined in (2.1). Because of (1.6) we can write

k

k
> —log () $ klog (Zumistn) = D108 (Znojs1,n)

— i=1 ji=1

(3.1) al= p ; ’
k»; (~108 () - (Z ~log (m))

For this study, we will suppose that a second order regular variation condition holds for the non-decreasing
function U, where recall

Ut) = (%)h(t), t>0.

The condition is as follows. Set ¥ = a~1. We suppose there exists p < 0 and a function 0 < A(¢) — 0 such
that for all > 1

—x7 2P _
(3.2) /O c;ﬂ(IPI) (t — )

for some ¢ € R. If p = 0, interpret (z” — 1)/p as logx. Necessarily A(-) is regularly varying of index p and
U is regularly varying of index y. The form of the limit is discussed in de Haan and Stadmiiller (1994); see
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also Geluk and de Haan (1987). By means of Vervaat’s Lemma (Vervaat, 1972), (3.2) may be inverted and
expressed in terms of 1 — F' to obtain

1-F(sz
1—F((s)) -z

_ o
(3.9) iy T (%)
4 (=) g

as § — 0Q.

-

As an example, suppose
1

1-F)=2z"%+cx™®, z>1
where ¢ >0, o’ > o > 0. Then
/

A(s) ~ a_lc(a— - 1)51_6“//“, s — 00
a

and p=1— %I As another example, consider the Cauchy distribution with density

1
Plle)= — R
(2) (120’ xE

and distribution function

1 1
F(z) = 5—}— ;arctanl‘, z €R.

Then FF~(y) = tan (7 (y — 1/2)) so U(z) = F(1 — 1/x) = cot(w/z) and from a power series expansion of
cot(z) we find
x w2 1
=2(1= 2
vier= 2 (1= 5240 ()

Ultz) R 272 <1—m_2)

This gives as t — oo

Ut) 312 2
and with
272
)=
( ) 3t2
we get

sothat p=—-2and a =7 =1.
We also need to assume a condition which restricts the growth of k = k(n). We assume

(3.4) k— oo, k/n— 0, VkA(n/k) — 0.
Note this condition depends on the underlying (unknown) distribution F' since the function A depends on

F. This condition is commonly used in the literature. See for example Dekkers and de Haan (1989).
We now state the result of this section.
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Theorem 3.1. If (3.2) and (3.4) hold, then

(3.5) VE (a7t —amt) LN (0,2072).
Remark: The asymptotic variance of vk (oz/—\l — a‘l) is thus 2a=2. In contrast, the Hill estimator

k-1

Dn—i .

Hypn=1% E log <#) satisfies under (3.2) and (3.4)
i=0 nogn

Vk (Hyn—a™) 2 N (0, a7?)

and hence has an asymptotic variance of o~2.

certain circumstances and thus asymptotic variance is not a good criterion for superiority.

However, the Hill estimator exhibits considerable bias in

Proof. We first use (3.2) to obtain inequalities. Following what has become a standard method, which is
described, for example, in lecture notes of de Haan (1991), we observe that since A(t) — 0, (3.2) implies

Ultx)
Ut

s

—-1—-0

as t — oo and hence

log U(tz) —log U(t) — v log _log (r T )
A(t) - A(t)

Thus V(2) :=logU(t) — v logt satisfies

V(t:ajl(;)V(t) . (;ppp_ 1) |

From Geluk and de Haan, 1987, page 16ff, the convergence is locally uniform in z.

Suppose for concreteness that ¢ > 0 and p < 0. Then (Geluk and de Haan, 1987) V(c0) = limy_.o V()
exists and V(o0) =V (t) ~ ﬁ A(t) € RV,. Applying Potter’s inequalities, given € > 0, there exists to = to(¢)
such that for ¢ > tg and x > 1

p—e V(OO) — V(tm) o+e
(I—e)’™ < V(o) = V() < (L+e)ef™*
whence V() - V(tz)
(=™ —1 < gy S WFae™ -1
and so

(3.6) (1—(14¢e)a") c1A(t) <logU(tz) —log U(t) — yloga < (1 — (1 —&)z™%) ca A(t).
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where ¢a = (1 + ¢)e/|p| and ¢; = (1 — €)¢/|p|. Similar inequalities hold if either ¢ < 0 or p = 0 and we
proceed with the proof assuming that (3.6) holds. Note that (3.6) can be rewritten in terms of F'~ as

(1= (1+e)z"*)e1 A(t) <log '™ (1 - %) —log F—(1 — %) —vlogz
(3.67) <(1=(1=e)a"%)ea A(2).

Recalling (2.1) and the notation

k . k . 2
s = Y-ton (7 it 5o = 20 (-ton (7))

i=1 i=1

we may write

k i
07_\1 _ k1_2 Ei:l —log (k+1) Ai,k

o D

with
k
= (10§ Zn_i1n — 108 Zn_j11,n)

ji=1

and

In fact, we have that

(3.7) (a kzz <k+1)A )io (n — o).

To see this, observe that
(0] i .
g E+ 1 ke

— 1 k .
“p o ()
From Section 2, k=2 Ele —log (k-li-l) A; i is stochastically bounded and since D — 1, (3.7) will be proved

provided we show

(3.8) |1—D|:O<%>.

We have

. 2
1 2, 2log(k +1) 1
1—D:1—%Z§_1log i+ — g logi —log®(k + 1) + g logi—log(k+1)

i=1

Since
E+1

k k
1 1
log? udu < = log?i < —/ log? udu
[lrestuins }susi<} |

| =
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and pa1 )
1 log™ k
E/k (log u)?du ~ ng
and for z > 1
/ log? udu = 2(z — 1) + zlog z(log & — 2),
1
we find that
1< log? k
— 2. _ —
(3.9) kzljlog i =2+ (logk) ((log k) 2)+0< - )

The combination of (3.9) and Lemma 2.2 yield (3.8) and hence (3.7).
Let Uy,Us,... be independent uniform random variables on [0, 1] and let ¢,, denote the left continuous
uniform quantile function, defined by

qn(t) = inf{s : Fi,(s) >t}

where F}, is the uniform empirical distribution; that is

(t)_{O, for t=0
)= Ui n, fori_Tl<t§%and1§i§n.

By using
Zn—H—l,n g F’_(UH—H-L”) g F‘_(l - Ui,n);
we have .
Ai,k g Z (logF’_(l - Uz,n) - log F'_(l - Uj,n)) = AJ'ZZ' - Aj<i
ji=1
with .
Ajyi=Y (log F™(1—Usn) —log (1= Ujn))
j=i
and -
Ajeii=Y (log F(1=Ujn)—log F~ (1= U; ),
i=1

and by applying (3.6) to Aj>; and Aj.;, we get that for all € > 0, there exists ¢y such that on the set
[1/Ug n > to] (which, since Uy , L 0 is a set whose probability converges to 1)

k
Ujn
(310) I?’sz'yk < Az’,k — 7Elog <UL) < Supiyk

ji=1 n

sons=3{ =00 (52) ) o ()]
_ i { (1 —(1+¢) <%)p+) ad (Uln)}

j=1

where

and



Therefore

(3.11)

(3.12)

where

and

Now

But
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k

Infm' = E

j=i

kZ

We show

(3.13)

{ (1 —(1+¢) (gj—:)pﬂ) e A <UJ1”

i < U;
Aip =7 log (#) + ik,
ji=1 nn

k
34l
@ 1_ﬁ;—log 1
1 1
L+ to, <_)
k
k
(1) :iZ—log ! €k
bR k+r1)“

)}

1

Vk

)

1 k

)

ik_l | <i+ 1) k_llog (Uj+1,n
2 .
k* 5 k+1 j=1 Uit1n
log(k + 1) Ui
1 : N _
o 2 %\p, ) Tl
j=1 =2

=y

1=

ji=1

k k .
log(k + 1 Ui n 1 )
i g (1) i o (o
7n 2

Ui,n

€; 1 being an error term such that Inf; < e; x < Sup; x. Because of (3.7) and (3.11) we thus have

13



MARIE F. KRATZ AND SIDNEY I. RESNICK

14
We have
0<\/Eizk:10 ilog Zim
< kz, gilog Usn
Uk n
<log Ul,n 2 Zlogz
Uk n <logk> (k%Ukn> log k
~lo : =log | ———
8 Ul,n \/E 8 nUl,n \/E
(log k)? n log k log k
= +log (U n) —= —lognlU; n—=
NG g( k, ) NG Sk
P
—0
since Uk n L 1 and {nU; ,,} is convergent in distribution. We conclude that
E—1 . E—1
a1 1+1 Uit1n 1
3.14 D, = — —1 | il O, — ).
(3.14) 2% %(k+1)g;%(UHM)+ ()

But it is also true that

Uit d 1—-Un_;
log [ =12 ’n) =lo <7n J’n)
& <Ui+17n & 1-— Un—z’,n

(1 — ¢n(1 —j/n))

~lo 1—gn(1—i/n)

Moreover, by definition of the uniform quantile process, 8,(t) = /n(gn(t) — t), we have, for 0 < s <1

log (1_‘1%(1_5)) ~log (1 S (1—s)— Z—l/zﬁn(l _ 5))

:log< ﬁni\/i ))

Pu(l~3) + RO (s).

= — S\/ﬁ
Then
o Ujsin\ 4 i Bn(l —i/n) _ Bn(1—j/n) (2)(;
1g<mﬂm)‘¢ﬁ< i7n ) s (3) + 100
with
RP(i,j) = RV (j/n) — RY(i/n)

and by using the result of M. Csorgd, S. Csorgd, Horvath, and Mason (1986), namely 8,(t) = —B,(t) +
n_1/2+”0p(t”) with 0 < v < 1/2, where {B,(s),0 < s < 1} is a sequence of Brownian Bridges, we obtain

log (ﬁ) al (B”(l —i/m) _ B"(li/_ni/n)) + log < ) + R, j)

NG j/n

Uitin
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with

R%S)(i;j) — Rﬁf)(i,j) + 11 (Op((i/”)y) _ Op((5/n)" )) .

nl-v i/n Jj/n

This gives us

k=1 . k=1 .
1 141

(3.16) D, éaMnJrk—ZZ—log <k+1)210g(%)+R#)

i=1 ji=1
with

k=1 k=1
1 Z—log i+1 Bn,(1—3j/n) Bp(l—i/n)
" ak?y/n — k+1 = Jj/n i/n
d

an = i1 At

i=1 ji=1
but also

Therefore, (3.12) and this last expression provide

k—1 . k—1 .
/_\_ 1 Z+1 7] (4) (1)
« 1_Mn+mg—log<k+l);log<g)+Rn + ey

1 1 |
=M, + =+ R + —R(Y + el
« «

k-1 . k-1 .
11 Z i+ 1 Z J
“ (k2 i=1 Tl <k+ 1) j—110g <Z) . 1) |
To analyze Ry, we note

kzz log<k+ )k 1log<.)

=1

with

[,

k-1 .
1+ 1 7
3 - () e (2)
j=1
k—1 k-1 .

141 . k-1 1+ 1 .
k22—10g< . ) log(j/k) + 2 Zlog( A )log(z/k)
j=1 i=1

! =% k—1 (7% 1
~/ —logmdw/ log xde + ——— log <x—|— —) log zdz
2/k 1/k ko Jism k

log” k
=1 .
+0< : )

15
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Then Ry = cy_lO((log2 k)/k) and VERy, = 0(1) as k — co. Finally, we get from (3.12), (3.14), (3.16)

) B 1
(3.17) a~l=a '+ 10, + E, +0, <ﬁ>
with

k-1 ) k-1 ) )

1 i+1 B,(1—j/n) Bp(l—1i/n)
1 M, = —— -1 — —

(3.18) ak‘z\/ﬁ; ©8 </{7+1) = < j/n i/n
and

1
E, = ERg:l) + 6561) = Enl + EnEa

where from (3.16)

1 i+1 Ujt+1n J
E, = —RW = 1 Zitln ) A R V'
= 30 = g s () 3 o (22) s 4

and Enp = egv ) i given after (3.12). We now analyze the behavior of each term in (3.17).
Part 1: Behavior of \/EMH: Recall

" ;:ak;i\/ﬁkz:l—log <;+ 11) kz_:l <Bn(1j/—nj/n) B Bn(li/—ni/n))

i=1

k-1

. k-1 . .
1 1 B,(1— B,(1—-
= Z_log<lk ) < ( j/n) ( Z/”))
o \/ﬁ i=1 =1 ']/n Z/n
By definition of the Brownian Bridge, B,, satisfies

{M,0<t§1}§{W(1)—M,O<t§1},

t t

where W is a standard Wiener process. So

ot ()5 (42242

i=1 j=1 j/n

Since W (c) £ \/eW(-) for ¢ > 0, we get by writing

W(j/n) _ ]k/n \/k/n W(j/k) W(j/k)
iin " Gk ki km k- YR

that

Mngak;ﬂ§_10g< )E( UL

=1

—
.
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and thus

_é/ol—loguvvt(tu)du
= {/01 @ds_/ol(_logu)@du}

:l/ (1+logu)W£u)du = Z.

@ Jo

So Z 1s a Gaussian random variable with mean 0 and variance

ENAY

2 2
VarZ = — (1 +logu)(1+logs) Y duds = =

2
« O<s<u<l us (87

the integral being performed via Mathematica. Thus we can conclude
(3.19) VM, & N (0,2/a?) .

Part 2. Behavior of \/EE,L :

We will show that VEkE, = 0O,(1) as k — o0, n — oo and k/n — 0. For this, we will split E,, into two
terms and use different methods on each. Let F, := F,1 + E,2, with

k=1 . k-1 . ; .
1 i+1 Ujtin J 1 [ Ba(1-2) Bu(1-1%)
Ey ._akQ;—log <k+1);[log<Ui+1,n)_log<i)_\/ﬁ( % - .

K
n

and

k .

1 1
Enyi=—5 Y —log [ —— ) ei,
FTa Og(kﬂ)e”“

where

Infir < eir < supig.

We first consider E,; and follow the method developed in Csorgd, Deheuvels and Mason (1985). We have

k—1 .
1 1+ 1
= — —1 i

, 1{log (U]L) SR

j=1 Ui+1,n

where
k

R;p =

| =

(Bn(lj/—nj/") _ Bn(li/—ni/")) } .

Bl
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Using again (3.15), we get

Rip 2
‘ E—1 1—qn(1_j/”)>_%M)_O()g(M)_LM)}
n J/mn yn ! .

; 1{(@ (w—n

and then
k-1 k-1
1 i+1)\ 1 1—qu(l—3j/n
Epp=— -1 - 1 —
s ()i (e () -
i=1 ji=1
k-1 .
1 i+1 1—¢n(l—1i/n) 1 B,(l—1i/n)
- | 1 _
ak — og( k ) (og( i/n n i/n
Define
k-1 .
1 1+ 1
cy =k ;—log <T)
so that ¢g — 1 and
k-1 . i i
ol _ 1 cr — lo itl lo - a(l—y) LBH(I_")
Tk P k S\ Tk & i/n n  i/n
Write
1—g,(1=2% (11— &
log 0n( w) =log|1-— M
2 TZL\/E

au%ﬂééziG%)_bgcgl))yﬁAl_i;;%u_%)
S (-3 (457)

=B |+ B

where g(u) = u+ log(1l — u). So

From Lemma 10 of Csorgd, Deheuvels and Mason (1985), we have for 0 < v < 1/2
—B(1 =0 = Ba(1-9¢) v
=0, (n7").

C—V+1/2

sup
<<t

3
=
A
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Thus
E—1 . i i o\ —vtl/2 .
1 i+1 —Bn(1—=2) =B, (1—2)| [ i
I _ _ n n _ _
2l < X (2 tos (4 ))‘ it AN
R T . .\ —v—1/2
Op,(n7%) 1 i1+1 )
<P7_ _ e —v—1/2
<A (e () ()
1
:Op(l)k'_”_l/z/ (2 — logu)u™""*2du
0
=0, (k™"71/?).
Therefore

For B!, we have that

and from a two-term Taylor expansion, this is

(-i-0.0-2)" -B(1-9
262 (1) 2062 (2)

n

min{i,l—qn <1—1>} <0, <i) Smax{i,l—qn <1—i>}.
n n n n n

From Lemma 13, page 1069 of Csorgs, Deheuvels and Mason (1985), we obtain the following: given ¢ > 0,
there exists ng and p > 1 such that n > ny implies

where

P(An(p) > 1 -

where

7°|s.
IN
S|
>
7:|N
3

IN
@
3

N
S| -
~—
IN
3|

<
s
N
S|
~—
Il
3
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Therefore on A, (p)

i (- () p(252)
5%2 (c(k’) - log< J;; )) 621((;%_(;—))
<L (222 (7)) pﬁi:(%)é)'

It follows that for any & > 0

[\/_|E 1|>] <P(An(p)°) + P %2((2-@ <“}:1>)p2%>
e [FE (o)) i >

Now from Lemma 14, page 1070 of Csorgs, Deheuvels and Mason (1985), for every v €

Ba(l=Q)| _ .
28w | =0 7).
Pick ve (%,%) and then
k-1 . 9 l—i i 2(1=-v)
PRI > <o P Vi S (2 1os () @Ez()%”u))(nzi)z
= n L
1k 1 o\ =2
=+ P |0,()k~?VEk Ez_:<2—log<l—£ )) (%) >g]

—c4p [Op (k_2”+1/2) > 5] .

Since —2v + < 0, as a consequence of v > 1 3, and since £ > ( is arbitrary, we get

\/—lE”1| =0

as desired.
We now consider the remainder E,» using properties of regular variation. Recall that

akQZ log<k_1)1nfzk<En2< ]{722 10g<k+ )S up; k-

and consider the upper bound By, of E,3. We prove that \/%Bk Lt 0as k — oco. Let By :

Wl )5 (- () )en ()

(3.21)

Ui n
Ui n

1
Ujn

2

]:Z

i
k+1

3
1 1
B,E ) ::k—22—10g<
i=1

and

4

(0, %) we have

{

LB+ 87).
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(2) 1 k 1 = U; n pre 1
By =3 E log<k+1) g 1—(1+¢) (UJ ) ClA(U' )
i=1 j= i in

j=1

We first show \/EB,(P Zo. By Potter’s inequalities (Bingham, Goldie, Teugels, 1987), for given ¢ > 0,
there exists tp such that fort > tg and all x > 1

A(tw)
Alt) —

(LY (L Ukiiw
Ui,n Uk+1,n Ui,n

p+o
NEEn
Uin Uk+1,n

on the set [Uk+1,n < tgl], which is a set whose probability approaches 1 as n — co. So it suffices to prove

(1—8)z"~ <

(1 + 5) p+s

Therefore fori =1,...,k

\/_ i—1 Un p+e 1
kzZlogk JZ; (1+¢) (Um) A(Um)
k . i—1 +e p+e
1 ? Uin\’ Uktin P
—VEA N g ST 1+ (1 : “ktin 0.
=Vk <Uk+1n) ]‘72; ng+1; o +€)<Uj,n) < Uin -

Now Ug41, n/ L] implies by regular variation that A ( ) JA(n/k) £, 1 so since \/_A(n/k) — 0 is

assumed in (3.4), it remains to show that

k . +e k . p+e

1 2 Uk+1 n ° 1 ? Uk+1 n

- -1 ’ — —lo =—A+B

kz:; Ogl{:—|—1<Um ) TR g/<:+1Z Uin +
is stochastically bounded. Set I'; = E1+-- -+ E;,i > 1 where {E,,n > 1} isiid with P[E] > 2] = ¢ %, 2 > 0.
Then r

Uin,  Unn P .
( b ) (Fn-}—l Fn-}—l)

Thus A has the same distribution as

k . +e
1 @ ey )’
kiz_;(_logkﬂ)(n ) '

Since I'; ~ i a.s. as ¢ — oo, it is now clear that A is stochastically bounded. B is handled similarly after
observing that
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and
1 i !
i=1

and

1 - 1 1 k 1 1

k (T, T, )ete n —— —(p+e)

k JZ_; (T; [T+ < (const) . Z: GIR)+ const /0 u du < oo.

j=1

We now deal with B,(cl). Again, using Potter’s inequalities we get

1 1 Ukn
A =A . !
<Um) (Uk,n Um)

<A(L/Us ) @f)ﬁ (1+¢)

)

on [Ugn < to). Also A(1/Urn)/A(n/k) L. 1. So to show \/EB,(CU L 0 it suffices to show

1< i b U\
k.n
(3.23) ﬁg—log (—k " 1) > <Um)

is stochastically bounded. The expression in (3.23) is bounded above by

which is stochastically bounded as checked when dealing with B of B,(CZ). 194z So we can conclude that
VkBy, L 0ask — oco. Of course, we proceed in exactly the same way for the lower bound of E,5. Those

two results on the upper and lower bounds imply that vk E,» L 0ask — oo, which completes the proof of
VEE, =0,(1) as k — co. O

4. Concluding remarks and examples.

The qq estimator is easy to implement and we give some examples of its use. Write &(k) for 1/(1/—\1 when
k upper order statistics are used in the estimation of a. We then make a plot of {(k, &(k)),1 < k <n} and
compare it with the corresponding Hill plot {(k, H,;:L), 1<k <n}.

Figure 1 is a simple comparison of the Hill plot and the qq—plot of estimates of o for 1000 observations
from a Pareto distribution where @ = 1. Examining the qq—plot shows an estimate of about .98. The qq-plot
seems to be a bit less volatile than the Hill plot.
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number of order statistics number of order statistics
Figure 4.1

Next, we consider an example of a set of real data which exhibits large values and seems to be generated by
a sequence of independent random variables. The data set represents the interarrival times between packets
generated and sent to a host by a terminal during a logged-on session. The terminal hooks to a network
through a host and communicates with the network sending and receiving packets. The length of the periods
between two consecutive packets received by the host were recorded as our data. The total length of the
data is 783. Figure 4.2 is a time series plot of our data set showing indications of heavy tails.

Packets

=

=

=

=g

=

=3

=

=g

=1 \ L A A |

o 200 400 600 800

Figure 4.2

To assess the appropriateness of applying either the Hill estimator or the qgq—estimator, both of which
are designed for independent data, we next examine the classical acf function and a modification called the
heavy tailed acf:

ZT»L__lh ZiZitn
paeav (h) = ==7—5—
Ei:l ZZZ

The classical acf function applies a mean correction which is not be appropriate in the heavy tailed case.
Plots which vary little from 0 are exploratory evidence of independence; as seen in Figure 4.3, this is the
case with this data.
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Series : Packets Series : Packets
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< [¥o)
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L B o
(&) — >
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3 3
=
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o 5 10 15 20 25 (o] 5 10 is 20 25 30
Lag Lag
Figure 4.3

Finally, in Figure 4.4 we display the Hill and qq plots. The Hill plot is somewhat inconclusive. The
qq-plot indicates a value of about .97 A smoothed version of the Hill plot (Resnick and Starica (1995))
yields a value of about 1.1.

= =
—i =
< < oo
5 S s-
= =
S S
& &
< s ~
E =2 E o
2 g
= =3
o
S S
]
o~ =
P
o 200 400 600 800 o 200 400 600 800
number of order statistics number of order statistics
Figure 4.4

The Hill estimator, being optimized for the Pareto distribution, is likely to exhibit considerable bias when
the distribution has a regularly varying tail. Consider 5000 observations from the distribution F' with tail

(4.1) 1 - F(z) ~ 2z *(logz)®.

The logarithm in the tail fools both estimators as shown in Figure 4.5. Remember the correct answer is 1.

©
—
o ~
o~ —
P ~
> —i
S~ ]
£ £
S = =
k=1 s —
o 2 P
s =
E £ X
g g <
=2 o il
== g o
=1
[rs) s
= =
~
= P
=
o 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
number of order statistics number of order statistics

Figure 4.5
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Our last plot, Figure 4.6, continues to consider the data from the tail in (4.1) and exhibits a static qq—plot
for a fixed value of k, namely k& = 500. The plot shows many upper order statistics of the log sorted data
deviating significantly from the least squares line plotted through the upper 500 log sorted order statistics.
One of the advantages of qq—plotting over the Hill estimator is that the residuals contain information which
potentially can be utilized to combat the bias in the estimates when the tail is not Pareto. We hope in the
near future to develop this into a technique which will be useful in bias correction.

“ 1

log sorted data
1

3 a4 5 6 7 8
quantiles of exponential

Figure 4.6
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