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Abstract

Consider a sequence of possibly dependent random variables having the same marginal dis-
tribution F, whose tail 1-F is regularly varying at infinity with an unknown index —a < 0 which
is to be estimated. For i.i.d. data or for dependent sequences with the same marginal satisfying
mixing conditions, it is well known that Hill’s estimator is consistent for a~! and asymptotically
normally distributed. The purpose of this paper is to emphasize the central role played by the
tail empirical process for the problem of consistency. This approach allows us to easily prove
Hill’s estimator is consistent for infinite order moving averages of independent random variables.
Our method also suffices to prove that, for the case of an AR model, the unknown index can be
estimated using the residuals generated by the estimation of the autoregressive parameters.

1 Introduction.

The problem of estimating the tail probability P(X > x) of a random variable for large x has
obvious practical significance in diverse fields such as finance, hydrology, reliability and teletraffic

engineering.
In certain cases, collected data indicates that the random variable may be heavy tailed and the
index of variation has to be estimated based on a sequence X3, Xz, ..., X,, of observations . A

well studied estimator of the index, Hill’s estimator, is known to be consistent and asymptotically
normal for i.i.d. samples. However, many real life applications do not provide us with independent
sequences but rather with dependent, stationary data. Therefore, there is considerable interest in
studying the behavior of Hill’s estimator under the more general assumption of stationarity or,
even more generally, assuming just a common marginal distribution. Several recent papers (Hsing
(1991), Rootzen et al. (1990)) support the belief that Hill’s estimator performs well even under
these weaker assumptions.

Previous studies have assumed mixing conditions of one type or another for the stationary
time series. These conditions can be awkward to handle and verify. Another method of studying
the tail behavior for independent data was proposed by Mason (1988) and Deheuvels and Mason
(1991) and investigates the behavior of the tail empirical process. In this paper we emphasize the
following approach to the problem: we associate the tail empirical tandom measure to the sequence
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NSA Grant 92G-116.
tSupported by NSF Grant DMS-9100027 at Cornell University.



X1, Xo, ..., X,, and show that the weak convergence of the tail empirical random measure implies
the consistency of Hill’s estimator. We then prove the consistency of Hill’s estimator for an infinite
moving average sequence whose marginal distribution is regularly varying.

Some of our considerations have been motivated by the following problem. Consider a p-th order
autoregressive process {X,,n > 0} with residuals with regularly varying tail probabilities of index
-a. Both the stationary sequence {X,,} and the residuals have distributions with regularly varying
tails of index -a. This suggests two possible methods of estimating a: (i) apply Hill’s estimator
to the observed time series X7, X3, ..., X, or (ii) assuming the order of the autoregression p
is known, fit coefficients of the autoregression and use this to estimate residuals. Then estimate
a by applying Hill’s estimator to the estimated residuals. (Methods of estimating autoregressive
coefficients in the heavy tailed case have been suggested by Davis and Resnick (1985), Feigin and
Resnick (1992, 1993), Mikosch, Gadrich, Klippelberg and Adler (1993).)

An important conclusion of our paper is that both methods yield consistent procedures. We
make some comments about the desirability of the procedures in Section 5, where we discuss some
examples of simulated and real data. Based on these examples, it appears that applying Hill’s
estimator to the estimated residuals is a more satisfactory procedure. In future work, we hope to
compare efficiencies of the two methods of estimation.

We now give some basic notations and assumptions. Let {X,} be a sequence of random variables
having the same marginal distribution function F, where F:= 1 - F is regularly varying at oo, i.e.,
there exists an @ > 0 such that

F(tz)

= =g 1.1
t-»rgo F(t) :c ( )
for all z > 0. We are interested in estimating a based on observing X7, Xa, ..., X,. If we set

F=(y) = inf{z: F(z) > y}, 0<y<l1

and

o) = ()W = P, > 1,

then regular variation implies
F (b(t)) ~ t71 (1.2)

as t — oo. For 1 <1 < n, write X(; for the ith largest value of X, X, ..., Xn. Forx € R, 24
denotes max(x, 0). Then, with this notation, Hill’s estimator is defined as:

1 k
HX,n = 7{7— Z 10g X(1) ~10g X(k+1) (1.3)
4=l

Asymptotic properties of H, have been studied when k depends on n in such a way that n/k — oo
as n — oo. It is useful to define an associated random measure, the tail empirical measure, which
is going to play a key role.

Let E:= (0, 00] be the one point uncompactification of [0, 0o] so that the compact sets of E are
of the form U¢, where U 5 0 is an open set in [0,00). Suppose £ is the Borel o-field on E. Define
the measure p by:

p:€— Ry, w(z,00]) =277, z > 0. (1.4)



Let M, (E) be the space of positive Radon measures on E endowed with the vague topology (Resnick
(1987), Kallenberg (1983)). Let CE(E) be the space of continous, non-negative functions on E =
(0, 00] with compact support. The vague topology on M, (E) can be generated by a countable
family of seminorms

H={ps: My(E) — Ry :ps(p) = p(f)|f1 < 1,f € CL(E)}

(Resnick(1987), Proposition 3.17, Lemma 3.11), turning M, (E) into a complete, separable, metric
space. Convergence of i, € My (E) to o € M4(E) in the vague topology is denoted pn, 5 pip. For

x€E and A€ £ define
1, fze A
Gx(A):{ 0, ifze A

Then, for k = k(n) < n, define the tail empirical measure

1 n
BXn = L > exi uin/k) (1.5)
4==1

so that pix , is a Tandom element of M (E).

In Section 2 we discuss the general methodology of showing consistency of Hill’s estimator which
is to show that if ux , converges vaguely in probability to u, then Hx, F a~1. This emphasizes
the relationship between random measures and Hill’s estimator which is exploited in the rest of the
paper. The consistency of Hill’s estimator in the i.i.d. case is quickly tecovered using this method
(see Mason (1982)). Section 3 applies this method to show consistency of the Hill estimator when
applied to processes of the form

[e o]
X, = ch'Zn_j, —00 < N < 00 (1.6)
—

where Zj, is ii.d., P(Z; > =) is regularly varying with index -a and Z; > 0. In particular, this
result applies to an autoregressive process of the form

P
Xn=3 ¢iXn-i+ Zn (1.7)
i=1

since such a process (under proper assumptions) has a causal representation of the form (1.6) (cf.
Brockwell and Davis (1991)). An alternative method of estimating o for the AR process (1.7) given

a set of consistent estimators qggn)’ A(Zn), ey (Z)z(gn) of the true coefficients is to apply Hill’s estimator
to the estimated residuals Z§n), Zgn), ceny ZA’T(Ln) defined as
A p ~
2 = X -3 d X, i=1,...,n. (1.8)
i=1

In Section 4 we show this procedure is also consistent by showing the tail empirical measure corre-
sponding to Z{n), Zé"), ceey én) consistently estimates pu.



It will be assumed throughout that the following hold:
Condition I: {X;} is a sequence of dependent random variables having the same marginal dis-
tribution F where F is regularly varying at oo with index -a. The quantile function is b(t):=
(1/1-F)~(t),t > 1
Condition II: {Z;} is a sequence of i.i.d positive random variables with the common distribu-
tion G where G is also regularly varying at oo with index -a. The quantile function is b(t) =
(1/1-G)~(t), t > 1.

Define also: "

fixn = ']15 21 €Xi/ Xk (1.9)

where we think of X(x) as being the estimator of b(n/k) and

H}n = -]1; i (log X; —log b(n/k))+- (1.10)

1=1

2 Random measures and the consistency of Hill’s estimator.

The standing assumption in this section is that Condition I holds and that, as n — oo, k/n — 0,

1 ki
PXn = T > €xi/bnsk) = M (2.1)
1=1
in M, (E). We are going to prove that under this assumption, Hill’s estimator is consistent (Propo-
sition 2.4). We proceed in four steps discussed as Propositions.

Proposition 2.1 Consistency of the empirical measure given in (2.1) implies that

Xk P

—

b(n/k) ’

as n — oo, k/n — 0.

Proof: We have that

X n n
P(‘b((ﬁk; —1] > &) = P(Xgy > (L+ () + P(Xy < (1= 2)b(3)) <
k
1 & 1 &
< Py S exunp) (L+e00] 2 1) + P(2 Y exipzy [ —e,00] < 1)
=1 i=1

But (2.1) implies that
1 k
% Z €X;/b(2) (14 ¢,00] £ (1+e) ™™ <1
=1
and
1< P
E Z €X,/b(2) [1 —E,OO] - (l - E)"a > 1
1=1

and therefore the desired conclusion follows. O



Proposition 2.2 The following results from (2.1): In My (E),

fixm =
asn — oo, k/n— 0.
Proof: Define the scaling operator:
T:My(E)x (0,0) — M(E)

by
T(n,z)(A) = p(zA).

From (2.1), Proposition 2.1 and Bil]ingsley(1968), Theorem 4.4, we get joint convergence

(/LX ) b( )) = (:ua 1) (22)
in My (F) x (0,00). Since

pxa() = mxn (X /b)) = T (uxa X /o)),

the conclusion will follow by the continous mapping theorem, provided that we can prove the
continuity of the operator T at (g, 1). In fact, we prove the contmmty of the operator at (p,z)
where # # 0, since this is needed later. Towards this goal, let p, - u and z, — , where
i € My(E), 2, x € (0,00). It suffices to show for any y > 0 that

pn((zny, o0]) = p((zy, o0]). (2.3)
Given ¢ > 0 and n sufficiently large we have
pin(((z + €)y,00]) < pal((2ny, 0]) < pn(((z — €)y, <))

and letting n — oo yields that
((z +€)y)™® < liminf po((2ny, 00]) < limsup pn((zay, 0]) < (@ —€)y)™"

Letting ¢ — 0 in the extremes of the inequalities gives (2.3). O
The next result shows that a simple functional of y, yields a consistent estimator of a~
However it is statistically unsuitable as it depends on the unknown parameter b(n/k).

Proposition 2.3 Consistency in (2.1) implies that, as n — oo, k/n — 0,



Proof: Note that -
= [ log (Wixa(dy)

which by an integration by parts can be expressed as

0o du
B = [ hxaln o0
K 1 u

The proof consists of a converging together argument. Denote by

t du
e = [ ixalu, o)
1y 1 u
and then (2.1) implies
¢ du  1—t°
P u
H},n,t - /1 p'(u7 OO]';;‘ = a

for any fixed t when n — oo. Also, for t — o0, (1 -17%)/a — 1/a. By Theorem 4.2 of Billingsley
(1968), we only need check that:

lim limsup P(H}, — HY,; > ¢)=0.

100  pes00

Now

Il

+ + A du -1 0 du
P}, — Hipe > ©) = ([ pxals ®157 > 9) < e B[ (s o0I70)

= ! /too %f(b(%)u)%‘-.

By Potter’s inequality (Bingham, Goldie, Teugels (1987), Theorem 1.5.6) and (1.2), for a given 4,
there exists an ng such that, foru > 1

(1-8)u"? < %‘F(b(%)u) < (14 8yt
for any » > ng. Therefore it follows that:
0 gy 0o
fmsup [ PFO(Mu) ™ < / (1+ 6)u=*6"1du,
7= OO I3 k k U t

Making sure that § < « and letting t — oo completes the proof. O

The last step shows that Hill’s estimator is consistent for a™t,

Proposition 2.4 If (2.1) holds then, as n — oo, k/n — 0,

Hyx,— —.
o

Proof: Since
du

Hyy = [ log ixnldy) = [ fixa(u, oo,
1 1 u



we may mimic the previous proof. By Proposition 2.2,

/tA (u oo]du pl-t
—
) HX U, " o

for any fixed t when 7 — oo. Since (1 —t"%)/a — 1/a as t — o0, it again suffices to prove

hm lim sup P( ux,n(u, oo]%—:f > ¢e)=0.

t—00  pesoo

We write

Rl du _ o0 X(k) du _ oo
/t /J‘X,n(uv OO]-; = /f: HX,n(b(%)u’ OO] 2 - /X(k) [,LX,n(s,OO]dS-

CID)]
Thus, for any § > 0

P/ pxn(u, o]— > ¢ SP/ pxn(u, co]— > €, |5 < 8+
g s 155> €0 < P oo =I5 > iy )

+P(|

o du
b( ) -1 > 6) £ P(/(l_s)tux,n(u, oo]—q;~ > ¢)+o(1).

Then, by the last argument in the previous proof:

d
hm hmsupP(/ﬁﬂ px (2, oo]—uli >e)=0.0

t—r00
N OO b(ll)

3 The consistency of Hill’s estimator for infinite moving aver-
ages.

In this section we prove convergence of the empirical measure associated to an infinite moving
average sequence. Our approach follows the spirit of derivations of Davis and Resnick (1985); see
also Section 4.5, Resnick (1987). We start with the known result for the i.i.d. samples (cf. Resnick
(1986) ), extend it to finite moving averages by techniques involving the continous mapping theorem
and then, by a converging together argument, we prove the result for the more general setting, the
infinite moving average. Let us begin with some notations and preliminaries.

We assume that Condition IT holds so that Zj are i.i.d. positive random variables with

P(Zy > ) = G(z) ~ &~ *L(z),

L being a slowly varying function. Suppose, that the sequence { ¢; } € R™ contains at least one
positive number and satisfies

o0
0< Y el < (3.1)

=0



for 0 < § < a A 1. Then (cf. Cline (1983))

chzj < X
vt
and PSS e )
XaCil: > o0
1i 9=0 171 = @ 3.2
:L'—l;%o P(Z1 > CI?) ; ¢ ( )
c; >0

so that Y72, ¢;Z; also has regularly varying tail probabilities.
Define the moving average of order infinity processes, denoted MA(o0), by

X, = chZ""j’ -0 < n < oQ. (3.3)
—o

Causal ARMA processes can be represented in the form (3.3) (Brockwell and Davis (1991), Chapter
3). The purpose of this section is to show that applying the Hill estimator to the observed time
series X1, Xa,..., X, yields a consistent estimator of a~1. Note that (3.2) gives us confidence that
the sample X1, X2, ..., X, contains sufficient information about . Recall F (z) = P(Xy < z).
Define the vector
ng) = (Zta Zt-—l) Ty Zt-—m)»

denote basis vectors in R™*! by
e = (1,0,0,...,0),e = (0,1,0,...,0), ..., en = (0,0,0,..., 1)
and define the measure u(™ € M, ([0,00]™*!\ {0}) to be concentrated on the axes
{ze;, z > 0}, i=0,1,...,m

and equal to p on each of them so that, for A € B([0,00]™*" \ {0}),

Wm(A) = 30 ul{a € (0,00] : aei € A)).

=0

We seek to show the tail empirical measure corresponding to {X1, Xo, .. .sXn}, namely
1 n
T 2 EXifbln/k)
i=1

converges to u. We think of X; as a functional of (Z;, Zi—1,...). An aproximation X i(m) of X; can
be defined as Xz(m) = ) jeo€jZi—j which we consider a functional of (Z;, Z;—1, ..., Zi—m). This
suggests examining the behaviour of

1 n
k Z:l 2 o)

which we do in the next proposition.



Proposition 3.1 We have in My ([0, 00]™t!\ {0}), that, as n — oo, k/n— 0,
1 - (m) (3.4)
Proof: The proof goes in two steps. The first one is to prove that:

d(ic“; B p(a) T 2 D sz () 7 O

j=01=1

where d is the vague metric. The proof for this step is similar to the first half of the proof of
Proposition 4.26, Resnick (1987) and is omited here. The second step requires proving that

oY ape, = ™.
7=01i=1

| =

In order to prove this convergence we define the operator:
U+ My(E) — Mq([0,00]™ '\ {o})

by
Um(A) = Zm({w € (0,00] : ze; € A})

where m € M, (E), A € B([0,00]™*! \ {0}). U is continous: let f € C#([0,00]™ ! \ {0}) and
without loss of generality supose the support of f is contained in ([0, §]™*1), where 6§ > 0. If for
n > 0 we have m, € My(E) and m, - mg then

Uma(f) = Yoma(Sle; ) - S ma(f(e; ) = Umolf),

=0

since f(e; -) € CF(E). Thus, since we know (Resnick (1986), Proposition 5.3)

1 k(3
T2 CziniE) T B

1=1
in M, (E), we get by the continuous mapping theorem that

m

1 & 1 ~
UL 20 zipm) = 3 202 Zib(e

1=1 7=01i=1
= Up) = pt™

as desired. O
Proposition 3.1 is a bridge to the result describing the behavior of the tail empirical measure of

xm xm o xm,



Proposition 3.2 If X,(Lm) =3y "0 CiZn—; then

1 & m . 00
EZ Lym y(n k) >0€ X ™ pbn ) = (Z i’/ Z ) p (3.5)
= Czi=>60 02;00
Proof: Choose m large enough that
D¢ > 0. (3.6)
i=0

Define the operator
Vi My ([0,00]™*1\ {0}) — M ((0,00])

V(w)(A)=v ({z € [0,00]""\ {0} : Zcixi € A}).
1=0
where A € €. To show that V is continuous, it suffices to show for any f € Ck((0,00]) that

VHm € My((0,00]) : m(f) € O},
for O open in (0, 00], is open in My ([0, c0]™+ \ {o}). Since
VH{m € My ((0,00]) : m(f) € O}
= {v € My([0,00]™\ {0}) : /[ £(3" cawlde, -, den) € O}

(RS LEEINE) Sl

it suffices, from the definition of the vague topology, to show that the function

fle): (zo,. ., Tm) = f(Z %)

=0

belongs to Cx ([0, 00]™*1 \ {0}). Since this function is obviously continuous, it suffices to show it
has compact support. We show the support is bounded away from o. Suppose for a > 0, that the
support of f, is contained in (a,0c]. If o were a limit point of the support of f(c+), call it supp,

then there would exist z(™ € supp, (™ — o. In this case, 312 cixz(»n) — 0 and, for large enough
n, Y ity cimgn) < a contradicting z(™ ¢ supp.
By the continuous mapping theorem, the previous proposition and Condition II it follows that:

1 n 1 n
1 _! m)
V2 ampe) T B I nemsatxpg T V)

where

V(um) = (i o) p.

$=0
c; >0

10



To teach the desired conclusion of the Proposition, we must rescale the random points in the
previous formula by:
1 y—
(3 _ (=)' (B)

(%) (2p)7(E)

By our assumptions, 1/(1 — F) and 1/(1 — G) are regularly varying with index o > 0 and from

(3.2)
x—»oo G Z c

=0
c; >0

By Proposition 0.8.(vi), Section 0.4 in Resnick (1987) it follows:

“ﬁl

(W) e
B ) (ff%)

Then, by the scaling argument of Proposition 2.2, we can conclude:
1 & m _
E; €™ p(2) = V(pt™)o T

_ (T e (Y e

1=0 1m0

c;>0 ¢; >0
= (Z e/ Z )

c,>0 C;>0

where T is defined as in Proposition 2.2. O
The next result extends the previous one to the infinite moving average case.

Proposition 3.3 If X; = Y52¢jZi—j then, as n — oo, n/k — oo,

1 k3
= 2 LK /b(n8)>0] X bk = Mo
=1

in M((0,00]).

Proof: The proof is nothing more than a converging together argument. According to the
previous proposition and to Theorem 4.2, Billingsley (1968), it is enough to check that:

mhlnoohgl_qsogp P(d(EZ eXgm)/b(n/k)’ ";z in/b(n/k)) >¢e)=0 (3.7)
i=1 t=1

where d is the vague metric on M (E). From the definition of d, it suffices to check that, for any
fe CH(E):

Jim_lim sup P<|—Z S [b(n/k)) — -z f(Xi/b(n/k)] > &) = 0.

=1

11



Since f is continous with compact support, the support of f is contained in [a, 0o], for some a > 0
and f is uniformly continous. Therefore

wy(8) == sup |f(z) = f(y)| = 0
l$“y[ < 6,ryekl

when § — 0. Let § < a/2 and define the following sets:
A = {1X[ [b(n/k) = Xifb(n/B) < 8 X[ 2 a8}

Bi = {IX™ /b(n/k) - Xifb(n/R)| < & X" < a—8)

and

Ci = {IXI™ /b(n/k) - (Xi/b(n/k)] > 6}

fori =1, ..., n. Decompose the probability as follows:

PG Y SR = 3 TR > o

< PR X /) = SOXifbn /W)L, > /3)
=1
4 PE ST X on k) = SO/ KB, > €/3)
& PE Y A onk) = SO/ R) e, > e/3)

=1

< P(Wf((s)‘::‘zn: ({X(m)/b(n/k)[a—é,oo] >¢e/3)+ 0
=1 ¢
+ %E(lf(Xfm)/b(n/k)) — f(X1/b(n/E))|1c,)

where the second term is 0 because neither Xz-(m) /b(n/k) nor X;/b(n/k) belongs to the support of
f. From Proposition 3.2

1 m 00
'];Z €X<m)/b(n/k)[a - 6’ OO] = (Z C? / Z C?) iu’([a’ - 6a OO])
i=1 ! i=0

t=0

c,-_>0 ¢i >0
m o0

= Do/ D )a—8)"
630 30

and thus, for § and hence w(6) sufficiently small

. 1
hin_’sol(l)p P(”f(5)';gz €X§m)/b(n/k)[a“6’ o] > €¢/3) = 0.
p=1

12



Also, if we set M = sup,c g f(z) < oo, then
6Mn

B B b ) = SO b /R)1,) < TP POXE™) = Xal > 8 (/)

6Mn kad
= e P( E chI_j > (5b(n/k))
J=m+1

Applying (3.2), this bound is asymptotic, as n— oo, to

6M =

(e B et s
cté
c 3

j=m+1

and, as m— oo, this last expression goes to zero. This verifies (3.7) and completes the proof. O
The next Corollary is a generalization which is needed in Section 4.

Corollary 3.1 If Z; satisfies Condition I, so that Zy has regularly varying tail probabilities, then
for any integer p > 0,

1
—Z L[(X:, Xi 110 X p) €[0, 00PN (OY] €Ki, X1, Ximp) folmf k) = I
z-l

in My ([0, co]P*1 \ {0}) where
pr(A) = Zp,({:v € E : (¢, Cim1y ---» Cip)T € A}) (3.8)
1=0
for any A € B([0, co]Pt1 \ {0}) with the convention that c’s of negative index are defined to be 0.

Proof: By Proposition 3.1 we know that, for any m,

1 & o
EZ e(Zth—-ly-“’Zt——m)/b(%) = ’-l'( +1),

iz=1

in M, ([0, 0co]™ !\ {o}). We now follow an idea close to the one in Theorem 2.4 (ii), Davis and
Resnick (1985) and define the continuous operator

m—p
Wmp(A) = v{z € [0, o™\ {0} : (Zc,x%, Z CiTit1,y- Z Citiyp) € A}
1=0 1=0 1=0

from M., ([0, 00]™1\ {0}) to M4([0,00]P*!\ {0}). Then by continuity

m 1 =
wi )(E.}: (20T, Zomm) (R)

1

Zl L0 Xm0 Ximp) €00, 00lPH\{O)] € x (™) x () | X (=) ()

o W) ylmt),

13



With closer inspection we note that

W m) (m1)( 4)

m m-1 m-—p
= u(m“)({m € [0, 00]™ "\ {0} : (Z CiTs, Z CiTitly - vy Z CiTivp) € A})
1=0

1=0 1=0
= iu({x € [0, 0]\ {0} : (a1, €1-1, - -, C1—p)T € A})
{=0

Thus, if we let m — oo as in the previous proof, the result follows. O
We now sumarize the main conclusion of this section which follows from Proposition 2.4 and
Proposition 3.3.

Proposition 3.4 If {X,} is an MA(co) process given by (3.3), where {Z;} have regularly varying
tail probabilities with index -a as described in Condition II, then the Hill estimator is consistent
for at.

4 Estimation for AR processes using the residuals

In the following, we assume that {X,,} is an AR(p) process defined by the p-th order autoregression:

14
Xe = Z¢iXt~i + 7, t=0,%+1,42,.... (4.1)

=1

Recall {Z,} satisfy Condition II so that {Z,} areiid., Z, > 0 and

G(z) = P(Zy > z) ~ ¢ %L(z), T — oo. (4.2)
We suppose
P
B(z) =1 - ¢zt #0, |7 <1 (4.3)
=1

so that (Brockwell and Davis, (1991)) the autoregression (4.1) exists and has a stationary solution
of the form

Xn = Y €iZn-j, —00 < 1 < 00 (4.4)
—
where
C(z) = Z_:cj-zJ = ) lz] £ 1. (4.5)
7=0
We assume that we have a sequence (}S(n) = (q3§”), .. .,qAﬁgn)),n > 1 of consistent estimators for

the coefficients of the autoregression such that:
~ n) P
o™ L 4 (4.6)

where éﬁ(n) is based on observing Xi,..., X,. (Various authors have proposed estimators &B(n) of
¢ in the heavy tailed case. See for example, Davis and Resnick (1986), Feigin and Resnick (1992,
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1993), Mikosch, Gadrich, Kliippelberg, Adler (1993)). For this sequence of estimators the residuals
Zt(n) are defined as

7™ =x, - Z&")Xt_i. (4.7)

i=1

Closely related to the estimated residuals defined above is the following sequence:

,()

= Z(n) 1[(X,, X1, Xi_p)€ [0,00)P+1\{0O}]* (4.8)

Note that, when the sequence {X;} is positive, (4.8) are nothing else than the estimated residuals.

The purpose of this section is to show that the Hill estimator applied to Z'g ), Z';n), ceey Z'; g

yields a consistent estimator of a~!. Following the outline in Section 2, we will prove that:

1™

k 2 iy
in M, (E). This will be shown to imply the consistency of Hill’s estimator. Here is the first step.
Proposition 4.1 If ({.1) and ({.2) hold, then, as n — oo, n/k — oo,

1 &
Birn = % 2 G py T P

in My (F).

Remark: Note that, if X; are positive, Proposition 4.1 says
1 n
Pzm = 3 Z €5 poniy = M
Proof: By Corollary 3.1 and (4.6) we have

( L((Xs Kt X )€ [000)PH\{0)] €K Xim o Xip) b/ k) (1 =@)) = (0, (1, o))

ii
A

el W
M:

in M, ([0,00]P*1\ {0}) x RP*1. Define the operator (A € B((0, o0]))
R(v, $)(A) = v({z € [0,00"" "\ {o}:¢ - z € A})

from M ([0, 00?1\ {0}) x RP*! to M1 ((0,00]). An argument similar to the proof of Proposition 2.2
shows that this operator is continous at (u*, (1, —@)). Hence, by the continuous mapping theorem,
we conclude

1 & .
% ; L{(Xi,Xiz1, Xi—p)€ [0,00)P+1\{0}] €5 fo(n/k) = R(p*, (1, —9)).
We assert that, for any A € B((0, x])
R, (1, —=9)) = p(A).
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To verify this note first of all that ¢co = 1, ¢; — Y7 ¢jci—j, @ 2 1 since C(2)®(z) = 1. Soif

= {z € [0,00]P*'\ {0} : 2o — ‘Z: $jz; € A}

then by (3.8)
w(A) = i—o:,u({:c € E : (¢ Cim1y +-s Cimp)T € A}
— Sl e B (e = X deine € AD
= (A)-

To end the proof note that

1

Z L%, X1 Xi—p) € [0,00)P+1\{0}] €2 fo(n/k)

n
=1

oyl

1™
1S
i=1

i [h(n /k)
Proposition 4.2 If (4.1) and (4.2) hold, then as n — oo and k/n — 0,
5, (n)
Oa:
b(n/k)
(i) fs =LY I
MZ,,TL . k P lEn)/ZIEZ; Hs
i) B =13 (og 2~ log b(n/k))s B =
Z',n A P 1 Of,
k
. 1 5,(n) m p1
(’L’U) Hé’,n ::-,; ;1 Z() '—1OgZ(k+1)

Proof: (i) and (ii) are just Proposition 2.1 and Proposition 2.2 applied to Z' (. In the light of
Proposition 2.3, to prove (iii) we must show:

tlirgohin_f;p P(H+ - H;ﬁ,,nt > ¢€) = lir&hinjolip P(/Oo log (y)uz*,,n(dy) > ¢)=0.
Since

p([“ 108 Wy () > &) < P([ " Tog (Wiz(dn) > )
it is enough to prove

hm lim sup P( log (y)uz,n(dy) >¢e)=0

t—=00 nooo
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which is implied, by the same Proposition 2.3, by:

. o0 du
lim lim sup P(l/t iy (, 00]7 -

t—=00 p—soo

o du
/ pzn(u, 0o]—| > €)=0.
t u
We have that:
o0 du o0 du
PA [ gl = [ pzaln ] > <)

o0 1 n du £
< P(-/t k ; €5 g (201 = €zippiansiy (s 20ll=7 > 5).

This expression can be handled as follows:
o1 X2 du
P 3 D= e pagi2°0) — (@l > )

0o 1 2
= P(/t z ;(1(Z$")/b(n/k)>u, Zifb(n/k) < u)

1 )@
1020 gy < w Zeppiniy >0 7 )

1 n 00 du &
< P(E ?:::I/t 1(Z§")/b(n/k)>u, Zifo(nfk) < u) 4 > 5)

1 [ du _ ¢
TG ;/; Lo o) < 20y >0 w7 2

For the second term apply Chebishev’s inequality:

A du €
P (E E/t Lo pongby <, ZippnfB) > 0 g 7 'é)

1 &L [o® du €
P(',; Z/t Y zifpin/b) > w) = > 5)
=1

i—j/f P(Zi/b(n/k) > u)%-‘-.

IN

|

By Potter’s inequality:
fim ljmsup/ P bz fo(nfk) > W) = 0.
{00 pe—meoo + k U

Now we concentrate on the first term:

1 n o0 du £
P(¢ ;/t Lo pongiy > w, zeppnmy <) 7 5)

1 & [ du €
= P(g ;/t Lo fongk) > w, Zepingk) < w-e) T~ 7

1 K [ du €
+P (E ;/t L e ponsry > u, 2ep(n/k) € r-e)l) 7~ Z)‘

17



By an argument we have already used earlier in this proof, it is easy to see that the second term
has the desired behaviour:

L5 ~ du €
P(E ;l 1(Z£n)/b(n/k)>u, Zi/b(n/k)é(u(l—g),u])—; > Z)
15 Oo du €
< P(E ;[ L zipp(n/k) 2 w(i-e) 7 Z)'

Moreover

1< oo du £
P (75 ; /t L™ onik) > u, Zifp(nfk) < w1=e) 5~ Z)

1y £ \/ 1™
< P cmomponeed > 5V 1E -6 < 9

P ~
+ P\ 18 = g1 > 9)

i=1

15 € \/ g™
S P(/t E ; 6}:5:1 k“gg")_ quIX,‘_J-/b(n/k)(ug’OO] > Z? Jl/l l¢] - ¢‘JI < 6) + 0(1)

IN

°1 ¢ ug €
P(/t E ; e xoy gy (o001 > )+ o1):

Making use, in an already familiar way, of Chebishev’s and Potter’s inequality and reminding the
reader that an infinite moving average of regular varying random variables is still regularly varying
with the same index (cf. Cline (1983)) we conclude the proof of (iii). The proof for (iv) mimics
exactly the proof of Proposition 2.4 to which we refer the reader. O

5 Simulations and data analysis

The first part of this section is devoted to illustrating our results by mean of simulated data. In
the second half we analyze a real teletraffic data set, estimating its right tail behaviour.
a) Simulation: We simulated the AR(2) process

Xt - 1.3Xt_1 - 0.7Xt_2 + Zt, 1= 1, sy 1000
where Z; are Pareto distributed so that
P(Zt > II)) =g %z > 1

We did this twice, once when @ = 0.5 and then for a = 0.7. The time series plots of the two
simulations are presented in Figure 1.
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The AR(2) process is causal and therefore has an MA(o0o0) representation so that the results
of Sections 3 and 4 are applicable. The coefficients ¢; and ¢, were estimated by the Yule-Walker
method (see below for a discussion). The estimated coefficients for o = 0.5 are ¢; = 1.2846 and ¢
— -0.6835. In the case when a = 0.7 the estimated coefficients are ¢y = 1.2792 and ¢3 = -0.6732.

Figure 2 gives Hill estimator plots as a function of the number of order statistics for the case
a = 0.5. In each graph, the dotted line represents the true value of a. The left graph applies the
Hill estimator to the actual residuals. The middle graph applies it to the time series {X¢} and the
right graph gives the Hill plot for the estimated residuals {Zt}
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Figure 3 gives the same graphs for the case o = 0.7.
Note in both cases, the plot estimating « appears a bit more stable when estimating from the
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estimated residuals, rather than the actual time series.
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b) Teletraffic data:

The real data set we will analyze represents the silence periods between transmission of packets
generated by a terminal during a logged-on sesion. The terminal hooks to a special type of network
through a host and communicates with the network sending and receiving packets. The length
of the periods between two consecutive packets generated by the terminal (silence periods) were
recorded as our data. The total length of the data is 1027. ‘

A brief examination of the data shows a tendency for taking big values with rather high prob-
ability. The Hill estimator applied to the data also suggests the appropriateness of a heavy tailed
model (Figure 4).
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We now survey some model selection and estimation techniques appropriate to heavy tail data.
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In the following, we assume that {X;} is an AR(p) process defined by the p-th order autore-
gression:

P
Xt = Z¢iXt—i +Zy, t=0,£1,%2,.... (5.1)

=1

Recall {Z,} satisfy Condition II so that {Z,} are iid., Z, > 0 and
G(z) = P(Z; > z) ~ z7%L(2), T — 0o. (5.2)

and assume that 0 < a < 2. Also (4.3), (4.4), (4.5) hold.
Let us first review some facts about the Yule-Walker estimators for an AR process with heavy
tailed innovations. If we define, for h > 0 and m > 1

Soi20 CiCith
h) = =
pR) Zﬁoc? ’
?.—__.oh XiXith
Z?:O X1,2 ’
Rm = (RU)TJ=1 = (p (i'—j))zbjzla
P = (p(1), ..., p(m))

!

p(h) =

and

b = (6(1), .-, B(m))
where ¢(j) := 0if j > p, then (Davis and Resnick (1986))

P (R) L p(h) (5.3)

and

Rn®m = Pm (5.4)

for any m > 1.

Relation (5.3) allows us check for dependency in the data sequence and ﬁ(n) plays here the role
that the sample ACF plays for finite moment data. Thus we refer to (") as the heavy tail sample
ACF (HTSACF). We emphasize the difference between the sample autocorrelation function used
in the heavy tail case (HTSACF), which is the uncentered sample ACF and the centered one which
plays a similar role in the finite moment theory.

Note that for m = p, (5.4) is the heavy tail version of the relation defining the Yule-Walker esti-
mates in the case of data with finite moments (Brockwell and Davis (1991), Section 8.1). Motivated
by (5.3), we replace p, with p, and R, with ’Iép and then solve the system to get the estimated
Yule-Walker coefficients of the AR process. It is known (Davis and Resnick (1986)) that

o' = R, Lo, (5.5)

Form > 1, ¢,,(m) defines the heavy tail partial autocorrelation function (HTPACF) calculated
at lag m. The name is appropriate since, for the finite moment case, when the PACF is defined
using the covariance and when p,, stands for the usual centered autocorrelation function calculated
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at lag m, it is known that ¢,,(m) equals the partial autocorrelation function at lag m. For an AR(p)
process the HTPACF is 0 for all the lags beyond the order of the model p. Therefore, if the sample
HTPACEF is approximately zero beyond a threshhold, we get an indication of the possible order of
the process. To estimate the HTPACF we proceed by replacing p,, and Ry by the sample estimates.

The use of the HTPACF is an exploratory tool for model selection. Another important tool in
deciding on the order of the process is the AIC criterion. Let us assume that the true order is less
then or equal to K. Define

k
AIC(k) = nlog(TT(1 — (&; " ()) + 2
7=1

and
p = arg kIgl% AIC(E).

Then, for heavy tailed autoregressions, p is a consistent estimator of the true order p:
~ P
p—=p

(cf. Knight (1989)).

We will now attempt to model the teletraffic data as an AR process. There are strong prelimi-
nary indications in Figure 4, from the Hill plot, that a heavy tailed model is appropriate. We will
select the order of the best suited autoregression by means of HTPACF and AIC criterion, estimate
the coefficients by the Yule-Walker method and apply Hill’s estimator to the estimated residuals.
To help us judge the output of this two procedures we are also going to look at the Q-Q plot of
the quantiles of our data against the quantiles of a Pareto distribution, based on the assumption
that data behaves almost like a Pareto beyond a certain point. The combined effort of these three
methods should give us a fairly good idea about the size of the right tail of our data.

A look at HTSACF convinces us that our data is not independent (Figure 5). The left graph
in Figure 5 is the HTACF and the right graph is the usual centered ACF.
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Figure 6 compares the HTSPACF output with the usual sample partial ACF (SPACF) for the
finite moment case.
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To help us decide on the order of the model, we plotted Al C(k) vs k in Figure 7. Based on
Figures 6 and 7, the order seems to be 9.

AIC value
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-200

-250

10 20
order of the model

Figure 7

The next step is to estimate the coefficients by the Yule-Walker procedure and, with Proposition4.2
in mind, to apply the Hill estimator to the estimated residuals. The estimated coefficients are: ¢,
= -0.0004, ¢ = 0.0069, ¢3 = 0.4442, ¢4 = -0.0007, ¢5 = 0.0064, ¢ = -0.1961, ¢7 = 0.0058, ¢g =
0.004, ¢9 = 0.0901.

Figure 8 shows the graph of the estimated residuals.
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In Figure 9 the H-TSACF of the data is plotted on the left and on the right we plot the theoretical
HTACF p(h),0 < h < 20, of the estimated model, obtained by solving (using ITSM by Brockwell
and Davis, 1991)
= Zciz

é(z) 11— Z?:l qgizi i=0

and then using
oo I3 .
p(h) = ————————Emi’f’i’; R,
. 1=0 ¢
Good agreement between the sample and theoretical HTACF provides modest evidence of goodness
of fit.
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In Figure 10 we display the HTACF of the estimated tesiduals and the Hill plot based on the
estimated residuals. As in part a) of this section, the Hill plot based on estimated residuals seems
more stable than the one based on the actual time series. Based on Figure 9 we would guess that
a was in the neighborhood of 0.6.
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To confirm our estimate of a, we consider a Q-Q plot of the estimated residuals. The basis for

this technique is the following. Suppose that Z; behaves almost like a Pareto distribution beyond
a certain point, i.e.

P(Z > z) = (%)-a (5.6)

for ¢ > zo. Then also

~

P(alog;-f—1 >y)=€e?¥=1-G(y),y >0
0

where G is unit exponential. Let H(y) := P(log 7y < y) and

~

VA
H(y) = P(alog:—ci < oy — log o)) = G(a(y — log zo)).
Therefore we conclude
H(y) = a7'G(y) + log zo.

So, if our assumption is correct, i.e. 7, behaves almost like a Pareto distribution beyond a certain
point, plotting

k .
{(~1log(1 - m), log Zx)), 1 < k < n}

we should get approximately a line whose slope is a~1 and intercept is log zo (see the left hand
plot of Figure 11).
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Removing the first 577 order statistics and fitting a line to the graph, the estimate for a is
0.5886 and for g is 0.026. The right hand plot of Figure 11 shows the fit of a straight line to the
upper part of the estimated residuals. The same procedure applied to X, gives an estimate of

0.6335 for «a.
As a conclusion, all these methods indicate a value of somewhere between 0.58 and 0.68.
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