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Abstract.
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1. Introduction.

In this paper we study products of independent nonnegative random variables in comn-
nection with the family of subezponential distributions and its various subfamilies. For-

mally, we have the following.

DEFINITION 1.1. A distribution F on [0,00) is called subexponential if F(t) > 0 for every

t and S
m W (1.1)
2 T @)

where F(t) = 1 — F(t) is the tail of the distribution function F and * denotes convolution.

Examples of subexponential distributions include Pareto distributions,
F(t)=1—(1+1/b)7°, a>0, b>0;

the lognormal distribution,

logt —p
o

F(t):q)( ), pelR, o>0,

where ® is the standard normal distribution; and certain Weibull distributions,

Fiy=1-¢", 0<p<l.

Subexponential distributions have been found to be useful in the theory of branch-
ing processes (Chistyakov (1969), Athreya and Ney (1972), Chover, Ney and Wainger
(1973a,b)), queueing theory (Pakes (1975)), renewal theory (Teugels (1975), Embrechts
and Goldie (1982)), infinite variance time series (Davis and Resnick (1985b)) and large
deviations theory (Pinelis (1985), Cline and Hsing (1990)).

The class of subexponential distribution is typically denoted by S (or Sp); it has been
studied rather extensively in Pitman (1980), Embrechts and Goldie (1980, 1982), Cline
(1986, 1987), Goldie and Resnick (1988), Kliippelberg (1988) and others. The following is
a selection of the results from the above papers and used in the present paper. Note that
the first statement accounts for the name “subexponential” and defines a larger class, the

long-tailed distributions L.

THEOREM 1.1.
(i) (Athreya and Ney (1972)). If F € S, then F € L, where L is the class of

distributions on [0,00) satisfying

F(t+ u)

= =1 0 .
L a0 for any u > 0, (1.2)



and, consequently,
lim e F(t) = oo for any o > 0.

t—o00
(ii) (Embrechts and Goldie (1980)). Let F € S, G € L and supy>g F(t)/G(t) < oo.
Then FxG € S iff G € S.
(iii) (Cline (1987)). Let F € S and G € L. If sup;~q G(t)/F(t) < oo then FxG € S.
(iv) (Embrechts and Goldie (1980)). Let F,G € S. Then FxG € S ifpF+(1-p)G €
S for some (equivalently, all) p € (0,1).
(v) (Cline (1987)). Let F,G € S. If

F(rt)G(t)
F(H)G(rt)

sup sup
>0 1/2<r<2

?

then FxG € S.

Remark. Tt is important to remember in this connection that F' € S and G € § does
not, in general, imply that FxG € S. See Leslie (1989).

The above remark notwithstanding, Theorem 1.1 gives us a taste of the closure prop-
erties of the family of subexponential distributions with convolutions. That is, if X and
Y are independent random variables and the distribution of X isin 8, then, under appro-
priate conditions on the distribution of Y, the distribution of the sum X + Y is also in
S.

The present research is concerned with a related problem. Let, as above, X and Y be
independent nonegative random variables, and the distribution of X is in §. Under what
conditions on the distribution of ¥, will the distribution of the product XY (the product
convolution) be in 87

Our interest in this problem has originated from two particular applications where the
above question is of much importance.

The first example concerns infinite variance regression (Cline (1936), (1989)) and
infinite variance time series (Davis and Resnick (1985 a,b, 1986)) and others). Consider

the settings, say, of simple linear regression,
Y = Xi+ e,

(X;,¢) iid with X; and ¢; independent and of moving average time series,

o9
Yj =) bicj—is
1=0

¢; iid. The statistical behavior of least squares estimators in these settings requires knowl-

edge of the tail behavior of Xq¢; in the former case and of €1e9 in the latter. Previous
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work has been limited to distributions with regularly varying tails. However, consistency
results in particular may extend to a broader class of subexponential random variables, for
example those with dominated varying tails.

The second application is related to the theory of sample paths of infinitely divisible
stochastic processes. Rosinski and Samorodnitsky (1991) have considered the following

problem. Given an infinitely divisible stochastic process

X(t) = /E file)M(dz), teT,

where {f;,t € T} is a family of measurable functions and M is an infinitely divisible
random measure, it is frequently of interest to characterize the distribution (or at least the

tail behavior) of certain functionals of the sample paths of the process {X(¢),t € T}, e.g.

sup X (t), sup | X (t)], / | X ()P v(dt).
teTl teT T

Under certain conditions, Rosinski and Samorodnitsky (1991) were able to characterize
the tail behavior of such distributions. It turns out that, in many cases, the only condition
one needs to check is whether or not the distribution of the product of a certain two
independent random variables belongs to the subexponential class S. (One random variable
describes the effect of the Levy measure of the random measure M while the second
describes the combined effect of the kernel {f;,# € T} and of the control measure of M)

Although our original interest in the problem stems from the two applications de-
scribed above, insight into it will improve our understanding of the subexponentiality
property in general. In particular, how “robust” is subexponentiality? In this context we
mention the following well known result due to Embrechts and Goldie (1980). First, we
recall that a proper subclass of the subexponential family is the class of distributions with
reqularly varying tails, that is, of distributions F such that for any A > 0,

hm M = \"¢ for some a > 0.
t—oo F(t

The Embrechts and Goldie result says that if F' has regularly varying tails and G(t) =
o(F(t)) as t — oo then the distribution H of the product XY also has regularly varying
tails with the same index a.

This result expresses a certain “robustness” of the family RV_q, under the product
convolution. The underlying objective of this work is to study how much of this “robust-
ness” is shared by the whole subexponential family S (Section 2) and by its various other

subclasses (Section 3).
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We conclude this introductory section by mentioning that, as the many positive results
of the following sections show, the subexponential family is “robust” enough to have various
closure properties under the product convolution; still the closure properties appear to be
fewer (and harder to derive) than the closure properties under the sum convolution. This,
of course, is natural if one recalls that the very definition of the subexponential family of
distribution is in terms of sums (and not products) of independent random variables.

Henceforth X and ¥~ will be independent nonnegative random variables with distribu-
tions F and G, respectively (not degenerate at 0). The product XY has distribution H,

whose tail behavior we study.

2. Sufficient conditions for H to be in £ or S.

This section has two main purposes. The first is to show that £ is closed under the
product convolution and the second 1s to give a partial analysis for the subexponential
case in the spirit of the above-mentioned Embrechts-Goldie result. For the latter, we are
dealing with the question posed as follows. Suppose F' € §. It is reasonable to believe
that as long as the tail of the distribution G 1is “light enough” compared to the tail of
F, the “smoothness” of the former won’t matter, or the “perturbation” of F' caused by
multiplying X by Y, will not be serious enough to remove the product distribution from
the subexponential class. We know that this is true when F lhas regularly varying tails,
and Embrecht’s and Goldie’s result is an example of “light enough” in this case. The
following exhibits one such situation in the general subexponential case and is the main

result of this section.

THEOREM 2.1. Assume that F € S If there is a function a : (0,00) — (0,00) satisfying
the following, then H € S.

(a) a(t) T oo as t — 00,

(b) t/a(t) T oo as t — 00,

(¢) limy o F(t — a(t))/F(t) =1,

(d) limy oo G(a(t))/H(t) = 0.

Remark. The assumption G(a(th)) = o(F(t)) for some b > 0 is sufficient for condition
(d) in Theorem 2.1.
The proof of Theorem 2.1 is based on a sequence of lemmas. The first one provides

conditions for H to be “long-tailed”, including the closure result for L.

Remark. Before we begin, however, we note that in proving either (1.1) or (1.2) the

limits infinum hold automatically so it necessary only to obtain the limits supremum.



THEOREM 2.2.

(i) Let He represent the distribution of X(Y V). Fix 6 > 0. If He € L for every
€€ (0,6) then H € L.

(i) FGe L = HelL
(iii) If F € £ and G(t) = o(H(bt)) for every b > 0 then H € L.

Proov¥:

(i) First we observe that it always suffices to assume Y > 0 a.s. Indeed, suppose
P(Y = 0) is positive (but less than 1). Let Yy have the conditional distribution of Y,
given Y > 0, and let Hy be the distribution of XY5.. Since H(t) = P(XY4 > t)P(Y > 0),
it is easy to see that H € L < Hy € L.

For any fixed € > 0,

H(t)=P(X(Y Ve) > 1)
> H(t)
> P(XY >t,Y >¢)
=P(X(Y Ve)>t)— P(Y <e)P(eX > 1)
> P(Y > e)H(1). (2.1)

Therefore, for every u > 0,

ﬁ(t——u)< 1 . He(t—u) 1

limsu . - 10 SUPp === = ~
WP TG S PV 56 e H() P > o)

Letting ¢ — 0, we conclude that H € L.
(ii) Assume first that X > e; and Y > ez a.s. Fix u >0, 8 > 0. For large enough

to,

F(s—ufe) <(1+8)F(s) and G(s—ujer) < (14 8)G(s)

whenever s > 5. Thusfort > 2 and eg <y < (¢t —u 1/2,
0 0 2>y

F((t —u)/y) < F(t/y —u/e2) < (1 +6F(t/y).



With a similar inequality for G,

. (-2 _ , (t—uw)'/? _
Te-w= [ F-wmeuy [ G/ Fd
+F ((t ~u)l) @ (- u)l/?)
(t=w)'/? _ (t—w)'/?_
<(1+6) [ [ Fewean+ [ Gy

+F (t/(t — u)l/z) G (t/(t — u)l/Q)}

1/2 1/2
< (1+9) { / U R ya) + / Gy + F (1)@ (t1/2)]
=(1+8)H().
This shows _B_( )
t—u
hmeup =y = b

which is sufficient for H € L.

More generally, X > 0 and ¥ > 0 a.s. It is clear that X V e and Y V ep have the
same probability tails as do X and Y. The above shows that (X Ve )Y Vey) has a
long-tailed distribution for any e,€2 > 0. By part (i), applied twice, it follows that XY
has a long-tailed distribution.

(iii) By (i) it suffices to show that the result holds whenever Y > € a.s., regardless
of the value of e. Take u > 0 and § > 0. Choose g > 0 so big that F(t —u/e) < (1+8)F(t)
for all ¢t > t3. Then

— _ t/to __
At <Gfto)+ [ Fltfy— /)Gy

< G(t/to) + (1 +8H(D).

Therefore, .
t—
him sup M <1446
and, as this is true for every 6 > 0, H € L. O

LEMMA 2.3. Let H, be as in Theorem 2.2(i).
(i) Suppose H,He € L where P(Y >¢) > 0. Then H € S <= Hc € S.
(ii) Let § >0. Hc € S for all e € (0,4) implies H € S.



PRrOOF:
(i) Equation (2.1) is justified by using Theorem 1.1(ii,iii). From these we see that

He€S = HxHeS§ = HeS

and vice versa.

(ii) This follows from Theorem 2.2(i) and part (i) of this lemma. O

We now turn to the final lemma to be used in the proof of Theorem 2.1. A piece of

notation: for X ~ F and r > 0 we will denote the distribution of rX by Fp.

LEMMA 2.4. Let F € S, and let a: (0,00) — (0,00) satisfy (a) — (¢) of Theorem 2.1. Let
r(t) = inf{u: wa(t/u) > 1}.

Then r(t) | 0 as t — co and

FxFy(t
Lm sup :_——-—*——T:(_——)—— = (2.2)
t—00 . (p)<r<1 F() + Fr(?)
PROOF: The fact that #(¢) | 0 as t — oo is elementary. Fix an € >0 and choose an s > 0
so large that F(s) < e. It is straightforward to check that our assumption implies
F(t — qa(t

Iim ——g-;ﬂg‘m =1

e ()
for every ¢ > 0. It follows that there is a tg > 2s large enough so that for every t > g, we
have () <1, a(t) > 1 and F(t — sa(t)) < (1+ €)F(t). Using the easily checked fact that
for any r > r(t) we have ra(t/r) > 1, we obtain for any ¢ = %o,
Tt ) _ 7 ()

sup  sup e = sup Sup —r-
0cu<s r()<r<t  Er(t)  0<u<s rn)<r<t F (F)

F(L_— L
S Sllp F(T_ Sta(?’)) §1+€

ry<r<t F(F)

Therefore, for every ¢ > {g and r(t) <r <1,

SE(t—y) po S\F(t—y)
IS o < [ 5
< 2e.

1l F(du) + F(s)

Similarly we obtain

/OS B_F—t:{t—-)lﬂf}(du) — 1t < 2




and

/()T( )u)F(d) i<2e.

We then obtain

FxFp(t) = F(t —s)Fp(s) + /éSF;(t — u)F(du)
s t—s5 . ‘
+ [) F(t —u)Fy(du) + 1; Eo(t —u)F(du)

<F(t—s)F(s) + (1 +2e)(Fo(t) + F(1) + /t_s’ﬁ(t — u)F(du)
< FxF(t) — 2(1 — 26)F(t) + (1 + 2e)(F(t) + F(1)).

Since F € S, we can choose t; > tg such that for every t > ¢1, FxF(t) < 2(1+ ) F ().
Then, for every t > t1 and r(t) <r <1

FxFp(t) < (14 26)(Fo(t) + F(1)) + 6eF (1)
< (1+2e)(Fr(t) + F(t)) + 6eF*Fp(t).

Thus,
FxFp.(t 1+2
limsup sup +r(t) < + ‘.
t—oc p(t)<r<1 F(t) + Fp(t) ~ 1—6¢
Letting € — 0 proves the only non-trivial part of (2.2). O

PROOF OF THEOREM 2.1: By Theorem 2.2(iii), H € L. Likewise, the distribution of
X(Y V1) is long-tailed. If P(Y > 1) > 0, it suffices by Lemma 2.3(i) to show the latter
is subexponential. Otherwise, we replace Y with ¢Y vV 1 where ¢ > 1 and P(cY >1) > 0.
Note that condition (d) holds for the distribution of ¢Y. Note also that both £ and § are
closed under scalar multiplication. We are free therefore to prove the result only for the
case Y > 1 a.s.

Let X; and Y}, i = 1,2, be independent copies of X and Y. We have

Hx+H(t) = P(X1Y] 4+ XoYs > t)
< P(X Y1 +XoYo>1Yy <Y < a(t)) + P(X1Y] + XoYo > 1 Y] <Yy <a(t))
+2P(Y] > a(t)). (2.3)
Note that for every 1 < y9 < y1 < a(t) we have yo/y; > 7(t/y1). We now apply Lemma

2.4 to conclude that for every € > 0 there is a g > 0 so large that for every ¢t > ¢y and
every 1 <yy <y < af(t)

FxF, t T+E.
_ * 2/yl( /y1) < sup _ F*Fr(zyl) <14e (2.4)
F(t/y)) + Fyg/yl(t/yl) r(t/y1)<r<1 F(t/yy) + Fr(t/y1)
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It follows now from (2.3) and (2.4), conditioning on Y7 and Y3, that for any € > 0,
HRH(t) < (14 ) [P(X1Y] > 1, Y2 < Y] < a(t)) + P (XY > 1, Y3 <Y1 < a(t))]
+ (146 [P(X1Y] > 1Y) <Yy <a(t)) + P(XoY2 > £,Y] <Yz < a(t))]
+ 2P (Y1 > a(t))
< 2(1 + e)H(t) + 2G(alt)).

Therefore,
Hx+H(t
lim sup i ®) <2(1+e).
And since € > 0 can be taken arbitrarily small, we conclude that H € S. O

We demonstrate applicability of Theorem 2.1 by several examples, the first of which

is formulated as a corollary.
COROLLARY 2.5. If F € S and Y is a bounded random variable then H isin S.

PrOOF: Condition (d) in Theorem 2.1 holds trivially but we need to verify that we may

choose a(t) to satisfy (a)-(c). One choice is

2
—1, 0<t<r
r1
) =
n+4+ ——m, rp_1 <t<rp,n=29,...,
'n — Tp—1

where

ro =0, rlzinf{t>r0:%§2§1+—;— foraﬂuzt}

and, inductively, for n > 2,

, Flu - 1
n :inf{t > n+1rn_,1: F(u ~(n+2)) <14 —— forallu Zt}.
n F(u) n-+1
Since F € £, the sequence {rp}>2  is well-defined, and thus the proof is complete. 0

Ezample 2.1. Let X be a lognormal random variable with parameters p and o2, ie.
the tail of F is
F(t)=1-®((logt —p)/o), 1>0,

where ® is the standard normal distribution. Let Y be a nonnegative random variable,

independent of X. We claim that if for some 6 > 1

PY >t)=o0 ((logt’)”1 exp {——-2—-1—5 (logt + floglog t)2}> ,
o
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as t — oo, then the distribution of the product XY belongs to the subexponential class &S.

Indeed, Theorem 2.1 applies with

a(t) =t/ (log Hl for 1<6; <8

Both Corollary 2.5 and Example 2.1 deal with situations in which the tail of the
distribtion of a random variable Y is suitably lighter than the tail of the distribution of
a random variable X. This is, indeed, the spirit of Theorem 2.1. It is also applicable
to many situations discussed in the next section. However, Theorem 2.1 can be applied
in certain situations when the tails of the two distributions are comparable, as our next

example demonstrates.

Ezample 2.2. Let X and Y be iid. random variables with common distribution ¥

such that
F(t) = exp {—tPL(t)}, 0<p<1/2,

where L is slowly varying at infinity and eventually decreasing. Let H be the distribution
of the product XY It follows from Cline (1986) and from Goldie and Resnick (1988) that
F e S. Since H(t) > (F(t1/2))2, it follows that Theorem 2.1 applies with a(t) = Mitl/2,
where M > 21/P. Therefore H € S.

We leave it for the reader to observe the numerous ways in which the above assumption
on F can be relaxed.

We conclude this section with an observation that even the spirit of the results dis-
cussed above seems nowhere to be found in the multivariate case. Apart from shedding light
on the multivariate subexponentiality, this shows that the property of subexponentiality
is fragile indeed where taking products of independent random variables is concerned.

The extension of the notion of a subexponential distribution to the multivariate care
is due to Cline and Resnick (1991); it is stated in terms of vague convergence of measures,
which is, in the context of IRY, a language preferable to that of distribution tail functions.
To this end let “—2” stand for the vague convergence of measures on E = [—o0, —oo]d —
{(—00,—00,...,—00)} and let b(t) = (b1(1),...,bg(t)) : Ry — IRY | with b;(t) — oo as

t— oo foreveryi=1,...,d.
DEFINITION 2.1. A distribution F' on ]R‘i is called subexponential if
LF(b() + ) o v (2.5)

and

tFxF(b(t) +-) - 2v,
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where v is a finite measure concentrated on the 2¢ _ 1 points in E = {—oo,oo}d —
{(—00, —00,...,—00)} and satisfying

Z v{(zy,...,2q)} >0

(z1,.,24)€E,2;=+00

yorey

foreveryi=1,...,d.

In the one-dimensional case this definition reduces to the usual definition of subexpo-
nentiality in terms of distribution functions (Cline and Resnick (1991)).

The following example shows that multivariate subexponentiality is not necessarily
preserved when we multiply componentwise independent random vectors in IR2, one with a
subexponential distributions and the other one bounded. Compare this fact with Corollary

2.5 above.
Ezample 2.5. Let X = (X1, X2) have distribution function F satisfying
1+ v sin (log(1 + ¢ + 22))sin (W%)

1421+ a9
for 1 > 0, x9 > 0, and 0 < |y| < 1/12. Cline and Resnick (1991) exhibit this distribution

P(4Y1 > ;Bl,Xg > .L’Q) =

and show that it is subexponential.
Let Y = (Y5,Y%) be a random vector independent of X such that

P =(1,1)=PE=@21)=7

and let Z = (X1Y7], X2Y2). We contend that the distribution of Z is not subexponential.
Indeed, denoting Z; = X;Y;,7 = 1,2, it is obvious that
3
P(Zl>z)~—2-z_1 as z — 09,

P(Z2>z)~z'1 as z — 00.
Tt follows then from Proposition 4.2 of Cline and Resnick (1991) that if the distribution
of Z were subexponential, it must satisfy (2.5) with b;(t) = ¢;t, i = 1,2, for some ¢; > 0,
¢g > 0. That is, tP(Zy > =1 +1t, Z; > 22 + cot) must converge to a limit as ¢ — oo.
However,

tP(Z1 > z1 + e1t, Zg > z9 + cot) — A(t) — 0,

where

1 1 1
A(t) = =
© 2(61+62+01/2+62>

+ g-sin(log t) [sin (61) cos (log(eq + €2)) + sin (69) cos (log(c1/2 + 02))}

€1+ e c1/2+e2
+ L cos(log 1) [sm (61) sin (log(cy + ¢2)) 4 (69) sin (log(c1 /2 + c2))]
2 €1+ €2 ci1/2+ ¢
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and
¢l —c c1/2—~c¢
1= g n 1/ 2
1+ e c1/2+ e

We therefore must have the coefficients of both sin(log t) and cos(log t) to be equal to

1=7

0. Since it is straightforward to check that no choice of ¢; > 0 and ¢g > 0 will ensure that,

our argument is complete.

3. Closure properties of subclasses of S.

Because subexponentiality is a difficult property to characterize we consider in this
section subclasses of S which, being more casily characterized, lead to more refined re-
sults. We will look at classes whose tails have the regular variation property or one of its
extensions.

As before, we are principally interested in two questions: a) if F is in some class F,
what conditions on G ensure that H is in F? and b) in particular, is F closed under the
product convolution? A related question is the so-called factorization problem: how can
H{(t) be approximated with a “relatively simple” expression (such as a linear combination)
of F(t) and G(¢)? This is a much harder problem, difficult even in the situation of regularly
varying tails (Cline, 1986) and we only consider certain special cases here.

These questions have been thoroughly studied in the case of regularly varying tails
(Breiman (1965), Embrechts and Goldie (1980), Cline (1986)). An investigation of situa-
tions involving the extensions of regular variation leads to the general conclusion that the
behavior of I is determined principally by two features. The first of these is the behavior
of the heavier of the two tails, F and G. Thus, if G has light enough tails then H and
F are in the same class. The second feature is the behavior of the least “regular” of the
two tails. Thus, if F has dominated varying tails and G has regularly varying tails we
generally can say only that H has dominated varying tails. There are, however, several
special classes such that F’s membership implies H'’s membership regardless of G. (The
class with dominated varying tails is one of these.) We begin by defining the classes of

interest.

DEFINITION 3.1.
(i) F € R if F is regular varying, i.e.

lim F(A)

m — ATe for some a > 0, all A > 1.
5% )

(ii) F € £ if F is extended regular varying, i.e.

F
lim inf __EM) > "¢ for some ¢ > 0, all A > 1.
A 0
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(ili) F € I if F is intermediate regular varying, i.e.

lim lim inf ()\f)
A1 t—oo F()

(iv) F € D if F is dominated varying, i.e.

Liminf F()\t)
e F(1)

> 0, for some A > 1.

For detailed discussion of regular variation, extended regular variation and dominated
variation, see Bingham, Goldie and Teugels (1989, Ch. 2-3) (hereafter referred to as BGT).
For discussion of intermediate regular variation, see Cline (1991). Due to monotonicity,

F € T is equivalent to

Lim inf F( f)

A 1t—00 F(t) (3.1)

For continuous F, this is the defining property of regular oscillation (Berman, 1982, 1988).

From Definition 3.1, it is evident that R C £ C T C D. These inclusions are proper
and furthermore T C (PN L) C 8 (Embrechts and Omey, 1984; Cline, 1991). For example,
let p(t) = —log F(e! —1). Then F(t) = exp(—p(log(1 + t))) and

FeR if p(t)
FecéEbut F¢R if p(t)
FeIbuwF¢¢& if p(t)
FeDnLbat F¢TI ifp(t)
FeDbut F¢L if p(t)
FeSbut F¢DnL if p(t)

t;
[t + (t = [t

[+ (- [t])1/°;
[t] + (4 = [t)) A1)
[+ ('t =t A1);
.

H

!

I

H

I

Two further subclasses we refer to are the following.

DEFINITION 3.2.
(i) F € & if F is absolutely continuous and tF'(t)/F(t) is bounded,
(i) F € T' if F is continuous and F € T.

That & C € follows from the representation theorem for extended regular variation
(BGT, Thmn 2.2.6). The class T’ is the class of distributions with regularly oscillating tails,
i.e. with tail satisfying (3.1) and continuous. Furthermore this is equivalent to “log F(eh)

is uniformly continuous on [0, 00) and continuous elsewhere” (Berman, 1982).
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Associated with F € D are the Matuszewska indices of F, —ap and —fBp where
ap > Bp > 0, which are the most narrowly defined constants satisfying the following. For
every € > 0 there exist C' and tg so that

ATar—¢ .F‘_(/\t)
¢ T F@®)
for all A > 1, ¢ > tg (cf. definition in BGT, p. 68). These constants may be defined for any
F,but F € Dif and only if ap < co.
More precisely, we define the generalized index functions, for A > 0,
Fi(A) = liminf FM) and  F()\) = limsup F(A f)
e () ey

If F(t) = 0 for some finite ¢, these limits are taken to be 0, 1 and oo, for A > 1, A =1
and A < 1, respectively. (Note: F(1/)\) = (F+«(X))~!). The Matusweska indices may be
determined by (BGT, Thm 2.1.5)

. —log Fu(A
ar = lim 1ig;( : e Tog A
Also, F € Tif and only if F4(A) T1las A | l;and F € € if and only if Fx(X) > A7¢, for

some ¢ < oo, all A > 1. Moreover, there exist the Karamata indices of F, —cp < —dp < 0,

< CAPF (3.2)

(3.3)

for which

e < FA)
) \TEF
(1= )™ = 5

uniformly for A € [1, A] and all large ¢ (def. in BGT, pp. 66-67). They may be determined
by

< AUF(1 4 €

e = lim ___l(ig_f_*_(.’\_); dp = lim —log F (N (3.4)
M1 log A Al log A
and F € € if and only ¢y < oo. Finally, we have the relationship (BGT, Thm. 2.1.8)
AF <F (N S AOF < ATPF<F ) <A <1, A> L (3.5)

As much as possible we derive results in terms of the index functions. To this end,
also let G, Gx, T+ and H. be the corresponding index functions of G and H. These
functions are nondecreasing but not necessarily continuous.

First, we try to get a handle on H, and H+. To this end define,
> F(t/y)

———G(dy)

mpg = lim liminf )
S

5§00 {—00

and for A > 1,
As T F
Rp () = lim sup lim sup/ 1L/y) G(dy),
5

§—00 t—oo ( )

with similar definitions for m¢ g and R, p(A). Note that each of these values is in [0,1].

Further points are given in the next lemma.
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LEmMMA 3.1.
(i) 1/2<mpgVmgrp <1<mpqg+mgrF
(ii) Forany A > 1, (Rpc(A) A Rg,r(N) <1/2.
(iii) If G(t) = o(H(bt)) for all b > 0, orif H € D and G(t) = o(H(bt)) for some
b> 0, then mg p =1 and Rg p(A) = 0.

PROOF:
(i) Since, for t > s2,

oo 0o . t/s o
[ Fmean + [ awmraw =10 + [ e + T

S
we immediately have mp ¢ +mg g > 1. This in turn implies mp gV mgF 21 /2 and we
have already noted that each value is bounded above by 1.

(i) Using (i),
(Rp.g(\) ARG p(V) < (1 —mpg)A(1—mgr) <1/2.

(iii) Let A > 1. First suppose G(t) = o(H(bt)) for all b > 0.

1>mgrp=1-— lim hmsup/ t/L)F( dx)
0

$00 4,00 H(

>1— lm hm G(t/s)
§=+00 t—00 H(t)

=1.

Secondly, suppose H € D and G(t) = o(H(bt)) for some b > 0. Then H(bt)/H (b1 t) is
bounded for any fixed by > 0. Hence, the first condition holds and mg g = 1.
Finally, Rg p(A) <1 —mgr = 0. O

LEMMA 3.2. For any F and G aund for each A > 1,

(i)
) > { ma pEe(N) + (1 —mg p)Ga(A), Fi(X) 2 G+(N),
(1 —mp ) Fe(X) + mpaGa(X),  Fx(A) < G(A);
> Fie(A) AGx(N)
and
(1)

H'O) < (FOVEW) + (R A Rer) (F) AT ()

< (Fovam) +5 (Fnagw).
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PROOF: We prove (i) when F'()) < G (). Express T—f(t) in the convenient form, with
arbitrary s > 0,

- 5 t/s . .
H(t) = /é F(t/y)G(dy) + /0 G(t/x)F(dx) + F(t)s)T(s).
Let A > 1 and € > 0. For large enough s and /s,

L As t/s — o
H(M) = /é F(M/y)G(dy) + A G(M/)F(de) + F(t/3)C(As) (3.6)

. /\s__ . 0o
> (1 - |Fy) /0 F(t/y)C(dy) + Ta(N) / F(t/y)G(dw}

> (-9 [FAEW + @) ~T0) | " Fupncta)

S

Since s, and then €, are arbitrary, it follows that

H.(\) = liminf I?E(gt)) > Fu(h) + (@A) = FulN) mrc

2

as was to be shown.
(ii) Let A > 1 and € > 0. From (3.6) we have, for large enough s and t/s,

H(M) < (1+¢) [(F*(A) ve) /O " Fay)ady) + (@ve) / h F(t/mG(dy)]
<(1+¢) (‘F‘*(,\) VGV e) H(t)

1+ (FOATW) ve) / " Fy)cid).

8

Hence,

=k s . F(/\t) S —k S— —k
() =limsup < < (FFoyve (V) + Rrg() (F'AT ™)

Likewise,
T < (Foyv W) + Re (V) (Foa awm).
The second inequality holds by Lemma 3.1(ii). a

We now state and prove our theorems, one each for the classes D, 7, and £. Recall

we assume both F' and G are not degenerate at 0.
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THEOREM 3.3.
(i) For any F and G,

(Br A Bg) < By < ag < (afp Nag).

(ii) FeD = HeD.
(ii) If F € D and G(t) = o(H(bt)) for some b > 0 then for each A > 1,

Fo(\) < H ) <H (N <F(N). (3.7)

(iv) If F € D and EY®F+¢ < oo for some € > 0, then (3. 7) holds and

: H{(t) -
< h?ls:;p T <FE [F (l/Y)] < 0.

H{(t)
(

11V < T
0< E[Fu(1/Y )] “hﬁlgf =

Remark. Theorems 2.2 and 3.3 together imply that the subexponential subclass DML

is closed under products.

PROOF:
(i) Using (3.3) and Lemma 3.2(ii),

. —logH'(N)
B = —_—t
rH /\1—1—{%0 log A

. —log< (‘F*(A)vz;‘*u)))

T A—oo log A
= Br A fBg-

Likewise, we can show ag < ap V ag but in fact we want to show more. In order

[NVE ]

to accomplish this, we resort to the representation for distributions in D. It suffices to
show afy < ap in the case ap is finite. Let a > ap. By the representation theorem for

O-regularly varying functions (BGT, Thm. 2.2.7),

t u
_1og F(t) = np(t) + /0 bty

where np is bounded and (p(t) < a. Furthermore, since F is bounded and monotone, we
may in fact choose np and (p so that the latter is nonegative. (This is evident from the

proof of the representation theorem.) Now let

t U
pr(t) :/o C—ngu
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and o
']—_To(t):/ e~ PP/ G(dy).
0

Then we note that we may represent —log H(t) = ng(t) + fO CH( )du where

g (t) = —log (H(t)/Ho(1))
is bounded and
tHo(t)
Ho(t)

/ooo Cr(t/y)e PV a(dy) € [0,a).

Ca(t) = —

 Ho)
This shows that satisfies the representation for D with some ay < a. Since a may be
chosen at will in (ap,00), we conclude ayy < ap.
(ii) This follows immediately from (i), since a < ap < oo.
(iii) By (i), H € D. From the proof of Lemma 3. 1(iii), we have that G(t) = o(H(bt))
for all b > 0 and not just for some b > 0.
Fix any A > 0 and choose ty so large that F(M) <1+ e)F (M\F(t) when t > 2.
Choose 1] > o so that G(t/tg) < €H(t) when t > ¢;. Then for such ¢,

_ t/to __ _
T(M) < /0 F(M/y)Gdy) + Tt /to)

. t/to .
<(1+OF ) /0 F(t/y)G(dy) + T (1)
< (@ +gF () +€) HD)

Thus, H (M) < F'(A). As this is true for any A > 0, we also have H«(A) > F4().

(iv) Let a € (ap,ap +€). Then t9G(t) — 0 and t*F(t) — oo (follows from BGT,
Prop. 2.2.1). Hence G(t) = o(F(bt)), all b > 0. This is sufficient for the condition in part
(iii), so (3.7) holds.

Since F € D and G is not degenerate at 0, it must be that £ [F«(1/ Y)] > 0. The

lower bound follows by Fatou’s lemma,

H(t) 7 ,
htlggéf ) 2/ F.(1/y)G(dy).

To obtain the upper bound we first use (3.2). For any ¢ € (0,¢€), there is C < oo and
tg such that
—_ Al .
F(t/y) _ {Cyﬂf ¢ ify<1,t>t
F(t) CyeFte | i 1<y < t/tg, t > to.
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Hence F'(1/y) < C (y(’F““e! v yﬂF—f’) so that FE [—F*(l/Y)} < oo. Furthermore, when
t > tp,

_ 1__ t/f,o___ ___
H(t) < / F(1/9)G(dy) + / F(t/y)G(dy) + Tlt/to)
0 1 '
1 , o0 , . _ .
<c [ [ o=t + [ e G(dy>+a<t/to>/F<t>} 120)

Since G(t/tg) = o( F(t)), as t — o0, we conclude by dominated convergence that

v t/t
liﬁl_} il(l)P ;{é:; < h;i ilép /0 i Flg’t(g) G(dy)

< /U T F(1/9)Gdy).

THEOREM 3.4.
(i) FGeI = Hel
(ii) F € T and G(t) = o(H(bt)) for some b > 0 implies H € 7.
(i) FeI' = HeT.

PROOF:
(i) The assumption is that Fi«(A) T 1 and G+(\) T 1as A | 1. By Lemma 3.2(i),
this implies H«(A\) T 1 as A | 1. Hence H € 1.
(i) By Theorem 3.3(iii), Fx(}) < H«()). Thus, Fx(X) T 1 implies H«(X\) 11 and
Hel.
(iii) As noted after Definition 3.2, F € 7' is equivalent to log F(e!) is uniformly
continuous on [0,00) and continuous elsewhere. We must therefore show that log H (e!)

shares this property. The assumption on F is the same as: for each € > 0 thereis 6 > O so
that |A — 1] < é implies

‘Zi(./\t)—ll<e for all t > 0.
F(t)
By this,
(At/y)G(d
- Emfooo /WGy
Jo© E(t/y)G(dy)
whenever |A — 1| < 8. And this demonstrates that H has the desired property. O

THEOREM 3.5.
(i) Forany F and G, cg < cp V cg.
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(i) FGe & = HeE&.
(iii) F € & and G(t) = o(H(bt)) for some b > 0 then H €& and

dp <dg <cpg < cF. (3.8)

(iv) Fe& = Hef.
(v) If F € € and EYF1€ < oo for some € > 0, then (3.8) holds and

T H
E [YCF A de] < h‘}ii}éf ((t; < htqoop '[T’ét; <E [YCF v YdF] (3.9)

Furthermore, there exist np(t) and (p(t) such that

—log F(t) = np(t) + /0 CE;(Lwdu (3.10)

where np(t) — m € IR, as t — oo, and (p 1s bounded. If in addition (p is slowly varying,
then .
FOE [y O]
m =
e H(®)

—1. (3.11)

Remark. We owe the idea for (3.11) to Berman (1991, Thm. 3.1) who assumes F
and @ are continuously differentiable and whose result is expressed in terms of the density

of log X +log Y. We have also weakened his conditions on F and G in other ways.

PROOF:
(i) Using (3.4) and Lemmia 3.2(3),

cy =lm —log H.(A)
A1 log A
. log (F«(X) A Gx(N))
Al log A
=cp V cq.

(ii) This follows immediately from ().
(iii) By Theorem 3.3(iii),

FuM) <HN) <H (V) <F (V).

Thus (3.8), follows from this by applying (3. 4) as in part (i).
(iv) By assumption, (p(t) = tF'(t)/F(t) exists and is bounded, say by c. Then H'

exists and

tH'(t)
H(t)

- || G Fama)

< e.
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b

Hence H € &'.
(v) Let ¢ € (¢p,cp +€). Then t°G(t) — 0 and t°F(t) — oo (follows from BG'T,
Prop. 2.2.3). Hence G(t) = o( F(bt)), for all b > 0 which is sufficient for G(t) = o(H(bt)),
all b > 0. By part (iii), this ensures (3.8). Since F(1/y) = (F*(y))#l < y°F fory > 1 by
(3.5) and since & C D, then Theorem 3.3(iv) applies and (3.9) is immediate.
The representation (3.10) is provided by BGT (Thm. 2.2.6).
Now assume (p is slowly varying. This implies

100

t
lim ( £1‘—1—(}2(1@1 — (log y)CF(t)) =0, (3.12)
tly U
uniformly for compact y-sets in (0,00). With the assumption of convergence for np,
F(t s . ¢ u
o[BI, 5| = i exp () =) + [ = Qo r(®) =
t—00 F(t) {—00 t)y U

= 0. (3.13)

From (3.12) and BGT (Thm. 2.2.6),

At
lim sup (p(t) = hmhm sup 1 / —Cf—(—@-du =cp.
t—00 ALl A= u

Since (p is also eventually positive (to be slowly varying) choose g > 1 so that 0 < (p(t) <
(cp + €) and |np(t) — m| < e for all t > #9. Then it follows that, for some C € (0,00) and
all t > 1y,

1 .

— < E [YéF(t)] < C,

C <

It also follows, if both ¢ > t% and y < t/tg,

D0 = ey (WF(t)""?P (/) + / ‘F§“>du>vy<ﬂ“

2eycp+€

With this bound and with (3.13), dominated convergence is allowed for

Hio | Ftfy) yCF (D) VL
t—»oo/ ) UL G(dy) = 0.
Finally,
HE) . [yoet Yo F(tfy) ¢ Glt/ty) rlt
mmE[YCF()] S/é —%--yF(t) G(dy) + —=— ) +E[YF()1Y>t/to]'
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The first term, we have just shown, vanishes as t — oo. The second term also vanishes by

a remark made above and the third term clearly follows suit. Therefore,

lim lgﬂ - B [y 0] = 0.
00 F(t)
Since E {YCF (i)] is bounded away from 0, (3.11) is proven. O

As a corollary, we provide the results for R. All three are well-known, though the
second is a slight extension of the result by Embrechts and Goldie (1980) discussed in the
introduction. Note that F € R means ap = S = cp = dp < oo and is implied by
cp=dp < oo.

COROLLARY 3.6.
(i) (Embrechts and Goldie (1980)). F,G€ R = HeR with ag = ap N ag.
(i) (Embrechts and Goldie (1980)). If F € R and G(t) = o(H(bt)) for some b > O,
then H € R and ay = ap.
(iii) (Breiman (1965)). f F € R and E [YoFt€] < oo for some e > 0, then

lim = = E[VOF].

PROOF:
(i) If ap < ag then it is well known that G(t) = o(F(bt)), for all b > 0, and the
condition for part (ii) holds. Thus ay = ap. Likewise, ag = ag if ag < af.
Otherwise, assume ap = ag. Let Fi be the measure satisfying Fi(w, ) = Fx(x) =
2~%F and give a similar definition to G«. By a double application of Fatou’s lemma,
H(t ©
lim inf lim inf :—-——__~(——2——— > liminf __1 / F«(s/y)G(dy)
s—00 t—oc G(s)F(t/s) s—oo G(s) Jo
o0 o]
= liminf G_(-s/ z)
SO0 0 G(s)

> /0 G+(1/2)Fy(dz)

Fy(dx)

Thus
' Ry (X)) = lim sup lim sup //\5 MG(dy)
F’G 5 OO —o0 s -H—(t)
F(t/\s) F(t/s)G(s)

< lim sup him sup

§—00 100 _F(t/s) ._H_(f)
= 0.
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Since ap = BF = ag = B¢ then Lemma 3.2 says,
AP = (Fu(M) AG(N) S H(N) <H (\) < (F(M) v Gu(X)) = A7F,

Therefore H € R with ag = ap.
(ii) By Theorem 3.5(iii),

ap=dp <dy <cg S cp = af.

Since dy = cy then H € R.
(iii) This follows from Theorem 3.5(v) since ap = cp = dp. |
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